
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Categorization in the symmetrically dilute Hopfield network
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A symmetrically dilute Hopfield model with a Hebbian learning rule is used to study the effects of gradual
dilution and of synaptic noise on the categorization ability of an attractor neural network with hierarchically
correlated patterns in a two-level structure of ancestors and descendants. Categorization consists in recognizing
the ancestors when the network has been trained exclusively with the descendants. We consider a macroscopic
number of ancestors, each with a finite number of descendants, and take into account the stochastic noise
produced by the former in an equilibrium study of the network, by means of replica-symmetric mean-field
theory. Phase diagrams are obtained that exhibit a categorization, a spin-glass, and a paramagnetic phase, as
well as the dependence of the order parameters on the relevant quantities. The de Almeida–Thouless lines that
limit the validity of the replica-symmetric results are also obtained. It is shown that gradual dilution increases
considerably the region where a stable categorization phase may be found.@S1063-651X~99!00310-4#

PACS number~s!: 87.10.1e, 64.60.Cn
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I. INTRODUCTION

There has been much interest in understanding the p
erties and predicting the behavior of large attractor neu
networks. Of primary concern are the storage capacity,
quality of the retrieval overlaps, and the ability to retrieve
set of learned patterns when a network starts to evolve f
an arbitrary initial state@1,2#. A further, relevant, issue is th
categorization~or generalization! ability of a network@3,4#.
This is the property of recognizing patterns in a high level
a hierarchical structure when a network is only exposed
patterns in a lower level during the training stage.

The presence of an exponentially large number of
wanted spin-glass-like states may limit severely the per
mance of a network. Indeed, except for a low storage rati
network is very likely to be trapped in these states, preve
ing the occurrence of finite overlaps with the patterns
interest. To overcome this problem, a dilute Hopfield mo
with low symmetricconnectivity has been considered som
time ago to study the retrieval problem@5,6#. This problem
consists in the search for retrieval states with zero ove
except with one pattern. The storage capacity of the netw
in the extremely dilute limit was found to be considerab
enhanced, when compared either with that of the stand
symmetric model of full connectivity@1,2# or with the stor-
age capacity of the extremely dilute asymmetrical model@7#,
particularly at finite temperatureT, which is the rounding-off
parameter in the neuron response function. The effect of
gradual dilution on the phase diagram of the random sy
metrically dilute network is to reduce the stability of th
spin-glass states below the critical storage capacityac , en-
hancing thereby the retrieval states. In the limit of vanis
ingly small connectivity, stable spin-glass states are exclu
up to a ratioac51, for T<1, according to exact results o
the formally equivalent Sherrington-Kirkpatrick~SK! spin-
glass model@8#. It has also been pointed out in Ref.@6# that
the retrieval performance of the network increases with
PRE 601063-651X/99/60~4!/4580~8!/$15.00
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decrease of the connectivity in states within the mem
phase, although the performance is impaired by the dilut
on the phase boundary.

The categorization problem has been studied extensi
in networks of various architectures, with either binary
multistate units, and different learning rules@4,9–21#. The
categorization problem has, apparently, not been studie
the symmetrically dilute Hopfield model. This is an intere
ing model with partial connectivity between neurons, th
has an energy function and, in contrast to the extremely
lute asymmetric network, has a nontrivial dynamics and
more complex behavior.

A prototype categorization problem with a set of hiera
chically correlated patterns in two levels is the recognition
concepts, or ancestors, from the extraction of common
tures among the descendants~or examples of the concepts!
presented to the network in the training stage. These feat
may be characterized by symmetric overlaps between
state of the network and the training patterns, which can
constructed for any network, whether the training rule
symmetric or not. Symmetric overlaps represent, usually,
wanted spurious mixture states for the retrieval probl
which are only destabilized at lowT for uncorrelated pat-
terns@22#, but they have a crucial role in the categorizati
problem@4#. Indeed, the correlation parameter that charac
izes the hierarchical structure of patterns stabilizes the s
metric mixture states up to relatively highT. This leads to a
large categorization phase in the phase diagram fora vs T
@9#, where single concepts may be recognized with sm
error when an appropriate number of examples is prese
to the network. However, as in the retrieval problem, t
categorization phase for the fully connected network has
compete with a spin-glass phase in the ordered region of
phase diagram.

The purpose of this paper is to study the effects o
gradual dilution of the synaptic connections on the categ
zation ability in a symmetrically dilute Hopfield neural ne
work model with binary units and patterns in a two-lev
4580 © 1999 The American Physical Society
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hierarchy. We are particularly interested in the case of low
vanishing connectivity and our aim is to investigate to wh
extent the influence of spin-glass states can be reduced,
ing to an improvement of the categorization ability of t
network. It is also interesting to investigate the depende
of the categorization performance of the network on the te
peratureT. Indeed, in an earlier work on the fully connecte
Hopfield network we found that a small-to-moderateT may
be useful to reduce the categorization error in the case
finite number of concepts@9#.

In the present work we do not consider the dynamics b
instead, we study the equilibrium statistical mechanics of
symmetrically dilute Hopfield model. The outline of the p
per is the following. In Sec. II we introduce the model a
the relevant order parameter for the problem that gives
categorization error of the network. The free-energy den
and other order parameters that are built into it are obtai
in Sec. III, in a replica-symmetric mean-field theory. T
limit of validity of that theory is also specified there. Th
results are presented and discussed in Sec. IV, and we
with a summary and conclusions in Sec. V.

II. THE MODEL

We consider a random dilute Hopfield model of a neu
network withN binary unitsSi561; i 51, . . . ,N, described
by the Hamiltonian

H52
1

2 (
i , j

Ji j
d SiSj , ~1!

where the sum is over alli and j , and the dilutesymmetric
synaptic connections,Ji j

d 5Jji
d , are specified by the appropr

ate learning rule that involves the probability distribution
the random dilution. Before specifying the rule, we note t
( j Ji j

d Sj is the local field on uniti due to the activity of the
other units. An increase in the local field produces, in g
eral, an alignment of the component of the state of the n
work with an example, improving the retrieval performanc

The learning rule consists, for our purpose, in presen
to the network a finite set ofs examples $j i

mn%, n
51, . . . ,s, of each of a macroscopic number of concep
p5acN, with finite a5O(1), within the set $j i

m%, m
51, . . . ,p, according to the generalized Hebb rule,

Ji j
d 5

ci j

cN (
m51

p

(
n51

s

j i
mnj j

mn ~2!

in which ci j 5cji is 1 with probabilityc and 0 with probabil-
ity 12c, wherec is the connectivity of the network, while
cii 50. Thus, the synapses which are built exclusively fro
examples are cut symmetrically at random so that on
average each unit remains connected tocN other units, anda
is the ratio of concepts to be recognized. Following Som
linsky @23#, we restrict ourselves in this work to adense
network in whichc is of O(1) whenN→`, meaning that
each unit remains connected toO(N) other units. It should
be noted, however, thatc may become arbitrarily small afte
the thermodynamic limit. We come back to this point in t
next section. In contrast, in the case of sparse networkc
5O(1/N) and each unit is just connected to a finite numb
r
t
ad-

e
-

a

t,
e

e
ty
d

nd

l

t

-
t-
.
g

,

e

-

r

of other units. Whenc51 we have the generalized Hebbia
rule for the standard categorization problem in a fully co
nected network@4,9#, while the limit c→0 corresponds to
the extreme low-connectivity network.

The components of the concepts, which are assumed t
binary patterns,j i

m561, are taken to be statistically inde
pendent and equally distributed unbiased random variab
Each concept generates a finite set of examples$j i

mn561%
which are assumed to be statistically independent
equally distributed random variables chosen according to
probability distribution

P~j i
mn!5

1

2
~11bj i

m!d~j i
mn21!1

1

2
~12bj i

m!d~j i
mn11!,

~3!

with the Kroneckerd and 0<b<1. We see thatbjm is the
bias that an example of the conceptjm may be11 and this
will depend on the value taken by the concept. Thus, Eq.~3!
implies a correlation̂ j i

lj j
mn&5bd i , jdl,m between a given

concept and its examples and a correlation^j i
lrj j

mn&
5b2d i , jdl,m , for rÞn, among different examples of th
same concept. Here, the brackets^ & denote configurationa
averages over the examples and over the concepts, in
order.

In resemblance with Sompolinsky’s work for a symmet
cally dilute random network@2,23#, the synaptic connection
may be written asJi j

d 5Ji j 1dJi j , in which

Ji j 5
1

N (
m51

p

(
n51

s

j i
mnj j

mn ~4!

are the interactions of the fully connected network train
with examples @3,4# and the dilution term dJi j 5(1
2ci j /c)Ji j may be interpreted, in theN→` limit, as a syn-
aptic Gaussian noise effectively independent of the train
examples, of mean configurational average^dJi j &c50 and
variance^(dJi j )

2&c5D2/N. Here, the bracketŝ &c denote
configurational averages over the patterns and theci j , in
which D2[a2(12c)/c with a25acs@11(s21)b4#. In-
deed, ^j i

lrdJi j &c50 because the average of 12(ci j /c) is
zero and^(j i

lr)2j j
lr&50 for unbiasedexamples distributed

according to Eq.~3!. It should be noted that the Gaussia
synaptic noise is of a different nature than the synaptic no
of temperatureT. Thus, with the separation of the synapt
connections into two parts, Eq.~1! becomes a sum of a
Hopfield Hamiltonian for a fully connected neural netwo
model trained with examples according to a generaliz
Hebbian learning rule@4# and a spin-glass Hamiltonian wit
random Gaussian interactions@8# the width of which de-
pends now on the connectivity of the dilute network.

It is known that the categorization ability in a fully con
nected Hopfield model is enhanced either by an increas
the number of exampless presented to the network in th
training stage or by a larger correlation parameterb. This
can be understood from the increase in the local field a
unit due to a larger widtha/AN of the random connection
Ji j . It can be seen that a decrease in the connectivityc, in
the case of a symmetrically dilute network, should simila
enhance the categorization ability. This will be demonstra
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by the results presented in Sec. III.
The order parameter that describes the recognition o

conceptjm in a noiseless network, withT50, as the main
characteristic of the categorization problem, is the overla

mm5
1

N (
i 51

N

j i
mSi , ~5!

for m51, . . . ,p, between the state$Si% of the network and
the conceptjm. The state may be near a true minimum o
metastable state of the HamiltonianH. We consider the half
space in which 0<mm<1 and the value ofmm is a measure
of the success in recognizing a concept. Due to the sum
sites, this overlap may be seen as the configurational ave
over the probability distribution of that concept. As a sum
a large number~in the limit N→`) of random variables, it
should not depend on a particular realization of these v
ables and becomes a self-averaging quantity.

It should be stressed that the recognition of concepts,
the existence of finite overlaps with the states of the netwo
must emerge as a spontaneous feature of the network tra
with examples. The network is neither exposed to the c
cepts in the training stage nor to concept dependent exte
fields. A measure of the failure in recognizing a concep
given by the categorization error, defined as the Hamm
distance

em5
1

2
~12mm! ~6!

between the state$Si% and the conceptjm, where m
51, . . . ,p. Our aim is to find out the dependence of t
categorization error on the number of exampless, the so-
called categorization curves, and how these depend on
connectivity c and on the ratioa of recognized concepts
Since all concepts are equivalent, we concentrate on on
them, saym51.

III. MEAN-FIELD THEORY

We consider now the mean-field theory for finitea. For
the purpose of practical calculations of the properties of
network, it is convenient to introduce a field- (hm) dependent
term for each concept into the Hamiltonian, adding al
gether( imhmj i

mSi , and taking the fields to be zero at th
end. The averaged free-energy density, per connected si
given by

f 52 lim
N→`

1

cNb
^ ln Z&c , ~7!

where Z5Tr exp(2bH) is the partition function of the
model, in whichH is the sum of a generalized Hopfie
Hamiltonian and a spin-glass Hamiltonian with rando
Gaussian interactiondJi j , as discussed in the preceding se
tion, whileb5T21. Here, and in the following, we first tak
the thermodynamic limitN→`, keeping the connectivityc
fixed in accordance with the model introduced in the prec
ing section, and thereafter we varyc, which may eventually
become vanishingly small. The overlap with a given conc
is then obtained as
a

er
ge
f

i-

.,
k,
ed
-
al

s
g

he

of

e

-

, is

-

-

t

mm5d f /dhmuhm50 , ~8!

where at the end the field is set to zero. In the case of a n
network, with temperatureT, the components of the state i
Eq. ~5! are to be replaced by their thermal averages^Si&T
with Z.

Proceeding in a now standard way, for a macrosco
number of conceptsp and hence, for nonzeroa5p/cN, we
make use of the replica method to write for a specific co
cept, saym51,

^ ln Z&c5 lim
n→0

^Zn&c21

n
, ~9!

in which ^Zn&c is the configurational average of the rep
cated partition function. Combining well-known procedur
to deal with the generalized Hopfield Hamiltonian, on o
hand, and with the explicit spin-glass part on the oth
@8,24#, we find

^Zn&c5e2bnps/2enNb2D2/4E )
~n,r!

dmr
1nE )

~rs!
dqrs drrs

3exp~2Nb f !, ~10!

where

f 5
1

2 (
n,r

~mr
1n!21

acb

2 (
~r,s!

qrsr rs1
bD2

4 (
~r,s!

~qrs!2

2
ac

b
ln G~qrs!2

1

b
^TrSr exp~2bHj!& ~11!

in which r ands are replica indices and (r,s) denotes dif-
ferent pairs of replicas. Here, TrSr means the trace over th
states, and

mr
1n5

1

N (
i

j i
1nSi

r ~12!

is the overlap of the replicated state with an examplej i
1n of

the specified concept, while

qrs5(
i

Si
rSi

s ~13!

is the spin-glass order parameter forrÞs and r rs is the
usual auxiliary parameter that will be interpreted belo
Also,

G~qrs!5E
2`

1`

)
n,r

@dxn,r /A2p#expS 2
1

2 (
n,r

xrn
2

1
b

2 (
r,s

(
l,n

xrsxlnBlnQrsD ~14!

in which

Bln5b21~12b2!dl,n ,
~15!

Qrs5qrs1~12qrs!dr,s ,

and, finally,
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Hj5(
n,r

mr
1nj1nSr1

1

2 (
~r,s!

~acrrs1bD2qrs!

3SrSs2h1j1(
r

Sr. ~16!

So far we have the averaged replicated partition funct
prior to any assumption in replica space. It is interesting
note that, in the limitc→0, the dependence onr rs and part
of that in qrs drop out and, with a rescaling ofa andb that
involves the number of exampless, ^Zn&c becomes formally
similar, for generals, to the expression obtained for th
memorization problem in this limit by Watkin and She
rington @5# and is identical to their result, as it should b
whens51. In this case it coincides with the expression f
the SK spin-glass model@8#, after a local gauge transforma
tion in which a state$Si% is replaced by$j i

mSi%, for all i
51, . . . ,N. A crucial step in this transformation is tha
(j i

m)251. In contrast, in our case we have an effective m
netization given by the symmetric overlapms5m1n, for n
51, . . . ,s, which characterizes the categorization phase
discussed below, and that is associated with an average
(nj i

1n/s that cannot be used in any simple gauge transfor
tion, unlesss ~or b)51. This observation has an importa
consequence on an argument concerning the phase bou
to the ordered state in the limit of vanishing connectivi
which will be discussed below.

Assuming now replica symmetry, we write

mr
1n5m1n for all r,

~17!
qrs5q, rÞs

r rs5r , rÞs

and find, up to constant terms,

f 5
1

2 (
n

~m1n!21
Carc

2
1

b~qD!2

4
2

ac

b

3 ln G~q!2
1

b E
2`

1`

DzK lnF2 coshb

3SAarcz1(
n

m1nj1n2h1j1D G L ~18!

in which Dz[exp(2z2)dz/A2p is the usual Gaussian mea
sure, C5b(12q), D specifies the width of the random
Gaussian interaction, as discussed in Sec. I, while

ln G~q!52
1

2 S ~s21!ln~12Cu1!1 ln~12Cu2!

2bqs
12Cu1u2

~12Cu1!~12Cu2! D . ~19!

The replica-symmetric order parameters are given by
saddle-point equations in zero external field,

m1n5K K j1n tanhbSAarcz1(
n

m1nj1nD L L
z

,

n
o

r

-

s
um
a-

ary
,

e

q5K K tanh2 bSAarcz1(
n

m1nj1nD L L
z

, ~20!

r 5sq
~12Cu1u2!21~s21!b4

~12Cu1!2~12Cu2!2 1q
D2

ac
,

where ^ &z denotes the integral over the Gaussian meas
u1512b2, and u2511(s21)b2. In the noiseless limit,
whereb→`, we have thatq→1 andC remains finite.

The order parameters may be interpreted as follo
mmn5^jmn^S&T& is the overlap between the state of the n
work and an example of the concept to be recognized, h
m51; q5^^S&T

2& is the spin-glass order parameter, and

r 5
1

a (
m>2

(
n

^~mmn!2& ~21!

is the contribution of theuncondensedoverlaps in this prob-
lem @24#. The averaged free-energy density and the or
parameters for the symmetrically dilute Hopfield model a
recovered in the limits515b @6#. Also, in the limit c→0,
we recover the equations of Watkin and Sherrington@5# for
the extremely dilute network. As one would expect, there
no need for the parameterr in this limit. Making use of Eqs.
~8! and~18! one obtains, in the replica-symmetric theory, t
overlap

m15K K j1 tanhbSAarcz1(
n

m1nj1nD L L
z

, ~22!

with the particular concept.
Next, we have to make a choice for the overlapm1n with

the examples of conceptm51. One way of doing this is
taking @4#

m1n5d1n~m112ms21!1ms21 , ~23!

wherems21 is the symmetric overlap withs21 examples.
This is the appropriate choice when there is a bias for sto
single examples by means of a given learning rule, as in
present problem. The categorization problem with compet
symmetric and retrieval states in nondilute networks h
been studied elsewhere@4,9,19#. Alternatively, one may di-
rectly consider the symmetric overlap withs examples,
m1n5ms , n51, . . . ,s. This enables us to write

(
n

m1nj1n5msxs , ~24!

in terms of the symmetric sum ofs examples,xs5(nj1n,
which is a random variable that follows a binomial distrib
tion dependent on the conceptj1 @9#. However, the emer-
gence of other features, such as the recognition of conce
must then be a spontaneous property of the network wh
should not depend on the particular choice of Eq.~23!. The
symmetric overlap withs examples, given by

ms5
1

sN(
i

(
n

j i
1n^Si&T , ~25!



pl
ca

ro

it
r

th
t

or
al
m

f
ric
n

-
nd
gl
e
w

am

th
fo
in

-
gl

p
ed

le
t
rd

oi
er

ture
1,

con-
b-
ither
ch
of

tion
e
ss
r

in-
he
re

en-
lly
par-

r
he
e

n

to

rk.

ei-
e

r

s

4584 PRE 60P. R. KREBS AND W. K. THEUMANN
describes the simultaneous recognition of a set of exam
by the state of the network. This becomes, in repli
symmetric mean-field theory,

ms5
1

s
^^xs tanhb~Aarcz1msxs&&z , ~26!

where the inner brackets denote an average over the p
ability distribution ofxs that includes an average overj1.

The relevance of the symmetric mixture states, with fin
ms , is that they characterize the categorization phase fo
given number of exampless, with nonzero overlapm1 with
a concept, by taking into account the common features of
examples. This can be seen most easily by considering
noiseless limit,b→`, of m1 in Eq. ~22!. Indeed, this yields

m15^j1 erf~msxs /A2arc !&, ~27!

which only is finite formsÞ0.
The mean-field equations in the replica-symmetric the

for the symmetrically dilute Hopfield model for the retriev
problem@6#, as well as those for the SK spin-glass proble
@8#, are not valid below a de Almeida–Thouless~AT! line
@25# in a large part of the relevant phase diagram, here oT
vs a. In contrast, the breakdown of the replica-symmet
mean-field equations is far less important in the fully co
nected Hopfield model@24#. Thus, it is important to deter
mine that line, particularly where it meets the phase bou
ary between the categorization phase and the pure spin-
phase. Extending the calculation of the AT line to the pres
case of a model with hierarchically correlated patterns,
find that it is given by the joint solution of the equation

b2arc

q K K sech4 bSAarcz1(
n

m1nj1nD L L
z

51, ~28!

together with the saddle-point equations for the order par
eters.

The numerical solution of the mean-field equations in
replica-symmetric theory and the AT line yield the results
the phase diagrams and the order parameters discussed
next section.

IV. RESULTS

The choice in Eq.~24! illustrates the kind of stable solu
tions we concentrate on in this work. The retrieval of a sin
example, alls examples being equivalent, is given bym11

Þ0. The categorization phase (C), in which the network
performs a generalization task for which it has not been s
cifically trained, like the recognition of concepts, is specifi
by the fully symmetric overlap m1n5msÞ0, for n
51, . . . ,s, since we do not consider the retrieval of sing
examples. A finite overlapm1 with a concept appears in tha
phase and there is, in general, a nonzero spin-glass o
parameterq. Furthermore, there is a spin-glass phase~SG!
described byms50 andm150, whileqÞ0, and a disordered
paramagnetic phase (P), where ms50, m150, and q50.
There are, of course, other solutions to the saddle-p
mean-field equations, in which we are not specifically int
ested in this work.
es
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First we consider the phase diagram for the tempera
against the ratioa of recognized concepts, shown in Fig.
for various values of the connectivityc when the overlap
parameter between an example and the corresponding
cept isb50.4 for s510 examples. Similar diagrams are o
tained for other values of these parameters. Increasing e
b or s, keeping the other one fixed, allows one to rea
larger values ofa, that is, to recognize a larger number
concepts and to support a bigger noise levelT. The catego-
rization phase appears to the left of the phase boundaryTc ,
while spin-glass states appear everywhere below theP-SG
phase boundaryTg , except whenc50. Indeed, the spin-
glass states turn out to be unstable within the categoriza
phase in the extremely dilute limit. In the region within th
boundary Tc , when stable categorization and spin-gla
states coexist for finitec, the former are more stable fo
small a, while the latter become more stable for largera.
This is similar to the competition between retrieval and sp
glass states in the symmetrically dilute network for t
memorization problem@6#. Retrieval states of examples a
expected to appear at lower values ofa.

Note that the categorization phase is considerably
hanced by synaptic dilution of the network, and the globa
stable spin-glass states are correspondingly reduced, in
ticular in the limit c→0. It is also worth comparing ou
phase diagram for the symmetrically dilute network, in t
low connectivity limit, with the phase diagram found for th
categorization problem in the extremelyasymmetricdilute
network @12#. The phase boundary for the latter, not show
in the figure, starts at the place where theC-P phase bound-
ary meets theT axis and it decreases continuously down
the a axis where it meets the low-T end point of theC-SG
phase boundary for the extremely dilute symmetric netwo
Thus, the critical ratioac , at T50, is the same in the two
models. Moreover, it can be argued that the behavior in
ther of the limitsT50 or a50 has to be the same. Th
reason for this is that disorder due to temperature, ata50,

FIG. 1. Phase diagram for the synaptic noiseT as a function of
the ratioa of recognized concepts, for a correlation parameteb
50.4, s510 examples, and connectivityc51, 0.001, and 0(c
→0). The categorization phase (C) appears to the left of the line
Tc , as indicated explicitly forc50, and the spin-glass phase~SG!
to the right ofTc . The paramagnetic phase (P) appears aboveTg

andTR are the de Almeida–Thouless lines.
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should have the same effect on both models. On the o
hand, atT50 we are left with stochastic noise from th
macroscopic number of concepts, which is assumed to
Gaussian to start with in the asymmetrically dilute netwo
while it becomes Gaussian in our case through the assu
tion of replica symmetry. As a result it turns out that there
a much larger categorization phase in the symmetrically
lute network.

The AT linesTR , below which the replica-symmetric so
lutions for the order parameters become unstable to rep
symmetry-breaking perturbations, are also shown in Fig
Within the accuracy of our calculations, these lines meet
corresponding replica-symmetric phase boundaries where
slope of the latter change sign. This is similar to what h
been found before for the memorization problem@6,26#.
There are reasons to believe that the phase diagram an
performance of the network, discussed here and below,
vide lower limits to the exact results for these features,
will be argued in the next section.

To judge to what extent a larger categorization phas
more useful with stronger dilution, we consider now the p
formance of the network. Indeed, the performance fo
given a/a0 ~wherea052/p is the critical storage ratio fo
the extremely dilute Hopfield model! within the categoriza-
tion phase is improved by dilution, as demonstrated by
order parameters, shown in Fig. 2, forT50.1, b50.4, s
510, and either forc50 or c50.001. In the case of vanish
ing connectivity, the symmetric overlap with the examp
and, hence, the overlap with a concept, vanishes cont
ously on approach to the phase boundary from below, w
for finite connectivity the overlaps drop discontinuously
zero on the phase boundaries, as in the case of the
connected network. Note that the discontinuities decre
with dilution. As one would expect, however, the overla
with a concept or of a mixture state decrease in both ca
with an increasing ratioa, while the categorization error in
creases. Also, since theC-SG phase boundaries have an
creasing criticalac(T) for decreasingc, the overlap with the
concepts and, hence, the categorization ability of the netw
should decrease on the phase boundary with decreasing

FIG. 2. Overlap with a conceptm1, symmetric overlap withs
examplesms , spin-glass order parameterq, and categorization er
ror e(s) for T50.1, b50.4, s510, and connectivityc50 or c
50.001.
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nectivity. Indeed, we checked that this is the case.
The improvement of the categorization ability of the ne

work with dilution can best be seen from the categorizat
curves shown in Fig. 3 for the errore(s) in terms of the
number of examples, for connectivityc50 ~the same asc
50.001), c50.1, 0.5, and 1, and for fixeda andb, either
for T50 or T50.8. For a numbers of examples smaller
than a criticalsc , there is an error of 0.5 due to a vanishin
overlap with the concepts and the presence of a spin-g
state. We remind the reader of this almost always pres
state for lowT. On the other hand, there is a rapid drop
the categorization error at a critical number of examples,sc ,
as found before for the fully connected network, and t
number is lower the smaller the connectivity in the pres
model. Thus, an extremely dilute network tends to catego
for a smaller number of examples than a fully connec
network. It should be pointed out that the categorizat
curves have a nonmonotonic dependence onT, for values
below T50.8, not shown for clarity in the figure. This wil
be discussed below.

The effects of stochastic noise on the performance of
network within the categorization phase, due to the prese
of a macroscopic number of concepts, atT50, are shown for
b50.2 andc50 by the categorization curves in Fig. 4, fo
variousa/a0 . The starting point fors51 corresponds to the
retrieval of a single example. Note that the categorizat
error first decreases monotonically with an increase in
number of exampless, for smalla, while for larger values it
first increases until an appropriates has been reached, star
ing to decrease thereafter. The reason for this is the com
tition between symmetric mixture states that favor categ
zation and the presence of spin-glass states that ten
destroy it. Eventually, whena/a0 is close to 0.15, a spin
glass state withe50.5 is reached continuously, reflecting th
nature of theC-SG phase boundary. With an increase in t
number of examples, however, the state of the network m
again get into the categorization phase starting to recog
the concepts. Similar results are obtained for other value
the correlation parameterb. For larger values, the trend to
wards categorization starts for a lowers.

A similar situation occurs atT50 for small but finite

FIG. 3. Categorization curvese(s) for c50 ~the same asc
50.001), c50.1, 0.5, and 1, from left to right, witha50.03125,
b50.5 for T50 andT50.8.
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4586 PRE 60P. R. KREBS AND W. K. THEUMANN
connectivity and smalla. However, forc50.001, say, when
a critical a/a0 of 0.0936 is reached the categorization er
jumpsdiscontinuouslyon the phase boundary to a spin-gla
value of 0.5, in accordance with the nature of the transit
discussed in the context of Fig. 1. The results in either c
clearly indicate that an increase in the stochastic noise le
due to a macroscopic number of concepts, always seem
deteriorate the performance of the network. Except for v
small a, where the stochastic noise simply slows down
recognition of concepts with the number of examples p
sented to the network, there is a monotonic destabilizatio
the symmetric mixture states for agivenconcept by the in-
terference of the random overlaps with the examples ofall
other concepts. These are effects that only appear for a
able number of examples.

A somewhat different behavior of the network in the c
egorization phase is obtained when the effects of finite no
level T are taken into account. At relatively high stochas
noise a, this is shown in Fig. 5 fora/a050.3, with b
50.3, andc50. It can be seen that the effect is, first,
improve the categorization ability of the network for lowT
<0.4, while a further increase in the noise level deteriora

FIG. 4. Categorization curvese(s) at T50, for b50.2, c50,
and several values ofa/a0 , as indicated, wherea052/p is the
storage ratio of the extremely dilute Hopfield model.

FIG. 5. Categorization curvese(s) at a/a050.3, b50.3, and
c50 for several temperaturesT as indicated.
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the categorization ability. This non-monotonic behavior inT
is also present at lowera and it is a feature of the networ
that is only present for more than one example. Indeed,
found that for all values ofT for which the network is in the
categorization phase, the categorization curves start at
same errore(s)50.35 fors51, as shown in Fig. 5. We also
found nonmonotonic behavior inT near the phase boundar
C-SG for very smallc, but it may not be easy to see fo
moderate to largec.

The different dependence of the categorization perf
mance of the network on both types of noise can be seen
in the evolution of the categorization error with an increa
in eithera or T, keeping the other one fixed, shown in Fig.
for c50, b50.3, ands510 examples. In contrast to th
dependence ona, the dependence onT is clearly nonmono-
tonic apparently down to asymptotically smalla. As a result,
the effects of an increase in stochastic noise level can
compensated, up to a certain extent, by an increase in
aptic noiseT.

V. SUMMARY AND CONCLUDING REMARKS

We studied in this work the effects of stochastic and s
aptic noise on the ability to recognize the ancestors o
hierarchical two-level structure of patterns in a symme
cally dilute network trained only with the descendants in th
structure. This is a network that has a nontrivial dynam
and, consequently, it may have rich and interesting equi
rium behavior, even in the low-connectivity limit, as demo
strated here. Due to the presence of a correlation betwee
ancestor and its descendants, there appears a correlatio
tween the latter that stabilizes the symmetric mixture sta
with the descendants. These are states that generate
overlaps with the ancestors. Although the phase diagra
look similar to those for the memorization~also called the
retrieval! problem in the symmetrically dilute network, th
interpretation of the ordered phase is quite different.

The categorization ability of the symmetrically dilute ne
work trained with a generalized Hebbian rule was studied
this work for varying connectivity, with particular interest i
the extremely dilute limit for which there is a considerab
enhancement of the categorization phase when comp

FIG. 6. Dependence of the categorization errore on a for vary-
ing T, with b50.3, s510, andc50.
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with that for the fully connected network, as can be seen
a comparison of our present result and that of a previ
work @9#. As a result there is a reentrant categorization
spin-glass phase boundary with a considerably increa
critical ratio ac . For a below, the categorization curves fo
the errore(s) are found to have a nonmonotonic depende
on the synaptic noise levelT, for low to moderate values. In
contrast, the asymmetrically dilute network has only mon
tonic behavior. We also find that the transition from the c
egorization to the spin-glass phase boundary is a discon
ous one for low but finite connectivity, as in the case of t
fully connected network, and that the transition become
continuous one in the vanishing connectivity limit.

The explicit results presented in this work were obtain
in replica-symmetric mean-field theory. We also determin
the de Almeida–Thouless line that limits the stability of o
results to replica symmetry-breaking perturbations, for e
connectivity. As a consequence, the reentrant parts of
C-SG phase boundaries are not stable to these perturbat
In particular, one may worry about the low-connectivity lim
where the whole phase boundary is a reentrant one. H
ever, as we showed in Sec. III, the average replicated p
tion function, ^Zn&c , for our problem, prior to the assump
tion of replica symmetry, is formally similar but no
identical, to that of the SK spin-glass model. This is in co
trast to the result of Watkin and Sherrington for the mem
rization problem in the extremely dilute symmetric netwo
for which there is a formal identification@5#. On the basis of
a plausible assumption for this model, it has been argued
the exact spin-glass to ferromagnetic phase boundary sh
be a straight line parallel to theT axis @27#. In a replica
mean-field theory this means a result to all orders in rep
symmetry-breaking perturbations@28#. The argument cannot
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strictly, be used in our case since there does not seem to
simple gauge transformation that can formally identify o
problem to the SK spin-glass problem, as discussed in S
III. On the other hand, it is known that results for the ord
parameter, in the memorization problem within replic
symmetric mean-field theory, give lower bounds to resu
obtained by numerical simulations on large networks. O
may argue for our problem that the shape of the true cate
rization to spin-glass phase boundary, in the lo
connectivity limit, should not be very different from that o
the SK model.

The reason for considering a dilute network is that it is
more economical architecture than the fully connected n
work and, in the present case of symmetric dilution, it h
also a better performance. Indeed, particularly in the lo
connectivity limit, the network is fairly robust to synapti
noise for a moderatea, since at least the upper part of th
categorization phase shown in Fig. 1 is correctly given by
replica-symmetric solution. Although a symmetric dilution
not appealing on biological grounds, it may be a more s
able architecture for hardware implementations.
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