
Quantum critical point in the spin glass–Kondo transition in heavy-fermion systems

Alba Theumann
Instituto de Física–UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil

B. Coqblin
Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay Cedex, France

(Received 28 March 2003; revised manuscript received 26 January 2004; published 21 June 2004)

The Kondo–spin glass competition is studied in a theoretical model of a Kondo lattice with an intrasite
Kondo-type exchange interaction treated within the mean-field approximation, an intersite quantum Ising
exchange interaction with random couplings among localized spins, and an additional transverse fieldG in the
x direction, which represents a simple quantum mechanism of spin flipping, in order to have a better descrip-
tion of the spin glass state and in particular of the quantum critical point(QCP). Taking here a parametrization
G=aJK

2 (whereJK is the antiferromagnetic Kondo coupling), we obtain two second order transition lines from
the spin glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different
parameters, the two second order transition lines do not intersect and end in two distinct QCPs. The existence
of a QCP in the spin glass–Kondo competition allows one to give a better description of the phase diagrams of
some cerium and uranium disordered alloys.
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I. INTRODUCTION

It is well known that there exists a strong competition
between the Kondo effect on each site of a Kondo lattice and
the magnetic ordering arising from the Ruderman–Kittel–
Kasuya–Yosida(RKKY ) interaction between magnetic at-
oms in heavy fermion systems. The Doniach diagram1 gives
a good description of this competition: the Neel temperature
TN is first increasing with an increasing of the antiferromag-
netic s-f exchange interaction constantJKs.0d, then it is
passing through a maximum and finally it tends to zero at the
“quantum critical point”(QCP), with a second order transi-
tion at zero temperature. Such a decrease ofTN down to the
QCP has been observed in many cerium compounds, such as
CeAl2 (Ref. 2) or CeRh2Si2 (Ref. 3), under pressure. We also
know that the Neel temperature starts from zero at a given
pressure and increases rapidly with pressure in ytterbium
compounds, such as YbCu2Si2 (Ref. 4) or YbNi2Ge2 (Ref.
5), in good agreement with the Doniach diagram. Above the
QCP, there exists a very strong heavy fermion character, but
several possible behaviors, i.e., the classical Fermi liquid one
with eventually a reduced Kondo temperature6,7 or different
non-Fermi-liquid(NFL) ones, have been observed in cerium
or ytterbium compounds.8,9

On the other hand, the disorder can yield a spin glass(SG)
phase in addition to the Kondo(mainly NFL) behavior at
low temperatures around the QCP in disordered cerium or
uranium alloys. This is the case of the magnetic phase dia-
gram of CeNi1−xCux alloys that has been extensively
studied,10,11 while the phase diagram of Ce2Au1−xCoxSi3 al-
loys presents the sequence of SG–AF–Kondo phases at low
temperatures with increasing cobalt concentration.12 The
three phases, AF, SG, and NFL have been obtained at low
temperatures for different concentrations in UCu5−xPdx (Ref.
13) or in U1−xLaxPd2Al3 (Ref. 14) disordered alloys. Thus a
SG–Kondo transition has been observed experimentally with

increasing concentration in disordered alloys around the
QCP.

The purpose of our work here is to present a theoretical
model that describes the QCP for the spin glass–Kondo tran-
sition in Kondo lattices. The SG–Kondo transition was theo-
retically studied in a previous publication15 and also in the
presence of ferromagnetic ordering16 or antiferromagnetic
ordering,17 but the QCP was not described because we lacked
a quantum mechanism that favored spin flipping. We present
here an improvement of the previous model in order to ob-
tain a good description of the QCP.

More precisely, in previous publications15–17 the resultant
RKKY interaction was introduced by means of random, in-
finite range couplings among theSz components of the local-
ized spins as in the Sherrington-Kirkpatrick(SK) model18

and by neglecting the spin flip coupling of the transverse
components. By using functional integral techniques with a
static Ansatzin a replica symmetric theory, we obtained a
magnetic phase diagram in theJK vs T plane that showed the
three different phases: paramagnetic, spin glass, and Kondo.
In spite of its complication, the model failed to describe a
second order QCP atT=0, because, by disregarding the spin
flipping part of the Heisenberg Hamiltonian, we suppressed
the tunneling mechanism, and magnetic ordering occurs only
along thez axis. In order to introduce a spin flipping mecha-
nism and to avoid the intricacies of the random Heisenberg
model,19 in the present paper the Heisenberg-like coupling
among the three spin components induced by the RKKY
interaction is mimicked by a quantum Ising spin glass in a
transverse field. It consists of an effective random interaction
among thez components, as we considered in Ref. 15, while
the spin flipping part is simulated by a uniform transverse
field in thex direction.

The infinite range quantum Ising spin glass in a transverse
field G is one of the simplest models that presents a quantum
critical point and it is equivalent to the model for a spin glass
of quantum rotors.20,21The dynamical properties at zero tem-
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perature are known and the existence of the QCP is well
established,22 while the phase diagram in theT vs G plane
has been studied by using the Trotter-Suzuki technique,23 and
more recently24 by the use of two fermionic representations
of the spin operators in terms of Grassmann fields25 that are
more suitable to our purposes. As we did previously in Ref.
15, the Kondo effect will be studied in an approximation that
is basically equivalent to the mean field decoupling
scheme.6,26 The staticAnsatzin the study of the spin glass
transition is an approximation, similar to mean-field theory,
that is appropriate to describe the phase diagram. This is
justified because in the model ofM-components quantum
rotors, that is exactly soluble for infiniteM, the critical line is
given by the singularity of the zero-frequency mode.20 The
same occurs with the quantum Ising spin glass in a trans-
verse field,22 where the singularity of the zero-frequency
mode determines the critical point. That is the reason why
the static Ansatz, that describes only the zero-frequency
mode, describes the critical line in the phase diagram, al-
though it would not give correctly the time dependence of
the order parameter.

A related Hamiltonian has been considered in Ref. 27 to
describe NFL behavior and a QCP in some heavy fermion
compounds, although there are essential differences between
this work and ours in the present paper and in Ref. 15. In
Ref. 27 it is considered a system of isolated Kondo impuri-
ties, each one with a separate electron reservoir, and repre-
sented by the spin glass model ofM-components quantum
rotors in the limit of largeM, when the problem is exactly
soluble. The Kondo coupling provides the quantum mecha-
nism and the transition line in the phase diagram is deter-
mined by the singularity of the zero frequency mode, dis-
playing a QCP at zero temperature. The Kondo effect is
described there27 by isolated impurities and displays a con-
tinuous transition among different scaling regimes, in place
of the sharp second order transition in Kondo lattices.1,6,26

This paper is organized as follows: in Sec. II we introduce
the model, in Sec. III we discuss relevant results and we
reserve Sec. IV for discussions and conclusion. We refer the
reader to Ref. 15 for details in the mathematical calculations.

II. THE MODEL

We consider a Kondo lattice system with localized spins

SW i at sitesi =1¯N, coupled to the electrons of the conduc-
tion band via as-f exchange interaction. It is necessary to
introduce explicitly the resultant RKKY interaction by means
of a random, infinite range coupling among localized spins
like in the Sherrington-Kirkpatrick(SK) model for a spin
glass.18 To describe the Kondo effect in a mean-field-like
theory it is sufficient to keep only the spin-flip terms6,15,26in
the exchange Hamiltonian, while the spin glass interaction is
represented by the quantum Ising Hamiltonian and the trans-
verse fieldG in the x direction.24 The transverse fieldG rep-
resents a simple quantum mechanism of spin flipping and
mimics the more complicated transverse part of the Heisen-
berg Hamiltonian.19

The Hamiltonian of the model is

H = HK + HSG, s1d

HK = o
k,s

eknks+ e0o
i,s

nis
f + JKo

i

fSfi
+sdi

− + Sfi
−sdi

+ g s2d

HSG= − o
i,j

JijSfi
z Sf j

z − 2Go
i

Sfi
x s3d

whereJK.0, S±=Sx± iSy, and

SW f i = o
s,s8

f is
†sW s,s8f is8,

sWdi = o
s,s8

dis
†sW s,s8dis8, s4d

f is
† , f issdis

† ,did are creation and destruction fermion operators
for electrons withs=↑ or ↓ in the localized(conduction)
band. We indicate bysWI the Pauli matrices and we havenks

=dks
† dks the conduction electrons occupation number. The

energiese0sekd are referred to the chemical potentialsm fsmdd,
respectively.

The couplingJij in Eq. (3) is an independent random
variable18 with a Gaussian distribution of zero mean and
variancekJij

2l=8J2/N.
Functional integration techniques have proved to be a

suitable approach to describe phase transitions in disordered
quantum mechanical many-particle systems.25 The static ap-
proximation within this formulation consists of neglecting
time fluctuations of the order parameter, and when it is com-
bined with the neglect of space fluctuations it leads to the
usual Hartree-Fock, mean-field-like approximation. When
dealing with the Hamiltonian in Eqs.(1)–(3), we notice that
in the limiting caseJK=0 we obtain a quantum Ising spin
glass in a transverse field that has been studied with the static
approximation in Ref. 24, while forJ=0 we recover the
mean-field approximation that has been used successfully to
describe the Kondo lattice.6,8,26 We follow closely the for-
malism of Ref. 15 to write a Lagrangian formulation25 in
terms of anticommuting, complex Grassmann variables
wissvd ,cissvd associated to the conduction and localized
electron fields, respectively, together with the spinors

wI isvd = Swi↑svd
wi↓svd

D, cI isvd = Sci↑svd
ci↓svd

D s5d

wherev=s2n+1dp are the Matsubara frequencies. The par-
tition function is now expressed as

Z =E Dsw†wdDsc†cdeA. s6d

We now follow the same steps as in Refs. 15–17 and in the
static, mean-field-like approximation the actionA may be
written

A = A0 + AK + ASG, s7d
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with A0 being the action for noninteracting electrons in a
transverse magnetic field:

A0 = o
v

o
i,j

ci
†

I svdfsiv − be0 + bGsI xddi jciI svd

+ wi
†

I sivdi j − btijdw jI svdg s8d

while the Kondo part of the action is decoupled in the mean-
field approximation as in Ref. 15

AK =
bJK

N
o
s
Fo

iv

cis
† svdwissvdGFo

i,v
wi−s

† ci−ssvdG . s9d

Hereb is the inverse absolute temperature and we also have

ASG= o
i,j

JijSfi
z Sf j

z s10d

where in the static approximation15–17,24

Sfi
z =

1

2o
v

ci
†

I svdsz
I cisvd. s11d

The Kondo order is described by the complex order param-
eter

ls
† =

1

N
o
i,v

kcis
† svdwissvdl,

ls =
1

N
o
i,v

kwis
† svdcissvdl s12d

that in a mean-field theory6,15,26 describes the correlations
ls

†=kf is
†disl and ls=kdis

† f isl. The approximation used in Eq.
(12), which is equivalent to the “slave boson” method, is
certainly one of the best practical methods used for the
Kondo lattice problem. The Kondo temperature for the lat-
tice is determined here by the temperature at whichl be-
comes equal to zero and this approximation gives a fairly
reasonable description of the Kondo phase. However, it is
unable to give a “mixed” SG–Kondo phase, as it was previ-
ously shown in the case of the antiferromagnetic-Kondo
transition.28 Except for the presence of the transverse fieldG
in A0 in Eq. (8), the calculation follows the same steps as in
Ref. 15 and we refer the reader to this paper for details.
Reference 15 shows that standard manipulations give for the
averaged free energy within a replica symmetric theory:

bF = 2bJKl2 +
1

2
b2J2sx̄2 + 2qx̄d − bV s13d

where

bV = lim
n→0

1

NnHE−`

+`

p
j

N

Dzjp
a

n E
−`

+`

p
j

Dja j

3 expFo
v

lnuGI i j a
−1svduG − 1J s14d

and q, x̄, and l must be taken at their saddle-point value.
Here a is the replica index andq is the SG order

parameter15,18,24while x=bx̄ is the static uniform spin sus-
ceptibility of the localizedf electrons.

qaÞb = q = lim
n→0

1

nsn − 1d o
aÞb

kSa
zSb

zl, s15d

qaa = q + x̄ = lim
n→0

1

n
o
a

kSa
zSa

zl. s16d

We use the notationDx=sdx/Î2pde−1/2x2
and we refer the

reader to Ref. 15 for the details of the calculation. The matrix
GI i j asvd in Eq. (14) is the time Fourier transform of the ma-
trix Green’s functionGIi jstd= ikTcIistdcI j

†s0dl for the localized
electrons in the presence of random fieldszj andja j at every
site, and satisfies the equation15

GIi j a
−1svd = fiv − be0 − sIzhja + bGsIxgdi j − b2JK

2l†lgi jsvd1I
s17d

where

hja = Î2qbJzj + Î2x̄bJja j s18d

while gi jsvd is the time Fourier transform of the conduction
electron Green’s functiongi jstd= ikTwisstdwiss0dl and is
given by

gi j
−1 = fiv − bmcgdi j − btij . s19d

We obtained in Eq.(17) the Green’s function for thef elec-
trons in a Kondo lattice,15 but now the presence of a random
field hj at every site prevents us from diagonalizing by
means of a Fourier transformation. In the pure SG limitJK
=0, the Green’s function in Eq.(17) is local and the integrals
in Eq. (14) reduce to a one site problem, while in the Kondo
limit J=0 the random fields vanish and the integrals separate
in reciprocal space, giving the known results for a Kondo
lattice. We adopt here a decoupling approximation intro-
duced in Ref. 15 that reproduces correctly these two limits,
and corresponds to consider independent Kondo lattices, in
place of the independent Kondo impurities in Ref. 27. We
replace the Green’s functionGIi j asv ,h1a , . . . ,hja , . . . ,hNad by
the Green’s functionsGImnsv ,hjad with j =1, . . . ,N, of N in-
dependent Kondo lattices, each one with a “uniform” field
hja at every sitem ,n by means of the approximation

lnuGIi j a
−1sv,h1, . . . ,hNdu <

1

N
o

j

lnuGImn
−1sv,hjadu s20d

where GImnsv ,hjad is the f-electron Green’s function for a
fictitious Kondo lattice that has a uniform fieldhja at every
site m ,n and satisfies the equation:

GImn
−1sv,hjad = fsiv − be0d1I − sIzhja + bGsIxgdmn

− b2JK
2l2gmn1I , s21d

where from Eq.(19)
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gmnsvd =
1

N
o
k

1

iv − bek
eikW·RW mn. s22d

Now Eq. (21) may be easily solved by a Fourier transforma-
tion with the result:

lnuGImn
−1sv,hjadu = o

kW
lnuGI

kW
−1sv,hjadu s23d

where

GI
kW
−1sv,hjad = fiv − be0g1I − sIzhja + bGsIx − b2JK

2l2 1

iv − bek
.

s24d

We may now introduce Eqs.(24) and (20) in Eq. (14), the
integrals over the fields separate and we obtain

bV =E
−`

+`

Dz lnHE
−`

+`

Dj expF 1

N
o
kW

o
s

SsskW,HdGJ
s25d

with

o
s

SsskW,Hd = o
v

lnfGI
kW
−1sv,hdg s26d

andh is given in Eq.(18), with z andj in place ofzj andj ja,
while

H = Îh2 + sbGd2. s27d

The sum over the fermion frequencies is performed in the
standard way by integrating in the complex plane25 with the
result:

SsskW,Hd = lnfs1 + e−vs+ds1 + e−vs−dg s28d

where

vs± =
1

2
fbek + sHg ± H1

4
sbek − sHd2 + sbJKld2J1/2

.

s29d

We considere0=0 that corresponds to an average occupation
knfl=1, per site. Replacing sums by integrals, in the approxi-
mation of a constant density of states for the conduction
band electrons,rsed=r=1/2D for −D,e,D, we obtain
from Eqs.(26)–(29) the final expression for the free energy
in Eq. (13):

bF = 2bJKl2 +
1

2
b2J2sx̄2 + 2qx̄d

−E
−`

+`

Dz lnHE
−`

+`

DjeEsHdJ s30d

with

EsHd =
1

bD
E

−bD

+bD

dx lnHcosh
sx + Hd

2
+ coshsÎDdJ ,

s31d

D =
1

4
sx − Hd2 + sbJKld2, s32d

and from Eq.(27) we have

H = ÎsbGd2 + sbJd2sÎ2qz+ Î2x̄jd2. s33d

III. RESULTS

The SG–Kondo transition is described in the present
model by the three parametersJK , J, andG, which cannot be
considered here as completely independent from each other.
In fact, the Kondo effect and the RKKY interaction originate
from the same intrasite exchange interaction, but the neces-
sity of considering an additional intersite exchange term has
been already recognized6,28 and a relationship giving the in-
tersite exchange parameter varying assJKd2 has been intro-
duced in Ref. 6. Since the transverse field is introduced here
to mimic the spin flipping part of the Heisenberg Hamil-
tonian that originates in the RKKY interaction, we assume a
similar relationshipG=asJKd2,aø1 to have a better descrip-
tion of the SG–Kondo transition. In particular, the consider-
ation of the previous relationship forG will be important for
the existence of the QCP and the comparison with experi-
ment. The saddle-point equations forx̄ , q, and l are ob-
tained by extremizingbF with respect to these order param-
eters. By makingq=l=0 in the saddle-point equations we
obtain the equations for the second order critical linesT1sJKd
and T2sJKd that separate the paramagnetic phase from the
spin glass and Kondo phases, respectively. They are given by

x̄sbd =
1

1 + J0
E

−`

+`

Djj2sinhsH0d/H0 s34d

where

J0 =E
−`

+`

Dj coshsH0d s35d

andH0=Hsq=0d.
Thus we obtain for the spin glass transition temperature

T1sJKd:24

x̄sb1d =
1

Î2b1J
s36d

that together with Eq.(34) gives T1 and x̄sb1d, while the
Kondo transition temperatureT2sJKd is given by

1 −
b2Jk

4s1 + J0d
E

−`

+`

Dj coshsH0/2d

3
1

b2D
E

−b2D

+b2D

dx
1

coshsx/2d

sinhSH0 − x

2
D

H0 − x

2

= 0 s37d

that must be solved together with Eq.(34).
The numerical solution of the saddle-point equations as a

function ofT/J andJK /J yields the phase diagram in Fig. 1,
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where we consideredD /J=12 and two values ofaJ. The two
cases corresponding to these two values ofaJ are given in
Fig. 1. The first case(represented by full lines) corresponds
to the really interesting situation of the phase diagram with
two QCPs, while the second case(represented by the dashed
line T8) is plotted here for comparison to show the case
without a QCP.

In the first case, corresponding toaJ=0.01348 (solid
line) the second order critical lineT1sJKd that separates the
paramagnetic from the spin glass phase ends at a QCP cor-
responding to aJK value calledJK1

c here, while the second
order critical line T2sJKd that separates the paramagnetic
from the Kondo phase ends at a second QCPJK2

c and we
have hereJK2

c .JK1
c .

An asymptotic calculation at low temperatures gives

kBT1 =
Î2

3
f2Î2J − aJK

2g s38d

and the corresponding value forJK1
c at the QCP is given by

asJK1
c d2=2Î2J. On the other hand, close to the second QCP

an asymptotic calculation gives

kBT2 < logSTK
−1 asJKd2

1 + asJKd2/D
D , s39d

whereTK=D exps−2D /JKd. Thus the value ofJK2
c is the so-

lution of TKsJK2
c d=asJK2

c d2 in the asymptotic limit of very
largeD values. In order to obtain a solutionJK2

c that makes
T2=0 in Eq. (39) it is necessary that 4aD=0.6473, what
givesaJ=0.013485 forD=12J, and for these values of the
parameters in Fig. 1, we have obtained two QCPs with
JK2

c .JK1
c . In the second case corresponding to a smaller

value of a ,aJ=0.01344, the two QCPs disappear and we
obtain a single transition line(dashed lineT8) separating the
paramagnetic from the ordered(spin glass and Kondo)
phases. The physical case shown in Fig. 1, where the two
QCPs are very close to each other and almost equal, corre-

sponds well to experimental phase diagrams obtained in
some cerium or uranium disordered alloys. We obtain from
Eq. (34) in the disordered region thatx̄→0.5 whenb→0,
thus giving the expected Curie-Weiss behavior for the static
susceptibility x=bx̄, while for b→` we get x→G
+ÎG2−8J2 whenG=aJK

2 .2Î2J. We recover here the square
root singularity in the linear static susceptibility that is
present in other quantum spin glass models.20–22 It is inter-
esting to remark thatx̄=xT=SsS+1d is the residual effective
localized spin in Curie-Weiss theory. The value forx̄ on the
critical line T2sJKd is presented in Fig. 1, where we notice the
steep drop to almost zero close to the QCPJK2

c .

IV. CONCLUSIONS

We study in this paper the phase transitions in a heavy
fermion system represented by a Hamiltonian that couples
the Sz components of the localized spins of a Kondo lattice7

with random, long range interactions, like in the SK model
for a spin glass,18 while the transverse components are acted
upon by a field in thex direction.24 As the transverse fieldG
mimics the spin flip part of the Heisenberg coupling among
localized spins, that originates in the RKKY interaction, we
assume thatG<aJK

2 where JK is the antiferromagnetic
Kondo coupling.6 Using functional integrals techniques and
a static, replica symmetricAnsatzfor the Kondo and spin
glass order parameters, we derive a mean-field expression for
the free energy and the saddle-point equations for the order
parameters. The use of the staticAnsatzin the case of the
transverse spin glass is justified, because it is the singularity
of the zero frequency mode that determines the critical
line.20–22 The numerical solution of the saddle-point equa-
tions allows us to draw the magnetic phase diagram in the
JK vs T plane(presented in Fig. 1) for fixed values ofJ and
D with D /J=12 and for two values ofaJ,aJ=0.01348 or
aJ=0.01344.

Figure 1 shows three distinct phases. At high tempera-
tures, the “normal” phase is paramagnetic with vanishing

FIG. 1. Phase diagram in theT−JK plane as a
function of T/J andJK /J for the transverse field
G=aJK

2 , aJ=0.01348 (solid line) and aJ
=0.01344(dashed line), for the conduction band-
width D /J=12. The critical(solid) second order
line T1 for low values ofJK separates the para-
magnetic phasesq=l=0d for high temperatures
from the spin glass phasesqù0,l=0d at low
temperatures and ends at a QCP. The critical sec-
ond order(solid) line T2 for large values ofJK

separates the paramagnetic phase from the Kondo
phaseslù0,q=0d and ends at a second QCP.
The critical (dashed) line T8 does not have a
QCP. The dash-dotted line represents the “pure”
Kondo temperatureTK and the dotted line repre-
sents the residual magnetic momentx̄csJKd on the
line T=T2.
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Kondo and spin glass order parameters, i.e.,l=q=0. When
temperature is lowered, for not too large values of the ratio
JK /J, a second-order transition line is found atT=T1 to a
spin glass phase withq.0 andl=0. The critical lineT1sJKd
ends at a quantum critical pointJK1

c . Finally, for large values
of the ratioJK /JùJK2

c /J, whereJK2
c ùJK1

c , there is a second
order transition line to a Kondo state withlù0. These re-
sults are very sensitive to the value ofD /J and aJ. For
D /J=12 andaJø0.01344 the QCP disappear while they
are favored for larger values ofaJ. We can also remark that
we get here only “pure” Kondo or SG phases and never a
mixed SG–Kondo phase with the two order parameters dif-
ferent from zero as already noticed for the competition be-
tween Kondo and antiferromagnetic phases;28,29 this result is
probably connected to the approximations used here to treat
the starting Hamiltonian. A QCP has been observed experi-
mentally in several cerium and uranium disordered
alloys12–14 and the phase diagram shown in Fig. 1 which
yields two QCPs improves considerably the description of
the spin glass–Kondo transition with respect to previous
publications.15–17However, the experimental situation is gen-
erally not really clear; for example, there is no experimental

information on the precise nature of the SG–Kondo transi-
tion in CeNi1−xCux alloys.10 Moreover, the phase diagrams of
several systems involve also an antiferromagnetic phase and
this case is theoretically studied elsewhere.17 Our theoretical
results describe also the spin glass and Kondo phases in ura-
nium alloys. An unsolved basic question concerns also the
existence or not of a “mixed” SG–Kondo phase in cerium
and uranium disordered alloys and this problem is worth
being studied experimentally in more detail. Thus further
experimental work is necessary, but our model yields a new
striking point in the behavior of heavy fermion disordered
alloys in the vicinity of the quantum critical point.
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