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ABSTRACT

One of the main concerns to build the new generation of High Performance Computing
(HPC) systems is energy consumption. To break the exascale barrier, the scientific community
needs to investigate alternatives that cope with energy consumption. Current HPC systems are
power hungry and are already consuming Megawatts of energy. Future exascale systems will
be strongly constrained by their energy consumption requirements. Therefore, general purpose
high power processors could be replaced by new architectures in HPC design. Two architec-
tures emerge in the HPC context. The first architecture uses Graphic Processing Units (GPU).
GPUs have many processing cores, supporting simultaneous execution of thousands of threads,
adapting well to massively parallel applications. Today, top ranked HPC systems feature many
GPUs, which present high processing speed at low energy consumption budget with various
parallel applications. The second architecture uses Low Power Processors, such as ARM pro-
cessors. They are improving the performance, while still aiming to keep the power consumption
as low as possible. As an example of this performance gain, projects like Mont-Blanc bet on
ARM to build energy efficient HPC systems. This work aims to verify the potential of these
emerging architectures. We evaluate these architectures and compare them to the current most
common HPC architecture, high power processors such as Intel. The main goal is to analyze
the energy consumption and performance of these architectures in the HPC context. There-
fore, heterogeneous HPC benchmarks were executed in the architectures. The results show that
the GPU architecture is the fastest and the best in terms of energy efficiency. GPUs were at
least 5 times faster while consuming 18 times less energy for all tested benchmarks. We also
observed that high power processors are faster than low power processors and consume less en-
ergy for heavy-weight workloads. However, for light-weight workloads, low power processors
presented a better energy efficiency. We conclude that heterogeneous systems combining GPUs
and low power processors can be an interesting solution to achieve greater energy efficiency,
although low power processors presented a worse energy efficiency for HPC workloads. Their
extremely low power consumption during the processing of an application is less than the idle
power of the other architectures. Therefore, combining low power processors with GPUs could
result in an overall energy efficiency greater than high power processors combined with GPUs.

Keywords: HPC. Exascale. ARM processors. GPU Accelerators. Energy Consumption. Per-
formance.



RESUMO

Consumo de Energia e Desempenho de Arquiteturas PAD para Exascale

Uma das principais preocupações para construir a próxima geração de sistemas PAD é o
consumo de energia. Para quebrar a barreira de exascale a comunidade científica precisa in-
vestigar alternativas que possam lidar com o problema de consumo de energia. Sistemas PAD
atuais não se preocupam com energia e já consomem GigaWatts. Requisitos de consumo de
energia restringirão fortemente sistemas futuros. Nesse contexto processadores de alta potên-
cia abrem espaço para novas arquiteturas. Duas arquiteturas surgem no contexto de PAD. A
primeira arquitetura são as unidades de processamento gráfico (GPU), GPUs possuem vários
núcleos de processamento, suportando milhares de threads simultâneas, se adaptando bem a
aplicações massivamente paralelas. Hoje alguns dos melhores sistemas PAD possuem GPUs
que demonstram um alto desempenho por um baixo consumo de energia para várias aplicações
paralelas. A segunda arquitetura são os processadores de baixo consumo, processadores ARM
estão melhorando seu desempenho e mantendo o menor consumo de energia possível. Como
exemplo desse ganho, projetos como Mont-Blanc apostam no uso de ARM para construir um
sistema PAD energeticamente eficiente. Este trabalho visa verificar o potencial dessas arquite-
turas emergentes. Avaliamos essas arquiteturas e comparamos com a arquitetura mais comum
encontrada nos sistemas PAD atuais. O principal objetivo é analisar o consumo de energia e o
desempenho dessas arquiteturas no contexto de sistemas PAD. Portanto, benchmarks heterogê-
neos foram executados em todas as arquiteturas. Os resultados mostram que a arquitetura de
GPU foi a mais rápida e a melhor em termos de consumo de energia. GPU foi pelo menos 5
vezes mais rápida e consumiu 18 vezes menos energia considerando todos os benchmarks testa-
dos. Também observamos que processadores de alta potência foram mais rápidos e consumiram
menos energia, para tarefas com uma carga de trabalho leve, do que comparado com proces-
sadores de baixo consumo. Entretanto, para tarefas com carga de trabalho leve processadores
de baixo consumo apresentaram um consumo de energia melhor. Concluímos que sistemas
heterogêneos combinando GPUs e processadores de baixo consumo podem ser uma solução
interessante para alcançar um eficiência energética superior. Apesar de processadores de baixo
consumo apresentarem um pior consumo de energia para cargas de trabalho pesadas. O con-
sumo de energia extremamente baixo durante o processamento é inferior ao consumo ocioso
das demais arquiteturas. Portanto, combinando processadores de baixo consumo para gerenciar
GPUs pode resultar em uma eficiência energética superior a sistemas que combinam processa-
dores de alta potência com GPUs.

Palavras-chave: PAD. Exascale. Processadores ARM. Aceleradores GPU. Consumo de Ener-
gia. Desempenho.



LIST OF FIGURES

3.1 Intel Xeon Pipeline with Hyper-threading. . . . . . . . . . . . . . . . . . . 23
3.2 NVIDIA Kepler Memory Hierarchy. . . . . . . . . . . . . . . . . . . . . . 27
3.3 Performance and power of architectures. . . . . . . . . . . . . . . . . . . . 28
3.4 NVIDIA Tegra SoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Samsung Exynos SoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Intel Xeon Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Tesla K20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 ARM Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Hardware setup to measure Instantaneous Power (W). . . . . . . . . . . . 38

5.1 Pressure at the surface of the NACA0012 wing. . . . . . . . . . . . . . . . 40
5.2 Pressure at the surface of missile. . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Time-to-Solution of CFD solver. . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Energy-to-Solution of CFD solver. . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Time-to-Solution of Hotspot. . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Energy-to-Solution of Hotspot. . . . . . . . . . . . . . . . . . . . . . . . . 45
5.7 Time-to-Solution of Needleman-Wunsch. . . . . . . . . . . . . . . . . . . 46
5.8 Energy-to-Solution of Needleman-Wunsch. . . . . . . . . . . . . . . . . . 47

A.1 Directed Acyclic Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 The CPU is the host processor which has direct access to the main memory.

The GPU is a coprocessor featuring its own internal DRAM memory. . . . 56
A.3 Dispatch time, in seconds, in function of the dispatch workload, in bytes

with the three tested kernels: Matrix Multiplication, FFT, and NeedleMan-
Wunsch. The model values, straight line, are shown aside with the test
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.4 Execution time, in seconds, in function of the workload, in Flop with the
three tested kernels: Matrix Multiplication, FFT, and NeedleMan-Wunsch.
The model values, straight line, are shown aside with the test samples. . . . 64

A.5 Collect time, in seconds, in function of the collect workload, in bytes
with the three tested kernels: Matrix Multiplication, FFT, and NeedleMan-
Wunsch. The model values, straight line, are shown aside with the test
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



LIST OF TABLES

3.1 Performance, power, and energy efficiency of available architectures. . . . 28

4.1 Test platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Benchmarks from the Rodinia Benchmark Suite. . . . . . . . . . . . . . . 36

5.1 Time-to-Solution in seconds for CFD solver benchmark. . . . . . . . . . . 41
5.2 Average Power in watts for CFD solver benchmark. . . . . . . . . . . . . . 42
5.3 Energy-to-Solution in joules for CFD solver benchmark. . . . . . . . . . . 42
5.4 Time-to-Solution in seconds for Hotspot benchmark. . . . . . . . . . . . . 43
5.5 Average Power in watts for Hotspot benchmark. . . . . . . . . . . . . . . . 44
5.6 Energy-to-Solution in joules for Hotspot benchmark. . . . . . . . . . . . . 44
5.7 Time-to-Solution in seconds for Needleman-Wunsch benchmark. . . . . . 46
5.8 Average Power in watts for Needleman-Wunsch benchmark. . . . . . . . . 46
5.9 Energy-to-Solution in joules for Needleman-Wunsch benchmark. . . . . . 47
5.10 Peak power in watts for each platform and the idle power. . . . . . . . . . 48

A.1 Models for the three application to estimate the dispatch time of one GPU
application. The bandwidth seems regular and close to the nominal band-
width of the PCIe bus 8 GB/s (for version 2.x). . . . . . . . . . . . . . . . 61

A.2 Models for the three application to estimate the execution time of one GPU
application. The computing speed highly depends on the computing kernel. 63

A.3 Models for the three application to estimate the execution time of one GPU
application. The computing speed highly depends on the computing kernel. 65



LIST OF ABBREVIATIONS AND ACRONYMS

BMC Baseboard Management Controller

CUDA Compute Unified Device Architecture

DAG Directed Acyclic Graph

GPU Graphics Processing Unit

HPC High Performance Computing

IPMI Intelligent Platform Management Interface

MSRS Model-Specific Registers

MPSoC Multiprocessor System-on-Chip

NPB NAS Parallel Benchmarks

NVML NVIDIA Management Library

OpenCL Open Computing Language

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SoC System-on-Chip

TDP Thermal Design Power

VFP Vector Floating Point



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Project Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 STATE-OF-THE-ART RESEARCH OF HPC ARCHITECTURES AND MOD-
ELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Multicore Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Low Power Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Analysis of ARM Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Comparisons of ARM with other Processors . . . . . . . . . . . . . . . . . . . 16

2.3 Accelerators: Graphics Processing Units . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Power and Performance Characterization . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 CPU-GPU Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 GPU Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 GPU Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Heterogeneous Benchmark Suites . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 ARCHITECTURES FOR HIGH PERFORMANCE COMPUTING . . . . . . . 22

3.1 High Power Processors: Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Simultaneous Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Multilevel Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 SIMD Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.4 Intel QuickPath Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.5 Turbo Boost Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Low Power Processors: ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 big.LITTLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 VFP architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 NEON Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Accelerators: Graphics Processing Units . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 SIMD Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Memory and Cache Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 26



3.3.3 SLI and Crossfire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Performance and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 ARM + GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 NVIDIA Tegra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Samsung Exynos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 EVALUATION OF ENERGY CONSUMPTION AND PERFORMANCE . . . . 32

4.1 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 RESULTS AND EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 CFD Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Time-to-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 Energy-to-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Hotspot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Time-to-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Energy-to-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Needleman-Wunsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Time-to-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.2 Energy-to-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 CONCLUSION AND PERSPECTIVES . . . . . . . . . . . . . . . . . . . . . 49

6.1 Research Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDIX A GPU MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Applications and Heterogeneous Systems . . . . . . . . . . . . . . . . . . . . 55

A.2 GPU Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2.1 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2.2 Characterization and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3.3 Error Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



A.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.4.1 Hypothesis a) Dispatch Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.4.2 Hypothesis b) Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.4.3 Hypothesis c) Collect Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.4.4 Hypothesis d) Total Execution Time . . . . . . . . . . . . . . . . . . . . . . . 64

APPENDIX B SUMMARY IN PORTUGUESE . . . . . . . . . . . . . . . . . . . 67
B.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Arquiteturas para alto desempenho . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2.1 Processadores Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2.2 Processadores ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2.3 Aceleradores GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2.4 ARM + GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3 Avaliação de consumo de energia e desempenho . . . . . . . . . . . . . . . . . 70
B.3.1 Proposta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3.2 Metodologia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.3.3 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.4 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



11

1 INTRODUCTION

Scientific applications have helped the development of several areas like weather forecast
(KRASNOPOLSKY; FOX-RABINOVITZ; BELOCHITSKI, 2010), oil prospection (ZELJKOVIC;
MOUSA, 2011), and health care (HO; MITHRARATNE; HUNTER, 2013), to cite a few ex-
amples. These applications are time consuming, i.e., processing intensive, stressing the limits
of available memory and processing speed. For this reason, the workload of these applications
is often a subset of the desired workload. This simplification is mostly done to cope with the
hardware constraints of current HPC systems. Responding to this increasing demand of pro-
cessing speed, we reached recently PFlops HPC systems, i.e., systems capable of processing
1015 floating point operations per second. In the near future, about 10 years from today, we ex-
pect to reach the exascale era where HPC systems will have 1000 times more processing speed
than current systems (EDWARDS, 2010).

Designing exascale HPC systems brings several challenges. Simply scaling the current
technology is unfeasible because we are unable to deal with failure probabilities and power con-
sumption, among others. Looking at the past, the HPC community has already faced challenges
to reach Petascale. Back at that time, processors had poor multithread support compared to cur-
rent multicore architectures that feature several processing cores in a single chip. Petascale HPC
systems only became feasible through the usage of multicore processing units (PAWLOWSKI,
2010).

Simply scaling the current technology raises problems such as communication and energy
consumption. Observing HPC systems on the Top500 list, scaling these machines to exascale
would produce machines that consume Gigawatts of energy. To provide this amount of energy
would require a medium size nuclear power plant (WEHNER; OLIKER; SHALF, 2009). The
DARPA report (BECKMAN et al., 2011) estimates a reasonable peak of electrical power, they
say that the maximum power of the future HPC systems must be below 20 Megawatts. There-
fore, to reach the next scale of HPC systems, we need alternatives that can cope with energy
consumption restraints (BARKER et al., 2009; YOUNGE et al., 2010).

The energy efficiency of future HPC systems, respecting the limit imposed by the DARPA
report, would be 50 GFlops/W. On the Top500 list, we have the fastest HPC system, Titan, per-
forming 17 PFlops at a cost of 8 Megawatts, the energy efficiency is 2.1 GFlops/W. Therefore,
we have to increase the energy efficiency 25 times to reach exascale.

Using accelerators is one of the approaches to achieve this energy efficiency. Graphics pro-
cessing units (GPU) are the accelerators commonly used today. Different from CPUs, they fea-
ture hundreds of simple processing cores. GPUs were designed to process images and the game
industry made this architecture thrive. GPUs can work well with highly parallel algorithms
running thousands of threads at the same time. Comparing to normal CPUs, it is possible to
obtain speedups higher than 10 for some GPU algorithms (LEE et al., 2010). Another type
of accelerators is the Intel XeonPhi, which is based on several x86 cores. XeonPhi promises
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almost zero effort to run old algorithms on it, with a performance similar to GPUs.

Low power processors are another approach to help break the exascale barrier. ARM proces-
sors, different from traditional CPUs, focus on spending the least amount of energy possible.
The main focus of these processors is mobile and embedded devices. One of the focuses of
these devices is to make the battery last longer. However, popular products featuring embedded
processors, such as smartphones, need more performance, changing the focus of this architec-
ture. Therefore, ARM processors focus on energy consumption and performance, making this
architecture a good candidate for exascale HPC systems.

The Mont-Blanc project is a European effort to develop an exascale machine (MONT-
BLANC, 2012a). This project bets on the two approaches described above. The idea is to
use ARM processors and GPUs together to obtain a high performance machine at a low power
consumption. Mont-Blanc expects to build a prototype that can reach 7 GFlops/W by the end of
2014. After that, the project plans to build a supercomputer capable of performing 200 PFlops
consuming 10 Megawatts (MONT-BLANC, 2012b; MONT-BLANC, 2012c; VALERO, 2011).

1.1 Research Goals

The goal of this work is to research approaches that guide us to improve the performance
of HPC systems while keeping the energy consumption low. In this context, we start with
the assumption that heterogeneous systems using accelerators and low power processors may
provide a better energy efficiency compared to current systems.

To verify this assumption, we will study three HPC architectures separately. For the acceler-
ator part we will study GPUs, where some applications can greatly benefit of this architecture.
Those applications show speedups of up to one order of magnitude compared to traditional
CPUs, resulting in a high energy efficiency. GPU architecture is now being studied extensively,
with advanced studies like cycle-accurate simulators and load balancers for CPU-GPU systems.
For the low power processors, ARM is the most common. It is contained in most smartphones
and embedded devices. However, low power processors are new in the HPC context, and their
energy efficiency in this area is still uncertain.

Intel processors are the most responsible for the Top500 systems performance. They are the
most common architecture in the HPC field, and have decades of performance improvements.
This architecture will represent common HPC processors, and we will use it as a baseline for
comparison.

The main goal is to compare these architectures to see which is the best in performance, and
which is the best in terms of energy consumption. To make this comparison, we will evaluate
these architectures with the same HPC benchmarks, analyzing both execution time and energy
consumption of each architecture.
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1.2 Contributions

The main contribution of this work is the comparison of three different HPC architectures
using different benchmarks. We found that the GPU architecture was the fastest and the best in
terms of energy efficiency. The low power architecture was the slowest as expected, however
its energy efficiency for light-weight workloads was the best.

1.3 Project Insertion

This work is inserted into the context of the project Green-Grid: Computação de alto de-

sempenho sustentável, sponsored by FAPERGS and CNPq.
The work is also part of the Laboratoire International en Calcul Intensif et Informatique

Ambiante (LICIA) between INF/UFRGS and Laboratoire d’Informatique (LIG) from the uni-
versity of Grenoble France.

1.4 Document Organization

The rest of this document is organized as follows:

• Chapter 2 shows the state-of-the-art research regarding HPC architectures

• Chapter 3 details specific architectures for the research presented in this work

• Chapter 4 presents the proposal as well as the methodology used throughout this work,
including how the measurements were performed and which platforms were used

• Chapter 5 presents the results of this work, the comparison of the architectures consider-
ing performance and energy

• Chapter 6 concludes and shows some perspectives for future work

• Appendix A shows a new method to model GPUs, producing fast and accurate models
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2 STATE-OF-THE-ART RESEARCH OF HPC ARCHITECTURES AND MODELS

This chapter presents an overview of research concerning the two main problems introduced
in the last chapter. Related to low power processors, we can see several papers analyzing their
capabilities. They compare low power processors with other types of processors to see how they
perform against current technology, questioning the possibility of using them in future systems.
For accelerators, we can see research modeling and simulating them to understand the behavior
of scientific applications. They also consider the power perspective, balancing performance
and power of accelerator systems to obtain a better energy efficiency. To contextualize these
new architectures, we provide an overview of the current multicore architectures. Finally, we
also discuss benchmarks that can be used to analyze performance and energy consumption of
heterogeneous HPC systems.

2.1 Multicore Architectures

Blake et al. (2009) perform a survey of multicore processors. They state that the attempts to
increase the performance of single core processors led to complex, unmanageable, and power
hungry designs. With multicore, there are advantages like the raw performance and scalability
by the number of cores, rather than frequency, limiting the growth of energy consumption. They
also say that performance has been the traditional goal. However, power has joined performance
as a first-class design constraint.

They say that combining different types of processing elements into a heterogeneous ar-
chitecture can be advantageous. Heterogeneity can obtain a power advantage without loss of
performance. On the other hand, the programming model for this architecture is much more
complicated. Two types of processing elements are described, the first one is in-order with a
small die area, low power, and is easily combined into large numbers. There are two ways to
increase the performance for this processing element, adding multiple pipelines to fetch and
issue more than one instruction in parallel, and increase the number of pipeline stages reducing
the logic per stage and increasing the clock. The second processing element is the out-of-order
processor that requires very complex and power hungry circuits. They say that out-of-order is
more suitable for applications that have a wide range of behavior and a high performance need.

To extract even more performance than superscalar architectures, we can use SIMD and
VLIW architectures. Blake et al. state that SIMD is highly inefficient for general-purpose
processing. To avoid the execution of only one instruction at the same time, VLIW can be used.
However, the complexity is moved to the compiler that has the task to guarantee no data and
control hazards. They say that SIMD and VLIW are power efficient designs, but are well suited
only for specific applications.

The memory system was studied and they state that cache is just one part of the system.
Consistency models, cache coherence and intrachip interconnections are also part of the system.
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They say that consistency models have an effect on performance. Strong models have a great
impact on performance, more complex and slower memory systems, but make programming
easy. Weak models make the memory system easy to design but require the programmer to
ensure the correct behavior.

Cache configurations were also discussed. Automatically tagged caches are the most com-
mon approach, transparent to the programmer. However, they are nondeterministic and use die
area for storing the tags. Local stores that can be managed by software can provide determinis-
tic performance, they also use the die area occupied by the tags to store program data. However,
local stores also rely on the programmer for proper use.

Among the processors that Blake et al. covered by the survey there are 3 low power proces-
sors (ARM Cortex A9, Intel Atom, and XMOS XS1-G4), 2 high performance processors (Intel
Core i7 and Sun Niagara T2), and some application specific processors like GPUs and DSPs.

2.2 Low Power Processors

Three architectures focusing on low power consumption are presented here. Atom proces-
sors from Intel are the fastest, and also have the highest power consumption. Freescale QorIQ
processors built on the PowerPC architecture, consume a little less power than Atom but their
performance is inferior. ARM processors have an extremely low power consumption even when
compared to other low power processors.

Many papers compare ARM processors with different processors, including common pro-
cessors such as Intel Xeon. Some results are reported for energy efficiency while executing
different applications. Some results show that GPUs have a better energy efficiency than tra-
ditional CPUs and ARM processors have an even better efficiency than GPUs, almost 2 times
better.

2.2.1 Analysis of ARM Processors

Padoin et al. (2012a) evaluate the performance and energy efficiency of two ARM developer
boards with different ARM processors, ARM Cortex A8 and A9. They used the High Perfor-
mance Linpack to compare the platforms. The ARM A9 platform presented a performance of
755 MFlops while the ARM A8 achieved only 23 MFlops. The peak power of ARM A9 was 8
W and for ARM A8 was only 1 W. Although the peak power of ARM A8 is extremely low, the
poor performance presented by this board led to a low energy efficiency.

In (PADOIN et al., 2013), the authors analyze the performance, scalability, and energy
efficiency of three ARM platforms. Each platform showed different behaviors. Tegra 3 had the
best performance, Snowball the best energy efficiency and worst performance, and PandaBoard
the worst scalability.

Furlinger et al. (2011) analyze the performance and energy consumption in commodity
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devices. They state the energy efficiency will become the single most important factor for the
next generation of supercomputers. This constraint can lead to consumer electronic devices
becoming the building blocks of future HPC systems.

They studied the performance and energy consumption of an AppleTV cluster, this device
features an ARM Cortex A8 processor. Executing Linpack on all four nodes they achieved
160.4 MFlops while consuming 10 W, yielding an energy efficiency of 16 MFlops/W. However,
the Cortex A8 SIMD hardware does not support double precision operations. The VFP unit
used for double precision operations is not pipelined and each instruction takes 9 to 17 cycles.
Therefore, the peak rate for double precision operations would be about 66 MFlops.

They also compare the AppleTV with a BeagleBoard that has the same processor but a
slower clock. Both boards showed comparable results on a per-MHz basis. They also compared
with a dual core Intel Atom, using only one core the ARM performs better than Atom. However,
using the two cores available the Atom outperform ARM.

Dongarra and Luszczek (2012) analyze architecture, ISA, and other aspects of ARM. They
showed a complete implementation of a Linpack benchmark for the Ipad 2. Their results were
then compared with the latest performance and power specification from various processors,
including common multicores and GPUs.

They divided the processors into three tiers. The first one was desktop and server processors
that achieved about 1 GFlops/W. The second was accelerators achieving about 2 GFlops/W.
The last tier was ARM that achieves a performance of 4 GFlops/W presenting the best energy
efficiency.

2.2.2 Comparisons of ARM with other Processors

The work presented in (PADOIN et al., 2012b) shows a comparison between ARM and
Intel Xeon processors. They question the possibility of building the next generation of HPC
systems using low power processors. To perform the comparison, a subset of the NAS Parallel
Benchmarks was executed. They pointed out that for light-weight workloads ARM has a good
energy efficiency compared to Intel Xeon, although for heavy-weight workloads the use of
ARM is questionable. The results showed that ARM consumes 10% up to 91% less energy than
Intel. However, Intel was 9 to 900 times faster.

Roberts-Hoffman et al. (2009) compare ARM Cortex A8 and Intel Atom N330 regarding
architecture and benchmarks. They say that for ARM to achieve best performance at the low-
est power, superscalar architectures and in-order instructions were used. NEON technology,
that can be used as a SIMD accelerator, is the most interesting performance increasing feature
introduced by the Cortex A8. The Atom is also in-order featuring two ALUs and two FPUs.

ARM uses several power management techniques like dynamic voltage and frequency scal-
ing and dynamic power switching. It also supports several operation modes consuming differ-
ent amount of power. For example, standby mode consumes 7 mW, the audio and video decode
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mode consumes 540 mW, full-on consumes 1.5 W. Atom N330 is a dual core that combines two
Atom N230 and doubles the power consumption to 8 W.

The benchmarks showed that Atom has more performance. However, ARM appears to be
more power efficient and provides more performance per dollar than Atom.

Stanley-Marbell et al. (2011) made a quantitative analysis for architectures that have simple
and more complex cores. They state that low power processors have two potential disadvan-
tages. The first one is the execution performance of non-parallel workloads. The second is that
the cost of packaging can surpass the cost of the processor.

They analyze performance, power dissipation, and thermal properties for ARM Cortex A8,
PowerPC, and Intel Atom architectures. To obtain this data, hardware counters, current mea-
surements, and thermal imaging via a microbolometer array were used.

The performance results show that Atom with dual core and faster clock is undoubtedly
faster than the others. Both ARM and PowerPC have floating point support but PowerPC at the
same clock performs much worse than ARM.

For power and thermal measurements, ARM showed again an extremely low power con-
sumption in idle state, 3 times lower than the others. ARM also has the best energy efficiency
for sequential workloads. However, with parallel workloads the dual core Intel Atom yields
the best energy efficiency. The thermal analysis showed that peripherals outside the processor
have significant power dissipation, this mean that board optimizations can lead to more energy
efficient systems.

Ou, Pang et al. (2012) perform a comparison of an ARM processor cluster against an Intel
workstation cluster. They say that data centers are build from commodity hardware, and low
energy has been a secondary objective of this hardware. The question they address is what
happens if we build data centers with low power processors, where the key design has been
energy efficiency since the beginning.

They used micro-benchmarks to compare basic operations like bit, add, multiply, divide,
and mod. Intel outperforms ARM in every operation from 4 to 14 times. Running a webserver
application, ARM shows a small advantage when the utilization level is less than 20%. For
utilization levels higher than 20%, the energy efficiency of ARM was 1.2 to 1.4 times greater
than Intel. For in-memory databases, ARM achieves even greater energy efficiency than Intel,
reaching 3 to 9.5 times more energy efficiency. However, for video transcoding the efficiency
of ARM was only slightly higher than Intel.

They conclude that ARM based clusters are advantageous for low performance applications
and light weighted workloads, including the total cost to build the data centers. For computing
intensive applications, ARM becomes less energy efficient than Intel which reaches comparable
efficiency.

Aroca et al. (2012) compare ARM against x86 processors. They discuss whether it is pos-
sible to use ARM for server and cluster applications. It is verified that the use of low power
servers in parallel applications is suitable.
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They also executed a webserver and found out that ARM has a better energy efficiency, from
3 to 4 times better, although Intel had a better response time mostly due to a faster memory bus
and bigger cache. For SQL databases, the result was the same as for the webserver.

To evaluate floating point performance, they executed the Linpack benchmark. Analyzing
pure performance, x86 always outperforms ARM. However, when analyzing energy efficiency,
ARM had better energy efficiency for light-weighted workloads. When the matrices are bigger
than 500 x 500, x86 becomes more efficient than ARM.

2.3 Accelerators: Graphics Processing Units

This section presents research related to the evolution of GPUs. We can see cycle-accurate
and modular functional GPU simulators. We also show some GPU models that use character-
istics of the hardware. One paper also considered the power, modeling both performance and
energy. Another paper made a characterization of power and performance when dynamically
scaling voltage and clock frequency. Finally, we can see a work distribution method to achieve
better energy efficiency from a CPU-GPU system.

2.3.1 Power and Performance Characterization

Jiao et al. (2010) characterize power and performance of GPU applications. They used
dynamically voltage and frequency scaling (DVFS) to vary the frequency of GPU cores and
memory, and observe the impact on performance and energy efficiency.

Three applications were tested: matrix multiplication, matrix transpose, and fast fourier
transform. The first two applications obtained an improvement in energy efficiency of less than
10%, reducing the memory and core frequency respectively, the last one had no improvements.

2.3.2 CPU-GPU Load Balancing

Wang et al. (2010) proposed a power efficient work distribution method for CPU-GPU sys-
tems. The method coordinates work distribution and processors DVFS to minimize the whole
system energy consumption.

They used a simple linear model to estimate the execution time of the algorithm, and multi-
ply by the power consumption of the hardware at a determined frequency level to estimate the
energy of the execution. For a specific workload, they minimize the equations of total energy
consumed.

The energy consumption decreased by 14% using their method. They found that applica-
tions with smaller differences of energy consumption between CPU and GPU benefit more with
the work distribution. Therefore, balancing processors heterogeneity is important for better
energy efficiency.
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2.3.3 GPU Modeling

The authors in (VELHO et al., 2013) presented a method to model GPUs. They chose ana-
lytically modeling of GPUs to produce fast and still accurate models. They based the modeling
on the dwarf taxonomy presented in the Berkeley report (BECKMAN et al., 2011). The idea is
to divide scientific applications into dwarfs and model them separately. For three dwarfs tested
they report a worst error of less than 11%.

Kerr et al. (2010) model CPU-GPU workloads. They performed a principal component
analysis into several components of the system. Identifying the principal components of the
system, they can reduce the amount of information needed to represent the system. With the
principal components they built a polynomial model to predict the execution time for similar
applications or different hardware.

To execute on CPU they translate the code for GPU using the Ocelot infrastructure. Ocelot
is an emulation and compilation infrastructure that implements the CUDA runtime API, and can
translate GPU code to CPU. They found that some applications that have similar performance
on a GPU can have total different performance on the CPU, for example one can be 25 times
faster than the other in CPU.

They observe that the most accurate models are for the same application on another similar
architecture. The worst models are when they use data from CPU and GPU architecture to build
a more generic multicore model. Most results have an error of about 20% or less. However,
some results showed errors from 30% to 80%.

Zhang et al. (2011) presents a quantitative analysis model. They develop microbenchmarks
for three major components of GPU applications, and a throughput model considering these
three components, the instruction pipeline, shared memory access, and global memory access.
Their focus was to identify performance bottlenecks in a quantitative way to guide optimiza-
tions.

Comparing the time of each component they identify the bottleneck, and can also infer the
next component that becomes the bottleneck when the first one is solved. Information to track
down the causes of the bottleneck is also provided. Although the main purpose is to guide
optimizations, the accuracy is within 5 to 15% for three case studies.

Hong and Kim (2010) create an integrated model for GPU power and performance. They
say that some types of applications do not increase the performance using all the cores available
due to bandwidth limitations. Therefore, it is possible to achieve better energy efficiency using
fewer cores, discovering an optimal number of cores.

To predict the optimal number of cores, they proposed an integrated power and performance
prediction system. To model the power, the GPU is decomposed into several components, then
using the access rate to each component the power is estimated by empirical data obtained using
micro-benchmarks.

Their results showed that for memory bandwidth limited benchmarks, they can save about
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10% of energy consumption using fewer cores. For GPUs that implements power gating mech-
anisms they can save about 25%.

2.3.4 GPU Simulators

Bakhoda et al. (2009) analyze CUDA workloads using a GPU simulator, they present
GPGPU-Sim that is a cycle-accurate simulator of GPUs. The simulator supports CUDA Parallel
Thread Execution (PTX) instruction set, it can run applications without source code modifica-
tions, but requires access to the source code. The simulator executes the CPU code on a normal
CPU. Therefore, performance estimation are for the GPU code only.

They analyzed 12 benchmarks and validate the simulator against a real hardware, the corre-
lation coefficient found was 0.899. They used the simulator to vary some architectural aspects
to analyze the behavior of the benchmarks used. Some of the findings were that most of the
applications are more sensitive to interconnect bandwidth than latency, where reducing band-
width by half is more harmful than raising the latency by 5 times. They also notice that using
less threads than possible can increase the performance by reducing contention of hardware
resources.

Although cycle-accurate simulators can result in a good time prediction and give hardware
insights, this approach requires unfeasible execution time to simulate one simple HPC applica-
tion.

Collange et al. (2010) present another GPU simulator. They developed a modular func-
tional GPU simulator called Barra based on the UNISIM framework. The main purpose of this
simulator is to test the scalability of applications before executing them on real hardware.

They propose a modular functional simulator because the long amount of time that cycle-
accurate simulator can take, although it still takes orders of magnitude more time than real
hardware. A parallelization was also performed showing speedups of 1.9 for 2 cores and 3.53
using 4 cores, showing that Barra is scalable.

2.4 Heterogeneous Benchmark Suites

Rodinia is a benchmark suite presented by Che et al. (2009, 2010). The benchmark goal is
to help architects study different platforms like GPU accelerators. They aim to support diverse
applications, inspired by the Berkeley’s dwarf taxonomy, using state-of-the-art algorithms and
also providing input sets for testing different situations.

Rodinia targets GPUs and multicore CPUs implementing the benchmarks using CUDA,
OpenCL, and OpenMP. So far, Rodinia includes benchmarks from 6 dwarfs that come from
several application domains like medical imaging, bioinformatics, fluid dynamics, and others.

Danalis et al. (2010) present the Scalable Heterogeneous computing (SHOC) benchmark
suite. SHOC includes benchmarks implemented in OpenCL and CUDA. The main goal of



21

SHOC is to be truly scalable with the capability to test large clusters with large number of
devices.

SHOC also divided the benchmarks into 2 categories, stress tests and performance tests.
The first category aimes to identify devices with bad memory or other component problems.
The second one measures the system performance.

The Parboil benchmarks presented by Stratton et al. (2012) is a benchmark suite similar
to Rodinia, They include benchmarks from diverse applications domain and implement them
using OpemMP, OpenCL, and CUDA.

Valar is a heterogeneous benchmark suite to study dynamic behavior of this systems (MIS-
TRY et al., 2013). This benchmark aimes to study the dynamic behavior of OpenCL applica-
tions with host-device interactions. Valar is composed by OpenCL applications with a wide
range of host-device behavior and data sharing with data driven examples.

2.5 Conclusion

Although some papers compare ARM with other architectures, with the exception of Don-
garra and Luszczek none of them compare them from the HPC perspective. However, with
the papers presented here we can see that ARM is unable to match the performance of others
processors but has better energy efficiency for some tasks. This energy efficiency of ARM can
be incorporated into future HPC systems, building systems that respect the power constraints
imposed on them.

On the other hand, GPU architecture is being deeply studied as the most successful acceler-
ator until today. GPUs have both aspects needed for future HPC systems, high energy efficiency
and high performance. However, this architecture is suitable only for some applications that can
benefit the most of them.

One approach to build the next generation of HPC systems is to combine the high perfor-
mance and energy efficiency of GPUs with low power processors like ARM. This combination
could lead to an overall high energy efficiency, ARM would handle heavy tasks to the GPU
and process the other where ARM is more efficient. Therefore, to verify this approach to build
future HPC systems we need a deep understanding of ARM in the context of HPC, and better
tools to analyze GPUs in the scale expected for these systems.
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3 ARCHITECTURES FOR HIGH PERFORMANCE COMPUTING

This chapter describes the architectures that will be studied in this work. We show character-
istics of these architectures that make them more suitable for determined types of applications,
considering performance and power. For instance, although one processor may have several
mechanisms to accelerate different applications, these mechanisms consume more power and
could lead to less energy efficiency compared to other architectures.

First, we present one of the current architectures being used in HPC systems, the Intel pro-
cessors. Following, we analyze low power architectures, more specifically ARM processors.
Next, we show one accelerator architecture developed initially to be used for image processing
and gaming but got the attention of HPC community. Finally, we detail heterogeneous architec-
tures that combine low power processors with GPUs.

3.1 High Power Processors: Intel

Intel processors are commonly found in HPC systems. The goal of Intel architectures has
been performance for many years. Many enhancements like simultaneous multithreading and
multilevel caches were added to the architecture to increase its performance. This led to power
hungry processors that are capable of delivering high performance for most of the algorithms.

3.1.1 Simultaneous Multithreading

Intel implemented a simultaneous multithreading technology called Hyper-Threading (MARR
et al., 2002). This technology makes a processor appear as two logical processors. Threads will
be scheduled for each logical processor, the physical processors will share its resources for the
threads executing them simultaneously.

To assure the forward progress of each logical processor, the pipeline blocks inside the
physical processors are separated by partitioned or duplicated buffering queues. A high level
view of the pipeline is shown in Figure 3.1, where we can see partitioned buffering queues.

3.1.2 Multilevel Caches

The main memory has to be big enough to accommodate all the data of the applications.
However, big memories with acceptable price have low speed. The processors need high band-
width access to memory to be fully occupied, otherwise the processor will be idle waiting for
data to be accessed. To serve the data efficiently for the processor, multilevel caches were im-
plemented. Using the temporal and spatial locality, caches can hide the latency to access the
main memory.

In the Nehalem architecture, Intel uses three levels of cache, two private caches for each
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Figure 3.1 – Intel Xeon Pipeline with Hyper-threading.

Source: The Authors

core and one shared. The level 1 (L1) cache separates instructions and data into 32 KiB each.
Level 2 (L2) is a 256 KiB non-inclusive private cache with a write-back policy. Level 3 (L3) is
an inclusive 8 MiB shared cache by all cores, with the inclusive cache each line in L1 and L2 is
also in L3, this means that traffic due to coherency protocols is minimized.

The Nehalem architecture also introduced a new two-level Translation Lookaside Buffer
(TLB). The memory management uses the TLB to accelerate the virtual address translation
working as an address translate cache. Nehalem added a second 512 entry TLB level to improve
this performance.

3.1.3 SIMD Extension

Processing cores are usually Single Instruction Single Data (SISD), performing one oper-
ation on one set of data. However, some algorithms apply the same operation repeatedly on
several sets of data. The Single Instruction Multiple Data (SIMD) processing support, where
n computing units perform the same operation on different sets of data, could accelerate some
computations.

Streaming SIMD Extensions (SSE) instructions in Nehalem can process integer and floating
point operations. Nehalem can perform 2 double precision or 4 single precision floating point
operations simultaneously.

Separate registers, called MMX and XMM, are used for SIMD instructions. MMX register
are 64-bit and used for legacy floating point instructions. The XMM registers are 128-bit and
can store up to 4 single precision or 2 double precision floating point operands.
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3.1.4 Intel QuickPath Technology

With multicore processors becoming more powerful every day, one bottleneck that arises is
the front-side bus. Since processors can execute instructions faster, the rate of instructions and
data that have to be fetched increases together with the performance of the processor. Besides
fetching the data, in multiprocessor systems there is also communication between the processors
to assure the cache coherence. The front-side bus is unsuitable to support all this data traffic.

To provide the high speed interconnection necessary for new multicore processors, Intel de-
veloped a new interconnect architecture called QuickPath. This architecture integrates a mem-
ory controller into the processor. QuickPath also connects processors and other I/O devices.
The Intel QuickPath interconnect in the Nehalem architecture is 20-bit wide and can perform
up to 6.4 GT/s or 12.8 GT/s in both directions.

The QuickPath architecture also increased shared memory scalability. Each processor has
a dedicated memory that it can access directly. In a multiprocessor system, each processor can
access another processor’s memory through a high speed QuickPath interconnect.

3.1.5 Turbo Boost Technology

Intel Nehalem can turn off idle cores or some parts of the system as a power saving feature.
However, instead of only saving energy, Intel implemented a feature that can boost the perfor-
mance of single cores when some of them are unused. Intel Turbo Boost Technology turns off
idle cores and increases the frequency of the cores in use. Turbo Boost increases the frequency
by 133 MHz, 266 MHz, and 400 MHz respecting the thermal and electrical design limits of the
processor.

3.2 Low Power Processors: ARM

The ARM Cortex processor family was developed to provide high performance at a low
energy consumption (YEUNG et al., 2011). Floating point support together with SIMD capa-
bilities target high processing speed. While several innovations, like shutting down idle cores,
take energy consumption into account.

3.2.1 Power Management

With an original focus on embedded and mobile systems, ARM designed low power archi-
tectures to last hours or days with a single battery. To do this, some advances in energy saving
had to be done.

Micro TLBs reduce the energy consumed translating addresses. Physically addressed caches
save energy by reducing the number of cache flushes and refills. Multicore architectures can
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save energy by turning off unused cores. ARM can also have some modes between fully oper-
ational and shutdown mode called standby and dormant modes, these modes can turn off some
units or lower the frequencies to save energy.

3.2.2 big.LITTLE

ARM introduced the technology called big.LITTLE where the multiprocessor combines
the highest performance big cores with the most energy efficient little cores. This technology
enables a task scheduling focusing on energy consumption. Light and moderate workloads that
are not much time limited can be processed by the little cores to save energy. High performance
tasks are processed by the big cores, keeping the high performance demanded.

3.2.3 VFP architecture

Vector Floating Point is the ARM Floating Point architecture. It is a coprocessor that pro-
vides low cost high performance floating point operations. VFP supports half, single, and dou-
ble precision formats. This unit is fully compliant with the IEEE 754 standard for binary floating
point arithmetic.

In the ARMv7 microarchitecture, the hardware support for vector mode is deprecated due
to the NEON technology described in the next section. This unit uses SISD, performing only
one operation at a time. The early ARM Cortex A8 architecture uses VFPLite, it provides the
same hardware support of a full VFP. However, it requires more clock cycles to perform the
same operation.

3.2.4 NEON Technology

To improve the processing performance, the ARM Cortex family also added a SIMD unit
called NEON. With the NEON technology, ARM doubles the performance compared with
ARMv6 for some applications.

NEON is a 128-bit SIMD unit that can perform 4 simultaneous single precision float-
ing point operations. The technology can also perform operations on 8-bit, 16-bit, or 32-bit
operands. Therefore, NEON is able to perform up to 16 operations simultaneously.

For the SIMD instructions, the NEON has 32 64-bits wide registers, they are viewed as 16
registers of 128-bits width. The first processor to use NEON was the ARM Cortex A8.

3.3 Accelerators: Graphics Processing Units

Graphics Processing Units (GPU) arises as an accelerator that can provide high raw perfor-
mance. Several HPC projects already use GPUs to reach PFlops of performance. GPU started
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aiming at rendering massively parallel graphics with substantial investments from the game in-
dustry, leading to the development of the current architecture. Nowadays, GPU architectures
are widely used to accelerate different scientific applications.

Two main manufacturers, NVIDIA and AMD, offer GPUs with support for HPC. AMD
offers GPUs like FireStream 9370 with 1600 cores and SKY 900 with 4096 cores. NVIDIA
offers Tesla GPUs that are dedicated for HPC without output ports. The Telsa K20 GPU comes
with 2496 cores.

3.3.1 SIMD Architecture

The nature of image applications, where the same operation must be applied to a large set
of pixels, led the GPU to be a SIMD architecture. GPUs can execute hundreds of simultaneous
operations.

The GPU is composed of hundreds of simple cores that execute the same flow of instructions
on different sets of data.

Simple cores are grouped into multiprocessor elements, where the tasks are scheduled. Each
core of a multiprocessor executes the same instructions on different sets of data.

3.3.2 Memory and Cache Hierarchy

The memory of GPUs is organized into 2 levels, the global and shared memory. Global
memory is slow but visible for all threads of the GPU. Shared memory is fast and visible only
to threads in the same multiprocessor.

For the NVIDIA Kepler architecture, there are also 2 levels of caches. An unified L2 cache
serves all the multiprocessors into the GPU. The L1 cache is private to each multiprocessor
and its size is configurable using part of the shared memory. There is also an additional read-
only data cache for loading constants. Figure 3.2 shows the memory hierarchy of the Kepler
architecture.

3.3.3 SLI and Crossfire

SLI or Crossfire is a technology capable of linking 2 or more GPUs using a direct bus be-
tween them. This technology unifies their memory address space, synchronizing data between
their memories. This means that one system with 2 GPUs, where each GPU has 1 GB of mem-
ory, will appear to have only 1 GB instead of 2 GB when linked together.

GPUs linked together can divide the problem and work together without using the shared
PCIe bus. For example, using 2 GPUs for image rendering, each one can work on half of the
image, reducing the time to render it. This technology is useful for gaming. However, for
general calculations, it is more productive to let them work independently. In this way, the
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Figure 3.2 – NVIDIA Kepler Memory Hierarchy.

Source: The Authors

GPUs can work on more data at the same time.

3.4 Performance and Power

This section shows the performance and power for the architectures detailed before. The
performance is given by the theoretical double precision operations per second. The power
is given by the Thermal Design Power. The theoretical energy efficiency is also given as the
performance divided by the power.

Table 3.1 shows the performance, power, and energy efficiency of some latest architectures.
Intel Westmere, which is a Nehalem shrink to 32 nm, and AMD Magny-cours are the common
processors and show an energy efficiency of about 1 GFlops/W. NVIDIA and AMD GPUs show
that accelerators have a much higher performance than common processors without consuming
much more power. Accelerators have an energy efficiency from 2 up to 5 GFlops/W.

Low power processors show a very low performance compared to other processors. How-
ever, they present an extremely low power consumption. Intel Atom has the highest power con-
sumption, yielding an energy efficiency comparable to common processors. Differently from
Intel Atom, ARM processors yields an energy efficiency from 4 up to 11 GFlops/W. Although
ARM Cortex A15 performance and power is estimated, ARM Cortex A9 energy efficiency is
already comparable to accelerators.

Figure 3.3 shows performance and power of architectures. GPUs are in the top right while
low power processors in the bottom left. The ideal spot would be in the top left. However,
this spot lacks architectures to fill in. The combination of ARM and GPU could create systems
closer to that spot, yielding a high energy efficiency with a high performance.
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Table 3.1 – Performance, power, and energy efficiency of available architectures.

Processor Performance (GFlops) Power (Watt) Energy Efficiency (GFlops/W)
Inter Westmere E7-8870 96 130 0.74
AMD Magny-Cours 6180SE 120 115 1.04
NVIDIA Fermi GPU M2050 515.2 225 2.29
NVIDIA Kepler GPU K20x 1312 235 5.58
AMD FireStream GPU 9370 528 225 2.35
AMD Sky GPU 900 1478.4 300 4.92
Intel Atom N570 6.7 8.5 0.79
ARM Cortex A9 2 0.5 4
ARM Cortex A15* 16 1.4 11.42
*Estimated

Source: The Authors

Figure 3.3 – Performance and power of architectures.
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3.5 ARM + GPU

ARM is a low power processor that is getting more performance without compromising
power consumption. ARM already has the best theoretical energy efficiency comparing to com-
mon processors and GPUs. However, the pure performance is the lowest among these architec-
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tures. Moreover, GPUs have an extremely high performance and a better energy efficiency than
common processors. Combining ARM and GPU is one solution to build a system that can offer
high performance and also high energy efficiency. This section describes two System-on-Chip
(SoC) intended for mobile devices that now are offering the latest ARM processors with GPUs
capable of general purpose computing.

3.5.1 NVIDIA Tegra

Tegra is a processor built by NVIDIA with mobile computing as the main application of this
processor. Devices such as smartphones and tablets feature Tegra processors. Tegra is a SoC
integrating ARM, GPU, and other capabilities like audio decoding.

The first Tegra processors are Tegra APX and Tegra 6xx released in 2008 and 2009, this first
generation was built with ARM11 processors. Tegra APX was intended for smartphones while
Tegra 6xx was for smartbooks and internet devices.

In 2010, NVIDIA released Tegra 2, the second generation of the Tegra family. Tegra 2,
shown in Figure 3.5(a), features a dual-core ARM Cortex A9 and an ultra-low power GeForce
GPU with 8 cores, delivering high performance for multitasking and games. This generation
also supports the Ubuntu Linux distribution, enabling its use for different purposes like web
servers and general computation. However, Tegra 2 lacks the NEON SIMD unit, limiting its
use for HPC.

Tegra 3, shown in Figure 3.5(b), was announced in 2011 with a quad-core ARM Cortex
A9. One of the key innovations introduced by Tegra 3 is the variable SMP, the big.LITTLE
technology described before. The fifth core in Tegra 3 is an ARM Cortex A7, this companion
core handles the low power tasks. The integrated GPU is an evolution of the ultra-low power
GeForce in Tegra 2, the GPU has 12 cores and delivers 3 times the 3D performance compared
to Tegra 2.

The GPU of Tegra 3 and Tegra 2 is not capable of general purpose computing. However,
there exists the GPU development kit that incorporates the Tegra 3 chip and one separate GPU
to build HPC applications.

Tegra 4, announced in 2013, is going to be a quad-core ARM Cortex A15. Tegra 4 also has
an extra core with the big.LITTLE technology. The GPU featured in the chip has 72 cores and
is now capable of general purpose computing.

3.5.2 Samsung Exynos

The Samsung Exynos family is a continuation of the earlier line of SoC that are based on
ARM processors. Like NVIDIA, the main application of these SoC is mobile devices.

In 2010, Exynos 3 was released featuring a single core ARM Cortex A8 and a PowerVR
GPU. In 2011, Exynos 4 was released, the first one to feature a dual-core ARM Cortex A9
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Figure 3.4 – NVIDIA Tegra SoC.

(a) Tegra 2 (b) Tegra 3

Source: The Authors

with an ARM Mali-400 GPU, shown in Figure 3.6(a). Exynos 4 Quad was released in 2012,
featuring a quad-core ARM Cortex A9 and a higher frequency ARM Mali-400 GPU. The GPU
in these SoC, like the other ultra-low power GPUs, is not capable of general purpose computing.

Exynos 5 Dual, shown in Figure 3.6(b) and released in 2012, was the first ARM Cortex
A15 featuring a dual-core chip. The GPU is a ARM Mali-T604, capable of general purpose
computing and making it more suitable for HPC. In 2013, Exynos 5 Octa was released, featur-
ing a quad-core ARM Cortex A15 with 4 extra ARM Cortex A7 cores using the big.LITTLE
technology. The GPU used in Exynos 5 Octa is a PowerVR GPU that is also capable of general
purpose computing.

1Available in: http://www.samsung.com/global/business/semiconductor/file/product/Exynos4210-0-0.jpg and
http://www.samsung.com/global/business/semiconductor/file/product/Exynos5dual-block-diagram-0.jpg. Ac-
cessed 2013
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Figure 3.5 – Samsung Exynos SoC.

(a) Exynos 4 Quad

(b) Exynos 5 Dual

Source: Samsung Website1
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4 EVALUATION OF ENERGY CONSUMPTION AND PERFORMANCE

To reach the next step in the evolution of HPC systems, the exascale computer, we need to
build systems with architectures that can offer a good ratio between performance and energy
consumption. The applications executed in these architectures must be executed fast while
spending the least amount of energy possible. Therefore, the energy efficiency of such systems
must be high.

Considering this challenge of energy efficiency, this chapter proposes to evaluate the ar-
chitectures presented in Chapter 3, analyzing performance and energy consumption that these
architectures can offer.

4.1 Proposal

The top ranked HPC system in the Top500 list performs 2.1 GFlops/W, to reach the require-
ments proposed by the DARPA report, it needs to improve the energy efficiency by 25 times.
Therefore, to reach exascale HPC systems, we need to find alternatives to achieve the energy
efficiency needed.

Two alternatives to achieve the energy efficiency necessary are accelerators and low power
processors. Moreover, chips that package low power processors and accelerators into one SoC,
may achieve an even better energy efficiency.

To evaluate possible architectures for the exascale system, we select three platforms to rep-
resent high power processors, accelerators, and low power processors. We will evaluate the
architectures in terms of Time-to-Solution and Energy-to-Solution to focus on the energy effi-
ciency of the platforms.

To represent high power processors, we selected an Intel Xeon E5 processor. Accelerators
will be represented by an NVIDIA GPU Tesla K20. Finally, we chose an ARM Cortex A9 as
the low power processor.

4.2 Methodology

This section shows the methodology used during this work, describes the architectures and
benchmarks chosen to perform the tests, how the measurements were conducted, and the metrics
used to evaluate them.

To represent high power processors, an Intel Xeon E5 processor will be used. In the Top500
list of HPC systems from June 2013, 55% of systems use an Intel Xeon E5, and this processor
is responsible for 33% of the performance share in the list.

The most common accelerator in the Top500 list are NVIDIA GPUs. However, Intel Xeon
Phi is responsible for 18.8% of performance share of accelerators in the list, while NVIDIA
GPUs are responsible for 14.4% of performance share. The accelerator used in this thesis will
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be an NVIDIA Tesla GPU, Tesla is the most advanced GPU from NVIDIA. Due to lack of
access to Intel Xeon Phi, this architecture will not be analyzed.

The most popular low power processor is ARM, present in most of the latest smartphones
today, and other embedded devices. ARM is also the targeted architecture of the Mont-Blanc
project that intends to build an HPC system with it. The ARM processor available to test is an
ARM Cortex A9. However, the last model of ARM processors is the ARM Cortex A15 that is
the next generation after ARM A9.

Once the architectures are selected, some benchmarks are needed to test them. The set of
benchmarks chosen must be implemented to run natively on all platforms to fairly compare
them, this means that each benchmark needs to perform well on each architecture. Therefore,
the benchmark suite needs to be implemented using MPI or OpenMP to be executed on the Intel
and ARM platforms, and also be implemented using CUDA to be executed on the NVIDIA
Tesla GPU.

The benchmarks will then be executed several times, and we will use some metrics to
compare the architectures regarding the performance and energy consumed to complete each
benchmark. Finally, we will analyze the results of each architecture to reason if some of these
architectures have the potential to be used in exascale systems.

4.2.1 Test Environment

In this section, we describe the platforms used during the tests. Table 4.1 summarizes the
platforms. In all platforms, we used Ubuntu 12.04 as the operating system, the compiler was
gcc version 4.6. For the GPU experiments, we used the CUDA toolkit, version 5.0.

4.2.1.1 High Power Processors

To represent high power processors, we will analyze Intel Xeon processors in a Dell server.
The machine is built using two Intel Xeon processors E5-2650 with 8 cores each, the cores are
clocked at 2 GHz and the total memory is 32 GB of DDR3 RAM. Thus, this platform offers 16
physical cores and with hyper-threading can execute 32 simultaneous threads. From here on,
this test environment will be called Intel Xeon.

4.2.1.2 Accelerators

For the accelerators architecture, we will use an NVIDIA GPU in a computer with a quad-
core Intel Core i7 930, operating at 2.80 GHz. The system features a x16 PCIe bus version 2.0,
with a speed of 8 GB/s. The GPU card is an NVIDIA Tesla K20c with 2496 CUDA Cores at 706
MHz and 4800 MB of memory. From here on, this test environment will be called Tesla K20.
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Figure 4.1 – Intel Xeon Processor.

Source: Intel Website1

Figure 4.2 – Tesla K20.

Source: NVIDIA Website2

4.2.1.3 Low Power Processors

The ARM platform tested is a PandaBoard that features a dual-core ARM Cortex A9 pro-
cessor manufactured by Texas Instruments. The platform has 2 cores at 1 GHz and 1 GB of
Low Power DDR2 RAM. This board is the successor of the BeagleBoard project that features
an ARM Cortex A8. The PandaBoard is intended to offer a prototyping environment for mobile
devices with several features and input/output that is unneeded for HPC, like video decoding,
HDMI ports, and wireless network controller. From here on, this test environment will be called
PandaBoard A9.

4.2.2 Benchmarks

To fairly compare these architectures, we need benchmarks written in the programming
model used natively by them. For the High and Low Power processors, benchmarks written

1Available in: http://japan.intel.com/contents/museum/hof/pix/quad_xeon_s.jpg. Accessed 2013
2Available in: http://www.nvidia.com/content/tesla/images/TeslaK20_Passive_SC12ShowCover_3Qtr1.png.

Accessed 2013
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Figure 4.3 – ARM Processor.

Source: ARM Website3

Table 4.1 – Test platforms.

Characteristic Intel Xeon Tesla K20 PandaBoard A9
# Cores 8 2496 2
Core Clock 2 GHz 706 MHz 1 GHz
Memory 32 GB 5 GB 1 GB
Lithography 32 nm 28 nm 45 nm
Single Processor TDP 95 W 225 W* 0.25 W
* TDP of whole Tesla K20 board.

Source: The Authors

in OpenMP can fully utilize the resources of the architectures. However, the GPU accelerator
from NVIDIA uses CUDA that extends languages such as C and needs benchmarks written in
CUDA.

Therefore, benchmarks useful for this comparison need to be implemented in OpenMP and
CUDA. With the benchmarks presented in Section 2.4, only Rodinia and Parboil are suitable.
Both benchmarks suites have recently been updated. However, Rodinia has less compilation and
execution complexity and will be used in this work. We describe next the Rodinia benchmark
suite.

4.2.2.1 Rodinia Benchmark Suite

Rodinia (CHE et al., 2009) is a benchmark suite for heterogeneous computing developed at
the University of Virginia. They aim to help computer architects study platforms such as GPUs
and multicore CPUs. Therefore, benchmarks have versions in OpenMP, CUDA, and OpenCL.

Rodinia contains several applications inspired by the Berkeley dwarf’s taxonomy described
in the scientific report from Asanovic et al. (2009). The report points out that scientific applica-
tions can be differentiated into 13 types. Therefore, we can expect that a scientific application
will behave like one or a composition of up to 13 different types of applications. The Rodinia
benchmark suite has several dwarfs covering diverse application domains, from fluid dynamics
to bioinformatics, medical imaging, data mining and others. Table 4.2 shows the benchmarks

3Available in: http://www.arm.com/images/tpl/our-story-banner.png. Accessed 2013
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that compose the Rodinia suite.

Table 4.2 – Benchmarks from the Rodinia Benchmark Suite.

Benchmark Dwarf Application Domain
Leukocyte Structured Grid Medical Imaging
Heart Wall Structured Grid Medical Imaging
MUMmerGPU Graph Traversal Bioinformatics
CFD Solver Unstructured Grid Fluid Dynamic
LU Decomposition Dense Linear Algebra Linear Algebra
HotSpot Structured Grid Physics Simulation
Back Propagation Unstructured Grid Pattern Recognition
Needleman-Wunsch Dynamic Programming Bioinformatics
Kmeans Dense Linear Algebra Data Mining
Breadth-First Search Graph Traversal Graph Algorithms
SRAD Structured Grid Image Processing
Streamcluster Dense Linear Algebra Data Mining
Particle Filter Structured Grid Medical Imaging
PathFinder Dynamic Programming Grid Traversal
Gaussian Elimination Dense Linear Algebra Linear Algebra
k-Nearest Neighbors Dense Linear Algebra Data Mining
LavaMD N-Body Molecular Dynamics
Myocyte Structured Grid Biological Simulation
B+ Tree Graph Traversal Search

Source: The Authors

Three benchmarks, marked in bold in Table 4.2, from this suite were tested. The benchmarks
were selected from different dwarfs to not favor one architecture over another, using algorithms
with different characteristics. The benchmarks are described next:

• CFD Solver is a computational fluid dynamics, the benchmark solves a finite volume for
the three-dimensional Euler equations for compressible flows. This benchmark, taken
from the fluid dynamic domain, represents the unstructured grid dwarf.

• HotSpot is a widely used tool to estimate processor temperature based on an architectural
floorplan and simulated power measurements. The thermal simulation iteratively solves a
series of differential equations by block. Each output cell in the computational grid repre-
sents the average temperature value of the corresponding area of the chip. This benchmark
represents the structured grid dwarf taken from the physics simulation domain.

• Needleman-Wunsch is a nonlinear global optimization method for DNA sequence align-
ments. The potential pairs of sequences are organized in a 2D matrix. In the first step,
the algorithm fills the matrix from top left to bottom right, step-by-step. The optimum
alignment is the pathway through the array with maximum score, where the score is the
value of the maximum weighted path ending at that cell. Thus, the value of each data
element depends on the values of its northwest-, north- and west-adjacent elements. In
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the second step, the maximum path is traced backwards to deduce the optimal alignment.
The dwarf this benchmark represents is dynamic programming and was taken from the
bioinformatics domain.

4.2.3 Metrics

To perform the comparisons, two metrics will be used, these metrics are described below.

Time-to-Solution: the value of Time-to-Solution (in seconds) gives an estimation of the amount
of time to achieve useful output.

Energy-to-Solution: the value of Energy-to-Solution (in Joules) gives the amount of energy
consumed to achieve useful output. It can be calculated as the multiplication of the aver-
age power by the Time-to-Solution.

4.2.4 Measurements

This section shows how the time to complete the benchmarks was measured, and how the
energy consumed was measured.

4.2.4.1 Time Measurements

The time considered was the time to execute the kernel only. The time to load the input,
read files, transfer memory from the CPU do GPU memory in the case of GPU, were all discon-
sidered. Memory transfer is a step necessary only for accelerators, the other steps are necessary
for all platforms. However, this step can be performed in parallel to the accelerator kernel exe-
cution, and pipelined implementations where data transfer and kernel execution are mixed can
hide this time.

To measure this time, system calls (gettimeofday) from the operating system are performed
before and after the kernel execution, giving us the time elapsed to execute the kernel.

4.2.4.2 Energy Measurements

Similarly to time, the energy considered was only the energy consumed during the kernel
execution.

Regarding the Intel platform of high power processors, we have 2 measures that can be done.
The first one is to measure the power consumed only by the processor. The second one is to
measure the power consumed by the mainboard, which includes main memory and any device
connected to and powered by the mainboard, this excludes the power consumed by hard disks
that are powered directly from the power supply. We will explain next how these two measures
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are performed.

The Intel processor used is from the Sandy Bridge family, this processor includes some
Model-Specific Registers (MSRS), with some registers included in this family we can measure
the energy in joules consumed by the processor. Therefore, to measure the energy consumed
only by the processor we can read this register before and after the kernel execution, the differ-
ence of the readings is the energy consumed to execute the kernel of the application.

To measure the energy of the mainboard in the Intel platform we use the Intelligent Plat-
form Management Interface (IPMI), this interface uses the Baseboard Management Controller
(BMC) that is a microcontroller embedded in the mainboard. With this we can measure the
instantaneous power consumed by the mainboard. Measuring the instantaneous power during
the kernel we can have the total energy consumed by the kernel.

The energy consumed by the NVIDIA Tesla can be measured similarly to the energy con-
sumed by the mainboard in the Intel platform. NVIDIA System Management Interface, based
on the NVIDIA Management Library (NVML), provides the instantaneous power consumed by
the whole Tesla board.

The downside of measuring energy using IPMI and NVIDIA System Management Interface
is that we have to be constantly measuring the instantaneous power. This continuous measure-
ment can interfere with the performance of the benchmark, and if the measurement rate is low
the error of the energy calculation can be too high. Therefore, we have to verify if the measure-
ment rate is reasonable.

Figure 4.4 – Hardware setup to measure Instantaneous Power (W).

Source: The Authors

PandaBoard is the most challenging platform to measure the energy. Although the other two
platforms offer some management interface that provides power information, the PandaBoard
platform contains no equivalent. One approach to measure the energy is to use a power meter.
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The power meter is connected between the power outlet and the power supply as seen in Figure
4.4.

In the work presented in (PADOIN et al., 2012b), the authors measured the power of Pand-
aBoard during some benchmarks from the NAS Parallel Benchmarks (NPB) using the power
meter, the peak power measured was a little less than 8 W for all benchmarks. Therefore, in the
experiments performed in this thesis, we will consider the peak power of PandaBoard to be 8
W. The energy consumed will be obtained by multiplying peak power by the time spent to run
the benchmarks. This approach is the worst case scenario, where during all the execution time
the board is operating at full power.
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5 RESULTS AND EVALUATION

This chapter shows the results obtained for each tested benchmark. In all metrics measured,
we executed each benchmark at least 30 times and calculated the confidence interval for a
confidence level of 95%.

5.1 CFD Solver

This section presents the results obtained for the CFD Solver benchmark. CFD solvers based
on unstructured grid come as a challenge for GPUs, the data dependency and irregular access
to memory from these algorithms becomes a great bottleneck. The architecture of GPUs was
build with a focus on image processing that uses structured grids with no data dependencies and
regular memory accesses.

The CFD solver implementation for GPUs used by the Rodinia suite is described in (COR-
RIGAN et al., 2011), they used several techniques to optimize unstructured grid solver for
modern GPUs.

Two workloads are tested under supersonic flow. The first one is a NACA0012 wing for
aircraft developed by the National Advisory Committee for Aeronautics. The second one is a
missile. Figures 5.1 and 5.2 show the objects and the pressure at the surface of them under
supersonic flow.

Figure 5.1 – Pressure at the surface of the NACA0012 wing.

Source: Corrigan (2009, p. 225)
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Figure 5.2 – Pressure at the surface of missile.

Source: Corrigan (2009, p. 227)

5.1.1 Time-to-Solution

The Time-to-Solution of each architecture to complete both workloads are presented in Ta-
ble 5.1. Although unstructured grids are not the best fit for GPUs, Tesla K20 had the best
Time-to-Solution. Figure 5.3 shows the Time-to-Solution. Tesla K20 was 7 to 8 times faster
than Intel Xeon and about 600 times faster than PandaBoard A9. Intel Xeon was about 80
times faster than PandaBoard A9.

Table 5.1 – Time-to-Solution in seconds for CFD solver benchmark.

Workload Intel Xeon Tesla K20 PandaBoard A9
NACA0012 32.67 (±8.3× 10−2) 3.98 (±1.5× 10−4) 2360.75 (±1.5)
Missile 39.31 (±1.1× 10−1) 5.38 (±2.7× 10−4) 3403.70 (±5.6)

Source: The Authors

5.1.2 Energy-to-Solution

Table 5.2 shows the average power in watts for each architecture and Table 5.3 shows the
Energy-to-Solution in joules. For the Intel Xeon architecture we have 2 measures as explained



42

Figure 5.3 – Time-to-Solution of CFD solver.

Source: The Authors

in the previous chapter, the first one is the energy spent by the main board, and the second is the
energy spent only by the two processors.

Table 5.2 – Average Power in watts for CFD solver benchmark.

Workload Intel Xeon Tesla K20 PandaBoard A9
NACA0012 196.56 (±0.74) 91.09 (±0.65) 8
Missile 205.58 (±0.65) 84.73 (±0.73) 8

Source: The Authors

Table 5.3 – Energy-to-Solution in joules for CFD solver benchmark.

Workload Intel Xeon Intel Xeon (processors only) Tesla K20 PandaBoard A9
NACA0012 6421.62 1981.57 (±4.83) 362.54 18886.00
Missile 8081.35 2537.71 (±7.08) 455.85 27229.60

Source: The Authors

Figure 5.4 shows the Energy-to-Solution. Tesla K20 was also the architecture that presented
the best energy consumption, Tesla K20 consumed 18 times less energy than Intel Xeon, and
about 5.5 less energy considering only the Intel Xeon processors. Tesla K20 also consumes
52 to 59 times less energy than PandaBoard A9.

Intel Xeon consumed less energy than PandaBoard A9. However, this consumption was
only 3 times less than PandaBoard A9 comparing to a Time-to-Solution 80 times faster. From
the processors measurements, we also observed that both processors were responsible for about
30% of the consumption measured for the main board.
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Figure 5.4 – Energy-to-Solution of CFD solver.

Source: The Authors

5.2 Hotspot

Hotspot is a structured grid algorithm and the best fitted for GPUs architecture. The input
is a matrix representing the processor simulated, three workloads are distributed together with
the benchmark in the Rodinia suite, the workloads have square matrices with dimensions of 64,
512, and 1024.

5.2.1 Time-to-Solution

Table 5.4 shows the Time-to-Solution for each architecture. As expected, Tesla K20 was
faster than the other architectures. The Time-to-Solution is shown in Figure 5.5. Tesla K20
was 12 to 15 times faster than Intel Xeon and 94 to 739 times faster than PandaBoard A9.
Intel Xeon was 7 to 49 times faster than PandaBoard A9.

Table 5.4 – Time-to-Solution in seconds for Hotspot benchmark.

Workload Intel Xeon Tesla K20 PandaBoard A9
64 0.4458 (±2.32× 10−2) 0.0359 (±1.89× 10−5) 3.41 (±6.16× 10−2)
512 6.9030 (±3.98× 10−1) 0.5027 (±4.99× 10−5) 344.09 (±9.44× 10−1)
1024 30.4220 (±3.82× 100) 1.9251 (±7.93× 10−5) 1423.22 (±3.21× 100)

Source: The Authors
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Figure 5.5 – Time-to-Solution of Hotspot.

Source: The Authors

5.2.2 Energy-to-Solution

The average power for this benchmark is presented in Table 5.5. In the Table 5.6 and in
Figure 5.6, we can see the Energy-to-Solution for each architecture. Tesla K20 also presented
the best energy consumption with 37 to 52 less energy consumption than Intel Xeon, and
11 to 17 less energy considering only the Intel Xeon processors. Tesla K20 consumed 32 to
128 less energy than PandaBoard A9.

Table 5.5 – Average Power in watts for Hotspot benchmark.

Workload Intel Xeon Tesla K20 PandaBoard A9
64 90.50 (±3.35) 23.74 (±1.87) 8
512 161.34 (±2.05) 42.59 (±1.69) 8
1024 180.62 (±1.41) 76.48 (±2.78) 8

Source: The Authors

Table 5.6 – Energy-to-Solution in joules for Hotspot benchmark.

Workload Intel Xeon Intel Xeon (processors only) Tesla K20 PandaBoard A9
64 40.34 12.61 (±0.46) 0.85 27.28
512 1113.73 372.87 (±23.49) 21.41 2752.72
1024 5494.82 1637.19 (±169.78) 147.23 11385.76

Source: The Authors

Similarly to the CFD benchmark, Intel Xeon processors were responsible for about 30% of
the consumption measured for the main board. However, comparing against PandaBoard A9,
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Intel Xeon consumed 1.47 more energy for the 64 workload and consumed 2 times less energy
for the other two workloads.

Other papers already demonstrated that with small workloads ARM architectures may present
better energy efficiency than other architectures. With some under utilization of the other archi-
tectures, PandaBoard A9 consumed less than Intel Xeon for the 64 workload result.

Figure 5.6 – Energy-to-Solution of Hotspot.

Source: The Authors

5.3 Needleman-Wunsch

Neddleman-Wunsch is a dynamic programming algorithm and because of data dependencies
it may not perform well in GPUs architectures. The workload is also represented by a square
matrix with dimensions ranging from 1024 to 4096. However, PandaBoard A9 can only execute
until the workload with matrix dimensions of 2560, because PandaBoard A9 gets out of memory
for bigger matrices.

5.3.1 Time-to-Solution

Time-to-Solution of each architecture is shown in Table 5.7 and in Figure 5.7. Tesla K20
was again the fastest of them, Tesla K20 was 6 to 9 times faster than Intel Xeon, and 96 to
218 faster than PandaBoard A9. Intel Xeon was 16 to 37 times faster than PandaBoard A9.

5.3.2 Energy-to-Solution

Table 5.8 shows the average power for this benchmark. In Table 5.9 and Figure 5.8 we can
see the Energy-to-Solution results. Tesla K20 consumed 25 to 37 less energy than Intel Xeon
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Table 5.7 – Time-to-Solution in seconds for Needleman-Wunsch benchmark.

Workload Intel Xeon Tesla K20 PandaBoard A9
1024 1.80 (±1.9× 10−2) 0.31 (±2.8× 10−5) 29.86 (±2.7× 10−2)
1792 3.40 (±4.3× 10−2) 0.57 (±4.8× 10−5) 80.34 (±2.4× 10−2)
2560 4.98 (±2.1× 10−2) 0.85 (±8.2× 10−5) 185.64 (±1.2× 10−1)
3328 7.55 (±6.7× 10−2) 1.14 (±8.4× 10−5) -
4096 16.09 (±8.0× 10−1) 1.64 (±1.0× 10−4) -

Source: The Authors

Figure 5.7 – Time-to-Solution of Needleman-Wunsch.

Source: The Authors

and 8 to 12 times less energy considering only the Intel Xeon processors, Tesla K20 also
consumed 27 to 46 times less energy than PandaBoard A9. Comparing Intel Xeon against
PandaBoard A9, we can see again that with small workloads ARM architectures can be bet-
ter or get close to common architectures, Intel Xeon consumed 1.04 to 1.83 less energy than
PandaBoard A9.

Table 5.8 – Average Power in watts for Needleman-Wunsch benchmark.

Workload Intel Xeon Tesla K20 PandaBoard A9
1024 127.30 (±5.32) 28.24 (±1.40) 8
1792 151.52 (±3.02) 32.61 (±1.00) 8
2560 163.07 (±3.34) 37.45 (±1.44) 8
3328 172.96 (±2.36) 42.25 (±1.57) -
4096 181.72 (±1.30) 47.82 (±1.03) -

Source: The Authors
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Table 5.9 – Energy-to-Solution in joules for Needleman-Wunsch benchmark.

Workload Intel Xeon Intel Xeon (processors only) Tesla K20 PandaBoard A9
1024 229.14 83.62 (±1.24) 8.75 238.88
1792 515.17 175.62 (±3.30) 18.59 642.72
2560 812.09 266.09 (±1.68) 31.83 1485.12
3328 1305.85 405.16 (±3.34) 48.17 -
4096 2923.87 945.34 (±47.34) 78.42 -

Source: The Authors

Figure 5.8 – Energy-to-Solution of Needleman-Wunsch.

Source: The Authors

5.4 Summary of the Results

From the benchmarks tested, we observe that Tesla K20 was the fastest architecture. For
all the workloads and benchmarks, Tesla K20 was at least 90 times faster than PandaBoard A9,
and 5 times faster than Intel Xeon. For some workloads, Tesla K20 was 600 times faster than
PandaBoard A9, and 15 times faster than Intel Xeon. For applications similar to the bench-
marks tested, we can assume that the GPU architecture is the best choice considering Time-to-
Solution.

Comparing general purpose processors, we can notice the superiority in performance from
high power processors. For all the workloads and benchmarks, Intel Xeon performed at least
7 times faster than PandaBoard A9, and was up to 80 times faster. However, PandaBoard A9
is the only platform not meant for intensive computation, PandaBoard A9 is a developer board
meant for mobile prototyping while Intel Xeon is a high end processor and Tesla K20 a high
end accelerator.

Considering the Energy-to-Solution, Tesla K20 was also the architecture that consumed
the least energy. For all the tests, Tesla K20 consumed at least 18 times less energy than In-
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tel Xeon, and 25 times less energy than PandaBoard A9. Therefore, in terms of energy effi-
ciency, Tesla K20 is the best architectural choice, providing the best Time-to-Solution as well
as the best Energy-to-Solution.

Comparing low power against high power processors, we observe that in the HPC context,
low power processors are unable to provide an energy efficiency better than high power pro-
cessors. Intel Xeon consumed less energy than PandaBoard A9 with the exception of one test
case, although PandaBoard A9 consumption was never higher than 3 times the consumption of
Intel Xeon.

Table 5.10 shows the peak power consumed by each architecture for all benchmarks and in
idle, we can see that the peak power of PandaBoard A9 fully loaded is only half of the Tesla K20
in idle, and only about 9 times less the power of Intel Xeon also in idle.

Table 5.10 – Peak power in watts for each platform and the idle power.

Platform CFD Solver Hotspot Needleman-Wunsch idle
Intel Xeon 223 198 206 70
Tesla K20 111 121 91 16
PandaBoard A9 8 8 8 -

Source: The Authors

Comparing all the benchmarks, we notice that the GPU is the fastest for all three. For the
Hotspot benchmark that is the best suited for GPU, Tesla K20 presented a speedup of 15 times
over the Intel Xeon. While the other benchmarks the speedup presented by Tesla K20 over
Intel Xeon stayed between 5 to 10 times. For some other algorithms, architectures other than
GPU could be the best choice.
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6 CONCLUSION AND PERSPECTIVES

This work presented an evaluation of HPC architectures, analyzing Time-to-Solution and
Energy-to-Solution considering the energy efficiency of each architecture. Three distinct bench-
marks were executed in all architectures to evaluate which architecture is the fastest and which
one consumes the least energy.

The results showed that the GPU architecture, for the applications similarly to the three
tested, was the fastest one performing at least 5 times faster than Intel Xeon and 80 times faster
than PandaBoard A9. Tesla K20 also consumed at least 8 times less energy than the others.

GPU architecture is undoubtedly the best architecture of them for this set of applications.
However, as explained in Section 4.2.4, the tests disconsidered the memory transfers needed for
the GPU architecture, although this time can be hidden it may diminish the GPU results and the
data movement also costs energy that was not measured.

For light-weight workloads, PandaBoard A9 showed a good energy efficiency surpassing
Intel Xeon. Therefore, for light-weight tasks that do not require a restrictive time limit to
be completed, low power architectures are the best choice in terms of energy consumption.
However, for heavy-weight workloads, high power architectures can be dozens of times faster,
providing an energy efficiency equal or better than low power architectures.

Another point to notice is that Intel Xeon processors are responsible for about 30 % of
the power consumed by the platform. Considering that the ARM processors used by Pand-
aBoard A9 have a TDP of 0.25 W, that would mean that the processor would be responsible for
only about 3 % of the board consumption. An ARM platform built for HPC, with no unneeded
circuits consuming power, could raise the total energy efficiency of the platform.

From these observations, we conclude that heterogeneous systems with low power proces-
sors and GPUs come as an interesting solution to build energy efficient HPC systems. GPU
is an accelerator and needs a host system, like the Intel Xeon platform or an ARM platform.
Therefore, GPU architectures may be the best choice, however the host system will also con-
sume energy and can impact the energy efficiency of the HPC system. In this context, two
possibilities emerge, the first one is to use GPUs together with high power architectures, both
architectures would process the solution and the overall energy efficiency will be somewhere
in the middle of each efficiency. The second one is to use GPUs together with low power ar-
chitectures, where GPUs would do all the processing work and low power architectures will
only support the GPUs, sending data to GPUs and doing small works to not impact the energy
efficiency of GPUs.

To help clarify the last statement we can look into the peak power of each platform tested.
We can see that the peak power of PandaBoard A9 is less than the idle power of the other
architectures. Therefore, low power architectures together with GPUs may present an energy
efficiency close to the one presented by the GPU alone.
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6.1 Research Perspectives

Although low power architectures is not a direct match for current high power architectures,
the combination of them with GPUs could produce HPC systems with a high energy efficiency.
Low power architectures proved to be very efficient for light-weight tasks, and showed a great
increase of performance compared to older designs. GPUs also improved their support for
scientific applications, increasing double precision performance, moving from the sole purpose
of image processing to a more general purpose.

GPUs are now moving into the system-on-chip of low power processors, leading to even
more energy efficiency. Recent platforms combine ARM and a programmable GPU into one
chip, this is the case of Tegra 4 and Exynos 5 Dual. Heterogeneous systems using these plat-
forms can be the base of future HPC systems, providing high performance and consuming low
power.

For the future, we intend to provide fast and accurate GPU models and implement them in
simulators like SimGrid (CASANOVA; LEGRAND; QUINSON, 2008) where we can simulate
applications in exascale. Platforms combining low power processors and GPUs will be stud-
ied to understand the applications behavior and energy efficiency that these architectures can
provide.
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APPENDIX A GPU MODELING

The goal of this appendix is to show a way to model a GPU architecture in a way useful
to study exascale systems. We will first analyze applications and the heterogeneous systems
available today. Next, we will propose how to model GPU architectures. The methodology
used will be detailed. Finally, we analyze the accuracy of the model.

A.1 Applications and Heterogeneous Systems

An application can be a composition of tasks with dependencies between them, each task
can be organized in a Directed Acyclic Graph as seen in Figure A.1. For example, an application
can execute the Cholesky factorization, matrix multiplication, Fast Fourier Transform, and other
functions to calculate the solution. Each function executed by this application has its own
characteristics, it could be processing bound, spending most of the time processing a small
amount of data, it could be memory bound, depending on the memory to fetch data, it can have
different patterns of data accesses and communication. All these characteristics make functions
more suitable for one type of architecture. For instance, in the DAG of Figure A.1 we have three
colors, each color could represent one type of function. One color can be the tasks suitable for
GPUs, other color are the tasks that show great energy efficiency on low power processors, and
the last one are tasks suitable for vector machines.

Figure A.1 – Directed Acyclic Graph.

Source: The Authors

A general purpose processor is not the most suitable architecture to achieve the energy ef-
ficiency needed for future Exascale systems. A heterogeneous system, where for every type of
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task we have the most suitable architecture, would be very expensive, and the work distribution
could become unmanageable. However, a heterogeneous systems consisting of few architec-
tures that can sustain an overall high energy efficiency for most of the scientific applications
can be the solution for exascale systems.

To study the aspect of performance improvement with GPUs, we propose to analytically
model this architecture. The model makes it easy to evaluate large scale GPU architectures and
their applications. Real large scale environments suffer from resource failures, long execution
time of applications, interference from other applications, and other problems that the analytical
model hides.

A.2 GPU Modeling

This section describes the programing model used by GPUs. It presents two frameworks, or
libraries, used to create programs that can run on GPUs. Afterwards, we discuss how scientific
applications are a composition of simpler functions, called kernels, that run on GPUs. Finally,
we show a method to model these kernels.

A.2.1 Programming Model

GPU is a coprocessor that is accessed through a host CPU processor. Figure A.2 shows a
host CPU processor that has direct access to the main memory with a GPU coprocessor. The
GPU features its own internal DRAM memory.

Figure A.2 – The CPU is the host processor which has direct access to the main memory. The GPU is
a coprocessor featuring its own internal DRAM memory.

GPU

DRAM

PCIExpress

CPU

Main Memory

Host

Source: The Authors

To use a GPU for computational intensive algorithms, a specific programming library is nec-
essary. The two main programming frameworks for GPU available today are NVIDIA Compute
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Unified Device Architecture (CUDA), and Open Compute Language (OpenCL). Both models
offer a set of tools, including compilers and libraries that enable GPU programming. CUDA
is very fast, having the support of various libraries. As a drawback CUDA is proprietary and
the compiler and some libraries work exclusively with NVIDIA hardware. OpenCL is an open
standard with fully available source code. OpenCL targets GPU programming and also general
multicore processors.

Independent of the programming framework, the GPU programming model in essence re-
mains the same, independent of the software layer. The GPU as a coprocessor has its own
internal memory. Then, to execute an application on the GPU, one needs to move the data and
program from the main memory to the GPU internal memory. After the data and applications
are loaded, the GPU can start executing. While the GPU is executing, the CPU may do some
useful computation in parallel. Finally, when the GPU finishes the execution, the resulting data
is available only in the GPU internal DRAM. Therefore, one needs to copy the result from the
GPU internal memory back to the main memory to finish the computation. These three steps
are the essence of the analytical model developed.

A.2.1.1 CUDA

CUDA is a state-of-the-art programming architecture and environment for NVIDIA GPUs.
CUDA means both a SIMD (Single Instruction, Multiple Data) architecture and a programming
model that extends languages (such as C) to use these GPUs. A process on the CPU runs a
special function, called kernel, which executes on the GPU. All data has to be transferred to and
from the GPU’s memory, which incurs a communication overhead.

The CUDA programming model works with the abstraction of thousands of threads com-
puting in parallel. The CUDA architecture also has a memory hierarchy. All memories inside
the Streaming Multiprocessor (SM) have a small size and low latency. The global memory has
a large size and a high latency (from 400 to 600 cycles) and can be accessed by all threads. The
newer version of this architecture also contains a L1 cache per SM and a shared L2 cache.

A.2.1.2 OpenCL

OpenCL is an open standard for cross-platform parallel programing. With the heterogeneity
of multiprocessors available today, OpenCL (STONE; GOHARA; SHI, 2010) provides a com-
mon programming model for parallel computation. One algorithm implemented in OpenCL can
be compiled and executed on-the-fly on any capable OpenCL device, this approach enables to
run the algorithm natively on platforms unavailable at the development time.

The programing interface provided by OpenCL can manage the devices available in the
heterogeneous system, and memory allocation and transfers between these devices. OpenCL
abstracts the hardware into compute units that contain one or more SIMD processing elements.
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The memory hierarchy can be defined into four types, from a large memory with high latency
to a small private memory with low latency.

A.2.2 Characterization and Modeling

In this section, we describe how we can characterize scientific applications, breaking them
into simpler pieces of code called kernels that appear recurrently in different applications. Then
we show one method to model these kernels running on GPUs.

A.2.2.1 Scientific Applications

Several applications of different areas share similar problems, they have some recurrent
routines, called kernels. A considerable portion of execution time is spent in these kernels.
Asanovic et al. (2009) recommend to characterize the execution time of HPC applications
through the execution time of the many commonly found kernels. They point out that, besides
the large number of scientific applications, only 13 dwarfs can characterize almost all of them.
Dwarfs are kernels, algorithm pieces, that characterize data access and computation patterns.

To model a scientific application, we can break it into its kernels and model each kernel.
In this way, we can divide the modeling of scientific applications into two parts. The first part
is the modeling of the kernels that compose the applications. Lastly, we have to model the
application as a set of kernels that are interacting. For example, the DAG in Figure A.1 would
be the application model, and the tasks would be each kernel with its specific model that tell us
how long this task takes to execute.

To model these kernels, we could use detailed simulation with a cycle-accurate or analytical
model. As shown in (HOEFLER et al., 2011), analytical with empirically fitted models can be
used to express real application runtime.

Analytical models are also very fast, taking only the time to compute some algebraic com-
putations. This fast way to estimate the time is useful when one needs to simulate large scale
applications. According to Hoefler et al. (2011), detailed simulation for large scale applications
would take much more time, but will not create more accuracy.

To build models for the kernels, we propose the analytical approach. We will use bench-
marks for several dwarfs as pointed out by the Berkeley report in (ASANOVIC et al., 2009),
execute them on the GPU and extract the empirical data to build the models.

A.2.2.2 Kernel Modeling

As described before, a GPU is seen as a coprocessor by the CPU, featuring an independent
internal memory. Therefore, to run a kernel on GPU we first need to transfer the data and the
instructions. Afterwards, the kernel starts executing on the GPU. When the kernel finishes,
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the result needs to be copied from the internal GPU memory to the main memory. Therefore,
running a GPU kernel consists of the three steps described below.

1. Dispatch: Before we can run the kernel on the GPU, we need to make the data available
in the GPU internal memory. The dispatch step consists of the time needed to transfer the
data and programs to the GPU internal memory.

2. Execution: Once the data is available, the next step is to run the kernel on the GPU.
Hence, the execution step is the time to run the kernel on the GPU.

3. Collect: When the GPU kernel finishes, the results from its execution is still in the GPU
memory, one needs to copy the results from the GPU internal memory to the main mem-
ory. This collect step becomes part of the GPU total computing time.

Our model to estimate GPU computing time follows this approach of three steps. The
total computation time is hence the sum of dispatch, execution, and collect times. While the
execution time is estimated by the GPU speed, the time for dispatch and collect is estimated
by the bandwidth of the PCIe bus. Since the dispatch and collect share the same PCIe bus,
we thought that the same model could estimate both times. However, there is an asymmetry
between the transmission speeds in both directions (KIRK; HWU, 2010).

To create the model, we assume that the time in each one of the steps is given by a linear
function of workload. Therefore, the model is based on the hypotheses below:

(a) Dispatch time is a linear function of the input data (Wdispatch), i.e., the amount of data to
copy from CPU memory to GPU memory, divided by the dispatch bandwidth, plus the
error βdispatch of the linear regression;

Tdispatch(Wdispatch) =
Wdispatch

dispatchBandwidth
+ βdispatch (A.1)

(b) Execution time is a linear function of workload (Wexec) with coefficient 1
GPUSpeed

, plus
the error βexec of the linear regression;

Texec(Wexec) =
Wexec

GPUspeed
+ βexec (A.2)

(c) Collect time is a linear function of the output data (Wcollect), i.e., the amount of memory
to copy from GPU to CPU when the kernel has finished, divided by the collect bandwidth,
plus the error βcollect of the linear regression;

Tcollect(Wcollect) =
Wcollect

collectBandwidth
+ βcollect (A.3)

(d) Total time of computing the GPU kernel can be obtained by the sum of the time estimated
in the three steps.

TGPU = Tdispatch + Texec + Tcollect (A.4)
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A.3 Methodology

To create the models, we use 30 samples for random sizes of workloads. From these sam-
ples, one third (10 samples) were used to calibrate the model and infer the transmission rate of
the PCIe bus and the speed rate of the GPU. The other 20 samples were used to evaluate the
accuracy of the model.

A.3.1 Environment

The test platform was a computer with a quad-core Intel Core i7 930 operating at 2.80 GHz,
the system features a x16 PCIe bus version 2.0 with a total capacity of 8 GB/s. The GPU card
is an NVIDIA GTX 480 with 1536 MB of global memory and 480 cores, each core operates at
1.40GHz.

The operating system running was Ubuntu 11.04. The compiler was gcc in the version 4.4
and the CUDA was in the 4.0 version.

A.3.2 Kernels

To perform the modeling and tests, we chose three kernels commonly found in scientific
applications.

• Matrix Multiplication: this kernel is commonly found in solvers for linear equation
systems and algebraic applications.

• Fast Fourier Transform: also known as FFT, this kernel is useful in signal processing.

• Needleman-Wunsch : A dynamic programming kernel for sequence comparison com-
monly found in Bioinformatics.

A.3.3 Error Metric

In our experiments, we use the error metric described in Equation A.5 for the reasons shown
in (VELHO, 2011). We use this metric because it respects the properties of symmetry and
triangular inequality. This metric can also be easily transformed into a discrepancy percentage
using Equation A.6.

ε = ‖ln(a)− ln(b)‖ (A.5)

Discrepancy percentage = εError − 1 (A.6)
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A.4 Results

We evaluate the quality of the models to verify in which conditions the models are accurate.
For the sake of clarity, we group results by evaluating each one of the hypotheses.

A.4.1 Hypothesis a) Dispatch Time

Table A.1 presents the dispatch models for each application. The average transfer speed for
all models is about 5.6 GB/s. This value is less than the nominal bandwidth of the PCIe bus 8
GB/s (for v2.x with 16 lane slot in each direction) but higher than half. This happens because the
GPU is designed to stream video a fluid way, so the bus bandwidth is split to seamlessly transfer
data in both direction simultaneously. This guarantees the fluidity of graphics rendering. So,
the sum of dispatch and collect bandwidth should reach near the nominal bandwidth of 8 GB/s.

Table A.1 – Models for the three application to estimate the dispatch time of one GPU application. The
bandwidth seems regular and close to the nominal bandwidth of the PCIe bus 8 GB/s (for version 2.x).

Tdispatch(Wdispatch) Max(ε) Mean(ε)

Matrix Multiplication
Wdispatch

5.68GB/s
+ 0.000721 20.66 % 0.65 %

FFT
Wdispatch

5.44GB/s
+ 0.050160 10.39 % 0.14 %

NeedleMan-Wunsch
Wdispatch

5.68GB/s
+ 0.050476 10.41 % 0.15 %

Source: The Authors

The next step now is to evaluate the error of the model and investigate which conditions
make the model inaccurate. In Figures A.4(a), A.4(b) and A.4(c) we show the dispatch graph
for Matrix Multiplication, FFT, and NeedleMan-Wunsch.

Visually, we can see that the linear regression fits well. Table A.1 presents the maximum
error (Max(ε)), a worst case error for all test samples, and the mean error (Mean(ε)). Analyz-
ing deeper the model for the Matrix Multiplication we have a mean error of 4.5%. However,
looking the maximum error we got a maximum of 502 % discrepancy. This maximum error is
because very small workloads, below 1MiB. In these cases the model is non-linear. Ignoring
these small transmissions we can reduce the maximum error. In typical scientific application is
reasonable to assume that the workload will be high (KIRK; HWU, 2010).

The maximum error obtained ignoring small workloads is about 20 %. The other bench-
marks have larger workloads. Therefore, they presented a smaller error of about 10.41 %.



62

Figure A.3 – Dispatch time, in seconds, in function of the dispatch workload, in bytes with the three
tested kernels: Matrix Multiplication, FFT, and NeedleMan-Wunsch. The model values, straight line,
are shown aside with the test samples.

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
00

0.
05

0.
10

0.
15

Dispatch Workload (B)

D
is

pa
tc

h 
T

im
e 

(s
)

● samples
model

(a) Matrix Multiplication

●
●●

●●
●●

●●
●●

●●
●●

●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
06

0.
08

0.
10

0.
12

0.
14

Dispatch Workload (B)

D
is

pa
tc

h 
T

im
e 

(s
)

● samples
model

(b) FFT

●●●●●●●
●●●●●

●●●
●●●

●●●
●●

●●
●●

●●●●●●●●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
05

0.
10

0.
15

0.
20

Dispatch Workload (B)

D
is

pa
tc

h 
T

im
e 

(s
)

● samples
model

(c) NeedleMan-Wunsch

Source: The Authors

A.4.2 Hypothesis b) Execution Time

The model for the execution step is presented in Table A.2. For the execution time, the
workload is described in giga floating points operations and the coefficient is the GPU process-
ing speed (GFlops). The Figures A.5(a), A.5(b) and A.5(c) shows the models to estimate the
execution time for Matrix Multiplication, FFT and NeedleMan-Wunsch. We can see that the
linear regression model fits well, especially for the FFT that presents a very regular behavior.
On the NeedleMan-Wunsch benchmark, the behavior is less regular but has a good fit of the
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linear regression. In general, we see here a pronounced difference on the GPU speed achieved
by each application. However, we still have to analyze the errors obtained using these models.

Table A.2 – Models for the three application to estimate the execution time of one GPU application.
The computing speed highly depends on the computing kernel.

Texec(Wexec) Max(ε) Mean(ε)

Matrix Multiplication
Wexec

241.10GFlops
+ 0.001033 16.19 % 1.11 %

FFT
Wexec

0.0004GFlops
+ 0.0002 4.60 % 0.11 %

NeedleMan-Wunsch
Wexec

1.15GFlops
+ 0.0032 201.26 % 8.47 %

Source: The Authors

The biggest error was with NeedleMan-Wunsch, the maximum error for this benchmark
was 6375 % while the mean error is 16 %. However, analyzing the workload and the speed
performance, floating operations per seconds, we can notice that with some small workloads
the GPU is unable to fully occupy its hardware. Removing these workloads, the maximum
error found is 201 %. For Matrix Multiplication, the maximum error is 2692 % and the mean
error is 11 %. Ignoring the small workloads the maximum error is reduced to 16 %. FFT has
the best behavior of all, the maximum error is 13 % and without the small workloads is 5 %.

A.4.3 Hypothesis c) Collect Time

The model for the collect step appears in Table A.3. Analyzing the graphics on the Fig-
ures A.6(a), A.6(b) and A.6(c) we show, as previously, the collect model aside with the sampled
values. All three applications present a regular behavior with bandwidth around 2.13 GB/s. The
bandwidth for transferring data from GPU to CPU is smaller as expected. Now we can see that
the sum of dispatch and collect bandwidth is close to the nominal bandwidth of 8 GB/s.

Evaluating the maximum error, NeedleMan-Wunsch is the worst case with 1249 %, Matrix
Multiplication has 999 %. Nevertheless, the mean error for both of them is still acceptable 4 %.
FFT presented a small maximum error of about 10 %. This happens because FFT data size is
bigger. Ignoring small transfers, we can get a maximum error smaller than 11 % with Matrix
Multiplication and FFT, although with NeedleMan-Wunsch the maximum error is nearly 53 %.
Similar as in the dispatch, we verified the possibility of having one single model regardless of
the application.
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Figure A.4 – Execution time, in seconds, in function of the workload, in Flop with the three tested
kernels: Matrix Multiplication, FFT, and NeedleMan-Wunsch. The model values, straight line, are shown
aside with the test samples.
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A.4.4 Hypothesis d) Total Execution Time

Our experiments indicate that the times for dispatch, execution and collect are well estimated
using the linear model with good accuracy (with realistic input values). Even though we have
good accuracy for each one of the three steps, we still assume that the sum of these three is a
good approximation to the GPU overall computing time. This assumption is uncertain because
the sum of the three may create compensation effects that might drastically increase the error.
Therefore, we need to numerically evaluate if the sum of times accurately estimates the total
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Table A.3 – Models for the three application to estimate the execution time of one GPU application.
The computing speed highly depends on the computing kernel.

Tcollect(Wcollect) Max(ε) Mean(ε)

Matrix Multiplication
Wcollect

2.13GB/s
+ 0.000174 10.61 % 0.28%

FFT Wcollect2.14GB/s+ 0.000163 10.21 % 0.17 %

NeedleMan-Wunsch
Wcollect

2.14GB/s
+ 0.000175 53.05 % 0.40 %

Source: The Authors

GPU computing time. To do this, we will observe the maximum error for the GPU overall
computing time.

Here we use the sum of models presented in Tables A.1, A.2, and A.3. Equations (A.7),
(A.8), and (A.9) show the final model. Here the input parameters of workload correctly specify
a different workload depending on the application kernel.

• Matrix Multiplication

TMM(WMM
dispatch,W

MM
exec ,W

MM
collect) =

WMM
dispatch

5.68GB/s
+

WMM
exec

241.10GFlops
+

WMM
collect

2.13GB/s
+ 0.001928

(A.7)

• FFT

T FFT (W FFT
dispatch,W

FFT
exec ,W

FFT
collect) =

W FFT
dispatch

5.44GB/s
+

W FFT
exec

0.0004GFlops
+

W FFT
collect

2.14GB/s
+ 0.050523

(A.8)

• NeedleMan-Wunsch

TNW (WNW
dispatch,W

NW
exec ,W

NW
collect) =

WNW
dispatch

5.68GB/s
+

WNW
exec

1.15GFlops
+

WNW
collect

2.14GB/s
+ 0.053851

(A.9)

Evaluating the final model hypothesis we have a very good model accuracy. The maximum
error was 1010 % with the Matrix Multiplication kernel, removing the small workloads the error
found is reduced to less than 11 %. For FFT and NeedleMan-Wunsch, the maximum error for
the sum was less than 8 %. Therefore, the final model has an outstanding accuracy.
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Figure A.5 – Collect time, in seconds, in function of the collect workload, in bytes with the three
tested kernels: Matrix Multiplication, FFT, and NeedleMan-Wunsch. The model values, straight line,
are shown aside with the test samples.

●●●●●●●●●●●
●●●●●●

●●●●
●●●●

●●●
●●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●
●●

●●
●●

●
●

●●
●
●

●
●

●●
●

●
●

●
●

●
●

●●
●

●

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
00

0.
05

0.
10

0.
15

0.
20

Collection Workload (B)

C
ol

le
ct

io
n 

T
im

e 
(s

)

● samples
model

(a) Matrix Multiplication

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
00

0.
05

0.
10

0.
15

0.
20

Collection Workload (B)

C
ol

le
ct

io
n 

T
im

e 
(s

)

● samples
model

(b) FFT

●●●●●●●●
●●●●

●●●
●●●

●●
●●

●●
●●

●●
●●●●●●●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
00

0.
05

0.
10

0.
15

0.
20

Collection Workload (B)

C
ol

le
ct

io
n 

T
im

e 
(s

)

● samples
model

(c) NeedleMan-Wunsch

Source: The Authors



67

APPENDIX B SUMMARY IN PORTUGUESE

In this appendix, we present a summary of this master thesis in the portuguese lan- guage,

as required by the PPGC Graduate Program in Computing.

Neste apêndice, é apresentado um resumo desta dissertação de mestrado na língua por-

tuguesa, como requerido pelo Programa de Pós-Graduação em Computação.

B.1 Introdução

Aplicações científicas têm ajudado o desenvolvimento de várias áreas, como previsão do
tempo (KRASNOPOLSKY; FOX-RABINOVITZ; BELOCHITSKI, 2010), prospecção de pe-
tróleo (ZELJKOVIC; MOUSA, 2011) e saúde (HO; MITHRARATNE; HUNTER, 2013), para
citar alguns exemplos. Estas aplicações são demoradas, como por exemplo processamento
intensivo, atingindo os limites da memória disponível e velocidade de processamento. Por esse
motivo, a carga de trabalho dessas aplicações são muitas vezes uma parte da carga de trabalho
desejada. Esta simplificação é feita principalmente para lidar com as limitações de hardware
dos sistemas de alto desempenho atuais. Respondendo a essa demanda crescente de velocidade
de processamento, que chegou recentemente a sistemas petascale, ou seja, sistemas capazes
de processar 1015 operações de ponto flutuante por segundo. Num futuro próximo, cerca de 10
anos a partir de hoje, esperamos alcançar a era exascale onde sistemas de alto desempenho terão
mil vezes mais velocidade de processamento do que os sistemas atuais (EDWARDS, 2010).

Projetar sistemas de alto desempenho para exascale traz vários desafios. Simplismente es-
calar a tecnologia atual é inviável porque somos incapazes de lidar com problemas como o alto
consumo de energia, entre outros. Olhando para o passado, a comunidade de alto desempenho
já enfrentou desafios para alcançar petascale. Naquela época, os processadores possuíam fraco
suporte a multithread em comparação com arquiteturas multicore atuais que possuem vários
núcleos de processamento em um único chip. Sistema de alto desempenho em petascale só se
tornou viável através da utilização de unidades de processamento multicore (PAWLOWSKI,
2010).

Ao escalar a tecnologia atual, problemas como a comunicação e consumo de energia surgem.
Tomando como exemplo os sistemas de alto desempenho na lista Top500 , ao escalar essas
máquinas para exascale resultaria em máquinas que consomem Gigawatts de energia. Para
fornecer essa quantidade de energia exigiria uma usina de energia nuclear de tamanho mé-
dio (WEHNER; OLIKER; SHALF, 2009). O relatório da DARPA (BECKMAN et al., 2011)
estima um pico razoável de energia elétrica, eles dizem que a potência máxima dos próximos
sistemas de alto desempenho deve estar abaixo de 20 Megawatts. Portanto, para alcançar a
próxima escala de sistemas de alto desempenho, precisamos de alternativas que possam lidar
com as restrições de consumo de energia (BARKER et al., 2009; YOUNGE et al., 2010).

A eficiência energética dos sistemas de alto desempenho futuros, respeitando o limite im-
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posto pelo relatório DARPA, seria de 50 GFlops/W. Na lista Top500 , temos o sistemas de alto
desempenho mais rápido, Titan, executando 17 petaflops a um custo de 8 Megawatts, a eficiên-
cia energética é de 2,1 GFlops/W. Portanto, temos de aumentar a eficiência energética em 25
vezes para atingir exascale.

Usar aceleradores é uma das alternativas para alcançar esta eficiência energética. Unidades
de processamento gráfico (GPU) são os aceleradores comumente usados hoje. Diferente de
CPUs, elas apresentam centenas de núcleos de processamento simples. GPUs foram projetadas
para processar imagens e a indústria de jogos fez esta arquitetura prosperar. GPUs são bastante
eficientes com algoritmos altamente paralelos executando milhares de threads ao mesmo tempo.
Comparando com CPUs normais, é possível obter ganhos de até 10 vezes para alguns algoritmos
executados na GPU (LEE et al., 2010). Outro tipo de acelerador é o Intel XeonPhi, que se
baseia em vários núcleos x86. XeonPhi promete quase zero de esforço para executar algoritmos
escritos para arquiteturas normais, com um desempenho semelhante ao das GPUs.

Processadores de baixa potência são uma outra abordagem para viabilizar sistemas exascale.
Processadores ARM, diferente de CPUs tradicionais, concentraram-se em gastar o mínimo de
energia possível. O foco principal desses processadores são dispositivos móveis e embarcados.
Um dos focos desses dispositivos é fazer com que a bateria dure por mais tempo. No entanto,
produtos populares apresentando processadores embarcados, tais como smartphones, precisam
de mais desempenho, mudando o foco desta arquitetura. Portanto, processadores ARM se con-
centram no consumo de energia e desempenho, fazendo com que esta arquitetura seja uma boa
alternativa para sistemas exascale de alto desempenho.

O projeto de Mont-Blanc é um esforço europeu para desenvolver um sistema exascale (MONT-
BLANC, 2012a). Este projeto aposta em duas alternativas descritas acima. A idéia é usar pro-
cessadores ARM e GPU em conjunto para obter uma máquina de alto desempenho com um
baixo consumo de energia. Mont-Blanc espera construir um protótipo que pretende alcançar 7
GFlops/W até o final de 2014. Depois disso, o projeto prevê a construção de um sistema ca-
paz de realizar 200 petaflops, consumindo um total de 10 Megawatts (MONT-BLANC, 2012b;
MONT-BLANC, 2012c; VALERO, 2011).

B.2 Arquiteturas para alto desempenho

As arquiteturas apresentadas aqui serão utilizadas nesse trabalho. Considerando desem-
penho e energia, características serão apresentadas que fazem com que uma arquitetura seja
mais apropriada para um determinado tipo de aplicação. Primeiro será apresentada uma arquite-
tura atualmente usada nos sistemas de alto desempenho. Depois, analisaremos uma arquitetura
de baixo consumo, mais especificamente a arquitetura ARM. Em seguida, apresentamos a ar-
quitetura de uma GPU, um acelerador usado inicialmente para jogos e processamento de im-
agens que chamou a atenção da comunidade de alto desempenho. Por fim, detalhamos uma
arquitetura heterogênea que combina processadores de baixo desempenho e GPUs.



69

B.2.1 Processadores Intel

Processadores Intel são comumente encontrados em sistemas de alto desempenho. O obje-
tivo dessa arquitetura tem sido somente desempenho por vários anos. Muitas melhorias foram
adicionadas para incrementar o desempenho, isso levou a uma arquitetura de alto consumo que
é capaz de prover um alto desempenho para a maioria dos algoritmos.

As melhorias adicionadas incluem multithreading simultâneo, que faz com que um proces-
sador físico seja visto como dois processadores virtuais. Outra melhoria foi adicionar cache
com vários níveis, onde um processador possui de dois a três níveis de cache, com o objetivo
de trazer os dados que o processador necessita de forma mais rápida. Extensões SIMD foram
acrescentadas para que algoritmos possam executar instruções repetidas simultaneamente. Por
fim, a Intel também adicionou a tecnologia Turbo Boost, na qual em vez de um processador
economizar energia quando alguns núcleos de processamento estão desligados, o processador
pode aumentar a frequência de um único núcleo aumentando o desempenho sequencial.

B.2.2 Processadores ARM

Processadores da família ARM Cortex foram desenvolvidos para prover alto desempenho
por um baixo consumo de energia (YEUNG et al., 2011). Várias inovações foram feitas tanto
para desempenho como para consumo de energia.

Com um foco inicial em sistemas embarcados, ARM desenvolveu arquiteturas de baixo con-
sumo para durar horas ou dias com uma única bateria. Para isso, algumas melhorais foram feitas
para economia de energia. Entre essas melhorias temos Micro TLBs e até mesmo a tecnologia
multicore onde alguns núcleos são desligados quando não estão processando. Também foi in-
troduzida a tecnologia big.LITTLE criando chips heterogêneos, adequando melhor o consumo
e desempenho para cada aplicação.

Também foi incluída a arquitetura VFP, que é um coprocessador para operações de ponto
flutuante com um alto desempenho e baixo consumo energético, melhorando assim tanto o
consumo de energia como o desempenho. A tecnologia NEON foi introduzida na família Cortex
para melhorar seu desempenho, NEON é uma unidade SIMD para executar operações de forma
simultânea.

B.2.3 Aceleradores GPU

Unidades de processamento gráfico aparecem como um acelerador para prover um alto de-
sempenho. Vários projetos de alto desempenho já estão usando GPUs para alcançar petaflops
de desempenho. A arquitetura GPU foi inicialmente desenvolvida para a industria de jogos,
levando ao desenvolvimento da arquitetura atual. Hoje em dia GPUs são amplamente usadas
para acelerar diferentes aplicações científicas.
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GPU é uma arquitetura SIMD, composta por centenas de núcleos de processamento mais
simples, GPUs podem então executar centenas de threads simultaneamente. A memória da
GPU é organizada em dois níveis, memória global e compartilhada. A memória global é lenta
porém visível por todas as threads, a memória compartilhada é mais rápida mas visível apenas
para um grupo de threads. Para a arquitetura Kepler da NVIDIA, a GPU possui ainda 2 níveis
de cache. A Figura 3.2 mostra a hierarquia de memória da GPU Kepler.

B.2.4 ARM + GPU

Tegra é um processador desenvolvido pela NVIDIA voltado para computação móvel. Dis-
positivos como smartphones e tablets usam Tegra como seus processadores. Tegra é um System-
on-Chip integrando ARM, GPU e outras capacidades como decodificador de áudio.

Os primeiros processadores Tegra foram lançados no ano de 2008 e 2009. Em 2010 NVIDIA
lançou o Tegra 2, mostrado na Figura 3.5(a), composto de um ARM Cortex A9 dual-core e uma
GPU GeForce de baixo consumo. Tegra 3, mostrado na Figura 3.5(b), foi anunciado em 2011
com um ARM Cortex A9 quad-core, como inovação foi incluído um quinto núcleo de proces-
samento usando a tecnologia big.LITTLE para economia de energia.

A GPU nos processadores Tegra 2 e Tegra 3 não são capazes de de computação de propósito
geral. Entretanto, Tegra 4, anunciado em 2013 serâ composto de um ARM Cortex A15 e uma
GPU com 72 núcleos onde é possível utilizâ-la para comutação de propósito geral.

A família Samsung Exynos de processadores são semelhantes ao Tegra. Seu útimo lança-
mento, Exynos 5 Dual, é composto de um ARM Cortex A15 e uma GPU ARM Mali-T604 que
pode ser utilizada para computação de propósito geral.

B.3 Avaliação de consumo de energia e desempenho

Para alcançar o próximo passo na evolução de sistemas de alto desempenho, precisamos
construir sistemas com arquiteturas que possam oferecer uma boa relação entre desempenho
e consumo de energia. As aplicações executadas nessas arquiteturas devem ser executadas
rapidamente, enquanto o consumo de energia deve ser o menor possível. Portanto, a eficiência
energética de tais sistemas deve ser alta.

Considerando este desafio da eficiência energética, esta seção se propõe a avaliar as arquite-
turas apresentadas anteriormente, analisando o consumo energético e o desempenho de tais
arquiteturas.

B.3.1 Proposta

Os melhores sistemas de alto desempeho na lista Top500 atingem 2,1 GFlops/W, para aten-
der os requisitos propostos pelo relatório DARPA, esses sistemas precisam melhorar a eficiência
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energética em 25 vezes. Duas alternativas para atingir a eficiência energética são os aceleradores
e os processadores de baixo consumo. Além disso, chips que incluem tanto processadores de
baixa consumo como aceleradores, podem conseguir uma eficiência energética ainda melhor.

Para avaliar as possíveis arquiteturas, selecionamos três plataformas para representar pro-
cessadores de alta potência, aceleradores e processadores de baixo consumo. Vamos avaliar as
arquiteturas em termos de tempo para solucação e energia para solução.

Para representar os processadores de alta potência, selecionamos um processador Intel Xeon
E5. Aceleradores seram representados por uma GPU NVIDIA Tesla K20. Finalmente, optamos
por um ARM Cortex A9 como o processador de baixo consumo de energia.

B.3.2 Metodologia

Para representar os processadores de alta potência, um processador Intel Xeon E5 será usado
e a partir daqui será chamado de Intel Xeon. Os aceleradores mais comuns na lista Top500 são as
GPUs NVIDIA. Portanto, será usada uma GPU NVIDIA Tesla que será chamada de Tesla K20.
O processador de baixo consumo de energia mais popular é o ARM, presente na maioria dos
mais recentes smartphones hoje em dia, ARM Cortex A9 será o processador usado nos testes e
chamado de PandaBoard A9.

O processadores testados durante essa dissertação estão descritos em detalhes na Tabela 4.1.

Algoritmos do Rodinia Benchmark Suite serão utilizados para comparar essas arquiteturas.
Esses algoritmos foram implementados de forma eficiente para as três arquiteturas usadas nessa
dissertação.

B.3.2.1 Algoritmos testados

Rodínia (CHE et al., 2009) é uma seleção de algoritmos para computação heterogênea de-
senvolvido na Universidade da Virgínia. O objectivo é ajudar arquitetos de computadores a
estudarem plataformas, como GPUs e CPUs multicore. Portanto, os algoritmos têm versões em
OpenMP, CUDA e OpenCL. Três algoritmos foram selecionados.

• CFD é um algoritmos de dinâmica dos fluidos, ele representa uma classe de algoritmos
conhecida como grade não estruturada.

• HotSpot é uma ferramenta amplamente utilizada para estimar a temperatura do proces-
sador. A simulação térmica de forma iterativa resolve uma série de equações diferenciais.
Ele representa a classe de algoritmos conhecida como grade estruturada.

• Needleman-Wunsch é um método de otimização global não-linear para alinhamentos
de sequências de DNA. A classe de algoritmos que ele representa é a de programação
dinâmica.
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B.3.3 Resultados

Este capítulo mostra os resultados obtidos para cada algoritmo testado. Executamos cada
algoritmo pelo menos 30 vezes e calculamos o intervalo de confiança para um nível de confiança
de 95%.

B.3.3.1 CFD

Algoritmos baseados em grade não estruturada, como o CFD, são um desafio para GPUs,
a dependência dos dados e acesso irregular a memória desses algoritmos torna-se um grande
gargalo. A arquitetura de GPUs foi construída com foco em processamento de imagens que
usam grades estruturadas, sem dependência de dados e acessos regulares a memória.

A implementação do CFD para GPUs usado pelo Rodínia é descrito em (CORRIGAN et
al., 2011), eles usaram várias técnicas para otimizar algoritmos de grade não estruturada para
GPUs modernas.

Duas cargas de trabalho são testadas sob fluxo supersônico. A primeira é NACA0012, uma
asa de avião. A segunda é um míssil. Figuras 5.1 e 5.2 mostram os objetos e a pressão na
superfície deles sob fluxo supersônico.

O tempo para solução de cada arquitetura é apresentado na Tabela 5.1. Embora grades não
estruturadas não são a melhor opção para GPUs, Tesla K20 obteve o melhor tempo. Figura 5.3
mostra o tempo para solução. Tesla K20 foi de 7 a 8 vezes mais rápida do que Intel Xeon e
cerca de 600 vezes mais rápida do que PandaBoard A9. Intel Xeon foi cerca de 80 vezes mais
rápida do que PandaBoard A9.

A Tabela 5.2 mostra a potência média em watts para cada arquitetura e a Tabela 5.3 mostra
a energia para solução em joules. Para a arquitetura Intel Xeon temos duas medidas, a primeira
é a energia gasta pela placa mãe, e a segunda é a energia gasta apenas pelos processadores.

Figura 5.4 mostra a energia para solução. Tesla K20 também foi a arquitetura que apresentou
o melhor consumo de energia, Tesla K20 consumiu 18 vezes menos energia do que Intel Xeon,
e cerca de 5,5 menos energia considerando apenas os processadores Intel Xeon. Tesla K20
também consomiu de 52 a 59 vezes menos energia do que PandaBoard A9.

Intel Xeon consumiu menos energia do que PandaBoard A9. No entanto, esse consumo
foi de apenas 3 vezes menor comparando com um tempo para solução 80 vezes mais rápido.
Observamos também que ambos os processadores foram responsáveis por cerca de 30% do
consumo medido para a placa principal.

B.3.3.2 Hotspot

Hotspot é um algoritmo de grade estruturada e melhor adequado para a arquitetura de GPUs.
A entrada é uma matriz que representa o processador simulado, três cargas de trabalho com
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dimensões de 64, 512 e 1024 foram testadas.

A Tabela 5.4 mostra o tempo para solução de cada arquitetura. Como esperado, Tesla K20
foi a mais rápida das arquiteturas. O tempo para solução também é mostrado na Figura 5.5.
Tesla K20 foi de 12 a 15 vezes mais rápida que Intel Xeon e de 94 a 739 vezes mais rápida que
PandaBoard A9. Intel Xeon foi de 7 a 49 vezes mais rápido do que PandaBoard A9.

A potência média para este algoritmo é apresentado na Tabela 5.5. Na Tabela 5.6 e na
Figura 5.6, podemos ver a energia para solução de cada arquitetura. Tesla K20 também apre-
sentou o melhor consumo de energia com 37 a 52 menor consumo de energia do que Intel Xeon,
e 11 a 17 menos energia considerando apenas os processadores Intel Xeon. Tesla K20 consumiu
de 32 a 128 menos energia do que PandaBoard A9.

Da mesma forma que o algoritmo CFD, processadores Intel Xeon foram responsáveis por
cerca de 30% do consumo medido para a placa mãe. No entanto, comparando-se contra Pand-
aBoard A9, Intel Xeon consumiu 1,47 mais energia para a carga de trabalho de 64 e consumiu 2
vezes menos energia para as outras duas cargas de trabalho. Outros trabalhos já demonstraram
que com pequenas cargas de trabalho arquiteturas ARM podem apresentar uma maior eficiência
energética do que outras arquiteturas.

B.3.3.3 Needleman-Wunsch

Neddleman-Wunsch é um algoritmo de programação dinâmica e por causa da dependência
dos dados pode apresentar um fraco desempenho em arquiteturas GPUs. A carga de trabalho
é representada por uma matriz quadrada com dimensões que variam de 1024 até 4096. No
entanto, PandaBoard A9 só pode executar até a carga de trabalho com dimensões da matriz
de 2560, uma vez que PandaBoard A9 não possui memória suficiente para alocar cargas de
trabalho maiores.

O tempo para solução de cada arquitetura são mostrados na Tabela 5.7 e na Figura 5.7.
Tesla K20 foi novamente a arquitetura mais rápida, Tesla K20 foi de 6 a 9 vezes mais rápida do
que Intel Xeon, e 96 a 218 mais rápida do que PandaBoard A9. Intel Xeon foi 16 a 37 vezes
mais rápido do que PandaBoard A9.

A Tabela 5.8 mostra a potência média para este algoritmo. Na Tabela 5.9 e Figura 5.8
podemos ver os resultados de energia para solução. Tesla K20 consumiu 25 a 37 vezes menos
energia do que Intel Xeon e 8 a 12 vezes menos energia considerando apenas os processadores
Intel Xeon, Tesla K20 também consumiu 27 a 46 vezes menos energia do que PandaBoard A9.
Comparando Intel Xeon contra PandaBoard A9, podemos ver mais uma vez que com peque-
nas cargas de trabalho arquiteturas ARM podem ser melhores ou chegar perto de arquiteturas
comum, Intel Xeon consumiu 1,04 a 1,83 vezes menos energia do que PandaBoard A9.
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B.4 Conclusão

Este trabalho apresentou uma avaliação das arquiteturas de alto desempenho, analisando
tempo e energia para solução considerando a eficiência energética de cada arquitetura. três
algoritmos distintos foram executados em todas as arquiteturas para avaliar qual arquitetura é a
mais rápida e qual consome o mínimo de energia.

Os resultados mostraram que a arquitetura GPU, para as aplicações de semelhantes as três
testadas, obteve o maior desempenho, pelo menos 5 vezes mais rápida do que Intel e 80 vezes
mais rápido do que ARM. A GPU também consumiu 8 vezes menos energia do que as outras.

Para cargas de trabalho leves, a arquitetura ARM mostrou uma boa eficiência energética
superando Intel. Portanto, para tarefas com carga de trabalho leve, que não necessitam de uma
restrição de tempo para ser concluída, arquiteturas de baixa potência como ARM é a melhor
escolha em termos de consumo de energia. No entanto, para cargas de trabalho mais pesadas,
arquiteturas de alta potência podem ser dezenas de vezes mais rápida, proporcionando uma
eficiência energética igual ou melhor do que as arquiteturas de baixa potência.
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