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Abstract

Background: Oxidative capacity is decreased in type 2 diabetes. Whether decreased oxidative capacity is a cause or
consequence of diabetes is unknown. Our purpose is to evaluate whether lactate, a marker of oxidative capacity, is
associated with incident diabetes.

Methods and Findings: We conducted a case-cohort study in the Atherosclerosis Risk in Communities (ARIC) study at year 9
of follow-up. We evaluated lactate’s association with diabetes risk factors at baseline and estimated the hazard ratio for
incident diabetes by quartiles of plasma lactate in 544 incident diabetic cases and 533 non-cases. Plasma lactate showed a
graded positive relationship with fasting glucose and insulin (P,0.001). The relative hazard for incident diabetes increased
across lactate quartiles (P-trend #0.001). Following adjustment for demographic factors, medical history, physical activity,
adiposity, and serum lipids, the hazard ratio in the highest quartile was 2.05 times the hazard in the lowest quartile (95% CI:
1.28, 3.28). After including fasting glucose and insulin the association became non-significant.

Conclusions: Lactate, an indicator of oxidative capacity, predicts incident diabetes independent of many other risk factors
and is strongly related to markers of insulin resistance. Future studies should evaluate the temporal relationship between
elevated lactate and impaired fasting glucose and insulin resistance.
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Introduction

In the United States, the prevalence of type 2 diabetes is high

[1] and its incidence is increasing due to rising levels of adiposity.

Prior to the clinical diagnosis of diabetes, individuals undergo a

period of subclinical insulin resistance [2]. Accumulating evidence

suggests that low oxidative capacity due to impaired mitochondrial

oxidative phosphorylation [3] is associated with insulin resistance

and type 2 diabetes. It is unclear, however, whether low oxidative

capacity is a cause or consequence of diabetes [4]. This question

can be addressed using markers of oxidative capacity in

longitudinal studies of incident diabetes.

Blood lactate is a measure of the gap between energy

expenditure and oxidative capacity. Lactate is produced by

anaerobic glycolysis in muscle, adipose, and other tissues.

Anaerobic glycolysis, and, therefore, lactate production increase

when energy demand exceeds mitochondrial oxidative capacity.

Traditionally, blood lactate is used as a clinical marker of ischemia

and as a measure of fitness among exercising individuals. Lactate

variation in resting individuals may also be informative, however.

Elevated lactate may be observed with mitochondrial impairments

in oxidative phosphorylation [5,6] and several clinical studies have

demonstrated that lactate is closely related to insulin resistance [7–

9]. In addition, a number of observational studies have shown that

lactate is associated fasting glucose, fasting insulin, and the

prevalence of type 2 diabetes [10–12]. These studies, however,

were limited by cross-sectional designs. Only one prospective study

in white men studied the association between plasma lactate levels
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and incident diabetes. This study showed that the highest quintile

of lactate at baseline was associated with 2.4 (95% CI: 1.0–5.9)

times the risk of developing diabetes in the lowest quintile [13].

Therefore, we examined the longitudinal association of plasma

lactate with subsequent development of type 2 diabetes in a

biracial cohort of middle-aged men and women using a case-

cohort design.

Materials and Methods

Study Design
ARIC is a community-based prospective cohort study of 15,792

adults, ages 45–64. ARIC participants were identified by

probability sampling from 4 U.S. communities (Forsyth County,

North Carolina; Jackson, Mississippi; suburban Minneapolis,

Minnesota; and Washington County, Maryland) and were

enrolled between 1987 and 1989 [14–16]. Study participants

returned for three follow-up visits in 1990–1992, 1993–1995, and

1996–1998, during which time incident diabetes was determined.

Response rates for each ARIC visit were 60% (visit 1), 93% (visit

2), 86% (visit 3), and 80% (visit 4). The study protocol was

approved by institutional review boards at each clinical site,

namely, the IRBs of the University of Minnesota, Johns Hopkins

University, University of North Carolina, University of Mississippi

Medical Center, and Wake Forest University. Written consent was

obtained from all ARIC participants.

We used a case-cohort design described previously [17]. We

excluded participants with a diagnosis of diabetes at baseline

(n = 2,018), members of ethnic groups with a small sample size

(n = 95), participants whose diabetes status could not be deter-

mined in any of the three follow-up visits (n = 879), participants

lacking a valid diabetes determination (n = 26), participants with

missing plasma samples, anthropometic data, or related covariate

data (hypertension, smoking, etc.) at baseline (n = 2,526), and non-

fasting individuals at baseline (n = 212). Of the remaining 9,740

subjects, 1,105 developed diabetes during the 9-yr follow-up

period. From this population, we selected a random cohort sample

(n = 637) and a random incident diabetes case sample (n = 552)

according to strata determined by race. Among those in the

random cohort sample, 94 (14.8%) developed diabetes during the

follow-up period. Of this population, an additional 7 non-case

participants in the random cohort sample and 11 participants in

the diabetes case sample did not have a lactate measurement and

were excluded. After these exclusions, baseline covariates were

compared between both the case-cohort and the complete cohort

of ARIC visit 1 and found to be nearly identical.

Plasma Lactate
We measured plasma lactate in stored samples originally

collected in 1987–1989 and frozen at 270uC. Lactate was

quantified with a Roche Hitachi 911 auto-analyzer, using an

enzymatic reaction that converts lactate to pyruvate [18]. Quality

control assessments of the assays suggested an inter-assay

coefficient of reliability of 0.93 and a coefficient of variation of

9.2% [12].

Primary Outcome: Incident Diabetes
Participants were assessed for a diagnosis of diabetes at baseline

and at each of the three follow-up visits. Incident diabetes was

classified as a diabetic case if a participant fulfilled any one of the

following conditions: (1) a fasting glucose $7.0 mmol/liter, (2) a

nonfasting glucose $11.1 mmol/liter, (3) use of a diabetes

medication, or (4) self-reported physician diagnosis. For individ-

uals diagnosed by a glucose measurement, the date of diagnosis

was estimated under the assumption that glucose increased at a

linear rate between visits. This linear approximation was used to

estimate the time of actual diabetes onset. Similarly, the date of

diagnosis for cases identified by medication use or physician

diagnosis was estimated assuming a linear increase in glucose from

their last diabetes-free visit [19]. As a sensitivity analysis, we

restricted our diagnosis of incident diabetes to diabetes medication

use or self-report of physician diagnosis, excluding the subclinical

cases of diabetes indentified by glucose measures.

Other Covariates
We included a number of covariates assessed at the baseline visit

of ARIC that were known to be associated with diabetes.

Definitions and methods for the assessment of these covariates

were described previously [20,21]. In brief, the following

laboratory measurements were treated as continuous variables:

low density lipoprotein (LDL) cholesterol, high density lipoprotein

(HDL) cholesterol, triglycerides, fasting glucose, and fasting

insulin. Triglycerides and insulin were log-base 10 transformed

to normalize their distributions. We also determined the homeo-

static model assessment insulin resistance index (HOMA-IR) by

((fasting insulin in pmol/L)/6.945*(fasting glucose in mg/dL))/

405.

With regard to physical examination covariates, we determined

body mass index (kg/m2) from height and weight measurements

and measured waist circumference at the umbilical level. Smoking

status (never, current, former), education (,12 years, $12 years),

and leisure time physical activity index (ordinal integer ranging

from 1 to 4) were based on replies to the Baecke Physical Activity

questionnaire. Prevalent coronary heart disease (yes or no) was

based on past history of myocardial infarction, heart or arterial

surgery, coronary bypass, or angioplasty. Parental history of

diabetes (yes or no) was defined by a diagnosis of diabetes in a

participant’s father or mother. Hypertension (yes or no) was

defined as either a systolic blood pressure measurement

$140 mmHg, a diastolic blood pressure measurement

$90 mmHg, or use of high blood pressure medications in the

past 2 weeks.

Statistical Analysis
All analyses and plots were weighted to account for the random

cohort sample and the random case sample using the svy

command and pweights in Stata 11.1 (StataCorp LP, College

Station, TX), which entail inverse weighting of the observations

according to the case-cohort sampling design [20]. Proportions

and mean baseline characteristics of the study participants were

reported by lactate quartiles, where lactate quartile categories were

based on measurements in the random cohort sample. Standard

errors were estimated using the Taylor series (linearization)

method. We performed a cross-sectional analysis of the association

between log-base 10 transformed lactate and physiologic correlates

of insulin resistance, namely, BMI, waist circumference, log-base

10 transformed triglycerides, HDL cholesterol, fasting glucose, and

log-base 10 transformed fasting insulin. Comparisons were made

using linear regression and Pearson’s correlation coefficients. The

HOMA-IR was plotted by lactate quartiles to further examine the

relationship between lactate and lipids or glycemia. The P-value

for the trend between HOMA-IR and lactate quartiles were

calculated with linear regression, treating the median value of each

lactate quartile as an ordinal variable.

A Kaplan-Meier cumulative incidence plot was utilized to

visualize the relationship between baseline lactate measurements

and risk of incident diabetes, using follow-up time as the time axis.

A Wald test was used to evaluate for a trend across quartiles of

Lactate and Incident Diabetes
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lactate. The association between lactate quartiles and incident

diabetes was further examined in nested Cox proportional hazards

models that (1) addressed factors associated with both diabetes and

lactate, and (2) explored the metabolic pathway relating lactate

with incident diabetes by adjusting for the same factors above

along with insulin and glucose. In the first series of models, we

adjusted for age, gender, race, ARIC center, and education

(Model 1); a diagnosis of hypertension, prevalent coronary heart

disease, smoking status, leisure index, and parental history of

diabetes (Model 2); BMI and waist circumference (Model 3); and

log10-transformed triglycerides, LDL cholesterol, and HDL

cholesterol (Model 4). In our metabolic pathway models, we

adjusted for fasting glucose (Model 5a), fasting insulin (Model 5b)

and both (Model 5c) in addition to the preceding covariates.

Furthermore, we generated histograms of the distribution of

lactate among diabetic cases and noncases and overlaid a

restricted cubic spline based on Model 4 with knots at each

lactate quartile to visualize the risk association.

Results

The geometric mean for plasma lactate in the entire study

sample (N = 1,077) was 7.67 mg/dL (IQR: 5.80 to 9.70 mg/dL;

max: 36.1 mg/dL) (Table 1); plasma lactate was less than 18 mg/

dL (,2 mmol/L) in 97% of the population. Age was not related to

lactate concentration (P = 0.55). However, the proportion of

African Americans and men increased across lactate quartiles (P-

trends of 0.03 and ,0.001, respectively). The prevalence of

hypertension was also greater in higher lactate quartiles, ranging

from 13.9% to 34.2% (P-trend ,0.001). Lifestyle characteristics,

i.e. leisure physical activity index, smoking status, or education

attainment, prevalent coronary heart disease, and parental history

of diabetes were not associated with lactate quartiles.

Higher lactate was associated with both BMI and waist

circumference (both P,0.001) (Table 1). With regard to lipids,

LDL cholesterol did not vary significantly across lactate quartiles

(P = 0.38), while triglycerides concentrations were greater, and

HDL levels lower, with successive lactate quartiles (P for trend of

,0.001 and 0.04, respectively) (Table 1). Fasting glucose and

fasting insulin also demonstrated significant positive trends by

lactate quartile (both P,0.001) (Table 1). In linear regression,

BMI, waist circumference, triglycerides, fasting glucose and fasting

insulin were also positively associated with plasma lactate, while

HDL cholesterol was negatively associated with plasma lactate

(Table 2). Similarly, the HOMA-IR (Figure 1) was higher with

successive lactate quartiles (P,0.001).

There was a graded relationship between plasma lactate at

baseline and the cumulative risk of incident type 2 diabetes over an

average 7.9 years of follow-up (Figure 2). This graded relation-

ship was robust after simultaneous adjustment for diabetes risk

factors (Table 3, Models 1–4). In models adjusting for medical

history, anthropometric variables and lipids, the association was

attenuated but remained significant and strong (4th quartile HR

2.05; 95% CI: 1.28, 3.28; P-trend #0.001). Histogram comparison

revealed an upward shift in the distribution of lactate in diabetic

cases versus non-diabetics (Figure 3). Similarly, a restricted cubic

spline demonstrated an increase in the relative hazard for diabetes

with increasing lactate levels, particularly below the 75th percentile

of the lactate distribution, i.e. a plasma lactate of 9.7 mg/dL.

Models examining the metabolic pathway between lactate and

incident diabetes are shown in Table 3. The inclusion of fasting

insulin as a covariate (Model 5b) attenuated the dose-response

trend (4th quartile HR 1.46, P-trend = 0.06), while the inclusion of

fasting glucose (Models 5a & 5c), resulted in a non-significant

reversal of the association (Model 5a: 4th quartile HR 0.77, P-

trend = 0.45; Model 5c: 4th quartile HR 0.66, P-trend = 0.26).

A sensitivity analysis defining diabetes on the basis of diabetes

medication use and self-report of physician diagnosis, i.e.

excluding the subclinical cases identified by glucose measures,

increased the magnitude of the association between lactate and

incident diabetes (Table S1). In fact, even after adjusting for

fasting insulin, lactate still demonstrated a significant trend across

quartiles (P-trend = 0.02).

Discussion

This analysis represents the largest population-based examina-

tion of the prospective relationship between lactate and type 2

diabetes. We observed a strong, graded relationship between

plasma lactate and subsequent risk of incident type 2 diabetes over

a 9-year follow-up period. The graded association, which was

observed across the normal clinical range of lactate values, was

independent of many traditional diabetes risk factors.

Prior to the current report there were several cross-sectional,

clinical studies that found an association between lactate and

insulin resistance [10,11] as well as diabetes [9]. Furthermore, one

prospective study of 766 Swedish men, found that an elevated

lactate was associated with 2.4 times the risk of diabetes [13].

However, these studies were small and not readily generalizable.

Strengths of our study include its large, biethnic community-based

population of men and women with high quality measures of

potential confounders.

In our study, we measured blood lactate levels in a population-

based sample of resting subjects after an overnight fast and found

that variations in the normal range (,18 mg/dl) were predictive of

incident diabetes. Lactate is a product of glycolysis that rises

markedly in states of hypoxia such as ischemia [22], with exercise

[23], as well as with acute elevations in glucose and insulin [24,25].

In contrast, plasma lactate in the rested, fasted state represents a

balance between gluconeogenesis [26] and the rate of extrahepatic

glycolysis [25]. A rise in resting lactate can be observed when

gluconeogenesis is disrupted by alcohol use [27] or genetic

disorders [28,29]. Higher resting lactate concentrations may also

be seen with increased extrahepatic glucose disposal or glycolysis

[25] or with an increase in the concentration of lactate due to

hypoxia [30], or oxidative insufficiency [31].

In the fasted, resting state, lactate is produced primarily by

skeletal muscle and adipose tissue, and to a lesser extent by the

brain, ethryrocytes, liver, gut, kidney, and skin [4,25]. While

skeletal muscle accounts for the majority of lactate release [24], a

major determinant of variation in plasma lactate concentration is

the rate of glucose disposal in extramuscular tissues [25]. This is

exemplified by a comparison of obese and non-obese persons, in

which greater lactate concentrations are due to increased lactate

production from adipose tissue [24]. In addition to increased

disposal, increased adiposity is associated with intracellular

hypoxia [30] due to increased adipocyte size [32,33] and

inadequate vascularization [34]. Both these factors – excess

glucose disposal and increased anaerobic glycolysis contribute to

elevations in fasting lactate. However, we observed a relatively low

correlation between BMI or waist circumference and lactate as

well as a graded relationship between lactate and incident diabetes

even after adjusting for measures of adiposity. This suggests that

lactate is more than a marker of BMI or waist circumference.

There is strong evidence that oxidative insufficiency, evidenced

by elevated plasma lactate concentrations, is associated with

diabetes risk. Studies have found smaller mitochondrial size and

lower density among adults with type 2 diabetes [35,36] and

Lactate and Incident Diabetes
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individuals with insulin resistance [37]. Furthermore, there is

evidence that mitochondria are less active in diabetic adults

[36,38]. Despite these associations, the temporal relationship

between mitochondrial function and incident diabetes remains

controversial: some argue that insulin resistance precedes and

even induces mitochondrial inefficiency [39]. Since insulin

signaling may improve oxidative capacity by increasing blood

flow and by stimulating mitochondrial biogenesis, decreased

oxidative capacity may be a consequence of decreased insulin

signaling activity [40]. Decreased oxidative capacity is not

universally observed in all patients with insulin resistance [41].

Furthermore, weight loss can decrease insulin resistance without

impacting oxidative capacity and, among those at risk for type 2

diabetes, exercise can increase oxidative capacity without

impacting insulin resistance [42–44].

In contrast to the work just described, there is strong evidence

supporting a causal role for decreased oxidative capacity in the

development of insulin resistance. Experimental manipulation of

the mitochondrial genome in mice results in decreased oxidative

capacity and insulin resistance [45]. Similarly, genetic mutations in

human mitochondrial genes are associated with insulin resistance

[5,6] and diabetes mellitus [46,47]. Several studies have also

shown that decreased oxidative capacity precedes insulin resis-

tance [48]. Moreover, exercise and weight loss [49] as well as

insulin sensitizers like thiazolidinediones [50] improve insulin

resistance, while exerting direct effects on oxidative capacity. Our

study demonstrates that lactate as a marker of decreased oxidative

capacity is associated with progression of insulin resistance.

However, this was not independent of concurrent baseline

measures of fasting glucose and insulin, suggesting that lactate

does not represent a pathway distinct from insulin resistance.

While establishing the temporal relationship between lactate and

insulin resistance should be an important focus of future studies,

our study suggests that studying the markers in concert rather than

as individual causal factors may better reflect the underlying shift

in metabolism that precedes insulin resistance and ultimately

diabetes.

Another potential explanation for the relationship between

lactate and incident diabetes is expression and activity of GLUT4,

the glucose transporter in muscle and fat cells. In response to

insulin, GLUT4 sequesters glucose into muscle and fat cells where

it undergoes glycolysis [51,52]. In certain settings, greater GLUT4

expression is associated with increased lactate production [53].

Furthermore, there is evidence that lactate itself can induce insulin

resistance by suppressing GLUT4 expression [54]. Confirmation

of this hypothesis is beyond the scope of this study, however.

Figure 1. Mean homeostatic model assessment (HOMA-IR) with
95% confidence intervals by baseline plasma lactate quartile.
doi:10.1371/journal.pone.0055113.g001

Figure 2. Kaplan-Meier cumulative incidence plot with follow-
up years as the time axis and incident diabetes as the outcome
stratified by baseline plasma lactate value. A Wald test was
performed to assess for a trend across quartiles of lactate.
doi:10.1371/journal.pone.0055113.g002

Figure 3. Histograms comparing the distribution of lactate in
diabetic cases (DM) versus noncases (non-DM). The solid line
represents a restricted cubic spline of the relative hazard with knots at
25th, 50th, and 75th percentiles. The dashed lines represent the 95%
confidence interval. Model is adjusted for age, sex, race, ARIC study
center, education, hypertension status, history of coronary heart
disease, smoking status, leisure index, parental history of diabetes,
body mass index, waist circumference, triglycerides, low density
lipoprotein cholesterol, and high density lipoprotein cholesterol.
doi:10.1371/journal.pone.0055113.g003
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Adjustment for insulin attenuated the association between

lactate and incident diabetes, while adjustment for glucose non-

significantly inverted the association. The change in direction of

the association of lactate with incident diabetes after including

glucose in models may be due to the role of fasting glucose in our

case definition. When subclinical cases of diabetes were excluded

from the outcome (Table S1), lactate was significantly associated

with incident diabetes independently of insulin. Furthermore,

lactate was no longer inversely associated with incident diabetes

after adjustment for glucose, albeit non-significant. Whether this

attenuation is due to loss in power from fewer cases or that

lactate is not independent of glucose requires a larger study

population.

Several limitations should be considered in the interpretation of

these data. First, lactate was assessed with single plasma specimens

that had been frozen for over 20 years. The effects of long-term

storage on lactate concentration are unknown, and the lack of

repeat measurements limit our ability to assess the within-person

variability of lactate. Furthermore, this study is also limited with

regard to the measurement of glucose and insulin. Although we

attempted to explore glucose and insulin as mediators in the

causal pathway of incident diabetes, our only lactate sample was

measured at the same time as glucose and insulin. As a result, we

were unable to establish temporality, which would be necessary to

differentiate between their role as mediators or confounders of

lactate and diabetes. Moreover, while we adjusted for many

suspected confounders of the relationship between lactate and

incident diabetes, it is possible we did not fully eliminate their

effects. For example, while we adjusted for leisure index, a

measure of physical activity, quantitative assessments of fitness

and aerobic capacity were not performed. As a result, our models

could be affected by residual confounding. Finally, it would have

been informative to measure lactate during the visits between

baseline and the development of diabetes as this could elucidate

trends in lactate preceding and potentially contributing to

incident diabetes.

In conclusion, our results show that lactate is a predictor of

incident diabetes, suggesting a role for oxidative insufficiency in

the pathogenesis of diabetes. Additional research is needed to

determine the temporal relationship between elevated lactate and

impaired fasting glucose and insulin resistance. Furthermore,

future studies should attempt to elucidate the causal mechanism

behind elevated lactate and diabetes pathogenesis.

Supporting Information

Table S1 Hazard ratios (95% confidence intervals) for
developing type 2 diabetes by weighted quartile of
lactate concentrations. Type 2 diabetes defined by self-report

or medication use alone (N = 233).
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Table 2. Percent change in plasma lactate per 1 unit increase in physiologic correlates of insulin resistance and Pearson correlation
coefficient between baseline characteristics and log-base 10 transformed lactate.

Percent Change Per 1 Unit Increase* P Pearson’s Coefficient

Body mass index, kg/m2 1.2% ,0.001 0.15

Waist circumference, cm 0.3% ,0.001 0.14

Log10(Triglycerides, mmol/L) 53.0% ,0.001 0.22

HDL cholesterol, mmol/L 25.9% 0.04 20.11

Fasting glucose, mg/dL 1.0% ,0.001 0.26

Log10(Fasting insulin, pmol/L) 20.3% ,0.001 0.31

*Adjusted for age, gender, race, and center.
Note: HDL represents high density lipoprotein.
doi:10.1371/journal.pone.0055113.t002

Table 3. Hazard ratios (95% confidence intervals) for
developing type 2 diabetes by weighted quartile of lactate
concentrations.

Quartile of Lactate
P for
trend*

#5.8 5.8–7.3 7.3–9.7 .9.7

Model 1 1.0 [Ref] 1.34 (0.89,
2.02)

2.13 (1.46,
3.10)

2.69 (1.84,
3.94)

,0.001

Model 2 1.0 [Ref] 1.19 (0.75,
1.89)

1.83 (1.21,
2.77)

2.41 (1.58,
3.68)

,0.001

Model 3 1.0 [Ref] 1.30 (0.79,
2.13)

1.45 (0.92,
2.29)

2.17 (1.38,
3.41)

,0.001

Model 4 1.0 [Ref] 1.27 (0.76,
2.13)

1.29 (0.80,
2.06)

2.05 (1.28,
3.28)

0.001

Model 5a 1.0 [Ref] 0.89 (0.51,
1.56)

0.78 (0.47,
1.31)

0.77 (0.44,
1.35)

0.45

Model 5b 1.0 [Ref] 1.05 (0.61,
1.81)

1.03 (0.64,
1.65)

1.46 (0.90,
2.39)

0.06

Model 5c 1.0 [Ref] 0.81 (0.46,
1.44)

0.70 (0.42,
1.18)

0.66 (0.37,
1.17)

0.26

Model 1: Age, gender, race, ARIC center, education.
Model 2: Model 1+ diagnosis of hypertension, prevalent coronary heart disease,
smoking status, leisure index, parental history of diabetes.
Model 3: Model 2+ body mass index, waist circumference.
Model 4: Model 3+ log10 triglycerides, low density lipoprotein cholesterol, high
density lipoprotein cholesterol.
Model 5a: Model 4+ fasting glucose.
Model 5b: Model 4+ log10 fasting insulin.
Model 5c: Model 4+ fasting glucose and log10 fasting insulin.
*P-value for trend evaluated using an ordinal variable based on the median
lactate in each quartile.
doi:10.1371/journal.pone.0055113.t003
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