
PHYSICAL REVffiW B VOLUME 50, NUMBER 9 1 SEPTEMBER 1994-1 

Topological theory of magnetism in nanostructured ferromagnets 

ArnoHolz 
Fachrichtung Theoretische Physik, Universitãt des Saarlandes, 66041 Saarbrücken, Germany 

Claudio Scherer 
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 90.000 Porto Alegre, Rio Grande do Sul, Brazil 

(Received 7 September 1993; revised manuscript received 11 March 1994) 

It is postulated that in nanostructured ferromagnets, e.g., Ni, Fe, and Co, exchange and magnetostatic 
energy dominate crystalline anisotropy energy and therefore the usual domain structure imposed via an­
isotropy is replaced by a structure consisting of topological defects. The defects are nonlinear solutions 
of the classical Heisenberg Hamiltonian of spins modified by magnetostatic energy, have the topological 
properties of disclinations, and are partly classified by the Hopf index. Coercive force is a consequence 
of entanglements of disclinations, pinning, and mutual obstruction during crossing processes correlated 
to local (spin) conductivity. Domain boundaries at surfaces are replaced by topological point defects of 
opposite topological charge generated pairwise. 

I. INTRODUCTION 

Magnetism in nanostructured (NS) ferromagnets, e.g., 
Fe, Co, and Ni, ditfers considerably from that observed in 
crystalline and polycrystalline materiais as has been 
pointed out by Gleiter, 1 and Kisker, 2 and Schaefer 
et al. 3 First, no domain boundaries4 at surfaces are ob­
served using the Bitter technique and magneto-optic Kerr 
etfect. 1- 3 Second, coercive field strength Hc in NS fer­
romagnets, e.g., Ni, is much larger than in polycrystalline 
samples, and its temperature dependence also differs. 2•3 

On the other hand, the temperature dependence of the 
low-temperature saturation magnetization M 8 in NS Ni 
decreases with a T2 law upon increasing the temperature 
similarly as in crystalline samples. 2•3 This is in contrast 
with the usual T 312 law observed in ferromagnets with lo­
calized integer valued (in multiples of Bohr's magneton 
JLB) magnetic moments. Third, there is an indication2•3 

that in NS Ni magnetism disorders in two steps, separat­
ed by - 85 K, yielding a reduction of magnetization of 
-20% in the first step, and being attributed to the 
boundary component of the sample. Because parallel to 
these processes grain growth in this temperature domain. 
sets in, a theoretical interpretation of that property is less 
straightforward. For a review of the ordinary magnetic 
properties ofFe, Co, and Ni we refer to Wohlfahrt. 5 

In the following we consider this problem from the 
perspective of microscopic magnetism postulating that 
exchange and magnetostatic energy dominate crystalline 
anisotropy energy. The theory is based on an idea of 
Kronmüller6 suggesting that microscopic magnetic struc­
tures are characterized by at least three characteristic 
"exchange lengths" 

Ks'=(J /21TMJ)l/2' 

Ki 1=(J /K)112 , 

Kii 1=(2J /HM8 )112 , 

(1) 

{2) 

(3) 

where J, M 8 , K, and H are the exchange constant, satura­
tion magnetization, crystal anisotropy, and applied mag­
netic field, respectively. The three characteristic lengths 
refer to the magnetostatic energy originating from the 
stray fields (1), the crystalline anisotropy (2), and the ap­
plied magnetic field (3). Magnetoelastic etfects are usual­
ly two orders of magnitude smaller, i.e., their characteris­
tic exchange length Kit1=(J /l..lu;l )112 (À andO"; are con­
stant of magnetostriction and internai stress, respectively) 
is much larger than the three characteristic lengths intro­
duced above, but in plastically deformed and work har­
dened material Kit1 diminishes and then it also plays a 
significant role as has been pointed out by Trãuble. 7 Be­
cause no work hardening is observed in NS metais, 1 it 
will be ignored in the following. The characteristic 
length scales indicated above are naturally dominated by 
the magnetic correlation length s defined over the two­
point magnetic correlation function; s obeys the condi­
tion s<<K;;1 for u=S,K,H,Mup to temperatures pretty 
close to the Curie temperature T c. 

The physical significance of the length scales (1), (2), 
and (3) originates from the fact that any change of the 
magnetization structure via activation of one of its corre­
sponding energies takes place over the respective length 
unit, where the proportionality factor depends on the 
boundary conditions. In case more than one type of ener­
gy is activated in a magnetic configuration constrained by 
boundary conditions, its local structure is determined by 
the shortest characteristic length. In the case of Fe and 
Ni, 6 we have, e.g., at H= 1000 Oe and room tempera­
ture, K$ 1 ~3.3 nm, Ki 1 ~20.9 nm, and K/i 1 ~15.3 nm, 
and K$ 1 ~7.6 nm, Ki 1 ~45.3 nm, and K/i 1 ~18.9 nm, re­
spectively. Observe also that the width of a Bloch wall, 
which is naturally determined by K; 1, is of the order of 
10Ki 1, whereas the width ofa Néel wall is ofthe order of 

-I 
1TKs • 

Nanostructured material, of the type schematically il­
lustrated in Fig. I, consists of a compacted and sintered 
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magnetocrystalline anisotropy 

l!iJ 

f 

FIG. 1. Schematic illustration of a two-dimensional cross 
section of NS material characterized by three characteristic 
geometric Jengths, dNc• dNc• and dcc. and three characteristic 
magnetic lengths, KK\ K/f\ and Ks 1. 8 (skeleton) and L Oa­
byrinth) represent the global structural units of our model of NS 
material, with dNc and dNc the linear scales of 8 andL, respec­
tively. d cc represents the linear scale o f crystallographic corre­
Jations of 8. a;.M, and a • .M represent internai and externai 
boundaries of the sample .M with a;.M, a • .M and a;8 represent­
ing the boundaries of boles (pores), the surface of the sample, 
and the surface of 8, respectively. 

aggregate of nanometer-sized crystals. Kisker2 and 
Schaefer et ai. 3 studied the magnetic properties of such 
materiais formed from Ni and Fe with crystal sizes (dNc) 
of the order of -10-12 nm for Ni and -16-19 nm for 
Fe. Suppose that the nanometer-sized crystals in NS ma­
terial form a skeleton like structure with a short-range 
crystallographic correlation (dcc ). Furthermore, the la­
byrinthine domain, whose boundary is the skeleton, is 
filled with material of unknown structure [called complex 
structured (CS)] and partly empty (holes and pores). The 
skeleton (8) and labyrinth (.L) are roughly complementa­
ry to each other in .M, i.e., 8+.L=.M, where .M is the 
domain in R3 occupied by the sample. Due to the ex­
istence of wedge- and star-shaped boundary domains in 8 
it is hard to imagine that the boundary conditions im­
posed by the shape of 8 favor any of the known uniform 
microscopic structures of matter (amorphous, liquid, or 
gas). As a matter of fact the density distribution of CS 
material should be ;:: 50% of bulk matter, 1 depending on 
how much it fills up the labyrinthine domain. 

As length scale for the labyrinth we use dNc• which 
may be computed over the packing density and an ap­
propriate crystal size correlation function and for NS ma­
terial satisfies dNc <<dNc· Note that in Fig. 1 we distin­
guish between grain boundaries, i.e., the small- or large­
angle grain boundaries between crystalline contacts form­
ing the joints of 8 and the CS material in .L. Further­
more the nanocrystals forming 8 may show a characteris­
tic defect structure produced during cluster formation 
and subsequent compaction and may be subject to inter­
nai strain balanced at the joints of 8, and at the boun-

daries with .L. dNc• dNc• and dcc are three additional 
length scales in the system, with the ordering 
dNc <<dNc $dcc• not present in amorphous ferromag­
nets. In addition the latter systems may show a domain 
structure dueto magnetocrystalline anisotropy. For are­
view of the properties of amorphous ferromagnets we 
refer to Luborsky. 8 Note that Schiifer, Hubert, and 
Herzer9 produced magnetic "NS material" by controlled 
crystallization from a glass alloy and observe domain pat­
terns resembling those of metallic glasses. This shows 
that the microstructure of NS materiais depends strongly 
on their mode of production, and it is emphasized that 
the theory developed here refers to compacted and sin­
tered aggregates of nanocrystals. 

Observe that a NS material is not a scaled down ver­
sion of a polycrystalline (PC) material due to the low den­
sity of NS material ( ;5 90% of PC material'). This im­
plies that the fictitious process of replacing micrometer­
sized crystals in a PC material by nanometer-sized crys­
tals does not lead to the state of matter characteristic of 
NS material. As a matter of fact, it is possible to postu­
late models of NS material, where all matter is incor­
porated in the skeleton and where the labyrinth consists 
only of boles and pores. These models, however, are not 
general enough because they imply the existence of a 
large spectrum of small- and large-angle grain boundaries 
of nanometer-sized scale, which is not proven. Further­
more, such models do not take account of the modified 
boundary conditions, to which matter is subject, that is 
"evaporated" into the labyrinth or deposited there via 
plastic fiow during the process of formation (via compac­
tion and sintering o f the material). 

It is the purpose of this work to develop a qualitative 
scenario for magnetic behavior in NS ferromagnets and 
put it into relation with other modern systems presently 
studied, e.g., quenched ferrofiuids 10 or ideal Heisenberg 
magnets. The main idea underlying this paper is based 
on the observation that dueto Ki 1 >>dNc >>Ks 1 and the 
plausible assumption that crystallographic correlations in 
8 are of the order of dNc• crystal anisotropy energy plays 
no role in NS ferromagnets. Because the usual domain 
structure of a ferromagnet is a natural device to reduce 
magnetostatic energy via elimination of magnetic surface 
charges one may postulate it to occur also in a NS fer­
romagnet. Suppose, therefore, that we take such a ficti­
tious domain structure as initial state and release the con­
straints (torques) imposed by the crystal anisotropy by 
means of a stochastic reorientation of nanocrystals in J', 
allowing the system to evolve in to a final state. This im­
plies an increase of anisotropy energy ( ô:H K ) of the order 
of KV /2 ( V the volume of the system), which is indepen­
dent of the subsequent change of magnetization 
configuration accompanied by a modification of exchange 
( ô:H J ) and magnetostatic ( ô:H s) energy. lnstability of 
the initial and stability of the final state require 
0>8Jf,+8:Hs> -8J{K, respectively. If the inequality 
signs are replaced by equality signs the first one would 
imply stability of a Bloch state without crystal anisotropy 
and the second one stability of a non-Bloch state in the 
presence of anisotropy, which is impossible. In case the 
initial configuration contained only Bloch walls we will 
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have 8111 <O and 811 s >O. This implies that the rotation 
of magnetization (V X M) contained in the Bloch walls 
must spread over the system generating a ~a~n~ti.c 
charge density (V·M). Naturally the same appbes tf m_t­
tially Néel walls existed, except that now magnettc 
charge is distributed over the system. 

The classification of final states will be done by topo­
logical methods, where two-dimensional (2D) domain 
walls are replaced by topological defects and where the 
more important will be called (magnetic) disclinations. 
The latter roughly may be described by their core 
geometry and therefore form 1 D structures. The linear 
dimension of the coreis -7rKs 1• This estimate is based 
on the assumption that the magrietic charge V· M is 
essentially located in the core of disclinations, whereas 
the different disclinations of a global configuration are 
connected by field lines with VXM*O. Because M(r) is 
essentially a unit-vector field this assumption has only 
qualitative significance. It is obvious that in generic ca~ 
a mapping between initial and final magnetzc 
configurations (as has been indicated above) will be too 
complex to be of any practical use, and therefore domains 
in NS ferromagnets play no role. This applies also to the 
approach of T c• where the topological defects indicated 
above are generated thermally. 

The rest of the paper is organized in six sections. In 
Sec. 11 the topological concepts applying to Heisenberg 
magnets being of interest in micromagnetics are re­
viewed. Section 111 is devoted to a qualitative description 
of quasistatic change of topology in Heisenber~ magnet~. 
Such a theory is necessary if one wants to desenhe transt­
tions between different topological sectors of the 
configuration space of the system in connection with the 
coercive force Hc. It cannot be done within a continuum 
theory and requires additional parameters. The latter 
may be derived from a microscopic theory of tunneling 
processes and essentially are governed by a characteristic 
time 1J , which has the significance of a short-wavelength 
( -Ksl> and high-frequency (- kB Tclfz) spin resistivity. 
For 7Jr -o, topological obstruction cannot be ov~rco~e, 
whereas for 7Jr- oo it vanishes. The latter sttuatton 
occurs upon approaching Te. In Sec. IV, low-energy 
magnetostatic modes are discussed. It is expected that 
such modes have increased significance in NS ferromag­
nets due to the necessary presence of magnetic charge at 
the boundaries between S and .L in the bulk. In Sec. V, 
five micromagnetic applications are presented among 
them the computation of magnetic energy for 
configurations bounded by planes. Section VI is devoted 
to a qualitative analysis of the coercive force Hc as ob­
served in Refs. 2 and 3, within the theory developed in 
Secs. 111 and IV. In Sec. VII some conclusions are 
drawn. 

ll. TOPOLOGICAL CONCEPTS 
IN HEISENBERG MAGNETS 

Suppose that no crystallographic correlation exists .be­
tween neighboring crystals of the skeleton, t.e., 
dNc=dcc· Thenfor 

Ksl <<KKl• dNC <<KKl ' 

7rKs 1 »dNC• and 7rKs 1-0(dNc), 

crystals will be magnetically "monodomain" and . e~­
change and stray field energies will not allow an opttmt­
zation of the crystalline anisotropy energy. As a matter 
of fact, configurational changes of the magnetization 
should occur in such a way that the exchange energy to­
gether with the stray field energy is minimized under the 
given boundary conditions, dueto 7rKs 1-0(dNc>· Since 
d <<Ki 1 and 7rKs 1-0(dNc), configurational changes 

NC ' }} • hi h cannot take place over Bloch or Neel wa mot10n, w c 
are the most effective degrees of freedom to yield a small 
coercive force Hc in micrometer-sized PC samples. Un­
der such constraints the magnetization structure of a 
sample is essentially determined through the externai and 
internai (magnetic) surface structure of .At and the topo­
logical defects imposed onto the magnetizatio~. 

Note that in PC samples the corresponding charac­
teristic linear lengths (dpc,dpc) satisfy dpc -102dNc• 
dpc-ilNc• implying dpc »Ki\ and il~c «~5 1 • Due !o 
the constraint imposed by the fixed onentatlon of gratn 
boundaries, a change of magnetization there will occ.ur 
over domain walls being a mixture of Bloch and N eel 
types. Because the latter yields a magnetic charging of 
grain boundaries, a reduction of magnetostat.ic ener~ 
can be reached over the formation of a magnetlc domam 
structure within grains or along grain boundaries. 
Configurational change of magnetization in such a system 
is mainly discussed in terms of the motion of Bloch and 
Néel walls, but it is obvious that the topological defects 
introduced below will also be present in such 
configurations imposing constraints on their effective 
number of degrees of freedom. 

A. Micromagnetics of NS ferromagnets 

Under the conditions stated above, a classical micro­
scopic Hamiltonian to study the time-independent as­
pects of this problem in the long-wavelength limit is the 
following:6 

11=11s+11J+11H • (4) 

where 11 s refers to the stray field energy, 

115 =-1-J d 3rHi=_!_ f d 3r[V,-M(r)]<I>M(r) 
87r R3 2 M 

=- ~ fMd 3r M·Hs , (Sa) 

f V,.·M(r')d 3r' f M(r')·d2r' (Sb) 
<I>M(r)=- M Ir-r' I + a·M Ir-r' I 

Here <I>M(r) and Hs are scalar (magnetic) potential and 
stray field strength, respectively; 111 refers to the ex­
change energy 

111 = fMd 3rJ(r)(VN)2 , (6) 

and :H H refers to the energy o f the sample in an applied 
magnetic field H 
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(7) 

In (5), (6), and (7) we have introduced for the magnetiza­
tion density (order parameter field) the notation 
M(r)=M8 N(r), so that N(r) is essentially a unit vector 
field [O ( 3) order parameter] and Ms = M 8 ( r, T) (scalar 
order parameter) is the saturation magnetization. .M 
represents the manifold formed by the NS material, 
whose internai and externai boundaries are denoted by 
a;.M and ae.M, respectively and a'.M=a;.M+ae.;n 
+a;8+a;.L, with a;.f=a;.L, but opposite orientation. 
The volume densities J(r) and M 8 (r,T) may be taken as 
position dependent, and enter (l), (2), and (3). 

In order to provide an interpretation of magnetic prop­
erties as a function of temperature, we will also have to 
compute the magnetic excitational modes of NS material 
over a time-dependent change of the field M(r,t). For 
that purpose (4) must be supplemented by two time­
dependent Hamiltonians 

JIE=(l/81T) f 3d 3r E·D (8a) 
R 

and Jf s derived from the Lagrangian 

.L8=(1/y)J d 3rM8 (r,T) 
.AI, 

X [N1 d~2 -N2 d~1 ];(l-N3) · (8b) 

Here E and D are electric field strength and displacement 
field, respectively' and r= ge !2mc (g is the gyromagnetic 
ratio) and N(r,t)=(N1,N2,N3). Jf8 governs the preces­
sional motion of spin, which may be computed from 

d 
dt M(r,t)= !M(r,t),JI}p8 , (9) 

where the Poisson bracket (PB) is evaluated via the for­
mula 

I M;(r,t),Mi(r' ,t)} p8 =yeiikô(r- r' )Mk(r,t) 

and E;ik is the totally antisymmetric symbol. The time­
dependent change of electromagnetic fields may be com­
puted from Maxwell's equation in a slow motion approxi­
mation. 

I 41T Eo 2 1 [E ] ã-~aa,-?"a, B 

l41T a (VXM) 
- c t 

-41TV(V·Ml+41TàM. 
(10) 

Here the dielectric constant E enters in the usual form 
e=e0-41Tia /{J), where also e(k,{J)) may be used with the 
replacements k--iV, w-ia,, in the arguments of E0 

anda. 
Consider first the case where there exist no internai 

boundaries <a;.M) and the densities J and Ms are in­
dependent of position. This is in any case an idealization 
but roughly applies to the case that grain b011ndaries and 
CS material are magnetic, i.e., the densities J and Ms do 

not diminish in these regions so much, that the skeleton 
etfectively consists of magnetically decoupled nanocrys­
tals interacting only via the long-range stray fields. In 
that case the externai boundary ( ae.;n) of the system 
determines the magnetization structure for K s 1 and 
K ii 1 > O and the system displays ideal Heisenberg magne­
tism. Suppose that Ks1 <<KJi1, i.e., Ks1 is small enough 
so that the surface will be demagnetized. For the case (/) 
illustrated in Fig. 2(a) one obtains for instance with 

(o) magnetic nerth pele 

"-cu! surface (1) 
magnetic seuth pele 

(b) magnetic nerth pele 

magnetic seuth pele 

FIO. 2. Schematic representation of order-parameter and 
magnetic-field line configuration for a solid ball.M=.'B without 
applied magnetic field H. The surface ( a • .;n) of .'B is a magnetic 
surface [B·n(r)=O] with the exception of spherical caps at the 
north and south poles. (a) Simplest magnetic configuration 
(Q71 =0) where arrows indicate the N(r) field, and disclination 
( l) connects north and south pole. (b) Nontrivial magnetic 
configuration ( Q71+0) obtained from (a) by adding disclination 
(2). Along parallels of latitude only the azimuthal component 
and along the meridian and disclination line (2) only the radial 
component of N(r) is drawn with respect to north pole. Nota­
tion for disclination ( 1) and cut surface ( 1) of (a) is suppressed. 
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respect to the uniformly magnetized sphere (i) of radius 
R andH =0, 

:Jí<fl;JfUla!:[9/(KsR)2]ln [ 2R ]+0(1/(K5 R)2], (11) 
erc 

where rca!:7TKs 1 represents the core radius, lne =1, and 
the second term refers to the core energy. For the case il­
lustrated in Fig. 2(b) the right-hand side will be multi­
plied by about a factor 2. Thus for KsR >> 1, and 
Ks 1 <<KJi 1, it is energetically favorable up to about an n­
fold "iteration" of the configuration indicated in Fig. 2(a) 
[with n =2 for Fig. 2(b)], and n ~JfUl /JI(fl to replace 
the uniform configuration by a nonuniform one. In that 
case we have n(r)·M(r)=O almost everywhere on ae.M, 
and where n(r) is the normal vector to ae.M at r. The 
well-known (no-hair) theorem says, however, that a two 
sphere to which ae.M is homeomorphic cannot be 
combed, 11 • 12 i. e., there must exist defects of the vortex 
type occurring in pairs [see, e.g., Figs. 2(a) and 2(b)]. 

B. Topology of defects 

A characterization of the defects in the Heisenberg 
model (6) for J(r)=.J can be done via the homotopy 
groups II, 12 

7TJ(S2)=J' 

7Tz(Sz)='l ' 

7T3(S2)='l . 

(12) 

(13) 

(14) 

Here S 2 represents the two sphere and corresponds to the 
order-parameter space, i.e., N ES2, and 'l represents the 
infinite cyclic group. From (13) follows that the system 
may contain defects of the "magnetic" N-pole type in the 
bulk and at the surface [see Fig. 2(a)] as explained further 
below, and (14) refers to an infinite variety of bulk tex­
tures, which may be displayed by the order parameter. 
Although (12) implies that there exist no stable line de­
fects in such systems, it follows from (14) that entangled 
"line defects" may be stable and represent the dominant 
nonlinear structures ofthe order parameter. 13 - 15 For an 
example, see Fig. 2(b). Line defects in the following will 
be called disclinations and have, in fact, a tubelike core 
structure ofradius rca!:7TKs 1• They can be characterized 
by oriented lines, which play an auxiliary role for the 
coordination of the defect structure and a disclination 
strength S E'l, similarly to a vortex loop in superfiuid 
helium 4, except that they do not have a singular core be­
cause the order parameter is S 2 and not S 1 (for details see 
Ref. 15). 

The property that point singularities in the bulk arise 
for a nontrivial realization of (13) [having large energies 
due to (5a) and (6)] and that the surface texture is also 
classified by (13) is explained as follows. Surface texture 
corresponds to a map of the surface (ae.M) (being 
homeomorphic to S 2) into the order-parameter space 
(i.e., the magnetization), which is also homeomorphic to 
S 2. Because of (13), an infinite number of topologically 
different surface textures exists. Taking account of the 

boundary conditions for the magnetization at the surface 
for Ks 1 <<Ki/ implies a map from S 2 to S 1 (almost every­
where), but this does not change the texture and only im­
plies that the surface "singularities," i.e., the magnetic 
N-poles, appear in pairs. Point singularities of the order 
parameter in the bulk are also classified by (13) because 
one only needs to put a surface S 2 around the point de­
fect and study the map S 2-S2 in the same fashion as ex­
plained above for ae.M. In contrast to the latter case, no 
boundary conditions exist because the area of the two 
sphere around the defect can be arbitrarily small, and 
therefore magnetic N-poles come into existence. 

Let us point out that the magnetic-field lines in Fig. 
2(a) have been drawn in such a fashion that they enter 
and leave the solid ball :B of radius R at the magnetic 
south and north pole, respectively, through small spheri­
cal caps (&S/). Accordingly, the rest of the surface 
S 2'=S2- { &Sl} has the property of a magnetic surface, 
i.e., n·B=O, where n is normal to the surface S 2'. It is 
obvious, however, that for some field { N( r)}, satisfying 
n·N=O along S 2', this does not imply that S 2' is a mag­
netic surface, or vice versa. On the other hand, it can be 
assumed that for Ks 1 <<R and an equilibrium 
configuration { N( r)} e the torque of the magnetic field at 
S 2' will vanish in order to keep the magnetic surface 
charge as low as possible. In the interior of :B the surface 
charge is then diluted and redistributed in such a fashion 
that within a multipole expansion of the first term of (5b) 
ali multipoles vanish. For the bulk dipole and quadro­
pote moments this implies, respectively, 

M=- f d 3x xV·M(x)=O, 
At 

Q=- f d 3x (3xx-x 2!)V·M(x)=O, 
- At 

but depending on the magnitude of R Ks < co, it will fail 
to apply to large-order multipoles. Similar considerations 
apply to Fig. 2(b) and generalizations, where n > 1 pairs 
of magnetic surface poles exist corresponding to the rep­
resentations of the group 7T2(S2 ). Also in that case, 
n <(RK5 f!ln(RK5 ), as derived from (11), is necessary, 
but a precise upper bound of nas a function of RKs has 
not been derived. No te that the remanent magnetization 
M R of a sample depends on the "area" of the externai 
surface covered by magnetic surface poles added up ac­
cording to their strength. 

It should be pointed out that the present problem is re­
lated to the defect structure in liquid crystals, which has 
been extensively studied from a topological point of view 
by Bouligand16 and Bouligand et ai. 17 There the order 
parameter is the projective sphere P 2, and (12) is replaced 
by 7T1(P2 )='l2, whereas (13) and (14) are identical. Due 
to 7T1(P2)='l2 there exist topological stable disclinations 
of strength S = t and S = -f, which can be transformed 
into each other. Disclinations ofinteger strength, howev­
er, are unstable as they may dissociate via one of the fol­
lowing two processes: s-t+t or s-t-f-0, apply­
ing to S = 1. The first process can always take place, due 
to energetic reasons, independent of how entangled the 
disclination is, whereas the second process requires a 
large configurational change and is forbidden for entan-
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gled configurations characterized by a nontrivial element 
of 7T3(P2 ). The S 2 order-parameter dissociation into dis­
clinations of strength S E Z + + is forbidden, and there­
fore the texture group 7T3(S 2 ) stabilizes disclinations of 
integer strength. 

It should be emphasized that the classical Heisenberg 
Hamiltonian and its continuum approximation (6) apply 
in the limits where the spin (s) and the temperature ( T) 
obey asymptotically s--+ oo , T --+0. Although itinerant 
magnets on a quantum-mechanical levei cannot be 
represented by a Heisenberg model, the expectation value 
( J.L ) of magnetic moments is well defined and implies, in 
Fe, Co, and Ni, (J.L)-J.LBO(l). Accordingly, we are far 
away from the domain where a semiclassical approxima­
tion applies, implying that high-energy (short-range) phe­
nomena, which are dominated by the correlation length 
5, need an extension of the micromagnetic formalism, as 
indicated in Sec. III. 

C. Hopf's invariant and Gauss' linking number 

A quantitative measure of (14) is Hopfs invariant, 12 

also called magnetic helicity by Berger and Field, 18 

which can be represented in the form given by Kundu 
and Rybakov, 14 

Q'H=--1- 2 f 3d 3r A(r)·B(r), 
( 87T) R 

(15) 

where A and B are vector potential and magnetic induc­
tion field, respectively. Supposing that R3 -.M, is a vacu­
um; it may also be represented in the form 15 

Q<Jf=_2_ f d3r f d3r' B(r)·[(r-r')XB(r')] 
(87T)3 M M lr-r'l 3 

__ 2_f d3rJ d 2r' B(r)XB(r') . 06) 
(87T)3 M a•JK lr-r'l 

From this it follows that Q<Jf is a pseudoscalar. The first 
term of (16) is proportional to the Gaussian linking num­
ber and the second term results from the presence of sur­
faces. An equivalent expression to (16) can be obtained 
via the replacement15 

B(r)--+47TM(r). (17) 

In the case a'.At=ltJ, (16) can also be expressed in terms of 
the Gaussian linking number ct>(aCa,acb ), 

. k 
- 1 J iJ dyl€ijk(x-y) 

ct>(aca,acb>--4 dx I 13 08) 1T aca acb X -y 

in the for'11 

Q<Jf- l: SaSbct>(aCa,aCb). (16') 
a <b 

Here aca represents a closed loop corresponding to the 
atb disclination of strength Sa. The loop may be viewed 
as the oriented boundary of the cut surface C a suspended 
by the disclination loop aca. 15 

Consider next the case that M(r) for rea • .At is tangen­
tial to a • .At, almost everywhere, i.e., Ks 1 <<KJi1. Singu­
larities appear there, where disclination lines pierce 

through a • .At. The simplest situation arises if .M, is a 
three-ball :13 and there is just one disclination of strength 
S extending from the south to the north pole of :13 [see 
Fig. 2(a)]. At points where the disclination pierces 
through the surface, it leaves magnetic poles, as a conse­
quence of (13), of strength - ±S depending on orienta­
tion and with a linear size of the order of SK; 1• In case 
that the tubelike structure of the core of a S = I disclina­
tion is tentatively considered as a radial Néel-type wall 
the size of the pole would be 1TKs1. Note that Hubert19 

has studied such polelike structures in a soft magnetic 
material, calling them "swirls," having a linear dimension 
-1TKs 1• Different configurations in Fig. 2(a) (without 
moving the disclination) can be obtained via local S0(2) 
transformations of the order parameter on the two 
sphere, whereas a displacement of the disclination can be 
obtained via a Mõbius transformation of S 2• The dis­
clination considered can be moved around in :13 by an ap­
plied magnetic field but cannot be easily driven out of :13 
as Iong as Kii 1 >>Ks 1• The situation is different for dis­
clination (2) in Fig. 2(b), which may be annihilated either 
by contraction through disclination (1) or by sliding it up 
or down to the poles and expelling it. 

Recall that the only one-to-one rational transforma­
tions of the Riemann sphere (S 2 ) into itself are the frac­
tional Mõbius transformations 

az+b z-ct>(z)=-- ad -bc=I=O, 
cz+d' 

(19) 

where z, a, b, c, and d are complex numbers and z is ob­
tained from S 2 by stereographic projection. lt can be re­
garded as a coordinate transformation in the sphere S 2 

and therefore provides for a singularity-free displacement 
of the surface structure of magnetization (the magnetiza­
tion is dragged along by the coordinate transformation). 
The latter may be considered as a boundary condition for 
the magnetization in the bulk. An even more plastic pic­
ture arises if the three-ball :13 is supposed to be filled with 
a ferroftuid subject to the same boundary condition at 
S 2=a:B. Next one imposes ftow structures to the 
ferroftuid, characterized by velocity fields ! v( r)}, which 
are singularity free at the surface S 2• This implies that 
the magnetization is dragged along by the ftow (corre­
sponding to coordinate transformations). In addition, the 
helicity Q 1t of the ftow field {v( r)} can also be computed 
by (15) using the replacements A(r)--+v(r) and 
B--+ V X v. Thus any singularity-free transformation of 
the magnetization structure willleave Q<Jf and Q1f invari­
ant. 

A representation similar to (18) of (16) for 3'.At=l=~ is 
not known to the authors, but the problem is studied in 
much detail by Berger and Field 18 to whom we refer for a 
more sophisticated treatment of this problem. Suppose, 
for the sake of simplicity, that (16) and (18) also apply to 
(15) when R3 is replaced by R3 U oo ~s3 (three-sphere) 
and that a· .M, = a • .At applies. Then (18) consists essential­
ly of three terms, 

(20) 

where .M. is the complement of .M. in S 3. The terms Q.M.M 
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and Q:iKM refer to entanglements of disclinations and 
magnetic ftux tubes being completely located inside .;H, 
and inside .M, respectively. Q:iKM =O is reasonable be­
cause even if the system expels helicity through ae.;n it 
will dissipate to nothing if .;H, does not represent an ideal 
magnetohydrodynamic plasma (vanishing electrical resis­
tance). The term Q.fi.M refers to pairs of loops, where at 
least one partner has support in .;H, and .;H, simultaneous­
ly. In order to represent Q.+üi in the form (18) we sup­
pose that a disclination piercing through two points of 
ae.;n is closed via a fictitious disclination segment, 
represented, e.g., by one line of the B field in Fig. 2(b). 
Entanglements between fictitious disclination segments 
will be fixed once and for ali after they come into ex­
istence and, therefore, will play no role in the following. 
This idea is very close to the concept of relative helicity 
developed by Berger and Field. 18 These authors also dis­
tinguish between externai and internai helicity ftux tubes. 
Internai helicity is related to a self-linking of a loop and 
corresponds to diagonal terms in (20). In the present for­
malism self-linking can be represented by a number of 
small ring-shaped disclination loops sliding along the 
main loop15 and is therefore included in (18), where diag­
onal terms vanish. 

For a NS ferromagnet we have a'.M=ae.M+a;8+a;.L 
in the simplest case, and, therefore, the second term in 
(16) can never be ignored and the first term even for 
ae.M=fiJ cannot be expressed in terms of (20) because 
M8 (r, T) is position dependent. Defi.ning, however, the 
dimensionless field 

m8(r,T)=M8(r,T)/M8(T)~O, 

where M 8 ( T) is the average saturation magnetization 
density, (18) may be replaced approximately by 

cl>'(aCa,aCb)=-1-J dx;J dyiEiik(x-y)k 
41T ac. acb lx-yl3 

Xm8 (x, T)m8 (y, T) . 

(18') 

One may also consider the approximation, where one sets 
a·.M=fiJ and uses a smoothed out weight function 
m8 (r, T). From this follows that Q'H is not anymore pro­
portional to a link invariant with respect to disclination 
loops and, therefore, changes continually upon displace­
ment of disclination lines. However, if aca and acb 
move exclusively in one of the submanifolds of .M, i.e., 8 
or .L, then during that time (18') is a link invariant. In 
case that aca and acb sweep over 8 and .L simultaneous­
ly, cl>'(aCa,acb) will oscillate around a time average, 
which is proportional to .P(aca,acb ). 

111. QUASISTATIC CHANGE OF TOPOLOGY 

In the following we will develop a simple method to de­
scribe the quasistatic change of topology ( aQ 'H Jat =O) in 
NS ferromagnets in connection with a phenomenological 
theory of the coercive force H c. The main idea underly­
ing this approach is the hypothesis that Hc is a measure 

of the strength of topological obstruction to which cross­
ing processes of disclinations in a network of disclinations 
are subject. This requires the introduction of a charac­
teristic time 'Tit• which has the significance of a nonlocal 
(in space and time) spin resistivity. 

A. Electromagnetics of topological obstruction 

It should be recalled, that the Gaussian linking number 
is the simplest known knot and link invariant and, be­
sides, that it does not resolve such objects particularly 
well. A better job in this respect is done by knot polyno­
mials, e.g., the Jones and Kauffman polynomials (see, 
e.g., Kauffman20 ). The point we want to make is that a 
given equivalence class ofthe texture group 1r3(S2) can be 
characterized by an entangled structure of oriented dis­
clination lines, which modulo orientation and disclination 
strength represent a knot or link and, as such, can be 
characterized by a knot polynomial. The essential point 
in the following, however, is only to have some qualita­
tive notion of knottedness and linking in analytical form. 
Even more important is the concept of a crossing process 
of disclinations, changing their entanglement. For the 
helicity Q'H and .;H, r;;;;t,S3 this may be computed over the 
formula (see, e.g., Ref. 15) 

d _2cJ 3 -d Q'H---2 3d rE·B, 
t (81T) s 

(21) 

where c is the speed of the light, and E is the electric fi.eld 
strength. E and B may now be computed over a retarded 
solution of Maxwell's equations (10), stated in Sec. 11, 
yielding the nonlocal relation Y=Y(H,M,E0,u) for 
Y=E and B. Here the dielectric and conductive proper­
ties of NS material enter in a natural fashion. In a 
simpler approach one may use a generalization of Ohm's 
law21 (for a quasistatic time change), 

E(x,t)=:7JJ:+:R (BXJ): 

(22) 

where 7J = 1 I u is the in verse conductivity, R the Hall 
coefficient, /31 and /32 are coefficients of nonlinear terms, 
and J is Ohm's current. Furthermore, we have intro­
duced the notation 

:7JJ:= J 3d 3x' Jt dt'7J(x,t;x',t')J(x',t') (23) 
S -oo -

generalizing the well-known laws to nonlocality in space 
and time and taking account of their tensor character. 
Inserting E into (21) yields 

;t Q'H= (82;)2 Js3d3r:[7J+(/31+/32)B2]J:·B 

and in linear response theory 

d 2c J 3 
dt Q'Hr;;;;t. (81T)2 si r:7JJ:·B. (21') 

From this follows that creation or annihilation of linking 
of disclinations is only possible if 'TJ > O, i.e., for finite 
resistance, applies at some finite space or time scales. Ob­
serve that the dissipated Joule's energy ( W1 ) is governed 
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by a similar law 

:t WJ= Js3d3r J·E= Js3d3r:71J:J' (24) 

where in the quasistatic approximation (a WJ ;at =O) the 
dot operator can be ignored and 71 = 71( O, O) corresponds 
to the de resistivity. 

Consider now dQ:H/dt for the space M with aeM=F0 
defined in such a fashion that 

(25) 

Here each term on the right-hand side (rhs) is computed 
via crossing processes and a sweeping motion in NS ma­
terial (see the end of Sec. 11) of disclinations in M, which 
yield, after completion, 

(26) 

For the sake of simplicity, the oscillatory contribution to 
(26) resulting from the sweeping motion of disclinations 
in NS ferromagnets will be ignored in the following. 

Note that not every change of M(r,t) will lead to 
àQJI=FO. Because different equivalence classes of 1T3(S2) 
can only be reached over singularities of the N(r,t) field, 
a significant change of QJI is only possible if two disclina­
tions cross each other. In that case no local inertial 
frame can be found where the E field vanishes, and there­
fore dQJI/dt=FO results. However, that does not imply 
àQJI=FO after completion of the process. Consider for 
instance the formation of a trefoil knot, for which QJI =O 
results because its (externai) Gaussian linking number 
vanishes. Its formation may proceed, e.g., from an un­
linked loop (QJI=O) via any odd number of self­
intersections or from a Hopf link ( QJI=FO) via suitable 
reconnection intermediately involving two pairs of mag­
netic N poles, 15 belonging to representations of the group 
1T2(S 2 ). Accordingly, crossing processes of disclinations 
are fundamental for any change of structure and are asso­
ciated with singularities of the N field in a semiclassical 
continuum approach. 

Before we proceed to the derivation of a more practical 
formula from (21 ') some qualitative remarks with respect 
to the significance of (21) and (21') will be made. Despite 
the fact that we here study an essentially magnetic prob­
lem of topological defects, any significant change of to­
pology measured by dQJI/dt involves the electric-field 
strength E as a simp1e consequence of Faraday's law. 
Accordingly, this law acts as a constraint for the topolog­
ical degrees of freedom of the system once some initial 
condition has been fixed. Note that for a- oo, in the 
case ofa superconductor, we have B=O dueto the Meiss­
ner effect, and, therefore, E·B=O. However, even in the 
case of an ideal conductor (noninteracting electrons) we 
have u(O)= oo, but u(ro)=FO dueto causality (Kramers­
Kronig) and therefore dQJI!dt=FO because 71= l/a 
enters (21) in a nonlocal fashion. Suppose, however, that 
we invoke the fictitious conductor, characterized by 
a ( ro) = oo ; then ali currents are perfectly screened and no 
electric field develops, i.e., D = 4~. Furthermore, 
Faraday's law implies a,B=O, and therefore any change 

( 8M) of M is transferred into a change ( 8H') of H+ H8 , 

i.e., 8H'= -41T8M, implying a winding and stretching of 
magnetic field lines, with the field energy 8% steadily in­
creasing. This implies that with each successive hys­
teresis cycle more and more energy is stored in the sys­
tem, and, therefore, no stationary (periodic) state can be 
reached. 

In the opposite case ofthe fictitious insulator u(ro)=:=O, 
(21') implies dQJI!dt- oo XO but still vanishes because 
there is no support for J=:=O. However, for a physical in­
sulator we have u(O)=O, but u(ro)=FO dueto causality, 
and, therefore, dQJI!dt=FO. Because coercive fields <Hc) 
of NS insulators and metais may be of the same order of 
magnitude, it is suggestive that (21') depends essentially 
on nonlocal properties of 71· 

B. Estimate of .,, for crossing processes 

Because the crossing process of two disclinations is a 
local phenomena involving essentially the cores of dis­
clinations of size rc -1TKs 1 anda transit time Tp we may 
set in (21') 

711 = f 3d 3r fT'dt71(r,t) 
(r c) O 

(27) 

and delete the dot operator, i.e., we will set 

dQJI- 2c J 3 _d ____ 271r 3d rJ·B' 
t (81T) s 

(21") 

where aQJI ;at =O and 711 represents the spin resistivity. 
Here we have set 71(r,t)=1/u(r,t) and assumed space­
time translation symmetry, i.e., u(r,t;r',t') 
=u(r-r',t -t'). In a more physical approach, we may 
use instead of (27) 

-J 3 f"' 711 = 3d r dt71(r,t)K(r,t), 
s o 

(27') 

where K (r, t) is a normalized transition amplitude, which 
may be computed at low temperatures via the Pauli-Van 
Vleck-Morrette formula22 

K(!" ·!"' ')=d t _1_ a S($,t;f,t') I 2 11/2 
!:>•t •!:> ,t e 21Ti asas-

x exp[(i Hí)S(s,t ;S"',t')]+O (li) . 

(28) 

Here S satisfies the usual Hamilton-Jacobi equation, 

as ;at + Jt'<s.as ;as.t>=o . 

In a model where the topological transition takes place 
over the intermediate formation of a pair of monopoles 
(see, e.g., Ref. 15), we have s= (r+,r-) and can compute 
Jf' from Jf +:H s introduced in Sec. 11. Using the bound­
ary conditions r+ =r- =r and r•+ =r·- =r' and the con­
straint that the topological transition starts at t and is 
completed at t', we can compute 

K(r-r',t -t')=:=K(r,t;r',t') 

using instanton techniques. 22 Equation (21 ") will only be 
valid if the crossing processes are sufficiently local in 
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space and time, i.e., spatial and temporal overlap of 
crossing processes cannot be described by (21"). 

From this discussion follows that even for a quasistatic 
change of topo1ogy the nonlocal resistivity 7J(r,t) enters 
the problem, weighted by a probability functional K (r, t ), 
which depends directly on the magnetic properties encod­
ed in H and H 8 introduced in Sec. 11. At higher temper­
atures, where a combined process of tunneling and 
thermally activated hopping takes place, similar argu­
ments can be used and the theoretical concepts developed 
by Affieck23 may be applied. Also related to the present 
problem is the issue of the sphaleron-induced baryon de­
cay, which is extensively studied in the literature. 24 

In order to derive a simple estimate of the order of 
magnitude of the activation barrier ( A.Ea ) for a crossing 
process of two disclinations the following model will be 
adapted. Consider first a disclination of the type illus­
trated in Fig. 2(a) with an azimuthal magnetization 
configuration, which may be represented as 
N = ( coscp, sincp) with cp = + arctany /x +~r /2. Similar 
considerations apply to cp = - arctanx /y, which, howev­
er, on a sphere produces a quadrupolar surface magneti­
zation. The energy of the azimuthal disclination will be 
purely of exchange type and of the order of 
jfrlr;;;t,21T'Jlln(R /a), where 1, R, anda are axial exten­
sion, radial extension of the field { N( r)}, and lattice con­
stant, respectively. Obviously the "core" energy of that 
disclination can be reduced by replacing a by r e >>a and 
letting {N(r)} for r <re turn smoothly into the axial 
direction. This yields the change of energy ll.Jfal of 
:Jt<rl 

fl.jfal=fl.Hs + A.H1 r;;;t,a21T'Mj(1T'r1>Z +(n1rllln(a Ire), 

(29) 

where a and {3 depend on {N(r)}, and re is determined 
from aA.H<al;are=O, as rer;;;t.({J/a) 112Ks 1• Here we have 
a< 1, {3< 1, and ll.Jfal<O, but need in addition a 
bootstrap condition between a and {3. The core's energy 
(/l.Jfeal) can be obtained from (29) by the replacement 
{3--.{3-1. It is, therefore, reasonable to set a+{J= 1, and 
use the boundary conditions to require ({3/a) 112 =1T'. 
This implies a= 1/~. 

Next we consider the crossing process of two disclina­
tions requiring a modifi.cation of {N(r)} over a linear ex­
tension d of their respective core tubes. Incompatibility 
of the two core structures will require an additional ener­
gy of the order of 

A.Ea r;;;t.a[21T'M§(1T'r1)d8 +21T'I(1T'r1 !d8 )] • (30) 

Here it has been assumed that re and ds are the charac­
teristic linear dimensions of the saddle-point 
confi.guration, associated with the characteristic magne­
tostatic and exchange energies, with the weighting factors 
a and (1-{3), respectively. From aA.Ea !ad8 =O follows 
d8 r;;;t.(2/1T')112rc and 

A.Ea r;;;t.v'27T[l +(1T'/2)112 ]Jre . (31) 

In a similar fashion one may derive from (29) an esti­
mate of the pinning energy A.EP" Supposing that the 

eff'ective linear dimension (i/Nc) over which the core of a 
disclination is pinned obeys ilNc <iiNc <<2re, one ob­
tains A.EPr;;;t.(2/1T')Ji/Ncln(i/Nc/2a), and A.EP <ll.Ea. 
This implies, that at temperatures where r e;::: dNc applies, 
pinning will play no more role. 

Dueto r e >>a, A.Ea is large compared to thermal ener­
gies at T < T c and therefore the energy barrier cannot be 
easily overcome by a thermal process. It is obvious, how­
ever, that A.Ea has to be computed over more sophisticat­
ed methods and presumably obeys A.Ea ;o::kBTc. The 
point here is that in NS material crossing processes of 
disclinations can take place at favorable locations of the 
labyrinthine domain, where J is reduced with respect to 
the bulk, and in addition has to be averaged over the 
specimen, relating it to T c. 

As a simp1e scaling relation ofthe transit time r, intro­
duced earlier we may set 

) "'• 1h,-Oh0 (1-T/Tc> , (32) 

where x 1 r;;;t,1, and h!r0 ;o::kBTc. Here we have used 
x,=zv, where z and v are the dynamic and correlation 
length (s) criticai exponents with z =2, v= f in mean­
fi.eld theory. 25 Equation (32) implies via (27') 
7J1 -7J(qc,(l)e), where the right-hand side indicates the 
Fourier transform with qer;;;t.21T'Irc-2Ks and (l)ce!21T'r;- 1, 

and shows that 7Jr diff'ers considerably from its de value 
7J = 7J( O, O). The latter enters essentially in the rate of dis­
sipation dW1 /dt (in the quasistatic limit aW1 /at =O) 
caused by a sweeping motion of disclinations. 

C. Phenomenologicallaws for H. ( T) 

Suppose now that QJt holds the status of a thermo­
dynamic (pseudo)potential, i.e., 

(33) 

and that the time change in (21) corresponds to a quasi­
static motion along the major (M,H)-hysteresis loop. 
Then one may assume that dQJfldH is an odd function 
of H, QJt [ ± oo ,M ( ± oo ), T] =0, implying for example 

dQJf I I(H~ll lHe ti, (34a) 
H-- -

dH ±H. [ ln(Hpl lHe >t2, (34b) 

for M(±Hc), a 1,a2 >0, 

where H c ~ H~il applies. The Ansãtze above have been 
constructed under the assumption that the degree of 
complexity of the network of disclinations is reftected in 
the ratio of change dQJt/dHc, and that the latter in­
creases with H c diminishing. Within a phenomenological 
approach it is assumed that the examp1es (34a) and (34b) 
app1y to diff'erent types of disclination entanglements and 
(or) diff'erent temperature regimes of magnetic polariza­
bility properties of the NS material. Within the quasi­
static approximation we can set aQ" ;at =O, and use 
dQJt!dt =(dH /dt)(dQJt!dH) and (21') [with 7Jr defined 
by (27')] in the form 
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dQ'H [_!]_ 1 d lnH [ [ dH l l ----;Jt- 'TJ<i> ---;u- a(H)sgn dt -b(H) . 

(35) 

For a (H) and b (H) are odd and even functions of H, re­
spectively, and J~,dHb(H)=O [as follows from 
Q'H(±oo,M(±oo),T)=O], one obtains for the examples 
(34) 

(36a) 

(36b) 

Here H~n, 'TJU> with 'TJ~n ~ 'T/r anda; are constants for T far 
away from the Curie temperature Te. The signum func­
tion in (35) provides for a discontinuity of dQ'H !dt at re­
turn points (dH !dt =O) of the magnetic field, which is 
typical for hysteresis phenomena. 

Note that under the plausible assumption that 
d'T] 1 /dT>O applies, it follows from (36) that Hc dimin­
ishes with increasing temperature. A change over from 
the law (34a) to (34b), or vice versa, is considered to be a 
consequence of a structural change of the network of dis­
clinations as indicated below (34). It is also obvious that 
such a changeover cannot only be reflected in the T 
dependence of 'T/t> because by construction this quantity 
depends essentially on local (crossing) processes, whereas 
(21) is a global quantity. 

Due to the chiral character of Q'H one may suspect 
that in the thermodynamic limit for the ensemble average 
(N--+ oo copies of the system considered), ( Q'H) =O is 
natural and only for the variance ( QJt )o;60 applies, and 
therefore (36) does not hold, whereas ( Q'H )o;60 would be 
a consequence of symmetry breaking, taking place upon 
relieving the constraints H = ± oo. Because usually 
IHI < oo, symmetry breaking may be fixed once for all as 
longas T <Te, and it is more appropriate to consider in­
stead of the ensemble individual samples. 

Consider now some more general properties of hys­
teresis loops. In Fig. 3 a few characteristic minor hys­
teresis loops are schematically drawn, which show a re­
turn point memory at the points A, B, and C, a property 
that can be explained by means of Preisach models of hys­
teresis. 26 Systems that do not show this property have 
fading memory, i.e., cycling the magnetic field H through 
a given interval [Hmin•Hmaxl does not produce closed 
curves in the H-M plane. Preisach models are usually 
based on a distribution of elementary hysteresis loops 
with upper and lower switching fields. Presumably a 
similar model can be constructed from a hierarchical 
model of knots and links, based on a mapping of such ob­
jects onto elementary hysteresis loops. Upper and lower 
switching fields have then to be brought in connection 
with the properties of knots and links parametrized, e.g., 
by polynomial invariants. From Fig. 3 also follows that 
the properties of a state at a certain point in the H -M 
plane, e.g., point B, do not depend only on its coordinates 
but on a whole hierarchy of parent states. Within our 
model we can assume that the latter states have as a 

M 

A 

H 

FIG. 3. Schematic representation of minor hysteresis loops 
showing the property of retum point memory indicated by A, 
B,andC. 

representative a precise knot or link invariant. The set of 
possible states 1>, e.g., ata point B =(H,M) according to 
the hypothesis (34) may then be characterized in a very 
restrictive model by the invariant Q'H(B, T), i.e., all 
members of the set 1> have to have the same Gaussian 
linking number. On the other hand one may also define 
( Q'H(B, T) )1' as an ensemble average over the set of 
states 1> at point B, in case our hypothesis does not apply. 
In that case ( Q'H(B, T) )1'=Q'H(H,M, T) is a thermo­
dynamic potential but does not satisfy (21) anymore, 
whereas 

d !dt ( Q'H(B, T) )1'-( 'T/r /7J~0 )d lnH !dt 

X [a (H)sgn(dH !dt)-b (H)] 

still applies, and consequently also the arguments leading 
to (36). 

Similar concepts may also be applied to a computation 
of the remanent magnetization M R, simply by the re­
placements of H c, H~0 , M, and a; in (34) and (36) by M R, 

M~n, H, and {30 respectively. There is no reason to re­
place 'T/r and 'TJ~i) because by construction these are local 
quantities, whereas the global laws (34) may depend on 
the applied field H implying the replacetpent a;-+f3;· A 
simple extension of the theory to minor hysteresis loops 
can be done formally by the replacement (Hc,MR) 
-+(H;,MR.) in our formulas, where the primed coordi­
nates are defined with respect to the barycenter of the 
minor loop. Such a model has the property of return 
point memory, and shows discontinuities of dQ'H !dt at 
return points of the magnetic field. We like to point out 
that the assumptions underlying the constructions of 
dQ'H /dH implied by (21) are also satisfied for their appli­
cation to the computation of properties indicated above. 
For instance for the minor symmetric hysteresis loops 
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(H~,MR) the degree of complexity of the magnetization 
configuration must increase with H~,MR -+0. Using the 

· area of the hysteresis loops as a measure of the energy 
wy> dissipated per cycle, in the quasistatic approxima­
tion we obtain with (36) 

wji>= cj'H·dM-H~MR -H;o+a;IIJ;>. (37) 

Because in conventional ferromagnets wji> obeys power 
laws with exponents depending on H'=IHmax-Hminl, 
e.g., a; 1/3; = 2 and 0.6 for small (Ray1eigh's law) and 
large (Steinmetz' law) amplitudes (see, e.g., Bozorth27 ), 

respectively, it can be expected that also in NS ferromag­
nets a and /3 will depend on H. 

IV, LOW-ENERGY EXCITATIONAL MODES 

In the following we will outline a qualitative theory of 
the structure of collective excitations in NS ferromagnets 
based on the exchange and magnetostatic (stray field) en­
ergy. In an ideal Heisenberg magnet without topological 
defects and vanishing internai fields the corresponding 
modes have the dispersion ro- k 2 for k -+0, have trans­
verse polarization, an infinite transverse correlation 
length 5,, andare called Goldstone modes. 25 Longitudi­
nal excitations of the order parameter have a finite corre­
lation length O< 5 < Ks 1 for T < T c and become of only 
low energy for T-+ T c. They will not be studied in detail 
here because they are a consequence of thermal produc­
tion and excitation of topological defects, which is 
beyond the scope of the present paper. Furthermore, no 
explicitly time-dependent effects as, for instance, the re­
laxation of modes will be studied although this is an im­
portant subject, since it affects the quasiparticle nature of 
the excitations (see Sec. VII). 

Suppose for the sake of simplicity that the internai field 
H;= H+ Hs vanishes. Recall that a uniform magnetiza­
tion in an ellipsoidally shaped specimen in the absence of 
crystal anisotropy is unstable against long-wavelength 
(dipolar) excitations as long as the demagnetization field 
<Hs) supercedes the applied field (H). This is the reason 
for the nonuniform magnetization in a NS ferromagnet 
for H =O in macroscopic samples of any shape with the 
exception of thin whiskers. The stray field energy Hs can 
then be computed over the interaction energy and selfen­
ergy, respectively, of a set of dipoles {P; J 

<ZL - 1 ~ 21T 2 
JTs- 2 f::. W;i + 3 ~ P; /!l; . (38) 

1-,-J I 

Here !l; is the volume attributed to a dipole, and 

W12 = [Pt'P2- 3(Pt'"êt2)(p2·"ê12)]/rj2 

is the interaction energy of dipoles at the points r 1 and r2• 

Furthermore, r 12 = lr1 -r2 1 and "?12 =r12/r 12 • 

In order to compute the sum in Hs we assume a regu­
lar densely packed·arrangement of dipoles in a volume of 
linear dimension 5nd• each dipole being confined to a 
volume unit !l and 5nd /!l 113 >> l. 5nd is a characteristic 
length for the macroscopic order parameter N(r), which 
is supposed to be aligned over a distance 5nd defined via 
[(N(r)·N(r+5nd)}-N(d], so that the modes obeying 

k5nd > 1 represent simple magnon excitations. 5nd can be 
identified as one of a set { 5~d J of characteristic length 
units of a network of disclinations. Setting 
A 0 = 1:1*0 W01 we obtain after Fourier transformation 
{p;}-+{p(k)J, 

41T l sin(k5nd)-(k5nd)cos(k5nd) I 
A 0(k)=n 3 -1/3 

u <k5nd > 

X {p(k)·p(-k)-3[p(k)·k][p(- k)·k]J (39) 

The "excitation" energy 8:JI'(k) (in the thermodynamic 
sense) attributed to the volume unit !l and a mode of 
wave vector k, may be represented in the form 

21T A A 
8:JI'(k)=J!lk 2n(k)·n(-k)+ n[p(k)·k][p(-k)·k] 

+ 21r [sin(k5ndl-k5ndcos<k5ndl I 
n <k5nd>3 

A A 

X(p(k)·p( -k)-3[p(k)·k][p( -k)·k]) . 

(40) 

Here the first term refers to the exchange energy, where 
n(k) is the Fourier transformation of the field N(r). In 
the regime k5nd >> 1, the third term above vanishes and 
the dipolar excitations are described by the second term, 
which is dispersionless but anisotropic. In the regime 
k5nd ~ 1, which has no physical significance within the 
present model (because it implies À.> 5nd) we have 

2 21T 
B:JI'(k)~J!lk n(k)·n(- k)+ 30 [p(k)·p( -k)] . (41) 

The modes obeying À.> 5nd represent excitations of the 
network of disclinations and will depend on the whole set 
{ 5~ J of characteristic lengths. In contrast to that, for 
the modes obeying 5ndk >> 1, and propagating un­
damped, 5nd represents a phase coherence length. Ob­
serving 

(sinx -x cosx)/x 3 :St (42) 

and the reality properties of {N(r)} and {p;}, 
n( -k)=n*(k), p( -k)=p*(k) (complex conjugate), it 
follows from (42) and the form of (40) that the dipolar 
modes within the present model are stable excitations, 
but that for small wave vectors their magnetostatic ener­
gy may become of the same order of magnitude as their 
exchange energy. 

Let us recall that Luttinger and Tisza28 have shown 
that for point dipoles on bcc and fcc lattices the fer­
romagnetic state has lowest energy, whereas on a se lat­
tice it is the antiferromagnetic state. For the ferromag­
netic state they obtain from the first term on the rhs of 
(38) the ground-state energy E2= -(21T/3)l:;P?I!l;. 
From this one may expect that for a stochastically and 
densely packed array of dipoles the dipolar ground state 
should still be ferromagnetically aligned. From (41) fol­
lows, however, that our method yields a vanishing (dipo­
lar) ground-state energy, because the second term on the 
rhs of (41) corresponds to the self-energy added to (38). If 
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that is only an artifact of the Fourier transformation, ap­
plied for the sake of simplicity to a uniform distribution 
of dipoles, is an open problem. Note that for an applica­
tion of the formalism to mesoscopic dipoles (attributed to 
nanocrystals) it is more convenient to add the self-energy 
to :H s as done in (38) because it will depend on relative 
orientation of dipoles. 

Suppose now that the magnetization of the volume unit 
n obeys the simple law 

p(k)=M8 !lx0 n(k) , (43) 

where x 0 ~ 1. Then we obtain for ksm >>I, using an 
average of 8:J/'(k)=8:J/í-(k)+8:J/8(k), 

8:Hí-(k)/8:H8(k)!;;;!.3(k/(K8 x0 ))2 • (44) 

Inserting for O the volume of the lattice unit cell requires 
x 0 = 1, and we obtain dominance of the magnetostatic 
energy for k < Ks /VJ. In case we refer n to the size of a 
nanocrystal (fiNe> we have x 0 < 1, implying that the 
magnetization of a nanocrystal in NS material is reduced 
with respect to a single nanocrystal beca use ( 1) nanocrys­
tals do not fit together tightly, and (2) dueto form anisot­
ropy and an irregular surface geometry, N(r) in nano­
crystals may be weakly nonuniform. For consistency of 
this model we need k ~ Tr !Oif~ and for that regime this 
implies 

max[8:J/í-(k)/8:J/8(k)]~3 [ 1~ ]
2 

(45) 
KsfiNcxn NC 

Accordingly dominance of magnetostatic energy arises 
for 

(46) 

The model may further be generalized to the case that 
the exchange constant ( J s) between nanocrystals is re­
duced with respect to the bulk (Jb ). This implies that the 
modes satisfying 

(47) 

amplify 8:H8(k) with respect to 8:Hí-(k), as follows from 
(44) with Ks 1 ~Ks1n=K,S 1(Js)<K,S 1 (Jb). Note that the 
number ofmodes in (47) for kn ~Tr/a is equal to the num­
ber of magnetic degrees of freedom of a single nanocrys­
tal, whereas the modes k < km describe the collective 
magnetic degrees of freedom of the NS ferromagnet. 

Let us point out that the ansatz (43) for fi!;;;!.ONc and 
x 0 < 1 is not very realistic because in that domain it 
should be replaced by a nonlinear law 

(43') 

which takes account of the fact that the magnetic surface 
charge may vary strongly with the orientation of N(r). 
This leads naturally to a trapping of the order parameter 
caused by the nontrivial structure of the labyrinthine 
domain .L, and it can be postulated safely that the majori­
ty of the modes k < km is frozen out at low temperatures. 
This effect is well known in the micromagnetics of small 
particles and is a consequence of form anisotropy. 27 

The physical significance of the model presented is that 
in an ideal Heisenberg magnet the magnetostatic energy 
modifies the dispersion and structure of magnons strong­
ly in the domain k ~ Ks /VJ. In contrast to that we have 
in a NS Heisenberg magnet additional degrees of freedom 
due to magnetically charged internai surfaces implying 
an additional modification for k ~ km < Ks /VJ. A com­
putation of the excitational modes is based on (9) and has 
been done by Cohen and Keffer29 for the case of a uni­
formly magnetized Heisenberg magnet (see also Ref. 30). 
Due to the constraint N 2(r)= 1, small amplitude excita­
tions [8N(r)] are transversally polarized to N(r). A 
computation of the excitational modes for our model of a 
NS Heisenberg magnet, however, is more involved be­
cause (43) has to be replaced by a nonlinear law (43') and, 
therefore, will not be presented here. Ultimately, howev­
er, one will have to apply the methods developed in Ref. 
28 to find the magnetic ground-state configurations of NS 
ferromagnets in the presence of the law (43'), and the 
method developed in Ref. 29 to verify its quantum­
mechanical stability. Due to the reduced symmetry o f a 
stochastic dense packing array of dipoles this calls for the 
diagonalization of large matrices corresponding to the 
quadratic form defined by (38) and (43'). Qualitatively 
the modes for k < km may be compared to the surface 
modes (Walker modes, see, e.g., Ref. 30) and rely essen­
tially on the structure of the labyrinthine domain. 

In order to understand the physical significance of 
magnetostatic modes we associate them with a charac­
teristic temperature T8 as follows. Using the replace­
ment k 2~2( 1-coska)/a 2 in 8:Hí-(k) we obtain a rough 
estimate for the ratio 

8:JI'(K8 /VJ)/8:Hí-(Tr/a)!;;;!.i;(aK8 )2!;;;!.TsiTc, (48) 

where T c is the Curie temperature. This implies for F e 
and Ni, T8 1Tc!;;;l.tX 10-2 and +x to-3, respectively. In 
a similar fashion, one can associate a characteristic tem­
perature T m with the modes k' ~ km, in case the linear 
law (43) applies, for which one obtains 
(Tm/T8 )!;;;!.(1/3)(K,S 2 /0if~)2 «1. From this follows 
that the characteristic temperatures Ts and T m are ex­
tremely small, and therefore the modes associated with 
them should be considerably populated thermally at 
T » T8 , which is still of the order of 1 K for Ni. This 
implies that nonlinearities of these modes play a major 
role. Because the T dependence of the saturation magne­
tization M 8 ( T) depends sensitively on the dispersion of 
the magnon excitations [e.g., the T 312 law requires 
(J)(k)-k 2 for k~O], it can be expected that at T < Tm 
and T < T8 , this law will change with respect to T > T8 . 

For the case that a nonlinear version (43') of the law 
(43) applies, implying the existence of frozen-in magne­
tostatic modes for k < km, T m will increase yielding 
T m >> T8 • Empirically this follows at least for Ni from 
the observation that aM8 (T)/3Tfor NS and PC material 
has the same low-temperature behavior, 2•3 and the reta­
tive capacity of the magnetic degrees of freedom for 
k<km is negligible for Tm>>T8 • However, in case 
T m ~ Ts holds, a modification of that law is expected. 
The qualitative estimate T m >> Ts in NS magnets is based 
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on the assumption that their magnetic ground state is 
nonuniform on the length scale dNc· In particular locally 
(the neighborhood of adjacent nanocrystals) the exchange 
and stray field energy will depend on the relative orienta­
tion of magnetization in adjacent nanocrystals. The 
point now is that releasing the trapped in modes requires 
a screening of magnetic charge and in addition a weaken­
ing of the effective exchange coupling between adjacent 
nanocrystals. The first mechanism may be provided by 
the dipolar modes k < Ks !v'3, once being strongly popu­
lated thermally, i.e., T m >> T8 is required. The second 
mechanism sets in once the regime of modes 
k ~ 1r !dNc > Ks !v'3 propagating in the labyrinth .L be­
comes thermally populated. 

On the other hand, the temperature interval [T8 ,Tm1 
may also be associated with the strong initial decrease of 
the coercive force in Ni (see Sec. VI), where no effect on 
aM8 (T)/aT is observed, implying Tm >>T8 • From this 
one may conclude that the modes k < km have the char­
acter of nontopological solitons, whose excitation is pro­
vided by thermal energy, and where T m marks roughly a 
transition from a frozen-in state into a plasma state. In 
this scenario topological defects, nontopological solitons, 
and magnetostatic modes form a hierarchy of excitations 
in a NS ferromagnet. In this sense the structure of the 
disclination network is strongly dependent on the proper­
ties of nontopological solitons. Once the latter form a 
plasma state they will provide for a partial screening of 
interactions within the network of disclinations leading 
to a softening of the latter and to a considerable reduc­
tion of the coercive force. In addition, pinning of the dis­
clination core may successively be reduced in the interval 
[ T8 , T m] and suppressed for T ~ T m. This may also be 
accompanied by a change of the law dQ'H!dHc at Tm as 
indicated by (34) in Sec. III. 

Let us briefty consider the significance of the collective 
degrees of freedom with k < 1r 10:/t upon approaching 
Te. Because in NS magnets we will have J, <Jb it is ob­
vious that these modes also play a major role for the lon­
gitudinal order parameter excitations. It follows then 
from (46) that for J8 =0 [implying K112(J, =0)=0] ali 
collective modes are dominated by magnetostatic energy, 
whereas for J, >O only those satisfying k < km 
=KsXoNc/V3. From this follows that upon approaching 
T c criticai ftuctuations eventually become dominated by 
long-range interaction implying mean-field behavior. The 
consequence of that for NS ferromagnets will be indicat­
ed in Sec. V. 

Eventually it is pointed out that the elastic relaxation 
time Te ( k) of modes obeying k > Ks !v'3 is geometrically 
confined by the linear dimension dNc of nanocrystals in 
the skeleton. A simple estimate of Te(k) is obtained as 
follows. Using the dispersion wr:5ck 2 for k >Ks!v'3 and 
the group velocity vg r:5 2ck one obtains Te ~ d NC /2ck. 
Because T > T8 represents the low-temperature regime 
(according to the estimates given earlier), the physical 
consequences of that for the behavior of the temperature 
laws for M 5 (T) and the specific heat due to magnons, 
may be considerable. This problem will be studied e1se­
where. 

V. MICROMAGNETIC APPUCATIONS 
TONS FERROMAGNETS 

In order to apply the present theory to a NS ferromag­
net the internai magnetic surface structure at a;.M. and 
a;B (see Fig. 1) must be accounted for, which implies in 
fact that such a system is not an ideal Heisenberg mag­
net. For the sake of simplicity we assume in the follow­
ing first a;.M. =9. Because the magnetic properties of 
nanocrystals and CS material differ, e.g., Ms in the latter 
is reduced by about 50% (Refs. 1-3) dueto a reduction 
of density, a;B is associated with a magnetic charge den­
sity, which extends to a depth of about tKs 1 to either 
side of a;B. However, this will not be associated with 
discontinuities of the N field, provided the exchange con­
stant J(r) and M8 (r,T) do not vanish along a;B. In that 
case the representation (16') of Hoprs invariant (15) or 
(16) is still valid, and sois its change in time given by (21) 
or (21'). 1t is the presence of the charged surfaces a;B, 
which essentially implies that NS ferromagnets differ 
from ideal Heisenberg magnets. This holds, of course, 
only modulo dissipative couplings and quantum excita­
tions. An example of the latter system may be europium 
sulfide (EuS), which has a small crystalline anisotropy 
constant and undergoes a classical Curie transition at 
Tc=l6.57 K. 31 Note that the boundaries a;B have 
different magnetic properties with respect to those of 
ae.M. (in the absence of pores extending to the visible sur­
face of the sample .M.) beca use a; 8 will be homeomorphic 
to a rather intricate two-manifold embedded in R3• The 
boundary conditions to which M( T,r) is subject at ae.M. 
and indicated earlier will therefore not apply at a;B due 
to the fact that dNcKs >> 1 is not realized, and, in addi­
tion, due to the possibility of screening of magnetic 
charge for Ks 1-ilNc· 

A. Model of the saturation m8RJ1etization 

Let us point out that the saturation magnetization 
!mNs(O) (in units of emu/gr) in NS Ni was determined in 
Ref. 2 in applied fields of H~ 5. 5 T by extrapolation to 
H =O and T =O, yielding 50 emu/gr in contrast to 59 
emu/gr in crystalline Ni. Because the applied field 
H r:5 5. 5 T corresponds in Ni to a characteristic length 
K]i 1r:52.55 nm, we have now Ks 1 ~3K]i 1 , implying that 
the magnetic moments should be well aligned and extra­
polation to !mNs(O) well defined. In that case we can 
compute an upper bound of!mNs(O) using only the second 
term of (5b) with a'.M.=ae.M.+a;B+a;.L. Setting Pc• PNs• 
and Pcs for the densities of the crystalline, NS, and CS 
material, respectively, and in an analogous fashion 
Mn(O), MNs(O), and Mcs(O) for the saturation magneti­
zations (volume densities) we obtain 

(49) 

Here x and y represent the volume fractions of crystalline 
and CS material, respectively. Setting PNs=apc, 
Pcs=f3pc, where 1 >a>/3, we obtain 
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< [ 1-{3/a I [ 1/a-1 ] W?Ns(O)_ l-{3 Wlc(Ol+ l/{3-l W'lcs(O), (50) 

where WlN8(0l=MNs(0)/pNS• etc. Setting a=0.8 and 
W?Ns e; O. 84Wlc for NS Ni (Refs. 2 and 3) and {3e;O. 5 (Ref. 
1) we obtain 

(51) 

Observe now that the magnetic moments of Fe, Co, 
and Ni depend on the local electronic environment, im­
plying that the moments increase with decreasing coordi­
nation number z of the lattice, and increasing interatomic 
distance. 32 In addition there is a dependence of the ex­
change constant J on the interatomic distance, qualita­
tively described by the Bethe-Slater curve. 27 U nder the 
preliminary assumption that J changes little in the CS 
material it follows from this that !Ines< O) should increase 
with respect to !me( O), i.e., 

(51') 

and therefore the inequality given above is rather inaccu­
rate for the equality sign. One may conclude now that 
J(r) entering (6) is strongly reduced in CS material dueto 
a reduction of the coordination number z (as follows from 
{3e;O. 5 ), implying that the susceptibility Xcs(H, T) of the 
CS material at H~ 5. 5 T is enhanced with respect to the 
crystalline material. As a matter of fact, one has to as­
sume that Xcs<H, T) is the susceptibility of a paramagnet 
with a magnetization density [Wlc8(0)-0.36Wlc(0)] 
::::O. 64Wlc (O) in the applied field H, and which vanishes 
upon extrapolation to H =0, in order that the quality 
sign in the relation (51) given above holds. 

The proper interpretation of our result is presumably 
that despite the strong applied fields (K.S 1/Kli 1::53) used 
to measure the saturation magnetization, 2•3 the magnetic 
susceptibility XNs(H, T) contains considerable contribu­
tions from magnetostatic sources in the sample. This 
would imply then that an extrapolation to zero magnetic 
field yields a magnetically nonuniform ground state, and 
the upper bound of W?N8(0) computed above strongly 
overestimates the experimental results. Note that this is 
certainly the case in the magnetic field domain 
Ks 1 /Kli 1 e; 1 because after turning off the magnetic field 
the system should relax into a nonuniform configuration, 
e.g., into that of Fig. 2(a). Consequently XNs(H, T) will 
also extrapolate into a configuration close to that and not 
to the uniform magnetic configuration assumed for the 
computation of the upper bound of W?Ns(O). Besides the 
interpretation given above a reduction of the upper 
bound may also be explained by the presence of trapped 
magnetic flux in the system, which in strong applied fields 
(K.S 1 /Kli 1 ::53) is less likely, observing that for a Néel wall 
we have (1TKs 1 /Kli 1 )e; 10 for He;5.5 T. 

B. Magnetization configuration close to planar surface 

An important problem is to find out how many open­
ended disclinations (piercing through a • .M ), closed loops 
of disclinations and entang1ed disclinations does the sys-

tem contain. This will certainly depend on the geometry 
of a • .At and its area, on the specific process of generation 
of the magnetic state, and the topological stability of the 
entangled structures. In particular due to 1TKs 1 > d Nc 
and 1TKs1-0(dNc> in NS ferromagnets, global magneti­
zation structures are constrained by optimization of local 
magnetostatic and exchange energy being compatible 
with the geometry of the externai surface. We postulate 
therefore that in the generic situation the system will 
contain many open-ended disclinations with their number 
being proportional to the surface area, and that they 
should be visible at the surface of the sample using suit­
able methods of observation. A model distribution for a 
planar surface a • .At with normal n = (O, O, 1), may be 
given in polar coordinates (r ,{3) and N 
= ( sin{3 cosr, sin{3 sin r, cos{3) in the form 

r( r)= ~ s;arctan [ y =Yi. )si+ 1T2 g(r, { r;,s;}) , 
i=t X x, 

S; E:l,rEa • .At , (52) 

{3(r)=.!!.. [1- ~ sf exp( -IR-r;IKs) I· sf=±l . 
2 i=! 

Here {r; J are the locations of singularities, and 
R=(X(r), Y(r)) is a smooth function of r, satisfying 
R( r; )=r;, i= 1, ... , N, whose form should be deter­
mined by means ofthe variational principie SH=O. Fur­
thermore, g in (52) is a smooth function, which should be 
chosen such, that for Ir-r; I<< Ir; -rj I and ali rj"l=r;, we 
get 

for s; = ± 1, implying V· N e; O, i.e., avoidance of magnetic 
volume charge in the neighborhood of the set {r; J. In 
(52) Ir; -rj IKs >> 1 is assumed, and sf represents the po­
larization in t direction of the core of the ith disclination, 
whereas s; represents its vorticity. In order to obtain a 
finite energy H for an infinitely extended system I.f's; =O 
is required. This is illustrated in Fig. 4 for N =4. For a 
curved surface a • .At, (52) has to be subject to a mapping 

( r<r ),{3(r) )-..( r'(r' ),{3'(r')) = ( r(r(r') ),{3(r(r'))) 

with r' ea • .At, and N is defined with respect to the nor­
mal n' to the tangent space T(a • .At) at r'. 

A simple continuation of (52) into the bulk is obtained 
via the replacement of {3(r) in (52) by 

1T [ N (1 +s() -IR-r-IK ] 
{3(r,z)=2J(zKs) 1- i~! 2 e ' s 

1T N (l-s;J -IR-r;IKs 

+2 i~! 2 e , 
(52') 

where f(zKs) is subject to the boundary conditions 
f (O)= f ( d Ks) = 1 ( d is the thickness of the specimen) 
and determined by the variational principie SH=O. En­
tanglements of disclinations are generated via the map­
pings r; -..r;(z) for i= 1, ... , N. The magnetic surface 
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singularities move, upon change of the applied magnetic 
field, similarly as do Bloch walls, i.e, r;-H;(t) and 
R-.R(r,t). Observe that for IR-r;I>Ks 1 we have 
{J( r) r;;;:, 1r /2 and the magnetization distribution given 
above corresponds to that of an XY model. Alternatively 
we have for IR-r;l <K,S 1, {J(r)=I=7T/2 and escape of the 
magnetization into the third direction (~ coordinate) el­
iminating the vortex-type singularities at r= {r;} occur­
ring in an XY model. This implies that the magnetic sur­
face charge is not concentrated at r=r; but in a disk­
shaped area of radius 1TKs 1 (see Sec. 11). In addition (52) 
implies for g = 1 the presence of a magnetic charge densi­
ty Pm = -V·M, which behaves for R(r)r;;;;:.r, and 

Ir-r; I« lr;-r11 for ali {r1=1=r;} approximately as 
Pm(r)-s;flr-r;l for lr-r;IK8 »1. The fact that the 
order-parameter field is charged cannot be avoided in this 
approach. A change of polarization of the core of a dis­
clination (s; ___. -s[), may be described using (52') with 
s; _.s;(t). For s;(t}=O, this yields a core singularity, 
which is unavoidable in such a magnetization reversal, 
and corresponds to the topological singularities studied in 
Sec. III. 

In the simplest case one may set in (52) and (52') the 
functions f, g=l, R(r)r;;;;:.r, and d<<lr;-r11 for i=l=j. 
Then one obtains for the energy (4) of the magnetization 
structure (52) for a system of linear dimension L 

N N 
J{r;;;;:, -Jda ~ s;s1 In( Ir; -r1IK8 )-J(dK8 ) ~ s;s1[tJ+r ln(L/Ir;-r11 l]lr;-r11 

i">l=j i,j 

N S;S· _ N s;s;(l-2u) N 2 -l N ,2 _ 2 N , 

+J d 2S ~ I _ 1 I +JKs 2E ~ ~ I _ l2 2 112 +J dÃ1 ~ s; +JK8 Ã2 .~ s; -K8 dH Ã3 .~ s; . 
i>FJ r; r1 u=O,l i>FO-uli (r; r1 +ud ) i=t •=l •=l 

Here a to E, and }..1 to }..3 are positive 0(1) constants. The 
first term in (53) refers to the exchange energy, the second 
and third terms to the magnetostatic energy of bulk mag­
netic charge, and the fourth term represents the interac­
tion energy of magnetic surface charge. The last three 
terms refer to the self-energy of the core of disclinations 
and to their magnetostatic energy in the applied field H. 
The appearance of L in the second term of (53) signals, 
that lateral boundary conditions will play a role except if 
r=O or :I;,1s;s1lr;-r1I=O. Ifthe latter condition for a 
regular lattice arrangement of disclinations can be 
satisfied is doubtful. Because for that one may require 
:I;s;r; =O, implying :I;,1s;s1 Ir; -r1 12=0 and from which 
follows :I;,1s;s1lr;-r1I=I=O. The energy J{ should be 
compared to JI0=(21TM8 -H)M8 V, where V is the 
volume of the specimen, and which applies to a "normal" 
magnetization. Only for J{-JfO <O, and J{-N such a 
model makes sense, but due to the difficulties produced 
by the second term of (53) the problem has not been 
resolved so far. 

The structures described by (52) and (52') are, in fact, 
not general enough because they do not describe disclina­
tion cores being oriented parallel to the surface, e.g., in 
the form of rings. An ansatz describing that situation is 
given by (60), but is much more difficult to handle. Con­
sider, e.g., a ring-shaped disclination between two planar 
surfaces. Then the field N(r) forms a toroidal 
configuration, and for N(r) at reae.M. being tangential to 
the externai surface, a straight disclination passes 
through the center of the ring leaving magnetic poles at 
points where it pierces through the surface. The situa­
tion may be compared to that arising in a Rayleigh­
Bénard system, 33 when N( r) is mapped onto the field 
lines of the ftow of a single convection cell of polygonal 
shape. Extension of the model distribution to a (hexago­
nal) lattice of (polygonal) rings, however, makes the anal-

(53) 

ogy even closer. It is also suggestive that some of the 
methods, in particular the stability analysis, developed in 
this field may also be applied successfully to the present 
problem. Furthermore, it is possible that some of the 
regular features of domain structures observed in classi­
cal ferromagnets are also reproduced in NS material. In 
this context we like to point out that the imprint of dis­
clinations, in the examples considered above, at a surface 
oriented perpendicular to their orientation will be a tex­
ture reftecting the lD nature of their cores. For the case 
that the polarization { s;} of cores alternates in space the 
formation of domain structures at the surface is conceiv­
able. Furthermore, for very thin films and K,S 1 <<Kif1, 

FIG. 4. Example of quadrupolar order parameter field on a 
flat surface and on the S 2 surface of a solid ball :B. In the latter 
case points along the dashed drawn circumference are identified 
to a point. The figure may also be viewed as stereographic pro­
jection of S 2 on Euclidean plane with the dashed drawn circle 
moved to intinity and corresponding, e.g., to the north pole of 
S 2• Disclination lines are drawn dashed and connect positive 
and negative magnetic poles through bulk of :13. 
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demagnetization of planar surface may be accomplished 
over a domain structure. 

C. Asymptotic equilibrium configuration 

Another interesting problem is the computation of the 
internai energy :JI(H,M, T) along some (M,H)-hysteresis 
curve. From a topological point of view this problem 
may be attacked by the methods developed recently by 
Motfatt. 34 This author studies the asymptotic equilibri­
um configurations of knots of any complexity, which he 
associates with positive numbers mi 2: m0 >O, 
(mi+I 2: mi)i=l,2,3, ... and which he calls the spectrum ofa 
knot with m0 referring to its ground state. The equilibri­
um configurations are reached via an incompressible flow 

v= 1: vi(j). 
j 

Here it is assumed that magnetic configurations in a 
volume V of .M can be divided into knotted flux tubes (la­
beled by j) along which the magnetic flux 
clli(jl= f A.d 2r·B(r) is conserved, i.e., the flux tube is 

J 

bounded by a magnetic surface. The volume of the jth 
flux tube is Vi(jl and its cross section and linear extension 
is Ai(jl- VMf, Li(j)- V/ôf, respectively. Using 

c~~;(jl~41T f d 2r·M(r) (56) 
Ai(j) 

one obtains (55a), where mi(jl is the ith number of the jth 
knot and m;(jl-mi(jl• H=Hh0• For a set oflinked flux 
tubes of ditferent strengths the spectral numbers in (55a) 
are not all independent. The terms on the right-hand side 
of (55a) refer to stray field, exchange, and magnetostatic 
energy, respectively. The sum in the last term of (55a) 
runs only over open-ended flux tubes extending from r} 
to r f, whereas in the first term it runs over open-ended 
and closed-flux tubes as well. Although Motfatt34 does 
not give a prescription how to compute the topological 
invariants { md, it can be assumed that they also do not 
vanish for open-ended and braided flux tubes using the 
concepts explained below (20). Equations (55) apply for 
(KH/Ks)2<<1. 

Within our theory the motion alonga (M,H) hysteresis 
curve can be brought in connection with topological 
transmutations of knots and links and a reversible change 
of the magnetization. On account of that, it cannot be a 
ditferentiable curve but may have a fractal character. 
Mobility of topological defects may be reduced if they are 
located at pinning centers of the surface and the bulk, 
e.g., pores, which confine the tubelike core of a disclina­
tion. Excitations of the order parameter in that case may 
be described by subjecting it to local S0(2) transforma­
tions at ae.At and suitable extensions into the bulk. In ad-

field {v} , and in the present context this may be replaced 
by the corresponding volume preserving ditfeomorphism 
of the N( r) field. See the remark made in Sec. li in con­
nection with the Mõbius transformation (19) of S 2• Re­
laxation in the system comes to a halt, once ditferent 
parts of flux tubes come into contact and provide topo­
logical barriers to stabilize :H. Rewriting (5a) and (7) in 
theform 

:Hs+Hn=--1-f d 3rB2--1-f d 3rH·B 
81T .M, 41T .M, 

+21T f d 3r M 2(r) 
.M, 

(54) 

we obtain for (4) in a tentative translation of Motfatt's34 

approach to the present problem 

(55a) 

(55b) 

dition pinning may be realized over the form ofR(r,t) in 
(52). Depending on the size (dP) of a pore the singularity 
associated to (13) will submerge below the visible surface 
of the sample and in case it extends all through .M in a 
simple fashion we have, e.g., .M s.:~- pore s.: solid 2 
torus, where ~ is the solid ball, it may disappear. How­
ever, as long as d P ~ 1TK s 1 it should still be visible at the 
surface. 

D. Surface coated (NiO) NS Ni 

Suppose now that the system contains internai sur­
faces, i.e., ai.M#:9. This situation will apply in the pres­
ence of boles and pores in the NS material and implies 
that magnetic surface charge has to be taken account of 
at ai.M, aiS, and ae.M. The simplest situation presum­
ably arises for ai..tn=ais and for a model where the 
nanocrystals of S are not joined together by magnetic 
grain boundaries but nonmagnetic material. This case 
applies roughly to NS Ni, where nanometer-sized crystals 
are surface coated with NiO. 2•3 Because NiO is antifer­
romagnetic ( T N- 520 K) and insulating it will disrupt 
the exchange coupling along aiS', where S' is the mag­
netic skeleton indicated in Fig. 5 forming a subskeleton of 
the mechanical skeleton S. Similarly .M' c.M represents 
the magnetic part of the sample. The hypothetical struc­
ture indicated in Fig. 5 is supposed to arise during the 
formation process of the NS material, where it must be 
assumed that individual nanocrystals are subject to severe 
plastic deformation, changing the topology of their coats. 
For instance it is possible that S' forms an infinitely ex­
tended cluster, which may be probed via the electrical 
properties of the NS material. In any case the 
significance of the exchange constant J for such NS ma­
terial is strongly reduced, whereas the importance of 
crystalline anisotropy and particularly of stray fields has 
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Ni-Ni-boundary NiO-NiO-boundary Ni-NiO-boundary 

FIG. 5. Schematic illustration of a two-dimensional cross 
section of a NS material, whose building blocks are Ni nano­
crystals surface coated with NiO. The coats of nanocrystals are 
indicated by dashed drawn !ines. The labyrinth .L contains CS 
material composed mainly of NiO. The components of the 
mechanical skeleton .f are joined by three types of grain boun­
daries Ni-Ni, Ni-NiO and NiO-NiO. The components of the 
magnetic skeleton .f' are Ni nanocrystals joined by Ni-Ni grain 
boundaries. The magnetic labyrinth .L' is defined via 
.L'+ .f' =.M' but is not indicated. The characteristic lengths 
d ~c, d ~c. and d ~c are defined with respect to .f' and .L' in anal­
ogy to Fig. 1. 

increased. The latter determine the collective effects in 
the system, similarly as magnetoelastic energy, which has 
less significance for K s 1 < K M 1• 

Suppose for the sake of simplicity that no Ni-Ni grain 
boundaries exist, i.e., 8' consists of individual Ni nano­
crystals. Because now no Néel or Bloch walls between 
nanocrystals are needed to minimize crystalline anisotro­
PY of the magnetic ske1eton, it could be assumed that 
each Ni nanocrystal is magnetized in a magnetically weak 
direction, similarly as in ferromagnetic micrometer-sized 
powders or in ferrofluids. 35 However, the area A 
spanned by a;8' and being covered by magnetic charge is 
considerably larger in NS ferromagnets and therefore the 
characteristic length Ks 1 is here much more important. 
Screening of magnetic charge will not only be realized 
over the small scale êl~c (see Fig. 5) but also across Ni 
nanocrystals. 

The point here is that the assumption "magnetically 
weak directions of adjacent nanocrystals are stochastical­
ly distributed" implies that magnetic surface charge at 
adjacent boundaries is a1so stochastically distributed and 
therefore is badly described by dipolar layers. As a 
consequence, one gets larger-range interactions implying 
an increase of magnetostatic energy with respect to the 
aligned case. Suppose now that the magnetization of the 
central part of a nanocrystal is aligned along a magneti­
cally weak direction. In that case each nanocrystal may 
be decorated with a superficial Néel wall of a rotation an­
gle e and depth 9Ks 1 in order to obtain a smooth mag­
netization distribution between adjacent nanocrystals. 

This yields for 9Ks 1 <<d~c effectively the volume ratio, 

(57) 

to optimize crystalline anisotropy. Using es.:1r/6 one 
obtains r s.: f. Observe that the N ée1 walls contain now 
the extra magnetostatic energy needed to adjust the mag­
netization configuration to the weak directions. 
This implies that we obtain for the ratio of gain of crys­

tal anisotropy (- áEK) to loss of magnetostatic (áEs) 
energy of such a configuration the rough estimate 

(58) 

where the factor 9 2 cancels in the nominator and denom­
inator. This implies áEK + áEs >O, i.e., loss of magne­
tostatic energy dominates, and therefore crystalline an­
isotropy again will play no role. 

For the case that nonometer-sized crystals have an ap­
proximate spherical shape the arguments given above im­
ply that the N field will extend more or less smoothly 
over the magnetic skeleton and Hopfs invariant may be 
computed in a similar fashion as indicated in Sec. 11, ex­
cept that now disclinations may have support in magnetic 
and nonmagnetic material as well. Observe, however, 
that the presence of nonmagnetic material allows antipar­
allel order-parameter configurations at interfaces bound­
ed by disclination loops of half integer strength S, simi­
larly as in liquid crystals (see Sec. 11) because the dom­
inating exchange energy (6) vanishes there. In contrast to 
integer valued disclination loops the latter are essentially 
confined to move in nonmagnetic material. The presence 
of half-integer disclination loops allows the formation of 
energetically favorable branch points in the disclination 
network and therefore the situation is different with 
respect to that, where a;.At=lil. 

It should be recalled that surface coated NS Ni may 
have some similarity with the magnetic granular solids 
consisting of nanometer-sized metal granules embedded 
in an insulating matrix (Liou and Chien, 36 Gavrin and 
Chien37 ), e.g., Ni-(Si02, Al20 3 ). Particle sizes range be­
tween 1 and 10 nm, and the insulating matrix extends 
over -50 vol. %, which is certainly larger than in the 
case of surface coated Ni. However, the order of magni­
tudes in quenched ferrofluids consisting, e.g., of mag­
netite (Fe30 4 ) particles studied by Luo et a/. 10 are con­
siderably different. Particle sizes are of the order of - 5 
nm and nonmagnetic coats -2 nm thick, whereas pack­
ing fractions range from '11=0.002-0.04. Interaction in 
such systems can be approximated by magnetic dipole in­
teraction and, as Luo et a/. 10 show, clear features of ran­
dom crystalline anisotropy similar to what is found in 
amorphous ferromagnets are observed. 

An interesting problem with NiO-surface-coated Ni 
crystals in NS material is the behavior of antiferromagne­
tism if it still exists. Beca use the latter is now confined to 
the labyrinthine structure .L' it may reflect the geometric 
properties of this object. In case that NiO is in an amor­
phous state crystalline anisotropy may also play no role. 
Within a semiclassical approach antiferromagnetism may 
then be described, if it still exists, by the Hamiltonian .711 
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given by (6). 15 In addition, Hoprs invariant may be com­
puted via (15) and (15'), where .M represents the magnetic 
labyrinth .L' and A and B are fictitious vector potential 
and magnetic induction field defined according to Kundu 
and Rybakov. 14 However, now ai.L' has a complex 
geometric character and is not simply connected, and be­
sides that boundary conditions at ai.L' are less stringent 
and therefore a similar analysis as displayed in connec­
tion with (20) is not any more reasonable. Furthermore, 
the time change of Q:H may be computed according to 
(21), but (21') is now not well defined. 

Antiferromagnetism in NS materiais occurs in FeF2, 

and CoO. 1 Its theoretical analysis is simplified with 
respect to ferromagnetism in Fe, Co, and Ni, because 
now :Hs =0. In addition crystal anisotropy implying the 
presence of antiphase boundaries in PC material will also 
play no role in NS antiferromagnets, if Ki 1 >>dNc ap­
plies, and antiferromagnetism is not destroyed in .L' due 
to its frustration in a modified structural short-range or­
der. Accordingly such systems may be considered as 
ideal Heisenberg antiferromagnets. If it is assumed that 
.L is nonmagnetic one must still make certain assump­
tions about the boundary conditions at ais and ae.M, in 
order to compute the defect structure corresponding to 
(6). This problem has not been analyzed so far. 

E. Two-step thermal magnetization disordering 

Eventually we consider brietly the two-step magnetiza­
tion disordering2•3 mentioned in the Introduction. Ac­
cording to the arguments presented at the beginning of 
this section, the exchange coupling and magnetization 
(volume) density in the CS material of NS Ni should be 
reduced with respect to crystalline Ni. On account of 
that it will disorder below Te. However, dueto the cou­
pling of magnetic moments at the boundary between the 
domains .L and S of the NS material, disordering will not 
occur in the form of a phase transition. The point is that 
the magnetic moments within the CS material (.L ) may 
be described to form a quasi-two-dimensional Heisenberg 
magnet subject to externai fields (the stray fields and the 
boundary conditions), which stabilize the order parame­
ter in this subsystem at T >O. However, due to the fact 
that .L represents a multiconnected quasi-20 space (with 
a Hausdorff dimension d H > 2) it is possible that even 
without externai fields long-range order in .L is possible 
for T < T cs < T c. In that case it would be plausible to as­
socia te the magnetization reduction observed by Kisker2 

at - 85 K below T c with a smoothed out phase transition 
at T cs ~ T c1 = T c -85 K. If that holds to be true, a qual­
itative change of the situation for temperatures 
T se < T < T c arises, beca use there the CS material may 
be assumed to be paramagnetic and provide efficient mag­
netic shielding21 of the surface magnetic charge on the 
nanocrystals of S. In the case that the CS material (.L) is 
highly permeable the magnetism is essentially confined to 
S without severe boundary conditions at ais. This im­
plies that the significance of crystalline anisotropy may be 
increased depending on the crystallographic structure of 
S. lt should be observed that even a small exchange con-

stant (J s) between adjacent nanocrystals does not imply a 
considerable reduction of T c of the NS ferromagnet. The 
point is that even for T cs <<Te, but dNc <<dNc• an 
effective decoupling of adjacent nanocrystals is only pos­
sible once the magnetic correlation length ( scs) of the la­
byrinthine domain satisfies scs <dNc· 

Let us point out that the scenario indicated above is 
not necessarily realized experimentally due to the obser­
vation of grain growth at temperature T'iie Tc1 (Refs. 2 
and 3) because in the absence of that process T c 1 ~ T c 
may be observed, i.e., a reduction of the Curie tempera­
ture in NS Ni. The origin of the latter behavior would be 
super paramagnetic behavior of nanocrystals, at least of 
those belonging to the small sized part of the crystal size 
distribution function. 

Consider brietly the fate of the topological theory of 
magnetism upon approaching the phase transition at Te. 
Obviously there is a competition between Ks 1 and the 
magnetic correlation length S· Due to M s< T)- ,13 and 
S"-T-v, where 7"=11-T/Tci, and {3 and v are criticai 
exponents with {3 ~v, s?: Ks 1 sufficiently close to T c will 
arise. In that case criticai phenomena will be dominated 
by Ks 1 and due to the long-range magnetostatic interac­
tion logarithmically modified mean-field behavior i.e., 
{3=v= 1/2 may be observed. Such a crossover, however, 
occurs only relatively close to Te. Further below Te, 
where s < Ks 1 holds, criticai phenomena will not optim­
ize the magnetostatic energy, and therefore ali types of 
magnetization topologies, which can be excited thermally 
are possible. The problem is therefore to find out if ob­
struction to topology changing processes also vanishes 
because this would imply that hysteresis loops already at 
temperature below T c collapse to lines, which is unlikely. 
Presumably, high-energy short-range spin tluctuations 
reduce topological obstruction continuously upon ap­
proaching Te, without ever vanishing. 

VI. THE COERCIVE FORCE 

In the following part the problem of the coercive force 
Hc in ns material is approached. According to Refs. 2 
and 3 one obtains H~-100 Oe and -60 Oe for NS Ni 
without and with surface coating, respectively extrapolat­
ed to O K, whereas the theoretical value due to crystalline 
anisotropy is -1600 Oe. In polycrystalline Ni, Hc is of 
the order of a few oersteds. 7 The coercive force H c for 
NS Ni without surface coating drops to - 5 Oe at -50 K 
and stays constant ata value of -10 Oe far beyond am­
bient temperature. Surface coated NS Ni shows 1ess pro­
nounced temperature dependence of H 0 dropping ap­
proximately according to an exponential law 
Hc -H~exp[ -(ln2/50)TK] to -160 Oe at -100 K, and 
approaching -70 Oe at ambient temperature in a linear 
fashion. 2•3 

A. Intrinsic and extrinsic motion of-disclinations 

An interpretation within the preceding theory will now 
be attempted. First, on account of the absence of Bloch 
and Née1 walls in the system, remagnetization processes 
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do not occur over the inotion of domain walls, 4 but via 
the intrinsic and extrinsic motion of disclinations. Intrin­
sic and extrinsic motion of disclinations refer to a polar­
ization reversal [S!- -s; in (53)] in their cores and a 
spatial displacement of their cores, respectively, and qual­
itatively correspond to rotational and domain-wall 
motion, respectively, in classical micromagnetics. 6 Note 
that the origin of Brown's paradox38 in polycrystalline 
samples lies in the fact that no nucleation of domain walls 
is needed, but that those are already present at sharp 
comers, edges, etc., of the sample, whereto they have 
been forced to retreat by a strong magnetic field, and thus 
act as seeds of domain structures. In a reversed applied 
field they can easily be set in motion and coercive force 
will mainly depend on the distribution of pinning centers. 
In small monodomain particles domain walls do not exist 
and therefore they will approach the theoretical value of 
Hc corresponding to some rotational mode reversal. 7 

Seeds of magnetization structure in the present problem 
are partly classified by the equivalence classes of the tex­
ture group 1T3(S2 ) and may consist of entangled disclina­
tion loops constrained by structural anomalies of NS ma­
terial. 

Magnetization reversal may occur over intrinsic and 
extrinsic motion of disclinations, and the respective coer­
cive fields will depend on the size of disclination cores 
and the strength of topological obstruction for crossing 
processes in the network of disclinations (see Sec. IV), re­
spectively. A rough estimate of H~0 for intrinsic motion 
can be obtained by viewing the core of a disclination as a 
thin cylinder of radius r c. Then a change of polarization, 
e.g., described by (52') over S'--S', via some appropri­
ate rotational motion (see, e.g., Trauble7) yields 

H~0!1030e~3.09v'21T!(rcKs)2 • (59) 

Using rc ~1TKs 1 we obtain H~0 ~780 Oe, which can be 
considered as an upper T-independent bound of Hc in Ni 
in the case where it is modeled as an ideal Heisenberg 
magnet. For r c> 1TKs 1, H~0 diminishes, but an increase 
of rc cannot be easily driven by H, because of 
Ks 1 /K ;li)<< 1. In addition, one has a bottleneck effect, 

c 

i.e., r c in (59) is govemed by the tightest part of the tube. 
On account of the experimental observations2•3 and the 
estimate of H~0 given we expect that H~el ~H~0• The 
point now is that H~el-o applies for an ideal Heisenberg 
magnet, where no pinning exists and topological obstruc­
tion is absent (7J= co, see Sec. 111). For the case 71=0, 
the topological character (a ) of a magnetization 
configuration is fixed once for ever and can be represent­
ed by the pair (H~al,Mjrl), with H~al ~o. Mkal ~M8 • 
For a NS ferromagnet we expect that H~el determines Hc. 

B. Surface-coated NS Ni versus NS Ni 

From the observation that surface-coated NS Ni has an 
increased coercive force with respect to NS Ni may either 
follow that the topological entanglement of disclinations 
is stronger there, or that crossing processes of disclina­
tions are faced with severer obstructions, or that disclina­
tions are less mobile due to pinning. Presumably all three 

mechanisms apply because a reduction of exchange ener­
gy implies a more nonuniform magnetic state leading to 
more effective pinning and to the possibility of more com­
plex entanglements. The situation is slightly counterin­
tuitive because releasing constraints in the system (decou­
pling exchange between the joints of the mechanical 
skeleton 8, i.e., replacing 8 by 8') leads to stronger ob­
struction of magnetization processes, i.e., increased Hc. 
As a matter of fact, this may be viewed as an example of 
Braess' paradox39 applying to noncooperative games and 
to systems where Kirchhoff's law (e.g., V· B =O) holds. 40 

Pinning effects may be associated with internai surface 
structures in the form of pores. Note in this respect the 
possibility of existence of half-integer strength disclina­
tion loops confined to nonmagnetic material acting as 
natural pinning centers when incorporated in a branched 
disclination network as indicated in Sec. V. In addition, 
in the case o f d cc > d NC the crystallographic weak direc­
tions in single crystals may be replaced by a bundle of 
"weak" curves (whose structure is determined by 8') 
along which crystalline anisotropy energy is optimized. 
This may lead to a trapping of magnetic ftux along a sys­
tem of entangled curves. A similar concept of weak lines 
can be developed for the magneto-static energy, for non­
spherical nanocrystals and specific structures of 8'. 

A model distribution [for the 0(3)-order parameter in 
the bulk, N(r)] derived from Ref. 14 may be ofthe form 

N Y-y 
y(r)= 11~1S,.arctan X -x: +v(r), S,. EZ 

/3(r)=arccosw(r), 
(60) 

where R=(X(r), Y(r)) is defined in (52) and the func­
tions w(r) and v(r) are subject to the boundary condi­
tions 

w(r,. )=S~, r,. eac,., n = 1, ... ,M , (61a) 

w(rm)=S:,., rmEaCm, m=M+1, ... ,N, (61b) 

w(r)=O, rEae.Ht- {r;], 

{r;]=ae.Htn{ac,.],.= 1, ... ,M, (61c) 

âv(i"k)=21TSk, i"kECk, k=1, ... ,N. (61d) 

Here { ac,.] and { acm ] denote open-ended and closed 
disclinations cores in .Ht, respectively, and Cm is the cut 
surface spanned by acm. The function w(r) is unique 
and differentiable assuming extremai values along dis­
clination cores, i.e., S~,s:,. E { ±1 ], where v(r) is discon­
tinuous over the cut surfaces as indicated by (61d). For 
(16') one obtains with (60) 

QJt- ~ s,.smto-s~s:,.><I><ac,.,acm>, (62) 
n<m 

where the factor t< 1-S~s:,. ) may also be included in the 
definition of <1>. 

This situation is sketched in Fig. 6 for a cross section 
along the xy plane in the bulk, where disclinations are as­
sumed pairwise linked. Application of a magnetic field 
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FIG. 6. Schematic representation of a section of a latticelike 
structure of pairwise entangled disclination loops via a planar 
cross section in the bulk. Small circles indicate open-ended dis­
clinations and large circles closed loops of disclinations. A 
round arrow indicates disclination strength s. and Sm, whereas 
up and down arrows correspond toS~, s;, = 1, and -1, respec­
tively. 

H > O will yield growth and contraction of large circles 
surrounding small circles with an up and a down arrow, 
respectively. Nontrivial topological processes imply 
change of linking. The detailed form of { acn } and 
{ acm } lines will depend on the structure of the NS fer­
romagnet and the processing of its magnetic structure. 
Suppose, for instance, that in surface-coated NS Ni the 
system of lines { acn l and { acm l is strongly trapped in 
the labyrinthine domain .L indicated in Fig. 5. Then a 
change of magnetization upon application of a magnetic 
field will essentially take place over rotation of N(r) 
counter acted by local stray fields. For NS Ni such a 
trapping of disclinations is less likely because exchange 
coupling between 8 and .L will prevent it; change of mag­
netization in NS Ni is then a consequence of the sweeping 
motion of the { acm l line system, which imposes less 
resistance to an applied field than a constrained rotation­
al motion. Thi!> explains qualitatively the increased coer­
cive force of the surface-coated NS Ni with respect to NS 
Ni. 

The theoretical concepts developed so far may not be 
sufficient to develop a microscopic theory of the (M,H) 
hysteresis loops of NS ferromagnets because Fig. 6 does 
not represent the generic case. The latter may consist of 
an entangled network of disclinations (inc1uding branch 
points) similar to that in liquid crystals or in polymer 
melts, and some of the theoretical concepts developed for 
the latter systems may be applied, 41 e.g., random walks of 
disclinations, line tension, etc., although such systems do 
not show the pronounced hysteretic eft'ects of ferromag­
nets. Accordingly additional ideas are needed to resolve 
the complexity of the (M,H)-hysteresis loops in NS fer-

romagnets, and the apEroach indicated in Sec. V, based 
on the ideas of Moft'att 4 may be the right point of depar­
ture. Time-dependent phenomena may be studied within 
the framework of self-organized criticality42 as suggested 
by Sethna et al. 43 for the random-field Ising model. 

C. The temperature dependence of Hc 

Another interesting problem is the temperature depen­
dence of the coercive force. 2•3 In the authors opinion the 
strong T dependence of H c at low temperatures, T < 50 K 
for NS Ni, and T :$ 100 K for surface-coated NS Ni, can­
not be explained by an intrinsic T dependence of J, K, 
and Ms, except if that is correlated with a reversible 
change of the NS material, which is unlikely. Because H c 

for NS Ni above 50 K does hardly depend on tempera­
ture and the same applies to surface coated NS Ni above 
100 K to a lesser degree, thermal activation barriers can 
only play a role at low temperatures. A tentative inter­
pretation of the low-temperature behavior of Hc is based 
on the theories developed in Secs. III and IV. In particu­
lar it is suggestive that the temperature T m defined in 
Sec. IV, which marks thermal population of long­
wavelength dipolar modes in a NS ferromagnet, can be 
associated with the change over of the T dependence of 
Hc in NS and surface coated NS Ni, observed at 50 K 
and 100 K, respectively. An interpretation of Hc in the 
dift'erent temperature regimes is based on (36), i.e., Hc is 
correlated to the T dependence of the local-spin resistivi­
ty. Suppose, e.g., that 7J1 at low temperatures increases 
with a power law in the form 11-a +bTa; then (36a) and 
(36b) yield a 1 /T and exponential decrease, respectively, 
of Hc with increasing temperature. Accordingly (36) al­
lows a rough fit of the Hc·versus-T curve observed for 
surface coated NS Ni. The change over from (36b) to 
(36a), however, cannot be explained simply by the T 
dependence of 1J1 but must be dueto more fundamental 
properties of disclination entanglements and pinning, and 
which may be related to the screening properties of dipo­
lar excitations as indicated in Sec. IV and above. In this 
picture the dipolar modes drive an intrinsic transition in 
the entanglement structure of the disclination network. 
For NS Ni, (36b) may describe the low-T behavior, 
whereas for T ~50 K, H c stays roughly constant and 
therefore (36a) may apply with 1Jr roughly constant. 

D. Qualitative estimate of 71 1 

Eventually we will make a few remarks with respect to 
a qualitative evaluation of the T dependence o f 11 1 • In the 
simp1est approach, one may compute 1J1 over the Drude 
formula for the 1ow-frequency conductivity in meta1s21 

(63) 

where T is a relaxation time and a 0( T) is given by the 
Einstein relation 

(64) 

For T =O, an ;a/L yields the density of states N(Ep) at the 
Fermi surface and D = ( 1/3 )vp/1 is the dift'usion constant, 
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where vF and 11 are Fermi velocity and transport free 
path, respectively. In strongly disordered (glassy) metais 
the low-T conductivity is dominated by elastic scatter­
ing44 and the associated quantum interference effects 
(weak localization, see Ref. 45), not described by u 0( T). 
Due to loss of time-inversion symmetry in a ferromagnet 
weak localization need not be considered in the following. 
In NS material11 will scale with dNc• i.e., 11 ~dNc assum­
ing that nanocrystals have a low density of defects. The 
precise law will depend on the scattering properties of .L, 
i.e., if grain boundaries impose small-( 11 >>dNc) or large­
(11 a!dNc) angle electron scattering. For 11 a!dNc• u 0( T) 
will be dominated by elastic scattering, and only a very 
weak T dependence of u, being due to inelastic scattering 
(electron-magnon-phonon processes), will develop up to 
ambient temperature and beyond. The precise law for 
NS Ni is not known to us but we expect u (300 K) I u (4.2 
K) :5O. 5, from data applying to strongly disordered sys­
tems. 44 The dependence of T in (63) on disorder is not 
known (the standard u model does not reproduce Drude 
behavior45) but we expect that T~ 11/vp applies, i.e., 
T~ 10-14 sec for NS Ni. In that case we may ignore the 
imaginary part of u D and set 1J t a! 1 I u 0( T) being only 
weakly T dependent. 

In a more precise theory the q dependence of u should 
also be taken into account. Using the dielectric constant 
€( q, w) defined by 

41re2 
c:(q,m)=1+--2-1T(q,m), 

q 

where the irreducible polarization is given by45 

1r(q w) = an D (q,w )q 2 

' 3p, D(q,m)q 2-iw 

one obtains21 u(q,w) a!- i(w/417')[ €(q,w )-1 ]. For 
ImD ( q, w) a! O this implies 

u(q,w)= w2e 2(3n/3JL)D(q,m) (6S) 
D 2( q, w )q 4 + w2 

In the classical regime D(q,w) may be represented in a 
Taylor series of the form46 

D(q,m)=D+ ~Ynm(mT)n(q1tr>m. 
n,m 

Setting 1J1 -1J(qc,mc)=1/u(qc,wc> as indicated in Sec. 
III we obtain WcT=21T(T/T1 ) and qc1tra!2dNcKs, where 
T 1 is defined by (32). Using low-temperature values, i.e., 
,,~hlkBTca!0.6Xl0- 13 sec for NS Ni, we get 
WcTa!O(l) and qc11 >>l, and for T---+Tc we obtain 
mcT<< 1 and qc1t << 1. Accordingly a cross over phenom­
ena in time at low temperatures and in space at tempera­
tures approaching T c may exist. 

In the high-temperature domain we obtain from (65) 

1Jt- Uo~T) [1+ [ 3~(Tt/T)(dNcKs)2 r1. (66) 

In the mean-field regime we may set x, =I in (32), and in 
Ks, 13= 1/2 and obtain a finite 1Jt for T---+ Te. This result 
implies very weak T dependence of 1Jt over a wide tem-

perature regime upon approaching Te. In the criticai 
domain we have f3a!t, z > 2va!4/3 (Ref. 25) implying 
1Jt -1 /(1- T /T c )413• Inserted into (36a) and setting 
a 1 = 1, this yields the power law according to which H c 

vanishes (within our theory) upon approaching Te. Be­
cause very close to Te, long-range interaction will dom­
inate criticai phenomena leading to logarithmically 
modified mean-field behavior, as has been pointed out at 
the end of Sec. IV, we expect there 1Jt -ln1 /(1- T !Te). 
Note that the present result qualitatively agrees with ob­
servations on NS Ni, that Hc stays roughly constant for 
T~ 50 K. 2•3 

The crossover phenomena at low T occuring in time 
are more difficult to assess. It is known, however, that in 
some strongly disordered systems similarly, as in insula­
tors, u(q,w) grows with increasing w. 45 According to 
Mott and Da vis, 47 strong scattering transfers spectral 
weight from low frequencies to higher frequencies and 
thus is predicted to lead to non-Drude-like conductivity, 
e.g., u-w, as observed recently in icosahedral quasicrys­
tals Al63.5Cu24.5Fe12• 48 Because mcT diminishes with in­
creasing T, it implies that 1Jt -1 lu(qc,wc) will grow with 
T. Assuming tentatively that T 1 is affected by dipolar ex­
citations as indicated in Sec. IV, one may conclude that 
for T>Tm we have lt>cT<<1, and Tindependence. Ob­
serve that this also requires a modification of the Ansatz 
(32), which exhibits a much slower change of me with 
temperature as required here. On account of that it is 
more reasonable to explain the change over of H c at T m 

by collective effects driven by dipolar excitations. 
For surface-coated NS Ni, the physical situation is 

more complex because too little is known about the elec­
tronic properties of this system. The simplest assumption 
is that it is a de insulator on a scale 1 > dNc• and a con­
ductor for 1 <dNc· In that case (47) approximately ap­
plies for q <217'/dNc· Dueto qc <217'/dNc at low tem­
peratures the qualitative estimates presented for NS Ni 
above should also apply, with the parameters 11 and T 

redefined in an appropriate fashion. A considerable 
modification of the T dependence of H c at temperatures, 
where qc > 217' /dNc applies is expected, implying that 
qc a!21T/dNc tentatively may be associated with Tm a! 100 
K. 

VII. CONCLUDING REMARKS 

It is pointed out that our interpretation of the T depen­
dence of Hc is certainly not the only one. In particular 
Kisker2 and Schaefer et a1. 3 apply to H c a statistical 
theory of Néel, Stoner, and Wohlfahrt (NSW) (see, e.g., 
Wohlfahrt49) using a competition between crystalline and 
form anisotropy. Naturally, such effects will play some 
role because partic1e sizes are not sufficiently small, so 
that not only collective effects play a role, as suggested in 
the present paper. For instance in NS Co, collective 
effects are less important due to Ks 1 /Kx 1- Í• 6 being 
much larger than in NS Ni and Fe. Presumably, howev­
er, collective effects are strong enough to invalidate an in­
dependent particle model. Let us point out that the NSW 
model does not account for particle interaction and 
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therefore does not describe nonsymmetric minar hys­
teresis loops. For further deficiencies of this model and 
how they may be circumvented see Mayergoyz. 26 Ob­
serve that the local structure of NS material is not well 
understood, e.g., it is not known what the characteristic 
shape of nanocrystals after compaction and sintering is. 
The manifold .M and its boundary a.tn representing the 
NS specimen are certainly multiconnected spaces. A rep­
resentation of .M, as a skeleton (3) and labyrinthine struc­
ture (.L) as indicated in Fig. 1 is a paradigm. Due to the 
fact that a.tn and a;3 are not simply connected two­
spaces, magnetic flux may be trapped inside .M in such a 
fashion that even strong applied fields are unable to pull 
it out of the system. A trapped flux of this kind would 
play then a similar role as reversed domains at edges and 
corners in polycrystalline samples, imply reduced coer­
cive forces, and invalidate an independent-particle model. 

Our theoretical interpretation of the coercive force in 
NS ferromagnets is based on the concept of intrinsic and 

. . . f d" I" . . ld" HUl d n<el extnnstc motton o tsc mattons yte mg c an c , 

respectively, as indicated in Sec. VI. H~il is closely relat­
ed to the micromagnetic description of magnetization re­
versal in small particles. Here it is referred to the polar­
ization reversal in the core of a disclination. 1t can be 
computed via a classical stability analysis and is slightly 
reduced by tunneling processes. In contrast H~e) refers to 
the spatial motion of the disclination cores in a network 
of disclinations. It compares to the motion of domain 
boundaries and is affected by pinning and topological ob­
struction. We propose that pinning in NS Ni at T <50 K 
is successively released by thermal excitation of dipolar 
modes, and that H c for T;;::; 50 is essentially determined 
by topological obstruction as described by H~el. The 
theory developed for H~e) differs essentially from that ap­
plying to H~il because it cannot be based on a classical 
stability analysis within a continuum or, say, a mi­
cromagnetic approach. Because crossing processes of 
disclinations are accompanied by the temporal formation 
of singularities, they can only be described by additional 
parameters derived from the microscopic laws of magne­
tism. Within a theory of the quasistatic change of topolo­
gy the characteristic time parameter seems to be 
TI r -17(qc,(J)c) (non-local-spin resistivity) with (JJ; 1 the 
characteristic time scale to accomplish a topology chang­
ing process over the core size -qc-l of a disclination. 
The main conclusion is therefore that the characteristic 
lengths (1) to (3) have to be supplemented by a charac­
teristic time scale, which physically is expressed in 111 

governing via ( 21" ) topology changing processes in the 
quasistatic approximation. 

In this context we would like to point out that a mea­
surement of the time dependence of the relaxation of 
remanent magnetization in NS ferromagnets may _be use­
fui and will allow comparison with the observattons on 
ferrofluids10 and ideal Heisenberg magnets. 50 In particu­
lar, the authors of the latter paper have developed an in­
teresting theory of relaxation processes, based on percola­
tion theory and mesoscopic domains, which applies rath­
er successfully to EuS. Their basic formula for the time 
dependence of remanent magnetization is 

00 

MR(t)-l: [sn.]exp( -tw.), 
s=O 

where n. is the domain size (s) distribution and 
w. - exp( - BE. I k B T) the corresponding relaxation rate 
for activated behavior. In contrast to models of domain 
rotation, where, e.g., superparamagnetic relaxation 
( BE.-s) is assumed, they take BE. -1:1/s, which implies 
relaxation processes via geometrically confined magnons. 
Because relaxation processes in NS ferromagnets in our 
opinion should in volve the motion of disclinations and to­
pological reconstruction of the arder parameter, the for­
mula given above does not necessarily apply. Although 
relaxation processes are ultimately driven by magnons, 
the picture of domains and their percolative distribution 
may have to be replaced by a more suitable scenario. For 
instance one may take for ns the distribution of knots and 
links confined to effective domains of size s representing 
the nonequilibrium configuration. Relaxation processes 
are then supposed to take place within individual knots 
and links releasing a net magnetization proportional to s. 
A computation of MR (t), however, still requires assump­
tions as to the form of n. and õEs as a function of s. 

The basic qualitative assumptions about the structure 
of NS material have been schematically illustrated in 
Figs. 1 and 5 for NS Ni and surface-coated NS Ni, re­
spectively. In order to obtain a more reliable picture of 
the structure of NS materiais from a theoretical point of 
view a model of its formation should be developed. On 
the other hand one may also study their electrical proper­
ties experimentally, in particular, at low temperatures. 
Specifically for surface-coated NS Ni this may give some 
indication about the structure of 3 and 3' indicated in 
Fig. 5. For instance, the magnetic skeleton 3' may also 
be identified with the "metallic" skeleton 3", defined in 
an analogous fashion based on collective electronic prop­
erties. Metallic conductivity of the sample may then be 
ao indication of the presence of an infinitely extended 
cluster in 3", supposing that the CS material in Fig. 5 is 
nonconducting. Note, however, that the CS material is 
certainly not stoichiometric NiO but a low-density highly 
defective compound with semiconducting properties. 

It is pointed out that NS metais are strongly disordered 
systems, where low-temperature electronic and thermal 
transport properties are governed by elastic relaxation 
times and therefore quantum interference effects may 
play an important role. 44•45 This applies also to magnon 
and phonon excitations, whose low-temperature damping 
is mainly governed by elastic relaxation and may affect 
the temperature la_ws of the saturation magnetization, 
specific heat, and thermal transport. The point is that _a 
significant change of the quasiparticle nature automatt­
cally will change the respective macroscopic temperature 
laws. From this point of view it is interesting that the 
low-temperature saturation magnetization in NS Ni and 
PC Ni obey the same T 2 law. Because this law would re­
quire ao effective low-q magnon dispersion (J)-q 312, it 
cannot be derived from a simple Heisenberg model, but 
must be a consequence of the original Hubbard model 
used to describe itinerant magnetism in transition metais. 
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Due to the modified dispersion elastic relaxation [Te ( q)] 
of magnons must display a diEerent q dependence as in 
localized magnetism. Accordingly there exists the possi­
bility that the relative macroscopic temperature laws in 
NS and PC ferromagnets differ for itinerant and localized 
magnetism. This does affect the micromagnetic theory of 
NS ferromagnetism developed in this paper in a qualita­
tive fashion because the gradient operator V in (6) has to 
be replaced by the operator V', which may be defined by 
its operation on the complete set of functions {e ik ·r} in 
the form V'eik·r=a - 114(ik)314(k/k )eik·r. This implies 
that exchange interactions are effectively reduced and 
may be expressed via the corresponding characteristic 
length K'if=(27TaK5 )119Ki 1. Dueto (27TaK5 ) 119 ~1 the 
effect is apparently small, but it will also change the in­
teraction law of topo1ogical defects. Because we have 
essentially only used the topological properties of the 
theory together with some characteristic length units, our 
conclusions are only little affected by this qualitative 
change. 

Further information about the structure of NS fer­
romagnets may be obtained via their behavior under plas­
tic deformation. Although this does not produce work 
hardening, 1 it may have a certain effect on their micro­
scopic structure (implying, e.g., a change of magnetic and 
electrical properties) and thus allow to study the reliabili­
ty of the models sketched in Figs. 1 and 5. For instance, 
does plastic deformation affect the shape and connected­
ness of individual nanocrystals and grain boundaries, or 
alternatively does it affect only the CS material and the 
relative arrangement of nanocrystals? In the first case, 
Figs 1 and 5 may apply with 8'-8 in Fig. 5, whereas in 
the second case large and small angle (Ni-Ni) grain boun­
daries will not exist, and this should have an effect on the 
macroscopic electronic properties of the samples (metal­
lic conduction in the first case, insulating behavior in the 
second case). Observe that the mere fact of absence of 
work hardening in NS materiais, 1 may imply self­
similarity of their microscopic structure under plastic de­
formation and therefore also invariance of their magnetic 
and electrical properties. This conjecture seems to be 
plausible in view of the fact that during the process of 
formation of NS material via compaction the aggregate 
of nanocrystals has already been subject to a hierarchy of 
stress fields. If this hypothesis holds true, the construc­
tion of models of NS materiais could be facilitated and 
their mode of plastic deformation could be specified more 
easily. 

The main problem of micromagnetics in NS ferromag­
nets from a mathematical point of view is the develop­
ment of an effi.cient calculus to hand1e the intrinsic non­
linearities of the formalism in the absence of domain 
walls. In the presence of Bloch walls there exist almost 
no magnetic charging effects in the bulk, whereas in a NS 
ferromagnet this cannot be avoided, and field 
configurations are, in general, magnetically charged. 

Part of the problem has been circumvented in this paper 
by the introduction of topological defects with the prop­
erties of disclinations, and the hypothesis that magnetic 
configurations essentially can be described by their core 
geometry. In this approach it is postulated that the core 
has a linear dimension of -1TKs 1 and that it is magneti­
cally charged, whereas the field in between disclination 
cores is essentially unchanged. Accordingly the conjec­
ture should be proven that the energetically favorable 
magnetization configurations are such that a segregation 
of {M} into {V·M:#:O} and (VXM:#:O} takes place 
forming textures that can be described by disclinations 
with V·M:#:O concentrated in their cores and VXM:#:O 
in the space in between. 

In conclusion, we have shown that magnetism in NS 
material has some interesting theoretical aspects and may 
be brought in connection with the theory of topological 
defects. In particular, it is postulated that polelike singu­
larities of the magnetization should be visible at the sur­
face appearing essentially in pairs, and if this is not the 
case pores should play a significant role. The coercive 
force may be interpreted as a measure of the strength of 
topological entanglement, and pinning by immobile half 
integer strength disclinations in NS Ni and in surface­
coated NS Ni, respectively. Remagnetization processes 
are not driven by Bloch or Néel wall motion, as is usual, 
but by disclinations and require ultimately disentangle­
ment of topological defects. The latter represent the tex­
ture of magnetization associated to the semiclassical or­
der farameter M and Hoprs invariant associated to 
1r3(S ). The T dependence of Hc below 50 K and 100 K 
for NS Ni and surface-coated NS Ni, respectively, has 
been tentatively interpreted in terms of the T dependence 
of the local (spin) conductivity, whereas the high-T 
domain of H c may reftect an intrinsic transition of the en­
tanglement structure of disclinations. It is suggested that 
collective magnetization processes are dominant, i.e., sta­
tistical averaging over crystalline anisotropy and magnet­
ic form ariisotropy must be subject to strong correlation 
over the sample in order to provide a screening of mag­
netic stray fields. This implies that the Néel-Stoner­
Wohlfahrt49 theory of magnetism, even when applied to 
micrometer-sized particle aggregates, needs a nontrivial 
extension if applied to NS ferromagnets, which cannot be 
simply a scale transformation. 
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magnetocrystalline anisotropy 

FIG. I. Schematic illustration of a two-dimensional cross 
section of NS material characterized by three characteristic 
geometric lengths, d Nc, dNc, and d cc, and three characteristic 
magnetic lengths, KK 1, K/i 1, and Ks 1• ~ (skeleton) and .L (la­
byrinth) represent the global structural units o f our model o f NS 
material, with dNc and dNc the linear scales of ~ and .L, respec­
tively. d cc represents the linear scale of crystallographic corre­
lations of ~. a;.M., and a • .M. represent internai and externai 
boundaries of the sample .M. with a;.M., a • .M. and a;~ represent­
ing the boundaries of holes (pores), the surface of the sample, 
and the surface of ~. respectively. 



Ni-Ni-boundary NiO-NiO-boundary Ni-NiO-boundary 

FIG. 5. Schematic illustration of a two-dimensional cross 
section of a NS material, whose building blocks are Ni nano­
crystals surface coated with NiO. The coats of nanocrystals are 
indicated by dashed drawn !ines. The labyrinth .L contains CS 
material composed mainly of NiO. The components of the 
mechanical skeleton 8 are joined by three types of grain boun­
daries Ni-Ni, Ni-NiO and NiO-NiO. The components of the 
magnetic skeleton 8' are Ni nanocrystals joined by Ni-Ni grain 
boundaries. The magnetic labyrinth .L' is defined via 
.L'+ 8' = .M' but is not indicated. The characteristic lengths 
d~c.d~c. and dcc are defined with respect to 8' and .L' in anal­
ogy to Fig. 1. 


