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The lsing random-anisotropy-axis model with additional noncubic anisotropy is investigated in 
mean-field theory in the limit p -7 oo for p-component random vectors on a lattice of N sites. 
The effects of anisotropy for statistically independent and identically distributed random-vector 
components with a trimodal probability distribution are studied in the limits a = p/N = O and 
a > O. Ferromagnetic, mixed, and residual ordered phases are found in the first case, while only 
mixed ordered and spin-glass phases are found for the latter. Phase diagrams with explicit phase 
boundaries are obtained. 

I. INTRODUCTION 

The random-anisotropy-axis model (RAM), intro­
duced by Harris, Plischke, and Zuckermann1 to describe 
the unusual properties of amorphous intermetallic com­
pounds, such as TbFe2 , is defined by the Hamiltonian 

H=- L Jii si· s;- D L(Di · si) 2 - h· L Si (1) 
(i,j) 

for p-component classical unit "spins" si, with nearest­
neighbor ferromagnetic exchange interactions Jij on the 
sites i= 1, ... , N of a d-dimensionallattice. Here, Di are 
unit vectors that are randomly oriented from site to site, 
and the anisotropy strength D is assumed to be the same 
at all sites, while h is a uniform, nonrandom, externai 
field. 

There has been great interest in the model due to 
the competition between long-range magnetic order and 
the global disorder built into the random anisotropy. It 
has also been viewed as an alternative2 to the Edwards­
Anderson (EA) model for a spin glass.3 Although the 
model explains some of the extensive experimental re­
sults on amorphous alloys that are now available,4 the 
nature of the ordered "ferromagnetic" and "spin-glass" 
phases, and when they should be expected to appear, is 
still a matter of some controversy.5 - 14 

The strong-anisotropy limit D/ J -+ oo has been stud­
ied numerically15 and in mean-field theory (MFT),16 the 
latter by Fischer and Zippelius17 (FZ), and by other 
means. 10 - 14 In this limit each spin is aligned along its 
local anisotropy axis, si = DiCTi, in which CTi = ±1. The 
Hamiltonian then becomes, apart from a constant, 

H1 =- '"'J!.u·u·- '"'h·u· 
L....J "' t 3 L.....J " "' 

(2) 
(i,j) 

which is that of a particular random-bond Ising 
model, the so-called lsing random-anisotropy-axis model 
(IRAM), where 
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(3) 

in which the Di are constrained unit vectors. Although in 
pratice the average over random angles that appears in 
calculating the thermodynamic properties of the model 
is sometimes replaced6 >7 by an average over an effective 
distribution of independent random bonds, it has been 
pointed out recently that this is not correct, in general, 
except in the limit p -+ oo.11 In this case, the problem is 
uninteresting since the model reduces to the already ex­
plored EA model, unless the distribution of Di is neither 
isotropic nor a Gaussian. 

In the large-p limit, the model becomes identical to the 
Hopfield model for neural networks18- 20 if the nl!' are dis­
crete independent random variables that take tbe values 
±1, and this model is known to have a different behavior 
from the EA model even in the limit p -+ oo. 19- 21 

The relevance of the probability distribution of Di for 
the RAM has been pointed out by Harris, Plischke, and 
Zuckermann1 . In the case of the IRAM, the magnetiza­
tion states are degenerate for an isotropic distribution of 
Di, due to the underlying O(p) symmetry of the model. 
FZ showed, in MFT for finite p, that a random hyper­
cubic anisotropy stabilizes a ferromagnetic state in the 
IRAM with a symmetric diagonal magnetization that has 
equal components along any of the hypercubic axes. 

The purpose of the present paper is to study further 
the role of the distribution functions for nf in the IRAM, 
with particular emphasis on the behavior when p -+ oo 
while a = pjN remains finite, the so-called a limit.22 

The related Hopfield model of neural networks is known 
to have a spin-glass state for a larger than a criticai value 
and local or globally stable one-component ferromagnetic 
(Mattis) states below this value. 19 These states arise as 
a "condensation" of a single component of the magne­
tization becoming of 0(1), while the remaining (p- 1) 
components are of 0(1v'N). 
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The behavior o f the IRAM as a function o f ã = p I z, 
where z is the coordination number of the lattice, has 
been studied on a Cayley tree10 and on hypercubicai 
lattices11 for finite p and z. These works also suggest 
a spin-glass or ferromagnetic behavior for ã above or be­
low a criticai value, respectively. 

The outline of the paper is the following. In Sec. 11 
we state the model and introduce the relevant order pa­
rameters and probability distributions for nt. The re­
placement of the uniform distribution appropriate for the 
"hard" constraint by an often-used Gaussian is also dis­
cussed there. In Sec. 111 we deal with the large-p behav­
ior when a = O, and in Sec. IV we consider the finite-a 
case. We end with a criticai discussion in Sec. V. 

11. THE MODEL 

The Hamiltonian of the IRAM with infinite-range in­
teractions, suitable for MFT, is given by 

HI =- 2~ L :t ntnjO"iO"j- L O"i L hl'nr, (4) 
i,j ~t=l i I' 

where the nr, for J.t = 1, ... ,p, will be taken as identicaily 
distributed independent variables. 

The magnetic variable of interest for the IRAM is de­
fined here as 

(5) 

The thermal average with the Boltzmann factor 
exp(-f3HI), which will be denoted by angular brackets, 
and the self-averaging property for finite p yield the mag­
netic order parameter 

m = lim (mN) = [n(o-)]n, 
N-+oo 

(6) 

where the square brackets denote the configurational av­
erage over the probability distribution of nt. Thus, m 
is the analog of the overlap vector in neural networks. 
The right-hand side of Eq. (6) will still be used to de­
fine the magnetic order parameter for all p, even in the a 
limit, in which case self-averaging no longer applies. The 
spin-glass order parameter used here is the usual replica 
symmetric q = q013 , 3 •23 

in the replica space a, {3 necessary to perform the config­
urational average for the a limit. 

A. Probability distributions 

An isotropic probability distribution has already been 
used by Harris, Plischke, and Zuckermann1 • The 
anisotropic distribution 

with constrained random axis, has been used in the 
IRAM by FZ. The first term is isotropic with the vec­
tor ni on the unit sphere of area Op = 21r-P/2 lr(pl2), 
in p-dimensional space, r(O < r < 1) is the anisotropy 
strength, and es is a unit vector in the direction of a 
crystal axis. The ó functions are Kronecker deltas, equal 
to 1 ifni = ±es ando otherwise, implying that nr = ±1, 
with equal probabilities, for one component of Iii at a 
time and zero for the remaining (p- 1) components. 

We consider two distributions of statistically indepen­
dent random variables in this work. One is the sometimes 
employed Gaussian distribution for statistically indepen­
dent and identically distributed components nr of mean 
zero and unit variance,6 •7 

p 

d.P(iii) = dni rf>(ni) = ITldnt rf>(nt)J, (9) 
~t=l· 

used here only for comparison, in which 

rf>(x) = _1_e_.,• /2. 
y'2-ff 

(10) 

In this way, the random-axis vector also acquires a vary­
ing modulus. Nevertheless, the lsing random-axis limit 
DI J --+ oo is still meaningful in the large-p limit, in 
that (DIJ)IDil 2 does not become of order 1 or smaller 
on a sizable set of lattice sites, since "Y ::::: n 2 = p for 
almost every site i in this limit, with relative dispersion 
o-("Y)Ib]n = 0(11 ..jP). 

The other case we consider is a variant of (8), given by 
the trimodal distribution 

p 

dP(ni) = II [dnt p(nnJ (11) 
~t=l 

of statisticaily independent and identically distributed 
components X ::::; nr, in which 

b 
p(x) = 2{ó(x- a)+ ó(x +a)}+ uó(x), 

(12) 

u = 1- b, 

where b is a real constant such that O < b < 1 and 
a= 11../b (there is no loss of generality with thi;choice). 
Since [n!]n = 1lb, a finite lower limit to b is necessary 
in order to still have a vanishing relative fluctuation of 
n~ for a meaningfullarge-D limit, as pointed out above. 
When b=1 the distribution reduces to that for the Hop­
field model. In general, a typical term in the product in 
Eq. (11) involves a sum of terms ó(n ±as) on each site 
over all the permutations of s ~ p nonzero components 
in a vector as. 
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111. LARGE-p BEHAVIOR WITH o: = O 

The Hamiltonian, Eq. (4), may be written as 

J 2 
H1 = --NmN- Nh · mN, 

2 
(13) 

making use of Eq. (5). We consider first the large-p limit 
when a= O, so that the now standard procedure for the 
Hopfield model of neural networks for finite p can be used 
to find the free energy per si te of the IRAM in MF theory 
as19,20 

J f= 2m 2 - T[ln (2cosh{~(Jm +h)· n})]n. (14) 

Here, T = ~- 1 is the temperature in units of energy and 
the magnetic order parameter m = (m1 , ... ,mp) is given 
by the solution of the equation 

m = [n tanh{~(Jm +h)· n}]n, (15) 

with components satisfying mp. = -8! /8hw 
It is appropriate to recall here that the solutions in zero 

field for finite p are degenerate for an isotropic distribu­
tion of nf [Eq. (8) with r =O] dueto the invariance under 
a uniform rotation in p-component space and that the de­
generacy is lifted for r -1- O. In this case the only solutions 
are the 8-component symmetric, m = m 8 (1, ... , 1, O, ... , 0), 
whose free energy is given, near the criticai temperature 
Te = 1 and at T = O, by 

T 2 8 [ 8 r]- 1 r=--- (1-r)-+-
• 4 p p 3 

(16) 

respectively, in the large-p limit,where 

T = 1-T. (17) 

Thus the symmetric state with the maximum number 
of nonzero components, in which 8 = p, has the lowest 
free energy.17 The problem with rotationally invariant 
distributions is that the degenerate solutions are only 
marginally stable. 20 

A number of interesting situations arise with the new 
probability distributions, Eq. (12), in the large-p limit. 
In this case there can be only a finite number of nonvan­
ishing components of the magnetization. Assuming that 
there is only one of them, say, m = mt, and that there 
are p-1 residual components of 0(1/ .JP), one may write, 
in the case of a statistically independent distribution of 
random-axis components, 

m·n=mp+Rz, (18) 

dropping the index in m, where pisa single component 
of n, while Rz = :Ep.>1 mp.n~" is the sum of the (p-1) re­
maining terms. Since each term is independent, this sum 
is distributed according to a Gaussian, with mean zero 
and variance R 2 = :EP.>1 m;. Thus z is also Gaussian 
with mean zero and unit variance. 

The components of the magnetization in zero field are 
then given by 

m = [p tanh{~(mp + Rz)}]p,z (19) 

and 

R= [z tanh{~(mp + Rz)}]p,z, (20) 

taking, for simplicity, J = 1, where the averages of the 
quantities in square brackets are over the distributions of 
p and z. 

If p is distributed according to Eq. (12), in addition to 
the paramagnetic high-temperature phase, where m =O 
and R = O, there could be three further phases charac­
terized as 

F (m;éO) M (m;éO) R (m=O) 
: R=O ' : R;éO ' : R;éO ' (21) 

which are the ferromagnetic (Mattis), mixed, and resid­
ual ordered states, respectively. Depending on the value 
of b, one or the other states may be stable. The first 
two (F and M) are genuinely ordered states, with a fi­
nite magnetization, while the last one is a state with, at 
most, local order, signaled by a nonvanishing EA order 
parameter 

(22) 

which follows from Eq. (20) through an integration by 
parts. Note that q -t 1, while m = O as T -t O. 

Solving Eqs. (19) and (20) for R« 1 yields the phase 
boundary 

l = tanh(~l) (23) 

of continuous transitions in R, shown in Fig. 1, between 
the F and M phases, in which l = mj..;b. We also find 
the finite magnetization 

p 

1.0 t--------------.--------1 

F 

0.5 

0.5 
U=1·b 

R 

1.0 

FIG. 1. Phase diagram for a = O, indicating the para­
magnetic (P), ferromagnetic (F), mixed (M), and residual 
(R) phases defined in Eq. (21). In the region Mt of the 
mixed phase the free energy of the ferromagnetic state is the 
next-to-lowest one, while in the region Mr the residual state 
has the next-to-lowest free energy. 
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m=vr (24) 

along this boundary, in extension to the familiar behav­
ior of the neural-network problem. Note, however, that 
here in the random-axis model, there is a whole region of 
ferromagnetic states in the ( u, T) plane enclosed by the 
phase boundary. 

On the other hand, solving Eqs. (19) and (20) for m « 
1 yields the boundary 

b = 1/3 for all T ::; 1, (25) 

also shown in Fig. 1, between the M and R phases, to­
gether with the order parameter 

q=T (26) 

along that boundary. 
The stability of the various phases has been studied by 

means of two criteria. First, the states of lowest free en­
ergy have been selected as the stable phases, and second, 
these have been checked against a local stability crite­
rion that involves the eigenvalues of the second-derivative 
matrix of the free energy, Eq. (14). Both criteria com­
plement each other. If the free energy for two different 
solutions for the order parameters is truly convex (all 
eigenvalues being positive), then, as usual, the lower free 
energy yields the stable phase. The same applies if one 
of the solutions is not truly convex (for instance, "flat" 
or concave in at least one direction), as long as it is not 
the lowest free energy. If, instead, the lowest free energy 
is flat in at least one direction, as would be the case with 
one eigenvalue being zero, there cannot be a truly stable 
state. 

Calling /F, /M, and !R the free energies per spin in 
each of the states defined in Eq. (21), it turns out that 
!F < !R in the F phase and IM < {/F, /R} in the M 
phase, /F being less than !R in region M1 in Fig. 1, while 
/F> !R in region M .. and !R< IM in the R phase. The 
state M does not exist either in the For in the R phases. 

On the other hand, considering the second-derivative 
matrix of the free energy, with elements 

8 2 f ( 2 2 ) D"' = Bm2 = 1 - {3 1 - [p tanh ({3A)]p,z , (27) 

- 82 / ( 2 2 ) DR = BR2 = 1- {3 1- [z tanh ({3A)]p,z , {28) 

- 82 / 2 
Q = amaR = {3[pz tanh ({3A)]p,z' (29) 

The extremum of a saddle-point integration, in the 
large-N limit, provides a physical meaning for the m...y 
as the magnetic order parameter whose components are 

{36) 

in which A= mp + Rz, the smallest eigenvalue 

becomes >. = min(D"', DR), when Q = O. This is the 
case if either m or R are zero. Looking at this lowest 
eingenvalue in each of the three states, >.F, ).M, ).R, we 
find that >.F ~ O, in the F phase. The equality holds 
in the F-M phase boundary, Eq. {23). On the other 
hand, >.F becomes nega tive to the right o f this boundary, 
where the M state is stable within the region M1 and M,. 
indicated in Fig. 1, with >.M > O. 
· At the other extreme, in the R phase, we have >.R= O, 
while >.F < O. The former is an eigenvalue corresponding 
to a marginal mode, meaning either a local flatness of the 
free energy or a region turning into an unstable state. It 
should be noted that the solution with m = O and R =/= O 
is marginally stable also in the other phases below Te. We 
take this as a warning that the limit p ---+ oo with o: = O is 
a marginal situation beyond which (i.e., when o:> O, no 
matter how small) a true spin-glass state should appear. 

IV. a LIMIT FOR LARGE-p BEHAVIOR 

The analogy with the neural-network problem suggests 
that a number of interesting features should appear in 
the random-axis model in the o: limit. To deal with this 
case one has to resort to the replica method, as in the 
neural-network problem.21 

The free energy per spin is then given by 

f l• li [ Z"]n - 1 
=-1m m , 

v-+0 N -+co V N f3 (31) 

where the configurational average is taken over the v-fold 
replicated partition function 

(32) 

The v-replicated Hamiltonian in zero field is here 

(33) 

{34) 

The quadratic form in the exponential of Eq. (32) is lin­
earized, as usual, by means of a Gaussian transformation 
that yields 

{35) 

for a given replica "Y. 
As in the o: = O case, a finite number of m~'s may 

condense macroscopically, while an asymptotically large 
number of residual components may be of O(lj...{N). In 
the case of a constrained probability distribution, such as 
Eq. (8), it is not possible to se.parate and integrate out 
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the residual components, as one would like to do, in ac­
cordance to standard practice. 21 We consider therefore, 
in the following, only statistically independent distribu­
tions. 

For simplicity, we assume first that there is only one 
component, say, mi, that condenses macroscopically (we 
consider the case of more components below) and we re­
call that the remaining (p- 1) components m~ are mi­
croscopic, in order to have a well-defined thermodynamic 
limit of Eq. (35). We denote the corresponding random­
axis vector components by 

(37) 

The average over e can, as usual, be taken out of the 
trace and written as 

(38) 

in which 

(39) 

For any distribution of statistically independent ef, in 
particular for Eq. (12), of mean O and variance 1, the 
central-limit theorem yields, in the limit p-+ oo, 

(40) 

in which 

L a~ = (3N L L m~C-ywm~, (41) 
~t>l "(W 

where 

(42) 

Using this result in Eq. (35), performing then the inte­
gration over DLy, and carrying out the trace over a before 
the configurational average over the "low" component p, 
one obtains, for the free energy per spin in the replica 
symmetric calculation,21 

a m 2 CR2 

f = 2 !c + 2 + -2-

-T[ln {2 cosh{,B(Rz + mp)})]p,z• (43) 

where 

q 
!c= 1 +Tln(1-C)- --. 

1-C 
(44) 

The magnetic and spin-glass (SG) order parameters 
that describe the stationary states are, respectively, 

m = m~ = [p(a"~)]p,z, all "'(, 

q =: qaf3• a =/= (3, 

assuming replica symmetry, while 

(45) 

c= (3(1- q) (46) 

and 

(47) 

is the variance for the overlap 

(48) 

of a configuration of spins with the high (p, > 1) 
random-axis components. In these expressions, [· · ·]z = 
J dq_J(z) · · · denotes the average over the Gaussian noise, 
in the notation of Eqs. (9) and (10). The parameter Ris 
related to the auxiliary parameter r in Ref. 21 by means 
o f 

.;aq 
R=:..;aT=--

1-C 
(49) 

and accounts for nonmagnetic ordering of the remaining 
(p - 1) components, in that the local magnetic moment 
may be finite without long-range magnetic ordering, as 
in a SG phase. 

The order parameters satisfy the equations 

m = [p tanh(,BA)]p,z, 

q = [tanh2 ((3A)]p,z• 

(50) 

(51) 

where A= Rz+mp. Transforming Eq. (51) by means of 
an integration by parts, with Eq. (49), yields 

R= ..jQq + [z tanh(,BA)]p,z, (52) 

in distinction to the a= O case, Eq. (20). Note, however, 
that the latter is recovered if a = O. There is then the 
possibility of having, again, a ferromagnetic (F) phase, 
where m =I= O, R = O, a mixed (M) phase in which m =I= 
O, R =I= O, and there can now be also a spin-glass (SG) 
phase with m = O, R =I= O, besides a paramagnetic (P) 
phase where m =O= R. 

It is interesting to consider first the case where p is 
distributed according to the Gaussian in Eq. (10). For 
the sum in A, the variance becomes ~2 = R 2 + m 2 and 
the solution ofEqs. (49)-(51) yields C-+ 1, that is, q-+ 
1- T and R-+ oo. The magnetization is then 

m = [p sgn(z)]p,z =O (53) 

for all finite T, in place of the marginally stable mag­
netic ordering we had at a = O, for a purely isotropic 
distribution. 

We consider next the trimodal distribution for p and 
deal first with the zero-temperature (,8 = oo) case. The 
equations for the order parameters become, in this limit, 

m = Vberf(x), (54) 

R= ..;a+ (1- b + be_.,• 1 2)~, (55) 
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where 

erf(x/v'2) = 2 L"' dz cf>(z), 

cf>(x) being given by Eq. (10), and 

m 
X= R.Jb' 

(56) 

(57) 

When b = 1 there are two solutions: (i) m =I= O, R =I= O, 
as in the M phase, and (ii) m = O, R = ..,jQ + y2Tir, 
corresponding to a SG phase, with microscopic energy 
barriers of O(a-1 ). The former is the more stable phase 
below a criticai a = 0.051, while the latter appears 
as a "melting" of vanishingly small symmetric mixture 
states. 21 Note that R= Ois a solution when a= O, leav­
ing an F phase. In distinction to this, when b =I= 1, F 
never appears, since R> (1- b)y2Tir for any a. 

Combining Eqs. (54) and (55) into the single equation 

erf(x/v'2) 
x= --------~~~----~ 

..,jQ + (u + be-"'2 / 2);-g' (58) 

in which u = 1 - b, shows that there is always a SG 
solution x = O = m, for any b and any a. This is the 
only solution above the upper phase boundary shown in 
the zero-temperature phase diagram of Fig. 2. A finite 
magnetization m and a nonzero residual R appear as an 
M state at this first-order phase boundary, when b =I= 1, 
below which there are first locally stable M states until 
a second, lower boundary is reached where these states 
become globally stable with a lower energy than the SG 
states. This behavior is quite different from that in the 
b = 1 limit (the neural-network problem) where locally 
and globally stable ferromagnetic (F) states appear with 
decreasing a. Thus, there is a changeover in behavior in 
the random-axis model when u =O. 

The situation in the finite-temperature case (/3 < oo) is 

0.8 .--------------------------------------~ 

0.6 

a 

FIG. 2. Zero-temperature diagram for finite a, showing the 
upper and lower phase boundaries, below which the M state 
is locally and globally stable, respectively. The dotted line 
is the boundary for locally stable symmetric solutions with 
three finite components {cf. Sec. IV). The spin-glass state is 
the only solution above the upper boundary. 

~ 
~ 
~ 
Q) 
c.. 
E 
~ 

1.5r---.---.-----,---,----,----, 

0.5 

0.05 0.10 0.15 

FIG. 3. Phase diagram in the T-a plane for severa! values 
of b. The upper curve is the paramagnetic to spin-glass phase 
boundary, while the lower curves are the phase boundaries for 
locally stable M states. 

shown in the phase diagram exhibited in Fig. 3, where the 
curves below the upper criticalline T9 = 1 + ..,jQ, separat­
ing paramagnetic from SG behavior, for ali b, represent 
the transitions from SG to locally stable M -state behav­
ior, for various values of b. Thus, the mixed states remain 
relevant for finite temperature, except in the limit a -+ O. 
Indeed, only at the a = O axis may the M states change 
into F states through the vanishing of R, in accordance 
with the remark above. 

We come back now to the solutions with more than a 
single component that condense macroscopically. There 
are, of course, many such solutions, but the relevant ques­
tion is, what is the fraction of phase space occupied by 
a given solution? A zero-temperature calculation should 
give an upper bound, and we consider the symmetric 
solution with s finite and (p - s) vanishingly small com­
ponents. The random-axis vector components are then 

n = (~). 
p = {nJ.t<s}, 

e= {nJ.t>s}, 

(59) 

in place of Eq. (37). With the replica-symmetry ansatz 
we find 

m = [t.erf( ;;~) J.• (60) 

R = ..;a + 2 [ cf> ( ;;~) J .' (61) 

(62) 

where c/> is given by Eq. (10) and the averages [· · ·]. are 
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over the probability distribution p(t.) for having t. when 
the distribution for np. is the trimodal of Eq. (12). Con­
sidering, for simplicity, the case s = 2, where p(O) = 
u 2 +b2 j2, p(1) = bu =p(-1), and p(2) = b2 j4 =p(-2), 
one finds 

m= ~ { ~erf(mv'2/R) + uerf(J;R) }• (63) 

R= y'Q + {b2 cf>(2mjR) + 4bucf>(mjR) 

(64) 

When these equations are used in the free energy, 
Eq. (43) at T =O, the phase diagram ofFig. 4 is obtained 
in which S2 is the region where the symmetric solution 
of two finite components is globally stable. The phase 
of globaily stable mixed states is also shown there for 
comparison. The symmetric two-component state is thus 
stable over a very small part of the phase diagram. This 
is consistent with results for the Hopfield model ( the case 

u=O) where the criticai a for this solution is ai2 ) ,...., 0.24 

It is aiso known that the criticai a for the appearance of 
the locally stable solution of three finite symmetric com­
ponents is ai3 ) ,...., 0.029, in this model, and the dotted 
line in Fig. 2 gives the result of our calculations, which 
go along similar lines to the derivation of Eq. (62), for 
u ~o. 

Two comments are now in order about the phase dia­
grams. First is that both of them follow from the replica 
symmetry ansatz, Eq. (45), which is not expected to be 
correct at very low temperature, particularly in regions 
where there is a sign of strong SG behavior, as is the 
case when the replica-symmetric states are globally sta­
ble. Allowance for replica-symmetry breaking will change 
somewhat the upper transition line, leading to mixed be­
havior at T = O. It is beyond the scope of this paper to 
determine this change. 

The same limitation applies to the lower parts of the 
boundaries in Fig. 3. Second, even within the replica-

0.70 

0.65 

0.60 

M 

0·ÕiboL-oo_o ___ o-.o~oo_o_2 ---o.-oo~oo-4---o,....o~oo_o_s ---o . .,...ooooa 
a 

FIG. 4. Zero-temperature diagram showing the region S2 
of global stability of the symmetric solution with two finite 
components. 

symmetry ansatz, the determination of these parts of the 
curves is not accurate enough to exhibit possible reen­
trant behavior as one expects to have when b = 1.25 Nev­
ertheless, the phase diagrams that are obtained should 
exhibit the main features of the model with a trimodal 
distribution. 

V. DISCUSSION 

In this paper we extended earlier works on the IRAM 
in two main aspects within mean-field theory. We consid­
ered (i) the large-component limit p-+ oo and allowed for 
both a = O and a =I= O, and (ii) we studied the effects of 
a trimodal probability distribution for the random axes 
with a finite probability that each component be either 
zero or finite. 

In the a = O case our work may be compareci with 
that of FZ. 17 Their results are justified even in the limit 
p -+ oo, as long as a = O. We find stable ferromag­
netic Mattis states, with a single finite component of the 
magnetization, that have lower free energy than other 
(mixed) states within a finite region of the (u, T) plane, 
where u is the probability for having a zero random-axis 
component. This is in contrast to the behavior found by 
FZ, 17 in which the limiting free energy per si te becomes 
our Eqs. (16), with a cubic anisotropy, which is the low­
est free energy when the number of nonzero magnetiza­
tion components s = p. The stability of the symmetric 
magnetization found for s = p is lost in our case where 
p-+ oo, if bis not very small. This behavior is dueto the 
use of a noncubic random-axis distribution. Indeed, the 
cubic distribution for nf used in Ref. 17 favors a diagonal 
ordering already for finite p, in which each component of 
0(1/ ..jP) becomes vanishingly smail in the large-p limit. 

Furthermore, in addition to F states, we have phases 
of mixed ordering and with residual order, when a= O, 
where the latter has a nonzero spin-glass order parame­
ter, although there is no genuine spin-glass phase as long 
as a= O. 

In the case where a =I= O, we find rather different be­
havior in that a mixed phase appears, in place of the 
diagonally ordered F phase of Ref. 17, referred to above. 
This phase competes for stability with a true spin-glass 
phase, and one or the other is more stable depending on 
the value of a, as discussed in detail in Sec. IV. 

Unconstrained probability distributions for the 
random-axis vectors have often been used in the liter­
ature. Although easy to handle, a Gaussian distribution 
is not appropriate within MFT since it shares some of the 
problems of an isotropic distribution for fixed-length ran­
dom vectors, in which a particular magnetization state is 
continuously degenerate. We have introduced here a tri­
modal distribution of statistically independent and iden­
tically distributed random-vector components. Depend­
ing on the size of b, Eq. (12), these components may 
deviate more or less from diagonal directions, enabling 
us thereby to study the effects of a varying anisotropy. 
All our results, for both a = O, or a =I= O, show a clear 
reduction of the size of the ordered regions in the phase 
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diagrams with departure from diagonal ordering. 
Our work in MFT yields results independent of the di­

mensionality of the system. In order to determine the 
role of · the latter, one would have to study the effect of 
fluctuations, which is beyond the scope ofthis work. Nev­
ertheless, we believe that the general features of the phase 
diagrams should remain unchanged. 
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