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ABSTRACT

A wide range of applications and research has been done with genome-scale metabolic
models. In this work, we describe an innovative methodology for comparing metabolic
networks constructed from genome-scale metabolic models and how to apply this com-
parison in order to infer evolutionary distances between different organisms. Our meth-
odology allows a quantification of the metabolic differences between different species from a
broad range of families and even kingdoms. This quantification is then applied in order to
reconstruct phylogenetic trees for sets of various organisms.
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1. INTRODUCTION

Metabolic models at the genome scale are one of the prerequisites for obtaining insight into the

operation and regulation of metabolism as a whole (Barrett et al., 2006; Morange, 2009; Patil et al.,

2004; Stephanopoulos et al., 1998). Uses of metabolic models embrace all aspects of biotechnology, from food

(Nielsen, 2001) to pharmaceutical (Boghigian et al., 2010) and biofuels (Montagud et al., 2010, 2011a).

Genome-scale metabolic network reconstruction is, in essence, a systematic assembly and organization of all

reactions that build up the metabolism of a given organism. It usually starts with genome sequences to

identify reactions and network topology. This methodology also offers an opportunity to systematically

analyze omics datasets in the context of cellular metabolic phenotype.

Reconstructions have now been built for a wide variety of organisms and have been used toward five

major ends (Oberhardt et al., 2009): contextualization of high-throughput data (Stephanopoulos et al., 1998;

Montagud et al., 2010; Edwards et al., 1999), guidance of metabolic engineering (Angermayr et al., 2009),

directing hypothesis-driven discovery (Nevoigt, 2008), interrogation of multi-species relationships (Stolyar

et al., 2007), and network property discovery (Guimera and Nunes Amaral, 2005).

Nowadays, phylogeny has become so popular that it’s being used in almost every branch of biology

(Yang and Rannala, 2012). Beyond representing the relationships among species in the tree of life, phy-

logeny is used to describe relationships between paralogues in a gene family (Maser et al., 2001), histories

of populations (Edwards, 2009), the evolutionary and epidemiological dynamics of pathogens (Marra et al.,
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2003; Grenfell et al., 2004), the genealogical relationship of somatic cells during differentiation and cancer

development (Salipante and Horwitz, 2006), and even the evolution of language (Gray et al., 2009). More

recently, molecular phylogenetics has become an indispensable tool for genome comparisons (Brady and

Salzberg, 2011; Kellis et al., 2003; Green et al., 2010).

A phylogeny is a tree containing vertices that are connected by branches. Each branch represents the

persistence of a genetic lineage through time, and each vertex represents the birth of a new lineage. If the

tree represents the relationships among a group of species, then the vertices represent speciation events.

Phylogenetic trees are not directly observed and are instead inferred from sequence or other data. Phy-

logeny reconstruction methods are either distance-based or character-based. In distance matrix methods, the

distance between every pair of sequences is calculated, and the resulting distance matrix is used for tree

reconstruction. For a very instructive review, please refer to Yang and Rannala (2012).

This work is organized as follows. In the next section, we explain the genome-scale models with which

we work, how we define a parameter for comparing two models, and how we recover the phylogenetic tree

from the comparison matrix obtained for many metabolic models. Additionally, we will account for the

minimum spanning tree of a nondirected, connected, weighted network associated with these metabolic

models. In the subsequent section, we present the results, a brief study of the sensibility of the comparison

parameter, and a summary and overview.

2. COMPARISON BETWEEN METABOLIC MODELS

In a recent article (Reyes et al., 2012), a method has been presented for automatically generating

genome-scale metabolic models from data contained in the KEGG database (Kanehisa and Goto, 2000).

The method consists of searching the database for genes and pathways present in an organism and

downloading the corresponding set of chemical reactions. The algorithm filters isosenzymes, or other

repeated reactions, and may add missing reactions to a given pathway using a probabilistic criterion based

on the comparison of the organism’s pathway with the same pathway in other organisms. In this work, we

use data obtained from this platform, but the method described can, in principle, be used with any set of

metabolic models given that the compound names in the models follow the same standard (the same

compound has the same name in all models).

The methodology we are about to describe will make use of two fundamentally different networks. One

is the metabolic network build-up from the chemical reactions contained in an organism’s metabolism. In

this network, each metabolite represents a node (or vertex), and each link (or edge) is associated with a pair

of nodes if their respective metabolites are connected as a substrate and product by some reaction. The

second kind of network is the complete weighted network where each vertex represents an organism and

each edge connecting two nodes is weighted by the parameter measuring the metabolic distance between

the organisms’ metabolism (note that this will be a complete network, where all vertices are connected to

all others). In order to distinguish clearly the two networks in the text, we will talk about nodes and links for

the metabolic network while for the organisms’ network we will use the terms vertices and edges. As for

the notation, we use capital letters (N, V, E) for the network, nodes, and links in the metabolic networks and

curly letters (N ‚V‚ E) for the network, vertices, and edges in the organisms’ network. In the metabolic

network we will use roman lowercase letters for indices representing single metabolites in sums, while for

the organisms network we use Greek letters for the indices representing single organisms.

The first step in our work is to construct for every metabolic model A a nondirected connected network

NA = (VA, EA) from the information contained in it. Here, VA stands for the set of nodes of A, and EA stands

for its set of links. A metabolic model comprises a set of chemical reactions. Each chemical reaction

associates a set of substrates with a set of products. For constructing the network, first we define the set of

nodes VA as the set of compounds in A (metabolites present in the model), assigning a node to each

metabolite. The chemical reactions in the model will define the links of the network. If two metabolites

appear as a substrate and as a product, respectively, in a chemical reaction, a link connecting the corre-

spondent nodes is added to the network. A typical metabolic model of a prokaryote, with around 1000

metabolites and the same number of chemical reactions, becomes through this process a nondirected

connected network with 1000 nodes and approximately 3000 links.

The problem at hand is to elaborate a method to systematically compare and quantify the differences

between two metabolic networks. For this purpose, we define a parameter that scales between zero and
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infinity, zero meaning identical networks and infinity for networks that either share no node or no link in

common. The definition of this parameter is based on the identity of the nodes (the compounds) but not

directly on the chemical reactions of the metabolic models, only indirectly through the links of the network.

Here we start with the metabolic networks of two organisms A = (VA, EA) and B = (VB, EB). The set of

all metabolites in between the two organisms A [ B = (VA [ VB‚ EA [ EB) can be divided into a partition of

three disjoint sets: the set of metabolites only present in A, the set of metabolites only present in B, and the

set of metabolites common to both organisms:

VA[B = (VAyVB)|fflfflfflfflffl{zfflfflfflfflffl}
Only in A

[ (VA \ VB)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Common

[ (VByVA)|fflfflfflfflffl{zfflfflfflfflffl}
Only in B

(1)

where y stands for the difference of sets. A representation of this situation is shown in Figure 1. As it is

represented there, each metabolite may have connections to metabolites within its set and connections to

metabolites in the other sets.

Suppose that VA [ VB = fv1‚ . . . ‚ vng. Fix an arbitrary node vi, 1 £ i £ n. We can consider its degree in

A [ B, that is, the total number of connections of vi to the rest of the metabolites of VA [ VB, that we denote

by deg(vi). We can also consider the degree of vi when we restrict ourselves to the subnetwork generated by

the node in (VAyVB), which we will call degAyB(vi). Similarly, we can also define degA\B (vi) and degByA(vi).

With these degrees we can define, for each metabolite vi 2 VA [ VB, the rate pAyB,i of connections of vi to

metabolites inside A and not in B with respect to the total number of connections of vi, that is:

pAyB‚ i =
degAyB (vi)

deg (vi)
:

Analogously, we can define

pByA‚ i =
degByA (vi)

deg (vi)
and pA\B‚ i =

degA\B (vi)

deg (vi)
:

The following weighted sum of the rates pAyB,i provides a parameter of the differentiation of A [ B with

respect to A:

a =
1

jVAyVBj
X

vj2VAyVB

deg (vj)

 ! X
vi2VAyB

pAyB‚ i

deg (vi)

On the one hand, the rates pAyB,i are multiplied by the inverse of the total number of connections of vi to

give more importance to the metabolites with fewer connections. The reason to do this is that metabolic

networks of all organisms usually share their hubs (metabolites with many connections), so in order to

establish differences and similitude for different networks, one should focus on specific metabolites par-

ticular to only some organisms sharing common features. This weighting of pAyB,i with the inverse of

deg(vi) will reduce the importance of very connected metabolites (hubs) that are common to most or-

ganisms and adds weight to specific metabolites that might be particular for a branch in the tree of life,

helping in this way to differentiate the branches. Removing this inverse weighting results in a very mild

difference between the organisms, which makes the second step in the reconstruction very hard, because the

differences will appear as a small noise in the parameters.

On the other hand, the factor 1
jVAyVBj

P
vj2VAyVB

deg (vj) gives an average of the number of connections of

the metabolites only present in A with respect to the whole network. This is done in order to rescale the size

FIG. 1. Representation of the sets of metabolites between two organisms.

510 GAMERMANN ET AL.



of the network and normalize (balance) the parameter after the inverse weighting done by the factor deg(vi)

for each metabolite in the set.

Analogously, we can define b and c from the metabolites in the other two sets.

b =
1

jVByVAj
X

vj2VByVA

deg (vj)

 ! X
vi2VByA

pByA‚ i

deg (vi)

c =
1

jVA \ VBj
X

vj2VA\VB

deg (vj)

 ! X
vi2VA\B

pA\B‚ i

deg (vi)

For illustrating the process, let’s consider three organisms, the Synechocystis sp. PCC 6803 (which we

refer to as syn), Synechococcus elongatus PCC7942 (referred to as syf), and the Escherichia coli K-12

MG1655 (referred to as eco). In Table 1, you can see the number of metabolites and links in the networks

of these organisms, and in Table 2, we show the number of elements in each one of the three sets of the

partition in which we split the set of nodes of the network obtained from each pair of these three

organisms.

Now let’s focus on a few metabolites to see their contribution to the differentiation parameters (i.e.,

to the parameters a, b, and c). For this, we chose pyruvate (PYR), glyoxylate (GXL), and 2-dehydro-3-

deoxy-6-phospho-D-gluconate (6PDG), which are respectively very, medium, and poorly connected

metabolites present in these three organisms. In Table 3, we show the contribution of these metabo-

lites to the parameters a, b, and c. Column di of Table 3 shows, for each one of these metabolites, the

value of

di =
1

deg (vi)P
vj2VA\VB

1
deg (vj)

 !
‚ (2)

which is the weight proportion associated with the metabolite (with respect to all others) discussed above in the

text. Note that this weight for PYR is very small, since pyruvate has many connections and is a very common

metabolite in the metabolism of virtually any organism, and therefore is not a good candidate to help differ-

entiate branches in the tree of life. On the other hand, 6PDG has few connections and they are different in

cyanobacteria than in the E. Coli, potentially helping, in this way, to differentiate these two branches.

Finally, the comparison between the networks A and B, namely fA,B, is defined as:

fA‚ B =
jVBj
jVAj a + jVAj

jVBjb

2c

The parameters a and b are balanced since some organisms have much smaller metabolic networks than

others. If this is not corrected, it results in a disproportionate size between subnetworks generated by VAyB

and VByA. In order to weaken this difference, the parameter factors
jVBj
jVAj and

jVAj
jVBj are introduced. For two

identical networks, a and b are zero, and so that f = 0. For two networks that do not have a single

metabolite in common we have c = 0 and so f = N.

3. CONSTRUCTION OF THE PHYLOGENETIC TREE

Given a set of n organisms fA1‚ A2‚. . . ‚ Ang, we will see how to construct their phylogenetic tree taking

into account the degrees of similarity between every pair of metabolic models.

Table 1. Sets of Nodes and Links

Organism No. nodes No. links

syn 1001 2891

syf 979 2810

eco 1227 3801

Nodes and links in the networks of syn, syf, and eco.
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Firstly, let N = (V‚ E‚ w) be a nondirected, connected, complete weighted network, where

V = fA1‚ A2‚ . . . ‚ Ang is the set of vertices that represent the metabolic models of the aforementioned

organisms, E is the set of edges (Al‚ A�)‚ 1 � l‚ � � n‚ l 6¼ �, and w :E ! R is a function that assigns to

every edge (Al‚ A�)‚ the amount wl‚ � = fAl‚ A� . Looking at the definition of f, we observe that this network

N must be symmetric. In particular, all the weights in our study are strictly positive.

Secondly, we will compute a minimum spanning tree ofN , that is, a tree that has V as the set of vertices,

and such that the sum of the weights associated with the edges of this tree is minimum. In these trees, every

vertex Al 2 V is connected with at least one of the other vertex of VyfAlg by an edge that has minimum

weight among all the edges incident to Al. The well-known Kruskal algorithm gives us a procedure for

finding these trees (see, for instance, Gross and Yellen, 2005). We just have to follow the trace of the

Kruskal algorithm in order to recover the phylogenetic tree of the organisms represented by the models

A1‚ . . . ‚ An.

In order to compute the phylogenetic tree of the models fA1‚ A2‚ . . . ‚ Ang, consider the minimum

spanning tree ofN , namely T = (V‚ E0‚ wjE0 ), where E0 � E and wjE0 denotes the restriction of the function w

to the elements in E0. Let us take all the elements of E0 in decreasing order of weights, that is,

E0 = fe01‚ e02‚ . . . ‚ e0n - 1g with w(e01) � w(e02). . . � w(e0n - 1). We are going to remove edges from T following

this order. Every time an edge is removed, the number of connected components of the resulting graph is

increased in one respect to the previous one. We can represent this division of connected components by a

binary tree. The phylogenetic tree is generated taking into account how we divide T .

There are two different situations depending on the size of the (new) connected components (if any of

them consists on a single vertex or not). Let us start with the edge with maximum weight in T which we

have denoted as e01. Suppose that e01 is adjacent to two vertices Al0 and Am0, with 1 � l0‚ �0 � n‚ l 6¼ �.

Then two possibilities can occur:

(a) One of these vertices, for instance Al0, is a leaf (vertex of degree 1),

Table 2. Metabolites in the Partitions

syf eco

syn jV A X V Bj = 911 jV AXV Bj = 778

jV AyV Bj = 90 jV AyV Bj = 223

jV ByV Aj = 68 jV ByV Aj = 449

syf - jV AXV Bj = 775

- jV AyV Bj = 204

- jV ByV Aj = 452

Metabolites in the three sets of the partition when comparing three

organisms.

Table 3. Metabolite Weighting

Metabolite Organisms in comparison pAXB,i di Contribution (%)

PYR syn and syf 0.98 0.127 0.0064

syn and eco 0.73 0.117 0.0044

syf and eco 0.75 0.113 0.0044

GXL syn and syf 0.86 0.454 0.020

syn and eco 0.87 0.550 0.024

syf and eco 0.80 0.439 0.018

6PDG syn and syf 1.00 3.176 0.16

syn and eco 0.80 1.762 0.072

syf and eco 0.80 1.757 0.072

Contributions of different metabolites to the differentiation parameter (f) between two networks. The column di

shows the weight of the metabolite in the calculation of pAXB,i, which is the inverse of the degree of the metabolite

divided by the sum of the inverses of the degrees of all metabolites contributing to the parameter.
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(b) Neither of these two vertices is a leaf (each vertex is still connected with the other vertex). This

happens only if the former connected component has three or more vertices.

We point out that our phylogenetic tree will have two types of vertices: the leaves, which represent

metabolic models, and the inner vertices, which represent two branches that each have more than one vertex.

We start our phylogenetic tree with a vertex v0 that will be its root. Then two vertices v1, v2 are hanged

from v0. Each one of these vertices represents one of the two connected components of the network

Tyfe01g. Let us see what to do with v1 and v2 according to the case.

� If we are in case (a), one of these two vertices, for instance v1, represents the vertex Al0, and v2

represents the other connected component of T which is a subgraph of T generated by the vertex of

VyfAl0
g.

� If we are in case (b), one of the vertices, for instance v1, represents the connected component of

Tyfe01g that contains Al0, and the other vertex, v2, represents the connected component of Tyfe01g
that contains Am0.

This procedure is repeated again with v1 and v2 and by removing e02 from Tyfe01g. When we remove e02,

then either the connected component that represents v1 or v2 is split into two smaller ones, and the vertex

associated with this component plays again the role of v0. This process is repeated until we remove all the

edges.

Let us see with two examples how it works:

1. In Table 4, we have the weights associated with a set of 10 organisms. We can represent them

by a complete weighted network in which every organism is connected with the others. This is

a weighted network, so that we can apply the Kruskal algorithm in order to get a minimum

spanning tree of this network, which is represented in Figure 2. Following the aforementioned

Table 4. Comparison Matrix

org syf syn syc mge lpl cbe bcj eco tma ypk

syf 0.0 0.019 0.0061 0.1628 0.1493 0.1239 0.1083 0.106 0.1567 0.1155

syn 0.019 0.0 0.0177 0.1821 0.1524 0.1269 0.1079 0.1116 0.161 0.1213

syc 0.0061 0.0177 0.0 0.1779 0.1616 0.1318 0.1067 0.1032 0.1572 0.112

mge 0.1628 0.1821 0.1779 0.0 0.1179 0.1351 0.1257 0.1252 0.1159 0.1266

lpl 0.1493 0.1524 0.1616 0.1179 0.0 0.0711 0.1098 0.1194 0.0668 0.111

cbe 0.1239 0.1269 0.1318 0.1351 0.0711 0.0 0.0979 0.0926 0.0674 0.1049

bcj 0.1083 0.1079 0.1067 0.1257 0.1098 0.0979 0.0 0.0592 0.1167 0.0557

eco 0.106 0.1116 0.1032 0.1252 0.1194 0.0926 0.0592 0.0 0.102 0.0294

tma 0.1567 0.161 0.1572 0.1159 0.0668 0.0674 0.1167 0.102 0.0 0.1044

ypk 0.1155 0.1213 0.112 0.1266 0.111 0.1049 0.0557 0.0294 0.1044 0.0

Comparison matrix for 10 organisms.

FIG. 2. A minimum spanning tree associated with 10

organisms.
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notation, e 01 corresponds to the edge that connects mge with tma, weighting 0.1159. We can see

in Figure 3 that two vertices are hanging from the root of the tree. The one on the left

represents the mge; the one on the right represents the subgraph associated with the rest of

vertices, where tma can be found.

2. In the case of 38 organisms, when we remove from the minimum spanning tree the edge with

maximum weight, we split this tree into two connected components: the one associated with the pair

mge and mpm, and the one associated to the other vertices.

Finally, the vertices in the phylogenetic tree can keep more information concerning the aforemen-

tioned minimum spanning tree. Suppose that the height of our phylogenic tree is w(e01), which rep-

resents the maximum weight in the minimum spanning tree (i.e., the weight associated with e01). We

place the root of our phylogenetic tree at height y = w(e01). Now, two vertex are hanged from the root.

If one is associated with a single vertex, for instance, v1 in case (a), then we place this vertex at height

y = 0. We remember that this vertex represents the organism Al0. If not, for instance, v2 in case (a) and

either v1 or v2 in case (b), each one of these vertices represents a connected component with more than

one vertex in which the minimum spanning tree is split. In order to know at which height we should put

these vertices, we have to continue removing edges from the former tree. After removing e02, one of

these connected components, for instance, the one represented by v2, is split again into two smaller

connected components. So we place the vertex v2 at height w(e02). We repeat this process recursively

until the initial tree is just reduced to isolated vertices.

4. RESULTS AND DISCUSSION

We have reconstructed two phylogenetic trees, one with 10 bacteria and another one with both pro-

karyotes and eukaryotes. In Table 4 we show the parameter f for the pairwise comparison of the 10

prokaryotes in the first tree. The data for the comparison of the 33 organisms in the second tree is given in

the Supplementary Material (available online at www.liebertonline.com/cmb).

The organisms in each comparison are:

� 10 organisms tree / Mycoplasma genitalium (mge), Lactobacillus plantarum WCFS1 (lpl), Sy-

nechocystis sp. PCC 6803 (syn), Synechococcus elongatus PCC7942 (syf), Synechococcus elongatus

PCC6301 (syc), Clostridium beijerinckii (cbe), Burkhoderia cenocepacia J2315 (bcj), Escherichia coli

K-12 MG1655 (eco), Thermotoga maritima (tma), and Yersinia pestis KIM10 (ypk).

FIG. 3. A phylogenetic tree with 10

organisms.
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� 38 organisms tree / Mycoplasma genitalium (mge), Mycoplasma pneumoniae 309 (mpm), Sy-

nechocystis sp. PCC 6803 (syn), Synechococcus elongatus PCC7942 (syf), Synechococcus elongatus

PCC6301 (syc), Clostridium beijerinckii (cbe), Salmonella bongori (sbg), Escherichia coli K-12

MG1655 (eco), Aquifex aeolicus (aae), Yersinia pestis KIM 10 (ypk), Cyanobacterium UCYN-A

(cyu), Thermosynechococcus elongatus (tel), Microcystis aeruginosa (mar), Cyanothece sp. ATCC

51142 (cyt), Cyanothece sp. PCC 8801 (cyp), Gloeobacter violaceus (gvi), Anabaena sp. PCC7120

(ana), Anabaena azollae 0708 (naz), Prochlorococcus marinus SS120 (pma), Trichodesmium ery-

thraeum (ter), Acaryochloris marina (amr), Halophilic archaeon (hah), Polymorphum gilvum (pgv),

Micavibrio aeruginosavorus (mai), Agrobacterium radiobacter K84 (ara), Clostridiales genomosp.

BVAB3 (clo), Gamma proteobacterium HdN1 (gpb), Vibrio fischeri ES114 (vfi), Vibrio fischeri MJ11

(vfm), Haemophilus influenzae F3031 (hif), Coprinopsis cinerea (cci), Sus scrofa (ssc) and Leish-

mania braziliensis (lbz), Mus musculus (mmu), Apis mellifera (ame), Methanotorris igneus (mig),

Halalkalicoccus jeotgali (hje), and Thermoplasma acidophilum (tac).

In Figures 3 and 4 we present the two phylogenetic trees that we have constructed. In the first tree, the

only organism displaced in relation to what is expected from standard methods of phylogenetic tree

reconstruction is the tma. In both trees mge (and mpm in the second one) diverges from other organisms at

the beginning of the tree. This happens because of their minimalistic genomes, with only a couple hundred

metabolites in their metabolomes. As a result, when compared with an organism without a reduced genome

with almost a thousand metabolites, several hundred metabolites will not have a correspondent one,

increasing hugely the value of a in the calculation of the parameter f, and therefore distancing these

organisms from the rest. The problem with these parasitic organisms has been noticed elsewhere (Fukami-

Kobayashi et al., 2007), but unfortunately the solution found in this article did not yield better results in our

present study. One should keep in mind that the present approach only considers genes (and proteins)

associated with metabolic reactions and moreover, considers only the existence/absence of the enzymes

(reactions). Our work yields results that are very close to the tree of life, in spite of using only a subset of all

genome’s information. It was not our intention to build trees that would address properly minimal or-

ganisms’ phylogenies, but to prove the feasibility of building those trees using only reactome data. In any

case, for the second study we used organisms from very different origins in the evolutionary history, and we

found that the method is able to separate bacteria, archea, and eukaryotes. Different strains of the same

species also appear closely related and share branches with organisms from the same family and order.

We have also studied the sensibility of the parameter f. For this we performed a Monte Carlo analysis of

f. The procedure for this analysis is explained as follows. Given two organisms, one of them remains the

wild type while, with the other, one builds an ensemble with Nt elements, where each element is the result

Table 6. Sensibility Study 2

org org syn syf eco mge

syn 0.0005 – 0.0005 0.0186 – 0.0006 0.0896 – 0.0007 0.1604 – 0.0018

syf 0.0187 – 0.0006 0.0005 – 0.0005 0.0860 – 0.0007 0.1532 – 0.0019

eco 0.0893 – 0.0008 0.0857 – 0.0007 0.0003 – 0.0003 0.1281 – 0.0011

mge 0.1602 – 0.0035 0.1531 – 0.0032 0.1288 – 0.0023 0.0028 – 0.0023

Sensibility calculation for Nt = 500 and nK = 10. Each element in the table is the average of the parameter f in an

ensemble plus (minus) its standard deviation (�f – rf).

Table 5. Sensibility Study 1

org org syn syf eco mge

syn 0.0002 – 0.0003 0.0184 – 0.0005 0.0893 – 0.0005 0.1600 – 0.0014

syf 0.0184 – 0.0004 0.0002 – 0.0003 0.0857 – 0.0006 0.1527 – 0.0014

eco 0.0892 – 0.0005 0.0856 – 0.0005 0.0001 – 0.0002 0.1278 – 0.0009

mge 0.1597 – 0.0025 0.1527 – 0.0026 0.1283 – 0.0015 0.0014 – 0.0016

Sensibility calculation for Nt = 500 and nK = 5. Each element in the table is the average of the parameter f in an

ensemble plus (minus) its standard deviation (�f – rf).
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of nK knock-outs (removal of nK randomly selected reactions from the metabolic model) in the organism.

Then the calculation of f is performed between the wild-type organism and each organism in the knock-out

ensemble. From this process one obtains an ensemble of Nt values of f for the comparison (one from each

version of the organism in the knock-out ensemble), from which one calculates its average and standard

deviation. This standard deviation is treated as an indicator of the sensibility of the parameter (as a function

of the number of knock-outs).

We performed this sensibility analysis for four organisms (syn, syf, eco, and mge) with ensembles of

sizes Nt = 500 for nK = 5, 10, 50, and 100. The results are shown in Tables 5 through 8. These four

organisms have been chosen to observe the sensibility in the comparison between very similar organisms

(syn and syf), more distant ones (syn and eco), and very different ones (syn and mge).

This sensibility analysis mainly reflects the uncertainties in the calculation of the metabolic distances.

Since the distance parameter is based on metabolic models, one relies in the genome annotations for each

organism and any annotation is usually faulty. One may miss enzymes or wrongly annotate existing ones.

The models used in this study have been automatically generated from a database constructed from

information downloaded from the KEGG database (Kanehisa and Goto, 2000), and since the beginning of

this study the databases have been updated and most models have to be changed as well. The ‘‘knocked-

out’’ models used for the sensibility parameter analysis simulate such imperfect annotations: one might

consider the situation with nK = 5 as the model constructed from a well-annotated genome, while the case

with nK = 100 is the model resulting from a very poor annotation. One can see that when only a few

enzymes might be missing from the annotation, the error in the parameter can be expected to be less than

1%, except for the case of the minimalistic genomes like the parasitic mge, that has an error more than five

times bigger than the other organisms. This error increases as the number of knock-outs increase, but it

keeps below 5% even for 100 knockouts (or missing enzymes), except again in the case of the mge, but

even for the mge it is below 10%. This shows that the methodology is robust and that one works here with

an uncertainty of less than 5% in most of the cases.

5. CONCLUSIONS AND OVERVIEW

In this work, we have developed a methodology for comparing organisms based on their metabolic

networks. This methodology has been successfully applied for the reconstruction of phylogenic trees for

several organisms from a broad range of families and kingdoms. Resulting trees stand up well to their

comparison with the so-called ‘‘tree of life.’’ The great majority of the branches in the tree fit their expected

Table 8. Sensibility Study 4

org org syn syf eco mge

syn 0.0058 – 0.0016 0.0239 – 0.0020 0.0942 – 0.0024 0.1715 – 0.0062

syf 0.0238 – 0.0018 0.0061 – 0.0017 0.0907 – 0.0023 0.1630 – 0.0066

eco 0.0919 – 0.0024 0.0883 – 0.0022 0.0033 – 0.0011 0.1329 – 0.0040

mge 0.1694 – 0.0120 0.1648 – 0.0131 0.1433 – 0.0092 0.0460 – 0.0076

Sensibility calculation for Nt = 500 and nK = 100. Each element in the table is the average of the parameter f in

an ensemble plus (minus) its standard deviation (�f – rf).

Table 7. Sensibility Study 3

org org syn syf eco mge

syn 0.0028 – 0.0011 0.0209 – 0.0014 0.0915 – 0.0017 0.1652 – 0.0045

syf 0.0207 – 0.0013 0.0029 – 0.0011 0.0879 – 0.0016 0.1575 – 0.0044

eco 0.0903 – 0.0017 0.0868 – 0.0016 0.0016 – 0.0007 0.1301 – 0.0029

mge 0.1638 – 0.0080 0.1577 – 0.0077 0.1343 – 0.0055 0.0170 – 0.0053

Sensibility calculation for Nt = 500 and nK = 50. Each element in the table is the average of the parameter f in an

ensemble plus (minus) its standard deviation (�f – rf).
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positions well and their distance is in good correlation with evolutionary distances. The discrepancies found

can be explained by particularities in these very few organisms not fitting the tree, such as tremendous

genome reductions that caused reduced metabolisms.

Our methodology is innovative for it is not directly based on the structure and evolution of proteins or

DNA but on the metabolism and the organisms’ components and metabolic capabilities, allowing one to

compare organisms very distant from the evolutionary point of view or organisms for which orthologs’

comparison is difficult. In order to accomplish this, we make use of the correlation between evolutionary

distances and metabolic network likelihood and propose our methodology as a starting point to study it.

Metabolism information is retrieved as a subset of the whole genome information. We hereby show that

metabolic network connectivity can be used to build phylogenetic trees that are in accordance with gene-

directed trees. It can be argued whether the selected construction parameter (f) is the optimal one for this

purpose (or even if there is an optimal one), but it stands clear that this is an innovative application for

metabolic models, their curation, and cross-species evolutionary studies.

We have also performed a sensibility study in which we show that the methodology is robust even if the

annotation information used to construct the metabolic models is faulty. This study also suggests an upper-

bound for the uncertainty in the distance parameter of approximately 5%.
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