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Abstract

The scale effect in materials is a well known phenomenon, responsible for the variation of the properties of
the materials when the size of the bodies in analysis is changed or when different strain velocities during the
tests are applied. The scale effect analysis with different numerical models allows us to have an important
indication of their capacity to simulate the material behavior appropriately. The utilization of numerical
models based exclusively on the Continuum Mechanics principles shows important limitations to explain this
behavior because the material nature is not continuum. A more accurate explanation requires to consider that
the material structure is defined by lengths, called characteristic lengths, that identify the material behavior.
In the same way it is possible to observe that materials have dynamic properties which can be reduced to
constants that depend dimensionally only on time, the so called characteristic strain velocities.

In the present work, the results obtained with DEM (Discrete Element Method) and some conclusions on
the material characteristics length MCL and the material characteristics strains rate MCSR that the model used
are shown.

Keywords: scale effect, strain velocity dependence, fracture mechanics, numeric simulation.

1 Introduction

For structural design, the knowledge about material properties in the real structure dimensions and
the applied strain rate level are of fundamental importance. Generally the real structure material
properties are different from those in a simple test specimen because exists an interaction between
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the material properties and the following factors: (i) structure size, (ii) strain rate applied on it. The
material properties interaction with the size structure (size effect) has been studied since the modern
science beginning - the Leonardo da Vinci and Galileo’s works are evidence of that. Presently, the
models created by [1] and [2] are examples of recent studies that have been generated in the size effect
area.

The present paper is organized in the following way. In section 2, a brief description about the
discrete element method (DEM) proposed by [3] is illustrated. In section 3 is shown the theoretical
framework proposed by [4] to represent the scale law. The determination of non-dimensional param-
eters, the material characteristics length MCL and the material characteristics strains rate MCSR is
briefly explained in sections 4 and 5. In section 6 the scale law verification is made in terms of char-
acteristic lengths and strain rate. Finally, in section 7 the discussion of the physical significance of
characteristic parameters and obtained results are pointed out.

2 The Discrete Element Method (DEM)

The DEM essentially consists in representing the continuum domain through, regular array of truss
bars as shown in Fig. 1a,b, where group-working bar rigidity is equivalent to the mechanical behavior
of the continuum domain in analysis. The elemental constitutive law represents the material non-linear
behavior.

In [3] an elemental bilinear constitutive law is proposed. This law captures the material behavior
until the rupture and is based on the original idea presented by [5]. The constitutive law is given in
terms of force and strain.

In the Fig. 1(c), Pcr represents the maximum tensile force transmitted and εp the associate strain
with Pcr; EA is the cubic model bar rigidity and kr is the factor that is related to ductility (this
parameter permits to calculate the strain where the bar stop transmitting tensile force, εr = kr εp).
The limit strain εr must permit that the area in Fig. 1(c) multiplied by the bar length Lele be equal
to the available fracture energy (Gf Af ) in the bar, where Gf is the specific fracture energy, and Af is
the fracture area that each bar represents.

As the material has a brittle behavior, the linear fracture mechanics can be applied. The toughness
can be expressed in terms of the Irwin stress intensity factor (KIc) or in terms of the specific fracture
energy (Gf ), then it is possible to write

KIC = χ · σt ·
√

a and Gf =
K2

IC

E
, (1)

where χ is a parameter that depends on the problem geometry and a is the crack length. If the material
behavior is linear up to rupture (σt = εpE), the critical strain is given by:

εp = Rf ·
[
Gf

E·
]1/2

where Rf =
1

(χ · √a)
(2)
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Figure 1: (a) Cubic Module. (b) Prism formed with several cubic Modules, (c) Uniaxial constitutive
law, (d) Charge and discharge scheme.

and Rf is a fail factor. This factor permits to introduce information about the intrinsic form of material
rupture. The motion equations for the spatial discretization can be written as:

M · ü + f(t) = q(t). (3)

In the equation (3), M represents the diagonal mass matrix proportional to the density ρ,
u is the nodal displacement vector, f(t) is the nodal internal force vector, f(t) (that depends

on previous and present displacements) and q(t) is the nodal external applied force vector. As in
elastic linear system, f(t)=Ku(t), where K is the rigidity matrix. In systems with viscous forces,f(t) =
K · u + C · u̇. Considering the damping coefficient C proportional to the mass, C=MDf,, with Df a
constant that depends on the material. The motion Eq. (3) can be integrated numerically in the time
domain with a explicit scheme (central difference methods). It is important to point out that Pcr, εP ,
εr,Gf ,Rf ,,Esgρ and Df, are exclusively material properties while Af and Lele are exclusively related
to the numerical model. Parameters EA and kr are function of both model and material. This method
was successfully used in the modeling of concrete, soils and other composite materials such as is shown
in [6]. All computational implementation and development of DEM was done that by research group
of PPGEC/PROMEC/UFRGS.

3 Characteristic length and strain velocities

The scale effect is generally studied for a determined structure response, that here is generically named
with the letter Y . This response can be, for example, the material nominal strength, the maximum
elastic energy storage before fracture, etc. By comparing the results obtained in different size structures
with geometric similarities, the scale effect can be verified.

Two structures (a and b) are considered geometrically similar when the quotients between dimensions
(db/da = λ) are a constant, for any selected structural dimension. Obviously the obtained responses
(Ya, Yb, ...) might be or not different for the different sizes of the structure. In the first case (Yb = Ya =
... = constant), does not exist a scale effect, and the structural response is independent of the structure
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size. In the other case (Yb �= ga �= g..), the response is function of the structure size and consequently
does exist a scale effect. An example of this scale effect is the microstructure size of grains in metals.
It is known that the reduction of the grain size increases the metal hardness.

Consider that the response Y for a structure with a geometric dimension d is defined by a scale law
function f as:

Y = Yaf (λ) , (4)

where λ = d/da, Ya is a response for the structure that has the reference size da and f is a non-
dimensional function that fulfill the condition f(1) = 1. If function f depends on the reference size
da, it means that exists a material characteristic length (MCL). As stated by [1], when does not exist
a MCL, it is possible verify that f has the following form:

f (λ) = λr. (5)

The expression (5) represents the most generic form for the scale law, if there is not a MCL. In this
equation r is a real number. If we consider that exists two MCL (dc1 e dc2) the response Y of the
structure with geometric dimension d can be expressed as

Y = Yaf(λ, μ, η), (6)

where the non-dimensional parameters are: λ=d/da, μ= dc1/da and η= dc2/da. The function f must
fulfill the condition: f(1,μ,η) =1, for any μ and η. Therefore, when exist two or more characteristic
lengths (dc1, dc2, dc3 ...), the function f must be independent of the selected reference dimension da,
and will only depend on its characteristic lengths.

In a similar way, it is possible to define a material characteristic strain rate (MCSR) that arises
when the structures responses due to loads applied with different strain rates are not the same. As an
example, if the material has two MCL and two MCSR, the responses for two geometric dimensions
Ya and Y are defined as: Ya => structural response with size da and strain rate

.
ε
a

; Y => structural

response with size dand strain rate
.
ε.

If we name dc1 and dc2 the MCLs and ε̇c1 and ε̇c2 the MCSRs, the non-dimensional parameters
should be defined as:

λ = d/da, μ = dc1/da, η = dc2/da, θ =
.
ε /

.
εa, π =

.

εc1/
.

εa, γ =
.

εc2 /
.

εa . (7)

In this conditions, it is possible to write:

Y = Yaf(λ, μ, η, θ, π, γ) . (8)

4 The scale law

In the present section, the methodology to identify the parameters of the scale law is shown. In
all cases studied, the Poisson coefficient is maintained constant and in this manner the number of
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involved parameters is reduced. In the present analysis it will be considered that all input parameters
are deterministic variables.

The following magnitude nomenclature will be utilized : M: Mass magnitude, L: Length magnitude,
T: Time magnitude. The dimensional analysis by DEM is shown. In this case the following input
parameters are used:

a) E = Elasticity Modulus,[ML−1 T−2 ]
b) ρ = Density, [ML−3 ]
c) Gf = Especific Fracture Energy, [MT−2 ]
d) Rf = fail factor, [L−1/2 ]
e) Df = damping factor, [T−1 ]
The results Ya and Y correspond to two structures composed with the same material and different

sizes, but geometrically similar to each other and submitted to different strain rates. In addition to
the material property parameters, the following variables will enter in the analysis:

f) da =size of the first structure, [L]
g) d= size of the second structure, [L]
h)

.
εa = the strain rate applied to the first structure, [T−1 ]

i)
.
ε = the strain rate applied to the second structure, [T−1]

In the DEM analysis, the bar length (Lele) was maintained constant for all cases simulated. Then,
Leledoes not entry as an input parameter. Consequently, it is possible to write:

Y = F (E, ρ, Gf , Rf , Df , d,
.
ε) (a)

Ya = F (E, ρ,Gf , Rf , Df , da,
.
ε
a
) (b)

(9)

And the quotient of both responses will be:

Y

Ya
= F ∗(E, ρ, Gf , Rf , Df , d, da,

.
ε,

.
ε
a
) . (10)

The quotient of Eq. (10) can be expressed in terms of products of the power of input parameters
as usual in dimensional analysis. It must be figured that:

Ea1 × ρa2 × Ga3
f × Ra4

f × Da5
f × da6 × da7

a × ( .
ε
)a8 × ( .

εa

)a9 = non-dimensional (11)

and, consequently:

a1 + a2 + a3 = 0 (for magnitude M)

a1 + 3a2 + a4/2 −−a6 −−a7 = 0 (for magnitude L) (12)

2a1 + 2a3 + a5 + a8 + a9 = 0 (for magnitude T)

Using the Eqs. (12) it is possible to eliminate a1, a7 and a9 to obtain that:⎛
⎜⎝ρ

(
.
ε
a

)2

d2
a

E

⎞
⎟⎠

a2

×
(

Gf

Eda

)a3

×
(
Rfd1/2

a

)a4

×
⎛
⎝Df

.
ε
a

⎞
⎠

a5

×
(

d

da

)a6

×
⎛
⎝ .

ε
.
ε
a

⎞
⎠

a8

= non-dimensional (13)
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It is important to point out that other ways to make this simplification are possible.
Equation (10) can be then rewritten as:

Y

Ya
= f(λ, μ, η, θ, π, γ). (14)

From nine variables illustrated in Eq. (10), five were material function (E,ρ,Gf , Rfand Df ), two
were structure dimensions function (d and da) and two were function of the applied strain rate (

.
ε and

.
ε
a
). These input variables define the studied problem in DEM, as shown in table 1, and were reduced

to six non-dimensional parameters, as illustrated in table 2. In this case, four parameters define the
material properties (μsηsπsγp, one the structure dimensions (λpgnd one the applied strain rate oθ).
The MCL and MCSR are shown in table 3.

Table 1: Input data for DEM

Var1[ML−1T−2] Var2 [ML−3] Var3[MT−2] Var4[L−1/2] Var5[T−1]

Input Data E ρ Gf Rf Df

Table 2: Non-dimensional parameters for DEM

Non-
dimensional
parameters

λ =
d

da
μ =

R−2
f

da
=

dc1

da
η =

Gf

Eda
=

dc2

da
θ =

.
ε
.
ε
a

γ =
R2

f
.
ε
a

√
E

ρ
=

.
ε
c1
.
ε
a

π =
Df

.
ε
a

=

.
ε
c2
.
ε
a

Table 3: Characteristic parameter (MCL and MCSR) for DEM

dc1[L] dc2[L]
.
ε
c1

[T−1]
.
ε
c2

[T−1]

Characteristic
Parameter

1
R2

f

Gf

E
R2

f

√
E

ρ
Df
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5 Verification methodology

Four simulations with responses Y1, Ya1, Y2 and Ya2 were considered in order to verify the algorithm.
The following conditions were considered:

1. The magnitudes that define the material properties are equal for the two first cases (1, a1) and
for the last two cases (2, a2), although not necessarily equal between them.

2. The quotients between the sizes d1/da1 and d2/da2 are equal.
3. The quotients between the strain rates

.
ε1 /

.
εa1 and

.
ε2 /

.
εa2 are equal.

4. The non-dimensional parameter (including Poisson coefficient) are equal in all cases.
If the four conditions are fulfilled it is possible to say that:

λ1 = λ2, μ1 = μ2, η1 = η2, θ1 = θ2, π1 = π2, γ1 = γ2 (15)

and consequently

Y1

Ya1
= f(λ1, μ1, η1, θ1, π1, γ1, ν) =

Y2

Ya2

= f(λ2, μ2, η2, θ2, π2, γ2, ν). (16)

or

Y1/Ya1 = Y2/Ya2. (17)

These verifications were done in terms of characteristic strengths, strains, and energy values pre-
sented in the simulated processes. A bar in simple tension was considered for the scale law verification.
The aspect ratio of all models is equal to 5 and the loading was imposed in terms of prescribed dis-
placement at the ends of the bar as presented in Fig. 2. The bar had square section and a full 3D
analysis was performed. In table 4, the bar properties as well as the discretization (lc) are shown. In
Tab. 5 the results in terms of ratio responses Y/Ya are shown, where σf is the yield stress, σr the peak
stress, εr the corresponding strain to σr and the εmax ultimate strain. Eelastic, Ekinematic, Edamage are
the highest values of the elastic energy stored in the body, the kinematic and damaged (or dissipated)
energy values that occurred during the simulations, respectively. In Figs. 3 and 4, the four tests are
plotted in terms of the parameters mentioned above. Finally, the final configurations of the four tests
are shown in Fig 5.

L 

L/5 

Figure 2: The tension bar tested by DEM.

In the Fig. 3, the stress versus strain curves for the four cases tested are shown.
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Table 4: The geometrical and material properties used in the DEM simulation.

L
(m)

Dε/dt
(mm)

lc
(m)

E
(N/m2)

ρ

(Kg/m3)
Gf

(N/m)
Rf

(m1/2)
Df

(1/s)

1 2 1 0.01 2.E11 1E+3 1E2 5 10

1a 3 10 0.01 2.E11 1E+3 1E2 5 10

2 0.5 100 2.5E-3 17500 6.4E4 1E6 10 1000

2a 0.75 1000 2.5E-3 17500 6.4E4 1E6 10 1000

Table 5: Results in terms of the ratio Y1/Y1a and Y2/Y2a

σf

[N/m2]
σr

[N/m2]
εmax εr E elastic

[Nm]
Ekinematic

[Nm]
Edamage

[Nm]
Y1
Y1a 4,15 4,26 5,81E-2 3,97E-2 0.60 1.52 0.32
Y2
Y2a 4,18 4,25 5,89E-2 4,19E-2 0.61 1.52 0.33

6 Discussion and conclusions

In the present work the formulation carried out by Morquio and Riera (2004) was applied to formulate
a scale law in terms of non-dimensional variables for the Discrete Element Method (DEM) . It can be
concluded that:

a) The verification done for DEM showed very good correlation as the section 5 indicates.
b) With Eq.(16), and the responses for different scales for a material (1) (Y1a,Y1b,Y1c,Y1d,Y1e,..), it

is possible to obtain the responses Y2b, Y2c, Y2d, Y2e,. . . (for another material (2) that can be analyzed
in the same model), only knowing a response for one size (Y2a). Hence, it is possible to write

Y2i = (Y1i/Y1a)Y2a, ( i = b, c, d, e, ..). (18)

The dimensions of the specimen that produce the responses Y1a, Y1b, Y1c, Y1d, Y1e, must accomplish
the relations below:

Y1i/Y1a = f(λ1ai, μ1a, η1a, θ1ai, π1a, γ1a) = Y2i/Y2a = f(λ2ai, μ2a, η2a, θ2ai, π2a, γ2a), (19)

where λ1ai =λ2ai,μ1a =μ2a, η1a=η2a,θ1a =θ2a,π1a=π2aandγ1a = γ2a (i = b, c, d, ...).
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εεεεr_1
εεεεr_1a

(a) 

(b) 

Figure 3: Results in terms of stress (σp versus overall strain εp. for the four tests.(a) Y1,Y1a, (b)Y2,
Y2a).

c) Trying to understand the physical meaning of characteristic parameters shown in table 3, the
following relations are defined:

KIC =
σt

Rf
, Gf =

K2
IC

E
, σt = Eεp, (20)

Where KIc and Gf are the toughness in terms of stress intensity factor and specific fracture energy,
respectively. It can be observed that:

c1) Using Eq. (20), the length characteristic dc1, shown in Tab. 3, can be expressed as:

dc1 =
1

Rf2
=

Gf

Eε2
p

. (21)

Trying to find a physical meaning for dc1, the following transformation is done:

dc1 =
Gf

Eε2
p

=
Gf

Eε2
p

((1/2)l31)
((1/2)l31)

=
Gf l21
U (εp)

(
l1
2

) . (22)
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Ek

Ee Ed

Ek

Ee Ed

Ek

Ee Ed

Ek

Ee
Ed

Figure 4: Results in terms of Elastic, Kinetic and Damaged Energies dissipated during the process for
the four tests.

      

                                         

Y1

Y1a 

Y2 Y2a

Figure 5: The final configuration of the four body tests. (gray color indicated damaged region. The
bodies fractured at the end of the bar).
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If we interpret l1 as the length of the side of a cube that, for its critical strain εp, stores an elastic
strain energy U equal to the necessary energy to break an area ( l1)2, then it is possible to rewrite dc1

in terms of l1 as:

dc1 =
Gf

Eε2
p

=
l1
2

. (23)

Consequently dc1 can be interpreted as the half of the l1.
c2) The characteristic length dc2 in the table 3 can be eliminated if the critical strain εp is considered

a non-dimensional parameter into the material analyzed scale law. In this way, the expression (17)
can be replaced by

Y1

Ya1
= f(λ1, μ1, θ1, π1, γ1, ν, εp) =

Y2

Ya2

= f(λ2, μ2, θ2, π2, γ2, ν, εp). (24)

In [7], a comparison of the results obtained from three different numerical methods was carried out.
These different numerical methods allow to simulate fracture in solids. Two of these formulations are
based on the Finite Element Method: the Cohesive Interface Method [8] and a Distributed Fissure
Method proposed by [9]. The third method is the Discrete Element Method analyzed in the present
work. The characteristic length dc2=Gf/E appears in the three parameter sets of the scale laws of the
models mentioned above.

c3) Regarding the characteristic strain rates,

.
ε
c1

= R2
f

√
E

ρ
=

1
dc1

√
E

ρ
. (25)

It is possible to define
.
ε
c1

as the wave elastic propagation speed when taking the characteristic length
dc1as the length unit.

c4) The other characteristic strain rate (
.
ε
c2

) is linked to the viscous damping and to the structures
mass (Df ).

d) The method could be generalized for non deterministic input data. In this case, if one of the
input datum is a random field, its statistical distribution (Normal or Weibull, for example) remains
defined by the following parameters: the mean value and the standard deviation that could also be
incorporated to the correlation length of the random field.

When the problem is non deterministic, it is possible to obtain the response Y in terms of mean
value and standard deviation. In this case, instead of the value of the input parameter used in the
deterministic analysis, the mean value will appear and another input data, the standard deviation,
will be incorporated. We could also consider the mean value and a non-dimensional parameter: the
variation coefficient of the random input data. The correlation length of the random field appears as
a characteristic length.

e)As a final conclusion, it is possible to say that the scale law analysis permits to infer fundamental
information about the meaning of the parameters used by the DEM method. The comparison among
different methods gives a new light in the interpretation of these parameters.
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