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Magnetoconductivity of a disordered electron system with N orbitais per site 
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In the absence of a magnetic field, two formally equivalent expressions for the conductivity contribute 
different sets of Feynman diagrams, due to cancellations. We use this result to calculate the magneto­
conductivity of the N-orbital model to 0(1/N) and we show that it coincides with the result for a 
single-level system. 

The purpose in this paper is to investigate the magne­
toconductivity of Wegner's N-orbital model1•2 to order 
1/N by means of the method proposed formerly by us;3 

one that avoids the semiclassical approximation in favor 
of a formulation based on Landau leveis. The first ques­
tion we have to answer is, then, which are ali the dia­
grams that contribute to the conductivity to order 1/N! 
To our surprise, we discovered that it depends on the 
choice between two equivalent expressions for the electri­
cal conductivity: lf the Einstein relations are used to re­
late the conductivity to the diffusion propagator,4 as was 
done in Ref. 2, then a certain series of diagrams are 
shown to contribute, but if instead the standard expres­
sion in Ref. 5 is used the family of contributing diagrams 
is highly reduced because many of them actually vanish, 
and the calculation is simplified. We show, in fact, that 
the magnetoconductivity of the model, to order 1/ N, is 
given by the same expression obtained in Ref. 3 for a 
single-level system. 

The N-orbital electron model proposed by Wegner1 is 
generalized to include a constant magnetic field B in the z 
direction and it is described by the Hamiltonian: 

N 

H= -t :I, f drt/J~(r)D;t/la(r) 
a= I 

N f 1 + :I, dr t/J~(r) 1/N V aP(r)t/Jp(r) , (1) 
a,{J=l N 

where we only considered the case of diagonal disorder 
and t/1 ~. t/1 a are the standard electron creation and de­
struction operators in the a orbital, a= 1. . . N. We work 
in units in which lí=c = 1. The on-site random potential 
V aP(r) scatters electrons among different orbitais, with 
mean and variance given by 

( Vap(r)) =O , 

(V aP(r)Vrll(r'))=B(r-r')[MBallBpy+M'BarB.BII], 

while 

D,=V,-ie Ao(r), 

and Ao( r) is the vector potential in the Landau gauge: 

(2) 

(3) 

(4) 

A 0(r)=(-By,O,O) . (5) 

Before proceeding to the calculation of the magneto­
conductivity we are going to discuss the relevant contri­
butions to the de conductivity in the absence of a magnet­
ic field, when Ao vanishes in Eq. (4). In this way we may 
use translational invariance and Fourier transformation 
as powerful tools in the analysis of the contributing dia­
grams. 

The diagrammatic expansion for the averaged one­
particle Green function in powers o f 1/ N shows that 
G aa =O ( 1 ), with the leading contributions for the self­
energy shown in Fig. 1 (b), while G aP for a=l=(3 is O ( 1/ N). 
The contributions to the self-energy of the type shown in 
Fig. 1 (b) have an independent summation over the orbital 
indices (3 and r for each 1/N factor, while the crossed di­
agrams in Fig. l(c) are O (1/N) due to the presence of B 
functions that suppress some of the internai summations. 6 

To leading order, then, it is sufficient to consider the di­
agonal G aa with the self-energy given by the family of ir­
reducible diagrams shown in Fig. l(b). 

A second important quantity in this theory is the 
configuration averaged product of two Green's functions: 

IIapfJa(r1,r2,r3,r4;lü,€)= ( GaP(r1,r2,lü+€) 

XG/Ja(r3,r4,€))c.A., (6) 

and some contributing diagrams are shown in Fig. 2. 
After summing over (3, the contributions of diagrams in 
Figs. 2(a)-2(c) are O ( 1) while those in Figs. 2(d)-2(f) are 
0(1/N). 

As it was shown in Ref. 5, linear-response theory may 
be used to derive the standard expression for the conduc­
tivity: 

a(lü)= lim 2e 2 _!_ f 0 d€ P(q,lü+E+iB,E-iB) , (7) 
q-+0 m lü -w 

where in d dimensions and in momentum space 

P(q,lü+E+iB,E-iB) 

= ~ J p·p' :I, IlczPpa(p,p',q,lü,€)dpdp'. (8) 
a,{J 

The function P(q,lü+E+iB,E-iB) in Eq. (8) is related 
through analytical continuation to the retarded current­
current correlation function:4 
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FIG. 1. (a) Diagrammatic representation of the average in 
Eq. (3). To the full and open dots correspond the factors M IN 
and M' IN, respectively. (b) and (c) contributions to the self­
energy O (l ) and O (l IN), respecti vely. 

pR(q,w)=~ l:q,..qv((j,..(q),jv(-q)J)! · (9) 
q p,v 

On the other hand, an equivalent formal expression for 
the conductivity may be derived by using Einstein rela­
tion with the diffusion propagator. Foliowing closely the 
method in Ref. 4 we can prove the exact relation: 
P(q =O,e+i8,E-i8) 

= lim lim !!i__~ {K(q,w+E+i8,E-i8) 
w--.Oq--.0 21T q 

-21Tip~) } , (10) 

where the function K is given by 

K(q,w+E+i8,E-i8)= I dpdp'l: rratlt!a(p,p',q,w,E) 
a,{J 

(11) 

and it is related through analytical continuation to the re­
tarded density-density correlation function: 

KR(q,w)= ( [p(q),p( -q)] >! . (12) 

The function ITafJfJa in Eq. ( 11) is the same that appears 
in Eq. (8) and was defined in Eq. (6). Conservation of par­
ticle number implies that4 

K(O,w+E+i8,E-i8)= 21Tip(E) . (13) 
lü 

By introducing Eqs. (13) and (10) into Eq. (7) we get the 
alternative expression for the conductivity: 

a(w)=Lw I o d€ [--;K(q,w+E+i8,E-i8) j . 
?Tm -., 3q q=o 

(14) 

It is precisely Eq. (14) that has been used to calculate 
the conductivity of the N-orbital model to O ( 1 IN) in 
Refs. 1, 2, and 6. The standard procedure to foliow in or­
der to obtain a(w) to 0(11N) is then to calcu1ate ali the 
contributions to llatlt!a in Fig. 2 to this order and to intro­
duce the result either in Eq. (7) or in (14). However, the 
important point we want to stress here is that although 
both expressions are formally equivalent, due to the an­
gular integration in Eq. (8), the contribution of many dia-

ri a rz a • ê 

Õap ·~ 
r4 a r3 a 8 

(a) ( b) 

a y p a J a ,. ' .. ' . I u , ,O • • Õap 
I I 

,. .... "' ............ 
• ' ' 

a y ~ a y• a 
(c) (d) 

, ... ~0-, 
' \ ~ ~ a I a 

., , ~' ! ~'a 

~ ó 
l I 

a ~ \ p • I .. f , a 1 
\ ' --o---/ 

(e) (f ) 

FIG. 2. Some diagrams contributing 
IIa/IPa(rhr2,rJ,r4,w,El. (a)-(c) are O ( 1) while (d)-{f) 
O(liN). 

to 
are 

grams to P(q,w+E,E) actualiy vanish for a contact po­
tential, while the same diagrams will give a nonvanishing 
contribution to K (q,w+E,E) in Eq. (11). It has been 
shown in Ref. 2 and Ref. 6 that ali the contributions to 
rratlt!a(p,p' ,q,w,E) of o (1) are those shown in Fig. 3, 
with the blocks representing the infinite partial sums of 
diagrams indicated in Fig. 4. However, many of these di­
agrams, although they are of O ( 1 IN), will give a vanish­
ing contribution due to the integration of two Green 
functions on the same side of the Fermi surface. For in­
stance, the second diagram in Fig. 4(c) will have an inter­
nai integration: 

I dp1Grr(p1,w+E)Grr(Q-p1,w+E)""'O (15) 

within the approximation of the constant density of states 
at the Fermi surface, and for the same reason ali dia­
grams in Fig. 4(c) with more than one line crossing above 
the multiply crossed subdiagram will vanish. The same 
argument is of course valid for diagrams with lines that 
cross below, like in Figs. 3(g) and 3(h). By taking these 
considerations into account, we conclude that the 
relevant diagrams for the calculation of the conductivity 
are those in Fig. 5. The meaning of the crosses at the 
ends of the diagrams depend on whether we use Eq. (7) or 
(14) for the calculation ofthe conductivity. In the follow­
ing we consider M = M'. For further use in our discus­
sion, we need the momentum dependence of the ladder 
propagator in Fig. 4(a) and following standard pro­
cedures: 

rL(p,p',q)""' M D 2+. , (16) 
7' oq zw 

while the Cooperon or sum of maximally crossed dia­
grams in Fig. 4(b) gives 
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FIG. 3. Complete family of diagrams that contribute to the 
Fourier transformed IIatltla(p,p',q,w,f). The meaning of 
different blocks is indicated in Fig. 4. 
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where D 0 = K}r I d is the diffusion constant in d dimen­
sions. 

When we want to calculate a(w) by using Eq. (7), the 
"crosses" at the extreme of the diagrams in Fig. 5 indi­
cate the internai product p·p' in Eq. (8). With the help of 
Eqs. (16) and (17) it is easy to check that the diagrams (b), 
and (d)-(h) in Fig. 5 give a vanishing contribution to 
P(O,w+E+iô,E-iô) in Eq. (8) due to the angular in­
tegral over the angle between p and p'. The diagram in 
Fig. 5(a), however, gives the known Drude contribution 
due to the ô-function term, and Fig. 5(c) gives a finite 
contribution because, from Eq. (17), the singularity in the 
Cooperon for p and p' antiparallel may be approximated 
by a ô(p+p') factor that will also cancel the angular in­
tegration. We conclude that when the conductivity is 
calculated with the formula in Eq. (7), in the case of a 
contact potential, the only contributing diagrams are 
those in Figs. 5(a) and 5(c) of O ( 1 ) and O ( 1 IN), respec­
tively. 

When the de conductivity is given by Eq. (14) the dia­
grams in Fig. 5 represent the contributions of O ( 1 ) and 
O O IN) to the function K(O,w+E+iô,E-iô) in Eq. 
(11), provided the "crosses" are replaced by unity. We do 
not have an angular factor from p·p' and all diagrams 
contribute to the calculation, as has been shown in Refs. 
2 and 6. 

When the magnetic field is switched on, the calculation 
of diagrams becomes very difficult beca use of the lack of 
translational invariance and momentum conservation. 
However, under the assumption that the presence of a 
weak externai magnetic field does not introduce new 
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FIG. 4. Infinite partial sum of diagrams contributing to 
IIatltla in Fig. 4. (a) is O ( 1) while the others are O ( lI N). 
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FIG. 5. Diagrams for the conductivity, with the notation of 
Figs. 3 and 4. (a) and (b) are O ( 1 ), ali the others are O ( 1 IN). 
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singularities, we argue that the arguments following Eq. 
( 17) are still valid. This is plausible beca use the diagrams 
(c) to (h) in Fig. 3 exhibit a diffusion pole originating in 
the maximally crossed subdiagrams, and it is this singu­
larity responsible for the nonanalytic behavior of the 
magnetoconductivity. The diagrams (d)-(h) can be ob­
tained by "decorating" diagram (c) with ladders and they 
will not present new singularities. Given that they give a 
vanishing contribution at zero field, we argue that they 
give a small correction 0((wcr)2 ) to the leading diagram 
(c), where for weak fields wc r<< 1. Hence the magneto­
conductivity tensor would be given to O ( 1 IN) by the two 
diagrams in Figs. 5(a) and 5(c) if the calculation is per­
formed with the analog of Eq. (7) in real space:5 

where J.L, v indica te space directions and 

Ü'"'+® 
(a) (b) 

~- = [ofl- oiJ•J 'fp- p r P=r 

(c) 
FIG. 6. (a) and (b) are the only contributing diagrams to the 

magnetoconductivity to 0( l) andO( 1/N), respectively, when it 
is used Eq. (18). The differential operator is explicit in (c). 

(18) 

P 11v(r-r',w+e+ iõ;e- iõ)= {[D~-Df* ][D;.-D;*] l: ITafJ!Ja(r,r',p,p';e,w)} p=r 

afl p'=r' 

(19) 

According to our conclusions above, the function ITaflpa(r,r',p,p';e,w) was defined in Eq. (6) and the only relevant 
contributions are those in Fig. 6, where (a) is O ( 1) and (b) is O (1 IN). The explicit calculation of the contribution of 
these two terms to the magnetoconductivity was already performed by us in three dimensions (3D) and reported in Ref. 
6. In this case the single-particle Green's function in Fig. 6 stands for 

Gaa<r,r',e)= ~ 'I'~(À,r)'l'a(À,r') [wc [n+ ~ ]+ ~K;-ep-e- ;TsgnE ri' (20) 

where {Ãj =(n,Kx,Kz) indicates the set of Landau quan­
tum numbers while 'I' a< À, r) is the wave function of an 
electron in levei a, in a magnetic field. We indicate by 
wc =eB /m the cyclotron frequency and the inverse Iife­
time is given to O ( 1 ) by the imaginary part of the self­
energy in Fig. l(a). 

Wejust quote the result for the 3D magnetoconductivi­
ty: 

(21) 

The main result of this paper is the observation that, in 
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the absence of a magnetic field, two formally equivalent 
expressions for the conductivity in Eqs. (7) and (14) con­
tribute significantly different sets of Feynman diagrams 
due to cancellations. Hence ali the relevant contribution 
to O (1 ) and O (1 IN) are only those generally considered 
as responsible for the weak localization effect. Under the 
assumption that this property still holds in the presence 
of weak magnetic fields, we conclude that to the same or­
der in 1 IN the magnetoconductivity of the model in 3D 
is as calculated previously by us in Ref. 3. 
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