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ABSTRACT

This paper presents a methodology to the robust stability
analysis of a class of single-input/single-output nonlinear
systems subject to state feedback linearization. The proposed
approach allows the analysis of systems whose nonlineari-
ties can be represented in the rational (and polynomial) form.
Through a suitable system representation, the stability con-
ditions are described in terms of linear matrix inequalities,
which is known to have a convex (numerical) solution. The
method is illustrated via a numerical example.

KEYWORDS: State Feedback Linearization, Robustness in
Nonlinear Systems

RESUMO

Análise de Robustez de Sistemas Não-lineares Sujeitos à
Linearização por Realimentação de Estados
O artigo apresenta uma metodologia para a análise da esta-
bilidade de uma classe de sistemas não-lineares incertos su-
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jeitos à linearização por realimentação de estados. A abor-
dagem proposta permite permite a análise de sistemas cujas
não-linearidades possam ser expressas nas formas polinomial
e racional. Utilizando decomposição em soma de quadrados,
as condições de estabilidade são descritas em termos de desi-
gualdades matriciais lineares, que possuem solução numérica
eficiente. O método é ilustrado com um exemplo numérico.

PALAVRAS-CHAVE: Linearização por Realimentação de Es-
tados, Robustez em Sistemas Não Lineares

1 INTRODUCTION

State feedback linearization (SFL) is a widespread approach
to deal with nonlinear control systems, since the resulting lin-
ear system can be controlled via well established linear con-
trol tools, contrasting with the application of linear control
methods to the linear approximation of the nonlinear system,
which is valid only when the system remains near the equi-
librium point and supposing there are no hard nonlinearities
in the vicinity of this point.

Basically, SFL is a method to design a control law that ex-
actly cancels the nonlinearities of a system, allowing the im-
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position of a new arbitrary linear dynamics (Isidori, 1995).
Moreover, the approach is valid for the whole state-space,
whenever the control law is not constrained to actuator sat-
uration. However, the control design conditions require the
exact knowledge of the system dynamics. Thus, in the pres-
ence of parametric uncertainty, the cancellation of the non-
linearities is not perfect which may lead to a poor closed-loop
performance and even instability.

The robust state feedback linearization (RSFL) is still an
open problem and many approaches have been proposed in
the last decade to handle model uncertainties. For instance,
Guillard and Bourles (Guillard and Bourles, 2000) proposed
a RSFL in which the nonlinear system dynamics is trans-
formed through exact cancelations in its linear approxima-
tion around an operating point. This result is further devel-
oped in (Franco et al., 2006), where theoretical conditions
for stability and performance based on the McFarlane-Glover
H∞ controller are derived. In (Park, 2003), the robustness
properties of a SFL control law is analyzed by means of
fuzzy models, and, more recently, Hahn, Mönnigmann and
Marquardt (Hahn et al., 2008) has proposed a methodology
based on bifurcation analysis for tuning a single parameter of
a feedback linearizing controller to take model uncertainties
into account.

In the last decade, some researchers have employed the Lin-
ear Matrix Inequality (LMI) framework to deal with nonlin-
ear control systems. These methodologies differ between
each other from the way the Lyapunov stability conditions
are translated into a set of LMIs. The sum of squares
(SOS) technique uses semi-definite programming for poly-
nomial systems to decompose the Lyapunov inequalities in
terms of SOS (Papachristodoulou and Prajna, 2004). In
(Chesi et al., 2004), the authors cast the stability condi-
tions through homogeneous polynomials. The LFR tech-
nique of (El Ghaoui and Scorletti, 1996) decomposes the sys-
tem in terms of a linear fractional representation and uses a
quadratic Lyapunov function. The slack variable approach
introduced in (Trofino, 2000; Coutinho and Fu, 2002) is
based on a particular decomposition of the system in terms
of a differential-algebraic representation (DAR) and polyno-
mial Lyapunov functions. The main advantage of consid-
ering nonlinear decompositions of the system dynamics is
that the original system structure is preserved which allows
the use of the well-established linear robust control theory
(Boyd et al., 1994) to control and filter design (Coutinho
et al., 2008; Coutinho et al., 2009). Besides, through a suit-
able change of variables, a large class of nonlinear systems
can be described in the DAR form including systems with
rational, polynomial and trigonometric nonlinearities.

In this scenario, this paper presents an approach to the analy-
sis of single-input/single-output (SISO) uncertain nonlinear

systems subject to a SFL controller through the DAR de-
composition. The proposed methodology allows the SFL de-
signer to determine an estimate of the admissible parameter
set such that the closed-loop system remains stable. The class
of nonlinear systems supported by this approach includes the
linearizable (through state feedback) systems whose output
of the transformed system contains rational, polynomial and
trigonometric nonlinearities. The sufficient LMI conditions
are obtained to determine an estimate of the domain of at-
traction of an uncertain system subject to a SFL control. In
addition, a line search in the parameters space is performed
to determine an admissible set of uncertainties. According to
the best knowledge of the authors, there are no similar works
available in the control literature that provides a methodol-
ogy to estimate the domain of attraction of uncertain non-
linear systems subjected to a SFL control based on the LMI
framework. Although, similar approaches dealing with sat-
urating control laws such as (Silva Jr et al., 2004; Coutinho
et al., 2004; Coutinho and Silva Jr, 2007) can be extended to
cope with this problem.

The rest of the paper is organized as follows. Section II states
the problem of concern, showing necessary conditions for
applying the method. Section III presents the methodology
and LMI conditions for stability analysis. A numerical ex-
ample is presented in Section IV, while Section V ends the
paper.

Notation. <n denotes the n-dimensional Euclidean space,
<n×m is the set of n × m real matrices, 0n and 0m×n are
the n × n and m × n matrices of zeros; In is the n × n

identity matrix. For a real matrix S, S ′ denotes its transpose
and S > 0 (S < 0) means that S is symmetric and positive-
definite (negative-definite). Standard Lie derivative notation
is applied throughout the paper.

2 PROBLEM STATEMENT

Consider the following nonlinear system
{

ẋ = f̃(x, δ) + g̃(x, δ)u(x)
y = h(x)

(1)

where x ∈ X ∈ <n is the state vector, δ = [δ1, δ2, ..., δnδ
]

is a vector of uncertain parameters supposed to be bounded
by the polytope ∆ ∈ <nδ , u(x) : <n 7→ < is con-
trol signal and y ∈ < is the output signal. Consider that
f̃(x, δ) : X × ∆ 7→ <n, g̃(x, δ) : X × ∆ 7→ <n and
h(x) : X 7→ < have continuous and well defined partial
derivatives in a domainX×∆. If we assume f̃(x, δ), g̃(x, δ)
and h(x) have no singularities on the domain of study, there
exists a diffeomorphism T (x) proper to the synthesis of the
feedback linearization law (Khalil, 2002).

This paper aims to devise a numerical tractable technique to
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analyze the stability of the above uncertain system for all x ∈
X and δ ∈ ∆. To this end, we assume that X is a polytopic
set with known vertices. In addition, we suppose that system
(1) can be represented in the following differential-algebraic
form

{

ẋ = A1(x, δ)x+A2(x, δ)π +A3(x, δ)u(x)
0 = Ω1(x, δ)x+ Ω2(x, δ)π + Ω3(x, δ)u(x)

(2)

where π ∈ <nπ is an auxiliary vector containing all func-
tions of (x, δ) which are not affine on (x, δ) and A1 ∈
<n×n, A2 ∈ <n×nπ , A3 ∈ <n,Ω1 ∈ <nπ×n,Ω2 ∈
<nπ×nπ and Ω3 ∈ <nπ are affine matrix functions of (x, δ).

The above representation can model the whole class of poly-
nomial and nonsingular rational functions. The differential-
algebraic representation is called well-posed if the original
representation (1) can be recovered by eliminating the auxil-
iary vector π from (2) through the following expression

π = −Ω−1
2 (Ω1x+ Ω3u(x)). (3)

The well-posedness is guaranteed if the matrix Ω2 is nonsin-
gular, i.e. if rank(Ω2(x, δ)) = n, ∀(x, δ) ∈ X × ∆.

Through the tangent half-angle formulae, trigonometric non-
linearities can be embedded into the representation (2) with
no conservatism as applied for instance in (Danès and Bel-
lot, 2006) and (Coutinho and Danes, 2006) for robotic sys-
tems. The basic idea is to apply the change of variable

θ = 2arctan(r) (4)

leading to rational functions as follows

sin θ =
2r

1 + r2

cos θ =
1 − r2

1 + r2

tan θ =
2r

1 − r2
.

In other words, trigonometric functions on the variable θ can
be transformed into rational ones in the variable r. More
details are given in the numerical example later in this paper.

Suppose a SFL control law is designed according to the nom-
inal model, that is: δi = 0, i = 1, ..., nδ . When this
control law is applied to the uncertain system (1), for any
δi 6= 0, i = 1, ..., nδ , the nonlinearities are not exactly can-
celed and the stability conditions hold only in a neighbor-
hood of the origin.

Similarly to the system representation in (2), the control law
can be represented by

{

u(x) = B1(x)x+B2(x)w
0 = ζ1(x)x+ ζ2(x)w

(5)

where w ∈ <nw contains all functions of x which are not
affine in x and B1(x) ∈ <n×n, B2(x) ∈ <n×nw , ζ1(x) ∈
<nw×n e ζ2(x) ∈ <nw×nw are affine matrix functions of x.
Similarly to the previous case, in order to the vector

w = −ζ−1
2 ζ1x (6)

be well-defined, the matrix ζ2 is assumed to have full rank
for all x of interest. Notice that the SFL control law of a
rational system is also rational, which means that the control
law can be represented in the above manner.

The problem aimed in this paper can be summarized by find-
ing a polytopic set of uncertainties ∆ through a numerically
tractable technique, given a system represented by (2), a con-
trol law by (5) and a set of admissible states X .

3 STABILITY ANALYSIS

In this section, we develop stability conditions to the robust
analysis of closed-loop nonlinear systems via SFL, where the
analysis conditions are cast in terms of LMIs. To this end, the
following basic result from the Lyapunov Theory is consid-
ered (Kiyama and Iwasaki, 2000).

Lemma 1 Consider the nonlinear system ẋ =
f(x(t), δ(t)) + g(x(t), δ(t))u(x(t)) where f, g : X × ∆ 7→
<n and u : X 7→ < are locally Lipschitz functions such
that f(0, δ) + g(0, δ)u(0) = 0. Suppose there exist positive
scalars ε1, ε2 and ε3 and a continuously differentiable
function V : X 7→ < that satisfies the following conditions:

ε1x
′x ≤ V (x) ≤ ε2x

′x,∀x ∈ X (7)

V̇ (x) ≤ −ε3x
′x,∀x ∈ X (8)

D := {x : V (x) ≤ 1} ⊂ X . (9)

Then V (x) is a Lyapunov function in D. Moreover, for all
x(0) ∈ D and δ(0) ∈ ∆, the trajectory of x(t) approaches
the origin when t→ ∞ for all δ(t) ∈ ∆.

Consider a quadratic Lyapunov function

V (x) = x′Px , P = P ′ > 0 (10)

whose time derivative is as below

V̇ (x) = ẋ′Px+ x′Pẋ . (11)

Taking into account the DAR, (11) can be represented on its
matrix form

V̇ (x) =





x

π

u





′ 



A′
1P + PA1 PA2 PA3

A′
2P 0 0

A′
3P 0 0









x

π

u



 . (12)
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Notice that the vector [x′ π′ u′]′ is not completely free, due
to the relations between the variables x, π and u. Such re-
lations, expressed in (2), (5), and (6),can be summarized on
the following equality constraint.





Ω1 Ω2 Ω3 0
B1 0 −1 B2

ζ1 0 0 ζ2













x

π

u

w









= 0 (13)

To handle the above constrained inequality, we can apply the
following version of the Finsler’s lemma (Oliveira, 2004):

Lemma 2 Given matrices Fi = F ′
i ∈ R

n×n and Mi ∈
R

m×n, i = 1, . . . , r, then

λ′Fiλ > 0, ∀ λ ∈ R
n : Miλ = 0, λ 6= 0 , i = 1, . . . , r

if there exists a matrix L ∈ R
n×m such that

Fi + LMi + (LMi)
′ > 0, i = 1, . . . , r.

Applying the above lemma, we get the following sufficient
condition for (12) subject to (13) to hold

Υ(x, δ) + L Ξ(x, δ) + (L Ξ(x, δ))′ < 0,

∀ (x, δ) ∈ X × ∆
(14)

where

Υ(x, δ) =









A′
1P + PA1 PA2 PA3 0
A′

2P 0 0 0
A′

3P 0 0 0
0 0 0 0









,

Ξ(x, δ) =





Ω1 Ω2 Ω3 0
B1 0 −1 B2

ζ1 0 0 ζ2



 .

(15)

As the matrix inequality in (14) is affine in (x, δ), it can be
tested only in a finite number of points. More precisely, at
the vertices of the polytope X × ∆.

Before presenting the next lemma, let us introduce two al-
ternative representations of (convex) polytopes. A polytope
can be defined in terms of a convex hull of its vertices or,
alternatively, by the (closed) intersection of hyperplanes. To
illustrate this point, let X be a given polytope in <2 whose
vertices are defined by V := {v1, v2, v3, v4}, where

v1 =

[

2
3

]

, v2 =

[

−2
3

]

, v3 =

[

−2
−3

]

, v4 =

[

2
−3

]

A vertex representation of X is defined as the convex hull of
v1, . . . , v4, i.e., X = Co{v1, . . . , v4}. Equivalently, we can
define X as follows

X := {x : akx ≤ 1 , k = 1, . . . , 4}

Notice that each inequality defines an hyperplane {x : akx ≤
1} for which two adjacent vi and vj belongs to its edge, that
is:

v1, v2 ∈ {x : a1x = 1} ,
v2, v3 ∈ {x : a2x = 1} ,
v3, v4 ∈ {x : a3x = 1} ,
v4, v1 ∈ {x : a4x = 1} .

(16)

For a given set V , we can determine the row vectors ak solv-
ing the following set of linear systems:

{

a1v1 = 1
a1v2 = 1

{

a2v2 = 1
a2v3 = 1

{

a3v3 = 1
a3v4 = 1

{

a4v4 = 1
a4v1 = 1

(17)

yielding the following row vectors

a1 = [ 0 0.33 ],
a2 = [ −0.5 0 ],
a3 = [ 0 −0.33 ],
a4 = [ 0.5 0 ]

(18)

Lemma 3 provides sufficient conditions to insure that the do-
main of attraction is bounded to the admissible polytope of
states.

Lemma 3 Let X be a given polytope of states defined by its
vertices or equivalently by

X := {x : akx ≤ 1, k = 1, . . . , ne} (19)

where ak ∈ <n are given constant vectors and ne is the
number of edges of X . The condition x ∈ X can be written
as

2 − x′a′k − akx ≥ 0, k = 1, . . . , ne. (20)

Let the domain D be defined as

D := {x : x′Px ≤ 1}. (21)

Thus, if x ∈ D, then

x′Px− 1 ≤ 0 (22)

Then, the condition x ∈ D ⊂ X is guaranteed if the follow-
ing holds

1 − x′a′k − akx+ x′Px ≥ 0, k = 1, . . . , ne (23)

Theorem 4 presents a convex characterization of Lemma 1.

Theorem 4 Consider system (1) and its DAR as in (2). Con-
sider the SFL control law represented by its SOS as in (5).
Let ∆ be a given polytope defining the space of admissible
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uncertainty. Suppose there exist matrices P =P ′ > 0 and L
satisfying the following LMIs at all vertices of X × ∆:

Υ(x, δ) + L Ξ(x, δ) + (L Ξ(x, δ))′ < 0 (24)

[

1 ak

a′k P

]

≥ 0, k = 1, . . . , ne. (25)

Then, V (x) = x′Px is a Lyapunov function in X . Moreover,
for all x(0) ∈ D and δ(t) ∈ ∆, the trajectory of x(t) ap-
proaches the origin when t → ∞, where D := {x : V (x) ≤
1}.

Proof: If the LMIs (24)-(25) are feasible, then by convexity
they are also satisfied for all (x, δ) ∈ X × ∆.

Let ε1 and ε2 be respectively the smallest and largest eigen-
values of P . Then, the following holds

ε1x
′x ≤ x′Px ≤ x′xε2 .

Define the vector ψ := [x′ π′ u w′]′. Pre- and post-
multiplying the LMI in (24) by ψ′ and ψ respectively, leads
to

ψ′Υψ + ψ′L Ξψ + (ψ′L Ξψ)′ < 0. (26)

For simplicity of notation, the affine dependency in (x, δ) of
Υ and Ξ is omitted. Notice that the product Ξψ results in a
vector of zeros, turning (26) into V̇ (x) = ψ′Υψ < 0. As the
elements of Υ and ψ are bounded, there exists a sufficiently
small positive scalar ε3 such that

V̇ (x) ≤ −ε3x
′x .

Pre- and post-multiplying (25) by [1 − x′] and its transpose
leads to

[

1
−x

]′ [
1 ak

a′k P

] [

1
−x

]

≥ 0, k = 1, . . . , ne. (27)

Notice that (27) is the matrix form of (23). The rest of the
proof follows straightforwardly from Lemma 1. �

Remark 1 Theorem 4 provides an estimate D of the system
domain of attraction, but in general we are interested in find-
ing the largest estimate inside X . To this end, we may solve
the following convex optimization problem

min
P,L

trace(P )

subject to the LMIs in Theorem 4, which corresponds to the
minimization of the sum of the squared semi-axis lengths of
the ellipsoid D.

Remark 2 If we are interested in checking the uncertain do-
main ∆ in which the closed-loop system is asymptotically
stable for a given set of initial conditionsD0 = {x : x′P0x ≤
1} ⊂ X , one can add the condition

P0 − P ≥ 0 (28)

into Theorem 4 to guarantee D0 ⊂ D.

4 NUMERICAL EXAMPLE

To illustrate the approach, consider the following inverted
pendulum equation

θ̈ =
g sin(θ)

l
−
Kθ̇

M
+

u

Ml2
(29)

where g, l, M and K are model parameters.

The change of variables (4) is used to transform the trigono-
metric nonlinearities in rational ones, obtaining the equiva-
lent model

r̈ =
2rṙ2

1 + r2
+
gr

l
−
Kṙ

M
+
u(1 + r2)

2Ml2
. (30)

Defining x1 = r and x2 = ṙ, the system (30) can be repre-
sented in the state-space form

ẋ1 = x2

ẋ2 =
2x1x2

2

1+x2

1

+ gx1

l
− Kx2

M
+

u(1+x2

1
)

2Ml2

y = x1

. (31)

The above system is already in the nonlinear controllable
form. Thus, the state feedback linearization procedure re-
sults in the following control law

u(x) = 2Ml2

(1+x2

1
)

(

− k1x1 − k2x2 +

−
2x1x2

2

1+x2

1

− gx1

l
+ Kx2

M

)

(32)

where k1 and k2 are constant scalars that determine the
eigenvalues location in case of exact cancellation of the non-
linear terms.

Let us consider that the uncertain terms (1+ δ1) and (1+ δ2)
are respectively associated to the parameters M and K.

The resulting uncertain system is as follows:

ẋ1 = x2

ẋ2 =
2x1x2

2

1+x2

1

+ gx1

l
− K(1+δ2)x2

M(1+δ1)
+

u(1+x2

1
)

2M(1+δ1)l2

y = x1

(33)
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The system (33) can be represented in its differential-
algebraic by defining

π =

»

x1x2

(1+x2

1
)

x1

(1+x2

1
)

x
2

1

(1+x2

1
)

x2

(1+δ1)
u

(1+δ1)
x1u

(1+δ1)

–

′

.

which leads to the following matrices:

A1 =

»

0 1
g/l 0

–

, A3 =

»

0
0

–

,

A2 =

"

0 0 0 0 0 0

2x2 0 0
−K(1+δ2)

M

1
2Ml2

x1

2Ml2

#

,

Ω1 =

2

6

6

6

6

6

4

0 0
1 0
0 0
0 1
0 0
0 0

3

7

7

7

7

7

5

, Ω3 =

2

6

6

6

6

6

4

0
0
0
0
1
x1

3

7

7

7

7

7

5

,

Ω2 =

2

6

6

6

6

6

4

−1 x2 0 0 0 0
0 −1 −x1 0 0 0
0 x1 −1 0 0 0
0 0 0 −(1 + δ1) 0 0
0 0 0 0 −(1 + δ1) 0
0 0 0 0 0 −(1 + δ1)

3

7

7

7

7

7

5

Similarly, the SFL control law as presented in (32) can be
represented as in (5) by taking

w=

»

x1

(1+x2

1
)

x
2

1

(1+x2

1
)

x2

(1+x2

1
)

x1x2

(1+x2

1
)2

x1

(1+x2

1
)2

x
2

1

(1+x2

1
)2

–

′

and

B1 =

»

0
0

–

′

, B2 =

2

6

6

6

6

6

4

2Ml2(k1 − g/l)
0

2Ml2(k2 + K/M)
−4x2Ml2

0
0

3

7

7

7

7

7

5

′

,

ζ1 =

2

6

6

6

6

6

4

1 0
0 0
0 1
0 0
0 0
0 0

3

7

7

7

7

7

5

, ζ2 =

2

6

6

6

6

6

4

−1 −x1 0 0 0 0
x1 −1 0 0 0 0
0 −x2 −1 0 0 0
0 0 0 −1 x2 0
1 0 0 0 −1 −x1

0 0 0 0 x1 −1

3

7

7

7

7

7

5

(34)

For illustrative purposes, in this example we consider the fol-
lowing bounds on the states x1 and x2:

|x1| ≤ 0.15 , |x2| ≤ 0.15

and the parameters considered in the numerical experiments
are given in Table 1.

Solving Theorem 4 (taking the Remark 1 into account) and
performing a griding search in the uncertainties δ1 and δ2,
we have obtained the following bounds on the uncertain pa-
rameters

|δ1| ≤ 0.097 and |δ2| ≤ 0.99 ,

and the following estimate of the domain of attraction

D =

{

x : x′
[

62 33
33 64

]

x ≤ 1

}

.

Table 1: Pendulum Parameters

Parameter Value
M 2 kg
l 1 m
g 9.8 m/s2

K 0.5 N.s/m
k1 -1
k2 -2

To check the accuracy of these results, several simulations
have been performed for a set of initial conditions satisfying
V (0) = 1 and at the extremum values of δ1 and δ2 leading to
four trajectories for each initial condition. Figure 1 shows the
polytope of admissible states X , the estimate of the domain
of attraction D and the stable system trajectories (obtained
through simulations).

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x
1

x
2

X

Figure 1: Domain of Attraction and Phase Trajectories.

We have also made an analysis of conservativeness by in-
creasing the bound on δ1 and testing the system trajectories
if they converge or not to the equilibrium point. We have
noted that for δ1 ≥ 0.102 the system trajectories do not con-
verge to the equilibrium point under analysis as illustrate in
Figure 2, where the red dotted lines represent unstable tra-
jectories. It turns out this value is only 5 % larger than the
estimated bound on δ1 demonstrating that the method is not
conservative for this particular system.
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2

 

 

Figure 2: Phase trajectories for δ1 = 0.102.

5 CONCLUSIONS

The paper has presented a methodology to the stability anal-
ysis of uncertain nonlinear systems subject to a state feed-
back linearization control law. Through a suitable system
and control law decompositions, we devise LMI conditions
that ensure the local asymptotical stability of the uncertain
system while providing an estimate of the system domain of
attraction based on quadratic Lyapunov functions. In addi-
tion, we can estimate the set of admissible uncertainties via
a line search on the parameter bounds. The approach have
been applied to the stability analysis of an inverted pendulum
system subject to a stabilizing feedback linearization control
demonstrating the applicability of the proposed results. We
emphasize the results derived in this paper can be easily ex-
tended to deal with multi-input multi-output feedback lin-
earizing schemes, and, currently, the authors are extending
the methodology to deal with actuator saturation.
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