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Statistical multifragmentation model with discretized energy and the generalized Fermi breakup:
Formulation of the model
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The generalized Fermi breakup model, recently demonstrated to be formally equivalent to the statistical
multifragmentation model, if the contribution of excited states is included in the state densities of the former, is
implemented. Because this treatment requires application of the statistical multifragmentation model repeatedly
on hot fragments until they have decayed to their ground states, it becomes extremely computationally demanding,
making its application to the systems of interest extremely difficult. Based on exact recursion formulas previously
developed by Chase and Mekjian to calculate statistical weights very efficiently, we present an implementation
which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with
the GEMINI++ sequential decay code and the Weisskopf-Ewing evaporation model shows that the predictions
obtained with our treatment are fairly similar to those obtained with these more traditional models.
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I. INTRODUCTION

The theoretical understanding of many nuclear processes
requires treatment of the de-excitation of reaction products, as
most of them have already decayed (typically within 10−20 s)
by the time they are observed at the detectors (after 10−9 s).
Owing to the great complexity associated with the theoretical
description of nuclear decay, different approaches have been
developed over many decades, ranging from the pioneering
fission treatment of Bohr-Wheeler [1] and the Weisskopf-
Ewing statistical emission [2] to the modern GEMINI binary
decay codes [3] and GEMINI++ [4,5], which generalize the
Bohr-Wheeler treatment. Many other models, which focus
on different aspects of the de-excitation process, such as
pre-equilibrium emission, have also been developed by other
groups (see Ref. [6] for an extensive review of the statistical
decay treatments).

The decay of complex fragments produced in reactions that
lead to relatively hot sources, whose temperature is higher
than approximately 4 MeV, has often been described by
simpler models, owing to the very large number of primary hot
fragments produced in different reaction channels, making the
need for computational efficiency at least as important as the
corresponding accuracy. For this reason, treatments based on
the Weisskopf-Ewing decay and the Fermi breakup model [7,8]
have been extensively employed [9,10] in these cases. More
evolved schemes, such as the MSU decay [11,12], which
incorporates much empirical information besides employing
the GEMINI code and the Hauser-Feshbach formalism [13]
where such information is not available, have also been
developed.

Recently, a generalization of the Fermi breakup model
(GFBM), including contributions from the density of excited
states, has been proposed in Ref. [14] and demonstrated to
be formally equivalent to the statistical multifragmentation

model (SMM) [15–17]. However, the inclusion of the density
of excited states makes the GFBM considerably more compu-
tationally involved than its simplified traditional version [9],
in which very few discrete excited states are considered. It
therefore makes the application of the GFBM to the systems of
interest a very difficult task, as a very large number of breakup
channels has to be taken into account for large and highly
excited systems, such as those considered in multifragment
emission [10,12]. Because in the framework of the GFBM
the SMM should be repeatedly applied to calculate the decay
of hot fragments, application of the model to large systems
and high excitation energies becomes almost prohibitively
time-consuming.

In this work, we present an implementation of the GFBM
based on the exact recursion formulas developed by Chase
and Mekjian [18] and further developed in subsequent works
[12,19–21] to calculate the partition function. Because this
scheme allows the calculation of statistical weights to be
performed with a high efficiency, it turns out to be well suited to
speeding up the very computationally demanding calculations
needed in the GFBM.

We thus start, in Sec. II, by reviewing the SMM, on which
the model is based, and also discuss the recursion relations
just mentioned. A comparison of the results obtained with the
Monte Carlo version of the SMM and that based on these
recursion formulas, which we call the SMM with discrete
energy (SMM-DE), is also made. Then, in Sec. III we work
out the implementation of the GFBM and discuss some results.
Concluding remarks are made in Sec. IV.

II. PRIMARY FRAGMENTS

In the framework of the SMM [15–17], an excited source,
with A0 nucleons, Z0 protons, and excitation energy E∗,
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undergoes a prompt breakup. Hot primary fragments are thus
produced, except for those which have no internal degrees
of freedom and are therefore cold, i.e., nuclei whose mass
number A � 4, except for α particles. Partitions consistent
with mass, charge, and energy conservation are generated
and the corresponding statistical weights are calculated. In
Sec. II A, we briefly review the main features of the SMM.
The implementation based on the discretization of the energy,
using the recurrence relations developed by Pratt and Das
Gupta [21], is discussed in Sec. II B. A comparison between
the two implementations is made in Sec. II C.

A. The SMM model

In each fragmentation mode f , the multiplicity nA,Z of
a species, possessing mass and atomic numbers A and Z,
respectively, must fulfill the constraints:

A0 =
∑
{A,Z}

AnA,Z and Z0 =
∑
{A,Z}

Z nA,Z. (1)

The statistical weight �f associated with the fragmentation
mode f = {nA,Z} is given by the number of microstates
associated with it:

�f (E) = exp(Sf ), (2)

where E = −BA0,Z0 + E∗ denotes the total energy of the
system, BA0,Z0 represents the binding energy of the source,
and Sf corresponds to the total entropy of the fragmentation
mode:

Sf =
∑
{A,Z}

nA,ZSA,Z. (3)

The entropy SA,Z is obtained through the standard thermody-
namical relation:

S = −dF

dT
. (4)

In the above expression, T denotes the breakup temperature
and FA,Z is the Helmholtz free energy associated with the
species, which is related to its energy EA,Z through

E = F + T S. (5)

The breakup temperature of the fragmentation mode f is
obtained through the energy conservation constraint:

E∗ − BA0,Z0 = Cc

Z2
0

A
1/3
0

1

(1 + χ )1/3
+

∑
{A,Z}

nA,ZEA,Z(Tf ),

(6)

where the subindex f was used in Tf to emphasize the fact that
the breakup temperature varies from one partition to another
[22], although we drop this subindex from now on to simplify
the notation. In the above equation, the first term on the right-
hand side corresponds to the Coulomb energy of a uniform
sphere of volume V = (1 + χ )V0, χ > 0, where V0 denotes
the ground-state volume of the source and Cc is a parameter
(see below). In this work, we use χ = 2 in all calculations.
The fragment energy EA,Z(T ) reads

EA,Z(T ) = −BA,Z + ε∗
A,Z − Cc

Z2

A1/3

1

(1 + χ )1/3
+ Etrans

A,Z ,

(7)

where BA,Z stands for the fragment’s binding energy, ε∗
A,Z

denotes the internal excitation energy of the fragment, and the
contribution Etrans

A,Z to the total kinetic energy Etrans reads

Etrans =
∑
{A,Z}

nA,ZEtrans
A,Z = 3

2
(M − 1)T , (8)

where M = ∑
{A,Z} nA,Z is the total multiplicity of the

fragmentation mode f . The factor M − 1, rather than M ,
takes into account the fact that the center of mass is at rest.
Together with the Coulomb terms in the fragments’ binding
energies and that of the homogeneous sphere in Eq. (6), the
Coulomb contribution on the right-hand side of Eq. (7) adds up
to account for the Coulomb energy of the fragmented system
in the Wigner-Seitz approximation [15,23].

In Ref. [11], empirical values were used for BA,Z and an
extrapolation scheme was developed to the mass region where
experimental information is not available. For simplicity, in
this work, except for A � 4, in which case empirical values
are used, we adopt the mass formula developed in Ref. [24]:

BA,Z = CvA − CsA
2/3 − Cc

Z2

A1/3
+ Cd

Z2

A
+ δA,ZA−1/2,

(9)

where

Ci = ai

[
1 − k

(
A − 2Z

A

)2]
(10)

and i = v, s denotes the volume and surface terms, respec-
tively. The last term in Eq. (9) is the usual pairing contribution:

δA,Z = 1
2 [(−1)A−Z + (−1)Z]Cp. (11)

We refer the reader to Ref. [24] for numerical values of the
parameters.

In the standard version of the SMM [15], the contribution
to the entropy and the fragment’s energy owing to the internal
degrees of freedom is obtained from the internal Helmholtz
free energy:

F ∗
A,Z(T ) = −T 2

ε0
A + β0A

2/3

[(
T 2

c − T 2

T 2
c + T 2

)5/4

− 1

]
, (12)

where Tc = 18.0 MeV, β0 = 18.0 MeV, and ε0 = 16.0 MeV.
In Ref. [11], effects associated with discrete excited states have
been incorporated into F ∗

A,Z(T ). For simplicity, in the present
work, we only use the above expression.

Finally, the total contribution to the entropy associated with
the translational motion reads

Ftrans = −T (M − 1) log
(
Vf /λ3

T

) + T log
(
A

3/2
0

)

− T
∑
{A,Z}

nA,Z

[
log(gA,ZA3/2) − 1

nA,Z

log(nA,Z!)

]
.

(13)

In the above expression, Vf = χV0 denotes the free volume,
and the factor M − 1, as well as the term T log(A3/2

0 ), arises
from the constraint that the center of mass be at rest [14,25].
The thermal wavelength reads λT =

√
2πh̄2/mnT , where mn
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is the nucleon mass. Empirical values of the spin degeneracy
factors gA,Z are used for A � 4. In the case of heavier nuclei,
we set gA,Z = 1 as (to some extent) this is taken into account
by F ∗

A,Z .
Fragmentation modes are generated by carrying out the

following steps.

(i) The multiplicities {nA,Z} are sampled under the con-
straints imposed by Eq. (1), as described in Ref. [17].

(ii) Equation (6) is solved in order to determine the breakup
temperature T .

(iii) The total entropy is calculated through Eqs. (3) and (4),
after having computed the Helmholtz free energies from
Eqs. (12) and (13).

The average value of an observable O is then calculated
through

O =
∑

f �f (E)Of∑
f �f (E)

. (14)

Because hundreds of millions of partitions must be gen-
erated in order to achieve a reasonable sampling of the
available phase space, this implementation, although feasible,
is time-consuming. It has been quite successful in describing
several features of the multifragmentation process [10].

B. The SMM-DE model

A much more efficient scheme has been proposed by Chase
and Mekjian [18], who developed an exact method based on
recursion formulas. This allows one to easily compute the
number of states �A associated with the breakup of a nucleus
of mass number A in the canonical ensemble through [19]

�A =
∑

{∑k nkak=A}

∏
k

ω
nk

k

nk!
=

A∑
a=1

a

A
ωa�A−a, (15)

where ωk denotes the number of states of a nucleus of mass
number a.

This result was later generalized to distinguish protons from
neutrons, leading to a similar expression [20]:

�A,Z =
∑

{∑α naα ,zα ζα=�}

∏
α

(ωaα,zα
)naα,zα

naα,zα
!

=
∑

α

ζα

�
ωaα,zα

�A−aα,Z−zα
, (16)

where � denotes A or Z, and ζα conveniently represents
either aα or zα . Although somewhat more involved than
the previous expression, it still allows one to calculate the
statistical weight associated with the breakup of a nucleus
(A,Z) very efficiently, as well as other average quantities,
such as the average multiplicities [20]:

na,z = 1

�A,Z

∑
{∑α naα ,zα ζα=�}

na,z

∏
α

(ωaα,zα
)naα,zα

naα,zα
!

= ωa,z

�A,Z

�A−a,Z−z. (17)

This scheme has been successfully applied to the description
of the breakup of excited nuclear systems during the last
decade [12].

The extension to the microcanonical ensemble was devel-
oped in Ref. [21]. More specifically, Eq. (6) can be rewritten as

Q
Q ≡ E∗ − Bc
A0,Z0

=
∑
α,qα

qα
Qnα,qα
, (18)

where qα
Q denotes the fragment’s energy, together with
the corresponding Wigner-Seitz contribution to the Coulomb
energy:

qA,Z
Q = −Bc
A,Z + ε∗

A,Z + Etrans
A,Z (19)

and

Bc
A,Z ≡ BA,Z + Cc

Z2

A1/3

1

(1 + χ )1/3
. (20)

In contrast to the continuous quantities E and EA,Z , Q
and qA,Z are discrete. The granularity of the discretization is
conveniently regulated by the energy bin 
Q. In this way,
Q may be treated as a conserved quantity, similarly to the
mass and atomic numbers, so that the recursion relation now
reads [21]

�A,Z,Q =
∑
α,qα

aα

A
ωaα,zα,qα

�A−aα,Z−zα,Q−qα
, (21)

and the average multiplicity is given by

na,z,q = ωa,z,q

�A0,Z0,Q

�A0−a,Z0−z,Q−q . (22)

Other average quantities, such as the breakup temperature
and the total entropy, can also be readily obtained:

1

T
= ∂ ln

(
�A0,Z0,Q

)
∂(Q
Q)

≈ ln
(
�A0,Z0,Q

) − ln
(
�A0,Z0,Q−1

)

Q

(23)

and

S = ln
(
�A0,Z0,Q

)
. (24)

The statistical weight {�A,Z,q} is determined once ωA,Z,q

has been specified. The latter is obtained by folding the
number of states associated with the kinetic motion with that
corresponding to the internal degrees of freedom,

ωA,Z,q = γA

∫ εA,Z,q

0
dK

√
Kρ∗

A,Z(εA,Z,q − K), (25)

where

γA = 
Q

Vf (2mnA)3/2

4π2h̄3 , (26)

εA,Z,q ≡ q
Q + Bc
A,Z , and ρ∗

A,Z(ε∗) is the density of the
internal states of the nucleus (A,Z) with excitation energy ε∗.
It thus becomes clear that the fundamental physical ingredient
is ρ∗

A,Z(ε∗), as it plays a major role in the determination of the
statistical weight.

Because �A,Z,q depends on three variables and the calcu-
lation of ωA,Z,q usually must be evaluated numerically, the
computation of �A0,Z0,Q may be very time-consuming for
big sources, large excitation energies, and small values of
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Q (large Q). Nevertheless, ωA,Z,q and �A,Z,q need to be
calculated only once and may be stored in order to considerably
speed up future calculations, even for different sources, as
these quantities do not depend on the source’s properties. This
is the strategy we adopt.

In Ref. [11], it was shown that the standard SMM internal
free energy is fairly well approximated over a wide range of
temperatures if one adopts the following density of states:

ρ∗
A,Z(ε∗) = ρSMM(ε∗) = ρFG(ε∗)e−bSMM(aSMMε∗)3/2

, (27)

with

ρFG(ε∗) = a
1/4
SMM√

4πε∗3/4
exp(2

√
aSMMε∗) (28)

and

aSMM = A

ε0
+ 5

2
β0

A2/3

T 2
c

. (29)

The parameter bSMM = 0.07A−τ , τ = 1.82(1 + A/4500), for
A > 4. In the case of the α particles, we set β0 = 0 and
bSMM = 0.000848416. For the other light nuclei whose A < 5,
which have no internal degrees of freedom, we use ρ∗

A,Z(ε∗) =
gA,Zδ(ε∗).

As mentioned above, we call this implementation of the
model SMM-DE.

C. Comparison with the SMM

In order to investigate the extent to which the above
implementations of the SMM agree with each other, we show
in Fig. 1 the caloric curve predicted by both versions of the
SMM for the breakup of the 40Ca nucleus. As expected, at low
temperatures, the caloric curve is very close to that of a Fermi
gas but this behavior quickly changes for E∗/A � 2 MeV,
as the fragment multiplicity M starts to deviate from 1 (see
top panel in Fig. 4). From this point on, the temperature rises

FIG. 1. (Color online) Caloric curve predicted by the SMM and
the SMM-DE for the 40Ca. The dashed line represents a Fermi gas
with a = 10 MeV. For details see the text.

more slowly than that of a Fermi gas as the excitation energy
increases, owing to the higher heat capacity of the system,
which progressively produces more fragments with internal
degrees of freedom, besides very light ones.

Comparison between the results obtained with the SMM
and those with the SMM-DE shows that both versions predict
very similar caloric curves. To some extent, slight deviations
should be expected, as there are small differences between
the two implementations. First, in the SMM the constraint on
the center-of-mass motion is taken into account by Eqs. (8)
and (13), whereas it is ignored in the SMM-DE. Therefore,
the latter has more states than the former, leading to different
statistical weights and, as a consequence, different averages.
Second, as pointed out in Ref. [21], for a given fragmentation
mode, fluctuations around the mean excitation energy of each
fragment are not allowed in the SMM, whereas the summation
over q in Eq. (21) considers all possible ways of sharing the
energy among the fragments. The results nonetheless reveal
that the practical consequences of these two points are small.

The comparison of the results obtained with 
Q =
0.2 MeV versus 
Q = 1.0 MeV, also displayed in Fig. 1,
shows that this parameter should have little influence on the
results. This is of particular relevance, as the numerical effort
increases very rapidly as 
Q decreases, which makes the
application of the model for big systems at high excitation
energies much more time-consuming. We use 
Q = 0.2 MeV
in the remainder of this work, but these results suggest that
somewhat larger values would be just as good.

More detailed information on the similarities of the two
versions of the SMM may be obtained by examining the charge
distribution of the primary fragments produced at different
excitation energies, as shown in Fig. 2. One also sees in
this case that both SMM calculations lead to very similar
predictions, although small deviations are observed. They are
more pronounced in the Z region close to the source size, as
its contribution is overestimated in the SMM-DE. However,
the differences in lower Z regions are smaller and should

FIG. 2. (Color online) Charge distribution of the hot primary
fragments from the breakup of 40Ca, obtained with the different
versions of the SMM at selected excitation energies. For details see
the text.

014607-4



STATISTICAL MULTIFRAGMENTATION MODEL WITH . . . PHYSICAL REVIEW C 88, 014607 (2013)

not impact the conclusions drawn from either implementation,
within the usual uncertainties of these calculations. We
therefore believe that either implementation of the SMM can
be safely adopted.

III. DE-EXCITATION OF PRIMARY FRAGMENTS

In Ref. [14], it has been demonstrated that the statistical
description of the multifragment emission made by the SMM
is equivalent to a generalized version of the Fermi breakup, in
which the excited states of the fragments are included. We here
pursue this idea and apply it to the description of de-excitation
of the hot primary fragments, referring the reader to that work
for a detailed discussion.

The starting point is Eq. (22), which provides the average
multiplicity na,z,q of a fragment (a, z) with total energy q
Q,
produced in the breakup of a source (A0, Z0) with total energy
Q
Q. The average excitation energy ε∗ of the fragment is
calculated through

ε∗ = γa

ωa,z,q

∫ εa,z,q

0
dK (εa,z,q − K)

√
Kρ∗

a,z(εa,z,q − K).

(30)

In Fig. 3 we denote by n(ε∗) the average multiplicity of C
isotopes with energy q
Q, i.e., nA,6,q , and plot this quantity,
scaled by the corresponding maximum value, as a function of
the average excitation energy ε∗. The results were obtained
from the breakup of 40Ca at E∗/A = 3, 5, and 7 MeV. One
notes that ε∗ is very broad and that the width of the distribution
becomes larger as E∗/A increases. The average value of ε∗ also
shifts to higher values as the excitation energy of the source
E∗/A becomes higher. It is clear from these results that the
internal excitation of the fragments cannot be neglected and

FIG. 3. (Color online) Multiplicity of hot primary 12C as a
function of its average excitation energy ε∗. The fragments are
produced in the breakup of 40Ca at different excitation energies, as
indicated in the legend. Inset: The same plot for different C isotopes.
In this case, the source energy is E∗/A = 5.0 MeV. The multiplicities
have been scaled by the inverse of the largest value in each case. For
details see the text.

also that the width of the distribution is by no means negligible,
even at low excitation energies. The inset in Fig. 3 illustrates
the isospin dependence of the distribution by displaying n(ε∗)
for different C isotopes also produced in the breakup of 40Ca
at E∗/A = 5.0 MeV. It shows that the proton-rich isotope
is cooler than the neutron-rich one, which, in its turn, is
slightly hotter than 12C. Similar conclusions hold for other
species.

Because they are hot, these primary fragments are them-
selves considered sources and are then allowed to de-excite
through the procedure starting at Eq. (18). Given that, in actual
experiments, almost all fragments have already decayed by
the time they reach the detectors, we apply this procedure
successively until the fragment is left in its ground state, if it
is stable and does not spontaneously decay by the emission of
lighter fragments. In this case, this is treated using the same
formalism presented above, with E∗ = 0.

Thus, once the primary distribution {na,z,q} has been
generated, the de-excitation of the fragments follows the steps
below.

(i) The average excitation energy ε∗ of a fragment (A,Z)
with energy q0
Q is calculated from Eq. (30) and
the decay described in Sec. II B is applied to it. The
corresponding contribution to the yields of {a, z}, based
on Eq. (22), i.e.,


n(1)
a,z,q = n′

a,z,q × nA,Z,q0 , (31)

where

n′
a,z,q = ωa,z,q

�A,Z,q0

�A−a,Z−z,q0−q, (32)

is added to na,z,q , a < A.
(ii) Because a fragment (A,Z) with energy q0
Q will also

be produced at this stage, with multiplicity n′
A,Z,q0

×
nA,Z,q0 , it will again decay and contribute to the yields
of lighter fragments (a, z) in the second step with


n(2)
a,z,q = n′

a,z,q × (n′
A,Z,q0

× nA,Z,q0 ), (33)

whereas there will still be a contribution to the yields of
(A,Z) equal to (n′

A,Z,q0
)2 × nA,Z,q0 . Thus, the nth step

of the decay contributes with


n(n)
a,z,q = n′

a,z,q × ([n′
A,Z,q0

]n−1 × nA,Z,q0 ). (34)

Because these terms add up at each step, after repeating
this procedure until the contribution to (A,Z) tends to
0, i.e., n → ∞, one obtains

na,z,q → na,z,q + n′
a,z,q

1 − n′
A,Z,q0

× nA,Z,q0 , a < A.

(35)

(iii) After carrying out steps i and ii for all the isobars A, one
decrements A by one unity and goes back to step (i),
until all the excited fragments have decayed.

In order to speed up the calculations, the distribution n(ε∗)
of the average excitation energies ε∗ of the decaying fragment
(see Fig. 3) is binned in bins of size 
ε∗, for ε∗ > 1.0 MeV.
Very low excitation energies, i.e., 0 � ε∗ � 1.0 MeV, are
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FIG. 4. (Color online) Top: Total fragment multiplicity before
and after secondary decay as a function of the total excitation energy
of the source. Bottom: IMF multiplicity (3 � Z � 15) from hot
primary fragments and after the de-excitation process. For details see
the text.

always grouped in a bin of size 1.0 MeV, regardless of the
value of 
ε∗ employed in the calculation.

In Fig. 4 we show the total multiplicity and the number of
intermediate-mass fragments (IMFs), NIMF, as a function of
the total excitation energy E∗/A of the 40Ca source, for both
primary and final yields, using 
ε∗ = 1 MeV. One sees that
the total primary multiplicity M , shown in the upper panel,
rises steadily as E∗ increases, for E∗/A � 2 MeV. Up to
this point, M is close to unity, which means that the excited
source does not decay in the primary stage. On the other hand,
when the de-excitation scheme just described is applied to the
primary fragments, one also sees in the top panel in Fig. 4
that M increases continuously. It should be noted that most
of the fragments are produced in the de-excitation stage. This
suggests that the relevance of this stage of the reaction is at
least as important as the prompt breakup, for this copious
secondary particle emission can hide the underlying physics
governing the primary stage.

The lower panel in Fig. 4 displays the multiplicity of IMFs,
NIMF, as a function of the excitation energy obtained with
both the primary and the final yields. It is built by adding
up the multiplicities na,z with 3 � Z � 15. The results show
that the primary NIMF is 0 for E∗/A � 2 MeV because, up to
this point, only the heavy remnant is present, but it quickly
departs from 0 at that point, rising steadily from there on.
On the other hand, the final NIMF first rises and then falls off
because, although fragments with Z � 3 are also produced
in the secondary stage, many IMFs are destroyed, as they
tend to emit more and more very light fragments (Z � 2) as
the excitation energy increases. These results are in qualitative
agreement with those presented in Refs. [10] and [11], obtained
with different treatments.

FIG. 5. (Color online) Charge distribution of fragments produced
in the breakup of 40Ca at selected excitation energies. The primary
distributions are obtained with the SMM-DE, whereas the final yields
are calculated with the GFBM presented in this work and also
with the Weisskopf-Ewing evaporation model. The predictions of
the GEMINI++ code for the decay of a compound nucleus are also
displayed. For details see the text.

The comparison between the primary (filled circles) and
the final (open circles) yields obtained with the SMM-
DE and the GFBM, respectively, is shown in Fig. 5. One
observes that the qualitative shape of the charge distribution
does not change appreciably after the de-excitation of the
primary hot fragments, but the suppression of heavy residues
becomes progressively more important as the excitation
energy increases, while the yields of the light fragments are
enhanced. These results show that, in the excitation energy
domain studied in this work, there are important quantita-
tive differences between the primary and the final charge
distributions.

In order to investigate the extent to which our model
agrees with others traditionally used in this energy domain,
we also display in Fig. 5 the results obtained with the
GEMINI++ code (solid lines) [3–5]. We considered the reaction
20Ne + 20Ne, at the appropriate bombarding energy, leading
to a compound nucleus equal to 40Ca with the suitable
excitation energy. One observes a very good agreement with
the predictions made by the GEMINI++ code and the GFBM,
which systematically improves as the excitation energy of the
source increases. This is probably caused by the different
assumptions made by the two models, i.e., binary emission
versus prompt breakup, which seem to affect the charge
distribution only at very low excitation energies. To further
investigate these aspects, it is useful to consider another
traditional treatment. In this way, we also show, in Fig. 5,
the final yields obtained by applying the Weisskopf-Ewing
evaporation model, described in Refs. [25] and [26], to
the de-excitation of the primary SMM-DE fragments. The
corresponding results are represented by dashed lines. The
agreement with the GFBM is very good, except for the heavier
fragments, as the Weisskopf-Ewing model gives much larger
contributions in this charge/mass region than the GFBM.
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FIG. 6. (Color online) Charge distribution of fragments produced
in the breakup of 40Ca at E∗/A = 5.0 MeV. All the parameters of the
calculation are kept fixed, except for 
ε∗. For details see the text.

Similar conclusions hold for the comparison with the GEMINI

model. In the Weisskopf-Ewing treatment, very light particles
tend to carry a large fraction of the excitation energy, leaving a
heavy remnant weakly excited. This leads to the overprediction
of yields of heavy fragments, compared with the GFBM and
the GEMINI model. Detailed comparisons with experimental
data will help to select the best scenario for the de-excitation
process.

Finally, we examine the sensitivity of the model results to
the binning used to speed up the calculations in the secondary
decay stage. The charge distributions for the breakup of 40Ca
at E∗/A = 5.0 MeV is displayed in Fig. 6 for 
ε∗ = 1.0, 5.0,
and 10.0 MeV. It is clear that the charge distribution is weakly
affected by this parameter so that values within this range
may be safely used, as the variations are within the model’s
precision.

IV. CONCLUDING REMARKS

We have presented an implementation of the GFBM,
introduced in Ref. [14], to treat the de-excitation of the
primary hot fragments produced in the breakup of a nuclear
source. The approach is based on the SMM [15–17,24], which
describes the primary breakup stage. It is then successively
applied to the primary fragments until they have decayed to
the ground state. Because the application of the SMM to all the
primary fragments, repeatedly until they are no longer excited,
would be extremely time-consuming, we have developed an
implementation of the SMM based on the recursion formulas
presented in Ref. [21]. Those formulas allow the statistical
weights to be very efficiently computed so that they make the
application of our model to systems of interest feasible. We
found that the traditional Monte Carlo implementation of the
SMM and that developed in the present work lead to very
similar results, so that either one may be used according to the
need. Furthermore, the similarity of the final yields obtained
with our GFBM with those predicted by the GEMINI++ code
strongly suggests that our treatment is at least as good as
the more traditional ones. Compared to the Weisskopf-Ewing
evaporation model, a very good agreement is obtained at all the
excitation energies studied. Important deviations are observed
only in the large mass/charge region, as the Weisskopf-Ewing
model overpredicts the corresponding yields. Applications
to other systems and comparisons with experimental data
are in progress, which should contribute to improving the
de-excitation treatments.
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