AN ATLAS OF HUBBLE SPACE TELESCOPE STIS SPECTRA OF SEYFERT GALAXIES ${ }^{1}$

P. F. Spinelli, T. Storchi-Bergmann, and C. H. Brandt
Instituto de Física, UFRGS, Porto Alegre, RS, Brazil; patricia.spinelli@ufrgs.br
AND
D. Calzetti
Space Telescope Science Institute, Baltimore, MD 21218
Received 2005 November 7; accepted 2006 May 12

Abstract

We present a compilation of spectra of 101 Seyfert galaxies obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), covering the UV and/or optical spectral range. Information on all the available spectra have been collected in a Mastertable, which is a very useful tool for anyone interested in a quick glance at the existent STIS spectra for Seyfert galaxies in the HST archive, and it can be recovered electronically. Nuclear spectra of the galaxies have been extracted in windows of $0 " 2$ for an optimized sampling (as this is the slit width in most cases) and combined in order to improve the signal-to-noise ratio and provide the widest possible wavelength coverage. These combined spectra are also available electronically.

Subject headings: atlases — galaxies: nuclei — galaxies: Seyfert — ultraviolet: galaxies
Online material: machine-readable table

1. INTRODUCTION

Spectra obtained with the HST Space Telescope Imaging Spectrograph (STIS) provide unique information on the spectral energy distribution (SED) of active galactic nuclei (AGNs), in two aspects: the coverage of the ultraviolet spectral range, which is not observable from the ground, and the high angular resolution, which enhances the contrast between the nuclear continuum and that of the stars of the host galaxies. Now that STIS has ceased to work, it is timely to compile the data accumulated by observations with this instrument in an Atlas. In the present work we provide such a compilation for 101 Seyfert galaxies.

We have used the spectra to construct nuclear SEDs of Seyfert galaxies obtained from extractions at an optimized sampling, corresponding to an aperture 0.12×0.2, as 0.12 is the width of the slit in most observations. These combined nuclear spectra are available electronically and can be used for a number of studies. The small extraction window allows us to better isolate the nuclear SED, minimizing the contamination by the bulge of the host galaxies. These spectra can be compared with data obtained through large apertures using ground-based telescopes in order to evaluate the contribution of the of host galaxies, particularly useful when studying samples of distant AGNs. These spectra can also be used to investigate the contribution of other sources very close to the nucleus, such as starbursts (Storchi-Bergmann et al. 2005; González Delgado et al. 2004).

Although the HST archive provides one-dimensional spectra, which are identified by the terminations _x1d and _sx1, our Atlas has at least three advantages:

1. The _x1d and _sx1 spectra are obtained with a extraction window of 11 pixels for the UV corresponding to 0 ". 27 , and 7 pixels for the optical-corresponding to 0 " 35 . Therefore, the extraction

[^0]windows in the UV an optical are different and do not make optimal use the angular resolution provided by HST. Our extraction window is chosen to have the same angular extent of the slit width, 0.2 in all wavelength ranges, providing spectra with better angular resolution. For AGNs, a smaller extraction window increases the contrast between the active nucleus and the host galaxy.
2. In many cases, the $H S T$ pipeline does not perform averages of spectra. This is the case of the _x1d spectra, which are very noisy.
3. The pipeline also does not "glue" the different spectral segments together. In the Atlas we have done this after eliminating the noisy borders of each spectral segment.

Our Atlas thus provides better signal-to-noise ratio nuclear spectra with the widest available spectral coverage, with the different spectral ranges already combined and edited to eliminate the noise usually present at the initial and final wavelengths of each segment.

In the process of constructing the Atlas, we have compiled relevant information on all the available spectra we have been collected in a Mastertable. It contains, for example, initial and final wavelengths of the different spectra segments, exposure times, gratings, and slit widths. This Mastertable is by itself a very useful tool for anyone interested in a quick glance at the available STIS spectra for Seyfert galaxies in the HST archive and can be recovered electronically as the spectra.

This paper is organized as follows: $\S 2$ describes our sample selection. Section 3 presents the Mastertable and describes the information contained in it. The extraction of the spectra is described in $\S 4$, and their combination is explained in $\S 5$. The results and some potential applications are discussed in § 6 .

2. SAMPLE AND DATA

The sample was initially selected as all Seyfert galaxies listed in the catalog of Véron-Cetty \& Véron (1996) with redshift $z \leq$ 0.03 , which had STIS spectra available in the archive. We have

TABLE 1
Galaxy Sample

Galaxy	$\begin{aligned} & \text { R.A. } \\ & (\mathrm{J} 2000.0)^{\mathrm{a}} \end{aligned}$	$\begin{gathered} \text { Decl. } \\ (\mathrm{J} 2000.0)^{\mathrm{a}} \end{gathered}$	Hubble Type ${ }^{\text {a }}$	Activity ${ }^{\text {a }}$	$Z^{\text {a }}$	Coverage (Å)	References
$\mathrm{Q} 0038+327^{\text {b }} \ldots$.	004043.5	+325833	\ldots	Sy?	0.1970	1640-3175 ${ }^{\text {b }}$	\ldots
Mrk 348	004847.1	+315725		H iI/WR, Sbrst, Sy2	0.1177	2500-5700	\ldots
IRAS 01003-2238.......	010249.9	-22 2156	$\mathrm{SB}(\mathrm{rs}) \mathrm{bc}$	Sy	0.0049	1140-10226	1
NGC 613.	013418.2	-29 2507	SA(s)0/a	Sy2	0.0150	6482-7054	2, 3
Mrk 573	014357.8	+022100	(R)SAB(rs) $0+$	Sy2	0.0172	2900-6867	4
UM 146.	015522.0	+063643	SA(rs)b	Sy1.9	0.0174	2900-6867	4
NGC 788.	020106.4	-064856	SA(s)0/a	Sy1, Sy2	0.0136	2900-6867	4
3C 67	022412.3	+275012		BLRG	0.3102	2900-10226	5
NGC 985.	023437.8	-08 4715	SBbc?p(Ring)	Syl	0.0431	1194-1250	6
NGC 1052.	024104.8	-081521	E4	LINER, Sy2	0.0049	6295-6867	7, 8
NGC 1068.	024240.7	-00 0048	(R)SA(rs)b	Sy1, Sy2	0.0038	1140-10266	9, 10
NGC 1097 ${ }^{\text {d }}$	024619.0	-3016 30	($\mathrm{R}^{\prime} _1: \mathrm{SB}\left(\mathrm{r}^{\prime} \mathrm{l}\right) \mathrm{b}$	Sy1	0.0042	$1140-10266^{\text {d }}$...
Mrk 1066	025958.6	+364914	(R)SB(s)0+	Sy2	0.0120	2900-5700	\ldots
NGC 1358.	033339.7	-0505 22	SAB(r)0/a	Sy2	0.0134	2900-6867	4
MS 0335.4-2618 ${ }^{\text {b }}$.	033736.6	-260908		Sy1	0.1230	$1150-1740^{\text {b }}$	\ldots
3C 109	041340.4	+111214	Opt.var	Ngal, Sy1.8	0.3056	2900-10266	\ldots
3C 120	043311.1	+05 2116	S0, LPQ	BLRG, Sy1	0.0330	2900-10266	\ldots
Mrk $618{ }^{\text {b }}$	043622.2	-102234	SB(s)b pec	Sy1	0.0355	1640-3175 ${ }^{\text {b }}$	11
NGC 1667.	044837.1	-0619 12	SAB(r)c	Sy2	0.0152	2900-6867	4
3C 135	051408.3	+00 5632	E	BLRG, Sy2	0.1274	5236-10266	12
AKN $120^{\text {b }}$.	051611.4	-00 0859	$\mathrm{Sb} / \mathrm{pec}$	Sy1	0.0323	1640-3175 ${ }^{\text {b }}$	11
IRAS 05189-2524.......	052101.3	-25 2145	pec	Sy2	0.0426	1140-10266	1
NGC 1961...................	054204.8	+6922 43	SAB(rs)c	LINER	0.0131	6295-6867	\ldots
NGC 2110.	055211.4	-072722	SAB0-	Sy2	0.0078	6295-6867	13
Mrk 3	061536.3	+710215	S0	Sy2	0.0135	1140-10266	14, 15
NGC 2273.	065008.7	+605045	SB(r)a	Sy2	0.0062	2900-6867	4
Mrk $9^{\text {b }}$.	073657.0	+584613	S0 pec?	Sy1.5	0.0399	1640-3175 ${ }^{\text {b }}$	11
Mrk $78{ }^{\text {b }}$	074241.7	+651037	SB	Sy2	0.0371	$1140-7054{ }^{\text {b }}$	16
NGC 2787.	091918.5	+69 1212	SB(r)0+	LINER	0.0023	2900-6867	17, 18, 19, 20
NGC 2841.	092202.6	+505835	SA(r)b	LINER, Sy1	0.0021	8275-8847	...
Mrk 110.	092512.9	+521711	Pair?	Syl	0.033	1194-1250	\ldots
NGC 2911.	093346.1	+10 0909	SA(s)0:pec	LINER, Sy	0.0106	6482-7054	
NGC 3031..	095533.2	+69 0355	SA(s)ab	LINER, Sy 1.8	-0.0001	8275-8847/6265-6867	21, 22
NGC 3081..	095929.5	-22 4935	(R_1)SAB(r)0/a	Sy2	0.0079	2900-6867	4
Mrk 34	103408.6	+60 0152	Spiral	Sy2	0.0505	2900-5700	...
NGC 3227...................	102330.6	+195154	SAB(s)pec	Sy1.5	0.0039	1140-10266	7, 8, 23
NGC 3393 ${ }^{\text {d }}$.	104823.4	-25 0943	(R^{\prime}) $\mathrm{SB}(\mathrm{s}) \mathrm{ab}$	Sy2	0.0125	$2900-6867^{\text {d }}$	24
NGC 3516...................	110647.5	+723407	(R)SB(s)00	Sy1.5	0.0088	1140-5700/6265-6867	24, 25
IRAS 11058-1131	110820.3	-114812		Sy2	0.0548	2900-6867	24
ESO 438-G009 ${ }^{\text {d }} \ldots$.	111048.0	-28 3004	$\left(\mathrm{R}^{\prime} _1\right) \mathrm{SB}(\mathrm{rl}) \mathrm{ab}$	Sy1.5	0.0234	1194-1250 ${ }^{\text {d }}$	26
MCG 10.16.111.	111857.7	+580324		Syl	0.0279	1194-1250	26
NGC 3627..................	112015.0	+125930	SAB(s)b	LINER, Sy2	0.0024	2900-6867	
SBS 1127+575 ${ }^{\text {b }}$.	113003.6	+571829		Sy2	0.0361	1194-1250 ${ }^{\text {b }}$	26
PG 1149-110	115203.5	-112224	\ldots	Sy1	0.0490	1194-1250	26
NGC 3982.	115628.1	+550731	SAB(r)b	Sy2	0.0037	2900-6867	17, 18, 19, 20
NGC 3998.	115756.1	+552713	SA(r)00?	LINER, Syl	0.0035	8275-8847	...
NGC 4036....................	120126.9	+615344	S0-	LINER	0.0048	6295-6867	7, 8
3C 268.3	120624.7	+6413 37		BLRG	0.3710	5236-10266	12
NGC 4138..	120929.6	+434117	SA(r)0+	Sy1.9	0.0030	2900-6867	17, 18, 19, 20
IRAS 12071-0444.......	120945.1	-050114		Sy2	0.1283	5236-10266	1
NGC $4151^{\text {d }}$.	121032.6	+392421	(R^{\prime}) $\mathrm{SAB}(\mathrm{rs}$) ab	Sy1.5	0.0033	$1140-10266{ }^{\text {d }}$	27-33
Mrk 766	121826.5	+29 4846	(R^{\prime}) $\mathrm{SB}(\mathrm{s}) \mathrm{a}$	Sy1.5	0.0129	1140-3184	...
NGC $4258{ }^{\text {d }}$	121857.5	+471814	SAB(s)bc	LINER, Sy 1.9	0.0015	$8275-8847{ }^{\text {d }}$	2, 3
NGC 4278...	122006.8	+29 1651	E1-2	LINER, Sy1	0.0022	8275-8847	
Q1219+047 ${ }^{\text {b }}$...............	122137.9	+04 3026		Syl	0.0940	1194-1250 ${ }^{\text {b }}$	
NGC 4303..	122154.9	+042825	SAB(rs) bc	H ii Sy2	0.0052	1568-10266	2, 3, 34
NGC 4450..	122829.6	+170506	SA(s)ab	LINER, Sy3	0.0065	2900-10266	17, 18, 19, 20
NGC 4477...................	123002.2	+13 3811	SB(s) 0 ?	Sy2	0.0045	2900-6867	17, 18, 19, 20
M87	123049.4	+122328	$\mathrm{E}+0-1$ pec	NLRG, Sy	0.0044	1140-10266	35
NGC 4501.	123159.2	+142514	SA(rs)b	Sy2	0.0076	2900-6867	17, 18, 19, 20
Ton 1542	123203.6	+20 0929	Spiral	Sy1	0.0630	1194-1300	6
NGC 4540 ${ }^{\text {b }}$.................	123450.8	+153305	SAB(rs)cd	LINER, Sy1	0.0043	2900-5700 ${ }^{\text {b }}$..
NGC 4507...................	123536.6	-3954 33	SAB(s)ab	Sy2	0.0118	2900-6867	4
NGC 4569...................	123649.8	+130946	SAB(rs)ab	LINER, Sy	-0.0008	2900-6867	\ldots

TABLE 1—Continued

Galaxy	$\begin{aligned} & \text { R.A. } \\ & (\mathrm{J} 2000.0)^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \text { Decl. } \\ & (\mathrm{J} 2000.0)^{\mathrm{a}} \end{aligned}$	Hubble Type ${ }^{\text {a }}$	Activity ${ }^{\text {a }}$	$Z^{\text {a }}$	Coverage (\AA)	References
NGC 4579....................	123743.6	+114905	$\mathrm{SAB}(\mathrm{rs}) \mathrm{b}$	LINER, Sy1.9	0.0051	6295-6867	7, 8
NGC 4594..	123959.4	-113723	SA(s)a	LINER, Syl	0.0034	6482-7054	
IC 3639 .	124052.8	-36 4521	SB (rs) bc	Sy2	0.0109	2900-6867	4
NGC 4698....................	124822.9	+082914	SA(s)ab	Sy2	0.0033	2900-6867	17, 18, 19, 20
NGC 4736..	125053.0	+410714	(R)SA(r)ab	LINER, Sy2	0.0010	6295-6867	...
NGC 4826.....................	125643.7	+214052	(R)SA(rs)ab	Sy2	0.0014	2900-6867	...
NGC 5005...................	131056.2	+370333	$\mathrm{SAB}(\mathrm{rs}) \mathrm{bc}$	Sy2, LINER	0.0032	6482-7054	2, 3
IRAS 13224-3809 ${ }^{\text {d }}$.......	132519.3	-38 2453		Sbrst, NLSy1	0.0667	$5236-10266^{\text {d }}$	36, 37
NGC 5135................	132544.0	-2950 01	SB(1)ab	Sy2	0.0137	2900-5700/6295-6768	4
NGC 5194 ${ }^{\text {c }}$	132952.7	+471143	SA(s)bc pec	H ii Sy2.5	0.0015	$2900-10266^{\text {c }}$	38
NGC 5252.	133815.9	+043233	S0	Sy1.9	0.0230	2900-5700	24
NGC 5283.	134105.7	+674020	S0?	Sy2	0.0104	2900-6867	4
Ton 730.	134356.7	+25 3848	...	Sy1	0.0870	1194-1250	26
NGC 5347.....................	135317.8	+3329 27	(R^{\prime}) $\mathrm{SB}(\mathrm{rs}) \mathrm{ab}$	Sy2	0.0078	2900-6867	4
Mrk 463E......................	135602.9	+182219		Sy1, Sy2	0.0500	2900-5700	\ldots
NGC 5427.	140326.0	-06 0151	SA(s)c, pec	Sy2	0.0087	2900-6867	4
Circinus.	141309.9	-65 2021	SA(s)b	Sy2	0.0014	4818-5104	...
NGC 5635.	142831.7	+272432	S, pec	LINER, Sy3	0.0144	6482-7054	\ldots
NGC 5643.	143240.8	-441029	SAB(rs)c	Sy2	0.0040	2900-6867	4
Mrk $817{ }^{\text {b }}$.	143622.1	+584739	SBc	Sy1.5	0.0314	2758-2914 ${ }^{\text {b }}$	39
NGC 5695..	143722.1	+36 3404	SBb	Sy2	0.0141	2900-6867	4
NGC 5728....................	144223.9	-171511	(R_1)SAB(r)a	Sy2	0.0093	6295-6867	...
IRAS $15206+3342^{\text {b }}$.	152238.0	+33 3136	?	H in Sy2	0.1244	$1140-10266{ }^{\text {b }}$	1
3C 346	164348.6	+171549	E	NLRG, Sy2	0.1620	2900-10266	12
1701+610	170211.1	+60 5848		Sy1.9	0.1649	1140-10266	\ldots
NGC 6300.....................	171659.5	-62 4914	$\mathrm{SB}(\mathrm{rs}) \mathrm{b}$	Sy2	0.0037	6581-6867	4
PKS 1739+184 ${ }^{\text {d }}$...........	174206.9	+182721	...	Sy1	0.1860	$1140-5700^{\text {d }}$...
$3 \mathrm{C} 405^{\text {b }}$.	195928.3	+404402	S?	Radiogal, Sy2	0.0561	2900-5700 ${ }^{\text {b }}$	40, 41
3C 382	183502.1	+324150		BLRG, Sy1	0.0579	2900-10266	...
3C 390	184537.6	+095345		RadioS	...	2900-5700	...
NGC 6951.....................	203714.1	+66 0620	E+pec?	...	0.0129	6482-7054	2, 3
3C 445	222349.6	-02 0612	N galaxy	BLRG, Sy1	0.0562	2900-10266	...
NGC 7314....................	223546.2	-260301	SAB(rs)bc	Sy1.9	0.0048	2900-10266	2, 3
AKN $564{ }^{\text {d }}$.	224239.3	+29 4331	SB	Sy1.8	0.0247	$1140-3184^{\text {d }}$	43, 44, 45
IC 1459	225710.6	-36 2744	E3	LINER	0.0056	2900-5700	42
NGC 7674.....................	232756.7	+08 4645	SA(r)bc pec	H ii Sy2	0.0289	2900-5700	\ldots
NGC 7682....................	232903.9	+03 3200	SA(r)be pec	$\mathrm{H}_{\text {II }} \mathrm{Sy} 2$	0.0289	2900-6867	4

[^1]later tried to incorporate the remaining Seyfert galaxies $(z \geq 0.03)$. Misclassification, however, may have prevented a comprehensive inclusion of all Seyfert galaxies in the HST archive. Thus, our sample comprises most galaxies (101 in the total) classified as Seyfert with available STIS spectra in the $H S T$ archive until 2004 September. Although the most valuable wavelength range is the UV because it is not accessible from the ground, we have included in the Atlas also those cases in which only optical spectra were available. The sample galaxies are listed in Table 1, which contains information on the positions, Hubble type, activity type, redshift, and references to previous works in which the spectra have been used. The seventh column of Table 1 gives the spec-
tral coverage (in the observed frame) of the resulting nuclear spectrum after the individual extractions and combination of the different spectral segments.

3. THE MASTERTABLE

Relevant information about all the two-dimensional (2D) spectra collected is summarized in a Mastertable, available electronically. ${ }^{2}$ The columns of the table contain the following information: (1) the name of the galaxy; (2) the identification of all available STIS spectra for this galaxy in the HST archive, one per

[^2]TABLE 2
A Sample of Lines from the Mastertable

Galaxy (1)	Root Name (2)	Grating (3)	Aperture $\left(\operatorname{arcsec}^{2}\right)$ (4)	λ_{c} (\AA) (5)	λ_{i} (Å) (6)	λ_{f} (Å) (7)	$\begin{gathered} R \\ (8) \end{gathered}$	P.A. (deg) (9)	Exposure Time (s) (10)	Name (11)	Scale $\left(\operatorname{arcsec}\right.$ pixel $\left.^{-1}\right)$ (12)
MCG 10.16.111	o5ew02010	G140M	52×0.2	1222	1194	1250	12200	-86.5063	3900	m1016111-1.234	0.029
	o5ew02020	G140M	52×0.2	1222	1194	1250	12200	-86.5063	3900	m1016111-2.234	0.029
	o5ew02030	G140M	52×0.2	1222	1194	1250	12200	-86.5063	3900	m1016111-3.234	0.029
	o5ew02040	G140M	52×0.2	1222	1194	1250	12200	-86.5063	3900	m1016111-4.234	0.029
	o5ew02050	G140M	52×0.2	1222	1194	1250	12200	-86.5062	3900	m1016111-5.234	0.029
NGC 3627....................	o63n02010	G430L	52×0.2	4300	2900	5700	800	80.0559	2349	n3627-1.80	0.1
	o63n02020	G750M	52×0.2	6581	6295	6867	5980	80.0559	2861	n3627-2.80	0.1
PG 1149-110	o5ew05010	G140M	52×0.2	1222	1194	1250	12200	43.6861	2269	p1149-1.44	0.029
	o5ew05020	G140M	52×0.2	1222	1194	1250	12200	43.6861	2899	p1149-2.44	0.029
	o5ew05030	G140M	52×0.2	1222	1194	1250	12200	43.6861	2899	p1149-3.44	0.029
NGC 3982.	o4e006010	G750M	52×0.2	6581	6295	6867	5980	117.931	900	n3982-1.117	0.05
	o4e006020	G750M	52×0.2	6581	6295	6867	5980	117.931	1197	n3982-2.117	0.05
	o4e006030	G750M	52×0.2	6581	6295	6867	5980	117.931	900	n3982-3.117	0.05
	o4e006040	G430L	52×0.2	4300	2900	5700	800	117.931	900	n3982-4.117	0.05
	o4e006050	G430L	52×0.2	4300	2900	5700	800	117.931	945	n3982-5.117	0.05
IRAS 15206+3342	o5f904030	G430L	52×0.2	4300	2900	5700	800	35.3559	780	i1520-3.35	0.05
	o5f904040	G430L	52×0.2	4300	2900	5700	800	35.3559	650	i1520-4.35	0.05
	o5f904050	G750L	52×0.2	7751	5236	10266	790	35.356	624	i1520-5.35	0.05
	05f904060	G750L	52×0.2	7751	5236	10266	790	35.3559	624	i1520-6.35	0.05
	o5f904070	G750L	52×0.2	7751	5236	10266	790	35.3559	545	i1520-7.35	0.05
	o5f904090	G140L	52×0.2	1425	1140	1730	1190	35.3001	900	i1520-8.35	0.0244

Notes.-Columns: (1) Name of the galaxy; (2) identification of all available STIS spectra for this galaxy in the HST archive, one per line; (3) grating used in each observation; (4) slit width of each observation; (5) central wavelength; (6) initial wavelength; (7) final wavelength; (8) spectral resolution; (9) slit orientation; (10) exposure time; (11) identification of the extracted spectrum from each segment; (12) plate scale of the observations. Table 2 is available in its entirety in the electronic edition of the Astrophysical Journal Supplement. A portion is shown here for guidance regarding its form and content.
line; (3) the grating used in each observation; (4) the slit width of each observation; (5) the central wavelength (in the observed frame); (6) the initial wavelength (in the observed frame); (7) the final wavelength (in the observed frame); (8) the spectral resolution; (9) the slit orientation; (10) the exposure time. In column (11) we list the identification of the extracted spectrum from each segment, which will be useful in a few cases where we could not combine the spectra of the same galaxy (e.g., because they were obtained in different slit positions) and we then provide the individual extracted spectra without combining them. These spectra are identified according to following convention: compact name of the galaxy followed by an arbitrary ordering number and the slit orientation. For example, n3516-13.97 means the 13th spectrum of the galaxy NGC 3516, which was obtained at slit orientation of 97°. Finally, in column (12) we list the plate scale of the observations. In Table 2 we present a printout of a few selected lines of the Mastertable (which has 1001 lines), for illustrative purposes.

4. EXTRACTION OF THE SPECTRA

The nuclear spectra were obtained from 2 D reduced STIS spectra, which have been rectified and wavelength and flux calibrated, and are identified in the $H S T$ archive by the suffixes _x2d and _sx2. The latter are summed _x2d spectra (when the observations were performed in the cr-split or repeatobs modes). When both _x2d and _sx2 spectra were available, we used the latter.

One-dimensional (1D) spectra were extracted from the 2D spectra in windows of 0.2 from a long-slit spectrum usually obtained through a slit width 0.2 and covering $52^{\prime \prime}$ in the sky. The IRAF task apall was used to perform the extractions. We performed the sky subtraction by fitting a straight line to regions along the slit with no (or negligible) galaxy contribution. For each
galaxy, different sky windows were defined, in order to avoid including contribution from the galaxy. The sky level was always negligible, except in the Ly α Geocoronal emission line.

Although the redshift range for the sample is $0 \leq z \leq 0.37$, only for 15% of the galaxies with $z \geq 0.06$, such that the $0 . \prime 2$ aperture corresponds at the galaxies to more than 200 pc. For 60% of the sample, 0.2 corresponds to $<60 \mathrm{pc}$ at the galaxies, while for 30% of the sample it corresponds to $<20 \mathrm{pc}$. We are thus sampling a very small region around the active nucleus, providing the best possible contrast between the AGN and galaxy bulge.

We extracted only nuclear spectra that we identified as being centered at the peak of the continuum flux along the slit. This was done by inspecting the spatial light distribution in a spectral region devoid of emission or strong absorption lines (the continuum) and centering the extraction window at the peak of the continuum flux distribution. In a few cases, the 2D spectra contained only emission lines, with no continuum. In these cases, for which we could not identify a continuum source, we did not extract the spectra, but the information on the available 2D spectra are still listed in the Mastertable, with a cautionary note explaining why the spectra have not been extracted.

In the cases for which there were more than one continuum source we extracted the brightest one. Although we cannot be absolutely sure for all cases, Seyfert galaxies are usually the brightest object. There are two exceptions, for which we did not extract the spectra because the two sources were equally bright. These two cases have also been identified in the Mastertable with a cautionary note.

After extracting the spectra, for the galaxies that had more than one exposure for each spectral range (and with the same spectral resolution, orientation and plate scale), we constructed averages to improve the signal-to-noise ratio, eliminating also

Fig. 1.-Illustration of the process of averaging three UV spectra (observed frame) of the galaxy NGC 1097.
cosmic rays and other defects when detected. The average was only constructed after checking also if the spectra had similar flux level. For the construction of the average spectra we have used the task scombine in IRAF, with the rejection algorithm avsigclip when three or more spectra were available or minmax when there were only two spectra. This step is illustrated in Figure 1.

5. COMBINATION OF THE SPECTRA

The final spectra were obtained by combining the data from the different spectral ranges using the same task scombine in IRAF, after editing out noisy regions at the borders of each spectral segment and checking that there were no significant differences be-

Fig. 2.-Illustration of the process of combining different spectral segments (observed frames) for the galaxy NGC 1097.

Fig. 3.-Illustration of 5 of the 9 spectra with widest spectral coverage. The spectra have been shifted to the rest frame of the galaxies.
tween their fluxes. We did not find such differences for most of the cases in which there was a significant superposition of adjacent spectral segments. This final step is illustrated in Figure 2.

In the case of the Seyfert 1 galaxies there is the issue of variability, so that spectra obtained in different dates may show different fluxes, in line and continua. We have checked the dates and found only five cases of Seyfert 1 galaxies with spectral segments obtained in different dates: NGC 4151, NGC 4258, PKS $1739+184$, and AKN 564. In the case of IRAS 13224-3809, 2 of the combined 7 spectra were obtained one day latter than the other 5 , thus the effect of variability should be minimal. We have identified these cases with a note in Table 1 and in the Mastertable. Nevertheless, we did not find any obvious discrepancy in fluxes when combining the different spectral segments of these galaxies.

Finally, we would like to point out that, prior to the extraction, the flux units were ergs s${ }^{-1} \mathrm{~cm}^{-2} \AA^{-1} \operatorname{arcsec}^{-2}$ (see STIS Data Handbook). When we performed the extraction with apall to sum over a few pixels (0.12 aperture) along the slit direction, the extracted spectrum is in units equivalent to pixel ergs s${ }^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ $\operatorname{arcsec}^{-2}$. Then, in order to consistently provide the flux integrated in the extraction window, in units of ergs s $\mathrm{cm}^{-1} \AA^{-1}$, we multiplied each segment by a factor that is the product of the slit width and plate scale. For example, for one segment with a slit width of $0^{\prime \prime} .2$ and plate scale 0.024 pixel $^{-1}$, the factor is $0.0048 \mathrm{arcsec}^{-2}$ pixel $^{-1}$. For another segment with plate scale 0.05 pixel $^{-1}$, with the same slit width, the factor is $0.01 \mathrm{arcsec}^{-2}$ pixel $^{-1}$.

6. RESULTS

The combined spectra presenting the largest spectral coverage are shown in Figures 3 and 4. There are only 9 galaxies for which we could obtain the complete STIS UV-optical spectral coverage ($\sim 1000-10000 \AA$).

In Figures 5, 6, and 7 we show the redshift corrected spectra for the galaxies with UV coverage in the 1100-1600 \AA wavelength range, useful for looking for signatures of starbursts. In order to do that, we have drawn in the figures vertical lines at the locations of the absorption features characteristic of starbursts.

Fig. 4.-Same as Fig. 3 for another four spectra.

While most lines are interstellar, we identify by asterisks $\left({ }^{*}\right)$ the ones that originate in the atmosphere of young stars (Kinney et al. 1993; Vazquez et al. 2004), which are C iII $\lambda 1175.65$, N v $\lambda \lambda 1238.81,1242.80, \mathrm{C}_{\text {II }} \lambda \lambda 1334.53,1335.70$, Si iv $\lambda \lambda 1393.76$, 1402.77, and C iv $\lambda \lambda 1548.20,1550.77$. Both the interstellar and stellar features of a starburst have been found in the UV spectrum of NGC 1097, as pointed out by Storchi-Bergmann et al. (2005). Figure 5 shows that the same features seem to be present in the spectrum of NGC 3227 , suggesting that, also in this case, as in NGC 1097, there is a starburst closer than 8 pc from the nucleus

FIg. 5.-Illustration of 4 of the 12 spectra with UV coverage in the 1100-1600 \AA wavelength range. The spectra have been shifted to the rest frame of the galaxies. The vertical dashed lines show the location of absorption features typical of starbursts. Asterisks $\left({ }^{*}\right)$ identify the absorption lines that originate in the atmosphere of early-type stars.

Fig. 6.-Same as Fig. 5 for another four spectra.
in NGC 3227 (the distance at the galaxy corresponding to 0.1 . 1 the angular distance from the nucleus covered by the aperture of the nuclear extraction). Indeed, the presence of traces of young stellar population in an optical nuclear spectrum of NGC 3227 have been previously reported by González Delgado \& Perez (1997). These features seem also to be present in the spectrum of NGC 4151, but this has to be investigated further, as they may be due to absorptions in our galaxy, due to the proximity of NGC 4151. An obvious case of interstellar absorptions from our galaxy can be observed in the UV spectrum of NGC 3516 (Fig. 5), where absorptions from $\mathrm{O}_{\text {I }} \lambda 1302.08+\mathrm{Si}_{\text {II }} \lambda 1304.40$ and $\mathrm{C}_{\text {I }} \lambda \lambda 1334.53$, 1335.70 originating in the Milky Way appear blueshifted from their wavelengths due to the shift of the spectrum to the rest frame of the galaxy.

Fig. 7.-Same as Fig. 5 for another four spectra.

All spectra are available electronically (see footnote 2), where they can be visualized and recovered by clicking on the name of the galaxy. We also make available at the above address the Mastertable, which has a compilation of the relevant information on each spectrum used in the combination.

Finally, we point out that there are several spectra that were obtained only with the highest resolution gratings, therefore covering a short wavelength range. In many cases there is also a sequence of such spectra obtained at adjacent slit positions, apparently for kinematic studies. In these cases, we did not com-
bine the spectra but provide instead the individual extractions in a tar file.

This work has been supported by the Brazilian agencies CNPq, CAPES, and FAPERGS. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration.

Barth, A. J., et al. 2001a, ApJ, 555, 685 2001b, ApJ, 546, 205
Bellamy, M. J., \& Tadhunter, C. N. 2004, MNRAS, 353, 105
Bowen, D. V. 2002, ApJ, 580, 169
Bradley, L. D., Kaiser, M. E., \& Baan, W. A. 2004, ApJ, 603, 463
Capetti, A., Marconi, A., Macchetto, D., \& Axon, D. 2005, A\&A, 431, 465
Cappellari, M., et al. 2002, ApJ, 578, 787
Cecil, G., et al. 2002, ApJ, 568, 627
Chandar, R., Ford, H. C., \& Tsvetanov, Z. 2001a, AJ, 122, 1330 2001b, AJ, 122, 1342
Colina, L., González Delgado, R., Mas-Hesse, J. M., \& Leitherer, C. 2002, ApJ, 579, 545
Collier, S., et al. 2001, ApJ, 561, 146
Collins, N. R., et al. 2005, ApJ, 619, 116
Crenshaw, D. M., et al. 2000, ApJ, 545, L27
\longrightarrow 2001, ApJ, 555, 633
-. 2002, ApJ, 566, 187
Edelson, R. 2000, ApJ, 534, 180
Farrah, D., et al. 2005, ApJ, 626, 70
Ferruit, P., et al. 2004, MNRAS, 352, 1180
González Delgado, R. M., \& Perez, E. 1997, MNRAS, 284, 931
González Delgado, R., et al. 2004, ApJ, 605, 127
Ho, L. C., et al. 2002, PASP, 114, 137
Hughes, M. A., et al. 2003, AJ, 126, 742
——. 2005, AJ, 130, 73
Hutchings, J. B., et al. 1998, AJ, 116, 634
1999, AJ, 118, 2101
. 2002, AJ, 124, 2543

REFERENCES

Jenkins, E. B., et al. 2003, AJ, 125, 2824
Kaiser, M. E., et al. 2000, ApJ, 528, 260
Kinney, A., Bohlin, R. C., Calzetti, D., Panagia, N., \& Wuse, R. F. G. 1993, ApJS, 86, 5
Kraemer, S. B., et al. 2000a, ApJ, 531, 278
-. 2000b, ApJ, 544, 763
——. 2001, ApJ, 551, 671
Leighly, K. M. 2004, ApJ, 611, 125
Leighly, K. M., \& Moore, J. R. 2004, ApJ, 611, 107
Nelson, C. H. 2000, ApJ, 531, 257
O’Dea, C., et al. 2003, Publ. Astron. Soc. Australia, 20, 88
Penton, S. V., Stocke, J. T., \& Shull, J. M. 2004, ApJS, 152, 29
Pogge, R., Fields, D. L., Martini, P., \& Shields, J. 2003, in ASP Conf. Ser. 290,
Active Galactic Nuclei: from Central Engine to Host Galaxies, ed. S. Collin,
F. Combes \& I. Schlosman (San Francisco: ASP), 239

Romano, P., et al. 2004, ApJ, 602, 635
Ruiz, J. R., et al. 2001, AJ, 122, 2961
Sabra, B. M., et al. 2003, ApJ, 584, 164
Sarzi, M., et al. 2001, ApJ, 550, 65
-_. 2002, ApJ, 567, 237
——. 2005, ApJ, 628, 169
Storchi-Bergmann, T., et al. 2005, ApJ, 624, L13
Tadhunter, C., et al. 2003, MNRAS, 342, 861
Véron-Cetty, M. P., \& Veron, P. 1996, A Catalogue of Quasars and Active Nuclei (7th ed.; Garching: ESO)
Vazquez, G. A., et al. 2004, ApJ, 600, 162
Whittle, M., Rosario, D. J., Silverman, J. D., Nelson, C. H., \& Wilson, A. S. 2005, AJ, 129, 104

[^0]: ${ }^{1}$ Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

[^1]: Note.-Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
 ${ }^{a}$ References from NASA/IPAC Extragalactic Database.
 ${ }^{\mathrm{b}}$ Spectra of this galaxy were not extracted due to a poor signal-to-noise ratio in the continuum. Nevertheless, information on the available spectra is also included in the Mastertable.
 ${ }^{\text {c }}$ Spectra of this galaxy were not extracted due to the presence of more than one continuum source where we could not identify the brightest one. Information on the available spectra is also included in the Mastertable.
 ${ }^{\mathrm{d}}$ Final spectrum of this Seyfert 1 galaxy was obtained with spectra observed in different dates.
 References.- (1) Farrah et al. 2005; (2) Hughes et al. 2003; (3) Hughes et al. 2005; (4) Pogge et al. 2003; (5) O'dea et al. 2003 ; (6) Penton et al. 2004; (7) Barth et al. 2001a; (8) Barth et al. 2001b; (9) Kraemer et al. 2000b ; (10) Cecil et al. 2002; (11) Jenkins et al. 2003; (12) Hutchings et al. 1998; (13) Ferruit et al. 2004; (14) Collins et al. 2005 ; (15) Ruiz et al. 2001; (16) Whittle et al. 2005; (17) Sarzi et al. 2001; (18) Sarzi et al. 2002; (19) Sarzi et al. 2005; (20) Ho et al. 2002; (21) Chandar et al. 2001a; (22) Chandar et al. 2001b; (23) Crenshaw et al. 2001; (24) Cappetti et al. 2005; (25) Edelson et al. 2000; (26) Bowen 2002; (27) Kaiser et al. 2000; (28) Kraemer et al. 2000a; (29) Nelson 2000; (30) Hutchings et al. 1999; (31) Crenshaw et al. 2000; (32) Hutchings et al. 2002; (33) Kraemer et al. 2001 ; (34) Colina et al. 2002; (35) Sabra et al. 2003; (36) Leighly 2004 ; (37) Leighly \& Moore 2004; (38) Bradley et al. 2004; (39) Jenkins et al. 2003; (40) Tadhunter et al. 2003; (41) Bellamy \& Tadhunter 2004; (42) Cappellari et al. 2002; (43) Crenshaw et al. 2002 ; (44) Collier et al. 2001; (45) Romano et al. 2004.

[^2]: ${ }^{2}$ See www.if.ufrgs.br/~pat/atlas.htm.

