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Microemulsion model with oil-water anisotropy
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We consider a spin model for applications to oil-water —amphiphilic-surfactant mixtures near the
region where those phases coexist. We analyze this model assuming that oil and water molecules
cannot be treated symmetrically, given that they do exhibit different chemical potentials. Using a
mean-field approximation, we find that the modulated phase assumes two possible arrangements,
such as sheets (lamellar phase) or rods (hexagonal phase). Due to fluctuations, the lamellar phase
is present when the difference between the chemical potential of oil and the chemical potential of
water is not too high. Both lamellar and hexagonal phases are present when this difference exceeds a
certain value. This value specifies the triple point where the two modulated. phases coexist with the
disordered phase. This point is present even for small values of the critical wave vector, indicating
that the mean-field Lifshitz point is actually a Buctuation-induced end point.

PACS number(s): 82.70.Kj, 05.70.Fh, 64.60.Ak, 64.60.Cn

I. INTRGDUCTION

Systems of oil, water, and amphiphilic surfactant ex-
hibit many interesting properties both from the practical
and from the theoretical point of view. This made them
subject to a great deal of experimental and theoretical
studies [1].

The experimental observations can be summarized. as
follows [2]. At low temperatures, on mixing oil, wa-
ter, and a surfactant, one finds that, besides the oil-rich
and water-rich phases (phases where water and oil do
not mix), the system also exhibits an isotropic phase
where oil regions and water regions are separated. by
layers of amphiphilic molecules. This phase, called mi-
croemulsion, exhibits nonmonotonically decaying corre-
lation functions, and it can be identified as a structured
Quid which is homogeneous on large length scales, but
remains heterogeneous over small length scales [3].

For a large concentration of surfactant, a transition
from the disordered structured phase to an ordered struc-
tured phase is observed. This modulated phase can have
many dieerent kind of arrangements, such as lamellar
(sheets of amphiphiles separating oil-rich &om water-rich
regions) or hexagonal (rods of amphiphiles separating oil-
rich from water-rich regions) phases [2].

At high temperatures and. small concentrations of sur-
factant, the usual disord. ered. Quid is separated kom the
disordered structured Quid, the microemulsion, by a Lif-
shitz line. This line is quite interesting for itself, since it
is the locus where the peak of the water-water correla-
tion function moves away IIj..om zero wave vector without
a phase transition [4]. Figure 1 illustrates, in schematic
form, the phase diagram [1].

In some specific systems, as one proceeds from the
phase where oil and water coexist to the microemulsion
region, a state where those three phases coexist is found.
It is the so called Winsor III state [4]. This state is quite
controversial. It is also called a bicontinuous phase, since

it exhibits a sudden increase in the magnitude of its elec-
trical cond. uctivity. In some systems, a sharp variation in
its dielectric behavior and in its viscosity, as the temper-
ature reaches a limit, is also observed [5]. The oil-water-
microemulsion coexisting region exhibits also an ultralow
surface tension betw'een those phases [6].

Even if the above results seem to indicate that the
microemulsion is almost critical, given that the volume
fraction of each component divers and that no wetting
phenomena are observed, we might suspect that no crit-
ical phenomenon happens.

Prom the practical point of view, since oil and water
are not soluble at room temperature, the very existence of
the Winsor III state is interesting. Thus it seems a chal-
lenge to be able to describe all those phenomena within a
simple model. In that sense, many diferent kind of mod-
els have been proposed [7—ll]. Most of them, rather than
catch all the details, try to retain only the essential fea-
tures of those mixtures. Particularly, some of them sim-
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FIG. 1. Phase diagram in terms of temperature T and
tc2/2 = Kz = K, for oil-water-amphiphilic systems. First-order
transitions separate the oil-rich and water-rich coexisting re-
gions from the isotropic 8uid phase arid the lamellar phase
from the microemulsion region. This diagram shows schemat-
ically results from simulations and experiments.
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FIG. 2. DifFerent types of configurations of a pair of am-

phiphiles.

the modulated phase, the lamellar phase. A first-order
phase boundary line is found between the lamellar and
the oil-rich (or water-rich) phases. The two critical lines
meet the first-order phase boundary at a Lifshitz point
(see Fig. 3).

Including Quctuations, one finds that the transition
from the disordered to the modulated phase is actually
first order. This result was obtained both in the lattice
model [13—15] and in its continuous version [16,17]. The
absence of a continuous transition between the disordered
phase and the modulated phase leads to a controversy
about the character of the Lifshitz point. Three possible
scenarios were suggested [see Figs. 4(a)—4(c)]. One possi-

ply employ a lattice, where the oil, water, or amphiphilic
molecules are restricted to occupy only the sites of the
lattice rather than any point of the space.

This paper discusses the phase diagram of one of those
models: the Ising model with next-nearest-neighbor
isotropic competing interactions, which we will call the
INNNI model. In this model, introduced by Widom [7]
and generalized by Upton and Yeomans [12], the space
configuration is divided into cubes. These cubes are
linked by oil (AA), water (BB), or amphiphilic (AB)
molecules (see Fig. 2). This is done with the con-
straint that only the same type of ends (A or B) of dif-
ferent molecules is permitted within each cube. Conse-
quently, one amphiphilic molecule just connects two dif-
ferent cubes and acts as an interaction term, what leads
ultimately to an Ising model.

This model was studied before, assuming that oil and
water exhibit the same chemical potential, and that the
amphiphilic molecule is symmetric (here we represented
that by taking h = 0, as we will see later). Within the
mean-field approximation, the phase-diagram for 6 = 0
goes as follows. One continuous phase transition sepa-
rates the disordered phase from the usual ordered phase
(oil-rich phase or water-rich phase). Another continuous
transition separates the structured disordered phase from
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I IG. 3. Schematic mean-field phase diagram of the
three-dimensional Widom model for a microemulsion in terms
of temperature, m2/2 = ~( ——((;, and h = 0. The solid line
represents the first-order transition between the oil-rich phase
and the modulated (lamellar) phase. The dashed lines are the
continuous transtions. Those lines meet at the Lifshitz point
LP.

FIG. 4. Possible scenarios for the phase diagram near the
Lifshitz point. Solid lines represent first-order transitions,
while dashed lines represent continuous transitions. (a) There
is no phase boundary between the ordered phase and the mod-
ulated phase. (b) The disordered-ordered continuous line ends
at an end point. (c) The Lifshitz point is really a tricritical
Lifshitz point (tLP).
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bility is that there should be no phase transition between
the ordered phase and the modulated phase and that the
first-order phase boundary between the microemulsion
phase and modulated phase should come to an end at
T = 0 [see Fig. 4(a)] [15]. Another possibility is that
the continuous transition hne (ordered-disordered line)
meets the two first-order lines (disordered-modulated and
ordered-modulated lines) at an end point. In that case,
both first-order phase boundary lines should share the
same tangent and, consequently, Ructuations should in-
duce a change in the phase boundary between the two
ordered phases [see Fig. 4(b)] [14]. Finally, another pos-
sibility is that the Lifshitz point should be a tricritical
point [see Fig. 4(c)]. This is the case if the phase separa-
tion between the microemulsion and ordered. structured
phase becomes critical when the critical wave vector van-
ishes [18—20].

In the present work, we try to understand what does
happen near the Lifshitz point. In order to do that, we
assume that oil and water exhibit diferent chemical po-
tentials (6 oc p, —p, g 0 where p,„and p are the
chemical potentials of water and oil), and that there is

a diferent energy cost between bending the amphiphilic
film around a molecule of water and bending it around a
molecule of oil.

Given that, we obtain, within mean-field approxima-
tion, the following phase diagram (see Fig. 5). There are
three possible nonstructured phases: disordered, lamel-
lar, and hexagonal phases. For 0 & 6 & h~ and at
the high temperature region, the disordered phase co-
exists with the hexagonal phase along a first-order phase
boundary. Lowering the temperature, one finds a first-
order transition between two diferent types of modulated
phases: hexagonal phase and lamellar phase. For 6 ) hq

and at high temperatures, the lamellar phase coexists
with the disordered phase since no hexagonal phase is
found. At (T&, h&) the two modulated phases coexist with
the disordered phase at a triple point. On decreasing the
concentration of surfactant, varying the critical wave vec-
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FIG. 5. (a) Schematic mean-field phase diagram of the
three-dimensional Widom model for a microemulsion in. terms
of temperature T, r2/2 = t'ai = K, and ordering field h. The
figure shows the region where T (& T~ where the disordered
phase is separated from the oil-rich or water-rich phases by
a continuous transition (long-dashed line). The point I P lo-
cates the Lifshitz point. A first-order surface separates the
disordered phase from both modulated phases, hexagonal (H)
and lamellar (L) phases. (b) The phase diagram for fixed r
and general T. For T = T~ there is a triple point where
the lamellar-disordered phase boundary meets the hexago-
nal-disordered first-order line and the lamellar-hexagonal sep-
aration line.

FIG. 6. (a) Schematic phase diagram of the
three-dimensional Widom model for a microemulsion in terms
of temperature, K, , and ordering field h, assuming T ( T~. The
disordered phase is separated from the oil-rich or water-rich
phases by a continuous phase transition (long-dashed line).
This line meets the first order phase boundary between the
disordered phase (D) and lamellar phase (L) and between the
nonstructured ordered phase (0+W) and the lamellar phase
at an end point e. (b) The phase diagram for a fixed K and
general T. At (hi, Ti), there is a triple point where the lamel-
lar-disordered, lamellar-hexagonal, and hexagonal-disordered
lines meet.
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tor ( q, ~ 0), the region where the hexagonal phase is
found decreases in size. The first-order phase boundary
lines collapse at (h = 0, q, = 0) at the Lifshitz point (see
Figs. 3 and 5).

We then check the above results against fluctuations.
Using a harmonic approximation and a diagrammatic ex-
pansion, we show that the transition between the disor-
dered phase and the modulated phase is first order for
zero and nonzero external fields [16,17]. In the pres-
ence of a small external field, 6 & hq, the transition be-
tween the disordered and the ordered structured phases
is first order. The modulated phase, in that case, is al-
ways lamellar [see Fig. 6(a)]. As one increases the ex-
ternal field, for h ) hi, besides the lamellar (present
for T & Tg), a hexagonal phase also can be found (for
T ) Th, ). A phase boundary line between those two mod-
ulated phases is found for T = Th [see Fig. 6(b)]. The
disordered phase, the lamellar phase, and the hexagonal
phase meet at a triple point at (hi, Tq). On varying the
parameter related to the bending energy cost of the am-
phiphilic film, a triple line is generated. This line is a
nondecreasing function of the critical wave vector, indi-
cating that the Lifshitz point should be an end point.

The article is organized as follows. In Sec. II, the
model is introduced and the mean-field phase diagram is
found. In Sec. III, we obtain an expression for the equa-
tion of state when fluctuations are allowed. Conclusions
end each section.

to the asymmetry within the amphiphilic molecule, the
energy of the water-oil interface is not the same energy
of the oil-water interface. We represent this fact by as-
suming that Vi g V2 and that Vs g V4. Particularly, we
will take that Vi + V2 ——(V3 + V4).

Using the parameters V; and the chemical potentials
of the water, p~~, the oil, p~~, and the amphiphilic
molecules, p~~, one can write a partition function for
the microemulsion model [1,7]. Coinparing this partition
function with the partition function associated with the
INNNI model [see Eq. (1)],one finds that they are equiv-
alent. Table I gives the relation between the parameters
of the Ising model and the parameters of the microemul-
sion model [1,7].

Note that, if Vi + V2 ——(Vs + V4), one has that the
equality r—:ri ——r2/2 holds in the Ising model. As-
suming that J is fixed, one finds that the bending energy
of the amphiphilic film, K, , is proportional to the chem-
ical potential Ap, —:p~~ —1/2(p~~ + p~~). This last
expression is related to the concentration of amphiphiles.

As usual [12—19], the mean-field free energy associated
with this model is derived &om the Bogoliubov inequality
and is given by

) k~Tln 2—coshl ) PJ(r —ri)m(ri)
r

(2)

II. MODEL

Let us considered the following model. Each simple cu-
bic lattice site r is occupied by an Ising spin s(r") that in-
teracts through nearest-neighbor interactions of strength
J, next-nearest-neighbor couplings along the cubic axes
of strength —rq J, and next-nearest-neighbor interactions
across the face diagonals, —K2 J. The Hamiltonian of
such a system is given by

where m(r ) = (s(r ))p is the magnetization (()p is the
ensemble average with respect to the trial Hamiltonian
in the Bogoliubov inequality) specified by

m(r ) = tanh P) J(r ri)m(r, ) +—PH

At high temperatures, this equation is fulfilled by a
nonzero paramagnetic solution given by

where H is here a homogeneous external field.
This Hamiltonian describes a microemulsion system as

follows [7]. Let us assume a configuration space, divided
into cubes. Each cube is occupied by oil (AA), water
(HH), and amphiphilic (AH) inolecules subject to the
constraint that only like ends of different molecules can
occupy the same cube (see Fig. 2). In this sense, each
cube of the configurational space can be in two different
states, oil or water, that we can represent by Ising spins
8 = —1 and 8 = +1, respectively. The interface between
oil and water is then occupied by a film of amphiphilic
molecules. Such kind of films must have a positive curva-
ture energy, tending to keep it flat, thus producing 1arge
oil-coherent and water-coherent regions. This is done by
introducing positive interaction energy terms (V, j (see
Fig. 2). We will assume that Vi and V2 are the energies
of parallel amphiphilic rnolecules, while V3 and V4 are
the energies of two molecules at an angle. Note that, due

mp ——tanh PH + Pmp ) J(r ri)—

m(r ) = P ) J(r ri) [m(ri) —mp—(ri)].

TABLE I. Relation bet+seen the Ising variables and the mi-
croemulsion variables corresponding to the interactions given
in Fig. 1.

Ising Variables Microemulsion Variables
H 3/2(/l+R P/A) + 3/8(V1 V3) + 3/2(V3
J 14V V V V

V4)

/ ( 1+ 2)+ 3+ 4
—1/2[pcs —1/2(pari +. y~~)]

1/8(V1 + V3)
1/4(V3 + V4)

and, consequently, it is convenient to write the &ee en-
ergy in terms of
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Now, close to criticality, the magnetization m is small.
Consequently, one can linearize Eq. (2) and the following
&ee energy is obtained:

Il = Fo + —) m(q)P(q)m( —q)

the role of the Landau order parameter in this theory.
We take the noncritical modes into account by mini-
mization of the free energy, Eq. (6), with respect to
rn(q = 0), m(2q, ), . . . . Those contributions are, then,
eliminated in favor of the critical variables m(q, ), lead-
ing to the following &ee energy for the lamellar phase:

+—,) m(qi)m(qz)m(qs)b ) 1
F) ——Fo+rm, + —u)m, ,4

(12)

+—) m, (qi) m(q2) m(qs)m(q4) h ) q;

where

2Q)
tL~ = tC—

r-(0) r (2q, )
(13)

—) h( —q)m. (q).

Here Fo is independent of m(q) and mo is given by the
zero of h. The parameters in Eq. (6) are given by

h(q) =
l

II —[kaT —Z(q)]m, —k~T
l ~(q)

mse)
3

Following similar steps, we find that the free energy
associated with the hexagonal phase is given by

2 15 4Eg = Eo + Spmp + 2'wmp + —'llhmp )4

where

r-(q) = r(q) + —m'„ 6m
'Qy

5r-(0) 5r(2q, )
(14)

kgT
r(q) = k~T

kBTmo,

u = 2k~T.

Analyzing the &ee energy Eq. (6) and Eq. (7), one finds
that the disordered phase is separated from the ordered.
phase by a critical surface specified by

k~T = max(J(q)(1 —m2e)),

where q specifies the critical wave vector. Now, if 1—
12~ ) 0 (here we are assuming that v = Ki ——v2/2),
the critical wave vector is zero and the ordered phase is
ferromagnetic. If, otherwise, 1 —12m & 0, the ordered
phase can be of two types: a lamellar phase given by

m(r") = 2m( cos(q.z),

m, (r ) = 2m' cos(q, z) + cos l q, y ——q z
2 2

&~3+cos q y+ —q z
2 2 )

where rods of oil are followed by water. Both structures
exhibit the same value for the critical wave vector given
by

cosmic = 1 —8v

It is then clear that the critical modes m, (q, ) play

where planes of oil are followed by planes of water, or a
hexagonal phase given by

The analysis of these &ee energies determines that, at
high temperatures and low values of the external field,
for 6 & hq, there is a first-order phase transition between
the disordered and hexagonal phases. As one decreases
the temperature, there is a first-order transition between
the hexagonal and lamellar phases. For high values of the
external field, namely, for 6 ) h,q, the coupling u~ given
by Eq. (13) changes sign and a higher order contribution
given by

1 6aI') ———v)m,
6

has to be added to Eq. (12) in order to make the lamellar
phase stable. In that case, at high temperatures, the dis-
ordered phase coexists with the lamellar phase and the
hexagonal phase is not present. At 6 = hq, the three
phases meet at a triple point [see Fig. 5(b)]. Varying
the critical wave vector, one verifies that, as q ~ 0, the
region where the hexagonal phase is present disappears.
The phase diagram, displayed in terms of the tempera-
ture related parameter r(0) oc k~T/J, external field h,
and the parameter ~, is shown in Fig. 5(a). Figure 5(b)
shows the same diagram for h, = 0.

In summary, the introduction of an external field and
the inclusion of noncritical modes have two major eKects:
the modulated-disorder phase transition changes from
continuous to first order and a new modulated phase,
the hexagonal phase, is created.

III. FLUCTUATION EFPECTS

Now let us consider what does happen when fluctua-
tions are allowed. On going to a continuous represen-
tation by adding a weighting term m(s) = s(r) /2 +
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u4s(r ) /4! for each spin, one finds a Hamiltonian given
by

& = —-) s(q)u~(q)s(-q)

——; ) s(qi)s(q2)s(qs)s(q4)~ ) q; ~'
~.-, ) )

+):h(-q)s(q)

where, as usual, we have '8 = 'R/kr—iT —u)(s) with 'R

given by the Fourier transform of Eq. (1) and where the
couplings are given by

u2(q) = 1—J(q)
BT

~(q) = „~(q)H
B

R —Ro+ Rp

& = —2).s(q)r(q)s( —q)

(|).s(qi)s(q2)s(qs)~ ~ ) .q'

—
4, ).s(qi)s(q2)s(qs)s(q4)~ ).q''

~.-,}

+) ~(-q)s(q)

where mo is speciBed by h = 0, and

1 2r(q) = u, (q) + —u4me,
2

6 = u4mo,

h(q) = (h —u~mo ——mo) b(q j,6
tl4 = tL4&

(18)

where J(q) is the Fourier transform of J(r —ri).
Now, due to the presence of an external Beld, even in

the paramagnetic phase a nonzero magnetization mo is
present. Thus it seems natural to shift the spin variables
s(0) = mo + s(0) and s(q P 0) = s(q ), and rewrite the
Hamiltonian as

and where 'Ro does not depend on the spin variables.
Now, since we are interested in the Lifshitz region, we

will write the parameters in Eq. (18) assuming that the
critical wave vector q is small. Within this approxima-
tion, the continuum version of the Hamiltonian Eq. (18)
is given by

B = —— d q q p q q

d'qid q2d qsg(qi)g(q2)P(qs)& ) q;

d q1 d q2d q3d q4 gy q2 q3 q4 ~

+ dqh —q q (20)

where

r(q) = ro + (q' —L)',
k~T —6J(1 —5~)

PO
~kBT

+ qcr

J (1 —12K 5

J

~3/2 '

h(f) =( )
leads to the equation of state [21]

(22)

h(f) = ("+ (q* —q.*)'1&(q)+ —f ~'q. 4(6)d(f 6)—
the average of a). The introduction of an external field
h conjugate to P(q) given by

Q,4
tL =

K
(21)

and where P(q )—:~~s(q ).
In order to study the ordered phase, we introduce a

field P(q) = @(q) + P(q), so that (P(q)) = P(q) and,
consequently, (@) = 0 (here, as usual, (a) = a represents

+— d q]d q2 q& q2 q —q, —q

+— d qi gy —q~ q

+— d q& q&
—q&+q (23)
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where terms like (@(qi)@(qz)g(qs)) are of lower order
[16].

Now one needs to compute (Q(qi)g( —qi + q)). Since
the minimum of r is obtained at q = q„ the field am-
plitudes with q = q, increase fast when r/q, -+ 0 and,
consequently, the mean square of Buctuations to first or-
der in a loop expansion is given by

d3
(4(f)0(—q)) = ~(v) +

2 f 2

b= r(q. )+u
r(q. )

(24)

where b = q, /8~ and where we assumed

q && ~0. (2s)

d3q» 6

(2~)'r(qi)' r(q.)'" (26)

and they enter in all order in the loop expansion. In order
to take them into account, we will assume that

Now the expression (@(qi)g(—qi + q)) must be
found to all orders in loop expansion. We, how-
ever, are basically interested in the region in which the
corrections for the correlations (g(q)i/)( —q)) and for

(@(q)@(—q)vP(qi)vP( —qi)) first become important. This
occurs for the one-loop contribution in Eq. (24) and in
the "ladder" diagrams. These diagrams have relative or-
der

tC
h(q = q. ) = gaia( ——a(.

2
(30)

We assumed that

()) = 2ai cosq, z, (31)

/jg 2

tLI =Q—
rt+q4 (32)

contain contributions from the noncritical modes (b is a
function of q, only).

For zero field, Eq. (30) leads to a nonzero amplitude

2p)
(33)

and to a new expression for Eq. (32) given by

b&t—ro ———(1 —2b() r( + vtr(' (34)

where b( = u(/u. This equation, which specifies the tem-
peratures where this ordered phase can be found, has real
solutions if

which specifies a lamellar phase. The parameters given
by

tl~
r( = ro+ b + u(a(,

Pi

uqc
3/2

P0
(27)

—ro»(2b( —1)
~(2(2b( —1))

(3s)

Within this approximation, one can show that only lad-
der loop diagrams without dependence on the external
momentum contribute to the averages in Eq. (23).

Using this and the condition Eq. (2S), we eliminate
all the complicated diagrams, and we end up with a self
consistent form for the equation of state given by

Now, in order to verify if the lamellar phase, speci-
fied by Eq. (33) and limited by the condition Eq. (35),
is more favorable than the disordered phase, we look at
the difFerence between the thermodynamic potentials as-
sociated with each one of those phases. This function,
generated by integrating the equation of state, is given
by

h(f) =
( + ("—..')*14(f) + —,f ~'"4(.-)4(.--.-)
+— + q»d q2 q1 q2 q —q» —q2

d q» q» —q» q

AF, = ' (1 —2b() — " + b~r) —bgri(,
2%i 2'lL~

where r»~ is solution of

~0 +»l +

(36)

where

r =r+ + — d qi4(qi)4( —qi),
'll P tC

2 2

d q1

(2vr)sP(q, )
'

b ) 2/s
—ro & 2(2b& —1) I

E(2b —1)) (38)

The lamellar phase is, consequently, Inore favorable
than the disordered phase if

Now, in the nonuniform phase, the averages P(q = q, )
are nonzero, while higher harmonics of P(q) with q P q,
are small. In view of that, we eliminate the noncritical
terms in h(q = q, ) = 0 in favor of the critical variables,
obtaining finally a free energy depending only on h(q =
q, ) and given by

This result leads to the conclusion that a erst-order phase
boundary between those phases is possible. We still need,
however, to verify if no other modulated phases can be
present.

The other type of modulated phase that one can find
in such a system is the hexagonal phase, specified by



MICROEMULSION MODEL WITH OIL-WATER ANISOTROPY 4697

p = 2ah cos(q z) + cos q, y ——q, z
2 2 )

r2

2tch

"ih + b~r, —bgr, h + 2~a„—-ua„(43)3 3 4

2lbh 4

(~3+cos — q y+ —q, z ]

2 2 j

3h(q = q ) = rhah + noah ——ah,
2

(4O)

where

2rh = rp + b + 3uhah,
rh

QJ
tkh =V—

4 )~h+ q4
(41)

and where, for ah ——0, one has

Following similar steps to those we use with the lamellar
phase, we found that the hexagonal phase has an equa-
tion of state given by

is negative.
Now we must check which modulated phase is more

favorable. In order to do it, we compare the &ee energies
Eq. (36) and Eq. (43) and we obtain a phase diagram
in terms of the physical parameters: temperature T, the
external field h, and the bending energy e, as follows
(see Fig. 6). For small values of the field h ( ht, the
lamellar phase dominates over the hexagonal phase. For
h ) hq, or otherwise at high temperatures the hexagonal
phase coexists with the disordered phase. As the temper-
ature is decreased, one finds a phase boundary between
the hexagonal and lamellar phases. At h, = hq, the three
phases coexist at a triple point. On varying v. , one gen-
erates a triple line, h = hq. This line is an increasing
function of the critical wave vector. In that sense, we can
say that even at the critical wave vector the triple point
exists and conversely the first-order phase boundary be-
tween the disordered and lamellar phases. Therefore the
mean-field I ifshitz point is actually a Huctuation-induced
end point.

huh—&O = -&~h+
~lh
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