PHYSICAL REVIEW B 69, 214418(2004)

Quantum critical point in the spin glass—Kondo transition in heavy-fermion systems
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The Kondo—spin glass competition is studied in a theoretical model of a Kondo lattice with an intrasite
Kondo-type exchange interaction treated within the mean-field approximation, an intersite quantum Ising
exchange interaction with random couplings among localized spins, and an additional transvelfsanfiakel
x direction, which represents a simple quantum mechanism of spin flipping, in order to have a better descrip-
tion of the spin glass state and in particular of the quantum critical §QI6P). Taking here a parametrization
F:aJﬁ (whereJy is the antiferromagnetic Kondo couplingve obtain two second order transition lines from
the spin glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different
parameters, the two second order transition lines do not intersect and end in two distinct QCPs. The existence
of a QCP in the spin glass—Kondo competition allows one to give a better description of the phase diagrams of
some cerium and uranium disordered alloys.
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[. INTRODUCTION increasing concentration in disordered alloys around the
QCP.

It is well known that there exists a strong competition ~The purpose of our work here is to present a theoretical
between the Kondo effect on each site of a Kondo lattice andnodel that describes the QCP for the spin glass—Kondo tran-
the magnetic ordering arising from the Ruderman—Kittel-Sition in Kondo lattices. The SG—Kondo transition was theo-
Kasuya-Yosida(RKKY) interaction between magnetic at- retically studied in a previous publlcatl%?na_nd also in th'e
oms in heavy fermion systems. The Doniach diadraives prese_nc$7 of ferromagnetic order’rﬁgpr antiferromagnetic
a good description of this competition: the Neel temperatur@rdering:” but thﬁ QCP Wr?s ?Ot descjcr|b§dflpec_au3(\a/vwe lacked
Ty is first increasing with an increasing of the antiferromag-a quantum mechanism that favored spin Hlipping. We present
netic s-f exchange interaction constad(>0), then it is here an improvement of the previous model in order to ob-

ing th h : nd finally it tends to zero at th tain a good description of the QCP.
passing through a maximum anc finafly 1t tends to zero at ih€ -y precisely, in previous publicatiofs!” the resultant
quantum critical point”(QCP), with a second order transi-

. RKKY interaction was introduced by means of random, in-
tion at zero temperature. Such a decreasgyofiown 10 the inite range couplings among t8 components of the local-
QCP has been observed in many cerium compounds, such ggq spins as in the Sherrington-Kirkpatri¢§K) modek®

CeAl, (Ref. 2 or CeRRSI, (Ref. 3, under pressure. We also anq py neglecting the spin flip coupling of the transverse
know that the Neel temperature starts from zero at a giveRomponents. By using functional integral techniques with a
pressure and increases rapidly with pressure in ytterbiumstatic Ansatzin a replica symmetric theory, we obtained a
compounds, such as Ybg3i, (Ref. 4 or YbNi,Ge, (Ref.  magnetic phase diagram in thg vs T plane that showed the
5), in good agreement with the Doniach diagram. Above thehree different phases: paramagnetic, spin glass, and Kondo.
QCP, there exists a very strong heavy fermion character, buh spite of its complication, the model failed to describe a
several possible behaviors, i.e., the classical Fermi liquid onsecond order QCP &t=0, because, by disregarding the spin
with eventually a reduced Kondo temperafurer different  flipping part of the Heisenberg Hamiltonian, we suppressed
non-Fermi-liquid(NFL) ones, have been observed in ceriumthe tunneling mechanism, and magnetic ordering occurs only
or ytterbium compound®? along thez axis. In order to introduce a spin flipping mecha-
On the other hand, the disorder can yield a spin gl8& nism and to avoid the intricacies of the random Heisenberg
phase in addition to the Kondenainly NFL) behavior at modell® in the present paper the Heisenberg-like coupling
low temperatures around the QCP in disordered cerium oamong the three spin components induced by the RKKY
uranium alloys. This is the case of the magnetic phase dianteraction is mimicked by a quantum Ising spin glass in a
gram of CeNj,Cu, alloys that has been extensively transverse field. It consists of an effective random interaction
studied!®* while the phase diagram of @&u, ,CoSi; al-  among thez components, as we considered in Ref. 15, while
loys presents the sequence of SG-AF—Kondo phases at lothe spin flipping part is simulated by a uniform transverse
temperatures with increasing cobalt concentratfothe field in thex direction.
three phases, AF, SG, and NFL have been obtained at low The infinite range quantum Ising spin glass in a transverse
temperatures for different concentrations in YGBd, (Ref.  field I is one of the simplest models that presents a quantum
13) or in U;_,La,PdAl; (Ref. 14 disordered alloys. Thus a critical point and it is equivalent to the model for a spin glass
SG-Kondo transition has been observed experimentally witlof quantum rotorg%?1 The dynamical properties at zero tem-
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perature are known and the existence of the QCP is well - f e -
established? while the phase diagram in tHEvs T plane T % s EO% n's+JK2 [Sisa+ Sl @
has been studied by using the Trotter-Suzuki technf§aed
more recentl§# by the use of two fermionic representations
of the spin operators in terms of Grassmann féltisat are Hso=— 2 5SS -2 2 S5 (3)
more suitable to our purposes. As we did previously in Ref. i i
15, the Kondo effect will be studied in an approximation that
is basically equivalent to the mean field decouplingwherelJs>0, S*==S'+iS, and
schemé.?® The staticAnsatzin the study of the spin glass
transition is an approximation, similar to mean-field theory, éf =S g ot
that is appropriate to describe the phase diagram. This is : IsTss ST
justified because in the model ®&fi-components quantum
rotors, that is exactly soluble for infinitd, the critical line is
given by the singularity of the zero-frequency mafdhe s =S dlg..d

. - . . Si disOs s bis (4)
same occurs with the quantum Ising spin glass in a trans-
verse field?? where the singularity of the zero-frequency
mode determines the critical point. That is the reason why+ . .+ - : :
the static Ansatz that describes only the zero—frequencyfis' fis(dis,d;) are creation and destruction fermion operators

mode, describes the critical line in the phase diagram, al’ electrons withs=1 or | in the localized(conduction

though it would not give correctly the time dependence of??j?dd Wtehlnd|ca;e btyj_r thelPe;ull matrices a;_nd we h?)m" Th
the order parameter. =d,,dy, the conduction electrons occupation number. The

A related Hamiltonian has been considered in Ref. 27 toenergieSEO(Ek) are referred to the chemical potentialg uq),

describe NFL behavior and a QCP in some heavy fermioﬁeSpr?Ctively'l. . . ind d d
compounds, although there are essential differences between ' "€ %OUP'”Q‘]H in Eq. (3) is an independent random
this work and ours in the present paper and in Ref. 15. "yar!ablé \éwth a2 Gaussian distribution of zero mean and
Ref. 27 it is considered a system of isolated Kondo impuri-varance(Jj=8J%/N. - _
ties, each one with a separate electron reservoir, and repre- Functional integration techniques have proved to be a
sented by the spin glass model Mf-components quantum suitable approach to describe phase transitions in disordered
rotors in the limit of largeM, when the problem is exactly duantum mechanical many-particle systéfnghe static ap-
soluble. The Kondo coupling provides the quantum mechaProximation within this formulation consists of neglecting
nism and the transition line in the phase diagram is deterime fluctuations of the order parameter, and when it is com-
mined by the singularity of the zero frequency mode, dis-bined with the neglect of space fluctuations it leads to the
playing a QCP at zero temperature. The Kondo effect iéjsuql Ha_rtree-Fock, _mez_in-f|_eld-l|ke approximation. When
described thef& by isolated impurities and displays a con- déaling with the Hamiltonian in Eq¢1)<(3), we notice that
tinuous transition among different scaling regimes, in placdn the limiting caseJc=0 we obtain a quantum Ising spin
of the sharp second order transition in Kondo lattit&3 glass in a transverse field that has been studied with the static
This paper is organized as follows: in Sec. Il we introduce@Pproximation in Ref. 24, while fod=0 we recover the
the model, in Sec. Ill we discuss relevant results and wdnean-field approximation th?g has been used successfully to
reserve Sec. IV for discussions and conclusion. We refer théescribe the Kondo lattic?2® We follow closely the for-

reader to Ref. 15 for details in the mathematical calculationsMalism of Ref. 15 to write a Lagrangian formulatfrin
terms of anticommuting, complex Grassmann variables

Il. THE MODEL ¢is(w), ¥is(w) associated to the conduction and localized

. . ) ) . electron fields, respectively, together with the spinors
We consider a Kondo lattice system with localized spins

S at sitesi=1---N, coupled to the electrons of the conduc- o1(@) i ()

tion band via as-f exchange interaction. It is necessary to oi(w) :( " ) i(w) :< " > (5)
introduce explicitly the resultant RKKY interaction by means ¢i (@) ) ¢ (@)

of a random, infinite range coupling among localized spins .

like in the Sherrington-Kirkpatrick SK) model for a spin Wherew=(2n+1)m are the Matsubara frequencies. The par-
glass!® To describe the Kondo effect in a mean-field-like tition function is now expressed as

theory it is sufficient to keep only the spin-flip terfr826in

the exchange Hamiltonian, while the spin glass interaction is _ t )

represented by the quantum Ising Hamiltonian and the trans- Z= | D(¢'@)D(y'h)e. (6)
verse fieldl” in the x direction?* The transverse fielfl rep-

resents a simple quantum mechanism of spin flipping angye now follow the same steps as in Refs. 15-17 and in the
mimics thg more complicated transverse part of the He|sen§taﬁc, mean-field-like approximation the actiénmay be
berg Hamiltoniart? written

The Hamiltonian of the model is

H=Hg+Hse 1 A=RAg+ Act Ase, ()

s,s’

s,s’
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with A, being the action for noninteracting electrons in aparameté®'824while y=gy is the static uniform spin sus-

transverse magnetic field: ceptibility of the localizedf electrons.
Po=2 2 ()i = Beg+ BU0) ¢fi() .
v ’ e Qarp= 0= lim PIREEA (15
n—»OI’l(I"I - 1) a#B
+ ¢l (iw8) — Bty ¢i()] (8)
while the Kondo part of the action is decoupled in the mean- =1
field approximation as in Ref. 15 Qoa =G+ X = l@m% (S50 (16)
J —
A= %E [E 1//?(,(w)<pi(,(w)M2 (piT_lrl//i_(,(w):|. (9)  We use the notatiox=(dx/\2me ¢ and we refer the
o Lio ho reader to Ref. 15 for the details of the calculation. The matrix

Here B is the inverse absolute temperature and we also hav@i«(«) in EQ. (14) is the time Fourier transform of the ma-
trix Green’s functlon(_Eij(T):|<Tfi(r)ﬂ(0)> for the localized
Asc= > Jij sﬁsﬁ (10 electrons in the presence of random fietgand¢,; at every
i site, and satisfies the equatién

i i i i 17,24
where in the static approximati&i G (w) =[iw- Beo- oy, + BT a5, - ,BZJﬁ)\TAyij(w)l

ija

1
§i= 52 dl(@)o(w). (11 (n
¢ where
The Kondo order is described by the complex order param- _
eter hyo = V20837 + \2xBIE,, (18)
1 . . . . .
)\;r: — (z//,L(w)%(w)), while y;(w) is the time Eouner tra_nsform of the conduc_tlon
N o electron Green’s functiony;;(7)=i(Teis(7)¢is(0)) and is
given by
he= v S (o) is(@) 12 -
s~ = (Pisl@)dis(e i =lio=Buld; - Bt;. (19
o

that in a mean-field theo?y526 describes the correlations e obtained in Eq(17) the Green's function for thé elec-
N =(fldg) and Ae=(dLf,). The approximation used in Eq. rons in a Kondo latticé® but now the presence of a random
IS IS ) )

(12), which is equivalent to the “slave boson” method, isfIEId hy "’;t el\:/ery' site pr?vents. us IfI’OI’;l d|agonSaCI;|z||'ng' by
certainly one of the best practical methods used for théfga?]s % a ?u;ler trans olrzmiltlo_n.l n tle %urﬁ ; lﬂR";
Kondo lattice problem. The Kondo temperature for the lat-_ , the Green's function in Eq17) is local and the integrals

tice is determined here by the temperature at whche- i!" Eq. (14) reduce to a one site problem, while in the Kondo
comes equal to zero and this approximation gives a fairly)'m

it J=0 the random fields vanish and the integrals separate
reasonable description of the Kondo phase. However, it i%,”

reciprocal space, giving the known results for a Kondo
unable to give a *mixed” SG-Kondo phase, as it was preVi_a’[tlce. We adopt here a decoupling approximation intro-

ously shown in the case of the antiferromagnetic-Kondoduced in Ref. 15 that reproduces correctly these two limits,

transition?® Except for the presence of the transverse fléld and correspo_nds to consider inde_pend(_ant K.O ndo lattices, in
in A, in Eq. (8), the calculation follows the same steps as inplace of the independent Kondo impurities in Ref. 27. We

Ref. 15 and we refer the reader to this paper for details'ePlace th? Greer_l’s funCtid—Biia(“”hla{'_" Nier - ) .by
Reference 15 shows that standard manipulations give for th&€ Green’s function§,,,(w, hj,) with j=1, ... N, of N in-

averaged free energy within a replica symmetric theory: dependent ando lattices, each one with a “un_iform” field
h;, at every siteu, v by means of the approximation
1
BF =230+ S BF(OC+200 - p0 (19) 1
In[Gija(@.hy, .. )] = S 2 NG| (20
where ]

1 +o N N et where G, (w,h;,) is the f-electron Green’s function for a
BQ = Iimm1 f H Dzj]_[ f H D&, fictitious Kondo lattice that has a uniform fielg, at every
n-0 ] @ 7] site u, v and satisfies the equation:

x exp[E In|(_35i(w)|} -1 (14) Gn(@hy,) = [(iw - Be)1 - gy + BT,

_ = BPIN Yl (21)
andq, x, and\ must be taken at their saddle-point value.
Here a is the replica index andg is the SG order where from Eq(19)
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l -
Yl = =3 &R,

NS T0- fe, 22

Now Eqg.(21) may be easily solved by a Fourier transforma-

tion with the result:

In|Gp(@,hi)| = 2 |Gy (w,hy,) (23)
k
where
-1 i _ _@212\2_—
Qk (wrhja) _[Iw :860]1- gzhja+ﬁrgx B ‘]K)\ : '
lw — Bey
(24)

We may now introduce Eqg24) and (20) in Eq. (14), the
integrals over the fields separate and we obtain

+o0 +oo 1 N
mzf Dz In f Dé& exp[NZE Ss(k,H)]
—00 —o0 K S

(25
with

> s(kH) = X In[G; (w,h)] (26)

andh is given in Eq.(18), with zand{ in place ofz and¢j,,,
while

I Ep—

H = h?+ (B2 (27)

The sum over the fermion frequencies is performed in th

standard way by integrating in the complex plnsith the
result:

S(kH) = IN[(1 +e7o5) (1 +e75)] (28)

where
1 1 1/2
wgt = §[B€k+SH]i Z(,B(:‘k—SH)Z'F(ﬂJK)\)Z .

(29)

We considele,=0 that corresponds to an average occupatio

PHYSICAL REVIEW B 69, 214418(2004

A== HP+ (B3 (32)
and from Eq.(27) we have
H = V(BD)2+ (89)2(\2qz+ \2x®)2. (39

Ill. RESULTS

The SG-Kondo transition is described in the present
model by the three parametels, J, andI’, which cannot be
considered here as completely independent from each other.
In fact, the Kondo effect and the RKKY interaction originate
from the same intrasite exchange interaction, but the neces-
sity of considering an additional intersite exchange term has
been already recogniz&¢f and a relationship giving the in-
tersite exchange parameter varying(ag)? has been intro-
duced in Ref. 6. Since the transverse field is introduced here
to mimic the spin flipping part of the Heisenberg Hamil-
tonian that originates in the RKKY interaction, we assume a
similar relationshid = a(J)?, =<1 to have a better descrip-
tion of the SG—Kondo transition. In particular, the consider-
ation of the previous relationship fér will be important for
the existence of the QCP and the comparison with experi-
ment. The saddle-point equations fgr g, and A are ob-
tained by extremizinggF with respect to these order param-
eters. By makingg=A=0 in the saddle-point equations we
obtain the equations for the second order critical ligdy)
and T,(Jk) that separate the paramagnetic phase from the
espin glass and Kondo phases, respectively. They are given by

X8 = f Dégsinh(Ho)/Hq (34

1+J,

where

JO:J D¢ coshHp) (35
andHy=H(q=0).
Thus we obtain for the spin glass transition temperature

T.(Jk):%4
nl( K)

(n;)=1, per site. Replacing sums by integrals, in the approxi- _ 1

mation of a constant density of states for the conduction xX(By) = %
band electronsp(e)=p=1/2D for -D<e<D, we obtain Ve o
from Eqgs.(26)~(29) the final expression for the free energy that together with Eq(34) gives T; and x(B;), while the

(36)

in Eq. (13):

1
BF = 2B\ + 5,8232@2 +20x)

- J - Dz In{ J - DgeE(H)} (30)
with
+BD .
E(H) = B%f—BD dx In{cosh(XJrTH) + cosh\"A)},
(3D)

Kondo transition temperaturg,(Jx) is given by

—L\]k ngcosr(HO/Z)
4(1+3g) ) ..
. [Hp—Xx
1o 1 M
X — =0 (37
BDJ_pp Acosr(x/2) Hp— X (37

2

that must be solved together with E&4).
The numerical solution of the saddle-point equations as a
function of T/J andJk/J yields the phase diagram in Fig. 1,
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6.5
6.0
E FIG. 1. Phase diagram in the-Jk plane as a
5'5_. function of T/J and J/J for the transverse field
5.0 1 I'=aJ%, aJ=0.01348 (solid ling and aJ
4.5 =0.01344(dashed ling for the conduction band-
7 NORMAL width D/J=12. The critical(solid) second order
4.0 PARAMAGNETIC line T, for low values ofJx separates the para-

magnetic phaséq=A=0) for high temperatures
from the spin glass phas@=0,A=0) at low
temperatures and ends at a QCP. The critical sec-
ond order(solid) line T, for large values oflx
separates the paramagnetic phase from the Kondo
phase(A\=0,q=0) and ends at a second QCP.
The critical (dashedl line T’ does not have a
QCP. The dash-dotted line represents the “pure”
Kondo temperaturdy and the dotted line repre-
sents the residual magnetic momggtJx) on the
— T T T line T=T,.

10 12 14 16 18 20 22 24 26 28

Jk/AJ

Teld

00 —

where we considered/J=12 and two values akJ. Thetwo  sponds well to experimental phase diagrams obtained in

cases corresponding to these two valueswdfare given in  some cerium or uranium disordered alloys. We obtain from

Fig. 1. The first casérepresented by full lingscorresponds  Eq. (34) in the disordered region that— 0.5 wheng—0,

to the really interesting situation of the phase diagram withthus giving the expected Curie-Weiss behavior for the static

two QCPs, while the second cagepresented by the dashed susceptibility x=8y, while for g—« we get y—T

line T') is plotted here for comparison to show the case+\I'?-8J% whenI'= aJﬁ>2\2J We recover here the square

without a QCP. root singularity in the linear static susceptibility that is
In the first case, corresponding #®=0.01348(solid present in other quantum spin glass mod&t& It is inter-

line) the second order critical lin€,(Jx) that separates the esting to remark thay=xT=S(S+1) is the residual effective

paramagnetic from the spin glass phase ends at a QCP cdocalized spin in Curie-Weiss theory. The value fpon the

responding to alk value calledJ;, here, while the second critical line T,(Jy) is presented in Fig. 1, where we notice the

order critical line To(Jx) that separates the paramagneticsteep drop to almost zero close to the QIR

from the Kondo phase ends at a second QgPand we

have herelg,> Jg;. IV. CONCLUSIONS

An asymptotic calculation at low temperatures gives _ - _
We study in this paper the phase transitions in a heavy

fermion system represented by a Hamiltonian that couples
the S, components of the localized spins of a Kondo lattice
with random, long range interactions, like in the SK model
and the corresponding value fag, at the QCP is given by for a spin glasé8 while the transverse components are acted
a(J%,)?=2y2J. On the other hand, close to the second QCRupon by a field in the direction?* As the transverse fielll

[

N2 =
kg, = ?[2\52\] - ad?] (39)

an asymptotic calculation gives mimics the spin flip part of the Heisenberg coupling among
) localized spins, that originates in the RKKY interaction, we

T~ lo (T a(Jx) ) (39  assume thatl'~ aJ2 where J¢ is the antiferromagnetic
8127100 Tk 1+ a(Jg)?/D Kondo coupling® Using functional integrals techniques and

a static, replica symmetridnsatzfor the Kondo and spin
whereTy =D exp(-2D/Jk). Thus the value o, is the so-  glass order parameters, we derive a mean-field expression for
lution of Ty(Jg,)=a(Jg,)? in the asymptotic limit of very the free energy and the saddle-point equations for the order
large D values. In order to obtain a solutiali, that makes parameters. The use of the stafiosatzin the case of the
T,=0 in Eqg. (39) it is necessary thatd=0.6473, what transverse spin glass is justified, because it is the singularity
gives «J=0.013485 forD=12J, and for these values of the of the zero frequency mode that determines the critical
parameters in Fig. 1, we have obtained two QCPs witHine. %2 The numerical solution of the saddle-point equa-
Ji»>Jk1. In the second case corresponding to a smalletions allows us to draw the magnetic phase diagram in the
value of @,aJ=0.01344, the two QCPs disappear and welx vs T plane(presented in Fig. )lfor fixed values of] and
obtain a single transition linedashed lineT’) separating the D with D/J=12 and for two values o&J,«J=0.01348 or
paramagnetic from the ordere@pin glass and Kondo «J=0.01344.
phases. The physical case shown in Fig. 1, where the two Figure 1 shows three distinct phases. At high tempera-
QCPs are very close to each other and almost equal, corrédres, the “normal” phase is paramagnetic with vanishing
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Kondo and spin glass order parameters, Aesg=0. When information on the precise nature of the SG—Kondo transi-
temperature is lowered, for not too large values of the ratidion in CeNj_,Cu, alloys!® Moreover, the phase diagrams of
Jk/J, a second-order transition line is found BT, to a  several systems involve also an antiferromagnetic phase and
spin glass phase with>0 and\=0. The critical lineT,(Jx)  this case is theoretically studied elsewhEr@ur theoretical
ends at a quantum critical poidf,. Finally, for large values results describe also the spin glass and Kondo phases in ura-
of the ratioJ/J=Ji,/J, whereJy,=Ji,, there is a second nium alloys. An unsolved basic question concerns also the
order transition line to a Kondo state wiN®0. These re-  existence or not of a “mixed” SG—Kondo phase in cerium
sults are very sensitive to the value Bf/J and aJ. For  and uranium disordered alloys and this problem is worth
D/J=12 andaJ=0.01344 the QCP disappear while they peing studied experimentally in more detail. Thus further
are favored for larger values @fJ. We can also remark that experimental work is necessary, but our model yields a new

we get here only “pure” Kondo or SG phases and never @;ii int in the behavi fh fermion disordered
mixed SG—-Kondo phase with the two order parameters dif; TIng point in the hefavior of heavy 1ermion disordere

ferent from zero as already noticed for the competition be—a lloys in the vicinity of the quantum critical point.
tween Kondo and antiferromagnetic pha&&€this result is
probably connected to the approximations used here to treat ACKNOWLEDGMENTS
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