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RESUMO 

Este trabalho apresenta algumas técnicas para construir um sistema completo capaz de 

controlar um quadricóptero durante todo seu vôo. São apresentadas algumas questões práticas 

como a escolha de componentes adequados e também questões teóricas como o 

desenvolvimento do sistema de controle responsável pela estabilidade do vôo. Apesar da 

diversidade do sistema, o foco deste trabalho é apresentar algumas técnicas diferentes para o 

sistema de controle tanto com uma abordagem mais voltada para a área de inteligência 

artificial (utilizando redes neurais artificiais) como também uma abordagem mais voltada para 

teoria de controle clássica (utilizando funções de transferência e resposta em frequência). 

Serão apresentados os pros e contras de cada método.   

 

Palavras-chave: Sistema de controle, redes neurais artificiais, quadricóptero, Virtual 

Reference Feedback Tuning. 



 

ABSTRACT 

This work presents some different techniques to build a complete system to control a 

quadcopter throughout its flight. It is presented some practical issues like the choice of 

suitable components and also theoretical issues like the development of a control system 

responsible for the flight stability. Despite the diversity of the system the focus of this work is 

to present some different techniques for the control system both with an artificial intelligence 

approach (using artificial neural networks) as with a classical control theory approach (using 

transfer functions and frequency domain). It will be shown the pros and cons of each 

technique. 

 

Keywords: Control system, artificial neural network, quadcopter, Virtual Reference 

Feedback Tuning. 
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1 INTRODUCTION 

 

With the advancement of technology and reduced electronic devices prices, it is 

becoming more and more common the use of these devices both for hobbyists and for 

professionals, often replacing the need of human labor. Between these devices, a group called 

quadcopters (or quadrotors) is increasingly being the subject of studies and being used for 

many different kinds of tasks. They are a specific type of multirotor helicopters aircrafts with 

four rotors which generates lift with moving wings as opposed to fixed-wing aircrafts. 

In general, hobbyists use quadcopters for leisure purposes (e.g. aeromodelling) or 

simple experimentss like First-Person-View while flying through real-time video 

transmission. 

As for researchers and industries, quadcopters might be used in many different kinds 

of tasks like autonomous product delivering or reaching difficult places to perform specific 

tasks (e.g. photographing external parts of a high building to examine).  

To be able to use a device like that, we must have a system capable of handling both 

flight stability and data exchange between the device and its host which is responsible for 

giving the device its flight guidelines or retrieving flight data. 

For most hobbyists this boils down to a quadcopter with a few sensors and a radio 

control playing the role of a host which directly controls the flying device in real time. 

Usually no data is extracted or used in a more elaborate control system outside the 

quadcopter. These data is only used internally in the embedded system in a simple control 

system whose reference to be followed is supplied by the radio at each moment. In other 

words, an embedded control system is already programmed in the device by third parties and 

the hobbyist main function is to control the radio sticks in order to provide reference signals 

to the quadcopter to follow in real time. Therefore, user must know how to fly the quadcopter 

in order to prevent it from falling to the ground.  

For more advanced hobbyists or researchers this task becomes more complex. It is 

interesting to acquire sensors data in almost all cases. Sensor types may vary depending on 

the objective but usually it is very useful to extract some data that could be used both for real 

time processing and for analysis purposes.  

It keeps rising the number of studies and research in this field which seek finding 

better techniques of controlling the whole system. Most tasks can be accomplished with 

simple systems or techniques easily found in the literature, but researches are still more and 

more being made in this field in order to improve existent methods, leaving the system more 
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accurate or even more autonomous. Much of these studies are focused in the control and 

stability problems of the quadcopter during its flight.  

Some of them will perform some set of tests so one can acquire enough data in order 

to build a mathematical model of the device to make it possible to design and simulate its 

control system before using it directly. This usually involves some caution while running the 

tests and an extra work to prepare them. However, if enough tests are made and a well 

approximated model is created, then a very robust and optimum control system may be found. 

Yet, one should note that the designed control system in this case will be specific to that 

device once the theoretical model was extracted from the set of tests with the device. Thus, a 

change in the physical properties of the quadcopter may require a complete redesign of this 

system. 

Another approach is to perform some tests and extract sensors data as before but 

instead of finding the mathematical model of the physical device one can design a controller 

directly from the extracted data. Thereby, one would not need to devote time in finding the 

theoretical model of the quadcopter. This type of controller design is called data-driven 

control and it is an alternative to model-based method mentioned above. It is important to 

note that since we do not need the mathematical model of the device anymore, it is much 

simpler to create an algorithm capable of finding a controller based on extracted data in real 

time. Thus, such algorithm may be implemented in different types of quadcopter with 

different physical properties since we do not need its mathematical model like before. 

However, one should pay attention to the premises which must be followed so that the 

algorithm works as expected (e.g. linear model). 

Finally, another widely used method is to use the acquired data in real time so the 

system is constantly learning and improving its controlling parameters. This is a generic 

approach that can include both the model-based solution and the data-driven solution typically 

in an iterative process. It’s worth mentioning that regardless of the method chosen one can opt 

for designing a controller with an artificial intelligence approach (e.g. artificial neural 

networks) or with a classic control theory approach (e.g. PID). 

We shall present here some of the various techniques used to control the system, the 

situations where each one can be the best choice and a proposal of a buildable system. Even 

though the focus of this work is to investigate the control techniques, we will discuss the 

quadcopter behavior, its electronic system and then present some of the main controllers used 
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by hobbyists and researchers. In the end we will show the results of tests made with 

comparisons the other works and suggestions of future works. 

The next chapters of this work are divided as follows: in Chapter 2, the quadcopter 

dynamics will be shown. Next, in Chapter 3, it will be presented the electronics involved in 

the whole system. In Chapter 4 it will be shown some background information about control 

theory and methodology while designing a controller. Each sub-topic will mention a different 

approach (e.g. artificial neural networks, PID, etc). Chapter 5 will show the complete 

structure of the buildable system. Each sub-topic will cover a different part of the system (e.g. 

filters, controller, simulator and component choice) with a greater focus in the controller 

section. In Chapter 6, results will be presented along with possible comparisons. An important 

note is that even though a buildable system is presented, the techniques discussed for 

controlling the system will be tested on a simulator implemented for this purpose. Finally, 

Chapter 7 shows our conclusion and suggestions for future works. 
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2 QUADCOPTER DYNAMICS AND MEASURES 

 

To be able to develop a control system one should know how is the physical device 

dynamics and what data may be read from it. Even in autonomous systems where an adaptive 

controller is used, one should know at least what data is being read, what kind of actuators the 

system has and what signals the controller should provide to the system. With that in mind, 

we will present here the basics of the quadcopter mechanics and its dynamics. 

We can see in Figure 2.1 an example of a quadcopter. It is made of three main 

components: body, embedded electronics system and rotors. We refer to embedded 

electronics system here as all electronic components in the flying object with exception of the 

rotors which are the transition from electronics to mechanics. These electronic components 

will be explained in the next chapter. The body is the main structure which holds everything 

and it is primarily composed by two perpendicular bars (in a cross shape) united within a 

central core as shown. This structure is usually symmetric and as lightest as possible to save 

power while flying and should be enough to hold the remaining components. Some bodies can 

also be enhanced with protection structures to avoid damage, improve mass distribution or 

assist in takeoff and landing (as shown in Figure 2.1). At the tip of each bar there is a single 

electric motor which is the main component for lifting the whole frame. One should note that 

a complete flyable system may require external components like a radio control which will be 

dealt with later. 

Figure 2.1 - Quadcopter example 

 

Besides the quadcopter structure, Figure 2.1 also shows a coordinate system which is 

normally used when dealing with the quadcopter orientation. Some may adopt different axes 

names like switching Y by Z (as some 3D designing tools do). Also, one might consider two 

different coordinate system references: the inertial frame reference and the body frame 
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reference. The first one is a fixed coordinate system with reference to the earth (or external 

environment) while the other is fixed with reference to the quadcopter body. In this chapter 

we will consider the body frame as our reference. 

Motors called M1, M2, M3 and M4 are responsible for lifting the aircraft. Each motor 

is composed by its fixed part which is attached to the main frame and a rotor which is the 

moving part inside the motor and holds the rotary wings that produce lift. This force will exist 

only in the Y axis direction and centered in each respective motor. As the whole frame tends 

to be symmetric when considering the Z-X plane (horizontal), the gravity center point of the 

frame projected to this plane is usually near the geometric center point projected to the same 

plane. Therefore, one can easily realize that each individual rotor lift force may generate a 

torque with respect to the gravity center. This might be a problem when comparing with a 

single main rotor aircraft (e.g. helicopter) where the main rotor lift force will not always 

produce such torque and thus the body frame will not tend to rotate in neither X nor Z axes. 

Helicopters can change the main rotor direction in order to produce this torque or not, and so 

it can hover or change its flight direction. It also uses an auxiliary rotary wing to control the Y 

rotation. Quadcopters only have four fixed main rotors (e.g. cannot change its direction as the 

helicopters do) and no auxiliary wings. Therefore, the torque produced by each individual 

rotor cannot be eliminated and will be responsible for the aircraft rotation around X and Z 

axes which by turn will allow translations in all directions. So, to prevent this rotation one 

may produce lift forces in diametrically opposed motors (e.g. M1 and M3) such as the net 

torque produced by them is zero. The rotation around the Y axis has the same principle of a 

helicopter which is caused also by its main wings rotation. In other words, if a helicopter did 

not have the auxiliary wings, it will keep rotating around Y axis while lifting to preserve its 

angular momentum (as the wings rotate in one direction, the body rotates in the opposite 

direction with lower angular velocity due to its larger mass in comparison to the wings mass). 

As quadcopters do not have auxiliary wings, one might prevent this rotation by making rotors 

rotating in opposite directions. In our example, M1 and M3 would rotate in the same direction 

while M2 and M4 would also rotate in the same direction between them but in the opposite 

direction with respect to the first pair. Thus, each rotor will rotate in the opposite direction 

when compared to its neighbors. One should note that since we want to generate lift force 

(upwards) we must also reverse the blade geometry in the rotors that are spinning in the 

opposite direction. 

In a higher level of abstraction on might consider directions of flight beyond the 

coordinate system axes. So, instead of using axes names like X, Y and Z, one can name 
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directions like front, back, right, left, up and down. One should also note that these directions 

are freely chosen by the user. Upward direction is commonly defined by Y positive direction. 

As for the forward direction, commonly some users choose to be where a single motor points 

to (e.g. X axis positive direction or Z axis positive direction) while others choose to be 

between motors (e.g. in the direction of the bisector of the angle between X and Z axes). 

Other uses of forward direction can be used but are not common. While dealing with these 

directions, one can define specific names for these axes as well as the rotations around them. 

For aircrafts in general, the rotation around the forward direction axis is called roll rotation 

while the rotation around the lateral direction axis is called pitch rotation and the rotation 

around the upward direction is called yaw rotation. It is very common to refer to these only by 

pitch, roll and yaw although some might use these names to refer to the axis of rotation itself 

(e.g. pitch axis). Also, one could refer to pitch angle, roll angle and yaw angle as the angles in 

which the aircraft is rotated with respect to those axes. 

Finally, different kinds of movements can be achieved by different combinations of 

forces produced by each rotor. If all rotors are producing the same lift force and each rotor is 

spinning in the opposite direction of its neighbors (as mentioned above) so no yaw rotation 

will occur, so the quadcopter will hover (angles will not vary) if the net force produced by all 

motors is equal (in absolute value) to the quadcopter weight. If we want to translate upwards, 

we must increase all rotors speed equally, producing a greater net force (which will now be 

greater than the absolute value of total weight). Therefore, if we want to go downwards, we 

must decrease all rotors speed equally. Since we cannot produce pure lateral force then the 

lateral translation must be carried out by a rotation around the axis which is orthogonal to the 

axis one wants to translate over and to the vertical axis simultaneously. In other words, if we 

want to translate forward, we must realize a pitch rotation so the quadcopter will then 

naturally drift throughout the roll axis as it is tilted with respect to the horizontal plane. This 

occurs because whenever pitch or roll angle is different from zero then even though the sum 

of absolute values of rotors forces can be equal to absolute value of weight force, the net force 

will not be zero anymore because the weight force points in –Y direction of the inertial frame 

and the lift force points in the +Y direction of the body frame and they are not aligned 

anymore (because pitch angle or roll angle is not zero). This will result in a lateral force 

which makes a lateral translation possible. A simple rotation is made only by decreasing a 

motor speed by some value and increasing the diametrically opposed motor speed by the same 

value. For example, if we are hovering and we increase M4 speed by some value and decrease 
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M2 speed by the same value, quadcopter will tend to rotate around the X axis. And if we want 

a yaw rotation, one must increase a diametrically opposed pair of motor speed by some value 

and decrease the remaining two motors speed by the same value. For example, if we are 

hovering and we increase M1 and M3 motors speed by some value and we decrease M2 and 

M4 motors speed by the same value, a rotation around the Y axis will be generated. 
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3 QUADCOPTER ELECTRONICS AND SENSORS 

 

All movements mentioned above are realized by providing correct controlling signals 

to the actuators (motors). Therefore, we will present here a general structure of the embedded 

system in a quadcopter, which is responsible for receiving commands from outside and 

controlling the actuators. A block diagram of this general structure can be seen in Figure 3.1. 

We refer to host as being any external device which controls the quadcopter remotely (e.g. 

radio control). 

Figure 3.1 - Block diagram of the complete system 

 

For most hobbyists the host is a simple radio control which is capable of sending 

various different signals modulated into different channels. The electronics in the quadcopter 

then receives the radio signal and demodulate it so each signal can be used as a reference for a 

different task. For example, one of these signals can be driven by the throttle analog stick in 

the radio. The more the user pushes the stick greater values of throttle are being modulated 

and sent to the quadcopter. When it receives, all values will be demodulated and the channel 

associated with throttle will be used to increase all motors speed equally. The embedded 

system box in Figure 3.1 is generally a microcontroller responsible for these data exchanges 

and controlling the actuators with the data received. Sensors are essential to make a closed-

loop control with those actuators. Although the control theory will be dealt with in the 

subsequent chapters, one can intuitively think that the system will only be able to make sure 

that its control signals are producing the desired effects when it can read those values. Thus, 

sensors output are fed to the embedded system so it can provide a correct control signal to 
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actuators in order to try following the reference value received from the radio. A simple and 

flyable quadcopter usually contains only a gyroscope sensor which measures angular velocity 

with 3 orthogonal axes and an accelerometer which measures proper acceleration also in 3 

orthogonal axes. 

Since this work aims the elaboration of a complete system, most of above components 

will be replaced by others that best suit our needs. It is essential that our host is able to send 

and receive specific commands and data for debug and tests purposes besides being able to 

control the quadcopter directly like a radio control would. Therefore, instead of a radio 

control, one might use a computer host running one or more software capable of doing that. 

This configuration is widely used by researches and professionals that seek the development 

of an incremented control system, usually with detailed data analysis. One should also choose 

extra components in order to communicate with the aircraft since computers usually will not 

have any wireless peripheral which uses the native quadcopter modulation. 

There are many possibilities when choosing a transceiver to establish the wireless 

communication. Besides the differences between brands and technologies, one must decide 

what main features the whole system needs or prioritize. For example, for a given modulating 

process usually there is a trade-off between physical range and data rate. Higher ranges 

normally come with lower data rates while shorter ranges can achieve higher data rates. High 

volumes of data also present a commitment with reliability. Whenever data packets are 

guaranteed to deliver, part of the data exchange must be sacrificed to ensure that. This implies 

in a reduction of the payload transmission rate (e.g. data that we are actually transmitting). 

Also, retransmitting mechanisms may take place when transmission fails, which will increase 

the time taken to exchange that information (which reduces the data rate). These and other 

decisions are up to the user and should be made taking the project needs or specifications into 

consideration. 

The transceiver in the aircraft side must be connected to some central processor that 

will read the received data and process them. In virtually all cases some microprocessor is 

needed since a flyable quadcopter will require more than just direct communication between 

the transceiver and the actuators. Once again the user must decide what type of 

microcontroller will best fit the system goals. Since this is the central element of the whole 

embedded system, it must provide means of interacting with the sensors, with the transceiver 

and with the actuators. Therefore, usually features like native communication peripherals and 

clock speed are of high importance when choosing the microcontroller. Also, one must look 

carefully for other features like power consumption which may imply a change in other 



19 

 

 

 

components like the battery. Some more subjective characteristics (but not always less 

important) may also be observed like available documentation about that microcontroller and 

its availability in the market (as well as its price). Sometimes this may not be critical but it can 

also negatively impact on some aspects like development time or cost. 

Once the embedded system is able to receive and process data from the host, it must 

use this data (along with sensors data which will be discussed next) in order to actually 

control the aircraft. This is done through the actuators which are a set of four motors with 

blades attached to them. These motors are usually DC brushless motors which are powered by 

a DC voltage from the main battery through an electronic circuit which is responsible for 

switching the signal according to necessary conditions. Normally an electronic speed control 

(ESC) is used, which is an electronic circuit that receives a reference value in the input 

(usually PWM signal) and produces the necessary signals in the output to the motor (usually a 

3-phase AC signal, where AC is used here in a broader sense than a pure sinusoidal wave). 

Most ESC’s found in the market work on a standard of PWM input frequency (50 Hz and 

sometimes up to 300 Hz) and PWM duty cycle (1ms represents idle state and 2ms represents 

full speed). So a simple configuration in a PWM peripheral output of a microcontroller could 

fully control a DC motor. 

As mentioned above, the embedded system should not only look for received data 

from the host but also read the sensors in the aircraft. The received commands usually have 

the role of being a reference to be followed by the aircraft while the sensors data will help the 

system to know if it is going in the right direction or not. Most quadcopters use only a pair of 

sensors composed by an accelerometer and a gyroscope. This is a simple configuration that 

can achieve great results. The gyroscope reads the angular velocity of each axis in a local 

frame reference. One should note that it is useful to keep the sensor axes aligned with the 

body frame axes so the sensor data will represent directly the angular velocity of its 

orthogonal axes mentioned above (pitch, roll and yaw). This is equally useful when placing 

the accelerometer, which also has its local frame reference. Therefore, when placed like the 

gyroscope, its data will represent the proper acceleration in the direction of each axis. Finally 

it is important to note that one might use other sensors to realize specific tasks or improve the 

whole system performance like an atmospheric pressure sensor (helps in altitude control), 

magnetometer sensor (helps in yaw rotation control), rangefinder (helps avoiding collisions or 

landing) among others. 
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4 CONTROL THEORY BACKGROUND 

 

In order to execute tasks with a quadcopter, one must have some kind of certainty that 

the aircraft behavior is predictable and controllable. The greater the certainty, the more 

accurate the system can be. 

Studies and researches in this field seek to find new techniques and improvements to 

existent methods in order to elevate the system predictability and control skills. Most times if 

we have a theoretical model of our plant, it can be relatively easy to find an optimum solution 

to our control requirements also theoretically. However, mathematical models usually come 

with some degree of uncertainty in its parameters and the practical behavior of the system also 

may be followed by noisy environment (which is unpredictable by definition). Besides that, 

the whole system should be capable of rejecting disturbances which sometimes are 

predictable and sometimes are not. It is also interesting to note that the more autonomous the 

system, the more robust it should be since autonomous systems tend to have less human 

interference which sometimes is good (avoid human labor) but sometimes can be a problem 

(to correct unpredicted problems). Without anyone to watch the system and help in correcting 

errors, the system should be capable of doing that in itself. This usually requires most 

complex techniques of control and sometimes even involves artificial intelligence. 

Controlling the quadcopter dynamics is not a trivial task as its physical model has 

some high degree of complexity. Therefore, as this field has attracted much attention, many 

works are being published showing different techniques to improve a quadcopter control. 

Some of them find the controller parameters directly from the mathematical model of the 

aircraft (ARGENTIM, 2013). Others have proposed adaptive controllers like Achtelik  (2011) 

using classical control theory approach or Nicol (2008) using neural networks although both 

of them also rely on the quadcopter mathematical model. Neural networks are known to be a 

very powerful tool although sometimes it can become very difficult to use it correctly or 

achieve desired results (HAYKIN, 2009). From this point of view, some attempts of using the 

neural networks power to create an adaptive controller without the need of the mathematical 

model of the quadcopter have been made (BURKA, 2012). The idea is that the quadcopter 

dynamics can be intrinsically learned by the neural network controller. Our objective here is 

to investigate control methods that also do not require any mathematical model of the 

quadcopter so it can be used in a large set of different plants. In the next subsections we will 

discuss some different approaches for this type of controller design and the following chapters 

will cover the rest of the system. 



21 

 

 

 

The most used structure with a generic controller is depicted in Figure 4.1. The main 

idea is to read the outputs of the plant through the sensors and use them as the feedback 

signal. The difference between this feedback signal and a given reference signal (which is 

called error signal) is used to feed the controller which will generate the next input to the 

plant. Usually one tries to reduce the error signal as much as possible at any given moment. 

Thus, one must determine what the parameters of highest priority to be optimized in the 

controller are. One might choose a fast response controller while others might prioritize 

minimum steady state error. Other parameters may also be taken into consideration like 

stability of the closed-loop system and maximum overshoot. 

Figure 4.1 - Common closed-loop configuration 

 

A brief description of the control techniques we are about to investigate will be 

discussed in the following subsections. 

 

4.1 PID 

 

The PID controllers (Proportional-Integral-Derivative) are widely used due to its 

simplicity along with its high efficiency in many cases. Most industry problems can be solved 

with a well tuned PID (BAZANELLA, 2005). The PID controller can be seen as the union of 

three independent controllers (Figure 4.2): proportional controller (P), integral controller (I) 

and derivative controller (D). The intuitive idea behind each of these three components is 

pretty simple. The proportional (P) controller generates a control signal which is proportional 

to the present error. That is, as the error arises, higher control signals will be produced by the 

P block to try to minimize this error. The integral (I) term will generate a signal which is 

proportional to the sum of past error values. This block is very useful in cases where a single 

P controller cannot reach zero error in steady state. When that occurs, a constant error will 

remain in the input of the controller and a simple I block can integrate that constant producing 
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an increasing control signal to lead the error to zero. Finally, the derivative (D) term will 

generate a control signal which is proportional to the rate of change of the error signal. Thus, 

it has a predictive effect. Usually this term contains a built-in low-pass filter to avoid reacting 

to noisy data. This block has no effect on steady state. 

In many cases a simple P controller is enough to run a stable system. Although 

sometimes it would be better to use a complete PID structure or even a more complex 

controller, one might use the simplest structure possible just to run the first tests. In our case, 

all investigated methods rely on a running system (online methods). Therefore, we will use a 

simple P controller as a starting point. 

Figure 4.2 - PID controller internal blocks 

 

One widely used strategy to control a quadcopter with a PID (we refer to PID as the 

complete structure although any combination of its internal blocks can be considered) is to 

create an individual closed-loop system for each independent axis of each sensor. That is, we 

would have the same structure depicted in Figure 4.2 for each sensor axis where 𝑦(𝑡) would 

be the sensor output (angular velocity or acceleration of each axis) and 𝑢(𝑡) the desired value 

to that axis. This way we would have three different PID controllers for the gyroscope (one 

for each axis) and the input to each control loop would be an angular velocity reference. That 

is, making all references equal to zero would make the quadcopter preserve all its rotation 

angles. Other three distinct PIDs would then be used to control the accelerometer axes. 

Therefore, setting zero to X and Z axes would make the quadcopter hover (all weight force 

would be concentrated in Y axis). 

Another widely used strategy is to mix the accelerometer and gyroscope signals to find 

a single angle value for each axis. That is, combining the gyroscope information with the 

accelerometer information one can find a unique angle value for each axis that can represent 

an absolute angle of rotation or a variation with respect to the previous time step. Therefore, 

one can use a total of only three closed loop systems instead of six. One should also be aware 
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that there are multiple ways of combining those signals and the control system efficiency will 

directly depend on which way is chosen. Since the sensors can have errors (e.g. noise and 

drift), one should choose a method that minimizes the main problems of each sensor and 

combine the best features of each. Details about those filters will be discussed in prospective 

chapters.  

It is worth noticing that the Plant/Process box in Figure 4.2 represents the quadcopter 

dynamics including the actuators (motors). Therefore, the control signals generated by each 

closed-loop structure must be combined before sending to the motors. We will use a common 

adopted way of combining those signals: 

 𝑚1 = 𝑇 + 𝑢𝑝 + 𝑢𝑦  (4.1) 
 𝑚2 = 𝑇 + 𝑢𝑟 − 𝑢𝑦  (4.2) 
 𝑚3 = 𝑇 − 𝑢𝑝 + 𝑢𝑦  (4.3) 
 𝑚4 = 𝑇 − 𝑢𝑟 − 𝑢𝑦  (4.4) 

where 𝑚𝑖  is the signal sent to the 𝑖𝑡𝑕  motor, 𝑇 is the throttle signal which is common to all 

motors and used in an open-loop configuration and 𝑢𝑝 , 𝑢𝑟  and 𝑢𝑦  are the control signals 

related to the 𝑝𝑖𝑡𝑐𝑕, 𝑟𝑜𝑙𝑙 and 𝑦𝑎𝑤 axes respectively. That is, if one of the PID closed-loops is 

controlling the pitch axis angular velocity then 𝑢𝑝  will be the output of this PID. It can be 

seen in Equations (4.1) through (4.4) that those signals are used in a differential mode due to 

the plant symmetry. Thus, another important detail is that the signals of each term inside each 

equation depends on each axis reference (e.g. whether positive pitch rotation is clockwise or 

counter-clockwise) as well as where each motor is positioned. So, one must watch carefully 

motors configuration before writing their equations. Finally, each motor will be individually 

controlled in an open-loop configuration which can already lead us to a flyable quadcopter. 

To be able to investigate the control methods discussed in the next sections we will 

then use a simple P controller to each axis of the gyroscope. Therefore, a well tuned controller 

will be able to control the angular velocity in the three axes of rotation, which most times is 

enough for a human with some experience can control the aircraft. The idea behind the 

control techniques can be easily applied to other signals like the accelerometer signals or the 

combination between both sensors. 

 

4.2 Neural Networks 

 

Artificial Neural Networks (ANN) or simply Neural Networks are an extremely powerful 

tool used in many fields like statistics, artificial intelligence, among others. It was inspired in 
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real nervous system and it is an attempt of creating a mathematical model with learning 

capabilities like a real organism. Many different types of neural networks have been proposed 

and these learning capabilities can often be seen as a nonlinear regression since the network 

mathematical structure in this case usually is represented by a nonlinear function with one or 

more inputs and outputs. Although different types of ANN models have been proposed, we 

will focus in the Multi-Layer Perceptron (MLP) which is one of the most used. The MLP 

structure comprises smaller structures called neurons (Figure 4.3). Each neuron receives a 

sum of inputs coming from the previous neurons outputs (called 𝑥𝑁) and use this value as an 

input to a function (called function of activation, 𝑓(𝑢)) to produce an output. Each connection 

between a neuron output and the next neuron also has an associated weight value. Optionally, 

there can be a fixed input which will be called bias. 

Figure 4.3 - Artificial neural network neuron 

 

These neurons are then connected to other neurons and arranged in layers. The first 

layer is called input layer and its neurons inputs represent the network input. The last layer is 

called the output layer and its outputs represent the network output. Between the input and the 

output layer there can be one or more hidden layers. We are not considering neural network 

structures with no hidden layers here since its regression capabilities are restricted to linear 

problems only (HAYKIN, 2009). In the other hand, although many hidden layers can be used, 

a single hidden layer is enough to achieve satisfying results in most known problems 

(HAYKIN, 2009). Each individual output from a given layer will be connected to all inputs of 

the next layer, as depicted in Figure 4.4. 
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Figure 4.4 - Artificial neural network complete structure 

 

Usually the neural network nonlinearity is concentrated in the hidden layer whose 

neurons have a nonlinear activation function while the input and output layers have a simple 

linear activation function. Also, input neurons usually do not have a bias factor. Thus, the role 

of the input layer in the network is only to distribute the inputs to the hidden layer. A widely 

used nonlinear function in the hidden layer is a sigmoid function: 

 𝑓(𝑥) =  𝑡𝑎𝑛𝑕(𝑥) (4.5) 

Thus, considering that all neurons have a bias input (except for the input neurons), a 

single hidden layer perceptron can be described mathematically by the following equation: 

 

𝑦𝑜 𝑡 =   𝑓   𝑤𝑖 ,𝑚
𝑕 𝑥𝑖

𝑛𝑖

𝑖=1

+ 𝑏𝑚
𝑕  𝑤𝑚 ,𝑜

𝑛𝑕

𝑚=1

+ bo  (4.6) 

 

where 𝑥𝑖  is the output from the 𝑖𝑡𝑕  neuron from the input layer which is the same value of its 

input (no bias in the input layer), 𝑏𝑚
𝑕  is the bias value of the 𝑚𝑡𝑕  neuron of the hidden layer 

and 𝑏𝑜  is the bias value of the output 𝑜. The number of neurons in the input layer (or the 

number of inputs of the network) is represented by 𝑛𝑖  while the number of neurons in the 

hidden layer is represented by 𝑛𝑕 . The connections weights are named 𝑤𝑖 ,𝑚
𝑕  (weights from the 

𝑖𝑡𝑕    neuron of the input layer to the 𝑚𝑡𝑕  neuron of the hidden layer) and 𝑤𝑚 ,𝑜  (weights from 

the 𝑚𝑡𝑕  neuron of the hidden layer to output 𝑜). One should note that the above example 

represents a single output of a network with 𝑜 outputs. 
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The weights and bias are adjustable parameters used to map the input set to a desired 

output set. Furthermore, the network should be able to generalize this behavior to new inputs. 

Therefore, many different algorithms have been proposed in order to find the correct set of 

values to these weights and bias in order to find an optimum mapping function. This process 

is called learning and can be classified as supervised learning, unsupervised learning or 

reinforcement learning. This work will be restricted to supervised learning where a set of 

inputs with respective target outputs is given and some algorithm is performed to find the best 

values of weights and bias that make the neural network reproduce the set of given target 

outputs with the given inputs.  One must be careful to the overfitting problem. That is, usually 

one uses acquired data (from a sensor) to train the network and this data often has noise. If the 

network is trained at some point where this noise is well reproduced in its output, then this 

network probably will have a poor performance in generalizing unseen data. Better results 

will be obtained when the noise coming from the data is not reproduced by the network. 

Instead, the network function will always have some associated error when compared with 

original data (due to noisy data) but may produce satisfying generalization of new incoming 

data. 

The training process can occur in different ways, depending on the chosen algorithm. 

Among the most used ones, we can divide them into two groups: iterative and batch. An 

iterative training process is when a new step of training can be done at each new training data. 

In contrast, a batch training process is when the whole training process occurs only when all 

training data is already available. Depending on the network architecture and in the selected 

training algorithm, there can also be a training process which is neither pure batch-mode nor 

iterative-mode. Instead, one can realize each training step at every group of samples. It is 

important mentioning that we use the term iterative here to designate training processes that 

do not require multiple samples to be executed although a batch training process can run 

iteratively. Within this work it will be used the backpropagation of errors, which is a widely 

used method of training a neural network. This method is used in conjunction with an 

optimization technique which can be chosen among several available. Here we are going to 

use the gradient-descent algorithm which is widely used (and also one of the simplest) and the 

Levenberg-Marquardt (LM) which is more complex than the first one but also more powerful. 

Besides the network topology, one must choose previously what kind of controller is 

being implemented. That is, how the neural network will influence in the control loop. An 

often used strategy is to put the neural network as the controller block directly. The error 

signal of the control loop will be fed directly to the neural network input and its output will be 
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used as a control signal to the plant. Thus, training the network is the equivalent of tuning the 

controller. Another widely used structure is to use the neural network to learn the plant 

dynamics. Once the network has learned how the plant behaves, one can choose between 

many techniques of controlling the system based on the plant model. Details about the 

controller design methods will be discussed in the next chapter. Finally, one can opt for a 

control structure where neither the neural network will learn the model nor it will control the 

plant directly. Instead, one can choose any known controller with tunable parameters and use 

the neural network to tune these parameters. This can be seen as an adaptive controller and 

has been proposed by many authors like Chan (1995), Suzuki (2004) and Song (2013). 

As the training process of the neural network and the configurations of its parameters 

(number of neurons, layers, etc) require extra attention and dedication, we will focus in only 

one of the above mentioned strategies of controlling the system with ANNs. The method 

chosen here is to use the neural network to learn the model dynamics in contrast to the other 

algorithm investigated in prospective sections (Virtual Reference Feedback Tuning algorithm) 

which already tune a known controller without knowledge of the plant model. 

Finally, the Incremental Gaussian Mixture Network (IGMN) is a type of neural 

network proposed by Heinen (2010) and will be also tested here as well as the MLP for 

comparison purposes. Its structure is different from the traditional multi-layer perceptron as it 

works based on Gaussian Mixtures. The intuitive idea is to observe data samples and group 

them into Gaussian Mixture components. Hence, the data modeling is now treated from a 

statistical point of view. At every new sample, the network will verify if it can be grouped 

into any existent mixture or if it must create a new mixture component. This also means that 

the training process can be iterative and usually each sample can be used only once to train 

the network (in contrast to the MLP training algorithms that commonly need many iterations). 

The IGMN has many interesting advantages over the MLP. Among other features, the 

main attractive characteristics to our comparison are: it requires single step training process 

for each sample; it does not require the whole training data set previously (training process 

can be done iteratively); it does not suffer from the plasticity problem, which can be briefly 

explained as the inability of learning new patterns once the training process is over and it does 

not require a careful parameter initialization. Besides all these differences, the IGMN is 

supposed to have the same capabilities of a traditional MLP in terms of data representation 

(HEINEN, 2010). Thus, tests made with neural networks in this work can be done with both 

network types.  
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5 COMPLETE SYSTEM 

  

The goal of this work is to propose a complete system infrastructure and investigate 

some of these control techniques that could be tested within this system. In order to propose a 

complete system infrastructure, different topics will be discussed in this chapter like filter 

design and the physical components choice. The focus is to investigate the control techniques 

so this will be the most detailed topic. However, other topics not only may help in the overall 

understanding of many problems that go beyond control theory, as well as provide a 

suggestion of a framework that can be used to test other techniques not presented here. 

 

5.1 Controller 

 

As mentioned above, many different types of controllers can be used to achieve our 

goals. Besides the works that show the use of control techniques directly applied to 

quadcopters, it is also interesting to investigate the use of other techniques that were tested 

with different kinds of plants but might be useful here. 

We will start by understanding the main approaches when designing a controller. 

Many paths can lead to a good controller and this choice usually depends on what kind of data 

is available. The simplest case is when the plant of the processes already has its mathematical 

model available so one can directly design the controller based on that plant. In most cases 

this model is not available though. In simple processes with simple plants normally is easy to 

make a trial and extract the necessary parameters or estimation model so the controller design 

can be done with that estimated model. With other plants it may not be so easy to realize a 

trial which can hinder the model estimation. In our case, we cannot simply realize open loop 

trials with the quadcopter because it can damage the structure with a collision. Therefore, one 

must prepare specific environment test and test strategies to avoid this kind of problem. These 

strategies should be prepared carefully so it can truly represent a real life situation as we will 

see in the next sections. The use of simulators is often recommended, especially in those cases 

where trials may become expensive or too complex. 

As in most cases the plant model is not available, we will begin our analysis from this 

point. Thus, we can organize the controller design strategies in a flow diagram as depicted in 

Figure 5.1. Controllers can be first divided in two groups: model-based and data-based. The 

first one may be the most common which the controller is developed based on the model of 

the plant. Since we do not have this model available at first, then some estimation must be 
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done which can also be divided into more groups and will be discussed next. The other group 

of controllers represents those which are obtained based on acquired data directly. One might 

say that model estimation also depends on acquired data, but in that case this data is used to 

first elaborate the model and then find a suitable controller. In this case, data is used directly 

to find the controller and the plant model will remain unknown. 

Figure 5.1 - Controller design flow diagram 

 

Whereas autonomy is a major factor in this work, methods of model estimation and 

calculation of controllers can be divided also in two groups that are intrinsically related to 

adaptability: offline methods and online methods. In the offline methods, one must perform 

the calculations before starting the process while in the online methods the algorithms and 

calculations are realized while the process is running without the need to stop it. Find the 

desired results while the process is running can be extremely useful but usually requires extra 

computational capabilities which sometimes is impracticable. 

The controller design can be online or offline regardless if it is model-based or data-

based. Clearly the data acquisition is an online event by definition, but from the moment the 

data is collected one can opt for an online or offline technique. One should also note that an 

online controller design can be chosen when an offline model estimation process is used but 

this case is not considered here because once the model estimation is made offline there is no 
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great advantage in using an online method for the controller design. An autonomy chart can 

be seen in Figure 5.2 where the green boxes indicate our priorities in this work. 

Figure 5.2 - Control system autonomy chart 

 

We are going to focus on the online methods as the autonomy is the main factor of this 

work. Neural networks will be used in an attempt of estimating the plant model in real time 

while the Virtual Reference Feedback Tuning (VRFT) algorithm will be used to find a 

suitable controller directly from the acquired data. Even though this last technique can be used 

offline, we will give preference for an online implementation to prioritize the autonomy of the 

system. Since we are going to investigate online methods, we must have at least a poor 

performance working system so the data can be acquired. Therefore, a brief section will be 

dedicated to discuss a classical PID controller implementation. 

A special class of controllers will also be discussed here which is the predictive 

controller class. There are many types of predictive controllers but the main idea is to find the 

optimum control signal based on a prediction of the system behavior. To be able to preview 

this behavior one must have some knowledge of the process dynamics which usually is done 

through system identification. Our attempt to do so will be using a neural network to learn the 

system dynamics and so it can predict system next steps through time. 

 

5.1.1 PID 

 

As discussed in Chapter 4, a classical PID controller is very useful in many situations 

and so it will be used as a starting point in our experiments. We do not want to keep our 

efforts focused on finding the best PID controller for the quadcopter manually. Otherwise we 
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would not need an adaptive controller anymore (or at least it would not be so useful). Hence, 

we will use a simple P controller which is enough to run the closed-loop system. 

In order to allow a more flexible initial controller we made the control loop only with 

the angular velocity of the quadcopter through the gyroscope data. This will not invalidate our 

experiment since this simple closed-loop control configuration can make the quadcopter 

flyable so we can acquire data in order to run a controller tuning algorithm. In Figure 5.3 we 

can see the root locus of the position of the poles of a system that approximates the 

quadcopter dynamics in a closed-loop configuration with a P controller. If we are controlling 

only the angular velocity, we have only two dominant poles which represent the frame 

dynamics and the DC motors mechanical dynamics. If high gains are used to control this 

system, both poles are going off the real axis but their real parts will not change, so the system 

will not become unstable. As for the angle control we can see that now there is a pole at the 

origin (since we are integrating the angular velocity). We can see that if we want to use the 

same P controller for this system, high gains can easily destabilize the system beyond the fact 

that in the best case the system will probably be slow since the first non-zero pole is too close 

to the origin.  

It is worth noticing that this second order system used for representation purposes is 

an approximation of the real system. Thus, other poles might exist in the real system so one 

must be careful with some actions such as increasing the controller gain too much in angular 

velocity control so these poles that were not considered can start influencing significantly in 

the result. Also, the real system is not linear. However, the key point here is that the angular 

velocity control will be much more flexible in terms of setting an initial high gain that allow 

us to fly the quadcopter without destabilizing the system. 

Figure 5.3 - Root locus comparison 
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5.1.2 Artificial Neural Networks 

 

In this section we will investigate the use of neural networks to learn a system 

dynamics. In previous sections we have seen that having the system model will let us design a 

controller through different methods. When the plant dynamics can be described by a linear 

differential equation, one can find its transfer function and so design the controller based on 

classical control theory. The transfer function can be approximated through different methods, 

but usually involves some experiments with the plant. Here, two major factors will make our 

strategy to go in a different way.  First, our plant is not linear due to all nonlinearities of the 

fluid dynamics present in the air which are directly related to the quadcopter dynamics since 

its forces are exclusively made by its propellers. And the second reason is that we do not 

necessarily need the physical parameters (e.g. mass, momentum, etc) or the transfer function 

of the plant. Instead, we just need any structure that can copy the plant behavior. With that 

structure in hand, one can design a predictive controller or even use it to make experiments 

that would be unfeasible with the real plant. Therefore, we will create a neural network 

structure to feed with the same input signal that we provide to the real plant, and use the 

output from the plant as the target output to the network. 

 A mathematical structure that is often used for this is called Nonlinear 

Autoregressor Exogenous model (NARX) and is described as: 

 𝑦𝑡 =  𝐹  𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑛𝑦
, 𝑢𝑡 , 𝑢𝑡−1, 𝑢𝑡−2, … , 𝑢𝑡−𝑛𝑢

 + 𝜀𝑡  (5.1) 

where 𝑦𝑡  can be the values read from the system (output of the plant), 𝑢𝑡  the input signal and 

𝜀𝑡  an error function. The 𝐹 function is a nonlinear relation that takes as inputs the past values 

of the input, the past values of the output and the current value of the input and should 

estimate the current system output. As we are dealing with regression, 𝜀𝑡  represents the error 

between the target values and the estimated function output.  

NARX is commonly used to predict future values of times series. When used to 

predict a physical system output, one can imagine that the 𝐹 function must have the system 

dynamics incorporated internally. Since 𝐹 is a nonlinear function, we can use a neural 

network to fulfill this role in the equation. Therefore, we provide the current input, past inputs 

and past outputs to the network and train it to learn the next output. 

One should note that if Equation (5.1) is shifted one time step ahead, then 𝑦𝑡+1 will 

appear and it will depend on 𝑦𝑡 , which is the value that the network just predicted. Thus, the 

neural network output can be fed back to one of its own inputs creating a recursive neural 

network. This may let one make successive predictions of the dynamics of the plant. 
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Figure 5.4 - Recurrent neural network configurations 

 

Recursive networks can have two ways of training and using it which is depicted in 

Figure 5.4. The first one is when the network is in a closed loop as mentioned above, and it is 

called Parallel Architecture. The other is called Series-Parallel Architecture and it is when the 

network is used in an open loop configuration. That is, the past values from the output are 

provided by the user since they are known. The notation 𝑦  𝑡  denotes the approximation for 

𝑦(𝑡) provided by the network and TDL is the abbreviation for Tapped Delay Line, which 

represents the past values of that signal. In the input signal case, one can use the present value 

𝑢(𝑡) or not. Despite the great advantage of the network being its recursive configuration, 

better results are achieved using the Series-Parallel Architecture during the training process. 

This way, as the network is in an open loop configuration, one can use regular feedforward 

training algorithms like a simple regression with target values. 

We must define the network architecture itself. That is, number of neurons of each 

layer, number of layers and activation functions of each neuron. Even though there is not any 

consistent way of defining the best configuration for the network, one should know that one 

hidden layer is usually enough for most problems to be solved. Moreover, too few neurons in 

the hidden layer will restrain the network capacity as well as too many neurons may lead us to 

a more difficult training process because of the excess of parameters to optimize. Hence, we 

are going to start with one single hidden layer with five neurons and a single output. This 

single output will represent one control variable (e.g. angular velocity of a single axis). All 

layers with exception of the hidden layer will have a linear activation function in its neurons. 

The hidden layer neurons will have a hyperbolic tangent function as their activation function.  
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We are going to use a generic transfer function with a damped oscillatory step 

response to represent a poor tuned system as reference to the network regression. As the 

quadcopter can be approximated by a second order system whose poles represent the 

mechanic pole of the DC motor and the frame dynamics itself, we are going to use the 

following transfer function as the closed loop transfer function of the system: 

 
𝑇 𝑠 =

𝑌 𝑠 

𝑅(𝑠)
=

10

𝑠2 + 2𝑠 + 10
 (5.2) 

which has complex poles and unity DC gain. Its step response can be seen in Figure 5.5. 𝑌(𝑠) 

could represent the angular velocity of one axis and 𝑅(𝑠) the desired angular velocity to that 

axis although it does not really matter in this section since we only want an oscillatory 

response curve to test our neural network regressions. 

We must train the network so it can learn the dynamics of this system. Series-Parallel 

architecture will be adopted so the training process is like a common error backpropagation 

training process and traditional algorithms can be used. One must prepare the input data so it 

can be used like a simple feedforward network training process. Usually the training data is a 

set of arrays (patterns) where the first elements in the array are the inputs to the network and 

the last ones are the target outputs used to calculate the error relative to its current output. In 

our case, only the last element will be the target output 𝑦𝑡 𝑡 : 

 [𝑢 𝑡    𝑢 𝑡 − 1  …   𝑢 𝑡 − 𝑛𝑢    𝑦 𝑡 − 1   𝑦 𝑡 − 𝑛𝑦   𝑦 𝑡 ] (5.3) 

One should note that the number of delayed samples of the input and output can be 

closely related to the system order. Although we are using a second order transfer function, 

other poles are present in the system and may manifest themselves depending on the situation. 

Therefore, we are going to use the last three samples of the input and the last three samples of 

the output (i.e. 𝑛𝑦 = 𝑛𝑢 = 3). So the network should have a total of 7 inputs and one output. 

Each next training pattern will be shifted version of the previous one with updated values for 

𝑢(𝑡), 𝑦(𝑡 − 1) and 𝑦(𝑡). 

With all the training patterns, we should now choose an algorithm to realize the 

training process. We are going to investigate two well known algorithms based on 

backpropagation of errors. The first one is the classical Backpropagation Through Time 

(BPTT) which uses gradient descent technique and the second one is the backpropagation of 

errors with Levenberg-Marquardt (LM) optimization. But before the training process begins, 

one must initialize the network weights and bias values. Normally these values are random 

selected although this selection has an important role in the training efficiency as we will see 

below. 
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Figure 5.5 - Step response of example system 

 

We will use now a simple single input and single output neural network example to 

illustrate the weights and bias initialization importance. As the input and output layers have 

linear activation function in its neurons then the nonlinearities of the function we are trying to 

learn will be incorporated in the hidden layer. Each neuron in the hidden layer can be 

described by a hyperbolic tangent function: 

 𝑗𝑕 = tanh(𝑤𝑕𝑥 + 𝑏𝑕) (5.4) 

where 𝑗𝑕  is the output of the 𝑕𝑡𝑕  neuron, 𝑤𝑕  is the weight between the input 𝑥 and the 𝑕𝑡𝑕  

neuron and 𝑏𝑕  is its bias. Therefore, 𝑤𝑕  can be seen as a scale factor of the hyperbolic tangent 

curve and 𝑏𝑕  can be seen as its lateral translation. Thus, as the nonlinearity of a hyperbolic 

tangent is concentrated mostly between -2 and 2, one can imagine that the training process 

will try to arrange the neurons in such a way that their nonlinearities will cover different parts 

of the original function. So, Nguyen (1990) proposed that the bias and weights from the 

hidden layer should be adjusted so each neuron is initially responsible for a single piece of the 

original function. That is, the scale factor 𝑤𝑕  is set depending on the number of neurons and 

the original function input range (so the input range is divided between the hidden neurons) 

and the translation factor 𝑏𝑕  is set so each neuron is equally spaced throughout the original 

input range. A graphical result can be seen in Figure 5.6. A simple regression of the step 

response showed in Figure 5.5 was made with a single-input and single-output neural network 

with five hidden neurons. After the training process we can see the neurons influence in the 

final result. Figure 5.6 (a) shows which point of the curve is most affected by each neuron 
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while Figure 5.6 (b) shows the composition of the curve by each hyperbolic tangent function. 

Some interesting points should be mentioned here. First, even though the initialization 

parameters of the hidden layer are set to some specific values, they also readjust themselves 

during the training process as before, but most times these adjustments will be much smaller 

when compared to random initialization. Second interesting point is that one can note that one 

hidden neuron is centered outside the input range on the right. This means it has little 

influence on the composition and may be removed. Thus, probably similar results can be 

obtained with only four neurons in the hidden layer. 

Figure 5.6 - (a) Neurons positions and (b) regression composition by hyperbolic tangent functions 

 

Besides the formal demonstration made by Nguyen (1990), a performance example 

was made here using the regression made for test purposes (showed in Figure 5.6). A 

comparison between a random parameters initialization and Nguyen (1990) initialization is 

depicted in Figure 5.7 where the blue line represents the approximated function while the 

green line represents the original function. It is clear that the initialization process has 

significant influence on training results. The error criterion established here is: 

 

𝐸𝑟𝑟𝑜𝑟 =   𝑜𝑡 𝑡 −  𝑜𝑛𝑛  𝑡  
2

𝑛𝑠−1

𝑡=0

 (5.5) 

where 𝑛𝑠  is the number of samples of the original curve, 𝑜𝑡 𝑡  is the target output at a given 𝑡 

and 𝑜𝑛𝑛  𝑡  is the neural network output for the same 𝑡. Following this error criterion, the error 

found with random initialization was 0.1687 while the error using the initialization method 

proposed by Nguyen (1990) was 0.0184. Besides the reduced error, only 14 iterations were 

necessary to reach the training stop criterion while 26 iterations were necessary with random 
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initialization with the same criterion. Even though the stop criterion should take into 

consideration the overfitting problem and verify the neural network generalization 

capabilities, here we used the variance of the last 𝑁 + 1 errors as the stop criterion: 

 𝑣𝑎𝑟 𝑒𝑟𝑟𝑜𝑟 𝑡 , 𝑒𝑟𝑟𝑜𝑟 𝑡 − 1 , 𝑒𝑟𝑟𝑜𝑟 𝑡 − 2 , … , 𝑒𝑟𝑟𝑜𝑟 𝑡 − 𝑁  < 𝑚𝑎𝑥𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (5.6) 

where 𝑣𝑎𝑟 denotes the variance between its parameters, 𝑚𝑎𝑥𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 is the limit value and 

𝑒𝑟𝑟𝑜𝑟 is the error vector which keeps the error of each training iteration. Therefore, when the 

rate of change of the error becomes smaller than a threshold the training process ends. Thus, 

this stop criterion does not favor the best neural network results in terms of generalization. 

Instead, it aims in the training algorithm convergence efficacy. 

Figure 5.7 - Random vs Nguyen parameters initialization 

 

Now that the initialization criterion is established we will focus on the training 

algorithm. Again, for simplicity we are going to use the same example as above with a single 

input neural network. The purpose of following tests is to compare the backpropagation 

algorithm using gradient descent method against the LM method. The same network structure 

will be used. That is, 5 hidden neurons, no bias to the input neuron, linear activation function 

in the output and hyperbolic tangent function in the hidden layer neurons. 

Starting with the gradient-descent based backpropagation, we will define our error 

criterion to be similar to the one already used in Equation (5.5), using bold letters for vectors: 

 

𝐸 𝒙, 𝒗 =
1

2
   𝑒𝑝 

2
 

𝑃

𝑝=1

 (5.7) 

where 𝑝 is the pattern index which varies from 1 to 𝑃, 𝒙 is the input vector, 𝒗 is the 

parameters vector (composed by adjustable bias and weights) and 𝑒𝑝  is the error generated by 

each pattern, defined as: 
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 𝑒𝑝 = 𝑡𝑝 − 𝑜𝑝  (5.8) 

where 𝑡𝑝  is the target output when pattern 𝑝 is used and 𝑜𝑝  is the actual network output with 

that same pattern: 

 

𝑜𝑝 =  𝑏𝑜 +  𝑤𝑜𝑛  𝑡𝑎𝑛𝑕(𝑥𝑝𝑤𝑕𝑛 + 𝑏𝑕𝑛)

5

𝑛=1

 (5.9) 

where 𝑏𝑜 is the output bias, 𝑛 is the index that varies from 1 to the number of hidden neurons 

(5 neurons in our example), 𝑤𝑜𝑛  is the weight from the 𝑛𝑡𝑕  hidden neuron to the output, 𝑥𝑝  is 

the 𝑝𝑡𝑕  term of the input vector 𝒙, 𝑤𝑕𝑛  is the weight from the input to the 𝑛𝑡𝑕  hidden neuron 

and 𝑏𝑕𝑛  is the bias value of the 𝑛𝑡𝑕  hidden neuron. 

One should note that this error criterion is very similar to the one presented by 

Equation (5.5) with the exception of the division by a factor of 2. This term was introduced to 

simplify derivations. Also, now the error is presented like a function that depends on the input 

vector and parameters vector since both vectors have influence on the error value. Although 

weights and bias have different meanings in the network, they can be grouped into a single 

vector of parameters where the objective is to find the best values to this vector for a given 

criterion. In our case, the criterion is the error criterion and the objective is to minimize this 

error. Therefore, one can imagine that, given an input vector, the error function is a scalar 

field in the 16
th

 dimension (5 weights plus 5 bias from the hidden layer and  5 weights plus 1 

bias from the output layer) so the gradient of that field will point towards the next local 

maximum or local minimum (depending on the sign). Thus, the parameter vector is updated 

towards this gradient vector, scaled by a step size called 𝜆: 

 ∆𝒗 = − 𝜆𝒈 (5.10) 

where 

 
𝒈 =  

𝜕𝐸

𝜕𝑣1
    

𝜕𝐸

𝜕𝑣2
    

𝜕𝐸

𝜕𝑣3
   …    

𝜕𝐸

𝜕𝑣16
  (5.11) 

 𝒗 =  𝑣1   𝑣2   𝑣3   …    𝑣16 = [𝑤𝑕1   …   𝑤𝑕5   𝑏𝑕1  …    𝑏𝑕5   𝑤𝑜1   …    𝑤𝑜5   𝑏𝑜] (5.12) 

This intuitively yields the main problem of the gradient method: the step size. The 

traditional algorithm uses fixed step size (named 𝜆 here) and the problem is that large step 

sizes may cause the solution not to converge (at every step the parameters update more than 

enough so it passes through the solution) while small steps may cause the training process to 

be very slow. Gauss-Newton method assumes the error surface at any point in its space can be 

approximated by a quadratic curvature towards the nearest local minimum. With this 

assumption, one can derivate this approximation and set equal to zero which should give a 

unique solution. The main problem now is that the efficacy of this method relies on the 

assumption of a linear dependency between 𝑜𝑝  and 𝒗 (which implies in a quadratic 
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dependency between 𝐸 and 𝒗). Whenever these relations are not valid, Gauss-Newton method 

can be even worse than the gradient descent method. Levenberg then adds his contribution to 

the Gauss-Newton method which combines both previous mentioned methods. The step size 

is now variable and depends on the result of the previous iteration. When the calculated error 

increases, the step size is incremented in such a way that the update rule goes towards the 

gradient descent method. In contrast, when the error decreases the step size is decremented 

and the update rule becomes more like Gauss-Newton method. Marquardt then realizes that 

since Levenberg method is a combination of gradient-descent and Gauss-Newton method 

(which uses second derivative approximations), even though sometimes the step size is large 

at some point that the update rule is almost the same as the gradient-descent method one 

always has to calculate second derivatives approximations. Therefore, Marquardt insight was 

to use this information even with the gradient-descent part of the update rule. Proofs and 

demonstrations will be omitted here since they were already shown by Levenberg (1944), 

Marquardt (1963), Ranganathan (2004) and Roweis (1996) and it is not the main objective of 

this work. Thus, LM update rule becomes: 

 ∆𝒗 = − 𝐻 + 𝜆𝑑𝑖𝑎𝑔 𝐻  
−1

𝒈 (5.13) 

where 

 

𝐽 =  

 
 
 
 
 
𝜕𝑒1

𝜕𝑣1
⋯

𝜕𝑒1

𝜕𝑣16

⋮ ⋱ ⋮
𝜕𝑒𝑃

𝜕𝑣1
⋯

𝜕𝑒𝑃

𝜕𝑣16 
 
 
 
 

 (5.14) 

and 

 𝐻 = 𝐽𝑇𝐽 (5.15) 

which is an approximation of the Hessian matrix and 𝑑𝑖𝑎𝑔(𝑀) is a matrix with the same 

diagonal and dimensions of 𝑀 but with 0 on the other elements. One should notice that the 

closer the relation between 𝑜𝑝  and 𝒗 is to a linear relation, the better the approximation 𝐻 of 

the Hessian will be. 

Now we must derive the gradient vector 𝒈 and calculate the Jacobian matrix (𝐽) 

elements for our neural network example so we can implement both methods for comparison 

purposes. Clearly as the LM algorithm is an improvement of the gradient-descent method one 

should think that there is no reason to use the gradient-descent method anymore. However, 

because of the Jacobian matrix, the LM algorithm requires error from all patterns to be 

calculated before running the algorithm. Thus, it must be executed in a batch-mode. In 

contrast, the gradient-descent method can run iteratively at each pattern. So, in order to run 
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our online neural network model estimator, we must choose between continuously run the 

gradient-descent method or gather a set of information and so run the LM algorithm once. 

This will be discussed after comparison is made. 

To find the gradient vector, one must find the error derivatives with respect to each 

parameter of vector 𝒗. So, applying the chain rule we have: 

 𝜕𝐸

𝜕𝑣𝑘
=

𝜕𝐸

𝜕𝑒𝑝

𝜕𝑒𝑝

𝜕𝑜𝑝

𝜕𝑜𝑝

𝜕𝑣𝑘
 (5.16) 

 
𝜕𝐸

𝜕𝑒𝑝
=  𝑒𝑝

𝑃

𝑝=1

 (5.17) 

 𝜕𝑒𝑝

𝜕𝑜𝑝
= −1 (5.18) 

Let 

 𝑖𝑗 ,𝑘 = tanh⁡(𝑥𝑗𝑤𝑕𝑘 + 𝑏𝑕𝑘) (5.19) 

so 

 𝜕𝑜𝑝

𝜕𝑤𝑕𝑘
= 𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘

2  𝑥𝑝  (5.20) 

 𝜕𝑜𝑝

𝜕𝑏𝑕𝑘
= 𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘

2   (5.21) 

 𝜕𝑜𝑝

𝜕𝑤𝑜𝑘
= 𝑖𝑝 ,𝑘  (5.22) 

 𝜕𝑜𝑝

𝜕𝑏𝑜
= 1 (5.23) 

Therefore, 

𝒈 =  −  𝑒𝑝𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘
2  𝑥𝑝

𝑃

𝑝=1

,     −  𝑒𝑝𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘
2  

𝑃

𝑝=1

,      −  𝑒𝑝 𝑖𝑝 ,𝑘

𝑃

𝑝=1

,       −  𝑒𝑝

𝑃

𝑝=1

  (5.24) 

with 𝑘 varying from 1 to 5. 

One should remember that the gradient-descent method can be used iteratively 

(online). Thus, the gradient vector does not depend on all pattern errors like above. Therefore, 

the error function should be redefined to depend only on the current error: 

 
𝐸 𝑝, 𝒗 =

1

2
 𝑒𝑝 

2
 (5.25) 

so repeating above steps will give us 

 𝒈 =  −𝑒𝑝𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘
2  𝑥𝑝 ,     − 𝑒𝑝𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘

2  ,      − 𝑒𝑝 𝑖𝑝 ,𝑘 ,       − 𝑒𝑝  (5.26) 

Now we calculate the derivatives inside the Jacobian matrix: 

 𝜕𝑒𝑝

𝜕𝑤𝑕𝑘
= −𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘

2  𝑥𝑝  (5.27) 

 𝜕𝑒𝑝

𝜕𝑏𝑕𝑘
= −𝑤𝑜𝑘 1 − 𝑖𝑝 ,𝑘

2   (5.28) 

 𝜕𝑒𝑝

𝜕𝑤𝑜𝑘
= −𝑖𝑝 ,𝑘  (5.29) 
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 𝜕𝑒𝑝

𝜕𝑏𝑜
= 1 (5.30) 

which are similar to the gradient terms except for the error term. Thus, all essential terms have 

been calculated so we can now use both update rules and compare both methods.  

After several trials, the best result is showed in Figure 5.8. It is worth mentioning that 

in almost all tests the LM algorithm showed similar results while the gradient-descent 

algorithm did not approximate well the original function. The comparison depicted in Figure 

5.8 shows the best result obtained with the gradient-descent which still is not too good. Both 

of them had been initialized with same parameters (which used the Nguyen (1990 

initialization). Also, Figure 5.8 shows the path taken by each neuron during the training 

process where the cross symbol means the starting point and the asterisk is the ending point. 

One should notice that as they both start with same parameters, the cross points are equal in 

both graphs. With LM algorithm the hidden neurons basically change their amplitude while 

their positions do not alter much which means that the parameters initialization had an 

important role in the regression. 

Figure 5.8 - Best training result 

 

Another test is depicted in Figure 5.9 which shows a bad result from the gradient-

descent method. Now, with the LM algorithm the neurons move left so the first four neurons 

can cover the entire function and the last neuron moves away. This means that this result 

could be obtained with only four neurons. In contrast, the gradient-descent with the same 

initialization shows a bad result where most neurons were accumulated in the right part. Thus, 

most nonlinearities are now concentrated in the end of the graph where there is little or no 
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variations. Too few neurons were left in the critical part where the signal has great variations, 

which resulted in a poor approximation. Finally, most trials with LM algorithm took only 15 

iterations in average while all gradient-descent trials were fixed to 1000 iterations. 

Figure 5.9 - Bad training result 

 

Based on those results, we choose to use LM algorithm to train our recurrent network 

even though it is to be used in batch-mode. One should carefully choose the training data so 

the network can learn and generalize the model behavior without the need of huge amount of 

data because the calculation of the Jacobian matrix can become too costly. As the recurrent 

network only differs from the above example in the number of inputs, the derivations will not 

be shown here although steps followed to do so are basically the same. The selection of the 

training data should be done taking the signal frequencies into consideration. That is, linear 

dynamical systems can be described by a transfer function which relates the gain of the 

system with respect to each frequency. Even though our system is not linear, in most times its 

region of operation is very close to a linear system. Therefore, in order to learn the system 

dynamics one must know how the system behavior to each frequency input is. Thus, one 

should consider using signals which are composed by a wide range of frequencies, also called 

rich signals. Theoretically an impulse signal must contain all frequencies with same 

amplitude, but as it is a theoretical signal it cannot be used in practice. Even if we use a real 

approximation to the theoretical signal usually this kind of signal will not produce readable 

outputs due to its short duration and also most actuators are not capable of producing such 

high signals in order to make the system react. So, for our tests we will use a sinusoidal signal 

composed by a range of frequencies from 0 to 14 rad/s whose amplitude starts also in zero and 
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is increased linearly until 7, depicted in Figure 5.10. These values were arbitrary chosen 

although we want this range to include the oscillating frequency of our transfer function 

example (Equation (5.2)). That is, the plant oscillating frequency 𝑤𝑑  is calculated by: 

 𝑤𝑑 = 𝑤𝑛   1 − 𝜉2 = 3 𝑟𝑎𝑑/𝑠. (5.31) 

where 𝑤𝑛 =   10 is the natural frequency and 𝜉 =
1

 10
 is the damping factor. 

Our algorithm trains 10 neural networks and chooses the best result. Even though 

network parameters are initialized according to Nguyen (1990), some parameters are still 

initialized randomly. Therefore, each new training process can give different results, which is 

shown in Figure 5.12 where each trial represents a new network being trained. The 

performance comparison will be made according to the error criterion from Equation (5.5) but 

not only using the training data set. In other words, besides the sinusoidal input signal used 

for training the network, the total error used for comparisons will be calculated with other two 

input signals (called verification signals). This will be used to evaluate the network 

generalization capacity. So, even though one network can achieve low error levels with the 

training data set, it will be no useful if it produces large error values when applying unseen 

input signals. Thus, the best among the 10 networks will be selected based on the lowest error 

levels calculated with the training data set and with other two new data sets. 

Figure 5.10 - Test signal used in the example system 

 

We can see in Figure 5.11 a sample of error evolution through epochs of training from 

one of the ten networks. It is worth mentioning that even though the network error is 

decreasing when calculated using the training data set, we can see that its generalization 

capacity starts decreasing from a certain point and at each new training iteration the error 
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calculated using unseen inputs (not used to train the network) increases. Taking this into 

consideration, our LM algorithm was modified so it returns the best network configuration 

found during the whole training process (which is approximately in the 8
th

 epoch on the above 

example). 

Figure 5.11 - Error evolution during a single trial 

 

In Chapter 4 it was mentioned that the IGMN would be used for comparison purposes. 

Despite the differences between the networks architectures one can consider they both to be 

black boxes which receives the same input and should produce similar outputs in this 

comparison. The traditional feedforward network will do that by a combination of hyperbolic 

tangent functions as seen above while the IGMN will do the same work by a combination of 

Gaussian mixtures. Training algorithm to the IGMN is described by Heinen (2010) and will 

not be investigated here like the backpropagation algorithms since it already produces good 

results as is and the only proposed algorithm to this network until now. 

The first test with the IGMN was using a single output that represents a 1-step ahead 

prediction like the feedforward tests. Due to its simplicity to operate (i.e. no need to 

recalculate all derivatives and backpropagation terms in order to train the network with a 

different number of inputs and outputs) we performed another test with a 10-step ahead 

prediction. That is, instead of a single output, now the IGMN has 10 outputs which represent 

the prediction of the next 10 steps of the plant. The basic principle of the IGMN is that one 

must provide a set of samples so the network will create Gaussian mixtures with as many 

components as the set has. The network itself does not know what terms are inputs or outputs 

in this set. So when the user performs a recall operation (i.e. provide a set with missing terms) 
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the network will generate the missing terms. Therefore, one can view this operation as 

providing inputs and reading outputs. 

 

Figure 5.12 - Sum squared error in each trial 

 

Even though we achieved satisfying results, the neural controller itself was not 

implemented in the simulator or in the real system. The reasons will be discussed in next 

chapters along with the presentation of all results obtained here. All comparisons between 

networks and further comments will be also presented in next chapters. 

 

5.1.3 VRFT 

 

In previous sections we saw the main pros and cons of using the presented methods. 

On one hand, a classical control theory approach (e.g. simple PID controller) usually requires 

prior knowledge of the plant and will not be adaptive controllers in simple cases like a 

standard PID. On the other hand, an artificial intelligence approach (e.g. artificial neural 

networks) seems to be more powerful but it is also much more complex to deal with. 

Depending on the network structure one can easily implement an adaptive controller making 

use of the network learning capabilities. In an attempt to combine these main features of each 

method, we are going to explore the Virtual Reference Feedback Tuning algorithm proposed 

by Campi (2002) which is based on the classical control theories but has important features 
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such as no need of the plant model as well as the possibility to create an adaptive controller 

since it only depends on readable data and can be done in real time. 

The basic idea of the VRFT method is to use a virtual reference to calculate the 

controller. Usually in traditional methods one has the plant model so the controller can be 

found based on a reference model that represents the whole closed-loop system transfer 

function. That is, we establish what behavior we want through a transfer function and the only 

unknown block inside the closed-loop is the controller which is then calculated. Since we do 

not have the plant model, the VRFT method proposed by Campi (2002) is very suitable as one 

of its main features is the controller design without the plant model. It begins by providing a 

known input 𝑢(𝑡) to the system and reading its output 𝑦(𝑡). Similarly to traditional methods 

we also must establish a reference model 𝑀(𝑧) which has the characteristics that we want for 

our system in closed-loop as a single block. Therefore, we calculate our virtual reference 𝑟 (𝑡) 

that satisfies 𝑟 (𝑡)𝑀(𝑧) = 𝑦(𝑡) (abstracting the operators since the signals are represented in 

different domains). Since we know the signal 𝑢(𝑡) that must be applied to the plant so it 

generates 𝑦(𝑡), then we can calculate a controller which tries to generate 𝑢(𝑡) when some 

error signal 𝑒(𝑡) is presented in its input. One should notice that the error signal is also known 

since 𝑒(𝑡) =  𝑟 (𝑡) − 𝑦(𝑡). The controller usually has a predefined format which contains 

parameters to be optimized so the minimum error between the ideal controller and the 

achievable controller is found. 

Since the VRFT tests will be made using the simulator, the noiseless case described by 

Campi (2002) will be used here. First we should define our 𝑀(𝑧) which is the reference 

model that we want to approximate and is used by the algorithm to calculate the controller 

parameters. Even though our plant can be well approximated by a second order system, we 

can use a first order 𝑀(𝑧) since it can have fast response with zero overshoot depending on its 

pole location. The VRFT algorithm then minimizes a cost function such that the real system 

behavior is the closest possible to the 𝑀(𝑧) behavior according to the cost function 

parameters. We can choose the 𝑀(𝑧) pole location based on the performance that we want the 

system to have. That is, we can imagine a first-order continuous system that has a settling 

time of approximately 0.1s, so: 

 
0.1 ≈

4

𝜎
 (5.32) 

where 𝜎 is the pole of this continuous system. Therefore, 

 𝜎 = 40 (5.33) 
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and we can find the equivalent pole location in the discrete system through the bilinear 

transform relation: 

 
𝜎 =

2

𝑇𝑠

zp − 1

𝑧𝑝 + 1
 (5.34) 

where 𝑇𝑠  is the sampling period and 𝑧𝑝  is the pole location in the discrete system. Using a 

sampling period of 1𝑚𝑠 we find that 𝑧𝑝  must be approximately 0.96.Thus, our desirable 

system will be: 

𝑀 𝑧 =
1 − 𝑧𝑝

𝑧 − 𝑧𝑝
=

0.04

𝑧 − 0.96
 

which has its pole in 0.96 and unitary DC gain. After we build the 𝑀(𝑧) transfer function, we 

should filter the input signal and the error signal: 

 𝑒𝐿 𝑡 = 𝐿 𝑧 𝑒(𝑡) (5.35) 
 𝑢𝐿 𝑡 = 𝐿 𝑧 𝑢(𝑡) (5.36) 

where 𝑒𝐿(𝑡) and 𝑢𝐿(𝑡) are the filtered signals and 𝐿(𝑧) is a filter that one should choose 

according to some rules stated by Campi (2002). As our case uses simple functions and low 

(or none) noise, we do not need such filter to obtain good results (BAZANELLA, 2012), so: 

 𝐿 𝑧 = 1 (5.37) 

And so we define the cost function to be minimized as: 

 

𝐽𝑉𝑅 𝜃 =
1

𝑁
  𝑢𝐿 𝑡 − 𝐶 𝑧; 𝜃 𝑒𝐿(𝑡) 2

𝑁

𝑡=1

 

 

(5.38) 

where 𝑁 is the number of samples, 𝜃 represents the parameters to be optimized and 𝐶(𝑧; 𝜃) is 

the controller defined by: 

 𝐶 𝑧; 𝜃 = 𝛽𝑇(𝑧)𝜃 (5.39) 

where 𝛽 𝑧 =  𝛽1 𝑧   𝛽2 𝑧  …   𝛽𝑛 𝑧  𝑇 is a vector of transfer functions and 𝜃 =

 𝜗1    𝜗2   …    𝜗𝑛  𝑇 is the parameter vector and 𝑛 is the number of parameters to be optimized. 

We will use two different controllers here: PI and PID. The first one is a bit more 

sophisticated than a simple P controller as the integral term should lead us to zero steady-state 

error. Its transfer function can be described by: 

 
𝐶𝑃𝐼  𝑧; 𝜃 =

𝜗1𝑧 + 𝜗2

𝑧 − 1
=

𝜗1𝑧

𝑧 − 1
+

ϑ2

𝑧 − 1
=  

𝑧

𝑧 − 1
  

1

𝑧 − 1
  

𝜗1

𝜗2
  (5.40) 

And the second one has an additional term (derivative) to improve the system transient 

performance. Its transfer function will be: 

 

𝐶𝑃𝐼𝐷  𝑧; 𝜃 =
𝜗1𝑧

2 + 𝜗2𝑧 + 𝜗3

𝑧(𝑧 − 1)
=  

𝑧2

𝑧(𝑧 − 1)
  

𝑧

𝑧(𝑧 − 1)
  

1

𝑧(𝑧 − 1)
  

𝜗1

𝜗2

𝜗3

  (5.41) 
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Finally, as the cost function 𝐽𝑉𝑅(𝜃) is quadratic with respect to 𝜃, we can derive Equation 

(5.38) and find its minimum. Therefore, the parameter vector that minimizes 𝐽𝑉𝑅 (𝜃) can be 

calculated by: 

 

𝜃 =   φL t φL t T

N

t=1

 

−1

 φL

N

t=1

 t uL(t) (5.42) 

where 

 𝜑𝐿 𝑡 = 𝛽 𝑧 𝑒𝐿(𝑡) (5.43) 

 Although more steps are described by Campi (2002), the above steps should be 

enough to produce good results in our case (BAZANELLA, 2012). The obtained results are 

showed and discussed in Chapter 6 and Chapter 7. 

 

5.2 Filters 

 

 In order to use the discussed controllers in practice, one should design one or more 

filters to eliminate noise as much as possible from sensor readings and also to combine 

different sensors information to find most accurate values. Although many filters can be used 

to these purposes we are going to mention only the most used in quadcopters and will go into 

details only with two of them. When selecting a filter one must choose between a more 

complex filter which requires more computation but generate most accurate results or a 

simpler filter which requires less computation but generates worse results. When using a 

complex filter, probably the most used with quadcopter is the Kalman filter. Many variants of 

this filter have been proposed, but in its traditional form it requires the plant dynamical model. 

Therefore, as we do not have the plant model this filter will not be used here. Two much 

simpler filters can be used and produce satisfying results to our application as we will see. 

The first one is a simple single-pole recursive filter. It can be simply described in the 

time domain by the following equation: 

 yf t =   1 − α ys t + αyf(t − 1) (5.44) 

where 𝑦𝑓  is the filtered signal, 𝑦𝑠(𝑡) is the sensor signal (unfiltered) and 𝛼 is the filter 

parameter which is usually between 0.9 and 1.0. In the Z domain it is described as: 

 yf z =  1 − α ys z + αyf z z−1 (5.45) 
 yf z  1 − αz−1 = ys z (1 − α) (5.46) 
 

f(z) =
yf z 

ys(z)
=

(1 − α)

(1 − αz−1)
 (5.47) 

which is a low-pass filter that has a pole at 𝛼, a zero at origin and unity DC gain. According to 

Oppenheim (1989) we can use the bilinear transform to find the relation between discrete and 

continuous frequencies: 
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Ω = 2 tan−1  

𝜔𝑇𝑠

2
  (5.48) 

where Ω is the angle within the unity circle in the z-plane which represents the filter 

frequency response, 𝜔 is the frequency in continuous domain in rad/s and 𝑇𝑠  is the sampling 

period in seconds. We are going to use 𝑇𝑠 = 1𝑚𝑠 which is a reasonable sampling time to use 

both in the simulator and in the real plant. Thus, our cut-off frequency will be 40 Hz which 

also seems a reasonable value to attenuate most noise and still not interfere much in the sensor 

data acquired from the quadcopter movement. Therefore, our discrete angle according to 

Equation (5.48) will be: 

 Ω𝑐 = 2 tan−1 40𝜋0.001 ≈ 0.25 (5.49) 

Now we want the filter presented by Equation (5.47) to have its pole in such a way 

that its cut-off frequency matches above values. So, using the definition of cut-off frequency 

to be the frequency where the absolute value of the filter output is 
1

 2
 and considering 𝑧 = 𝑒𝑗Ω 

to make this frequency analysis, we have: 

 

 
f ejΩc    

f ej0 
  =  

 1−α 

 1−α ejΩc  
−1

 

1−α

1−α

 =  
ejΩc  1 − α 

ejΩc − α
 =

1

 2
 (5.50) 

  ejΩc  1 − α   2 =  ejΩc − α  (5.51) 

  2 1 − 𝑎 =  𝑒𝑗Ω𝐜 − 𝑎  (5.52) 

  2 1 − 𝑎 =  cos Ω𝐜 + 𝑗𝑠𝑖𝑛 Ω𝐜 − 𝑎  (5.53) 
  2 1 − 𝑎 =   cos Ω𝐜 − 𝑎 2 + (sin Ω𝐜 )2 (5.54) 

 2 1 − 𝑎 2 = cos2 Ω𝐜 − 2. 𝑎. cos Ω𝐜 + 𝑎2 + sin2(Ω𝐜) (5.55) 
 2 − 4𝑎 + 2𝑎2 = 𝑎2 − 2. a. cos Ω𝐜 + 1 (5.56) 
 𝑎2 + 𝑎 2 cos Ω𝐜 − 4 + 1 = 0 (5.57) 

where Ω𝑐  is our cut-off frequency and 𝛼 is our pole value. As the above equation is quadratic 

we should find two possible values for 𝛼. However, only one should be in our region of 

interest which is between 0 and 1 (i.e. inside unity circle to have a stable filter). So, with 

Ω𝑐 = 0.25 we have: 

 𝛼 =  
1.2824
0.7798

  (5.58) 

 Therefore, we can round the second value and use 𝛼 = 0.78 which is under common 

used values because we were more conservative when selecting the cut-off frequency in the 

continuous domain. Using the same theoretical plant that was used in previous sections, some 

arbitrary data was generated applying an arbitrary input to the system, reading its output and 

adding some Gaussian noise to it. In Figure 5.14 we can see a Bode plot of the filter response. 

One should notice that besides the low decaying of the filter magnitude after the cut-off 

frequency (due to its low order) we will also have a considerable phase shifting at certain 
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frequencies. The positive side is that the worst scenario in the phase plot is at frequencies 

above the cut-off frequency. In Figure 5.13 we can see the filter application to our arbitrary 

signal with noise and conclude that it is not near perfection but still shows a very good result. 

Figure 5.13 - Single-pole recursive low-pass filter 

 

According to Smith (1997) a very similar filter in terms of performance and 

complexity is the median filter. The basic idea of a median filter is to use a sliding window 

throughout the signal which finds the median value of the window at each iteration and this 

will be the filter output at that sample time. The main problem of this filter is the need of 

finding the median value of the window at every iteration, which by the way requires the 

window ordering. Besides that, large windows will necessarily introduce a phase shift to the 

filter output since we need to fill the window with many samples before starting to produce 

the output filtered samples. This problem can be reduced when high data sampling frequency 

is used so the window with many samples still represents a small time range due to the low 

time sampling period. The ordination problem will be optimized here with a modification to 

the standard algorithm. Instead of reordering the window at each new element insertion, we 

will keep track of elements indices so we only have to reorder the new inserted element at 

each iteration. Therefore, in the worst case we will have a linear complexity inside the “for 

loop” when compared to a 𝑛𝑙𝑜𝑔(𝑛) (where 𝑛 is the window size) complexity of the original 

filter (see proof in appendix). 

In Figure 5.15 we can see the result of an application of the modified median filter 

with the same signal used to test the recursive filter with a 15 sample window length. The 

result is very similar to the single-pole recursive filter but we can already notice a slight phase 

shift. Thus, we choose to use the single-pole recursive filter. 
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Finally, we must combine our sensors data in order to improve the overall accuracy 

like the Kalman filter which uses not only the plant model but the combination of available 

sensors in order to produce a reliable result. Since our filters are much simpler and will only 

filter a single signal, we must perform some operation to gather information from the sensors 

and produce more solid information. This will be done using a structure with the same 

appearance of the single-pole recursive filter. That is: 

 𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑐𝑐𝑒𝑙𝑎𝑛𝑔𝑙𝑒  1 − 𝛼 + (𝛼)𝑔𝑦𝑟𝑜𝑎𝑛𝑔𝑙𝑒  (5.59) 

where 𝑎𝑐𝑐𝑒𝑙_𝑎𝑛𝑔𝑙𝑒 is the angle inferred from the accelerometer data, 𝑔𝑦𝑟𝑜_𝑎𝑐𝑐𝑒𝑙 is the 

angle inferred from the gyroscope, 𝛼 is again a constant between 0 and 1 and usually used 

between 0.9 and 1, and 𝑎𝑛𝑔𝑙𝑒 is the combination result. 

Figure 5.14 - Single-pole recursive low-pass filter bode plot 

 

The intuitive idea behind this filter is to read fast variations almost only from the 

gyroscope which is more reliable for this purpose while slow variations will be mostly 

acquired by the accelerometer. This will minimize imperfections from the accelerometers for 

fast variations as well as correct the gyroscope drift in long-term. One should notice that 

before applying this filter one must calculate the angles from each sensor. For the gyroscope 

sensor we can easily find the angle by integrating the signal since it reads angular velocity. 

This integration process is one of the main factors that contribute to the sensor drift in the 

long run. With the accelerometer data we must find the orientation of the acceleration vector 

provided by the sensor. One must be careful that despite the sensor name, an accelerometer 

does not read common acceleration that we are used to work with. Instead, it measures proper 

acceleration which can be intuitively understood by imagining the acceleration vector of a 
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free-fall object with respect to the object being measured. So, an object at rest will have an 

proper acceleration vector pointing down and an object accelerating to the right will have an 

proper acceleration component pointing to the left. Thus, we must find the quadcopter normal 

vector through the accelerometer data so we can infer our angles or directions. Another 

important point is that if the quadcopter is in fact accelerating at some direction, we cannot 

know if the acceleration component that will appear is from an accelerating movement or if 

the quadcopter is only tilting without actually accelerating towards that direction. However, as 

the accelerometer data is used mostly for long-term correction, then this problem is not 

critical. 

Figure 5.15 - Median filter 

 

 

5.3 Component choice and system assembly 

 

In order to build a usable real system one should choose its physical components that 

suit the system requirements. In the host side, besides the computer playing the role of 

commander one must have a transceiver connected to this computer in order to exchange data 

with the quadcopter. Therefore, it must be capable of bi-directional communication in order to 

send commands to the quadcopter and receive its states (acquired data). As the focus of this 

work is the development (and test) of control system techniques, then one might prioritize fast 

communication (high baud rate) and low cost. Thus, high range will not be treated as priority 

since tests can be realized near the host so the user can observe closely what is going on. It is 

also desirable that this transceiver component be light and small especially in the quadcopter 
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side. In addition, the possibility that the user can configure the data link parameters (e.g. 

channel frequency, re-transmission, acknowledgement packet, etc) would also be interesting. 

Finally, it is helpful using a well known component since it should be easily found in the 

market and probably should have some documentation and examples of use on the internet. 

Building on those criteria, we propose the use of the nRF24L01 from Nordic 

Semiconductor. It uses RF waves in ISM band with its center frequency going from 2.4 GHz 

up to 2.525 GHz and channel resolution of 1 MHz. The data rate can be set up to 2Mbps 

which is one of the highest data rates for small size, cheap and low power devices found in the 

market these days. Another option could be a Wi-Fi module which uses the same RF band and 

most common types can achieve up to 11 Mbps or 56Mbps. However, for purposes of this 

work there is no need of such a high data rate in exchange of more power consumption. One 

should note that the quadcopter side of the system will run on batteries so the power saving is 

essential. The nRF24L01 reaches a maximum current of 14mA in TX/RX peaks and can run 

in the order of µA in power down mode. Yet, some interesting features can be configured like 

ART (auto re-transmission), auto acknowledgement, auto packet handling (packet 

assembling), dynamic or static payload and CRC error check. 

All these configurations and the data transmission itself must follow a protocol to go 

in and out. NRF24L01 uses a SPI bus to communicate with external devices. Therefore, one 

should build an embedded system capable of understanding the SPI protocol. Thus, since 

computers do not usually have peripherals that natively use SPI protocol, the host side must 

have an extra component to serve as an interface between the SPI and another protocol 

commonly used by computers like USB or RS-232. Most microcontrollers these days can do 

that.  

Should be made clear that when it comes to choice of components there are a wide 

range of types and manufacturers that suits our needs so one can choose different models than 

those proposed here without much difference in results. Our choice in this work takes as 

priorities the fundamental requirements shown by the system needs but even so there are 

many possible options. Therefore, those choices will also take into account user preference 

which usually do not hold any reasonable proof of being the best possible choice but will suit 

our needs as desirable. Thus, a microcontroller which should fit well in the host side is a 

PIC18F2550 from Microchip which is a simple version of the well-known PICF18F4550 

(also from Microchip) but still holds the main features that we need like native USB 
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peripheral, SPI port and it also has some other nice features like small size and well explained 

documentation. 

On the quadcopter side we must also choose a microcontroller to exchange data with 

the transceiver and with sensors and actuators. The starting point of this choice is whether this 

microcontroller can natively generate 4 different PWM signals (one to control each motor). 

As our preference is for Microchip devices then the PIC24H family looks like a great option 

since it is one of the simplest families whose majority of its components meet this 

requirement. Yet it is not a very simple family since it has a 16-bit architecture (which has 

greater performance compared to all 8-bit devices). It is worth noticing that devices of this 

family can achieve up to 40 MIPS in performance which will see later that is more than 

enough to deal with data sampling from the sensors. Therefore, between the remaining 

possibilities we will use the PIC24HJ128GP202 which is an intermediate component among 

the devices in this family. 

The last components to be chosen are the sensors and the battery, since the actuators 

will be considered here to be part of the physical structure of the quadcopter which will not be 

discussed here (therefore any structure can be considered). The most common batteries used 

in quadcopters are Li-PO with variable number of cells. Each cell produces around 3.7V 

which may vary a little depending on its chemistry. We will use a battery that suits our 

actuators and should last long enough for tests. So, our choice is any 3-cell Li-PO battery 

(11.1V) with charge capacity of 4000mAh. 

As for the sensors, it is quite common to use a single board which contains all the 

main sensors. Usually the main sensors are composed by an accelerometer (which measures 

proper acceleration) and a gyroscope (which measures angular velocity). In many cases those 

sensors are enough to realize stable flights, but one can add extra sensors like barometer 

(which measures atmospheric pressure and is used in altitude control), magnetometer (which 

can measure the magnetic field of the earth and is used mainly in the yaw axis orientation), 

distance sensors and others. Sensors operation, quadcopter orientation and related subjects 

were already discussed in previous chapters. 

There is a wide variety of orientation sensors and when used together in a single board 

they are usually called an IMU (inertial measurement unit). Our system will use a 6-DOF (six 

degrees of freedom) IMU composed by an accelerometer (ADXL345 from Analog Devices) 

and a gyroscope (ITG3200 from InvenSense) which is an widely used IMU with low cost. 

The differences between sensors found in market are mainly in precision, drift and noise. 

Even though we choose a cheap IMU, one can filter the incoming data and mix values from 
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both sensors so the resulting angle of orientation can be used in the control system without 

major problems. Of course one should look for better sensors as the precision sought is 

higher. 

All devices and components mentioned above should be put together in some way. 

What follows is a proposal of assembling depicted in Figure 5.16. Note that even though the 

embedded system can run with a single microcontroller, our system uses two units working 

together. This is because some of the control systems to be tested contain heavy math to be 

executed.  

Since we want to make the embedded system as independent as possible, those 

calculations should be made inside the microcontroller. However, some operations may last 

sufficiently long to produce bad effects on the actuators control. In other words, once 

established a sampling period, the control system expects that data is acquired and dealt with 

in that period. To be able to realize complex calculations and still respect the sampling time, 

one should create more complex algorithms to be able to interrupt calculations whenever 

needed to process the next sample. Instead, a multi-threading approach seems interesting in 

this case where one thread can be always dealing with the control system (sampling and 

updating PWM values) and the other thread can deal with transmission to the host and 

calculations needed to update the control system parameters. Since these microcontrollers 

only support single-thread operation, we use two microcontrollers together, each representing 

one single thread. 

From now on we will call one of the microcontrollers the main microcontroller and the 

other the auxiliary microcontroller. The main microcontroller will be responsible for heavy 

calculations and exchange data with the host while the auxiliary one will be responsible for 

data sampling from sensors and updating actuators values. Note that while adopting a data-

driven controller design where the embedded system itself will design the controller that suits 

it, those calculations will take place in the main microcontroller but the results should be sent 

to the auxiliary one. 

The analogous to the cross-thread communication in the above example is a physical 

connection between the microcontrollers USART port. Through that port the main 

microcontroller can update the controller which is running inside the auxiliary 

microcontroller. This architecture is especially useful when using an iterative method of 

controller tuning because the main microcontroller will be always learning new parameters 
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and updating the auxiliary one. Still a one-shoot method can also be used even though the 

main microcontroller might be underutilized. 

Figure 5.16 - Complete system proposal 

 

Yet in the quadcopter side there is a single bus of communication connecting both 

sensors and both microcontroller. This is a I²C bus which allows that multiple devices can be 

connected to it to read the same information. Note that the main microcontroller needs to read 

sensors information to calculate new controller parameters and the auxiliary microcontroller 

needs the same information to serve as feedback in its closed-loop control system. The 

transceiver needs only to be connected to the main microcontroller, so it is connected directly 

to it through its SPI port. 

In the host side we have a PIC28F2550 microcontroller to serve as interface between 

the computer and the transceiver, as already mentioned. This microcontroller has native USB 

to communicate with the computer and a native SPI port to exchange data with the 

transceiver. 

The nRF24L01 transceiver allows bi-directional communication even though we must 

set each one as receiver or transmitter. The communication happens by using 

acknowledgement packages with payload. In other words, the transmitter can transmit data 

normally to the receiver but when the receiver wants to transmit back some information it 

must use the acknowledgement packages of the communication. This means that the receiver 

can only send back useful information whenever the transmitter had already sent some data. 

This is not much of a problem since the quadcopter should always be transmitting acquired 
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data to the computer. So, whenever the computer wants to send back some command, it uses 

one of the acknowledgement packages of the data packets received. 

Finally, the sensors maximum output data rate is 800Hz when running I²C in the fast 

mode with a clock frequency of 400kHz. Therefore, the microcontrollers running at 80MHz 

which allows an operation of 40M instruction cycles per second will be much faster than the 

maximum sampling period. Even though the auxiliary microcontroller will not execute heavy 

calculations, it will have enough time to realize the controller operations for most common 

controllers like PID besides reading the sensors data. 

 

5.4 Simulator 

 

In order to test the controlling techniques we are going to use a 3D simulator which 

was created specifically for this purpose since tests directly in the plant may damage the 

aircraft. Even though there are many flying simulators available, most of them only deals with 

traditional aircrafts like helicopters and airplanes and do not have a quadcopter model. Some 

of them allow the user to create his own model with detailed parameters. No ready and 

realistic quadcopter model was found for testing purposes though. Therefore, a simpler 

simulator was implemented without detailed physics (nonlinearities) since the objective here 

is only to test the control system efficacy and not the physics realism. The simulator can be 

divided in two parts: the host side and the 3D simulator itself.  

The host side can also be used with the real plant by switching only the 

communication interface used (TCP to USB). The software was developed using C# 

language. The communication with the transceiver is made through the Microsoft HID Class 

which is an easy-to-use generic USB class that can communicate with devices of this class. In 

previous section we saw our suggestion of components to use in the real model. Thus, the 

microcontroller used to communicate with the computer has native USB interface which 

allows easy configuration as a HID device and other parameters. Similarly, the 

communication with the 3D simulator is made through TCP classes found in Microsoft .NET 

Framework. As the software purpose is mainly to monitor received signals from quadcopter, a 

graph library was developed to plot real-time information as the host receives sensors data. 

The software interface can be seen in Figure 5.17 where there are 3 instances of the graph 

component to represent each axis of the accelerometer sensor. In the left side we can see the 

TCP connection parameters and an extra textbox with a button which allows the user to send a 
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specific command to the quadcopter. A single byte was reserved for this purpose, so we can 

add up to 255 different commands to the system. The USB parameters are configurable 

internally only since the device parameters like PID&VID (which are used to identify the 

device) should not be variable parameters of the hardware. A dedicated thread runs in the host 

background exclusively to receive incoming data. Then the main thread accesses this data so 

it can be plotted. 

Figure 5.17 - Software interface 

 

The 3D simulator was created using the Unity3D tool which has its own physics 

engine. We only need to create the 3D model and write the scripts which will describe the 

interactions between objects. The 3D model of the quadcopter was created using the Blender 

software and exported to Unity3D in FBX format. The propellers were modeled separately so 

they can spin freely.  

As our simulator should conform to the real system, similar values of physical 

parameters will be used. Some of them can be extracted directly from the chosen components 

(e.g. PWM value or operating voltages) and others should be an approximation of most used 

parts (e.g. propellers geometry, motor speed, etc). Depending on the propellers type, the 

generated thrust can behave differently with respect to its rotation speed. Therefore, we will 

approximate this relation by a quadratic equation since most used propellers have a near 

quadratic relation. Also, a constant of proportionality is introduced so the rotation speed also 

becomes coherent with generated thrust. This value was also estimated and it was based on 

the maximum rotation speed of most common rotors that usually is between 

15.000rpm(250Hz) or 18.000rpm(300Hz). 

To control the DC motors, one must generate PWM signals to the ESCs so they can 

feed the motors correctly. The PWM parameters of most used ESCs follow the same standard 

where its frequency is usually around 50Hz (and some ESCs can receive up to 300Hz or 

400Hz depending on the model) and the duty cycle varies from 1.0ms (stopped) to 2.0ms(full 

speed). Therefore, a possible and suitable configuration of our microcontroller is to use a 
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PWM frequency of 100Hz which will give us a resolution of 200ns. With that configuration, 

we can vary PWM duty cycle from 5000 (1.0ms) to 10.000(2.0ms). 

Now we must establish a relation between the generated PWM signal and the propeller 

thrust. This relation cannot be direct since motors have angular momentum and it takes some 

time to achieve the desired speed. From the control theory point of view, there are two main 

poles in the system and they are the electrical and mechanical poles. Since the mechanical 

pole is much slower than the other one, we can ignore the electrical pole. Therefore, we must 

approximate the motor equations in order to model its real behavior. When a motor is 

powered, it generates back-EMF (electromotive force) which is proportional to its angular 

velocity: 

 Vemf = k1ω (5.60) 

where 𝜔 is the angular speed in rad/s and 𝑘1 is a constant of proportionality. Ideally this 

voltage (EMF) is zero when the motor is at stall speed and it should equal the power source 

voltage when spinning with no load. The current through the motor is then proportional to the 

difference between the power source voltage and the back-EMF: 

 
I =

Vs − Vemf

R
 (5.61) 

where 𝑅 is the motor resistance and 𝑉𝑠   is the power source voltage. By combining both 

equations we get: 

 
I =

Vs − k1ω

R
 (5.62) 

And finally, the torque of the motor is proportional to its current: 

 τ = k2I (5.63) 

So, 

 
τ = k2  

Vs − k1ω

R
  (5.64) 

where 𝑘2 is another constant. According to these equations there are three parameters to 

configure the motor behavior (𝑘1,𝑘2 and 𝑅) and we have a direct relation between the source 

voltage and torque of the motor. The source voltage can be obtained directly from the PWM 

value so the torque is calculated and applied to the physics engine in the simulator. The 

angular velocity is then updated so the torque will be reduced until near zero in steady state. 

The lift forces can be generated based on the quadratic relation with respect to the motor 

speed and are always perpendicular to each propeller. The last force to be generated is the 

force responsible for the yaw rotation. This force can be approximated by a linear or even a 

quadratic relation with respect to the propeller speed as well as the lifting forces since they are 

not a critical part of the system and will exist only to test the yaw control. To keep coherence 
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we should set its proportionality constants much lower than the lift forces ones since this force 

is much smaller. All these equations and values are put into C# scripts that are natively 

interpreted by the Unity3D. We also kept separate files that represent distinct real components 

(different microcontrollers will have different source codes). A screenshot of the simulator is 

shown in Figure 5.18. Also, we can see in Figure 5.19 a simulation of the step response of one 

motor. The theoretical PWM value is applied and some RPM response is read through TCP 

and plotted over time. Its behavior is consistent with reality. The simulator is also capable of 

generating text files that can be easily imported by MATLAB software in order to perform 

calculations or plot the acquired data. 

Figure 5.18 - Quadcopter 3D Simulator 

 

Figure 5.19 - Acquired data sample 

 

  



61 

 

 

 

6 RESULTS AND COMPARISONS 

 

The software worked as expected. It was possible to establish a communication 

channel between the host application and the 3D simulator. One should notice that an UDP 

connection could also be used since most packets are purely informative (used for plots) and 

we do not need all of them for any critical operation. However, as we want a system that 

could be extended to extra operations like using the host software to calculate control 

parameters, if needed, then it is interesting to establish a reliable communication besides the 

fact that it is desirable that the commands sent from the host are always received by the 

quadcopter.  

The dynamics in the 3D simulator seems to agree with reality and even though there is 

a host application to receive acquired data and send flying commands, the 3D simulator shows 

some essential information in real time and gives the user the possibility of not using the host 

and controlling directly the quadcopter model through the keyboard. Also, it is possible to 

export data from the 3D simulator into MATLAB for further analysis (which we will do as 

follows). 

Figure 6.1 - P controller with gyroscope data 

 

The first simulation was made with the simplest controller within our proposals which 

is a simple P controller. Since we made a closed-loop with the gyroscope data only, we had a 

wide range of gain values that could be used without major problems. Initial tests with unit 

gain already worked but higher values were used so the system could respond faster. Figure 

6.1 shows an angular velocity reference being followed by the system with the controller gain 
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set to 100 in all axes. It can be seen that the closed-loop system is working as expected. Thus, 

Figure 6.2 shows the step response of the system. One should notice that the system response 

is very similar to a first order system and that the P controller is not enough to eliminate the 

steady state error. If we increase the controller gain, the second pole might begin to have 

significant influence but the system will still present steady-state error (even though it will be 

smaller). In Figure 6.3 we can see the same system but with controller gain set to 1000. Now 

the system response looks like a second order system response. The system is faster but with 

overshoot. Yet, although some steady state error still exists, we can see that it is very small 

(almost insignificant). 

Figure 6.2 - Step response of closed-loop system with P controller 

 

Figure 6.3 - Step response with higher gain 
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It is important to note that the system poles are directly related to the DC motors 

dynamics. Hence, Figure 6.4 shows the step response with slower motors. The resistance 𝑅 in 

Equation (5.64) was increased and the controller gain was set to 100. In comparison with 

Figure 6.2 that used the same controller, we can see in Figure 6.4 that both poles of the system 

already have influence in its response. In Figure 6.5 we can see the step response of the 

system with the controller gain set to 500 (half of the controller gain in step response of 

Figure 6.3). With such configuration, one can notice the high overshoot and system 

oscillation. Therefore, depending on the physical parts of the quadcopter, the P controller gain 

might need a careful tuning. 

Figure 6.4 - Step response with slower motors 

 

Figure 6.5 - Step response with slower motors and increased gain 
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Despite the system performance, the above tests show that the system is following the 

reference correctly. Thus, with a flyable quadcopter we can use the adaptive methods 

proposed in previous chapters to design a better controller. From an artificial intelligence 

point of view we can use an ANN to learn the quadcopter dynamics so we can design a 

predictive controller that always finds the best control signal based on the dynamics 

prediction (SOLOWAY, 1997). The following results were obtained from the theoretical 

model from Equation (5.2). The signal used to excite the system as well as its respective 

output (which is used to train the network) are shown in Figure 5.10. Figure 6.6 and Figure 

6.7 show two other input and output signals used for verifying purposes. That is, we used 

those inputs to our trained network and compared its output with the real system output.  

Figure 6.6 - Verification signal 1 

 

Figure 6.7 - Verification signal 2 
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 Initially the networks structures that we created have only one output, which means 

they were only trained to predict the very next sample (1-step ahead prediction). The results 

from the traditional recurrent multi-layer perceptron trained with our Levenberg-Marquardt 

algorithm in a Series-Paralell configuration is shown in Figure 6.8 for the training signal and 

in Figure 6.9 and Figure 6.10 for the verification signals.  

Figure 6.8 - Recurrent MLP 1-step ahead prediction of training signal 

 

Figure 6.9 - Recurrent MLP 1-step ahead prediction of verification signal 1 

 

 One should notice that even though the network could predict the system dynamics 

reasonably well, significant errors still can be seen at some regions. However, it is worth 

mentioning that these errors occur mostly when the input signal has a step variation in its 

composition. Hence, when comparing the first verification signal with the network output one 

should notice significant error at initial moments since the input signal is a pure step signal. 
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Yet, major errors in the second verification signal can be seen also in initial moments where 

the input signal is composed by a sequence of two step signals. This occurs because the step 

signal is composed by more frequencies than the frequencies that compose our training signal.  

Figure 6.10 - Recurrent MLP 1-step ahead prediction of verification signal 2 

 

 The IGMN was also used to predict a single step ahead so we can compare to the 

recurrent MLP results. The same training signal and verification signals were used. Figure 

6.11 shows the network prediction of the training signal. Figure 6.12 and Figure 6.13 show 

the network prediction of the verification signals. 

Figure 6.11 - Recurrent IGMN 1-step ahead prediction of training signal 

 

 Although the IGMN results are somehow similar to the MLP results, one can point 

remarkable advantages on using the IGMN network for our purposes. First, the regression 

itself achieved better results than with the MLP. Second, due to its architecture and training 
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process, a single use of each sample was enough to produce such results. Even though the LM 

algorithm almost always need less than 20 iterations (which is considered to be a fast 

convergence) to find good results, a single training iteration is considerably better. Lastly, 

also due to its structure, the IGMN can use each single sample at a time without the need of 

keeping track of more samples to perform the training process. Besides the memory savings, 

one should notice that as the LM algorithm needs all the samples at once, then the training 

process and calculations can become very costly depending on the training set size. In 

contrast, the IGMN can continue to improve its parameters at each new sample without 

keeping track of past samples or past training processes. 

Figure 6.12 - Recurrent IGMN 1-step ahead prediction of verification signal 1 

 

Figure 6.13 - Recurrent IGMN 1-step ahead prediction of verification signal 2 
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 As our sampling period is small when compared to the system dynamics (i.e. the 

sampling frequency is much higher than the normal operating frequency range of the 

quadcopter dynamics), then a single step prediction is not much useful in a predictive 

controller since it does not give sufficient information of future movements. One possibility to 

try to work around this problem is closing the network loop (use the network in Series 

configuration) so it uses a predicted sample to predict another one (recursively). Figure 6.14 

shows that this approach did not produce good results even when using the training signal. 

The reason is that each sample prediction has an associated error when compared to real 

system output, so when we feedback the predicted output we are also providing an error to the 

network input. Hence, this positive error feedback will make the network output quickly 

diverge from the real output. 

Figure 6.14 - IGMN recursive prediction 

 

 Another strategy can be to increase the network output size so we train the network to 

predict more samples at once. Since the IGMN achieved better results than the MLP, we used 

it again but now with 10 outputs (10-step ahead prediction). To visualize this result, Figure 

6.15 shows the network output curve composed by sets of 10 predicted samples sequentially. 

That is, at the end of each 10
th
 predicted sample, we use the real system output (which is 

known) in the input again to start a new prediction. One can notice that the results are pretty 

good and very close to the 1-step ahead prediction. Figure 6.16 and Figure 6.17 show the 

same 10 steps prediction when feeding the same network with the verification signals. Again, 

reasonable results can be seen but errors are more visible and can be majorly associated to the 

input signal characteristics. 
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Figure 6.15 - IGMN 10 steps prediction of the training signal 

 

Figure 6.16 - IGMN 10 steps prediction of verification signal 1 

 

Since our sampling period was 1𝑚𝑠, even predicting the next 10 samples may not be 

enough to design a robust controller. Thus, even though our sampling period is small, we 

could use more spaced samples to train the network so each new sample can represent more 

significant data from the system dynamics point of view. One must be careful with the 

frequency range that the quadcopter dynamics work so between a pair of samples we do not 

lose information. This issue is strictly related to Nyquist sampling theorem but we cannot find 

a precise maximum frequency since it depends on the mechanical parts of the quadcopter and 

how fast it can react as well as how fast we need to control it. Using more spaced samples and 

a N-step ahead prediction may let us estimate significant future behavior of the system. Due 
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to these issues, a neural network based predictive controller was not implemented in the 3D 

simulator. Further discussions can be seen in the next chapter. 

Figure 6.17 - IGMN 10 steps prediction of verification signal 2 

 

 The implemented controller was based on the VRFT method. The main feature of this 

method is to avoid the trial and error tests when tuning the controller like the P controller 

mentioned previously. In this particular situation we could easily find some suitable P values 

for the system, but depending on the system complexity and number of controller parameters 

this task can become extremely difficult.  

 The first tests were made with MATLAB software only. Based on the acquired data 

from previous tests with a P controller, it was possible to approximate the quadcopter 

dynamics by a linear transfer function. One should notice that even though the methods used 

here should not be model-based, this approximation is only to test the algorithm results. Again 

we can approximate the system dynamics by a second order transfer function. With slower 

motors we could make a fast and reasonable estimation with one pole at 0.9999 and the other 

pole at 0.995. Therefore, our 𝐺(𝑧) will be: 

 
𝐺 𝑧 =

𝑌 𝑧 

𝑅(𝑧)
=

 1 − 0.9999  1 − 0.995 

 𝑧 − 0.9999 (𝑧 − 0.995)
 (6.1) 

where 𝑌(𝑧) represents the angular velocity of one axis, 𝑅(𝑧) the angular velocity reference 

and Figure 6.18 shows the response of the real plant and of our estimation for the same input 

signal. Clearly we do not need an exact approximation since we are using this function for 

testing purposes only. Figure 6.19 depicts the VRFT result where the plant response in an 

open-loop configuration, the 𝑀(𝑧) response (desired system response in a closed-loop 

configuration) and the designed system (using VRFT) response are shown in the same plot. 
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One can easily see that the plant without a controller has a very slow response compared to a 

plant with a controller. In this case, the 𝑀(𝑧) pole was set to 0.999 and we see that the 

resulting system responds almost as the desired system. The next tests will be made using a 

𝑀(𝑧) with its pole set to 0.96 (calculated in Chapter 5). This implies a faster response, so the 

next figures will not show the open-loop plant response in the same plot because of the time 

scale. 

Figure 6.18 - Real and estimated plant comparison 

 

Figure 6.19 - Step response of the plant without a controller (open-loop) , desired closed-loop system 

and the plant with the tuned controller (closed-loop) 

 

 It can be seen in Figure 6.20 the comparison between a PID controller and a PI 

controller, both tuned by the VRFT algorithm using the desired system transfer function 𝑀(𝑧) 

with its pole at 0.96. One should notice that as we moved the 𝑀(𝑧) pole away from the unit 
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circle, then we want a faster system. However, the closed-loop system clearly has limitations 

due to the plant dynamics. Hence, even though we want the closed-loop system to behave as 

𝑀(𝑧), the best controller within the possible tunable parameters may result in oscillatory or 

slower response. In Figure 6.20 we can see that the closed-loop system with the tuned 

controller responds with an initial slope that is close to the desired response slope. 

Nevertheless, this results in a step response with overshoot. Yet, there is a significant 

difference in performance between the PI and the PID controller. 

Figure 6.20 - PID vs PI controller tuned by VRFT algorithm 

 

After verifying that the VRFT algorithm is working fine, further tests were made 

although they were not made directly in the 3D simulator. Instead, data was acquired in the 

simulator and used to calculate the controller parameters externally with MATLAB. These 

parameters were then used in the 3D simulator as the controller parameters. Again, the PI 

controller is compared with a PID controller when controlling the gyroscope data while flying 

the quadcopter in the simulator. Figure 6.21 shows the comparison between both controllers 

that were tuned by the VRFT algorithm, using fast response motors and setting the 𝑀(𝑧) pole 

to 0.96. It can be seen that the system is very well behaved and the response time is very close 

to what we expected when the pole of 𝑀(𝑧) was calculated in Chapter 5. Figure 6.22 shows 

the same comparison but now using slower motors. Clearly the system response is much 

worse since the plant is much slower and we are trying to obtain the same fast response as 

before (since we are using the same 𝑀(𝑧)). Yet, the PID response is slightly better than the PI 

response although they are similar. Finally, as the system with fast motors is very well 

behaved, another experiment was made with a faster response in 𝑀(𝑧). Now, its pole was set 

to 0.9. Figure 6.23 shows that the system response began to show some overshoot as we are 

trying to make it respond faster than it is possible with this type of controller. Still, the PI and 

PID responses are very similar. 
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Figure 6.21 - PI and PID controllers tuned by VRFT using fast motors and M(z) pole at 0.96 

 

Figure 6.22 - PI and PID controllers tuned by VRFT using slow motors and M(z) pole at 0.96 

 

Figure 6.23 - PI and PID controllers tuned by VRFT using fast motors and M(z) pole at 0.9 

 

 It is also important to notice that in all cases the system showed some steady state 

error due to controller signal quantization. This happens because the controller internally 

converts the calculated control signal to integer values. The conversion is needed because the 

control signal must be a PWM duty cycle value which is specified in an integer range from 
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5000 to 10000. Therefore, whenever the error value is low at some point that the generated 

control signal is between two integers, nothing is done since the integer part of the control 

signal will remain unchanged. Hence, no actions occur in the system. As our controllers have 

an integral term, this small error is accumulated until the control signal can reach the next 

integer value. Then, the system will respond the other way around and the same thing will 

happen again. Thus, some kind of oscillation around the reference will occur like when one 

uses a bang-bang type controller. This action cannot be seen in our experiments since the 

oscillation period is too large and its amplitude is small. However, it also can be seen that the 

PID controllers show a slightly larger steady state error when compared with PI controller. 

This happens because the gains used with PI controllers are larger than the PID controller 

gains. Thus, the control signal truncation problem will be less apparent with PI controllers 

since its higher gains make the control signal exceeds the next integer value more easily. 

 Even though satisfactory results were obtained, we still do not have a purely online 

control tuning since MATLAB was used to run the VRFT algorithm. Hence, the same 

algorithm was implemented in Unity3D in order to directly find the controller parameters 

during the flight. However, bad results were found due to rounding issues. That is, the VRFT 

algorithm requires high precision both with small values and with very large values. Single-

precision float type was not enough to obtain good results. Although double-precision float 

type could be used, some calculations were performed using Unity3D Matrix4x4 type which 

is natively composed by single-precision terms. 
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7 CONCLUSION AND FUTURE WORKS 

 

Starting with a simple P controller it can be seen that one can easily find suitable 

parameters depending on the variable that we are controlling. Best results were obtained when 

the controlled variable was the angular velocity of each axis of the quadcopter. Although this 

configuration already allows us to fly the quadcopter, the flying operation becomes more 

difficult as we are controlling the angular velocity and not the angles itself. Besides, the 

angular velocity control will not reach zero steady-state error with only a P controller since 

neither the controller nor the plant has a pole at origin. Null error can be obtained if the 

controlled variable is the angle of each axis, but a suitable parameter for the controller is more 

difficult to find besides the slow response of the closed-loop system as we saw in Chapter 5. 

Therefore, adaptive controllers are indeed very useful in our situation. 

The neural network based controller can be a good option although it was not 

implemented due to reasons mentioned in previous chapter. One of the main problems in the 

neural networks training processes was the selection of a suitable input signal to maximize the 

model dynamics information within this signal. Future works may investigate the 

improvement of the neural network predictions when training it with richer signals like white 

Gaussian noise for instance. Since not all frequencies are equally relevant to the system 

dynamics (i.e. too high frequencies are not as relevant as lower frequencies since the system 

can barely respond to higher frequencies) and a pure white Gaussian noise may not be easily 

fed into the system in real time, one may investigate training methods where each movement 

is monitored and mapped to a frequency map so whenever a monitored signal correspond to a 

new region in this frequency map, it is used in the training process. One can make use of the 

wavelet transform to continuously map pieces of the acquired data to frequency regions. Once 

all regions are covered, the network should have learned all necessary frequencies to operate 

correctly. 

Also based on previous chapter, one may investigate the use of predictive controllers 

with a N-step ahead prediction neural network using higher sampling period. Once the 

network is well trained, one can opt between various types of controller based on the model 

predictions. An interesting method would be to create a cost function to be minimized in order 

to find an optimal controlling signal as proposed by Soloway (1997). The LM algorithm can 

even be used in the minimization process. 
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We saw in the previous chapter the great advantages of using the IGMN instead of a 

traditional MLP. The main features of the IGMN make it the best choice for our application. 

Besides our use of the IGMN in previous sections, one can imagine other uses of this network 

due to its facility to operate online, besides learning the system model directly. For example, 

if our plant is linear, one can easily learn its transfer function from few well selected 

experiments and then predict any output of the plant by a superposition of the known 

experiments scaled by some factors. In practice, most plants are nonlinear and this is also our 

case. However, even though it is not linear, most regions of operation are somehow close to 

be linear. Thus, dealing with this plant as a linear process might make it works reasonably in 

some situations but might present bad behavior under other conditions. Therefore, as most of 

these nonlinearities usually are not abrupt, one might use an IGMN to learn the nonlinear 

behavior of the system. Hence, we can start again by learning some relation between the 

system output and the system input under certain conditions with a few experiments and so 

predict other outputs by a combination of these experiments but now with the weighting of the 

nonlinearity learned by the IGMN. 

At least, VRFT algorithm proved to be very useful in our experiments. Theoretical 

simulations showed that it could find well-tuned controllers. When using the 3D simulator, 

the calculated controllers also showed nice results although they were calculated with 

MATLAB. To make a true auto-adjustable controller one must solve the rounding problems 

presented by Unity3D. One way of doing this is by replacing all uses of single-precision float 

numbers inside the VRFT algorithm and implementing all matrix operations by hand with 

double-precision float type. Thus, the quadcopter system could autonomously find its best 

controller after first movements. One should notice that these first movements also depend at 

least in a poorly tuned controller so it can fly. Otherwise it will be much more difficult to 

make an open-loop flight to acquire enough data to use in VRFT. Hence, when we make our 

data acquisition with a closed-loop with a poorly tuned controller, the plant input signal will 

present some noise that is correlated with the output signal since one depends in the other due 

to the closed-loop configuration. This correlation can lead to worse results when using the 

VRFT algorithm, depending on the system and on the signal-to-noise ratio. Also, depending 

on the controller precision needed and on the signal-to-noise ratio in the data, one might 

consider the elaboration of the 𝐿(𝑧) filter as suggested by Campi (2002) as well as other few 

extra steps of the algorithm when dealing with noisy data. Furthermore, if the user wants more 

precision in the system output, it should be investigated the best way to minimize the control 

signal quantization problem. That is, investigate how the rounding of the control signal to 
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integer values will influence less in the system performance. Also, when implementing the 

controller in the real system other issues must be taken care of like the controller saturation or 

even the actuators saturation. Finally, one might experience some difficulties when choosing a 

suitable 𝑀(𝑧). That is, one might not know what the best 𝑀(𝑧) order is or where to put its 

poles. We saw that an excessively fast 𝑀(𝑧) (when compared to the real plant) can make a 

closed-loop system that oscillates too much when trying to be as fast as the 𝑀 𝑧  response. 

Hence, future works might investigate methods that adjust iteratively the 𝑀(𝑧) pole position 

in order to find the best balance between overshoot and settling time. 
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APPENDIX A: MEDIAN FILTER COMPLEXITY COMPARISON 

 

A.1 Original filter 

Standard Median Filter complexity analysis 
 

𝑀 = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 
𝑁 = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡𝑕 

 

1. 𝐶𝑟𝑒𝑎𝑡𝑒 𝑀𝑠𝑖𝑧𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟  O(1) 

2. 𝐹𝑜𝑟 𝑙𝑜𝑜𝑝 (1 → 𝑁)    O(N) 

2.1. 𝐹𝑖𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 O(M) 

2.2. 𝑆𝑜𝑟𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 O(Mlog(M)) 

2.3. 𝐹𝑖𝑛𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑒𝑑𝑖𝑎𝑛 O(1) 

2.4. 𝐸𝑛𝑑 𝑓𝑜𝑟 𝑙𝑜𝑜𝑝 O(1) 

 

When considering only the operations inside the loop that starts in line 2 (since both 

algorithms have this loop), the worst operation will be the sorting operation in 2.2 whose 

complexity is 𝑂(𝑀𝑙𝑜𝑔 𝑀 ). 
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A.2 Modified filter 

Our Median Filter Algorithm complexity analysis 
 

𝑁 = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡𝑕 

𝑀 = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 

𝑥 = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 

𝐼 = 𝑀𝑠𝑖𝑧𝑒  𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑤 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) 

𝑤 = 𝑀𝑠𝑖𝑧𝑒  𝑤𝑖𝑛𝑑𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) 

 

1. 𝐶𝑟𝑒𝑎𝑡𝑒 𝑤  O(M) 

2. 𝐶𝑟𝑒𝑎𝑡𝑒 𝐼  O(M) 

3. 𝐹𝑜𝑟 (𝑖 = 1 → 𝑁)    O(N) 

3.1. 𝑛𝑒𝑥𝑡_𝑣𝑎𝑙 = 𝑥[𝑖] O(1) 

3.2. 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥   ← 1  O(1) 

3.3. 𝐹𝑜𝑟  (𝑗 = 1 →  𝑀 − 1 ) O(M-1) 

3.3.1.𝑤[𝑗] ← 𝑤[𝑗 + 1] O(1) 

3.3.2. 𝐼𝑓 𝑛𝑒𝑥𝑡_𝑣𝑎𝑙  > 𝑤[𝑗 + 1]  O(1) 

3.3.2.1. 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 + +  O(1) 

3.3.2.2. 𝐸𝑛𝑑 𝑖𝑓  O(1) 

3.3.3. 𝐼 𝑗 − −  O(1) 

3.3.4. 𝐼𝑓 𝐼 𝑗 == 0  O(1) 

3.3.4.1. 𝐼 𝑗 =  𝑙𝑒𝑛𝑔𝑡𝑕(𝑤)  O(1) 

3.3.4.2. 𝑜𝑙𝑑𝑖𝑛𝑑𝑒𝑥 = 𝑗  O(1) 

3.3.4.3. 𝐸𝑛𝑑 𝑖𝑓  O(1) 

3.3.5.𝐸𝑛𝑑 𝑓𝑜𝑟  O(1) 

3.4. 𝑗 ← 𝑙𝑒𝑛𝑔𝑡𝑕(𝐼)  O(1) 

3.5. 𝐼 𝑗 − −  O(1) 

3.6. 𝐼𝑓 𝐼 𝑗 == 0  O(1) 

3.6.1. 𝐼 𝑗 = 𝑙𝑒𝑛𝑔𝑡𝑕(𝑤)  O(1) 

3.6.2.𝑜𝑙𝑑𝑖𝑛𝑑𝑒𝑥 = 𝑗  O(1) 

3.6.3.𝐸𝑛𝑑 𝑖𝑓  O(1) 

3.7. 𝐼𝑓 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥  ! = 𝑜𝑙𝑑𝑖𝑛𝑑𝑒𝑥   O(1) 

3.7.1. 𝐼𝑓 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 > 𝑜𝑙𝑑𝑖𝑛𝑑𝑒𝑥   O(1) 

3.7.1.1. 𝐹𝑜𝑟 (𝑗 = 𝑜𝑙𝑑𝑖𝑛𝑑𝑒𝑥 → (𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 − 1))  O(M) 

3.7.1.1.1. 𝐼[𝑗] ← 𝐼[𝑗 + 1]  O(1) 

3.7.1.1.2. 𝐸𝑛𝑑 𝑓𝑜𝑟  O(1) 

3.7.2.𝐸𝑙𝑠𝑒  O(1) 

3.7.2.1. 𝐹𝑜𝑟 (𝑗 = (𝑜𝑙𝑑𝑖𝑛𝑑𝑒𝑥 − 1) → 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 )  O(M) 

3.7.2.1.1. 𝐼[𝑗 + 1] ← 𝐼[𝑗]  O(1) 

3.7.2.1.2. 𝐸𝑛𝑑 𝑓𝑜𝑟  O(1) 

3.7.2.2. 𝐸𝑛𝑑 𝑖𝑓  O(1) 

3.7.3.𝐸𝑛𝑑 𝑖𝑓  O(1) 

3.8. 𝐼 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥  ← 𝑙𝑒𝑛𝑔𝑡𝑕(𝑤)  O(1) 

3.9. 𝑤[𝑙𝑒𝑛𝑔𝑡𝑕 𝑤 ] ← 𝑛𝑒𝑥𝑡_𝑣𝑎𝑙  O(1) 

3.10. 𝑚𝑒𝑑𝑖𝑎𝑛 ← 𝑤[𝐼[𝑐𝑒𝑖𝑙(𝑙𝑒𝑛𝑔𝑡𝑕  
𝐼

2
 )]]  O(1) 

4. 𝐸𝑛𝑑 𝑓𝑜𝑟  O(1) 

 

When considering only the operations inside the loop that starts in line 3 (since both 

algorithms have this loop), the worst operations will be other loops whose complexities are 

linear with respect to the window size. 
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Resumo – Este trabalho mostra o desenvolvimento de um controlador 

eletrônico embarcado para Veículos Aéreos Não Tripulados (VANTs) que seja capaz 

de receber e enviar comandos para uma central e também manter a estabilidade do 

veículo durante todo seu trajeto de vôo. O diferencial deste controlador em relação 

aos controladores mais comuns encontrados no mercado (controladores PID) será o 

uso do conceito de redes neurais para realizar um auto-ajuste dos parâmetros do 

PID tradicional com finalidade de melhorar a estabilidade a cada iteração. 

1. Introdução 

Os Veículos Aéreos Não Tripulados (VANTs) são cada vez mais o alvo de estudos e 

pesquisa devido à sua versatilidade e seu alto poder de realização de uma grande diversidade 

de tarefas. Uma de suas principais vantagens é o fato de não necessitarem o  envolvimento de 

mão de obra humana presencial para realizar tais tarefas, o que geralmente envolve o aumento 

de custo. Entretanto, para realizar estas tarefas é necessário um sistema de controle robusto 

capaz de comandar e controlar seus componentes mecânicos que inclui o controle de sua 

estabilidade de vôo.  

O foco deste trabalho será o desenvolvimento de um controlador eletrônico embarcado 

completo capaz de enviar e receber comandos ao VANT remotamente a partir de uma central 

sendo responsável, também, por sua estabilidade em vôo. Será utilizada uma topologia 

baseada nos controladores mais tradicionais encontrados no mercado atualmente 

(controladores PID), porém o grande desafio destes controladores é o ajuste de seus 

parâmetros, que geralmente são feitos por “tentativa e erro” ou então necessitam um 

conhecimento detalhado do modelo do sistema a ser controlado. Como desejamos controlar 

um VANT genérico e, portanto, não teremos o modelo do sistema, será desenvolvido um 

controlador adaptativo que seja capaz de se auto-ajustar ao longo do tempo. Far-se-á uso de 

uma rede neural artificial capaz de auxiliar no ajuste dos parâmetros do PID.  

 Cabe notar também que os VANTs englobam uma diversidade muito grande 

de tipos de veículos aéreos. Portanto, cada tipo de veículo possui uma dinâmica de vôo que 

podem ser bem diferentes entre si. Apesar deste trabalho tratar do desenvolvimento de um 

controlador genérico, será adotado um tipo específico de veículo denominado quadricóptero 

(ou quadrotor) que será detalhado a seguir. O auto-ajuste do controlador será suficiente para 

estabilizar modelos mecânicos diferentes desse mesmo tipo de veículo, que podem conter 
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características diferentes (massa, tamanho, etc) sem que seja necessário conhecer seus 

valores. A genericidade do controlador poderá ser aplicada a outros tipos de VANTs, porém, 

ajustes deverão ser feitos e, por não ser o foco do trabalho, não serão cobertos neste trabalho. 

2. Revisão teórica 

Será descrito a seguir uma breve explicação teórica dos quatro principais 

componentes envolvidos na elaboração do projeto (quadricóptero, sensores, 

controlador PID e redes neurais). 

2.1 Quadricóptero 

O componente principal do projeto é o sistema mecânico que iremos controlar, 

denominado quadricóptero. Este é um tipo de VANT amplamente usado tanto na indústria 

como por hobbistas. Dentre os VANT’s mais comuns, podemos dividi-los em dois grandes 

grupos: os de asa fixa e os de asa rotativa. Um exemplo de veículo com asa fixa são os aviões 

de turbina, cuja sustentação aerodinâmica se da por meio de asas fixas na estrutura do avião. 

Já os de asa rotativa podem ser helicópteros ou multicópteros (ou multi-rotor). Em geral, os 

helicópteros possuem apenas uma única hélice de sustentação e uma hélice secundária para 

evitar a rotação da aeronave originada do torque devido à rotação da hélice principal. Já os 

multicópteros são veículos aéreos com mais de dois rotores, onde cada rotor é um conjunto 

composto pelas partes mecânicas móveis que contém as hélices (responsáveis pela 

sustentação no ar). 

  Os multi-rotores se tornaram populares com popularização dos VANT’s, 

também conhecidos como drones. Com o avanço da tecnologia, tornou-se fácil e barato a 

construção desse tipo de veículo, devido a sua simetria e simplicidade das peças envolvidas. O 

objeto de estudo deste trabalho será uma classe específica dentro dos veículos multi-rotores, 

que são os quadricópteros, ou seja, contém quatro rotores. 

  A seguir podemos ver a ilustração (Figura 1) de um quadricóptero genérico 

inserido num sistema de coordenadas XYZ. 

 

Figura 1 - Quadricóptero genérico 

 Considerado que a origem do sistema de coordenadas tenha sido deslocado 

para baixo para facilitar a visualização do mesmo, iremos fazer uma breve análise dos 

movimentos que o veículo é capaz de realizar.  
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 Os rotores foram numerados de 1 a 4 (M1, M2, M3 e M4) e cada um pode ser 

controlado individualmente. Para atingir um estado de equilíbrio é necessário que motores 

com numeração par (M2 e M4) girem em sentido contrário em relação aos motores ímpares 

(M1 e M3) para haver um cancelamento da força resultante aerodinâmica das hélices que faria 

toda a estrutura ficar girando em torno do eixo Y, caso todos eles girassem suas hélices pro 

mesmo lado. Sendo assim, para executar um movimento de rotação em torno do eixo Y, basta 

criar um desequilíbrio entre a rotação dos motores pares e ímpares, porém mantendo a força 

resultante ao longo de Y, ou seja, caso os motores pares reduzam suas velocidades, os ímpares 

devem aumentar (e vice-versa). Se isto não ocorrer, a força resultante vertical se alterará, 

gerando um outro movimento (além da rotação), que seria a translação ao longo de Y. 

 Por fim, também deseja-se mover para os lados, mas nota-se que não existe 

como os rotores aplicarem uma força puramente lateral. Portanto, se faz necessária a 

combinação de dois movimentos para realizar uma translação lateral: uma inclinação (rotação 

ao longo de X ou Z) seguido de uma translação vertical (que agora não será mais ao longo 

apenas de Y já que a estrutura está inclinada). Assim, temos um total de quatro movimentos 

diretamente realizáveis ou seis movimentos que podem ser realizados direta ou indiretamente. 

2.2 Sensores 

Os sensores geralmente utilizados são o acelerômetro com três eixos (X, Y e Z) e o 

giroscópio também de três eixos. O primeiro mede a aceleração de translação em cada um 

desses eixos, e o segundo mede a velocidade angular da rotação em torno de cada um desses 

eixos. Pode-se usar também sensores ultrassom para medir distância e evitar colisões, assim 

como pequenas câmeras para reconhecimento de locais por processamento de imagens. 

2.3 Controlador PID 

Os controladores do tipo PID (proportional-integral-derivative) são um dos tipos de 

controlador mais utilizados na indústria atualmente, devido à sua simplicidade e eficácia ao 

mesmo tempo. 

  Supondo que nós possuímos um processo que deve seguir um sinal de 

referência desejado e que existam sensores no sistema capazes de nos informar a saída atual 

do processo a fim de comparar com a referência de entrada, então podemos representar esse 

nosso modelo como um diagrama de blocos visto na Figura 2.  

 

Figura 2 - Processo controlado 

 O bloco Controlador, neste caso, será nosso controlador PID, que terá como 

função comparar o valor lido pelos sensores na saída com a referência desejada de entrada 

(também chamado de erro) e atuar diretamente no processo a fim de minimizar esse erro. Para 

isso, ele fornecerá um sinal para o processo que possuirá três componentes: P (que será 

proporcional ao erro), I (que será uma integral do erro, ou seja, o cumulativo do erro no 

passado) e D (que será a derivada do erro, ou seja, proporcional à variação do erro). 

Matematicamente esse sinal de saída (denominado u(t)) poderá ser expresso por: 

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖  𝑒 𝑡 𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
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Onde 𝐾𝑝 , 𝐾𝑖  e 𝐾𝑑  são as constantes do controlador que devem ser ajustadas para se 

obter o desempenho desejado. 

2.4 Redes Neurais 

Uma rede neural (ou rede neural artificial, RNA) é um recurso bastante poderoso na 

área de inteligência artificial, mas que pode ser usado em muitos outros campos de estudo. A 

idéia fundamental é a criação de um modelo que fosse baseado em uma rede neural biológica 

e que fosse capaz de aprender algo (assim como o cérebro animal). 

  Do ponto de vista matemático, é interessante notar que uma RNA pode 

modelar com bastante eficácia uma função não-linear conhecendo apenas alguns pontos da 

mesma (amostras). Ou seja, para um sistema cujo modelo matemático é desconhecido, 

podemos realizar ensaios com valores de entrada conhecidos e, baseados nas saídas obtidas, 

treinar uma RNA para modelar a função que representa este sistema. 

O elemento principal da rede é o neurônio, que possui como entrada diversos sinais de 

saída de outros neurônios (com seus respectivos pesos) e uma função de ativação que, 

dependendo dessas entradas, ativa ou não a sua única saída. Reunindo vários desses 

elementos, formamos a topologia comumente utilizada para RNA’s que possui uma camada 

de neurônios que recebe diretamente os sinais de entrada da rede (camada de entrada), uma ou 

mais camadas intermediárias (camadas ocultas) e a camada de saída, como mostra a Figura 3. 

 

Figura 3 - Rede neural artificial típica 

 Cabe notar que o modelo visto na figura acima representa uma RNA com três 

entradas, duas saídas e apenas uma camada oculta contendendo cinco neurônios. Pode-se 

variar esses valores de acordo com a aplicação desejada. 

 O aprendizado da rede (também chamado treinamento) pode-se dar ao longo 

da execução do processo (em tempo real, ou online), ou previamente antes de utilizar o 

controlador (treinamento offline). Para ambos casos, devemos ter valores de referência, ou 

valores de treinamento, que serão dados de entrada e da respectiva saída desejada. Com base 

nesses dados, a rede comparará os valores reais obtidos com os valores desejados e fará 

atualização de seus pesos internos com objetivo de minimizar este erro encontrado. 

 

3. Trabalhos relacionados 

É muito comum encontrar trabalhos sobre ajuste dos parâmetros de um controlador 

PID e também artigos sobre métodos de ajuste automático desses parâmetros, já que esse tipo 

de controlador é bastante utilizado atualmente. Apesar de sua simplicidade, o principal ponto 

negativo é justamente encontrar o melhor conjunto de parâmetros que forneça um resultado 
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satisfatório. Muitas vezes não se conhece o modelo do sistema a ser controlado, o que 

impossibilita o equacionamento para encontrar uma solução. Pode-se aproximar um modelo 

do processo e assim tentar ajustar o controlador com algumas técnicas relativamente simples 

como mostra Sigurd Skogestad (2001). Além disto, a realização de ensaios com o sistema 

pode ser complicada, o que impossibilita extrair dados comportamentais do sistema para 

encontrar valores aproximados para os parâmetros do controlador. 

  Portanto, muitos trabalhos foram propostos a fim de mostrar métodos em que o 

PID se auto ajuste, como mostra, por exemplo, Feng Lin et al. (2000), Z. Iwai et al. (2006), 

Cláudio Ferrastro et al. (2007) e Varun Aggarwal et al. (2006). 

  Outros trabalhos mostram também a tentativa de controlar o processo 

diretamente com uma rede neural artificial, justamente para evitar o problema de ajuste de um 

controlador PID (ou outros problemas encontrados em outros tipos de controlador), como 

mostra C. Nicol et al. (2008) que utiliza um controlador baseado em rede neural para 

estabilizar um quadricóptero. Para isto, foi necessária uma descrição do modelo dinâmico do 

quadricóptero, restringindo bastante a genericidade de um controlador como o proposto neste 

artigo. Além disso, um dos principais problemas ao se utilizar RNA’s, é a inicialização dos 

pesos da rede, que geralmente são aleatórios e podem proporcionar resultados ruins nos 

momentos iniciais de aprendizado. Outro ponto que pode ser negativo é a necessidade de se 

treinar a rede antes de utilizá-la, com dados de treinamento. 

  Para resolver este último problema citado, P. M. Engel (1996) propôs um tipo 

de RNA cujo treinamento fosse em tempo real e, portanto, o controlador melhora seu 

desempenho com o tempo. Ainda assim existe o problema de inicialização dos pesos e, para 

este, Derrick Nguyen e Bernard Widrow (1990) propuseram um método para escolher valores 

iniciais de peso e assim reduzir o tempo de treinamento de uma rede neural. 

  Com o objetivo de unir os pontos positivos de um controlador PID e de um 

controlador baseado em RNA (e também na tentativa de reduzir os pontos negativos de cada 

um deles), foram propostos muitos trabalhos onde essas técnicas foram utilizadas em 

conjunto. Algumas delas utilizaram redes neurais onde a função do PID estaria incorporada na 

rede, como mostra F. Shahraki et al. (2009), propondo uma rede neural simples com apenas 

uma camada oculta contendo três neurônios, sendo cada um deles a representação de um dos 

parâmetros do PID tradicional. Outro trabalho similar (Gary M. Scott et al., 1992 ) utiliza uma 

rede um pouco mais complexa que incorpora a função do PID e inclusive utiliza algumas 

técnicas de ajuste de PID’s para inicializar alguns pesos da rede. 

  Uma outra maneira de unir essas técnicas que também é bastante utilizada, é 

utilizar uma rede neural juntamente com um controlador PID tradicional, onde a rede fica 

responsável por ajustar os parâmetros do PID, como mostra Yang Song et al. (2013) e 

Michiyo Suzuki et al. (2004). O método proposto a seguir se baseia nesta topologia. 

4. Motivação e Proposta 

Como vimos anteriormente, diversos métodos de controle foram propostos sendo que 

cada um deles contém algumas características que podem fazer com que sejam mais 

desejáveis para alguns tipos de processo do que para outros. A motivação principal deste 

trabalho é a realização de um controlador capaz de aprender e se adaptar com o tempo, porém 

livre de condições iniciais e treinamento prévio.  

Vimos que para um controlador PID tradicional, ou se faz necessário o conhecimento 

do modelo do processo para se desenvolver o PID, ou de ensaios iniciais para se buscar 
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valores adequados para os parâmetros. Além disto, o controlador PID tradicional não se 

adapta com o tempo. 

Já as redes neurais podem ser treinadas para melhorar seu desempenho, porém isso 

requer dados e treinamentos iniciais. Caso seja adotada uma rede com treinamento em tempo 

real, se faz necessária uma inicialização aproximada dos pesos adequados da rede. 

O objetivo deste trabalho é controlar um veículo aéreo sem treinamento prévio. 

Portanto, é conveniente que o controlador consiga fazer um auto-ajuste inicial para iniciar seu 

trajeto de vôo já de maneira estável ou próxima disso. Poder-se-ia usar um controlador PID 

caso conhecêssemos o modelo dinâmico do veículo (processo), mas como o controlador deve 

ser capaz de se adaptar para qualquer veículo semelhante (porém com características físicas 

que pode ser diferentes), então não podemos descrever um modelo preciso do processo a ser 

controlado. 

Por outro lado, poderíamos utilizar uma rede neural que fosse controlando o processo 

e melhorando seu desempenho ao longo do tempo. Porém, utilizando os métodos conhecidos 

de treinamento (offline) iria fugir a proposta de auto-adaptação sem treinamento prévio, além 

de requerer dados iniciais do sistema que não teremos. Já utilizando um método de 

treinamento online, a rede poderia se adaptar ao longo do tempo, como proposto por P. M. 

Engel (1996). Pode-se, de alguma maneira, realizar pequenos movimentos, ainda em solo, a 

fim de estimar o comportamento do sistema que, mesmo que de maneira grosseira, já serviria 

de condição inicial de vôo para ser melhorada posteriormente. Entretanto, para que a rede 

consiga melhorar seu desempenho (treinar), necessitamos conhecer, mesmo que de maneira 

aproximada, o equacionamento cinemático do processo. Somente desta maneira poderíamos 

encontrar as equações necessárias que nos diriam qual é a correta atualização dos pesos da 

rede a fim de minimizar o erro na saída em relação à saída desejada. Ou seja, é um problema 

semelhante ao do projeto do controlador PID. 

Para solucionar estes problemas, utilizaremos tanto os conceitos do controlador PID 

como de redes neurais em conjunto. Um controlador PID tradicional será responsável 

diretamente pelo controle do processo e, para resolver o problema visto acima de falta de 

conhecimento do processo para ajuste das constantes, utilizaremos uma rede neural. Será 

utilizada a idéia vista acima de que podemos realizar pequenos movimentos ainda em solo 

apenas para estimar, de maneira grosseira, um modelo de resposta do sistema. Esse modelo 

pode ser representado pela função de transferência do processo, que pode ser vista como uma 

função não-linear. Ou seja, uma rede neural pode ser capaz de aprender esta função. Podemos 

utilizar métodos tradicionais de treinamento offline, porém desta vez em tempo real, 

utilizando os dados de treinamento como sendo os resultados obtidos desses pequenos 

movimentos em solo. Dessa forma, mesmo que imprecisos, estes dados podem servir de 

treinamento inicial para que tenhamos apenas um modelo aproximado do processo e que, com 

ele, possamos calcular os coeficientes do controlador PID que apresentem um resultado 

satisfatório para iniciar o vôo. 

À medida que o vôo for sendo executado, novos movimentos podem ser comandados a 

cada momento, para se gerar novos dados que serão utilizados no treinamento da rede. Com 

isso, à medida que o tempo for passando, a rede vai possuir um modelo cada vez mais 

aproximado do comportamento do processo. Desta forma, os coeficientes do PID podem ser 

cada vez melhor ajustados devido à maior precisão do modelo do processo. Isto se deve 

porque temos conhecimento de todos blocos e sinais envolvidos (vide Figura 2), exceto o 

próprio processo. Sabemos a referência (sinal de entrada que aplicaremos), sabemos a 

equação do controlador (pois estamos projetando) e sabemos o sinal de saída (que será lido 

pelos sensores). Sabemos também, por meio do modelo aproximado que a rede irá aprender, 
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qual deve ser a resposta esperada para esta referência de entrada. Assim, podemos comparar a 

resposta obtida com a resposta esperada e ajustar novamente a rede baseada nesta diferença. 

No momento em que obtivermos um erro desconsiderável, quer dizer que a rede possui um 

modelo preciso do processo, ou seja, para qualquer entrada podemos prever a saída que será 

obtida e, assim, dimensionar os parâmetros da equação do controlador PID. 

Para um controle ainda mais robusto pode-se utilizar uma segunda rede para agrupar 

certos tipos de comportamento. Um comportamento neste caso pode ser representado pelo 

conjunto de coeficientes do PID, que determinará se ele terá um comportamento mais 

agressivo ou mais suave. Isto porque é sabido que um dos quesitos desejados no projeto de 

um sistema de controle não é apenas seguir uma referência, mas também a rejeição a 

perturbações externas. Assim sendo, dependendo das condições do ambiente externo (mais 

perturbações ou menos), podemos utilizar um conjunto de parâmetros ou outro. Para 

armazenar um grupo de conjuntos de parâmetros, podemos tanto usar tabelas como uma 

segunda rede neural. 

Para enviarmos os comandos e extrairmos os dados dos sensores remotamente, o 

controlador embarcado terá que enviar essa informação por meio de transmissores e 

receptores RF (rádio-frequência). Além disto, deveremos ter um microcontrolador embarcado 

responsável tanto pela execução do PID, como pela atualização de seus coeficientes, envio e 

recepção de dados para a central e leitura dos sensores. Este microcontrolador deve ser rápido 

o suficiente para não gerar atrasos indesejáveis no sistema, assim como o transmissor RF, o 

que pode acabar dificultando o controle do processo como um todo.  

5. Metodologia para implementação da proposta 

Como o processo a ser controlado neste trabalho se trata de um veículo aéreo, não é 

interessante que os primeiros testes sejam feitos diretamente no modelo real. Portanto, será 

útil desenvolver um simulador da dinâmica de vôo de um quadricóptero qualquer a fim de 

verificar se o modelo do controlador é capaz de se adaptar e controlar diferentes 

configurações de veículos. 

  Para desenvolvimento desse simulador, será utilizada a ferramenta Unity 3D, 

que proporciona uma grande flexibilidade na criação de simulações físicas com objetos em 

três dimensões e de maneira intuitiva. Em conjunto com esta ferramenta, o modelo 

tridimensional do quadricóptero será feito utilizando outra ferramenta chamada Blender. Esse 

modelo poderá se exportado diretamente do Blender para o Unity e conterá os traços 

principais de um quadricóptero genérico, onde suas propriedades físicas como peso e tamanho 

poderão ser alteradas em diferentes simulações dentro do Unity. 

  Apesar do Unity ser capaz de tratar scripts que podem conter todo o código 

que simule o controlador embarcado, um aplicativo feito na linguagem C# que será utilizado 

no modelo real, também se comunicará com o simulador por sockets  a fim de simular uma 

comunicação à distância. Este aplicativo poderá plotar gráficos dos dados que estão sendo 

extraídos do controlador embarcado. 

Se o controlador contido no simulador funciona com sucesso, não garante que o 

modelo real também funcionará, devido a outras variáveis externas e um detalhamento do 

mundo real que não são levados em consideração na simulação por questões de simplificação. 

Todavia, o sucesso na simulação nos dará fortes indicativos que o modelo real poderá ser 

capaz de realizar um vôo completo, mesmo que com pequenos desvios na estabilidade. Em 

outras palavras, a simulação neste caso nos servirá como um auxílio para evitar que os 

primeiros testes no modelo real sejam catastróficos. Para um robô em terra, na maioria dos 

casos os erros iniciais podem ser toleráveis visto que as colisões, em geral, são de pequeno 
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impacto. Já para robôs aéreos, invariavelmente uma instabilidade no trajeto pode ocasionar 

uma colisão de alto impacto e trazer danos mais graves ao modelo real. Por este motivo, uma 

simulação simplificada prévia do controlador desenvolvido servirá não para garantir o 

funcionamento esperado, mas ajudar a evitar resultados iniciais muito aquém do esperado. 

Deve-se certificar, também, que os algoritmos do controlador que funcionarem no 

simulador, também devem executar em tempo hábil para obter a resposta desejada no 

microcontrolador real, já que a capacidade de processamento é limitada em relação à CPU 

responsável pela simulação. Caso o controle do processo seja prejudicado por essa limitação, 

duas opções podem ser consideradas: um microcontrolador de maior capacidade de 

processamento ou a transmissão de uma parcela maior de informações para a central remota a 

fim que a mesma realize os cálculos remotamente e envie de volta os dados necessários ao 

controlador embarcado. Cabe notar que dependendo da informação que está sendo calculada 

remotamente, o controle do processo pode ser prejudicado pelo atraso embutido na 

comunicação dos transmissores RF. Assim sendo, uma estratégia válida a ser adotada é 

manter a execução contínua do PID no microcontrolador, mas permitir que os cálculos de 

aprendizado da rede e atualização dos coeficientes do PID possam ser feitos onde for mais 

conveniente, visto que um atraso nesses cálculos pode ser encarado apenas como um 

aprendizado mais lento, e não gera um atraso na malha de controle do processo diretamente. 

6. Implementação e Resultados preliminares 

Um modelo tridimensional foi feito utilizando a ferramenta Blender. A estrutura física 

do quadricóptero foi feita de maneira simples, porém com os principais componentes 

interessantes para simulação como os apoios inferiores que ficam em contato com o chão, o 

corpo central (estrutura) e braços que seguram os rotores (Figura 4). As hélices foram 

modeladas separadamente para que o objeto seja independente do resto da estrutura e possa 

girar em torno de si própria. 

  O modelo do quadricóptero foi importado para a ferramenta Unity juntamente 

com o modelo da hélice (replicada quatro vezes). Foi criada uma hierarquia física dos 

componentes para simular a junção entre eles. As características físicas dos objetos também 

podem ser ajustadas na ferramenta, como a massa e momento de inércia.  

  O mecanismo de física da ferramenta fica responsável pela simulação da 

dinâmica e interação entre os objetos. O resultado inicial apresentado se mostra coerente com 

o mundo físico real. Foi desenvolvido um mecanismo de comunicação por sockets que 

permite o simulador receber comandos externos a fim de representar a comunicação do 

controlador embarcado com a central. Basta introduzir o endereço de IP e Porta para 

estabelecer a comunicação (Figura 5). 
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Figura 4 - Modelo (Blender) 

 

Figura 5 - Simulação (Unity 3D) 

 Um simples simulador do problema TBU (Truck Backer-Upper) utilizando o 

conceito de redes neurais com aprendizado online foi feito, como proposto por P. M. Engel 

(1996), a fim de testar variações nas condições reais e a resposta da rede a essas variações. O 

objetivo é analisar até quando uma rede é capaz de contornar e aprender variabilidades de 

perturbações e ainda manter um resultado satisfatório. Para tal, a dinâmica do modelo do 

caminhão foi incrementada com diferentes atrasos na resposta (inércia) e velocidades 

variáveis durante o percurso. O controlador apresentou oscilações notáveis com essas 

alterações e, portanto, o objetivo deste trabalho será a utilização dos controladores PID em 

conjunto as redes. 

O microcontrolador escolhido inicialmente foi o modelo PIC24HJ128GP202 

(Microchip), pois é um dos que permite quatro saídas de PWM (Pulse Width Modulation) 

independentes, que são utilizadas para controlar a velocidade dos rotores e com preço 

acessível para a aplicação. Além disto, possui uma capacidade de processamento alta em 

relação aos demais microcontroladores de baixo custo (40 MIPS) e possui ferramentas de 

otimização para códigos escritos na linguagem C, além de bibliotecas fornecidas pelo 

fabricante para controle de periféricos. Foi feito um teste de desempenho para o cálculo de 

uma iteração de aprendizado para a rede neural construída no simulador do TBU comentado 

anteriormente. Os cálculos realizados na central apresentaram uma velocidade 400 vezes 

superior ao mesmo cálculo realizado no microcontrolador. A rede utilizada possui uma 

topologia com três entradas, 25 neurônios na camada oculta e um único vetor de saída. Porém, 

a RNA que será utilizada para o problema do quadricóptero será um pouco mais complexa e 

envolverá mais cálculos. Além disto, cálculos para processamento de sinais (incluindo 

operações de convolução e filtragem) serão também necessários. Será avaliado a necessidade 

de um outro microcontrolador da família dos DSP’s (com operações otimizadas para este 

caso) ou a migração dos cálculos mais pesados para a central. 

O dispositivo utilizado para realizar esta comunicação via RF será o NRF24L01+ 

(Nordic) devido ao seu tamanho reduzido, possibilidade de comunicação com garantia de 

entrega de pacotes e reenvio, baixíssimo custo, antena integrada, velocidade de transmissão e 

a alta flexibilidade na configuração de parâmetros como tempo de reenvio de pacote, 

possibilidade de transmissão bidirecional, escolha de freqüência de canal, dentre outros. 

Na parte de sensoriamento, faremos uso de uma unidade inercial conhecida como 

6DOF, popularmente usada no mercado de drones e de baixo custo, composta de um 

acelerômetro ADXL345 (Analog Devices) e um giroscópio ITG-3200 (InvenSense). A 

combinação desses sensores nos ajuda a manter o controle e estabilidade em vôo. Estes dados 

serão utilizados para alimentar o sistema de controle já que os comandos afetam diretamente a 

leitura dos mesmos. Sabemos, por exemplo, que a saída nula do giroscópio somada à saída do 

acelerômetro sendo um vetor vertical de módulo igual à aceleração gravitacional, corresponde 

ao estado de equilíbrio em vôo. Vale notar que nenhum desses dois sensores garante que se 

saiba se o quadricóptero possui uma velocidade de translação constante em qualquer direção, 
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portanto, além de tentarmos utilizar a unidade inercial para minimzar este efeito, também 

serão utilizados sensores de distância ultrassônicos para evitar colisões. 

Tanto o dispositivo de comunicação RF como a unidade inercial se comunicarão por 

meio do protocolo SPI (Serial Peripheral Interface), cujo microcontrolador tem suporte 

nativo. Apenas o sensor de ultrassom possui um protocolo próprio que poderá interagir com o 

microcontrolador por meio das demais portas de acesso. 

7. Cronograma 

Tarefas 
Tempo de execução 

previsto 

Elaboração da topologia da rede neural principal - Número de 
neurônios e camadas, funções de ativação. 1/2 semana 

Equacionamento do treinamento da rede - Cálculo da atualização 
dos pesos da rede por descida do gradiente, a fim de minimizar o erro. 1/2 semana 

Teste de convergência da rede para funções conhecidas - Utilizar 
funções de transferências conhecidas e verificar se a rede é capaz de 
aprendê-las com boa precisão. 1/2 semana 

Implementação da RNA no simulador (Unity) - Escrever um script 
dentro do simulador que implemente a rede modelada. 1 semana 

Testes iniciais da rede no simulador - verificar se a rede neural 
consegue aproximar um modelo do processo apenas com pequenos 
movimentos antes do vôo. 2 semanas 

Equacionamento do PID juntamente com a malha de controle - 
Modelar as funções de transferência dos blocos da malha de controle sem 
utilizar a RNA. 1/2 semana 

Teste de valores conhecidos do PID no simulador - Testar o 
controle de estabilidade com um PID tradicional e valores conhecidos, 
utilizando o equacionamento feito. 3/2 semanas 

Elaboração do algoritmo de atualização dos parâmetros do PID 
baseado na rede - Integrar a rede neural projetada com o PID testado. 5/2 semanas 

Teste do controlador PID juntamente com a RNA e inicialização 
randômica - Verificar se, para uma inicialização qualquer de parâmetros, o 
PID juntamente com a RNA consegue estimar parâmetros aceitáveis para 
iniciar um trajeto de vôo. 2 semanas 

Avaliação da complexidade de todo o algoritmo e tempo de 
execução (CPU e PIC) - Verificar a complexidade do algoritmo e calcular o 
tempo de execução na central e no dispositivo embarcado e comparar. 1 semana 

Construção do protótipo físico do sistema embarcado - Integrar 
os componentes reais (microcontrolador, sensores e transmissor) e 
verificar o funcionamento de todo o conjunto. 2 semanas 

Fazer o teste do sistema de controle no modelo real - Integrar 
todo o estudo feito em simulador com o protótipo físico e verificar seu 
comportamento. 2 semanas 
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Total: 16 semanas 

8. Considerações finais 

O grande desafio deste trabalho se encontra na união de diversas áreas de 

conhecimento, já que envolve desde a parte mais matemática e teórica, até a construção física 

do projeto, passando pela área de controle, inteligência artificial, programação e computação 

gráfica. Em geral os artigos e livros encontrados sobre esses assuntos, são focados na 

aplicação individual de cada tema, dificultando a união dos mesmos em uma única aplicação. 

 É sabido também que caso haja divergência entre a simulação e o teste real, ou 

seja, caso a simulação obtenha sucesso ao contrário do teste físico, ainda é pode ser possível 

realizar correções no modelo para que seja novamente testado na prática. Em outras palavras, 

por se tratar de um método diferenciado, a não obtenção de sucesso inicial nos testes reais não 

garante a invalidade da proposta. Sendo assim, essa integração pode inclusive sugerir 

trabalhos futuros que investiguem ainda mais a fundo as aplicações que se pode ter sucesso 

com esse sistema. 
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