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We study a model for neural activity on the small-world topology of Watts and Strogatz and on the scale-free
topology of Barabási and Albert. We find that the topology of the network connections may spontaneously
induce periodic neural activity, contrasting with nonperiodic neural activities exhibited by regular topologies.
Periodic activity exists only for relatively small networks and occurs with higher probability when the rewiring
probability is larger. The average length of the periods increases with the square root of the network size.
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The human brain is the most fascinating processor, con-
sisting of about 1010 neurons. These neurons are connected
to each other by synapses, forming together the neural net-
work. The synapses transmit stimuli through different con-
centrations of Na+ and K+ ions. The neurons communicate
with each other through electrical impulses. Each time a neu-
ron is charged beyond a certain threshold by the connected
neurons, it “fires” an electrical discharge through its axon
which through synapses transmits charges to the dendrites of
other neurons. While most synapses just connect nearby neu-
rons, a few of them also can be long range and connect to a
neuron in a distant area of the brain. These few far-reaching
connections seem to be crucial for the coherent functioning
of the brain. Such a mixed network structure of many short-
and a few long-range connections is the trademark of small-
world networks as introduced in a seminal work by Watts
and Strogatz �1–3�. In vitro studies of neuronal networks
have in fact been grown and analyzed and found to have
small-world properties �4�. Another direction of research has
been analyzing avalanches of neurons firing, and it has been
reported that there exists some criticality or scale-free behav-
ior. This has been observed experimentally in organotypic
cultures from coronal slices of rat cortex �5� and been mod-
eled as a self-organized critical process �6�.

In brain research, the appearance of periodic cycles of
firing sequences is commonly observed, and is considered as
responsible for the origin of various body clocks; it has even
been interpreted as the realization of some simple thoughts.
One of the fundamental questions is how does such a seem-
ingly disordered system as the brain synchronize the activity
so as to produce these periodic signals. It is the aim of the
present work to present a simple neural model on Watts-
Strogatz and Barabási-Albert networks and show that it can,
under suitable circumstances, spontaneously generate peri-
odic time series in its activity. Similar studies have already
been performed using the Hodgkin-Huxley model �7–9�
where it was found that the Watts-Strogatz network has fast
coherent oscillations as opposed to other types of graphs.
Also integrate-and-fire neurons have been studied on small-
world networks and a transition between self-sustained per-
sistent activity and failure has been reported �10�. Other
properties like, for instance, the background of the neural
activity, seem rather unaffected by the small-world properties
as observed recently �11�. We also want to take into account

scale-free properties by investigating our model on the net-
work of Barabási and Albert �12,13�. Among others, the
Hopfield model �14,15� and the Hindmarsh-Rose neural
model �16� have already been studied before on such net-
works.

In order to describe the neural activity we use a variant of
the original model of McCulloch and Pitts �17�. A neuron i
can be in one of two states, firing or nonfiring, described by
binary variables xi=1 �active� or 0 �inactive�. They are ini-
tialized randomly. The state of a neuron is updated in time t
through the following equation �18�:

xi�t� = �� �
j��i�

n

Sijxj�t − 1� + T� , �1�

where n is the number of connections of each neuron and Sij
represents the strength of the synapse between neurons i and
j. The strength factors Sij are set randomly to be either +1 or
−1 with equal probability, representing either an excitatory
or an inhibitory neuron, respectively. In reality, the synaptic
strengths are not time independent, as known since the semi-
nal work of Bernard Katz, but we consider that these changes
occur on much longer time scales than the oscillations we
consider in this study. Finally, the variable T is the firing
threshold which in fact throughout this paper is taken to be
zero. Here, � denotes the Heaviside function defined as
usual: ��z�=1 if z�0, and ��z�=0 if z�0.

We are interested in analyzing the overall firing activity of
the brain which in practice can be monitored, for instance,
through electroencephalogram �EEG� measurements. For
that we define a macroscopic variable of our model which we
call the “neural activity” A�t� as the fraction of neurons firing
at time t,

A�t� =
1

N
�
i=1

N

xi�t� . �2�

Note that it is easy to reduce the overall activity in our model
by multiplying the integration at each neuron with a constant
less than unity. However this will only change the time scale
making the program slower and yielding the same result.

The small-world network of Watts and Strogatz �1–3� al-
lows one to continuously connect two extreme situations,
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namely, the regular lattice and random graph of Renyi and
Erdös �19�. The construction of a Watts-Strogatz network is
performed in two steps.

�1� We start with a regular lattice, in our case a one-
dimensional chain of N sites with connections between near-
est and next-nearest neighbors and periodic boundary condi-
tions so that the total number of connections per site is k
=4.

�2� With probability p �“rewiring probability”� we replace
for each site i a connection Lij by another one Lix where x is
any randomly chosen site �Fig. 1�.

The rewiring probability p varies between zero and one
and is the main parameter of our investigation. For p=0 we
have a regular lattice and for p=1 a random graph.

The scale-free network of Barabási and Albert �12,13� is
constructed by starting with a small number m0 of nodes at
time t=0. Then, at each time step one adds a new node
having m�m0 links to the existing nodes. The probability
that a new node is connected to node i is ki /� jkj where ki is
the actual connectivity of node i.

This rule assures preferential attachment to sites of higher
connectivity. As a result the distribution of connectivities
also called the “degree distribution” follows a power law
P�k��k−� with an exponent �=3. This property character-
izes a scale-free network.

We first consider a network with N=2048 sites and
modify the rewiring probability p between zero and one. For
each value of p, we generate 1000 different networks and
compute at each time step the neural activity A�t�, Eq. �2�, as
generated by the model of Eq. �1�. Figure 2�a� shows the
nonperiodic temporal evolution of the neural activity as ob-
tained for a Watts-Strogatz network with rewiring probability
p=0 �i.e., on a regular chain�. In order to measure the peri-
odicity in time, we analyze the last 1024 time steps of series
with 16 382 steps using a shift algorithm In this way, it is
possible to detect all periods shorter than 512 time steps.

Figure 2�b� shows the result when the rewiring probability
is p=1 �i.e., on a random graph�: the time series becomes
periodic. To quantify the degree of periodicity �, i.e., the
fraction of graphs that exhibit periodic time series, we per-
formed additional simulations on networks with N=1024,

2048, 4096, 8192, and 16 384 sites. For each size we gener-
ated 1000 different networks and measured the degree of
periodicity for various values of p.

The inset of Fig. 3 shows the fraction � of networks
reaching a periodic regime as a function of the rewiring
probability p. For p=0 we find consistently �=0, i.e., all
networks behave non-periodically regardless of their size.
Furthermore, the solid lines clearly indicate that the increase
of the fraction � with p can be closely described by the
expression,

FIG. 1. One starts with a regular chain having nearest- and
next-nearest-neighbor connections. With probability p we replace
short-range by long-range connections by rewiring. Initially v is
connected to v�. But after rewiring, the connection of v to v� is
replaced by another connection, say v to v�.

FIG. 2. Temporal evolution of the neural activity of graphs hav-
ing 2048 sites �a� for a rewiring probability p=0, i.e., a regular
network; �b� for a rewiring probability p=1, i.e., a random graph.

FIG. 3. Renormalized fraction ���N� of graphs with periodic
time series as a function of the tanh of the renormalized rewiring
probability p��N�. Inset: Fraction � of graphs with periodic time
series as a function of the rewiring probability for different network
sizes N.

BRIEF REPORTS PHYSICAL REVIEW E 74, 017102 �2006�

017102-2



��p,N� = a0	tanh� p

a1
+ a2� − tanh�a2�
 , �3�

where the parameters a0, a1, and a2 are obtained through the
best nonlinear fit to the data of Eq. �3� for each different
value of N. In addition, our results suggest that the param-
eters ai depend only on the system size N, since we find their
behaviors to be well represented by the relations,

a0�N� = �0 + �0N , �4�

a1�N� = �1 + �1 ln N , �5�

a2�N� = �2 + �2 ln N , �6�

with �0=0.501, �1=0.476, �2=9.610, �0=−4.146	10−5,
�1=−0.036, and �2=−1.576. Following this approach, we
can rescale the variables � and p as ��=� /a0+tanh�a2� and
p�= p /a1+a2, respectively, to show that all data can be col-
lapsed on the top of each other as displayed in Fig. 3. From
the inset in Fig. 3 we can also see that the degree of period-
icity � decays with increasing size N of the network for a
fixed value of p
0.

As can be seen from Fig. 3, there exists a N0�32 000
defined through ���N0�=0 above which the fraction � of
graphs with periodic signals is zero, N0 being the largest
network size still showing periods.

In Fig. 4 we show that the degree of periodicity � decays
with the increase of the network size N, and that this effect
becomes more pronounced the smaller the value of p.

The length of a period is the minimum number of time
steps for which the time series is repeated. Figure 5 shows in
double-logarithmic scale the average period length as a func-
tion of the size N of the network for N=128, 256, 512, 1024,
and 2048 for a fixed value of p=0.9. The average period is
defined here as the average over only those configurations
that displayed periodic behavior. For each value of N, we
average over 1000 networks from series that have a total

length of 16 384 time steps, the last 1024 of which were
analyzed. We see that the average period �T
 increases with
the size like a power law, with an exponent that is approxi-
mately equal to 1/2, i.e., �T
��N.

In the insets of Figs. 4 and 5 we see the corresponding
data for a Barabási-Albert network with m=3. Here the frac-
tion of graphs having periodic signals decreases with the
system size N linearly and at around N0�6000 it becomes
zero so that for larger sizes no periods can be found. The
average period length increases linearly with the size: �T

�N.

In conclusion, we have shown that a simple neural model
on Watts-Strogatz and Barabási-Albert networks can gener-
ate periodic activity signals, but only if the networks are not
too large. These cycles become more frequent if one has
more long-range connections, and the length of their period
increases like the number of neurons or its square root for
scale-free or small-world networks, respectively. Since the
brain is huge one would therefore expect the present mecha-
nism to be relevant in only very small fractions of the brain.
In particular one can imagine that our discovery is important
to explain periodic signals for instance in pacemakers, ner-
vous systems of lower animals, or other very small units of
neurons. The similarity of the results for the two types of
network also suggests that the dynamic behavior of the sys-
tem is only weakly dependent on the number of connections
and therefore they do not qualitatively affect the conclusions
of our paper. Our results have shown that periodic activity
may be induced in a network by making it less ordered while
extremely ordered structures lead to aperiodic �chaotic� ac-
tivity, a somewhat surprising and counterintuitive finding.

The brain is one of the big challenges of our century and
still full of mysteries and contradictions. From EEG and di-
rect measurements with electrodes we know that cycles of
firing do appear. Their role and their origin are still not clear.
Of course they are only finite in length and a perfect period-
icity has also not yet been confirmed. Our finding suggests at

FIG. 4. Fraction � of graphs with periodic time series as a
function of the size N of the graph for different values of p. The
inset shows the data for the Barabási-Albert network for m=3.

FIG. 5. Double-logarithmic plot of the average period length for
the Watts-Strogatz network as function of the size N of the network
averaged over 1000 networks for p=0.9. The inset shows the data
for the Barabási-Albert network for m=3.
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least one mechanism that might explain their origin. We see
that on small scales the network complexity, be it scale-free
or small world, can spontaneously generate periodic signals.
We have evidence that real neural networks do have both
aspects. In particular, small-world topology has been experi-
mentally evidenced. Small units of neurons could be the
nucleus that generates periodic signals using the mechanism
found in our work. How they interact with the rest of the

brain is not clear. As they stand our results concern small
units of neurons and an experimental verification could be
imagined with brains of lower animals or with in vitro cul-
tures. One direct application could be the pacemaker of the
heart which is indeed a neural net providing a perfectly pe-
riodic signal over very long times.
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