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Abstract. The compound nucleus plays an important role in nuclear reactions over a

wide range of projectile-target combinations and energies. The limits that angular mo-

mentum places on its formation and existence are, for the most part, well understood. The

limits on its excitation energy are not as clear. Here we first analyze general geometrical

and thermodynamical features of a hot compound nucleus. We then discuss the manners

by which it can decay and close by speculating on the high energy limit to its formation

and existence.

1 Introduction

Niels Bohr introduced the concept of the compound nucleus in order to explain reactions in which an

outgoing particle had lost all information of the incoming state (excepting conserved quantities).[1]

This could be understood as a process in which the incoming particle is absorbed by the target nucleus

to eventually form a long-lived equilibrated system in which all nucleons are bound - the compound

nucleus. The system decays when, through their mutual interaction, sufficient energy is given to one

of the particles to allow it to escape.

The decay products of the compound nucleus have been experimentally observed over almost the

entire range of combinations of projectile and target as well as of energy. Sophisticated models have

been developed that describe its low-excitation decay well. However, at extremely high excitation

energy, the decay of the compound nucleus yields a large number of fragments whose formation and

escape are not yet fully understood. Here we analyze the characteristics that we expect of compound

nuclei at such excitation energies from a theoretical viewpoint.

2 The properties of hot nuclei

The density of quasi-bound states of a nucleus is the density of states in which all neutrons are in

bound single-particle states and all protons are in single particle states that are either bound or in

long-lived single particle states well below the Coulomb barrier. These would seem to be the states

that one would associate with the long-lived states of Bohr’s conception of the compound nucleus.

The excitation energy dependence of the density of states was first estimated by Bethe[2] and has
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been the center of a great deal of theoretical and experimental effort [3–5]. All of these calculations

of the density of quasi-bound states begin with a static set of single-particle states and analyze their

occupation as a function of the temperature. The Helmholtz free energy determined in this manner,

F∗(T ) is related to the density of states ω (E∗) by a Laplace transform,

e−F∗(T )/T =

∫ ∞

0

e−E∗/Tω (E∗) dE∗. (1)

As a nucleus is heated, however, it expands and becomes less bound. At a sufficiently high tempera-

ture, one would expect it to evaporate completely.

2.1 Formal discussion

The effects of heating are not taken into account when a static set of single-particle levels are used to

calculate the density, but can be estimated from self-consistent calculations. We have considered two

approaches to such calculations. In the simplest, we perform temperature-dependent self-consistent

mean field calculations restricted to the states that are quasi-bound at the given temperature. Similar

calculations were performed long ago by Brack and Quentin (BQ).[6, 7] As the temperature increases,

the nucleus expands and decreases in density, as would be expected. However, at higher temperatures,

the limitation to quasi-bound states produces truncated occupation probabilities and anomalous tails

in the nuclear density.

Another approach, developed by Bonche, Levit and Vautherin, (BLV)[8, 9] takes into account all

single-particle states of a heated nucleus in the self-consistency calculation. These include all resonant

states as well as the bound ones. However, they also include the continuum states that describe free

nucleons rather than those in a nucleus. To obtain the contribution of the bound and resonant states

alone, the contribution of the gas of nucleons in continuum states must be subtracted. This is done

by performing two self-consistent calculations - one of the nucleus plus gas and another of the gas

alone (both with identical Fermi energies) and subtracting the extensive quantities (entropy, excitation

energy, baryon density) obtained for the latter from those of the former. Typical results from this type

of calculation are shown in Figs. 1a and 1b. The density of the gas is zero at zero temperature and

increases with temperature until the nucleus disappears completely, typically at a temperature betwen

9 and 11 MeV.

We have performed calculations using both the BQ and the BLV prescriptions in the self-

consistent relativistic Hartree approximation, using both the nonlinear NL3[10] and density-

dependent DDME1[11] parameter sets. To our knowledge, these sets provide the best agreement

with ground state nuclear masses obtained using the relativistic Hartree approximation. We have also

performed calculations using the nonrelativistic BSk14[12] and NRAPR[13] Skyrme interactions in

the Thomas-Fermi approximation to the BLV prescription. The BLV results are quite similar in all

cases, as can be seen in Figs. 1a and 1b.

2.2 Thermodynamic quantities

The extensive quantities that can be obtained from the self-consistent calculations are the entropy, the

excitation energy, the baryon and charge density and other density-related quantities, such as defor-

mations and rms radii. The deformation and pairing vanish at extremely low temperatures. Normal

isovector pairing usually disappears at temperatures below 1 MeV and almost all calculations yield

nuclei that are spherical at 2 MeV.[14] The effects of shell closures are small but still observable at 2

MeV.
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Figure 1. (a) Nucleon density using the BLV prescription with the NL3 and DDME1 parametrizations of the

relativistic Hartree approximation. (b) Nucleon density using the BLV prescription with the BSk14 and NRAPR

Skyrme parametrizations of the Thomas-Fermi approximation.

The entropy and excitation energy are related to the Helmholtz free energy through

S ∗ = −∂F∗

∂T
, (2)

and

E∗ = F∗ − T
∂F∗

∂T
(3)

The entropy S ∗(T ) can be determined directly from the calculations, while the excitation energy is ob-

tained as the difference between the binding energy Ebnd(T ) at a temperature T and that at temperature

zero,

E∗(T ) = Ebnd(T ) − Ebnd(0) (4)

Discounting small effects below a temperature of 1 MeV due to pairing, the entropy in all cal-

culations increases linearly and the excitation quadratically with the temperature up to a temperature

of between 4 and 6 MeV. This is the behavior expected of a Fermi gas density of states. Above this

temperature, the BQ quantities begin to saturate due to the limited number of single-particle states and

fall below the BLV values. The entropy and excitation energy of the BLV calculations maintain the

behavior expected of a Fermi gas and remain in good agreement wth each other up to a temperature

of about 8 MeV.

Despite the very similar behavior of the entropy and excitation energy of the three sets of cal-

culations below about 6 MeV, we see in the Fig. 2 that their rms radii are very different. The rms

radius increases almost linearly in the calculations including only bound single-particle states while it

increases quadratically and tends to remain smaller in the cases in which the nucleus is in equilibrium

with a surrounding gas. We interpret the smaller radius of the calculations with the BLV prescription

as an effect of the pressure exerted by the gas on the hot nucleus. The even smaller radii obtained us-

ing the Skyrme interactions could be an artefact of the Thomas-Fermi approximation, in which there

are no wave functions and thus no exponentially decaying tails.

We find the rms radii of the relativistic Hartree BLV calculations to be well described by the

expression 〈
r2

m

〉
= r2

m0 A2/3
(
1 + cmT 2

)
, (5)
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Figure 2. Rms radius as a function of the temperature.

where

rm0 = 0.95 ± 0.05 f and cm = 0.005 ± 0.001 MeV−2 . (6)

The nuclear volume is thus about 25% larger at a temperature of 6 MeV than it is in the ground state

3 Compound nucleus decay

At low excitation energies, the compound nucleus decays through the sequential emission of light

particles from an equilibrated system. Since the system is in equilibrium, the cross section for decay

to channel c is given by the product of cross section for formation of the compound nucleus σabs,a

times the fraction of the phase space corresponding to the exit channel c,

σac = σabs,a
Yc∑
b Yb

. (7)

In the Weisskopf-Ewing approximation,[15, 16] the phase space volume is proportional to the factor

Yc,

Yc = (2sc + 1)
k2

c

π
σabs(ec) = (2sc + 1)

2μc

π�2
ecσabs(ec) . (8)

At higher excitation energies, this is usually expresed in terms of an integral over a differential factor,

Yc →
dYc

dec

= (2sc + 1)
2μc

π�2
ecσabs(ec)ωc(Ec) , (9)

which is written in terms of the density of final states ωc (Ec). The Weiskopf-Ewing approximation

takes into account energy conservation but does not conserve angular momentum. Both conservation

laws are satisfied when the Hauser-Feshbach Yc factors are used.[17] An alternative formalism, in

which classical angular momentum is conserved, was developed by Ericson and Strutinsky[18, 19]

and is discussed in the Appendix. In all cases, the cross section for an individual channel can be

written in terms of the fraction of the appropriate phase space volume, as in Eq. 7.

A typical example of low energy compound nucleus decay is shown in Fig. 3a, where the cross

sections for various emission channels of a neutron-induced reaction on 56Fe are shown. We see that

multiple emission cross sections already dominate above about 15 MeV and grow in complexity as the
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Figure 3. (a) Emission cross sections of a neutron-induced reaction on 56Fe. (b) Production cross sections for

the reaction of 12C + 48Ca.

incident (and excitation) energy increases. Alternatively, we can look at the production cross sections

of the various particles and nuclei emitted from a compound nucleus, as shown for the reaction 12C

+ 48Ca in Fig. 3b. In this case, the reaction cross section is negligible below the carbon energy of

about 25 MeV needed to surmount the Coulomb barrier. Only light particles are emitted at energies

below a carbon energy of about 60 MeV, corresponding to a temperature of about 3 MeV. As the

energy increases above this value, the emission probability of heavier fragments increases until, at

sufficiently high energies, several heavy complex fragments can be emitted during the decay. The

carbon energy of 250 MeV shown in the figure corresponds to a temperature of about 6 MeV. At

such high temperatures, the decay of the compound nucleus is usually modeled as a simultaneous

fragmentation into intermediate mass fragments and light particles.

The extent to which intermediate mass fragment emission is simultaneous or sequential has been

a subject of theoretical and experimental study for almost 30 years. The statistical multifragmentation

model (SMM) [20, 21], an equilibrium model of simultaneous fragment emission, uses the config-

urations of a statistical ensemble to determine the distribution of primary fragments of a compound

nucleus. The primary fragments are then assumed to decay by sequential compound emission or

Fermi breakup (FBM) [22]. As the first step toward a more unified model of these processes, we have

demonstrated the equivalence of a generalized FBM, in which densities of excited states are taken into

account, to the microcanonical version of the SMM.[23]

A drawback of the FBM/SMM model is that it expresses fragment distributions in terms of the

probability that are contained in the configurations of a system rather than in terms of their rates of

emission. The assumption underlying the model is that every state of every configuration decays at

the same rate. To go beyond this, we estimate the decay rate of a configuration as the time rate of

change of the density within a given normalization volume. To do so, we use the continuity equation

to relate the time rate of change of the probability density to the flux through the surface defining

the volume.[24] In this manner, we can establish a link between the unified FBM/SMM and the well-

known models of compound nucleus evaporation that permits us to consider simultaneous emission

as the limit of an increasingly fast sequential emission process.[25]

An important difference between the usual formulation of compound nucleus evaporation and a

general model of sequential emission is that, in the latter, the emission cross sections can no longer be

calculated in terms of phase space volumes, as in Eq. 7, which assumes that a very long time elapses

between emissions. Instead, they must be calculated dynamically, taking into account the competition

CNR*13

00012-p.5



between all modes of decay and the effects of previously emitted particles and fragments that are

still close to the decaying compound nucleus. Monte Carlo decay codes, in which each emission is

generated randomly according to the competition among the possible decay modes, are appropriate

for simulating such a system.

GEMINI++ is one such Monte Carlo decay code.[26–28]. It describes light particle emission

using Hauser-Feshbach partial widths and calculates intermediate mass fragment emission and fission

partial widths with an effective Weisskopf approximation in which the rotational energy is discounted

from the excitation energy. We have modified the code to include a more complete treatment of the

effects of angular momentum coupling on intermediate mass fragment emission. We describe the

extension including angular momentum coupling in the Appendix.
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Figure 4. Mass distribution of the decay products of an A=100 nucleus at several excitation energies in the

standard decay model (Sierk), the enhanced model (SPP) and the statistical multifragmentation model (SMM).

In Figure 4, we compare calculations of the decay of a mass 100 nucleus at three diferent exci-

tation energies using the standard sequential decay model of GEMINI++ , our enhanced sequential

decay model and the statistical multifragmentation model. One sees that the enhanced model yields

results similar to those of the statistical multifragmentation model. The larger nuclear volume (2 to 3

times the ground state volume) and reduced barriers of the statistical multifragmentation model leaves

more energy to excite the fragments and results in smaller fragments and a mass distribution restricted

to smaller masses. We would expect a similar shift in the enhanced model, if we were to introduce the

large volume expansion of the statistical multifragmentation model. We thus believe that the mass dis-
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Figure 5. (a) Partial widths for the decay of a 40Ca compound nucleus. The curves are explained in detail in the

text. (b) Partial widths for the decay of a 208Pb compound nucleus.

tribution originating from the simultaneous fragmentation of the statistical multifragmentation model

can indeed be described within a sequential emission model.

4 Formation of the compound nucleus

Formation of the compound nucleus is limited by both energy and angular momentum. At low energy,

barrier transmission determines the formation rate. At higher energies, the angular momentum barrier

begins to limit fusion. Light nuclear systems that reach a small enough separation to interact strongly

invariably fuse to form a compound nucleus. As the energy increases, the angular momentum barrier

prohibits this approximation and thus limits formation of the compound nucleus. In sufficiently heavy

systems, a dinuclear system equilibrated in charge and energy could be considered the first stage of

the compound nucleus. Depending on the asymmetry of the system, the dinucleus could either evolve

rapidly to a spherical compound nucleus or more slowly to a symmetrical dinuclear system, during

which it could decay in the process known as quasi-fission. Given the microscopic equilibrium of

such a system, we might consider it to be a (highly deformed) compound nucleus as well.

However, our principal point of interest here is to determine the limit in excitation energy to the

formation of the compound nucleus. One way to approach this problem is to argue that a compound

nucleus cannot form if it decays before it is formed. Since we expect the compound nucleus to be an

equilbrated system, we can take the time for equilibration in energy as a lower limit to the formation

time. The equilbration time, on the other hand, can be estimated in terms of the width of a typical

nuclear state. This width has been investigated in great detail and has a value of about 20 MeV in s-d

shell nuclei.[29] This corresponds to a time of about 10 fm/c, roughly the time it would take light to

travel from one side of the nucleus to the other.

We thus propose to compare the equilibration width Γequil = 20 MeV with the partial widths

obtained from the decay model to obtain a limit on the formation of the compound nucleus. In passing,

we note that the BLV formalism also provides us with an estimate of the neutron and proton partial

widths in terms of the flux of gas incident on the nucleus. In Fig. 5, we see that the BLV neutron partial

width is in quite good agreement with the partial neutron decay width in the Weisskopf approximation,

giving weight to the interpretation of the model as a compound nucleus in equilibrium with its decay

products. In the figure, we also include the contribution of light charged particles to the decay width

(Γlight), as well as the contribution of intermediate fragment emission, to obtain the total width ((Γtot).
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We see that intermediate mass fragment emission becomes important at temperatures of about 4 MeV

in both light and heavy nuclei and dominates the total width at higher energies. At a temperature

of 5 MeV, intermediate mass fragment emission constitutes about 50% of the decay width of 40Ca

and about 80% of the decay width of 208Pb. Using the equilibrium width as a criterion for formation

of the compound nucleus, we conclude that a light compound nucleus such as 40Ca cannot form at

temperatures above about 6.5 MeV while a heavy system like 208Pb cannot form a compound nucleus

at temperatures above about 5.5 MeV.

5 Conclusions

We have briefly reviewed the basic properties of hot compound nuclei, their modes of decay and limits

to their formation. We have seen that, between temperatures T of about 1 MeV and 8 to 9 MeV, a hot

nucleus has statistical properties that are well approximated by those of a Fermi gas, but a volume that

increases with T 2 to about 5/4 the ground state volume at T = 6 MeV.

In our discussion of decay of the compound nucleus, we noted that light particle emission is the

principal decay mode at low excitation energies (excluding the fission of very heavy nuclei) but that

intermediate mass fragment emission grows quickly in importance above temperatures of about 4

MeV and becomes the dominant decay mode above about 5 MeV. We have also seen that the se-

quential emission model and the simultaneous multifragmentation model can be placed on a common

footing and furnish similar residual mass distributions. Experimental spallation cross sections have

also been found to be well described by a fast but sequential emission process.[30] One can show that

a dynamical sequential decay model can also produce the fragment-fragment correlations expected

from simultaneous multifragmentation. [31] Here, at least, the decay of a hot equilibrated compound

nucleus could be considered to take place through a fast sequential emission process. This is just the

natural limit of the slower decay process that occurs at lower excitation energies.

Taking the typical energy spreading width of states in s-d shell nuclei as a measure of the time for

equilibration in energy, we have proposed that it can also serve as a limit to the formation of a com-

pound nucleus, by comparison with the corresponding decay time. We conclude from this comparison

that an equilibrated compound nucleus cannot be formed at temperatures above about 6 MeV, as it

will decay before its formation is complete. Interestingly, this limiting temperature is in agreement

with the typical limiting temperature found in experimental caloric curves, where it is interpreted as

an indication of a phase transition in nuclear matter.[32] It is also often used as a justification for a

multifragmentation description of the decay of the compound nucleus. Here, one might indeed be able

to interpret the decay as multifragmentation, but as a nonequlibrium process rather than the result of

an equilibrium phase transition. Much work is needed, however, to better understand the transition

from equilibrium to nonequilibrium that is expected at sufficiently high energy.
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A Appendix

The extended Hauser-Feshbach model takes energy and angular momentum conservation into account

in its description of particle and fragment evaporation. The model is formulated in terms of quantized
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angular momenta and is thus conceptually sound. However, the sums over angular momenta in its

expressions for decay widths, especially in the case of intermediate fragment emission, can be cum-

bersome and computationally expensive. Here, we develop an alternative model in terms of classical

angular momenta, formulated long ago by Ericson and Strutintsky [18, 19], which permits simpler

estimates of the decay widths.

A.1 Classical phase space volumes

The position and orientation of a rigid body can be expressed in terms of the three coordinates of its

center-of-mass, �r, and the three Euler angles, φ, θ, ψ, that define a rotation from a fixed orientation.

The variables conjugate to these can be taken as the three components of the linear momentum, �p, and

of the angular momentum, �J. We can thus write the phase space volume element of a rigid body as

1

(2π�)6
d3r d3 p dφ d cos θ dψ d3J . (A.1)

For the moment, we neglect the effects of orientation of the rigid body and simply integrate it out

(dφ d cos θ dψ → 2π · 2 · 2π = 8π2). We want to include the remaining terms, 8π2d3J/ (2π�)3 =

d3J/
(
π�3

)
, in an extended phase space integral. We show that such a procedure is not unreasonable,

by demonstrating that it furnishes expressions similar to the quantum mechanical ones. We begin with

the usual Bethe ansatz to the spin distribution - we assume that the density of states with energy ε and

spin projection quantum number m can be approximated as

ω (ε,m) = ω (ε)
1√

2πσ2
exp

[
−m2/2σ2

]
, (A.2)

where σ is an energy-dependent spin cutoff factor. We can then determine the density of levels of

total spin quantum number j as

ρ̃ (ε, j) = ω (ε, m = j) − ω (ε, m = j + 1) ≈ (2 j + 1)ω (ε)
exp

[
− ( j + 1/2)2 /2σ2

]
√
π

(
2σ2

)3/2
. (A.3)

We find for the total density of states

ω (ε) =

jmax∑
j=0

(2 j + 1) ρ̃ (ε, j) ≈
jmax∑
j=0

(2 j + 1)2 ω (ε)
exp

[
− j ( j + 1) /2σ2

]
√
π

(
2σ2

)3/2
, (A.4)

which implies that the total density of levels is

ρ̃ (ε) =

jmax∑
j=0

ρ̃ (ε, j) ≈ 1√
2πσ2

ω (ε) . (A.5)

If we consider a classical density of the form,

ρ
(
ε, �J

)
= ω (ε)

exp
[
− �J2/

(
2σ2
�

2
)]

(
2πσ2�2

)3/2
, (A.6)

CNR*13

00012-p.9



we obtain a similar result when we calculate

ω (ε) =

∫
ρ
(
ε, �J

)
d3J (A.7)

=
1

�3

∫
(2J)2ω (ε)

exp
[
− �J2/

(
2σ2
�

2
)]

√
π

(
2σ2

)3/2
dJ

=

∫
(2 j)2ω (ε)

exp
[
− j2/2σ2

]
√
π

(
2σ2

)3/2
d j

and associate the spin quantum number j to the magnitude of the spin J through J = j�. We note that,

technically, the level density is (2 j + 1) times the quantity given in Eq. (A.6), but for convenience we

will continue to use the term to describe the density of that equation.

For a particle with spin multiplicity g but no excited states, we take

ρ
(
ε, �J

)
=

1

π�2g
δ (J − g�/2) δ (ε) , (A.8)

where g = 2s + 1 is the spin multiplicity, so that∫
ρ
(
ε, �J

)
d3J = gδ (ε) = ω (ε) . (A.9)

We next decompose the momentum into its radial and angular components,

pr = �p · r̂ and �pθ = �p − prr̂ , (A.10)

and rewrite the latter in terms of the orbital angular momenta,

�r × �p = r × �pθ = �L . (A.11)

Since the angular components of the momenta as well as the two components of the corresponding

angular momenta are perpendicular to the coordinate vector, we can rewrite the differential as

d3 p d3r = dpr d2 pθ r2dr dΩ = dpr d2L dr dΩ . (A.12)

Like its conjugate solid angle Ω, the orbital angular momentum is a two-dimensional quantity rather

than a three-dimensional one. We can extend the latter to a three-dimensional quantity and make its

orthogonality to the radial motion explicit by introducing a δ-function into the phase space differential,

dpr d2L dr dΩ = δ
(
r̂ · �L

)
dpr d3L dr dΩ , (A.13)

as was done by Ericson and Strutintsky in their semiclassical description of compound nucleus decay.

A.2 Decay rates and partial widths

We now consider the decay of a compound nucleus of charge Z0, mass number A0, excitation energy

ε0 and (classical) angular momentum �J0 into fragments 1 and 2 of charge Z1 and Z2 and mass number

A1 and A2. The rate at which this decay occurs is proportional to the rate at which the compound

nucleus separates into the two fragments, which in turn is proportional to

pr

μ
θ (pr) δ (r − RB) ρ1

(
ε1, �J1

)
ρ2

(
ε2, �J2

)
, (A.14)
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where the first factor is the positive relative velocity with which the two fragments pass the radius

RB and the last two terms are the densities of levels of the emitted fragments, ε1 and ε2 being their

excitation energies and �J1 and �J2 their angular momenta. It is reasonable to choose the value of the

separation radius RB as the value at which the barrier between the two fragments is at is maximum,

as beyond this radius there is, in principle, no impediment to their separation. We obtain the partial

width for this process, Γ(ε0, �J0; Z1A1, Z2A2), by summing over all possible configurations, taking

into account conservation of energy and angular momentum and inserting the appropriate phase space

factors. We have

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

(2π�)2

∫
pr

μ
θ (pr) δ (r − RB) δ

(
r̂ · �L

)
dpr d3L dr dΩ

×
2∏

j=1

(
ρ j

(
ε j, �J j

)
dε jd

3J j

)
δ
(
�J0 − �L − �J1 − �J2

)
(A.15)

× δ
⎛⎜⎜⎜⎜⎜⎜⎝ε0 − B0 −

p2
r

2μ
− L2

2μR2
B

− VB −
2∑

j=1

(
ε j − Bj

)⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ρ0

(
ε0, �J0

)
is the level density of the compound nucleus, B0, B1 and B2 are the binding energies

of the compound nucleus and the two fragments and VB is the barrier height at the radius RB. We

combine these into the Q of the reaction as

Q = B0 − B1 − B2 (A.16)

and note that the radial momentum terms can be rewritten in terms of the radial energy, er,

pr

μ
θ (pr) dpr →

1

2
der . (A.17)

After performing the integral over the radial coordinate, we can rewrite the expression for the partial

width as

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

2 (2π�)2

∫
δ
(
r̂ · �L

)
d3L dΩ der (A.18)

×
2∏

j=1

(
ρ j

(
ε j, �J j

)
dε jd

3J j

)
δ
(
�J0 − �L − �J1 − �J2

)

× δ
⎛⎜⎜⎜⎜⎝ε0 − Q − er −

L2

2μR2
B

− VB − ε1 − ε2

⎞⎟⎟⎟⎟⎠ .
When one of the fragments is a particle (for which we neglect any excited states), we neglect its

contribution to angular momentum conservation and perform the integrals over its excitation energy

and angular momentum (see Eqs. (A.8) and (A.9)) to obtain

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

2 (2π�)2
g

∫
δ
(
r̂ · �L

)
d3L dΩ der (A.19)

×ρ2

(
ε2, �J2

)
dε2d3J2δ

(
�J0 − �L − �J2

)

× δ
⎛⎜⎜⎜⎜⎝ε0 − Q − er −

L2

2μR2
B

− VB − ε2

⎞⎟⎟⎟⎟⎠ .
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If we rewrite this in terms of the asymptotic kinetic energy

e = er +
L2

2μR2
B

+ VB (A.20)

and perform the angular integral, we have

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

4π�2
g

∫
L dL dΩL de θ

⎛⎜⎜⎜⎜⎝e − L2

2μR2
B

− VB

⎞⎟⎟⎟⎟⎠
×ρ2

(
ε2, �J2

)
dε2d3J2δ

(
�J0 − �L − �J2

)
× δ (ε0 − Q − e − ε2) . (A.21)

If we now rewrite the Heaviside step function as a transmission coefficient,

θ

⎛⎜⎜⎜⎜⎝e − L2

2μR2
B

− VB

⎞⎟⎟⎟⎟⎠ → TL (e) ≈
⎛⎜⎜⎜⎜⎝1 + exp

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝e − L2

2μR2
B

− VB

⎞⎟⎟⎟⎟⎠ /�ω
⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
−1

, (A.22)

we obtain the expression given by Ericson and Strutinsky,

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

4π�2
g

∫
L dL dΩL de TL (e) (A.23)

×ρ2

(
ε2, �J2

)
dε2d3J2δ

(
�J0 − �L − �J2

)
× δ (ε0 − Q − e − ε2) ,

up to a factor of 1/2.

If we make the assumption that the �J2 dependence of the level density ρ2

(
ε2, �J2

)
is so small in the

relevant range of values that it can be neglected, (which only makes sense if the same approximation

applies to �J0),we can take

ρ2

(
ε2, �J2

)
→ ρ2 (ε2, 0) and ρ0

(
ε0, �J0

)
→ ρ0 (ε0, 0) (A.24)

and evaluate the integrals over ΩL, �J2 and ε2 to obtain

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0 (ε0, 0) =
1

�2
g

∫
L dL TL (e) ρ2 (ε0 − Q − e, 0) de . (A.25)

The integral over L furnishes

1

�2

∫
L dL TL (e) =

μe

π�2
σinv (e) , (A.26)

whereσinv (e) is the cross section for formation of the compound nucleus from the residual nucleus and

the emitted particle. Substituting in the preceding expression, we obtain the Weisskopf approximation

to the partial width,

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0 (ε0, 0) =
gμ

π�2

∫
eσinv (e) ρ2 (ε0 − Q − e, 0) de , (A.27)

again up to a factor of 1/2. As this factor enters all the partial widths, it cancels out when the branching

ratios are considered.
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A.3 Approximate width for intermediate mass fragment emission

In his section, we wish to obtain an approximate expression for the intermediate mass fragment emis-

sion width of Eq. (A.18), which we repeat here,

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

2 (2π�)2

∫
δ
(
r̂ · �L

)
d3L dΩ der

×
2∏

j=1

(
ρ j

(
ε j, �J j

)
dε jd

3J j

)
δ
(
�J0 − �L − �J1 − �J2

)

× δ
⎛⎜⎜⎜⎜⎝ε0 − Q − er −

L2

2μR2
B

− VB − ε1 − ε2

⎞⎟⎟⎟⎟⎠ .
To evaluate this expression, we use an approximate Fermi gas form of the level densities, taking

ω j

(
ε j

)
=

√
π

12

cAj( √
cAjε j + 2

)5/2
exp

[
2
√

cAjε j

]
, (A.28)

and

ρ j

(
ε j, �J j

)
=

1(
2πI jT j

)3/2
ω j

(
ε j

)
, (A.29)

where we take ε j to be the thermal excitation energy, given by the difference between the total excita-

tion energy and its collective rotational component,

ε j = ε j −
J2

2I j

, (A.30)

with I j the moment of inertia, cAj is the level density parameter, with c ≈ 1/7-1/8 Mev−1and T j the

effective temperature, given by

1

T j

=
1

ρ j

(
ε j, �J j

) ∂ρ j

(
ε j, �J j

)
∂ε j

=
cAj√

cAjε j + 2
. (A.31)

The factor cAj/
( √

cAjε j + 2
)5/2

is used here in place of the expected factor cAj/
(
cAjε j

)5/4
to guaran-

tee the correct behavior of the density at low and high excitation energies.

We approximate this integral by expanding around its maximum, given by the condition of thermal

equilibrium, which we approximate as ,

ε10 =
A1

A0

ε0 , ε20 =
A2

A0

ε0 , (A.32)

corresponding to a common temperature of

T0 =

√
ε0

cA0

+
2

cA0

. (A.33)

as well as the sticking condition,

�L0 =
μR2

B

IT

�J0 , �J10 =
I1

IT

�J0 , �J20 =
I2

IT

�J0 , (A.34)
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where IT is the total moment of inertia at the barrier (scission point),

IT = μR2
B + I1 + I2 , (A.35)

and

ε0 = ε10 + ε20 = ε0 − Q − VB −
J2

0

2IT

. (A.36)

These conditions are consistent with a picture at scission of two fragments in thermal equilibrium that

are rotating with a scission point fixed in the rotating frame.

We approximate the radial angular integral as∫
δ
(
r̂ · �L

)
dΩ = 2π

1

L
→ 2π

1

L0

→ 2π
IT

μR2
B

2

2J0 + �
. (A.37)

The angular momentum integrals then yield

1

(2πT0)3 (I1I2)3/2

∫
exp

⎡⎢⎢⎢⎢⎣− L2

2T0μR2
B

− J2
1

2T0I1

− J2
2

2T0I2

⎤⎥⎥⎥⎥⎦ δ (
�J0 − �L − �J1 − �J2

)
d3L d3J1 d3J2

→ 1

(2πT0)3 (I1I2)3/2

∫
exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
�δL, �δJ1

)
2T0

⎛⎜⎜⎜⎜⎜⎝
1

μR2
B

+ 1
I2

1
I2

1
I2

1
I1
+ 1

I2

⎞⎟⎟⎟⎟⎟⎠
(

�δL
�δJ1

)⎤⎥⎥⎥⎥⎥⎥⎦ d3δL d3δJ1

=
1

(I1I2)3/2
det

∣∣∣∣∣∣∣
1

μR2
B

+ 1
I2

1
I2

1
I2

1
I1
+ 1

I2

∣∣∣∣∣∣∣
−3/2

=

⎛⎜⎜⎜⎜⎝μR2
B

IT

⎞⎟⎟⎟⎟⎠
3/2

,

(A.38)

where �δL = �L − �L0 and �δJ1 = �J1 − �J10, so that

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

2π�2

⎛⎜⎜⎜⎜⎝μR2
B

IT

⎞⎟⎟⎟⎟⎠
1/2

1

2J0 + �
(A.39)

×
∫

ω1 (ε1)ω2 (ε0 − ε1 − er) dε1 der .

The excitation energy integral about the maximum value of the integrand furnishes∫
ω1 (ε1)ω2 (ε0 − ε1 − er) dε1 → ω1

(
ε10 −

A1

A0

er

)
ω2

(
ε20 −

A2

A0

er

)
(A.40)

×
∫

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝dT−1

1

dε1

+
dT−1

2

dε2

⎞⎟⎟⎟⎟⎠
(
ε1 − ε10 +

A1

A0
er

)2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ dε1

≈
(
4π

A1A2

A0

cT 3
0

)1/2

ω1

(
ε10 −

A1

A0

er

)
ω2

(
ε20 −

A2

A0

er

)
,

in the high-energy limit, in which T j →
√
ε j/cAj, so that

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

2π�2

⎛⎜⎜⎜⎜⎝μR2
B

IT

⎞⎟⎟⎟⎟⎠
1/2

1

2J0 + �

(
4π

A1A2

A0

cT 3
0

)1/2

(A.41)

×
∫

ω1

(
ε10 −

A1

A0

er

)
ω2

(
ε20 −

A2

A0

er

)
der ,
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Finally, we approximate the integral over the relative escape energy as

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

1

2π�2

⎛⎜⎜⎜⎜⎝4π
A1A2

A0

μR2
B

IT

cT0

⎞⎟⎟⎟⎟⎠
1/2

T0

2J0 + �
(A.42)

×ω1 (ε10)ω2 (ε20)

∫
exp (−er/T0) der ,

=
1

2π�2

⎛⎜⎜⎜⎜⎝4π
A1A2

A0

μR2
B

IT

cT0

⎞⎟⎟⎟⎟⎠
1/2

T 2
0

2J0 + �
ω1 (ε10)ω2 (ε20) .

We used an extended version of this expression containing a transmission factor some time ago, to

study the effects of the formation of a dinuclear system onlight-ion fusion.[33] The code GEMINI++

calculates this integral numerically. It does so by expressing the product of densities in terms of the

density of scission states,

ρsc

(
ε0 − er, �J0

)
=

1

(2πIT T0)3/2
ω0 (ε0 − er) . (A.43)

We approximate this using the high-energy limit of the densities, which furnishes

ω1

(
ε10 −

A1

A0

er

)
ω2

(
ε20 −

A2

A0

er

)
≈

⎛⎜⎜⎜⎜⎝ A2
0

A1A2

1

cA0

⎞⎟⎟⎟⎟⎠
3/2

1

T
5/2
0

ω0 (ε0 − er) , (A.44)

so that

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

2π

2 j0 + 1

⎛⎜⎜⎜⎜⎝2
μR2

B

IT

cA0T0

⎞⎟⎟⎟⎟⎠
1/2

A2
0

A1A2

(A.45)

×
(

IT

�2cA0

)3/2 ∫
ρsc

(
ε0 − er, �J0

)
der ,

where j0 = J0/� is the quantum number corresponding to the value of the total angular momentum.

The integral can be well approximated similarly to that in Eq. (A.42), yielding

2πΓ(ε0, �J0; Z1A1, Z2A2)ρ0

(
ε0, �J0

)
=

2π

2 j0 + 1

⎛⎜⎜⎜⎜⎝2
μR2

B

IT

cA0T0

⎞⎟⎟⎟⎟⎠
1/2

A2
0

A1A2

(A.46)

×T0

(
IT

�2cA0

)3/2

ρsc

(
ε0, �J0

)
.
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