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We investigate an integrable Hamiltonian modeling a heterotriatomic molecular Bose-Einstein condensate.
This model describes a mixture of two species of atoms in different proportions, which can combine to form
a triatomic molecule. Beginning with a classical analysis, we determine the fixed points of the system. Bifur-
cations of these points separate the parameter space into different regions. Three distinct scenarios are found,
varying with the atomic population imbalance. This result suggests the ground-state properties of the quantum
model exhibit a sensitivity on the atomic population imbalance, which is confirmed by a quantum analysis
using different approaches, such as the ground-state expectation values, the behavior of the quantum dynamics,
the energy gap, and the ground-state fidelity.
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I. INTRODUCTION

The experimental achievement that led to the Bose-
Einstein condensates �BECs�, using dilute alkali gases at ul-
tracold temperatures �1,2�, induced a substantial effort dedi-
cated to the understanding of new properties of BECs. In
particular, the development of the techniques used in the pro-
duction and manipulation of ultracold atoms and molecules
�3� has opened the way to another field, the “chemistry” of
ultracold systems, i.e., where the atomic constituents of the
dilute gas may recombine forming molecules. Such molecu-
lar BEC compounds have been obtained by different tech-
niques �4�, for instance, by Feshbach resonances �5–7� or
photoassociation �8�. There can also occur atom-molecule
interactions that must be at least three body in nature �9�,
bringing up a stimulus and challenges to our physical under-
standing. Experimental evidence for three-body recombina-
tions �10� as well as for Efimov states �11� provides a physi-
cal ground and stimulus for the search of triatomic molecular
BECs and for the investigation of their theoretical aspects,
which is our main interest.

From the theoretical point of view, ultracold atomic and
molecular systems are characterized by their large quantum
fluctuations. In this sense, the search for exactly solvable
models describing atomic and molecular BEC becomes rel-
evant. Indeed this has become a very active field of research
�12–20�, and the experimental relevance of these models is
currently a very active research subject �21�. Those solvable
models are expected to provide a significant impact in this
area, a view that has been promoted in �22,23�. Increasing
evidence and recent results show that multiatomic systems
may be interesting and relevant for ultracold atomic-
molecular Bose-Einstein condensates. A significant question
in this context is whether more complex ultracold molecules
could be created than simple dimers �24�. Also, due to the
more sophisticated nature of the control of the interatomic
interactions, in the case of triatomic molecules, one expects a
rich quantum phase structure. Indeed, very recent experimen-
tal results confirm the existence of heteroatomic bosonic tri-

mers in ultracold mixtures �25�, which provide us with addi-
tional motivation to pursue the present investigation.

In this paper we analyze an integrable model describing a
heterotriatomic molecular Bose-Einstein condensate where
atomic BECs can combine �in different proportions� to pro-
duce a compound with two atoms of the same kind and a
third one of a different species. Our model, which has been
shown to be solvable in �26�, includes besides the intercon-
version of atoms to molecules and vice versa, a linear inter-
action corresponding to the external potential and a bilinear
interaction corresponding to the scattering between atoms-
atoms, atoms-molecules, and molecules-molecules. We start
our analysis of this model by a classical treatment where we
obtain its phase space determining, in particular, the fixed
points. We find that for certain coupling parameters bifurca-
tion of the fixed points occurs, and we can determine a pa-
rameter space diagram, which classifies the found fixed
points. This diagram is determined for the imbalance of the
number of atoms, which allows us to classify it in three
distinct cases. Specifically, when the imbalance is equal to
zero or is negative there is a spontaneous appearance of ad-
ditional boundaries in the parameter space �one for the zero
case and two for the negative case�, some of which can be
identified with bifurcations of the minimum of the classical
Hamiltonian. We also perform a quantum analysis, where we
study the quantum dynamics and make a comparison with
the classical results. Here we are interested in studying the
ground state of the model, because as actual systems are in
ultracold temperature, some insight can be obtained from the
ground state. Furthermore, as pointed out before, the pres-
ence of large quantum fluctuations makes it interesting to
look for the phase structure at zero temperature, the quantum
phase transitions. In our case we are able to look for signa-
tures of quantum phase transition. Here we use two defini-
tions: energy gap and ground-state fidelity in order to find a
quantum phase pretransition, a term that will be explained
later. We observe that the critical points are pinned down in
complete agreement with the classical analysis.

The paper is organized as follows. In Sec. II we present
our integrable model. Section III is devoted to the classical
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analysis where the parameter diagram is obtained. Section IV
is devoted to the quantum analysis where we show the quan-
tum dynamics and a study about quantum phase pretransi-
tion. Section V is devoted to our conclusions.

II. MODEL

Let us consider the following Hamiltonian describing a
heterotriatomic molecular Bose-Einstein condensate with
two identical species of atoms, denoted by a, which can be
combined with a different type of atom, denoted by b, to
produce a molecule labeled by c. In terms of canonical cre-
ation and annihilation operators �a ,b ,c ,a† ,b† ,c†� satisfying
the usual commutation relations �a ,a†�= I, etc., the Hamil-
tonian reads

H = UaaNa
2 + UbbNb

2 + UccNc
2 + UabNaNb + UacNaNc

+ UbcNbNc + �aNa + �bNb + �cNc + ��a†a†b†c + c†baa� .

�1�

The parameters Uij describe S-wave scattering, �i are exter-
nal potentials, and � is the amplitude for interconversion of
atoms and molecules. Ni are the number operators, i.e., Na
=a†a is the number of atoms type a, Nb=b†b is the number
of atoms type b, and Nc=c†c is the number of molecules.

The Hamiltonian acts on the Fock space spanned by the
�unnormalized� vectors

�Na;Nb;Nc� = �a†�Na�b†�Nb�c†�Nc�0� , �2�

where �0� is the Fock vacuum.
The Hamiltonian above has two independent conserved

quantities

N = Na + Nb + 3Nc, J = Na − 2Nb,

where N is the total number of atoms and J is the atomic
imbalance. It is convenient to introduce k=J /N as the frac-
tional atomic imbalance. Since there are three degrees of
freedom and three conserved quantities, the model is inte-
grable. More details about the integrability of this model,
using the Bethe ansatz method, can be found in �26�. In what
follows we will investigate this model in detail. Below we
begin with a classical analysis of the model and determine
the fixed points of the system.

III. CLASSICAL ANALYSIS

Let Nj ,� j, j=a ,b ,c, be quantum variables satisfying the
canonical relations

�� j,�k� = �Nj,Nk� = 0, �Nj,�k� = i� jkI .

We make a change of variables from the operators j , j†, j
=a ,b ,c, to a number-phase representation through

j = exp�i� j�	Nj, j = a,b,c ,

such that the canonical commutation relations are preserved.
We perform an additional change of variables,

z =
1

N
�Na + Nb − 3Nc� ,

� =
N

6
�2�a + �b − �c� ,

such that z and � are canonically conjugate variables, i.e.,

�z,�� = iI .

In the limit of large N we can approximate the �rescaled�
Hamiltonian by

H =
4�N2

36

�z2 + 2�� − ��z + �

+ �z + c+�	�z + c−��1 − z� cos�6�

N
�
 , �3�

where we have defined

� = ��4Ua + Ub + Uc + 2Uab − 2Uac − Ubc� ,

� = �
4�c+ + 1�Ua + �c− + 1�Ub + �c+ + c− + 2�Uab

− �1 + c+�Uac − �1 + c−�
Ubc

2
+

3

N
�2�a + �b − �c�
 ,

� = �
4Uac+
2 + Ubc−

2 + Uc + 2Uabc+c− + 2Uacc+ + Ubcc−

+
6

N
�2�ac+ + �bc− + �c�
 ,

with

c− = 1 − 2k, c+ = 1 + k, � =
1

4�
,

k =
J

N
, k � �− 2,1� .

We now regard Eq. �3� as a classical Hamiltonian and
investigate the fixed points of the system. The first step is to
find Hamilton’s equations of motion, which yield

dz

dt
=

�H

��
= −

4�N

6
�z + c+�	�z + c−��1 − z�sin�6�

N
� ,

d�

dt
= −

�H

�z
=

4�N2

36 
2�z + 2�� − ��

+
2�z + c−��1 − z� + �z + c+��1 − z� − �z + c+��z + c−�

2	�z + c−��1 − z�

	cos�6�

N
�
 . �4�

The fixed points of the system are determined by the con-
dition
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�H

��
=

�H

�z
= 0. �5�

Due to periodicity of the solutions, below we restrict our-
selves to �� �0,N
 /3�. It is convenient to define the func-
tions as follows:

f�z� = �z + � − � ,

g�z� = −
2�1 − z��z + c−� + �1 − z��z + c+� − �z + c+��z + c−�

4	�1 − z��z + c−�
.

Note that the domain of g�z� is z� �−1,1� if k� �−2,0� and
z� �2k−1,1� if k� �0,1�.

We observe that the fractional atomic imbalance k plays
an important role in the behavior of the g�z� function. For
k�0, g�z� is divergent only at z=1, while for the case of k
�0, g�z� is divergent at z=2k−1 and z=1. Since k affects
the domain and the shape of the function g�z�, this property
will affect the type of solutions of Eq. �5�. In Fig. 1 we
illustrate the behavior of the function g�z� for different val-
ues of k. It is, in fact, necessary to treat the cases of k
0,
k=0, and k�0 separately.

A. Negative case: −2Ïk
0

Here the domain of g�z� is z� �−1,1� and g�z� is diver-
gent at z=1, but finite at z=−1. This leads to the following
classification for the solutions of Eq. �5�:

�1� �=0 and z is a solution of

f�z� = g�z� , �6�

which can admit zero, one, or two solutions.
�2� �=N
 /6 and z is a solution of

f�z� = − g�z� , �7�

which can admit zero, one, or two solutions.
�3� z=−c+, which vanishes the first equation of Eqs. �4�

and reduces the second equation of Eqs. �4� to the expression

� =
�

k + 2
+

	− 3k�k + 2�
2�k + 2�

cos�6�

N
� , �8�

such that � is a solution of

cos�6�

N
� = −

2	− 3k�k + 2�
3k

�� −
�

k + 2
� , �9�

for which there are two solutions for � 2	−3k�k+2�
3k ��− �

k+2 ��
1.

B. Zero case: k=0

Now we consider the case k=0, where the domain of g�z�
is z� �−1,1� and g�z� is divergent at z=1, but finite at
z=−1, similar to the previous case. This leads to the follow-
ing classification for the general problem:

�1� �=0 and z is a solution of

f�z� = g�z� , �10�

which can admit zero, one, or two solutions.
�2� �=N
 /6 and z is a solution of

f�z� = − g�z� , �11�

which can admit zero, one, or two solutions.
�3� z=−1, which vanishes the first equation of Eqs. �4�

and reduces the second equation of Eqs. �4� to the following
linear equation between the coupling parameters:

� =
�

2
, �12�

which can admit just one solution. This result is compatible
with that obtained in the previous case by taking the limit
k→0 in Eq. �8�.

C. Positive case: 0
kÏ1

In this case the domain of g�z� is z� �2k−1,1� and g�z� is
divergent at both extremes of the interval, z=2k−1 and z
=1. Now, a different scenario emerges, compared to the pre-
vious two cases. This leads to the following classification for
the general problem:

�1� �=0 and z is a solution of

f�z� = g�z� , �13�

which can admit one, two, or three solutions.
�2� �=N
 /6 and z is a solution of

f�z� = − g�z� , �14�

which can admit one, two, or three solutions.
We can collect all different types of solutions of Eq. �5� in

a parameter diagram, dividing the parameter space into dif-
ferent regions, for each case of k discussed above. For ex-
ample, for the case of k positive, to construct this diagram,
we observe that the boundaries between each region occur
when f is the tangent line to �g; i.e., for values of � and �
such that

� = � �
dg

dz
�

z0

,

f�z0� = � g�z0� ,

for some z0. This requirement determines the boundaries in
the parameter space, which are depicted in Fig. 2�c� for k
=0.5.

-1 -0.5 0 0.5 1
z

-4

-2

0

2

4

g(
z)

k = -1
k = 0
k = 0.5

FIG. 1. �Color online� The behavior of the function g�z� for
three different values of k.
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As in the case of k positive, we can determine the region
boundaries in the parameter space for the other two cases.
However, because of the existence of solutions of the form
given by Eq. �8�, which do not have an analog for positive k,
we see the appearance of new boundaries given by the con-
ditions �= ���g�−k−1�� / �k+2� for negative k and �=� /2
for k=0. The boundaries in parameter space are illustrated in
Figs. 2�a� and 2�b� for k=−1 and k=0, respectively. Notice
that the two additional boundaries, which delimit region C,
for k=−1 are reduced to a unique boundary for k=0, which
is not present for k=0.5. Therefore, we have a different sce-
nario for the parameter space diagram, depending on if the
fractional atomic imbalance k is negative, zero, or positive,
as illustrated in Fig. 2. Basically, we can summarize the typi-
cal behavior of the parameter space diagram as follows:
when k is negative, the parameter diagram is divided into
five regions: in region A there is no solution for z when �
=0 and one solution for z when �=N
 /6. In region B there
are two solutions for z when �=0 and one solution for z
when �=N
 /6. In region C there is one solution for z when
�=0, one solution for z when �=N
 /6, and two solutions for
� when z=−k−1. In region D there is one solution for z
when �=0 and two solutions for z when �=N
 /6. In region
E there is one solution for z when �=0 and no solution for z
when �=N
 /6. For the case k=0, region C disappears and
the phase diagram is left with the four regions A, B, D, and E
discussed before. When k is positive the diagram is divided
into three regions: in region I there is one solution for z when
�=0 and one solution for z when �=N
 /6. In region II there
are three solutions for z when �=0 and one solution for z
when �=N
 /6. In region III there is one solution for z when
�=0 and three solutions for z when �=N
 /6. It is interesting
to mention that the fractional atomic imbalance also plays an
important role in heterodiatomic molecular Bose-Einstein
condensates �27–29�.

To help visualize the classical dynamics, it is useful to
plot the level curves of the Hamiltonian �3�. Since the fixed
points change the topology of the level curves, qualitative
differences can be observed between the different regions.
The results are depicted in Fig. 3 for k=−1 �on the left�, k
=0 �in the middle�, and k=0.5 �on the right�. For clarity, we
use convenient intervals for � and z.

In Fig. 3�a� we show the level curves of the Hamiltonian
�3� for k=−1, illustrating the typical behavior for regions A,

B, C, and E �from the top to the bottom�. In region A there
are local minima at 6� /N= �
. Besides the minima at
6� /N= �
, two additional fixed points �a maximum and a
saddle point� are apparent in region B occurring at �=0. In
region C there are minima at 6� /N= �
 and for �=0 just
one fixed point, a maximum. There are also saddle points
when z=0. In region E just one fixed point, a maximum,
occurs for �=0.

In Fig. 3�b� we show the level curves for k=0 for the
same regions illustrated in the previous case, except that now
instead of region C there is just one straight line separating
regions B and D. The behavior here is analogous to the pre-
vious case of negative k, with the emergence of a maximum
�minimum� when passing from region A to B �E to C�.

In Fig. 3�c� we present the level curves of the Hamil-
tonian �3� for k=0.5, illustrating the behavior of regions I, II,
III and I �from the top to the bottom�. In region I there is a
maximal point at �=0 and a minima at 6� /N= �
. Two
additional fixed points, a saddle and a maximum, occur in
region II at �=0, while two additional fixed points, a saddle
and a minimum, occur in region III at 6� /N= �
 compared
to region I.

We observe that the pattern of the level curves is distinct
for the cases of k negative and zero compared to the positive
case.

In the following sections we will conduct an analysis of
the quantum Hamiltonian. We will focus our attention on the
case �=0; in this way the model has one effective parameter,
�. In particular, we will establish that the bifurcation occur-
ring at �� ,��= (−g�−k−1� ,0) for the negative case and
�� ,��= �0.5,0� for k=0 can be seen to influence the ground-
state properties of the quantum system.

IV. QUANTUM ANALYSIS

We now turn our attention to a quantum treatment of the
model, to investigate the nature of the additional threshold
couplings for the cases where the fractional atomic imbal-
ance k is negative and zero. In particular, we analyze the
Hamiltonian in the no scattering limit where Uij =0 for all
i , j=a ,b ,c,

H = �aNa + �bNb + �cNc + ��a†a†b†c + c†baa� . �15�

-5 -2.5 0 2.5 5
α

-5

-2.5

0

2.5

5

λ
k = -1

A

B

C

D

E

-5 -2.5 0 2.5 5
α

-5

-2.5

0

2.5

5

λ

k = 0

A
B

D
E

-5 -2.5 0 2.5 5
α

-5

-2.5

0

2.5

5

λ

k= 0.5

I

II

III

(b)(a) (c)

FIG. 2. �Color online� Parameter space diagram identifying the different types of solution for Eq. �5� for different values of
k=−1;0;0.5. We observe �a� five distinct regions for the negative case; �b� four distinct regions for k=0; and �c� three distinct regions for
the positive case. In �a� the boundaries are given by �= ���g�−k−1�� / �k+2� while in �b� it is given by �=� /2.
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This simplifies substantially the Hamiltonian, however, it
remains sufficiently nontrivial to enable us to gain an under-
standing of the quantum behavior through the quantum dy-
namics, ground-state expectation value, gap, and fidelity. The

no scattering limit corresponds to the coupling �=0 in the
classical analysis of Sec. III. With reference to Fig. 2 there
are two threshold couplings when k is negative and three
threshold couplings for k=0. For the case of k negative, one
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FIG. 3. Level curves for the Hamiltonian �3�, where the dark regions indicate lower values than the light regions. Here we use for �a�
k=−1 on the left, �� ,��= �0;−1.0�, �5; 2.5�, �0, 0�, and �0, 1.5�; �b� k=0 in the middle, �� ,��= �0,−1�, �2.5, 2.5�, �0; 0�, and �0, 1.5�; �c�
k=0.5 on the right, �� ,��= �0;−1.5�, �5, 2.5�, �−5,−2.5�, and �0, 1.5�.
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occurs at �� ,��= (−g�−k−1� ,0), signifying the bifurcation of
the global minimum of the Hamiltonian, while the other oc-
curs at �� ,��= (g�−k−1� ,0), signifying the bifurcation of the
global maximum. For the specific example of k=−1, these
thresholds are �� ,��= �0.866,0� and �� ,��= �−0.866,0�, re-
spectively. For the case k=0, there are three bifurcations at
�� ,��= �−0.5,0� , �0,0� , �0.5,0�. The case �� ,��= �−0.5,0�
signifies the bifurcation of the global maximum, �� ,��
= �0.5,0� signifies the bifurcation of the global minimum,
while �� ,��= �0,0� signifies the bifurcation of the saddle
point. In contrast, there are no bifurcations along the line �
=0 for the positive case. We focus our attention on the cou-
pling �� ,��= �0.866,0� for k=−1 and �� ,��= �0.5,0� for k
=0, as in these cases the bifurcation of the fixed point in
phase space is associated with the ground state of the quan-
tum system.

A. Quantum dynamics

In general, the time evolution of any state is given by
���t��=U�t����, where U�t� is the temporal operator, U�t�
=�m=0

M �m��m �exp�−iEmt�, �m� is an eigenstate with energy
Em, and ��� represents the initial state with N=Na+Nb
+3Nc. We adopt the method of directly diagonalizing the
Hamiltonian �15� as done in �31,32� and compute the expec-
tation value of z�t� through

�z�t�� =
1

N
���t��Na + Nb − 3Nc���t�� . �16�

In our analysis, for fixed total number of atoms N and
fixed atomic imbalance J, we will use the initial state con-
figuration �0,−J /2, �2N+J� /6� for the cases where k is nega-
tive and zero and �J ,0 , �N−J� /3� for the case where k is
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FIG. 4. Time evolution of the expectation value of z for the Hamiltonian �15� with N=900, for �a� k=−1 and initial state �0, 450, 150�.
We are using natural units. The oscillations are largely irregular with significantly decreasing amplitude as the point at �=0.866 is crossed.
This point corresponds to the boundary at �� ,��= �0.866,0� between regions C and E as shown in Fig. 2�a�; �b� k=0 and initial state �0, 0,
300�. A similar behavior occurs as the point at �=0.5 is crossed. This point corresponds to the boundary at �� ,��= �0.5,0� as shown in Fig.
2�b�; �c� k=0.5 with initial state �450, 0, 150�. The oscillations display collapse and revival behavior with smoothly decreasing amplitude.
Here there is no abrupt behavior, indicative of the fact there is no boundary at �=0 in Fig. 2�c�.
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positive. We therefore compare the three cases of the quan-
tum dynamics with fractional atomic imbalance negative,
zero, and positive.

Results of the expectation value for z are shown in Fig. 4
for the cases of k=−1, 0, and 0.5. We are using N=900 and
J=−900;0 ;450 for k=−1;0 ;0.5, respectively. We fix the pa-
rameter �=1 and use �c as the variable coupling parameter.
In terms of the classical variables, this corresponds to vary-
ing the parameter �. The qualitative differences are quite
apparent. In the case of k=−1, Fig. 4�a�, we find that for �

0.866 there are irregular oscillations in z. Similar behavior
occurs for �
0.5 for k=0, Fig. 4�b�. As the coupling param-
eter � is increased across the threshold value at �=0.866, for
k=−1 and �=0.5 for k=0, the transition to localized oscilla-
tions is significant in cases �a� and �b�. By comparison the
dynamics in Fig. 4�c� for k=0.5 shows a collapse and revival
of oscillations.

B. Ground-state expectation values

Now using Eq. �16�, we compute the normalized ground-
state expectation value 3�Nc� /N for the quantum system as

the coupling is varied. Results are shown in Fig. 5.
In general, agreement with the classical result is found: As

the threshold coupling �=0.866 �for k=−1� and �=0.5 �for
k=0� is crossed, the maximal possible number of molecules
that can be formed for each case �100% for k=−1 and 50%
for k=0� is reached. In both cases, there is an abrupt change
in the expectation value 3�Nc� /N at the threshold point.
However, for k=0, the expectation value 3�Nc� /N does not
exhibit any sudden change, indicative of the fact that there is
no boundary in Fig. 2�c�. Therefore, qualitative changes are
observed between the cases of k negative and zero and the
case of k positive.

C. Quantum phase transitions

In order to gain better insight into the effect of the thresh-
old couplings for the quantum system, in our final analysis
we investigate the existence of quantum phase transitions in
our model �15�.

A quantum phase transition �QPT� is usually defined as a
phase transition in the ground state of the system under the
variation of some parameter. Basically, there is a sudden
change in the structure of the ground state at the QPT, and
the properties such as entanglement, correlations, etc. reflect
this sudden change �30�. There are different methods to de-
termine a QPT. In particular, we will study the behavior of
the energy gap and fidelity of the system to identify a QPT.
Here we mention that a QPT is rigorously defined in the
thermodynamical limit N→�. For large but finite N the sys-
tem does display an increasingly sharp distinction between
ground-state regions, called quantum prephase transitions
�QPPT�. The occurrence of a QPPT in a finite system is a
precursor for a QPT in the thermodynamic limit. Let us now
study the QPPT of the Hamiltonian �15�.

1. Energy gap

One possibility to identify a QPPT is through the energy
gap, which is defined as the difference between the first ex-
cited state and the ground state of the system.

�E = E1 − E0.

In Fig. 6 we plot the gap against the coupling parameter �
for the cases of k=−1, 0, and 0.5 using �=1 and different
values of N. In all cases the energy gap exhibits a minimum,
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FIG. 5. �Color online� Normalized ground-state expectation
value of the molecular number operator �Nc� versus the coupling
parameter � for the three different cases k=−1, 0, and 0.5. Here we
are using �=1 and N=900. For the cases k=−1 and k=0 there is an
abrupt change in the expectation value 3�Nc� /N as the threshold
coupling �=0.866 �for k=−1� and �=0.5 �for k=0� is reached. In
contrast, for k=0.5, the expectation value 3�Nc� /N increases
smoothly with �, not exhibiting any abrupt behavior.
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FIG. 6. �Color online� Energy gap between the first excited state and the ground state as a function of � for �a� k=−1, �b� k=0, and �c�
k=0.5 and different values of N. We are using �=1 and natural units.
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which is much more pronounced in the cases of k negative
and zero compared to the case where k is positive. We ob-
serve that as long as N increases, the point where the gap
tends to vanish corresponds to �=0.866 for k=−1 �Fig. 6�a��
and �=0.5 for k=0 �Fig. 6�b��, in agreement with the clas-
sical analysis. In contrast, when k is positive there is no
abrupt variation of the energy gap as shown in Fig. 6�c� and
QPPT are not expected.

2. Fidelity

Another possibility to investigate the QPPT is through the
behavior of the fidelity, which is a concept widely used in the
quantum information theory �33–35�. The fidelity is basically
defined as the modulus of the wave-function overlap be-
tween two quantum states. Assuming the ground state of the
system is nondegenerate, let ���� denote the unique normal-
ized ground state. For fixed small � we define the function
fidelity or ground-state wave-function overlap F���� by

F���� = ������1 − ��������1 + ����� ,

which is symmetric in �, bounded between 0 and 1, and
satisfies F0���=1. For systems that exhibit a quantum phase
transition in the thermodynamic limit, the wave-function
overlaps between states in different phases go to zero in this
limit. The occurrence of a minimum in the ground-state
wave-function overlap in a finite system is then a precursor
for a quantum phase transition in the thermodynamic limit.
Thus for finite systems we identify quantum phase pretran-
sitions at a coupling � for which the fidelity is �locally�

minimal. Figure 7 shows the behavior of the fidelity for �a�
k=−1, �b� k=0, and �c� k=0.5 for fixed N��� and different
values of ��N� on the top �bottom�. It is clear that the mini-
mum value of F����, which determines the quantum phase
pretransition, tends to occur at ��0.86 for k=−1 and �
�0.5 for k=0. The distinction between the predicted thresh-
old coupling and the observed pretransition coupling is that
the pretransition coupling also occurs for k positive, although
for fixed N the minimum of F���� is substantially more
pronounced for k negative and zero compared to k positive.
In all instances the value of the minimum decreases with
increasing N. We remark that the value of � at which the
minimum occurs is independent of �, as shown in Fig. 7 �on
the top�. In our previous classical analysis qualitative differ-
ences are only found precisely when k is negative or zero.
Here it is clear that the distinguishability of two phases is
more reliable also for k negative or zero. We then interpret
these results as the emergence of quantum phase boundaries
for k negative or zero.

V. CONCLUSION

We have considered a model describing a mixture of two
species of atoms in different proportions, which can combine
to form a bound molecular state at zero temperature. This
heterotriatomic molecular Bose-Einstein condensate model
has been investigated in detail through a classical and a
quantum analysis.

We have found that the fractional atomic population im-
balance k, an extra control “knob” characteristic to hetero-
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FIG. 7. �Color online� Ground-state wave-function overlaps as a function of the coupling parameter � for �a� k=−1, �b� k=0, and �c�
k=0.5 and �=1. On the top we are using N=900 and different values of �. In the bottom we are using �=0.01 and different values of N.
In all cases the fidelity exhibits a minimum, which is substantially more pronounced for k=−1 and k=0, compared to k=0.5.
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nuclear models, plays an important role in the determination
of the phase boundaries in the diagram of parameters in the
classical analysis. This property also holds at a quantum
level by inspecting the ground-state expectation values and
the character of the quantum dynamics of the model. We
have also looked for the quantum phase pretransitions in our
system and shown that the quantities energy gap and ground-
state fidelity are suited for revealing QPPT and pinning down
the critical �bifurcation� points.
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