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We address the problem of orientational order in frustrated interaction systems as a function of the relative range
of the competing interactions. We study a spin model Hamiltonian with short-range ferromagnetic interaction
competing with an antiferromagnetic component that decays as a power law of the distance between spins, 1/r¢.
These systems may develop a nematic phase between the isotropic disordered and stripe phases. We evaluate the
nematic order parameter using a self-consistent mean-field calculation. Our main result indicates that the nematic
phase exists, at mean-field level, provided 0 < o < 4. We analytically compute the nematic critical temperature
and show that it increases with the range of the interaction, reaching its maximum near o ~ 0.5. We also compute
a coarse-grained effective Hamiltonian for long wavelength fluctuations. For 0 < o < 4 the inverse susceptibility
develops a set of continuous minima at wave vectors |I_€ | = ko(ar) which dictate the long-distance physics of the
system. For o — 4, ko — 0, making the competition between interactions ineffective for greater values of «.
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I. INTRODUCTION

Local structures at different scales, that could break
translational as well as rotational invariance, generally appear
in systems with competing interactions. There is a variety
of examples, ranging from solid state systems, like ultrathin
ferromagnetic films [1-3] and strongly correlated electron
systems [4—7], to soft matter systems like Langmuir mono-
layers [8], block copolymers [9,10], colloids and soft core
systems [11-13]. Besides the intrinsic interest raised by the
complexity of the phase behavior, their detailed knowledge
could be relevant to understand basic phenomena such as
high-temperature superconductivity, and also for technological
applications like soft matter templates for nanoscale systems
and future spintronic devices.

Competing interactions at different scales may give rise to
complex phases and patterns, like stripes, lamellae, bubbles,
and others [14]. In this intricate phase structure, the nematic
phase [15], an homogeneous however nonisotropic state, plays
an important role. It may appear as an intermediate phase
between a fully disordered phase and a modulated phase.
An interesting approach to study the phase transitions in
systems with isotropic competing interactions was observed
in Ref. [16]. Analyzing a generic Ginsburg-Landau model,
whose main characteristic is the presence of a minimum
in the spectrum of Gaussian fluctuations at a nonzero wave
vector, it was shown that the model has a first order transition
to a modulated phase. In recent works [15,17] we have
shown that pure symmetry considerations, in the context of
the renormalization group, lead to terms in the free energy
that encode orientational order parameters. We were able
to find a nematic phase at temperatures above the critical
temperature for modulated phases. We have also found that
the isotropic-nematic phase transition in the two-dimensional
continuum system with isotropic competing interactions is in
the Kosterlitz-Thouless universality class [17]. More recently,
we developed a method to compute the nematic order param-
eter in a classical spin Hamiltonian system with competing
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interactions [18]. We have applied the method to the Ising
frustrated dipole ferromagnet [19] and to the short-ranged
biaxial next-nearest-neighbor Ising model (BNNNI), or the
J1-J2 model [20]. Interestingly, for the dipolar interaction
model a nematic phase was found, while in the J1-J2 model
this phase does not exist. This points to the relevance of the
interaction range to develop a nematic phase.

Then, a natural question we address in this article is
about the range of the frustrating interaction necessary to
produce an intermediate nematic phase between the disordered
isotropic and the striped phase. The necessity of long-ranged
interactions is frequently invoked, but the actual influence
of the relative range between the competing interactions is
still an open problem. To answer this question we study
a spin model Hamiltonian with short-range ferromagnetic
interaction competing with an antiferromagnetic component
that decays as a power law with the distance between spin
sites 1/r® (where r is the distance between two spins, and «
measure the range of the decay). For « = 3, this is the known
Ising frustrated dipolar model, while @ = 1 is equivalent to
the frustrated Coulomb model [21]. We have evaluated the
nematic order parameter using a self-consistent mean-field
calculation. To do this, it is necessary to compute spin
fluctuations, since the nematic order parameter is quadratic
in the spin variable. Our main result indicates that the nematic
phase exists, at mean-field level, provided 0 <o < 4. In
other words, if the frustrating interaction decays faster than
1/r*, a pure orientational order is not possible. We have
analytically computed the nematic critical temperature for
0 <a <4 and have shown that the temperature window
between the stripe and the nematic phase increases with the
range of the interaction, reaching its maximum near & ~ 0.5.
We have also computed a coarse-grained effective Hamiltonian
for long wavelength fluctuations. For 0 < o < 4 the inverse
susceptibility develops a set of continuous minima at wave
vectors |l€| = ko(o) which rules the long-distance physics
of the system. For o« — 4, kg — 0, making the competition
ineffective for greater values of «. Also, the stiffness of
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pattern formation is enhanced with the range of the competing
interaction. For ranges shorter than the dipolar interaction
o > 3ittakes very small values, signaling a possible instability
of mean-field order.

The paper is organized as follows: In Sec. II we present our
model and compute the long wavelength effective field theory
for any value of «. In Sec. III we compute the nematic order
parameter and the critical temperature. Finally we discuss our
results and conclusions in Sec. IV, leaving some technical
details for the Appendix.

II. MODEL HAMILTONIAN AND EFFECTIVE
FIELD THEORY

We consider a Hamiltonian written in terms of Ising
variables S; = %1, with competition between short-range
ferromagnetic and long-ranged antiferromagnetic interactions,

H_——ZSS+ ZSS +ZBS (1)

(t )l Tij

The first sum runs over all pairs of nearest neighbor spins
in a two-dimensional lattice, while the second one runs
over all pairs of spins of the lattice; r;; is the distance,
measured in lattice units, between sites i and j. J,g > 0
measure the ferromagnetic exchange and the long-ranged
frustrating antiferromagnetic interaction respectively. The
range of the latter is controlled by the exponent «. The last term
is the energy associated with an external magnetic field B;.
We are interested in the regime of small frustration g < J,
since this is the relevant regime in some applications such
as ferromagnetic thin films with perpendicular anisotropy
in which the special case of o = 3 (frustrated Ising-dipolar
model) is usually considered to model the physical system.

Next, we analyze the effective long-wavelength behavior
of this model as a function of «. As usual, the thermodynamic
properties in the canonical ensemble are defined in terms
of the partition function Z(B) = Trexp(—BH). It is well
known that long-ranged interactions with o« <d (d =2 is
the dimensionality in this work), may lead to inequivalence
between the canonical and the mircrocanonical ensembles
[22]. The essential reason for this behavior is that the energy
necessary to produce a homogeneous ground state is infinite
in the thermodynamic limit. However, in competitive models
like the ones we are considering, the phase transitions are
dominated by the modulation scale [23]. In these cases, the
energy is additive and in principle the canonical ensemble can
be safely used.

It is convenient to rewrite the partition function in terms
of real variables on the lattice (—o0 < ®; < 00). This can
be done by means of a Hubbard-Stratonovich transformation
[24]. Exactly summing up the Ising degrees of freedom S;,
we can rewrite the partition function in terms of an effective
Hamiltonian written in the new variables [18],

1 1
H[{P}] = qu)i-]ijq)j — EZBiq)i
ij i

—%Zlncosh ﬁZJ,-jCDJ- . (2)
i J
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In this expression, J;; is the total interaction matrix. For
nearest neighbors, it is essentially the constant J, while for
all other components it is —g/r/;. The sums run over all
pairs of sites in a two-dimensional square lattice, the inverse
temperature 8 = 1/T, and B is an external magnetic field. It
is not difficult to find a relation between the original discrete
variables and the new continuous ones, by just differentiating
the partition function with respect to the magnetic field in both
representations. One immediately finds [24]:

1

(8;) = z(q)i), 3
1,1

(S:8)) = =557 + 3 (@), 4

It is instructive to write the Hamiltonian of Eq. (2) in the
disordered high-temperature phase. In this regime, the entropic
last term can be expanded in powers of B®. Keeping the
leading order term we find (for B = 0)

1
Hy ~ qu”' {J-@-28D}; @5, )
i

where J is the matrix whose components are J;;, Lis the identity
matrix, and the “dot” indicates the usual matrix product. In
reciprocal space, the quadratic Hamiltonian in two dimensions
takes the simpler form,
H, 1 d’k
z 2n)?

in which BZ indicates the first Brillouin zone and x ~'(k) is
the Fourier transform of J - (I — 28J).

For isotropic interactions and long-wave components
(ka < 1, where a is the lattice constant), the inverse suscep-
tibility x ~!(k) in the high-temperature phase depends only on
k= |I€|. For simple ferromagnets this function has a minimum
at ko = 0, and then x ! can be expanded in Taylor series to
arrive at the coarse-grained Hamiltonian

2

(k) x~(k)D(—k), (©6)

Hy ~ {r + pk*}| (k)% (7

|k|<1/a (277)2

that correctly describes the ferromagnetic phase transition
[25]. In Eq. (7),

r=x"10), ®)
1 d2X71
= — . 9
P=2 Take |, ©)

However, in frustrated systems yx ~'(k) may develop a min-
imum for a finite wave vector k = iéo- The effective long-
distance Hamiltonian will then be dominated by this scale.
Expanding the inverse susceptibility in Taylor series, the
coarse-grained Hamiltonian is now given at leading order by

H ~/ ﬂ{w (k — ko) }| @ (k)| (10)
¢ kol <A (27)? P ‘ ’

where A is a cutoff and

r=x""'(ko), (11)
1 dZX—l
= — . 12
P=2 " |, (12
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Therefore, the magnetic susceptibility x (0) is always finite. On
the other hand, x (ko) ~ 1/r.If r — 0, the susceptibility at the
wave vector ko diverges, signaling a tendency of the magneti-
zation to form modulated structures with wave vector k. For
high temperatures r > 0, the correlation length & ~ 1//r.
The system tends to form stripe domains with wavelength
A = 2m/ ko, whose area is proportional to 1/r. In this way, the
magnetic susceptibility x (ko) is essentially a measure of the
area of each stripe domain. These domains are, in principle,
uncorrelated at high temperatures. The Hamiltonian of Eq. (10)
was proposed a long time ago as an effective theory to study
stripe phases [16]. More recently, a generalization of this
model in the context of the renormalization group was studied
[17]. It was shown that, in the continuum two-dimensional
model, while the stripe long-ranged order cannot exist (at least
for sufficiently short-ranged interactions), a pure orientational
nematic order may develop indicating an orientational order
of domain walls of local stripe order.

Let us now return to our “microscopic” model [Eq. (1)]
and analyze the structure of the disordered susceptibility
in terms of the range of the frustrating interaction. The
interaction matrix can be cast in the form J;; = J Jifj -8/t
where Jifj is a ferromagnetic short-ranged interaction and J;}
represents the antiferromagnetic long-ranged interaction. The
Fourier transform of the first nearest neighbor ferromagnetic
part in a square lattice is J f(k) = cos k, + cos ky, where for
simplicity we consider the lattice spacing a = 1. For long
wavelength with respect to the lattice spacing k,,k, < 1, this
interaction turns out to be isotropic, J fky~2-(1 / 2)(k§ +
kﬁ). On the other hand, the antiferromagnetic part, in the
same isotropic approximation, takes the form [26] J%(k) =
21721 (1 — a/2)/ T'(ee/2)k*~2 (for o # even). In this way, the
interaction in reciprocal space can be written as (see the
Appendix)

B 1 5 1 g koz72
J(k)—ZJ{l—Zk +§<7>o(a)a_2}, (13)

where o (o) = 2>7°T'(2 — «/2)/ I'(/2). Notice that, for o =
3, the antiferromagnetic part reduces to gk, the well known
long-distance behavior of the dipolar model. Equation (13) is
not well defined for even values of . A careful treatment of
these cases leads to logarithmic corrections that are considered
in detailed in the Appendix.

We see two special values, where the behavior of J(k)
changes qualitatively, « =2 and o = 4. From Eq. (13) we
see that, for o« > 4, the antiferromagnetic term is subleading
in the long-distance limit (k < 1), in such a way that J(k)
has a maximum at the value kg = 0. Then, the long-distance
effective Hamiltonian is that of Eq. (7). On the other hand,
for @ < 4, we have two different situations. In the case o < 2,
limy_,o J(k) = —o0, while if @ > 2, J(0) = 2J. We illustrate
these two cases in Fig. 1. In Fig. 1(a) we depict two typical
examples with @ < 2, while in Fig. 1(b) we show two cases
with o > 2. Despite the different behavior at the origin, we
observe that for « < 4, J(k) develops a maximum at a finite
scale ko #~ 0 given by

k= [o@ (%)]“ o (14)
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FIG. 1. (Color online) J(k) as a function of k in units of 1/a.
We have fixed / =1 and g =0.1. In (a), @ < 2. The bold line
corresponds to o = 1, while the dashed line corresponds to o = 1.8.
In (b), @ > 2. The bold line corresponds to o« = 2.5, while the dashed
line corresponds to o = 3.

In Fig. 2 we depict the values of kg, given by Eq. (14), as
a function of « for a fixed value of g/J = 0.1 We see that,
in the regime of interest g/J < 1, a finite ky is developed
all along the interval 0 < o < 4. After the dipolar value o >
3, ko rapidly decays to zero, and for « > 4 it is no more
possible to have kg # 0. At the particular point « = 4 Eq. (13)
is not well defined, since o () has a pole. We have studied in
detail this special case in the Appendix and have shown that
in this case kg is exponentially small ky ~ exp(—J/g). Then
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FIG. 2. (Color online) ko in units of the lattice spacing a, as a

function of the parameter « for a fixed value of the competition
parameter g/J = 0.1.

it can be considered zero for any practical purpose. Also, the
limit of @ — 2 is not well defined in Eq. (13). However, upon
differentiation, the value of kg is perfectly well defined. This
is also discussed in the Appendix.

Then, for ¢ < 4, we can expand Eq. (13) in powers of
k — ko obtaining

J(k) = J[ro — potk — ko)* 1+ Ol(k — ko)*1,  (15)
where g = J(ko)/J ~ 2+ O(k}) and py = (4 — a)/2. The

inverse susceptibility in the same approximation reads

1
— x"'k) = J(OI1 = 2BJ (k)]

16
7 (16)
=r+plk —ko)’ + -+ 17

Using Eq. (15) we obtain for the coefficients
r =ro(l —2ryBJ), (18)
p = poldroBJ — 1). (19)

We see that, for a high-temperature regime, p could be
negative, indicating an instability of the theory. This is a very
well known limitation of the method, that has its origin in
the use of the Hubbard-Stratonvich transformation for kernels
which are not positive definite [25]. However, we are interested
in the temperature regime in which the systems has a tendency
to form patterns, i.e., 0 <r <« 1 in which p ~ pg. In this
regime the effective Hamiltonian Eq. (10), with the parameters
ko,r,p given by Eqs. (14), (18), and (19) respectively, is
perfectly well defined.

In fact, the expansion in k — kg, given by Eq. (17) is an
excellent approximation of Eq. (16) near the the temperature
Bs: ~ 1/2ryJ, where the susceptibility diverges at k = ko,
signaling the tendency to form striped patterns. In Fig. 3
we show two examples of the susceptibility computed from
Eq. (16). The bold line corresponds to frustrated dipolar
Ising model, « = 3 at 8J = 1/4.012, while the dashed line
represents the susceptibility of the Coulomb model, « = 1 at
BJ = 1/3.3557. We see that both curves are sharply picked at
the corresponding value of k, given by Fig. 2, while the widths
of the peaks are proportional to 1/p. Moreover, the width of
the curve o = 3 is clearly larger than the one with « = 1. This
happens because the stiffness p grows with the range of the
competing interaction (i.e., with decreasing «). In fact, from
Eq. (19), we can observe that p ~ py ~ (4 — «). Finally, the
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FIG. 3. (Color online) Magnetic susceptibility x (k) as given by
Eq. (16) for two typical values of «. The bold line corresponds
to frustrated dipolar Ising model, @ = 3 with §J = 1/4.012, while
the dashed line is the susceptibility of the frustrated Coulomb Ising
model, « = 1, with fJ = 1/3.3557. In both cases we fixed J =1
and g =0.1.

small temperature difference between both examples are due
to the quadratic corrections of ro ~ 2 + O(kg) that makes the
stripe critical temperature By, o dependent.

III. MEAN-FIELD THEORY FOR THE NEMATIC
ORDER PARAMETER

The orientational (nematic) order parameter is defined as
[18]

Q=Y (SiSite — SiSiss), (20)
ij

where X and y are unit vectors along the x and y axes of the
square lattice. With this definition, the usual tensor nematic
order parameter has only one component. If Q is positive, the
director points along the x direction while if it is negative, the
director mainly points in the y direction. These are the only two
possible directions of the director. For this reason, if Q # 0,
the resulting anisotropic phase is called Ising nematics, since it
breaks the rotational point group of the lattice and it is invariant
under rotations by . On the other hand, in the continuum limit,
the nematic order parameter acquires a phase, Q0 = |0]e'?,
since the direction in the plane is now arbitrary. In this case, if
QO # 0, the director can point in any direction labeled by 6. The
factor of 2 in the exponent guarantees the nematic symmetry
6 — 0 + m. Throughout the article, for brevity, we generally
use the term “nematic” to refer to any of these phases, however,
whenever we deal with a square lattice model, “Ising nematic”
should be understood.
Equation (20) can be written as

1 1
Q=2 KilSiS)) =3 Kiy(®®)), @D
ij ij
where
+1 ifj=i+Z%,
K= T 22)
‘ -1 ifj=i£3y.
In the last equality we used Eq. (4) and the fact that Tr(K -
J~1) = 0 by symmetry.

Therefore, to compute Q we need to evaluate the correlation
function (®;®;) in the ordered (Q # 0) phase. We refer the
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reader to Ref. [18] for a detailed mathematical formalism to
compute this quantity, based on the Hamiltonian Eq. (2). Here,
we sketch the main physical concepts behind this formalism.
In the nematic ordered phase (if it exists), the system is
homogeneous, however having a global anisotropy given by Q.
The order parameter acts as a nematic mean field, in such a way
that individual magnetic moments couple with Q, contributing
to the mean-field Hamiltonian with an energy JQ®;K;; ®;.
This is the simplest way that O can be coupled to the magnetic
moments satisfying rotational invariance. On the other hand,
it is the leading order term in a homogeneous phase (®;) = 0.
Therefore, the mean-field Hamiltonian in the nematic phase
has the form

1
Hnemaie ~ 7 > @i 13- (A= 2p1) =2 OK};; @, (23)
ij

The (anisotropic) correlation matrix is
(®;P;) ~ [J-(I—ZﬂJ)—ZJQK],-}l- (24)

Substituting this expression into the definition of the order
parameter [Eq. (21)] we find a self-consistent equation for Q
given by [18]

1 K

Q=168 Tr{J—zﬂJZ—z.iQK}' 25)
This equation is the analog of the Curie-Weiss approximation
for the magnetization in the Ising model. If this equation
has a nontrivial solution Q # 0, then the system exhibits an
anisotropic but otherwise homogeneous phase with nematic
symmetry. The presence or not of this phase depends on the
detailed structure of the competing interactions, coded in the
explicit form of the matrix J. We can look for a critical point
by expanding the right-hand side of Eq. (25) in powers of Q,
to obtain

1680 ~2J OTr (xK)* + 8J° Q’Tr (xK)*,  (26)

where yx is the magnetic susceptibility matrix in the disordered
isotropic phase. Q =0 is always a solution of the self-
consistent equation. If Q # 0 then for 0 < 1

[851 —Tr(xK)2:|1/2
Tr (xK)*

This result implies a continuous, second order isotropic-
nematic transition, at a critical temperature given by

1
o~

2 27)

1
Be = g THX(BIKT'. (28)
In reciprocal space Eq. (28) reads
1 ko o,
ﬁw—gézemﬂm@WWH- 29)

where K(lz) = 2(cosky —cosky). In Ref. [18] we have nu-
merically solved this equation in the case of the Ising-
frustrated-dipolar model, i.e., for « = 3, where the conditions
for the existence of the nematic transition in terms of the
microscopic parameters J and g was shown. Here, we show
an approximate analytic solution for any value of «. To do
this, we write a long-distance (continuous) approximation of
Eq. (29) and we focus in the regime where the temperature

PHYSICAL REVIEW E 87, 062119 (2013)

is very near the instability towards stripe formation r < 1.
At long distances, K (k) ~ k2 — k3 = k* cos(26). Using the
results for the magnetic susceptibility found in Eq. (17) we
find for the nematic critical temperature,

1 d*k k% cos(26)

8 J @2m)? Lre+ pelk — ko)?
where r. and p. are given by Eqgs. (18) and (19) at 8 = S..
Performing the angular integration we finally find, in dimen-

sionless quantities, the following self-consistent equation for
the critical temperature:

J:Bc =

2
} , (30)

1 kS
8 JB. = dk . 31
mIp ‘A e + po(k — kPP G1)

Note that if ko = O, the integral is completely regular, and
almost temperature independent, dominated by the ultraviolet
cutoff. However, for finite ko # O, the integrand for k — kg
diverges as r. — 0. Then, the integral can be approximated at
leading order in r, < 1, and p, ~ po,

! k3 8k 1
dk ~—"L —— 40 "?). (32
A [re + petk — ko2 3p0/2 22 ). G2

Substituting Eq. (32) into Eq. (31) and using Eqgs. (18) and
(19) we find

1
.= ——(1 — ), 33
p 0 7 ( ) (33)
where we have defined a small quantity 0 < § < 1,
—B. 2 klO 1/3
5= P Pe_ [—zi} : (34)
Bst 9= po

Thus, for small frustration g/J < 1 and for long-ranged inter-
actions o < 4, the model of Eq. (1) presents a homogeneous
but anisotropic phase with nematic symmetry. Note that, at
the isotropic-nematic critical temperature r, = 2§ < 1 and
the magnetic susceptibility at wave vector ko, x (ko) ~ 1/8 is
finite, showing that the system is homogeneous. For interaction
ranges longer than the dipolar model (¢ < 3) the temperature
window for the nematic phase grows. Conversely, for shorter-
range interactions (« > 3) the nematic critical temperature
decreases. Furthermore, as « — 4 not only does the critical
temperature decrease, but also the modulation wavelength
grows rapidly, A = 2m/ky — oo. In practice, there is an
upper limit in the value of @ < 4, given by the finite size
of the sample. In fact, for ko(o)L ~ 1 (where L is the linear
dimension of the sample), the stripe wavelength A ~ L. Near
these values x (ko) ~ x(0) and the size of the domains are of
the same order than the system size. Thus, the competition
turns out to be ineffective and the system behaves, at long
distances, as a uniform ferromagnet.

IV. SUMMARY AND CONCLUSIONS

We have addressed the role of the relative interaction ranges
on the nematic phase in competing interaction models at
different scales. We have studied a two-dimensional Ising
model on a square lattice, with a short-ranged ferromagnetic
interaction and a long-ranged antiferromagnetic one, whose
range decays as a power law controlled by a parameter «.

062119-5



BARCI, RIBEIRO, AND STARIOLO

We have mapped the microscopic model into a coarse-
grained field theory that describes the long-distance behavior.
We showed that, for small frustration g/J < 1 andlong-ranged
interactions « < 4, the system develops a scale ky which
dominates the low-energy physics. In this regime the effective
field theory is formally equivalent to a Brazovskii model in two
dimensions. On the other hand, for shorter-ranged interactions
o > 4, kg = 0 and the system behaves as a usual ferromagnet.

We focused on the isotropic-nematic transition, looking
for a homogeneous phase with anisotropic correlations. To
compute the nematic order parameter we used a self-consistent
approach, previously applied [18] to the frustrated-dipolar-
Ising interaction. We have shown that there is a temperature
window above the stripe instability in which the nematic phase
can be developed for ranges of « < 4. This window grows with
the range of the frustrating interaction up to very long ranges
o < 1. On the other hand, for ranges shorter than the dipolar
interaction o > 3 the critical temperature gets smaller and the
stripe wavelength grows rapidly. For @ ~ 4 the domain size
is very large and in the limit of kgL ~ 1 it is of the the same
order of the system size. In this regime the competition turns
out to be irrelevant. Although for 3 < o < 4 mean-field theory
predicts a nematic phase, fluctuations may destroy nematic
order since the “stiffness” py is much weaker than in the
region o < 3. For o > 4 there is neither stripe nor nematic
solution even at mean field. A word of caution is in order here.
The threshold « = 4 for the existence of kg # 0 is valid in
the asymptotic small frustration limit g/J K 1.If g~ J,the
system could develop a finite scale ky # O very near the edge
of the Brillouin zone. In this case, the isotropic approximation
of the antiferromagnetic interaction is no longer valid. For
strong frustration, it is necessary to take into account the
short-ranged part of the competing interaction. This type of
interactions, like for instance in the axial NNNI or BNNNI
models, are necessarily anisotropic since they at least have the
discrete symmetry of the lattice. These systems, although with
short-range interactions, develop a finite scale ky which leads
to the appearance of a stripe phase. However, the susceptibility
X(/?) has a small number of isolated maxima [18], different
from our model in which we have an infinitely degenerate set
of maxima. This difference is at the heart of the existence of
the nematic phase as we have studied it in the present work.

Interestingly enough, our result for the modulation period
ko(x) [Eq. (14) and Fig. 2] is in complete agreement with very
general scaling properties studied in Ref. [27]. The scaling
behavior of the modulation length with g/J resides on the
homogeneity of the long-ranged interaction in Fourier space
[Eq. (A5)]. Indeed, it was shown [27] that, for T = 0, the
threshold exponent for the occurrence of modulated ground
states is « = 3 (for d = 2), while at high temperatures we
have shown a very similar behavior at @ = 4. Thus, the scaling
behavior of ko as a function of g/J is strongly temperature
dependent. This could imply that, for models in the range 3 <
o < 4, there could exist a critical temperature below which a
disorder phase reappears from a high-temperature modulated
phase. In fact, this reentrant behavior has been experimentally
observed; see, for instance, Ref. [1]. Of course, in the context
of the present work, we are not able to confirm this conjecture,
since our calculation is restricted to high temperatures very
near the critical point.
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Summarizing, this paper is a contribution to understanding
a sector of a complex phase diagram in general models
with competing interactions at different scales. The results
presented have to be considered as a qualitative guide to
more precise calculations. The main difficulty to compute
quantitative relevant results is that, in general, orientational
order parameters in these kinds of systems are quadratic
functions of fundamental degrees of freedom. Even at mean-
field level the computation of the order parameter implies the
evaluation of fluctuations in the original variables.
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APPENDIX: FOURIER TRANSFORM OF LONG-RANGED
INTERACTION KERNEL

The antiferromagnetic contribution to quadratic part of the
effective Hamiltonian can be written as

g 1
Hy =2 D ——-—7;. Al
2 22]: 7 =7l &
In reciprocal space, it reads
Hy =2 f TE pdiowr (A2)
> 72 Jgzr .

Assuming that the most relevant contribution to the phase
transition comes from waves of lengths much longer than the
lattice spacing, we can consider the continuum limit, in which
- |
fek) = / d’r—— ", (A3)
|r|«

This expression coincides with the exact form of f a(l?) for

small values of |k|a <« 1, where a is the lattice spacing.
The Fourier transform of 1/|7|% in d dimensions and for o«

not even is given by [26]

(%)
r(

[

F(/r%) =24 ke, (A4)

where the coefficient is written in terms of usual I functions.
Then, in two dimensions, and for o # 2,4, ...,

L)
fa(k):22 o 2
(%)

Multiplying and dividing by (2 —«)/2 and using the I
function property zI'(z) = I'(z + 1) we finally arrive at

k*2,

(AS5)

a—2

fik) = —o(a) £ ;
oa—2
where o (a) = 22‘“F(4%“)/ I'(5). Equation (A6) was used to
build up the long-wavelength interaction in reciprocal space,
Eq. (13).

As we have seen, for « > 4, the exponent of & is greater than
2, then at small & the antiferromagnetic component is irrelevant

(A6)
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with respect to the ferromagnetic one. Conversely, for o < 4
this term essentially changes the behavior of J (k). However,
note that the I" function has poles at zero and negative integer
values. Then, Eq. (A5) is not well defined for « = 2,4.

The Fourier transform of negative integer exponents in two
dimensions reads [26]

r ( 2 ) = BRI g 24 m

r2m +2

(AT)

where m is a positive integer and the coefficients ¢y and c_;
arise form the Laurent expansion of the I" functions in Eq. (A5),

reéz e
M(a/2) 2—a+2m

+2m)

2—a + ¢y

+cPPMQ a4 2m). ... (A8)
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The case o =2 corresponds to m =0 in the preceding
equation giving
1im2 fek)=—Ink +1/20. (A9)

Using this expression to compute J(k), we find kg = /g/J
that coincides with Eq. (14) for @ = 2. Then, the curve k(o)
depicted in Fig. 2 is continuous at o = 2.

The other potentially problematic point is « = 4. This
corresponds to the value m = 1 in Eq. (A8). In this case,

lim fik) = —k*(1 — Ink). (A10)

Using this expression to build up J (k), we find an exponentially
small value of ky ~ exp(—é). The value of the stiffness in
this case is also very small py ~ g/J. Then, for all practical
proposes, this limiting case can be safely ignored and ko(«) is
correctly represented in Fig. 2 for the entire range of «.
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