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Replica symmetry breaking in the transverse-field Ising spin-glass model:
Two fermionic representations
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We analyze the infinite range Ising spin glass in a transverse-field I" below the critical temperature by a one
step replica symmetry breaking theory. The set of n replicas is divided in r blocks of m replicas each. We
present results for different values of the block-size parameter m. The spin operators are represented by bilinear
combinations of fermionic fields and we compare the results of two models: In the four-states (4-S) model the
diagonal S5 operator has two unphysical vanishing eigenvalues, that are suppressed by a restraint in the
two-states (2-S) model. In the static approximation we obtain qualitatively similar results for both models.
They both exhibit a critical temperature 7.(I") that decreases when I' increases, until it reaches a quantum
critical point at the same value of I', and they are both unstable under replica symmetry breaking in the whole
spin glass phase. Below the critical temperature we present results for the order parameters and free energy.
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I. INTRODUCTION

The Ising model in a transverse field is widely studied for
being the simplest system of interacting spins that presents a
quantum critical point (QCP).! We will not discuss here the
extensive literature on results for several versions of the
model, but we will concentrate instead on the transverse-field
Ising spin-glass model in the ordered region. The experimen-
tal realizations of this model are LiHo,Y,_,F, compounds.>

When the transverse field I' vanishes, our restraint two-
states (2S) model for two states reduces to the Sherrington-
Kirkpatrick (SK) model of a spin glass® that in the ordered
phase presents a landscape of many almost degenerate ther-
modynamic states separated by huge free energy barriers.
The existence of these multiple states reflects itself in the
breakdown of the replica symmetric solution of the saddle
point equations below the ordering temperature with the on-
set of the de Almeida-Thouless instability*> and its replace-
ment by Parisi’s replica symmetry breaking solution.® The
question is if such a picture remains true when quantum me-
chanical effects are included or if the quantum fluctuations
will be strong enough to cause tunneling between these free
energy barriers.

The nature of the spin-glass phase in the transverse-field
Ising spin-glass model has been the subject of controversial
results that seem to depend on the representation of the spin
operators, because in the calculation of the quantum me-
chanical partition function special tools are needed to deal
with the noncommuting operators entering the Hamiltonian.
The method more currently used in the study of short-range’
and infinite range®~'? spin glasses in a transverse field is the
Trotter-Suzuki formula,'® that maps a system of quantum
spins in d dimensions to a classical system of spins in (d
+1) dimensions, and it is suited to perform numerical stud-
ies. In Ref. 10, it was found by using the static approxima-
tion that there is a small region in the spin-glass phase where
a replica symmetric (RS) solution is stable, while in Ref. 11
it is predicted without the use of the static approximation that
the RS solution is unstable in the whole spin glass phase. The
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instability of the RS solution in the ordered region was also
obtained in Ref. 12 by analyzing a one-step replica-
symmetry breaking (1S-RSB) solution, and using only par-
tially the static ansatz.

Another way of dealing with the noncommutativity of
quantum mechanical spin operators is to use Feynman’s path
integral formulations'*~'® and to introduce time ordering by
means of an imaginary time 0 < 7< (3, where f3 is the inverse
temperature. More recently,'” conflicting results were ob-
tained by using the formalism in Ref. 14 with the static
approximation.

A still different functional integral formulation consists in
using Grassmann variables to write a field theory with an
effective action where the spin operators in the Hamiltonian
are expressed as bilinear combinations of fermions.!'®!? In a
previous paper we used a replica symmetric (RS) theory with
the static approximation and we obtained that the RS theory
is unstable* in all the ordered phase.'® The advantage of the
fermionic formulation is that it has a natural application to
problems in condensed matter theory, where the fermion op-
erators represent electrons that also participate in other
physical processes, like the Kondo effect.?”

In the present paper we extend our previous results'® into
the ordered phase with a 1S-RSB formulation. One problem
with the spin representation is that the spin eigenstates at
each site do not belong to one irreducible representation S*
=+1/2, but they are labeled instead by the fermionic occu-
pation numbers n,=0 or 1, giving two more spurious states
with $?=0. We call this the “four-states” (4S) model, and
despite the presence of these two unwanted states the 4S-
Ising spin-glass model describes a spin-glass transition with
the same characteristics as the Sherrington-Kirkpatrick (SK)
model® in a replica symmetric theory. A way to get rid of the
spurious states was introduced before by Wiethege and
Sherrington®! for nonrandom interactions and it consists of
fixing the occupation number 7;;+n;| by means of an integral
constraint at every site. We refer to this as the “two states”
(2S)-Ising model.

In Sec. IT we analyze the 4S-Ising and 2S-Ising spin-glass
models in a transverse field, within the static approximation
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in a one step replica symmetric breaking (1S-RSB) theory.®
The static ansatz neglects time fluctuations and may be con-
sidered an approximation similar to mean field theory, that
describes the singularities of the zero frequency mode.!> Nu-
merical Monte Carlo solutions of the Bray and Moore equa-
tions indicate that the static approximation reproduces the
correct results at finite temperatures.??

When I'=0 the static approximation reproduces the re-
sults obtained by other methods, in particular for the 2S-
Ising spin-glass model we recover SK equations.® The results
in both models are very similar; they both exhibit a critical
spin glass temperature 7.(I') that decreases when the
strength T" of the transverse field increases, until it reaches a
quantum critical point (QCP) at I',, T.(I'.)=0. The value of
FC=2\EJ is the same for both models and the 4S-Ising and
2S-Ising models are identical close to the QCP, where 7.
~2/3(I',~T"). We obtained for both models that the replica
symmetric solution is unstable* in the whole spin-glass
phase, in agreement with previous results with the Trotter-
Suzuki method.!? In Parisi’s theory,® the first step of RSB is
achieved by dividing n replicas in r blocks of m replicas
each, and taking the limit n—0,r—0 while keeping finite
the block parameter O0<m=1. The block parameter m is
considered to be temperature dependent and it is determined
by optimization of the free energy. In our work we release
this constraint and analyze the results for fixed values of the
block parameter m. We present results for the free energy,
and order parameters that are consistent with Ref. 12 but not
with that of Ref. 17. Numerical solutions of the saddle point
equations indicate that the RSB order parameter vanishes at
T=0. We present the model in Sec. II and we leave Sec. III
for discussion.

II. MODEL AND RESULTS

The Ising spin glass in a transverse field is represented by
the Hamiltonian

H=-2J,Si8-2I'2 S5, (1)
ij i

where the sum is over the N sites of a lattice and J;; is a
random coupling among all pairs of spins, with Gaussian

probability distribution
PU,) =iV \N16mP. )
The spin operators are represented by auxiliary fermions

fields

1
Si=~[n.—-n;1,
1 z[an nll]

1
Si= E[a;Tail + a;rlaﬁ], (3)

where the alTU(a,-U) are creation (destruction) operators with
fermion anticommutation rules and o=7 or | indicates the
spin projections. The number operators ni(,:alTUaiU:O or 1,
then S5 in Eq. (3) has two eigenvalues +1/2 corresponding to
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n; =1-n;, and two vanishing eigenvalues when n; =n;;.

We shall use the Lagrangian path integral formulation in
terms of anticommuting Grassmann fields described in a pre-
vious publication,'® so we avoid giving repetitious details.
We consider two models: the unrestrained, four-states model
and also the two-states model of Wiethege and Sherrington
where the number operators satisfy the restraint n;+n; =1,
which gives $i=+1/2, at every site.”!

By using the integral representation for the Kronecker &
function

1 2w )
(S(n]T + n]l - 1) = ;Tfo dxjelx-/'["-”mfl_l], (4)

we can express Z,g and Z,g, the partition function for the two
models, in the compact functional integral form'8

. 1 21
AIE f D(e" o)1 Py f dx;eHie (5)
j “T™lo

where

B 4
A{lu'} = f {E |:<pjo'(7)d_(PjU(T) + /"(‘J(PJU'(T) (pj(T(T):|
0 | jo T

~ H(@; (7). 9;o( 7} (6)

and w;=0 for the 4S model while u;=ix; for the 2S model.
We now follow standard procedures to get the configura-
tional averaged free energy per site by using the replica for-
malism

1 . Zn)-1
- 1m
BN n—0 n

F= , (7)

where the configurational averaged, replicated, partition
function (Z").. ,=Z(n) becomes, after averaging over J;

[

Zn)= | 1 dguge™# " P>astes] |
—0 aﬁ /
1 2T
X 1—.[ ;Tfo dxjae_MjaAj(qaﬂ) (8)
with the replica index a=1,2,...,n, and

Aqup) = f D(qog%)exp[ﬁ Ajur + B4 qaﬂst;ﬁ] .
a af

)

We have introduced the spinors in the Fourier representation
¢i(w)

l/fi(w)=< ! ) (10)
- (Pii(w)

and the Pauli matrices to write the spin-glass part of the
action in the static approximation, where

Si= %E V() Y(w) (11)

and by introducing the inverse propagator
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y;'=io+u;+Tg, (12)

we can write A ,r
Ajar =2 ()77 (@) (). (13)

We assume a one step replica symmetry breaking (1S-
RSB) solution® of the saddle point equations by separating
the n replicas in r groups of m replicas each

Gaa=9+X>
B
mavo 7))
dup=4q I<g>¢l<@>, (14)
m m

where ¢ is the spin-glass order parameter, Y is related to
the static susceptibility by =Ty, and ¢ is the RSB param-
eter. The notation I(K) means integer part.

The sums over « in the spin part of the action produce
again quadratic terms that can be linearized by introducing
auxiliary fields, which makes the integration over Grassmann
variables straightforward.'® In the limit n—0,N — % we ob-
tain the result for the free energy per site for the model with
2(p+1) states, p=0, or 1

B, = S (BIP (v + g ~ [+ gP 4 m( 2 +257])

1 foe] oo
—;f Dz, logf Dz)[2K,(q. X, 6,2)]", (15)

—00

where we introduce the standard notation Dy=e™ 2y
/N2 and

Kp(q,)?,z) =p+f Dgcoshvz (16)

with
h=J\2qz+ IN2(x — O£+ I\262,, (17)
A=(Bh)*+(BI)*. (18)

The saddle point equations for the order parameters are

LDZ‘)f

J DziK, " Iy=q,  (19)
DKy~

1

Clp=f Dz,
{f DZlK?}
X{f DZLKZHJ DEB smh\A} (20)
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J DZ() f l)Z[](Zl_2
J Km

2
X{J D§'8h smh\A} =4, (21)

where h(&,z) is given in Eq. (17) and we call

w 2 J
I)?:f Dg{ ('BZ) coshVA + ,BZFZSH;h ;A} (22)

—00

We obtain for the de Almeida-Thouless eigenvalue* and en-
tropy in both models

©

B Dz, K 'I
AT =1-2(8))? f Dz,

—x f DZIKZL

oo (e h
f Dz, k! f Dé sinh \E%
B —oo — N (23)

j DZIKZl
S 3 2Urs ., T2 2 0
e 5(/5’1) {Ix+ql"-[o+ql+ml5 +25q]}
1 o0 o0
+ —J Dz, logf Dz K,
m —00 —00
5 S sinh\e’Z
—(a0N) Dzo Dlep DE= .

(24)

The first terms of the Landau expansion of the free energy in
powers of ¢ and & gives

1 1
BF,= ,BF?, - Equz - ED(I -m)[q + 6], (25)

where the coefficient D is

\2
D=(BJ)2{1 —Z(BJV(%) } (26)
P

and the integrals are to be taken when ¢=0=0. Here we
consider 0 <m <1 a free parameter and the equations will be
solved for different values of m. We observe that when m
=1 we recover the results without RSB and ¢ being the SG
order parameter, while for m=0 we recover also the RS re-
sult, but with g+ 6 as order parameter in agreement with Ref.
6. The critical line is given by the solution of D=0.

The numerical results for the critical temperature T,(I")
were shown in Ref. 18. For large values of the transverse-
field I" the 2S model and 4S model are indistinguishable.
When I'=0, Egs. (15) for the free energy of the 2S model
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FIG. 1. Free energy and entropy for the 2S model with RSB,
m=0.8, I'=0.5J as a function of temperature

(p=0) reproduce Parisi’s results for the SK model.® For both
models our equations coincide with Ref. 12 except for Eq.
(19), because we find in our formalism that the static ap-
proximation is self-consistent. Finally, we comment on the
de Almeida-Thouless instability. The numerical solution for
AT in Eq. (23) confirms that NAT=0 on the critical line 7,.(T")
and MAT<0 for T<T.T), indicating the instability of the
replica symmetric solution in the whole ordered phase for
both models and contradicting recent results in Ref. 17. We
show in Fig. 1 the free energy and entropy for the 2S model
(p=0) with RSB and m=0.8,1'=0.5/. In Fig. 2 we compare
the free energy for I'=0.5J in the 2S model with three dif-
ferent values of the block parameter m. In Fig. 3 we present
the results for the order parameters g and o for different
values of m. In Fig. 4 we present the results for the order
parameters ¢ and & as a function of temperature for both
models in the case of RSB, with I'=0.5J and m=0.8.

F/J

T T T T T
0.2 0.4 0.6

T

FIG. 2. Free energy for the 2S model with RSB and m=0.2 (full
line), m=0.4 (squares), and m=0.6 (triangles), as a function of tem-
perature for I'=0.5J.
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T

FIG. 3. Spin-glass order parameter ¢ and RSB order parameter &
for I'=0.5J in the 2S model. m=0.2 (full line), m=0.4 (squares),
and m=0.6 (triangles).

III. DISCUSSION

We apply a 1S-RSB theory® to extend to low temperatures
our previous study'® of two quantum Ising spin-glass models
in a transverse field by means of a path integral formalism
where the spin operators are represented by bilinear combi-
nations of fermionic fields, in the static approximation. The n
replicas were separated in r groups of m replicas each and
we analyze the results for fixed values of the block size pa-
rameter 0<<m = 1. This differs from Parisi’s theory® where m
is considered to be temperature dependent and it is deter-
mined by optimization of the free energy. In the unrestricted
four-states 4S model the diagonal S operator has two eigen-
values S;=+1/2 and two vanishing eigenvalues, while in the
2S model the vanishing eigenvalues are suppressed by means
of an integral constraint.?! Regarding the de Almeida-
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FIG. 4. Order parameters for m=0.8, I'=0.5J in the 2S model
(dotted line) and 4S model (full line)
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Thouless instability,* we obtained before!® that the replica
symmetric solution is unstable in the whole spin-glass phase
for both models, contradicting the results in Ref. 17 but in
agreement with the results in Refs. 11 and 12, obtained with
the method of Trotter-Suzuki.'? The results we present here
for the solutions of the saddle point equations, shown in
Figs. 3 and 4, seem to indicate that the RSB order parameter
6 vanishes at 7=0 for all values of the block parameter m.
The free energy, shown in Fig. 2, is maximized for smaller
values of m and this is consistent with the results of Ref. 6
where it is obtained m=0 at T=0. However, if we introduce
the value 6=0 in our analytic expression in Eq. (24) for the
entropy we would recover the RS result, in discrepancy with
the numerical results of Ref. 6 at 7=0. We believe the origin
of this discrepancy lies in keeping the block parameter m
fixed. We notice in Fig. 3 that for m=0.2 and 7=0.2J the
order parameters g and o cross, that is 6=¢. We may con-
jecture that for m=0 this behavior extends to all temperatures
T<T,, in agreement with the numerical results.®
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To summarize, we study the ordered phase for the Ising
spin-glass model in the presence of a transverse field by us-
ing a fermionic representation of the spin operators. The RS
theory is unstable for T<T, (Ref. 18) and we study a 1S-
RSB theory where we hold fixed the block-size parameter m.
We derive saddle point equations for the order parameters
that agree with previous results obtained with other
methods.!? Our theory has the advantage of computational
simplicity and permits us to clarify the importance of m, but
it does not describe RSB at 7=0 for finite values of m
=0.2. We conjecture that RSB is restored at 7=0 only for
m=0.
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