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Two interacting fermions in a one-dimensional harmonic trap:
Matching the Bethe ansatz and variational approaches
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In this work, combining the Bethe ansatz approach with the variational principle, we calculate the ground-state
energy of the relative motion of a system of two fermions with spin up and spin down interacting via a
delta-function potential in a one-dimensional (1D) harmonic trap. Our results show good agreement with the
analytical solution of the problem, and provide a starting point for the investigation of more complex few-body
systems where no exact theoretical solution is available.

DOI: 10.1103/PhysRevA.86.043619 PACS number(s): 03.75.Ss, 03.75.Hh, 02.30.Ik, 71.10.Pm

I. INTRODUCTION

Few-body quantum systems composed of atoms and
molecules are some of the most simple structures that
constitute the building blocks of matter. Despite this simplicity
their study has recurrently been challenging. One of the reasons
for this being that one cannot make use of standard statistical
methods and still have enough degrees of freedom to make
it a complex problem, often not solvable for as few as three
bodies. The interest in few-body systems is manifold and has
over time appeared in nuclear and particle physics as well as
in atomic and molecular studies. Currently, a renewed interest
has also emerged in relation to the experimental study of Bose
and Fermi gases since few-body interactions may play a far
from trivial role in their behavior [1]. Moreover, the recent and
impressive development of the technology associated with the
study of the Bose-Einstein condensation phenomena in fields
such as ultracold gases, Mott insulators, and optical lattices
led to the possibility of controlling in an increasingly precise
way the number of atoms trapped in a well.

In particular, a great deal of interest has been devoted to the
study of distinguishable trapped few-fermion systems. The
most recent experimental achievement being the realization
of a system of two fermionic atoms of 6Li with tunable
interactions [2,3]. In this experiment, the ground-state energy
of the system was measured and compared to an analytical
result that exists in this particular case [4] (see also [5]),
which, however, is not extendable if one includes more atoms.
Therefore a good approximation that may be generalized to
more than two atoms is of interest. It is worthwhile to mention
here that the Hamiltonian employed in the calculation of
the ground-state energy of this two-fermion experiment is
basically equivalent to the one used to discuss the existence
of exotic pairing mechanisms closely related to the elusive
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [6,7] state. In that
case, one deals with a higher number of particles, in addition
to a spin imbalance, and the thermodynamical Bethe ansatz
coupled to a local density approximation was used to discuss
the resulting phase diagrams and density profiles of trapped
fermionic 6Li atoms in one-dimensional (1D) tubes [8–10].

With the above motivations, viewing the prospect of new
few-body experiments [11], we propose an alternative possibil-
ity, a variational approach based on the use of the Bethe-ansatz
solution for a system with delta-function interactions. Our

choice will take into account the knowledge of the exact solu-
tion of the 1D many-body system with repulsive or attractive
delta-function potentials [12–14] and consider the trapping as
a kind of perturbation. By this we mean that the bulk of our
ansatz is supposed to grasp the behavior of the interacting par-
ticles which happen to be trapped in a harmonic well. This is an
unexplored possibility and, for that matter, one that has the po-
tential to be systematically generalized from two to more par-
ticles. Our approach consists of calculating the ground state of
the few-fermion model keeping in mind the variational princi-
ple, such that the actual ground-state energy is smaller than the
chosen state of the Hamiltonian with delta interactions, which
we know exactly by the Bethe-ansatz methods, plus a part that
is the mean value of the harmonic potential for our ansatz.

In the following we develop our systematics for the
variational calculation of the ground state of a two-fermion
system. The next section will be devoted to set forth the
system of two interacting fermions that we are investigating,
then in Sec. III we introduce our variational ansatz, which
as mentioned is inspired in a paradigmatic solution for 1D
systems [12–15], the Bethe-ansatz [16]. In Sec. IV we present
our results for the repulsive and attractive cases and in Sec. V
these results are compared with the ones obtained by the
authors of [4,5] for the relative motion. In the Appendix we
provide details concerning the construction of the Bethe ansatz
part in absolute coordinates and briefly discuss its extension
to the general case of N fermions.

II. SYSTEM

Let us consider a system of two interacting fermions, for
instance, two fermionic atoms with mass m in an axially
symmetric harmonic trap with angular frequency ω. Such a
system can be described by the following Hamiltonian:

H = − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

+ VA(x1, x2) + VI (x1 − x2),

(2.1)

where x1 and x2 denote the position of the two fermions and
VA(x1, x2) represents the trapping potential

VA(x1, x2) = 1
2mω2x1

2 + 1
2mω2x2

2. (2.2)
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For sufficiently low energies the interaction potential VI can
be taken as a delta-function contact potential such that

VI (x1 − x2) = 2cδ(x2 − x1), (2.3)

where c is the interaction strength. The potential is repulsive
or attractive, respectively, for c > 0 or c < 0.

Here, as the harmonic potential and the kinetic energy are
quadratic, it is convenient to separate the relative motion from
the center-of-mass motion. This can be easily attained by using
the center of mass and relative coordinates given by

X = x1 + x2

2
, x = x2 − x1. (2.4)

One can then decompose the total Hamiltonian in the center
of mass HCM and relative motion Hrel parts

HCM = − h̄2

2M

∂2

∂X2
+ 1

2
Mω2X2, (2.5)

Hrel = − h̄2

2μ

∂2

∂x2
+ 2cδ(x) + 1

2
μω2x2. (2.6)

In the above, μ = m
2 is the reduced mass and M = 2m the total

mass. It can be seen that the eigenfunctions and eigenenergies
of HCM are those of the harmonic oscillator. Notice that for
the general N case, by the use of Jacobi coordinates, the
Hamiltonian is also separable (see the Appendix).

Now, for the Hamiltonian Hrel, we shall apply the varia-
tional principle

EGS � 〈ψ |Hrel|ψ〉
〈ψ |ψ〉 , (2.7)

where ψ(x) is a continuous trial wave function.
The novelty in our approach is that the trial function,

which we denote ψ(x, {α,L}), will encompass the Bethe ansatz
concept [12–14,16]. The parameter α controls the decay of the
trial function outside the trap and L indicates the limit where
this decay starts. Inside the trap, where the contact interaction
is relevant, the trial function will take the form of the Bethe
ansatz. As usual a variation of these parameters provides a
minimal value, which should approximate the ground state of
the system. In that way we have a wave function that gives a
realistic picture of the physical processes involved.

III. ANSATZ

In the present section we exhibit our variational ansatz.
Further details concerning the construction of the Bethe ansatz
part can be found in the Appendix, where we also briefly
discuss its extension.

As shown in Fig. 1, there are three relevant regions for a
wave function of our system. We can delineate these regions
by the parameter L. Our variational ansatz assumes then the
following configuration:

ψ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψI = e−α(x+L)2
ψII (−L), −∞ < x < −L,

ψII = (eikLe−ikx + eikx)�(x)

+ (eikLeikx + e−ikx)�(−x), −L < x < +L,

ψIII = e−α(x−L)2
ψII (+L), +L < x < +∞,

(3.1)

where � is the Heaviside step function.

x
-L +L

Region IIIRegion IIRegion I

|ψ(x)|2

FIG. 1. Schematic representation of the normalized probability
density |�(x)|2 in the relative coordinates system in arbitrary scale
and Rydberg atomic units. The variational parameter L may be used
to delineate three regions according to the boundaries with respect to
the harmonic potential.

In region II (−L < x < +L) the two-fermion system is
subject to the contact potential and the harmonic trap. Due to
the symmetry of the system, in the vicinity of the central
axis, where (x = 0), the interaction term is dominant. In
other words, any contact interaction takes over the harmonic
potential. For this reason we assume that it is possible to
approximate the wave function in region II by the wave
function that describes a system with two distinct fermions
with a contact interaction. Historically, such systems were
studied in 1D lattices of size “L” and periodic boundary
conditions, being exactly solved in Refs. [13,14]. Later major
contributions for this problem where given by Ref. [12]
followed by others, such as Refs. [17] and [18–21].

Therefore, our choice for a trial wave function in this region
corresponds to the Bethe ansatz solution for fermions interact-
ing through a delta-function potential in relative coordinates,
such that ψII is built as the eigenfunction of the interaction
Hamiltonian

HintψII =
[
− h̄2

2μ

∂2

∂x2
+ 2cδ(x)

]
ψII = h̄2

2μ
k2ψII .

More importantly, this means that ψII will correspond to
the eigenfunction of Hint with energy Eint = h̄2

2μ
k2 for all the

“quasimomenta” k’s that satisfy the following equation:

eikL = k + i
2μ

h̄2 c

k − i
2μ

h̄2 c
, (3.2)

known as the Bethe ansatz equation.
Hence, for each value of the coupling c we need to

determine which value of the quasimomentum k satisfies (3.2)
for our choice of state, here the ground state to have ψII

completely defined.
A careful analysis of Eq. (3.2) shows that the possible values

for the quasimomenta k depend on the sign of c [12]. For the
repulsive case (c > 0), only real k’s are ground-state solutions
of the Bethe ansatz equations (3.2) and, accordingly, are the
values entering in ψII . For the attractive case (c < 0) the k’s
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composing the ground state are pure imaginary numbers. We
will then consider both cases separately.

Our proposal consists then in building the central part of our
trial function as the Bethe ansatz wave function for the relative
motion of two distinct fermions interacting via a delta function.
This problem is completely solvable and in its generality
applied to any number of fermions [12–14]. Notice that in
the literature one usually considers the contact interaction as a
perturbation to the harmonic potential Hamiltonian. We show
here how to use the full strength of the Bethe ansatz in a
variational approach.

Before we proceed to the analysis of the repulsive and
attractive cases we have still to explain how to deal with the
continuity of the wave function on the boundaries between
the three regions. The continuity condition in all the intervals
dictates that

ψI (−L) = ψII (−L), ψII (+L) = ψIII (+L).

In regions I and III the harmonic potential is the only
one present, so the simplest choice that takes into account the
system behavior should be an eigenfunction of the harmonic
oscillator Hamiltonian. As we expect a rapid decay of the
probability density in these regions, ψI and ψIII have the form
of a Gaussian and depend on another variational parameter α.
It is important to notice that although our choice is continuous
for all x, its first derivative is not. Later we also consider
the contribution of this discontinuity to the total value of the
ground-state energy.

IV. RESULTS

A. Repulsive interaction, (c > 0)

In this case just some values of k, the purely real ones,
satisfy (3.2) for the ground state, therefore in this section we
only consider k ∈ R. To apply the variational principle, we
first compute the normalization of the wave function, which
yields

〈ψ |ψ〉 = 2

√
π

2α
[1 + cos(kL)] + 4

k
[kL + sin(kL)] (4.1)

and then the expectation value of Hrel, the value of which is

〈ψ |Hrel|ψ〉

= h̄2α

μ

√
π

2α
[1 + cos(kL)] + 2h̄2k2L

μ

+μω2[1 + cos(kL)]

[
1

2

√
π

(2α)
3
2

+ L2

√
π

2α
+ L

α

]

+ μω2

3k3
[2L3k3 + 3(k2L2 − 1) sin(kL) + 3kL cos(kL)].

(4.2)

In the expression (4.2) we also considered the contribution
from the discontinuity of the wave-function first derivative at

-2

-1

 0

 1

 2

-10 -5  0  5  10

ε

a1d

attractive (c<0)repulsive (c>0)

analytical
Bethe ansatz-variational

FIG. 2. (Color online) Energies for the ground state of the relative
motion for two distinct fermions interacting via a delta-function
potential and confined in a harmonic trap of frequency ω. The
analytically obtained energy levels (black dotted line) are compared
to the results for the energy given by the combination of the Bethe
ansatz with the variational principle (red solid line).

x = ±L, that is,

lim
ε→0

[∫ −L+ε

−L−ε

ψ∗(Hrelψ)dx +
∫ L+ε

L−ε

ψ∗(Hrelψ)dx

]

= −2h̄2k

μ
sin(kL),

which comes from the kinetic term of Hrel.
The Bethe ansatz equations (3.2) for the ground state in the

repulsive interaction reduce then to

k = 2

L
arctan

(
2μc

h̄2k

)
, (4.3)

which are much simpler to solve.
We have then all the necessary ingredients to proceed with

the numerical minimization of 〈ψ |Hrel|ψ〉
〈ψ |ψ〉 with respect to the

parameters α and L. Basically, to each assigned c we sweep
over all values of α and L, calculate k for each L, and establish
the parameters α∗ and L∗ such that 〈ψ |Hrel|ψ〉

〈ψ |ψ〉 takes the least
possible value. In this way we determine the ground-state
energy of the two-fermion system as a function of the coupling
c via the variational principle, where the trial wave function
is constructed by means of the Bethe ansatz. This result is
depicted in Fig. 2 using the physical variables ε and a1D. We
give more details in the next section where we also compare
this result with the analytical solution [4].

Limiting case: Notice that in the limit L → 0, c → 0
(harmonic oscillator) the expression (4.2) reduces to

lim
L→0

〈ψ |Hrel|ψ〉
〈ψ |ψ〉 = h̄2α

2μ
+ μω2

8α
. (4.4)

Upon extremization of the total energy with respect to α in the
limit L → 0, the minimum value is the one for the value α∗ of
the parameter

|α∗| = μω

2h̄
, (4.5)
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such that

lim
L→0

〈ψ |Hrel|ψ〉
〈ψ |ψ〉

∣∣∣∣
α=α∗

= 1

2
h̄ω, (4.6)

which, as expected, is simply the ground-state energy of the
harmonic oscillator.

B. Attractive interaction, (c < 0)

In this case only the purely imaginary values of k satisfy
the Bethe ansatz equations (3.2) for the ground state; for this
reason we will consider k ∈ C. Thus, it is convenient to define
k = ik′, k′ ∈ R. In terms of k′, we can write (3.2) as

e−k′L = k′ + 2μ

h̄2 c

k′ − 2μ

h̄2 c
, (4.7)

which can be solved by numerical methods.
To apply the variational principle, we first compute the

normalization of the wave function, which yields

〈ψ |ψ〉 = 2e−k′L
{√

π

2α
[1 + cosh(k′L)]

+ 2

k′ [Lk′ + sinh(k′L)]

}
(4.8)

and then the mean value of Hrel, obtaining

〈ψ |Hrel|ψ〉

= h̄2α

μ

√
π

2α
e−k′L[1 + cosh(k′L)]

− 2h̄2k′2L
μ

e−k′L + μω2

3k′3 e−k′L[2L3k′3

+ 3(k′2L2 + 1) sinh(k′L) − 3k′L cosh(k′L)]

+μω2e−k′L[1 + cosh(k′L)]

[
1

2

√
π

(2α)
3
2

+L2

√
π

2α
+L

α

]
,

(4.9)

where again we consider the contribution of the discontinuity
of the wave function derivative at the points x = ±L

lim
ε→0

[∫ −L+ε

−L−ε

ψ∗(Hrelψ)dx +
∫ L+ε

L−ε

ψ∗(Hrelψ)dx

]

= 2h̄2k′

μ
e−k′L sinh(kL),

into the expression (4.9).
As in the attractive case we numerically minimize the mean

energy 〈ψ |Hrel|ψ〉
〈ψ | ψ〉 with respect to the parameters α and L and

determine the ground-state energy of the system as a function
of the coupling c. This result is depicted in Fig. 2. In the next
section we make a comparison with the analytical solution
obtained in Ref. [4].

Limiting case: Notice again that in the limit L → 0, c → 0
(harmonic oscillator)

lim
L→0

〈ψ |Hrel|ψ〉
〈ψ |ψ〉 = h̄2α

2μ
+ μω2

8α
. (4.10)

Upon extremization of the total energy with respect to α in
the limit L → 0, we obtain |α∗| = μω

2h̄ , such that we find again
the ground-state energy of the harmonic oscillator.

V. COMPARISON

The results obtained in the previous section by means
of the Bethe ansatz and the variational principle to find
the two-fermion system ground state as a function of the
coupling parameter are presented in Fig. 2 (red solid line).
For convenience and to compare with known results we are
using the following variables:

ε = EGS − 1
2h̄ω

h̄ω
a1D = −h̄3/2

2c

√
ω

μ
, (5.1)

where ε denotes the energy of the ground state shifted by the
zero-point energy in h̄ω units and a1D is the 1D scattering
length.

The analytical solution in relative coordinates for a system
of two distinct fermions interacting via a delta function and
confined in a harmonic trap was first obtained by the authors
of Ref. [4]. Basically, in this work they expanded the unknown
wave function in a complete set of the simple harmonic
oscillator functions. Later, these results were generalized to
different geometries of the trapping potential in Ref. [5], and
among others in Refs. [22–26].

Essentially, the following implicit equation determining the
eigenenergies of the relative motion in a 1D harmonic potential
was obtained

2a1D = �
(− ε

2

)
�

(− ε
2 + 1

2

) , (5.2)

where �(x) is the complete gamma function.
This solution for the ground state is plotted in Fig. 2 (black

dotted line). We can observe a very good agreement between
this result and the result that we obtain combining the Bethe
ansatz and the variational principle (red solid line). This places
our ansatz as a potential candidate for the extension to more
than two fermions, where an analytical solution does not exist.
The fact that the measured properties of this system [2] may,
with a good agreement, be compared with the theoretical
results [4] makes this subject even more captivating.

VI. CONCLUSION

In this work we obtained the ground-state energy of two
distinct fermions in a 1D harmonic trap within a variational
approach, but from a distinct perspective, aiming a new view
for the problem of few fermions. The reasoning beneath our
variational ansatz choice was to exploit the exact solution
for the 1D system of fermions interacting by means of a
contact potential solution, the Bethe ansatz. Usually, in the
literature, one takes a route different from ours by considering
the harmonic trap Hamiltonian as the relevant one and the
contact interaction as a perturbation. But, since for delta-
function interactions, we have at our disposal the Bethe ansatz
technology it is almost natural to use it. Thus, we chose a
trial wave function for this system that contains a great deal
of information about the physics of the two fermions inside
the trap and supplement it by the knowledge of the harmonic
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oscillator Hamiltonian. The good agreement between our
results and existing analytical results shows that our ansatz
fulfills our expectation and has the potential to shed light
on the spectrum of strongly correlated few-body quantum
systems. Using the methods established in this work it is,
in principle, possible to extend our studies to more complex
systems, composed of three or more fermions, which are
currently of experimental interest [11], and also in this case
one can profit of the exact solution for the contact interaction.
The procedure for higher N brings, however, a substantial
operational growth as there are N ! × N ! coefficients of the
Bethe ansatz to be determined and the number of regions
of the complete variational ansatz, as in Eq. (3.1), increases
correspondingly.
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APPENDIX

We develop here, in detail, how we built the trial wave
function for the two-body problem and then we indicate how
to apply the same principles for a higher number of fermions.

The rationale we use in our construction is the Bethe
ansatz method for obtaining the energy spectra of exactly
solvable Hamiltonians. Let us then consider two fermions
interacting through a delta-function potential in a 1D system
with periodicity L, which has the following Hamiltonian:

H = − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

+ 2cδ(x1 − x2), (A1)

where x1 and x2 are the position of each fermion and c is
the interaction strength. The most general wave function for
such a system in absolute coordinates in the region x1,x2 ∈
[−L/2, + L/2] can be written as Ref. [12]

ψ(x1,x2) = [
a12

12e
i(k1x1+k2x2) + a12

21e
i(k2x1+k1x2)

]
�(x2 − x1)

+ [
a21

12e
i(k1x2+k2x1) + a21

21e
i(k2x2+k1x1)

]
�(x1 − x2),

(A2)

where k1 and k2 are the “quasimomenta” for the fermions
and the coefficients “a” are to be determined by physical
arguments. The action of the Hamiltonian on the wave function
results in

Hψ(x1,x2) = Eψ(x1,x2) + undesirable terms, (A3)

where the “undesirable terms” are functions of k1 and k2.
When, as usual, one requires that these terms be null, k1 and k2

must satisfy certain consistency relations known as the Bethe
ansatz equations [12]. These depend on the wave-function
symmetry. Energy and momentum are given, respectively, by

E = k2
1 + k2

2, K = k1 + k2. (A4)

Once the system is in a spin singlet configuration (antisym-
metric) the wave function must be spatially symmetric

ψ(x2,x1) = ψ(x1,x2), (A5)

this implies that

a12
12 = a21

12 ≡ a12,

a12
21 = a21

21 ≡ a21.
(A6)

Besides, the periodic boundary conditions

ψ(xj = −L/2) = ψ(xj = +L/2), j = 1,2 (A7)

lead to the relations

a12 = a21e
ik1L,

a21 = a12e
ik2L.

(A8)

It can be shown that, for the ground state, K = 0 ⇒ k2 =
−k1. Therefore, we can write the symmetric wave function
with the periodic boundary conditions in terms of the absolute
coordinates as

ψ(x1,x2) = a21[eik1Leik1(x1−x2) + e−ik1(x1−x2)]�(x2 − x1)

+ a21[eik1Le−ik1(x1−x2) + eik1(x1−x2)]�(x1 − x2).

(A9)

Then, for convenience, defining x = x1 − x2 and k ≡ k1, we
obtain our ansatz in the relative coordinates system

ψ(x) = a21[eikLeikx + e−ikx]�(−x)

+ a21[eikLe−ikx + eikx]�(x). (A10)

The constant a21 is obtained by the normalization condition.
The above wave function is the eigenfunction of the interaction
Hamiltonian in relative coordinates in the −L � x � L

interval, and constitutes the central part of our ansatz. In the
x → ±∞ limits it is expected that the wave function exhibits
an asymptotic behavior similar to the behavior of an harmonic
oscillator wave function with exponential decay. Then the trial
wave function in the other intervals is obtained by the condition
of continuity of the wave function on the boundaries between
all regions.

The generic N fermion case can be dealt with in an
analogous way. The wave function in absolute coordinates
is similar to that of Eq. (A2) with coefficients a...lm...

...λμ... (the
indices run from 1 to N ). It is possible then to proceed in
the same way as before for all other terms. Requiring the
same physical principles as above for all the N ! regions of
the type x1 � x2 � . . . � xN ∈ [0,L] respecting the Bethe
ansatz with periodicity L, a complete wave function in absolute
coordinates can be constructed. For instance, for the case
N = 3 we have, in a compact form

ψ(x1,x2,x3) =
3∑

l,m,n=1
l �=m�=n

3∑
λ,μ,ν=1

λ �=μ �=ν

almn
λμνe

i(kλxl+kμxm+kνxn)

�(xn − xm)�(xm − xl).

An important element here is that the coefficients of the
Bethe ansatz are related through a well-established transfor-
mation where the operators are given by Refs. [12,27] and
satisfy the Yang-Baxter equation [13,15]. It is important to note
that, in this case, it is convenient to change from the absolute
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coordinates system to Jacobian coordinates and it is possible
to show that for both the contact and trapping interactions the
resulting Hamiltonian is separable in the center of mass and
relative coordinates [28]. This enable us to obtain, knowing
the Bethe ansatz for absolute coordinates, the result for the
relative coordinates Hamiltonian. In other words, the described

procedure, when N is increased, though cumbersome (the
number of coefficients increases as N !2), allows one to build
the Bethe ansatz part of the whole variational ansatz. The
caveat, of course, is that the number of regions, such as in
Eq. (3.1) where one has to use continuity conditions, also
increases accordingly.
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Phys. 28, 549 (1998).
[5] Z. Idziaszek and T. Calarco, Phys. Rev. A 74, 022712

(2006).
[6] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[7] A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762

(1965).
[8] Y. Liao, A. Rittner, T. Paprotta, W. Li, G. Patridge, R. Hulet,

S. Baur, and E. Mueller, Nature (London) 467, 567 (2010).
[9] E. Zhao, X.-W. Guan, W. V. Liu, M. T. Batchelor, and

M Oshikawa, Phys. Rev. Lett. 103, 140404 (2009).
[10] P. Kakashvili and C. J. Bolech, Phys. Rev. A 79, 041603

(2009).
[11] S. Jochim (private communication).
[12] M. Takahashi, Thermodynamics of One Dimensional Solvable

Models (Cambridge University Press, Cambridge, England,
1999).

[13] C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
[14] M. Gaudin, Phys. Lett. A 24, 55 (1967).

[15] R. J. Baxter, Exactly Solved Models in Statistical Mechanics
(Academic, London, 1982).

[16] H. Bethe, Zeitschrift für Physik A Hadrons and Nuclei 71, 205
(1931).

[17] B. Sutherland, Beautiful Models: 70 Years of Exactly Solved
Quantum Many-Body Problems (World Scientific, Singapore,
2004).

[18] M. T. Batchelor, Phys. Today 60, 36 (2007).
[19] X. W. Guan, M. T. Batchelor, C. Lee, and M. Bortz, Phys. Rev.

B 76, 085120 (2007).
[20] J.-S. He, A. Foerster, X. W. Guan, and M. T. Batchelor, New J.

Phys. 11, 073009 (2009).
[21] M. T. Batchelor, A. Foerster, X. Guan, and C. C. N. Kuhn,

J. Stat. Mech. (2010) P12014.
[22] E. L. Bolda, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 66,

013403 (2002).
[23] E. L. Bolda, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 68,

032702 (2003).
[24] Z. Idziaszek and T. Calarco, Phys. Rev. A 71, 050701(R) (2005).
[25] J. Viana-Gomes and N. M. R. Peres, Eur. J. Phys. 32, 1377

(2011).
[26] J. Goold and T. Busch, Phys. Rev. A 77, 063601 (2008).
[27] C. H. Gu and C. N. Yang, Commun. Math. Phys. 122, 105 (1989).
[28] F. Werner, Ph.D. Thesis, Université de Paris VI, 2008.
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