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RESUMO 

 

 CGRAs são dispositivos que exploram reconfigurabilidade de modo a obter alta 

performance e eficiente consumo de energia. São considerados tão potentes quanto ASICs, 

porém muito mais flexíveis. Inúmeros desses dispositivos foram propostos, entretanto, 

nenhum deles elimina o uso de banco de registradores. Register File Free, ReFree, é um 

CGRA que usa uma abordagem diferente na qual banco de registradores são substituídos por 

unidades de armazenamento internas aos Elementos de Processamento, e portanto, permitindo 

uma maior banda em um menor custo. ReFree foi primeiramente projetado para ser usado 

como um acelerador multimídia, por isso, instruções de fluxo de controle não são 

originalmente suportadas pela arquitetura. 

 Este trabalho tem como principal objetivo estender a funcionalidade do ReFree 

permitindo que instruções MIPS-I possam ser executadas e, portanto, adicionando suporte a 

instruções de controle de fluxo. Essa nova arquitetura, chamada ReFreeMIPS, pode executar 

duas ISAs diferentes, uma que permite a execução de instruções em paralelo e outra na qual 

código MIPS pode ser executado. 

 Além disso, nós avaliamos o impacto desta implementação em relação à arquitetura 

original, por meio de medições de área e frequência. Verificamos que houve um acréscimo de 

45% no número de FFs e 14% no número de LUTs em relação à arquitetura original. Para fins 

de experimentação, também comparamos o desempenho de nossa arquitetura com uma 

implementação padrão MIPS, quando executando aplicações compiladas para este tipo de 

ISA. Nessa comparação, observamos um slow-down de aproximadamente 20% no 

desempenho de nossa arquitetura. Ressaltamos, porém, que o objetivo do trabalho não foi 

obter speedup em relação ao MIPS, mas, sim, estender a funcionalidade do ReFree. 

 

Palavras-chave: Arquiteturas reconfiguráveis de grão grosso. Banco de registradores. 

Conjunto de instruções MIPS.   



 

 

 

 

 

 

ABSTRACT 

 

CGRAs are devices that exploit reconfigurability in order to achieve high performance 

and efficient power consumption. They are considered as powerful as ASICs and much more 

flexible. A myriad of these devices were proposed, though, none of them suppresses the use 

register files. Register File Free, ReFree, is a CGRA that uses a different approach in which 

register files are replaced by units of storage internal to the Processing Elements, therefore, 

allowing much higher bandwidth at a lower cost. ReFree was primarily designed to work as a 

multimedia accelerator component, thus, control-flow instructions are not originally 

supported by this architecture. 

This work aims at extending ReFree functionality by allowing MIPS-I Instruction Set 

to run on ReFree and therefore, adding support for control-flow instructions. This new 

architecture, called ReFreeMIPS, can executes two different ISAs, one that allows multiple 

instructions in parallel and one in which MIPS code can be executed. 

In addition, we evaluated the impact of this implementation in relation to the original 

architecture, by means of area and frequency. We verified an increase of 45% in FFs and 14% 

in LUTs when compared to the original architecture. For experimental purposes, we have also 

compared the performance of our architecture and a standard MIPS implementation, when 

executing MIPS applications. In this case, we noticed a 20% slowdown on average for our 

architecture regarding performance. It is important to emphasize, however, that our work does 

not aim at that, but rather in extending ReFree functionality. 

 

Keywords: Coarse-grained reconfigurable architectures. Register File. MIPS Instruction Set. 
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1 INTRODUCTION 

 

During the past decades, there have been great advances in the microprocessor 

industry. Not only microprocessors have become more powerful and flexible, but also they 

are proofing to be much more power efficient. In spite of that, performance acceleration in 

microprocessors is not as high as in Application-Specific Integrated Circuits (ASICs). On the 

other hand, ASICs lack flexibility, since they are usually designed to execute a limited set of 

tasks and cannot be reprogrammed. To overcome this duality between flexibility and 

performance, different reconfigurable architectures were proposed (WONG; BROWN, 2008; 

MEI et al., 2003; SINGH et al., 2000; CONG et al., 2013). 

Reconfigurable architectures combine the flexibility of microprocessors with as nearly 

as the high performance found in ASICs (BECK; CARRO, 2010) and are also proven to be 

extremely valuable to this ever-increasing time-to-market pressure. Their main characteristics 

are the ability for adaptation and reconfiguration, best fitting the application requirements, 

therefore, allowing improvements in performance and/or power efficiency. Designers can take 

advantage of these features to build products according to the consumer needs and reconfigure 

them whenever is needed. 

In this work, we are considering the Register file free (ReFree) as our target 

archictecture, which is a Coarse-Grained Reconfigurable Architecture (CGRA) proposed here 

at the Laboratório de Sistemas Embarcados (UFRGS). It is composed of a set of dynamically 

reconfigurable and heterogeneous Processing Elements (PEs). ReFree was primarily designed 

to execute data-flow applications and, therefore, control-flow instructions are not supported 

by the original architecture.  

In spite of exploring high instruction level parallelism (ILP), one of the main 

drawbacks of ReFree is code density. If an application does not provide good ILP, ReFree 

will have to store NOPs operations in its PEs, therefore, wasting memory resource. It is 

important to highlight that the compiler will perform an important role in this sense, as its 

main responsibility is to find ILP, so no resource is wasted. Having MIPS execute in ReFree 

will help solving this problem, since MIPS only executes one instruction per cycle at a cost of 

32 bits. Balancing the use of both ISAs in ReFree will allow applications to execute fast 

without compromising memory utilization. For instance, if an application can only allocate a 

maximum of four instructions to execute in parallel, at least 12 instructions lanes will be 

storing NOP operations, and therefore, jeopardizing memory resources.  
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Considering the aforementioned scenario, in this work, we focus on developing and 

integrating MIPS to ReFree, also called ReFreeMIPS, allowing control-flow instructions to 

execute in ReFree. In addition to executing ReFree ISA, ReFree will be able to execute any 

MIPS-I legacy code, avoiding the need for code recompilation of such applications. 

Moreover, ReFreeMIPS is the part of ReFree where control-flow and MIPS instructions will 

be executed within the same organization.  

 The remaining of this work is organized as follows: Section 2 presents an overview of 

reconfigurable architectures and how they are categorized. It also describes some 

reconfigurable architectures proposed in the academia, such as, ADRES, ρ-VEX, MorphoSys 

and FPCA, highlighting their main characteristics regarding architecture, organization and 

compilation process. Section 3 details the original ReFree architecture and the motivation 

behind it, also describing the PE structures and the network that interconnects them. In section 

4, we present the implementation of the proposed architecture, namely ReFreeMIPS, focusing 

on the main aspects of this new design compared to the original architecture. We cover 

aspects from the logic implementation to hazards detection mechanism. In section 5, we 

evaluate the solution by comparing with a standard MIPS implementation, as well as present 

the results regarding area and frequency of the solution. Finally, Section 6 concludes this 

work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

13 

 

2 RECONFIGURABLE ARCHITECTURES 

 

Reconfigurable architectures can be classified according to a different set of 

categories, such as, granularity, reconfiguration models and coupling. Granularity refers to the 

smallest block of which a reconfigurable system is made (VASSILIADIS; SOUDRIS, 2007). 

According to this, reconfigurable systems are divided into two groups, fine-grained and 

coarse-grained systems. Fine-grained architectures are systems that can be reconfigured at a 

bit level. They are characterized by being very flexible, however, with a high reconfiguration 

overhead due to the size of its configuration memory. On the other hand, CGRAs manipulate 

larger reconfigurable blocks, such as, Arithmetic Logic Units (ALUs) and Memories. Despite 

being less flexible, they are more suitable for performing word-level data processing 

(VASSILIADIS; SOUDRIS, 2007), since fewer bits are needed to reconfigure the system, 

improving performance and area utilization. CGRAs are especially good to execute data-flow 

kernels and usually come integrated to a main processor, working as an accelerator. Whenever 

an application must execute on the CGRA will be decided either by the compiler or on-the-fly 

throughout specialized hardware (FERREIRA et al., 2013). Examples of CGRAs are ADRES 

(MEI et al., 2003) and MorphoSys (SINGH et al., 2000). 

According to the reconfiguration models, architectures can be classified as statically or 

dynamically reconfigurable. Statically reconfigurable architectures can only be programmed 

once for its running time. In order to reconfigure the system, it has to be halted and a new 

configuration has to be applied again. Dynamically reconfigurable architectures are much 

more flexible and a new configuration can be loaded or unloaded during the operation of the 

system, albeit costing the system run slower.  

Regarding the host processor integration, reconfigurable architectures can be classified 

as tightly coupled or loosely coupled (SHANNON, 2008). In loosely coupled systems, the 

reconfigurable logic is used as an application-specific unit or external accelerator, connected 

to the main processor via a bus, and operating asynchronously. The main processor will 

enable its units and supply it with a set of parameters. The host will be able to perform other 

tasks while the reconfigurable system is also executing, improving performance. However, 

since they operate asynchronously, a resynchronization mechanism must be added when the 

reconfigurable units finish executing. In tightly coupled systems, the reconfigurable logic is 

treated as an internal functional unit of the microprocessor, avoiding the need for a bus 

interconnection and the communication latency between host and CGRA (BECK; CARRO, 

2010). 
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The performance of a system is directly affected by which characteristics are being 

considered at the architecture. Choosing which characteristics to adopt require a deep 

understanding on the drawbacks and advantages of each type. A general rule of thumb states 

that using characteristics for improving performance will cost flexibility and vice-versa. 

Likewise, a good compiler is a key component on that process. If the compiler cannot find 

enough instructions to fill the PEs with, meaning there are too many dependencies, resources 

will be wasted, compromising area utilization. Different techniques are been explored to deal 

with those problems, such as, loop unrolling, software pipelining (RAU, 1994), among others. 

Applying such techniques improve hardware usability and performance. 

Furthermore, the principle of locality states that 

programs tend to reuse data and instructions they have used recently. A program 

may spend 90% of its execution time in only 10% of the code and an implication of 

locality is that we can predict with reasonable accuracy what instructions and data a 

program will use in the near future based on its accesses in the recent past 

(PATTERSON; HENNESSY, 1996). 

 

Several reconfigurable architectures that take advantage of this program property to 

improve performance on applications were proposed. The following sub-sections describe the 

main aspects of them. 

 

2.1 ADRES 

 

Architecture for Dynamically Reconfigurable Embedded System (ADRES) consists of a 

Very Long Instruction Word (VLIW) processor, which is tightly coupled to a coarse-grained 

reconfigurable matrix (MEI et al., 2003). The main characteristic of the architecture is its tight 

integration between processor and reconfigurable matrix. 

According to Mei et al. (2003), reduced communication cost and simplified 

programming model are two important advantages of the ADRES architecture in comparison 

to others. Most reconfigurable architectures are loosely coupled and require synchronization 

between the main processor and reconfigurable matrix.  
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2.1.1 Architecture and Organization 

 

As depicted in Figure 2.1, the ADRES core is composed of functional units (FU) and a 

customizable number of register files. ADRES can be represented through two views, one 

from the VLIW and one from the reconfigurable matrix.  

These FU's perform two tasks: they make up the functional units of the general-

purpose VLIW processor when this processor is executing code, and act as 

additional configurable FU's when the device is executing parallel code on the 

reconfigurable array. These FU's have direct connections to the two global register 

files through dedicated read and write ports. (MEI et al., 2013 apud KWOK; 

WILTON, 2005) 

 

The VLIW core consists of basic functional units that execute control-flow and data-

flow operations. The reconfigurable matrix is composed of reconfigurable and heterogeneous 

FUs and it is used to execute only data-flow operations. Both components have access to 

memory and register files and do not execute concurrently, therefore, no previous data 

preparation or synchronization are required between them. 

Architecture properties such as, resource allocation, communication topology, are 

defined using an XML-based architectural description language.  

 

Figure 2.1 - ADRES Core 

 

Source: Mei et al. (2003, p. 4). 
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2.1.2 Compilation 

 

 ADRES uses the IMPACT compiler framework (CHANG et al., 1991) to generate an 

intermediate code representation called lcode. From this representation, the DRESC (MEI et 

al., 2002) compiler performs a set of optimizations and code analysis, trying to identify which 

loops can be accelerated by the reconfigurable matrix. The compilation process is divided in 

two paths, one for the VLIW processor and one for the reconfigurable matrix (MEI et al., 

2002). Loops that can explore high ILP are schedule to execute on the reconfigurable matrix 

using a modulo scheduling algorithm (RAU, 1995). 

 

2.2 ρ-VEX 

 

ρ-VEX is an extensible and reconfigurable VLIW processor primarily designed to 

provide high ILP for multimedia applications (WONG; VAN AS; BROWN, 2008). This 

architecture is based on the VEX ISA (FISCHER et al., 2004), which already offered a 

qualified toolchain to compile applications. 

 

2.2.1 Architecture and Organization 

 

 ρ-VEX is extremely flexible and allows two, four, and eight-issue configuration, 

meaning up to eight instructions can be executed in parallel. A four-stage pipeline was used 

consisting of fetch, decode, execute, and writeback stages. Figure 2.2 shows an example of a 

4-issue configuration for ρ-VEX, composed by four ALU units, two multipliers, one branch 

control unit, one memory access unit, and 64 32-bit general purpose registers (GPR).  

 

2.2.2 Compilation 

 

A software development toolchain for ρ-VEX is provided by Hewlett-Packard, that 

goes from an extremely powerful compiler to a simulator (WONG; VAN AS; BROWN, 

2008). The compiler is able to analyze and perform optimizations through loop-unrolling and 

modulo-scheduling algorithms.  

Architecture properties such as, number of issues, GPR, branch registers as well as 

memory and type of units are all customizable and the compiler is completely aware of the 
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target architecture, meaning there is no need to add extra hardware to handle any type of 

dependency. 

Figure 2.2 - 4-issue ρ-VEX example 

 

Source: Wong; van As; Brown (2008, p. 2). 

 

2.3 MORPHOSYS  

 

The MorphoSys is a tightly coupled reconfigurable system targeted to be used in 

applications with inherent data-parallelism, high regularity, and high throughput 

requirements, such as, video compression, graphics and image processing, data encryption, 

and DSP transforms (SINGH et al., 2000). It was developed to investigate the impact and 

effectiveness of reconfigurable architectures when combined with a general-purpose 

processor. 

 

2.3.1 Architecture and Organization 

 

MorphoSys consists of an advanced-RISC processor, a reconfigurable array of 

processing cells and a memory interface unit (SINGH et al., 2000), as depicted in Figure 2.3. 

The reconfigurable component consists of an 8x8 array of identical processing elements or 

reconfigurable cells (RC). The frame buffer component interconnects the RCs with an 

external RAM memory using DMA for fast-speed data transferring. 

 Each RC is composed of an ALU-multiplier, a shift unit, and two multiplexers to 

select its inputs. It also has an output register and a register file. A Context Memory 

connected to the reconfigurable component defines the functionality of each RC. 
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2.3.2 Compilation 

 

 A programming environment was created in order to compile hybrid code for 

MorphoSys (SINGH et al., 2000). The compiler requires manually partitioning code 

informing which functions will execute on the reconfigurable component and which will 

execute on the main processor. 

 

Figure 2.3 - MorphoSys System 

 

(a) MorphoSys System interconnection 

 

(b) Reconfigurable Cells 

Source: Singh et. al. (2000) 

 

2.4 FPCA  

 

Fully Pipelined Composable Architecture (FPCA) is a loosely coupled CGRA that 

enables full pipelining and dynamic composition to improve energy efficiency by taking full 

advantage of abundant transistors (CONG et. al. 2013). FPCA allows multiple applications to 

run at the same time, which contributes to improve resource utilization. 

 

2.4.1 Architecture and Organization 

 

 The FPCA architecture consists of a general purpose CPU, a cluster of PEs, a resource 

table and memory units, as shows Figure 2.4. The type of the instruction determines where the 

instruction is scheduled to execute, e. g., control-flow instructions are more likely to execute 

in the CPU and data-flow operations are better explored in the reconfigurable logic. 

The global accelerator manager (GAM) will receive all instructions that need 

executing in the reconfigurable component and allocate them in the clusters. Each cluster 
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contains a set of 32-bit heterogeneous PEs including computation elements (CEs), local 

memory units (LMUs) and register chains to act as ALUs, on-chip buffers and registers 

respectively (CONG et. al. 2013). As one can notice, this architecture allows a high ILP 

exploration, due to multi-application execution and its reconfigurable component size. 

 

Figure 2.4 - FPCA System 

 

(a) Organization 

 

(b) Internal PE Cluster 

Source: Cong et al. (2013) 

 

2.4.2 Compilation 

 

An LLVM-based compiler was designed to map kernels into the FPCA platform. The 

compiler transforms the input kernels into a data flow graphs (DFG) and a series of analysis 

and optimization is performed. Due to the size of the architecture, the compiler may schedule 

multiple applications in parallel to maximize resource utilization and performance. 

 

  

 

 

 

 

 

 

  

in Fig. 4(b). We can implement a runtime scheduler that maintains the
status table of all the PEs (ALUs, on-chip memories, and DMACs) in
the array, and map the incoming application to idle resources according
to the table, as proposed in [13]. This kind of dynamic composition can
significantly improve the utilization of hardware resources. It makes
a reconfigurable architecture even more efficient. The main challenge
of dynamic composition lies in the routing of the logic resources.
The logic resources which are idle in the reconfigurable array will
be different at each time of application mapping. The placement of
the mapping result will change, even for the same application. The
routing for a new placement has to be performed again, which is a time-
consuming negotiation-based process and isnot guaranteed to succeed in
a conventional mesh-based architecture. In addition, the programmable
interconnects are global resources. The interconnects in the local region
under routing may have already been occupied by other applications
in adjacent regions. This makes the routing in the scenario of dynamic
composition even harder. The programmable interconnects in our FPCA
arespecially redesigned for thepurpose of dynamic composition. Details
can be found in Section VI-D.

IV. ARCHITECTURE OVERVIEW
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Figure 5: FPCA architecture overview.

The architecture overview of our FPCA is shown in Fig. 5. Our FPCA
is a complete system-on-chip except for the main memory. It contains
one or several general-purpose CPU(s) that run the host process of
user applications. The host process will execute the general-purpose
operations that are more friendly to CPUs than hardware accelerators.
It will also send the computation tasks that have been compiled for
our FPCA acceleration to the global accelerator manager (GAM). The
GAM, first introduced in [3], maintains a status table of all the resources
in our FPCA and maps the incoming tasks to idle resources in the
reconfigurable array.

The main part of the architecture is an array of processing element
(PE) clusters. The internal structure of a PE cluster is shown in
Fig. 6. Each cluster contains a set of 32-bit heterogeneous PEs including
computation elements (CEs), local memory units (LMUs) and register
chains to act as ALUs, on-chip buffers and registers respectively. They
are connected by a permutation network which can be customized
for the arbitrary topology of the application DFG. There is also a
global data transfer unit (GDTU) in each PE cluster to transfer data
between LMUs and the main memory. It contains several channels, each
connected to all the LMUs to allow broadcasts. The synchronization unit
enforces the time sequence of loop pipelining. The controller initiates a
computation task, monitors its execution, and reports back to the GAM.
The configuration unit provides constant configuration bits to all the
modules after dynamic composition of accelerators. Details about these
modules can be found in Section VI. All the PE clusters are organized
in a mesh with neighbor-to-neighbor (N2N) connections, as shown in
Fig. 5. We can see that our FPCA is a two-level architecture where PEs
are first connected by a permutation network with a high connectivity
within a cluster, and then by a global N2N network for more scalable
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Figure 6: Internal structure of a processing element (PE) cluster.

connectivity. A single application can usually fit into a PE cluster with
the guaranteed routability, and the challenge of dynamic composition
in respect to the routing is much alleviated. The global mesh keeps the
scalability of our architecture. All the parameters of our architecture,
e.g., the number of PE clusters, are adjustable and are determined in
the design space exploration discussed in Section IX.

We allow user applications to run under an operating system (OS)
with avirtualized memory space. Asshown in Fig. 5, our FPCA includes
an input/output memory management unit (IOMMU) connected to all
the PE clusters. It processes data transfer requests with both the starting
virtual addresses and sizes of data blocks sent from a GDTU in a
PE cluster. The IOMMU contains a translation lookaside buffer (TLB)
for page translation from virtual addresses to physical addresses, and
may consult with the OS in case of a TLB miss. It also cuts a multi-
dimensional data block on its page boundaries and returns the GDTU
with a set of direct memory accesses with continuous addresses. The
GDTUs in all the PE clusters are also connected via a system bus to
the I/O interface coupled with the off-chip DRAM to execute the direct
memory accesses.

V. EXAMPLE EXECUTION FLOW

This section gives an example of how the application in Fig. 2 is
executed in our FPCA.
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In the first step, the GAM will try to map all the nodes in Fig. 1 to
separate idle modules in PE clusters to compose a copy of a hardware
accelerator, e.g., APP1, as shown in Fig. 7. The prefetch of the input
data block a[i ] and the write-back of the output data block b[i ] are
mapped to the two channels in the GDTU. The five load operations
(A [j − 1][k], A [j + 1][k], A [j ][k + 1], A [j ][k + 1] and A [j ][k]), and the
store operation (B [j ][k]) are mapped to the six LMUs (data blocks a[i ]
and b[i ] are denoted as A and B respectively). The arithmetic operations

in Fig. 4(b). We can implement a runtime scheduler that maintains the
status table of all the PEs (ALUs, on-chip memories, and DMACs) in
the array, and map the incoming application to idle resources according
to the table, as proposed in [13]. This kind of dynamic composition can
significantly improve the utilization of hardware resources. It makes
a reconfigurable architecture even more efficient. The main challenge
of dynamic composition lies in the routing of the logic resources.
The logic resources which are idle in the reconfigurable array will
be different at each time of application mapping. The placement of
the mapping result will change, even for the same application. The
routing for a new placement has to be performed again, which is a time-
consuming negotiation-based process and isnot guaranteed to succeed in
a conventional mesh-based architecture. In addition, the programmable
interconnects are global resources. The interconnects in the local region
under routing may have already been occupied by other applications
in adjacent regions. This makes the routing in the scenario of dynamic
composition even harder. The programmable interconnects in our FPCA
arespecially redesigned for thepurpose of dynamic composition. Details
can be found in Section VI-D.

IV. ARCHITECTURE OVERVIEW
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Figure 5: FPCA architecture overview.

The architecture overview of our FPCA is shown in Fig. 5. Our FPCA
is a complete system-on-chip except for the main memory. It contains
one or several general-purpose CPU(s) that run the host process of
user applications. The host process will execute the general-purpose
operations that are more friendly to CPUs than hardware accelerators.
It will also send the computation tasks that have been compiled for
our FPCA acceleration to the global accelerator manager (GAM). The
GAM, first introduced in [3], maintains a status table of all the resources
in our FPCA and maps the incoming tasks to idle resources in the
reconfigurable array.

The main part of the architecture is an array of processing element
(PE) clusters. The internal structure of a PE cluster is shown in
Fig. 6. Each cluster contains a set of 32-bit heterogeneous PEs including
computation elements (CEs), local memory units (LMUs) and register
chains to act as ALUs, on-chip buffers and registers respectively. They
are connected by a permutation network which can be customized
for the arbitrary topology of the application DFG. There is also a
global data transfer unit (GDTU) in each PE cluster to transfer data
between LMUs and the main memory. It contains several channels, each
connected to all the LMUs to allow broadcasts. The synchronization unit
enforces the time sequence of loop pipelining. The controller initiates a
computation task, monitors its execution, and reports back to the GAM.
The configuration unit provides constant configuration bits to all the
modules after dynamic composition of accelerators. Details about these
modules can be found in Section VI. All the PE clusters are organized
in a mesh with neighbor-to-neighbor (N2N) connections, as shown in
Fig. 5. We can see that our FPCA is a two-level architecture where PEs
are first connected by a permutation network with a high connectivity
within a cluster, and then by a global N2N network for more scalable
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connectivity. A single application can usually fit into a PE cluster with
the guaranteed routability, and the challenge of dynamic composition
in respect to the routing is much alleviated. The global mesh keeps the
scalability of our architecture. All the parameters of our architecture,
e.g., the number of PE clusters, are adjustable and are determined in
the design space exploration discussed in Section IX.

We allow user applications to run under an operating system (OS)
with avirtualized memory space. Asshown in Fig. 5, our FPCA includes
an input/output memory management unit (IOMMU) connected to all
the PE clusters. It processes data transfer requests with both the starting
virtual addresses and sizes of data blocks sent from a GDTU in a
PE cluster. The IOMMU contains a translation lookaside buffer (TLB)
for page translation from virtual addresses to physical addresses, and
may consult with the OS in case of a TLB miss. It also cuts a multi-
dimensional data block on its page boundaries and returns the GDTU
with a set of direct memory accesses with continuous addresses. The
GDTUs in all the PE clusters are also connected via a system bus to
the I/O interface coupled with the off-chip DRAM to execute the direct
memory accesses.

V. EXAMPLE EXECUTION FLOW

This section gives an example of how the application in Fig. 2 is
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In the first step, the GAM will try to map all the nodes in Fig. 1 to
separate idle modules in PE clusters to compose a copy of a hardware
accelerator, e.g., APP1, as shown in Fig. 7. The prefetch of the input
data block a[i ] and the write-back of the output data block b[i ] are
mapped to the two channels in the GDTU. The five load operations
(A [j − 1][k], A [j + 1][k], A [j ][k + 1], A [j ][k + 1] and A [j ][k]), and the
store operation (B [j ][k]) are mapped to the six LMUs (data blocks a[i ]
and b[i ] are denoted as A and B respectively). The arithmetic operations
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3. REFREE 

 

 Although all architectures described in Section 2 are reconfigurable, each of them has 

different characteristics. ADRES and MorphoSys belong to the class of tightly coupled 

CGRAs, FPCA is categorized as loosely coupled and ρ-VEX, though being a VLIW 

processor, has its reconfigurable nature. Our target architecture called ReFree (Register file 

Free) architecture, also fits in this type of classification. Those architectures also differ in area 

utilization and even performance. Furthermore, the type of applications in execution is 

another factor to take into account when one needs to choose the appropriate reconfigurable 

architecture to consider in its project. 

3.1 Architecture 

 

 ReFree is a dynamically reconfigurable CGRA architecture proposed at the 

Laboratório de Sistemas Embarcados (LSE) - UFRGS, primarily designed to execute and 

speed up multimedia applications. ReFree is a tightly coupled architecture with a 

distinguishing feature, the complete absence of a register file.  

 Register files are frequently considered one of the bottlenecks for exploring ILP in 

multiple-issued architectures. Kwok and Wilton (2005) shows that the numbers of read and 

write ports in register files are directly proportional to the increasing in area utilization. The 

bandwidth required also increases as the number of ports increases. An 8-issued VLIW 

processor, for example, requires sixteen read ports in order to provide two operands for each 

execution lane. Each lane potentially produces one result; therefore, eight write ports are also 

required. A register file able to meet such requirements is costly and it is not suitable for our 

architecture. 

 ReFree suppresses the need of a register file by spreading register through all its PEs. 

The architecture is composed of 16 heterogeneous processing elements and two registers are 

distributed throughout each unit. This is equivalent of having a total of 32 read ports and 16 

write ports, without having the penalty of a costly register file and still having flexibility. 

Furthermore, 32 registers is the exact number of registers that architectures need to extend 

support to MIPS. 

 Figure 3.1 shows the original ReFree PE structure. The FU can operate as memory 

interface, multiplier unit and ALU. In general situations, there will be one memory unit, one 

or two multiplier units and the rest of them will operate as ALU, however, the configuration is 
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completely customizable. Internal multiplexers are used to invert the values from one network 

to another. As it will be shown the next section, this structure had suffered some 

modifications in order to adapt to MIPS. 

 

Figure 3.1 - Original ReFree Structure 

 

Source: Created by the author. 

3.3 Interconnection Topology 

 

 Processing elements are interconnected using two crossbar networks, one for Registers 

Ra and one for Registers Rb, as illustrated in Figure 3.2. Such configuration reduces area cost 

of two if compared to full crossbar networks, mostly because rotating values between 

Crossbar A and Crossbar B can be done internally in the PE. 

 

Figure 3.2 - Interconnection Topology 

 

Source: Created by the author.  
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Additionally, the crossbar routing is O(1), and there is no placement problem since 

any PE could achieve any other PE (FERREIRA et al, 2013). Although the mapping is NP-

complete even for crossbar-based CGRAs, experimental results in (FERREIRA et al., 2013) 

demonstrated it is possible to reduce compilation time up to 6 degree of magnitude when 

compared to mesh-based CGRAs. In general, PEs on mesh-based CGRAs connect to their 

neighbors, meaning an extra step would be required to verify if an output can be used as an 

input on a specific PE. 

3.2 Compilation 

 

 Two different sets of tools are used to compile code for ReFree. First, we use the HP 

VEX compiler, same as used in ρ-VEX, to generate an assembly representation of the 

application. The generated code is used as input to another tool, developed at LSE, which will 

translate the ρ-VEX instructions into the ReFree binary code. It is worth mentioning that all 

code analysis is performed with the HP VEX compiler.  

 In terms of performance, ReFree may issue 16 instructions per cycle (IPC), which is 

significantly faster than a regular single-issued processor. Nonetheless, this performance 

depends on how efficient the compiler is and whether it is able to extract ILP from 

applications.  

 

 The following table summarizes the most important aspects of ReFree in comparison 

to the architectures from section 2. 

Table 3.1 - Comparison between architectures 

 Coupling 
Type of 

Processor 
Num. RUs Num. Regs 

ReFree Tightly MIPS 16 units 32 

ADRES Tightly VLIW Customized Customizable 

ρ-VEX N/A VLIW 2, 4 or 8 64 

MorphoSys Tighly TinyRisc 64 units N/S 

FPCA Loosely N/S 64 units N/S 

N/A - Not Applicable, N/S - Not Specified 

Source: Created by the Author 

Source: Created by the author. 
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4. REFREEMIPS 

 

 ReFreeMIPS is the name given to the implementation and support of the MIPS-I ISA 

in ReFree. Originally, ReFree only supported data-flow instructions, mostly due to its 

characteristic of being a multimedia accelerator. However, it became indispensable to execute 

not only data-flow, but control-flow operations, as well. With this new afterthought, ReFree 

now can be used as the main processor of a system, not only as an accelerator. 

 Due to the high credibility in the academia, MIPS was the primary option of processor 

that adds the aforementioned features to our architecture. MIPS instructions will execute in 

one of the 16 PEs, depending on the type of instruction. Alongside this MIPS extension, it is 

important that no performance degradation occurs in the original ReFree ISA, i. e., the critical 

path of the system should not increase significantly as it interferes with the overall frequency 

of the system. 

The following sections describe every important detail of ReFreeMIPS, going from 

architectural features to how instructions are mapped into PEs. 

 

4.1 Operating Modes 

 

 Original ReFree had no differentiation in terms of operating modes, as it could only 

operate in one single mode, the one executing data-flow instructions. One may notice that the 

architecture can now operate in two different modes: a single-issued MIPS instruction mode 

and a multi-issued ReFree instruction mode. The former, also called MIPS mode, is used to 

execute MIPS ISA code in which branch and jump instructions will be mapped. The later, 

called ReFree mode, is used to execute ReFree instructions. Furthermore, both operating 

modes use the same organization and compute operation using the same set of register, which 

are those inside the PEs. 

 ReFree mode is extremely powerful, though it needs a 512-bit instruction word. MIPS 

mode, on the other hand, issues only one instruction at a time and needs 32 bits of instruction 

word. Combining both modes appropriately may result in a substantial gain on code density 

without a high performance compromise. For now, let us assume that the system only 

operates in MIPS mode, which is the operating mode that ReFreeMIPS added in. 
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 4.2 Processing Elements 

 

Similar to original ReFree, ReFreeMIPS consists of 16 Processing Elements that can 

be classified according to their function on MIPS and ReFree Modes. Figure 4.1 illustrates 

one of the possible configurations of ReFreeMIPS. The location of Mem, Mult and ALU PEs 

are customizable through a configuration file. Operating modes will determine how PEs are 

used. 

 

Figure 4.1 – Example of a possible ReFreeMIPS Structure 

 

Source: Created by the author. 

 

MIPS mode needs three special PEs, called MIPS PEs, to execute instructions, one to 

work as memory interface, one for multiplication, and one for ALU and branch operations. 

Others, namely non-MIPS PEs, are only needed to give access to the registers. Mem, Mult and 

ALU Units denote MIPS PEs, while Reg Units represent non-MIPS PEs. 

Mem and Mult denote PEs that operate as both memory interface and multiplier unit, 

respectively. Reg units are those that only operate as Memory Interface, Multiplier or ALU in 

ReFree mode; in MIPS mode, Reg units are only used to give access to registers, and 

Functional Units are not used. ALU denotes a PE used in MIPS mode to execute ALU and 

branch instructions; and in ReFree mode, it only executes ALU instructions. 

Some main modifications were required in the PEs to introduce compatibility with 

MIPS. Figure 4.2 and 4.3 illustrates a MIPS PE and a non-MIPS PE, respectively. The main 
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difference between them is the presence of an immediate input signal on MIPS PEs, which is 

necessary due to the immediate value come from the MIPS instruction word. Instructions such 

as loads, stores, and immediate ALU instructions will need this input signal.  Nevertheless, 

the number of multiplexers, the position of the constant table, and the immediate signal input 

are the differences between the original PE structure, shown in Figure 3.1, and Figures 4.2 

and 4.3. 

 

Figure 4.2 - Internal Structure of MIPS PE 

 

Source: Created by the author. 

 

In MIPS mode, non-MIPS PEs always bypass FUs to store new values in registers. A 

value stored in Rb can easily be used in any Ra and vice-versa, using the internal 

multiplexers. 

 

Figure 4.3 - Internal Structure of non-MIPS PE 

 

Source: Created by the author. 

 

Common to all PEs are two aforementioned registers Ra and Rb, a constant table, and 

a functional unit (FU). Registers Ra and Rb output values directly to the network that 

interconnects the PEs. Placing registers at the output of the PE helps reducing cost on the 
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mapping process, since there is no need to choose where that value should be stored after 

computing the operation.  

The constant immediate table holds up to eight predefined immediate values that may 

be used to operate as one of the sources in the FU. The compiler might use this table to 

perform operations without having to rotate immediate values coming from the current 

instruction, simplifying the mapping. Nonetheless, the constant table is only needed for 

fetching the constant 0 when the MIPS mode is on. This table is mostly used to fetch 

immediate values when in ReFree mode. 

Furthermore, PEs are enumerate as 𝑃𝐸𝑖, where 𝑖 = [0 − 15], for instance, figure 4.1 

shows that Memory, Multiplier and ALU are located in 𝑃𝐸0, 𝑃𝐸1 and 𝑃𝐸3, respectively. Also, 

their registers are identified as 𝑅𝑎𝑖 = 2𝑖 and 𝑅𝑏𝑖 = 2𝑖 + 1, e. g., PE0 has Registers 0 and 1, 

while PE1 holds values for Register 2 and 3, and so on. Crossbar A connects even-numbered 

registers and crossbar B connects odd-numbered registers. This definition is essential to 

identify where each register is located when executing MIPS instructions. 

 

4.3 Pipelining 

 

ReFreeMIPS pipeline consists of four stages, meaning that up to four instructions will 

be in execution during one single clock cycle. ReFreeMIPS uses one pipeline stage less than 

original MIPS, because the memory interface unit uses a dedicated adder to calculate the 

target address and, at the same time, reads/writes in memory.  The pipeline is divided into 

instruction fetch (IF), instruction decode (ID), execution/memory (EX/MEM) and write-back 

(WB). 

 

4.3.1 Instruction Fetch 

 

 The execution starts when a new instruction is fetched from instruction memory, 

having the Program Counter (PC) serve as the address. Alongside, the PC is incremented by 4 

to prepare to the next fetching procedure. 

 Figure 4.4 shows how the fetching process occurs. According to MIPS ISA, the 

instruction address can come from four different places, a branch taken instruction, a jump 

instruction, a jump register instruction, and a regular PC+4 situation. The PCSrc signal selects 

which address will be used and come from the Control Unit that is located in the Decode 
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Stage. The ClearIF signal checks if the pipeline needs flushing, by replacing the current 

fetched instruction with NOP. 

Figure 4.4 - Instruction Fetch Stage 

 

Source: Created by the author. 

 

4.3.2 Instruction Decode 

 

 The ID stage is where all signals used in ReFree PEs are generated. This stage will 

contain the logic necessary to decode instructions, explore forwarding and generate the 

control conditions of all instructions. The control unit is located at this stage and the logic 

behind it is detailed herein.  

 A regular MIPS architecture usually decodes register information from the instruction 

and uses it as input to a register file. This register file outputs the values that correspond to 

those registers and the control unit will select whether those values will be used as input to an 

FU. In the proposed architecture, however, this is not possible, mostly due to the absence of a 

register file. When a register needs to be read, crossbars control signals will be configured to 

rotate those registers to the proper PE. More than only crossbar signals, the decode stage 

needs to generate a set of signals to be used in EX/MEM and WB stages. 

 The following table lists those signals and their meaning: 
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4.3.3 Execution/Memory 

  

 The EX/MEM stage happens inside the PEs, by receiving the input signals coming 

from the decode stage and manipulating registers, multiplexers, and FUs. As ReFree PEs 

consists of heterogeneous units, a PE can operate as memory interface, ALU, and multiplier. 

Table 4.1 - Input Signals in ReFreePEs 

Signal Total of Bits Bits per PE Function 

cfg_muxa_fu 

cfg_muxb_fu 
3 1 

Selection between an immediate value and 

a register on a MIPS PE 

cfg_muxABypass 

cfg_muxBBypass 
16 1 

Selection between FU output and bypassed-

FU signal 

cfg_muxa 

cfg_muxb 
16 1 

Used to invert values coming from 

crossbars A and B 

cfg_a_muxconst 

cfg_b_muxconst 
16 1 

Used to send a constant value to crossbar A 

or crossbar B 

cfg_rega 

cfg_regb 
16 1 Write enable signals for registers A and B 

cfg_muxAOut 

cfg_muxBOut 
16 1 

Used to invert values coming that goes to 

crossbars A and B 

cfg_rdaddr 48 3 Used to inform the constant table address 

cfg_memaddrbase 32 
Only in 

Memory PE 

Used by the MEM PE to inform the base 

memory address of the memory (usually 

used as 0x00) 

cfg_funct 128 8 Functional unit operation 

cfg_neta 

cfg_netb 
64 4 Used to manipulate crossbars A and B 

imm 32 
Common to 

all PEs 

Used in MIPS PEs to send immediate data 

that comes from either MIPS instruction or 

PC address. 

Source: Created by the author. 
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As already mentioned, in MIPS mode only three units are used to execute the instructions, 

while the rest of them are needed only as unit storage. 

 The regular EX and MEM stages from MIPS were joint in only one, because the MEM 

unit calculates the address and, at the same cycle, reads/writes in memory. Section 5 shows 

that the critical path of the system is composed by multiplier + crossbar path, therefore, 

having memory be mapped in BRAM blocks (XILINX INC, 2011) speeds up the access and, 

therefore, our system did not suffer performance loss because of it. 

 

4.3.4 Write-back 

 

 The WB stage also occurs inside the PEs, by receiving the same input signals coming 

from ID. In a common operation flow, the WB stage is where the instruction result is written 

back to the correct register. In other situations, this stage does nothing, since the instruction 

completed executing during the EX/MEM stage. 

 

 These four stages compose ReFreeMIPS pipeline. Figure 4.5 illustrates the whole 

system. It is worth mentioning that at decode, the control unit will generate all signals needed 

in EX/MEM and WB stages. 
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Figure 4.5 - ReFreeMIPS Pipeline 

 

Source: Created by the author.
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 4.4 Control Unit 

 

 In ReFree mode, the architecture needs no clever mechanism to use as control unit, 

mostly because every information comes directly from the instruction word. Mux-set bits, 

register-enabling bits, crossbars configuration are all handled and generated accurately by the 

compiler, as well as hazards detection, similar to most VLIW processors. The compiler spares 

the need for control logic as it can resolve most of the conflicts during compilation time. The 

only logic needed is to separate the instruction bits to the corresponding input signals in 

ReFree. This approach is easily achievable, since no control-flow instructions are executed in 

this mode. 

 On the other hand, MIPS mode needs more than just a spliting-instruction logic. 

Instruction needs both combinational and sequential circuits at the control logic to execute in 

ReFree PEs flawlessly. The logic behind the control unit is essential for MIPS operating 

mode, since ReFree configuration is not located at the intruction itself. 

 

4.4.1 Logic 

 

 To understand the logic of the control unit, first one needs to take a look at how 

instructions are executed. Figures 4.2 and 4.3 show the internal structure of the two different 

PEs in ReFree. It is interesting to observe that PEs always store operation results in registers 

and those will be the same registers used. According to the configuration specified herein, 

memory instructions will execute in PE0, multiplication-like instructions in PE1, and ALU 

and Branch instructions in PE3. That creates an issue, because an operation like ADD R2, R3, 

R4 would overwrite R6 (which is one of the output registers in PE3). 

 To address the aforementioned problem, one needs to remember, in MIPS, R0 holds 

the constant value of 0 and it cannot be overwritten. Therefore, it is useless to waste a register 

only to store a constant value. Instead, we will use a constant table to store the constant 0 and 

R0 will be used as temporary storage for situations like the one described above. Considering 

the example on the last paragraph ADD R2, R3, R4 and the configuration presented in Figure 

4.1, the EX stage will be mapped as two operations ADD R6, R3, R4 and MOV R0, R6. 

Likewise, the WB stage will be mapped as MOV R2, R6 and MOV R6, R0. Notice that we are 

only considering the execution of this single instruction and executing other instructions later 

might not result in the same mapping. 
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 Additionally, the temporary value stored in R0 should remain there until the PE it 

belongs is in use or an instruction overwrites that register. This procedure serves not only for 

ALU instructions, but also when multiplication-like instructions are executed. Memory 

instructions do not need such treatment, because the memory is located at PE0.  

 When the destination register is located at the same PE where the operation is execute, 

that approach is not required. For instance, ADD R6, R2, R4 and ADD R7, R2, R4 will both 

overwrite the correct register (they both are output registers in PE3), thus there is no need to 

send values to R0. For cases like these, the WB stage does no operation. 

   

4.4.1.1 Hazards 

 

 The logic also should be able to handle the three types of hazards: data, control, and 

structural hazards. Most of the data hazards can be dealt using the forwarding technique 

(PATTERSON; HENNESSY, 2009). This is possible because ReFreeMIPS has only four 

stages, one less than regular MIPS architecture, and there is no need to forward values two 

stages backwards. When a previously-written register needs to be used in the EX stage, it is 

always possible to forward that information from the previous instruction in the WB stage. 

The exception happens when a HILO write-to and read-from instructions are executed 

subsequently, as the multiplication units needed a two-cycled implementation design in order 

to maximize performance.  

 However, structural hazards will occur more frequently than data hazards. For 

instance, when the PE used in the EX stage is the same that needs to be used in the WB stage 

for the previous instruction. In this case, the logic needs to handle by stalling the instruction in 

the EX stage. For example, considering the configuration of Figure 4.1, when instruction 

ADD R2, R4, R7 is in WB stage and MULT R5, R10 is in EX stage, the instruction in WB 

needs to complete before the instruction in the EX stage continue. 

 In the case of control hazards, ReFreeMIPS always assumes that the next instruction 

should be fetched at PC+4, therefore, jump and branch-taken instructions in execution will 

cause the pipeline to fetch the incorrect instruction. When that happens, ReFreeMIPS must 

flush the instructions in the previous pipeline stages. Jump instructions need only to flush 

instructions in the IF stage, because it is possible to solve this unexpected event in the ID 

stage. Nevertheless, jump register and branch-taken instructions will only solve control 

situations in EX stage, therefore, we must flush instructions in IF and ID stages. 
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4.4.1.2 Control signals 

 

 Additionally to the signals shown in Table 4.1, the control unit needs to generate 

signals for multiplexers PCSrc, ClearIF, and ImmSel. The first is used to select the next PC 

address used to fetch in the instruction memory. ClearIF flushes the IF stage in case a 

control-flow instruction occurs and ImmSel selects which Immediate signal needs to be input 

in the PEs. 

 PCSrc signal operates as follows: 

 

Since Branch and Jump Register instructions are only resolved in EX stage, it is 

important to give priority to the older instruction, i. e., InstructionID will only be tested after 

the instruction in EX stage is neither a branch-taken nor jump register instruction. 

ClearIF signal clears the IF instruction by replacing the instruction fetched from 

memory. The logic for this signal is: 

 

The logic for ImmSel is:  

PCSrc <=   10 when InstructionEX = BranchType and BranchTaken = 1 else 

   01 when InstructionEX = JumpRegType   else 

   11 when InstructionID =  Jump     else 

   00  

ClearIF  <=     1 when InstructionEX = BranchType and BranchTaken = 1   or 

   InstructionEX = JumpRegType     or 

   InstructionID = Jump      else 

        0 

ImmSel  <=    1 when InstructionEX = LinkType    else 

       0 
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Likewise, internally at the Control Unit, a ClearID signal is used to flush all signals 

the goes to the PEs. This signal obeys the logic:  

 

 Note that ClearIF and ClearID have different logic, because a jump event is resolved 

at the decode stage, therefore, there is no need to flush instructions at the ID stage when that 

type of instruction is executed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ClearID  <=    1 when InstructionEX = BranchType and BranchTaken = 1   or 

   InstructionEX = JumpRegType    else 

        0 
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5 RESULTS 

 

 Now that ReFreeMIPS has been presented, it is fundamental to validate our hardware 

design (TASIRAN; KEUTZER, 2001). The architecture was prototyped in a Xilinx Virtex-5 

xc5vlx110t FPGA (XILINX INC, 2010) and simulations were performed in ISIM Simulator 

(XILINX INC, 2012). Results regarding frequency and area were measured and compared to 

the original ReFree implementation. For performance analysis, a standard MIPS was used as 

baseline. 

 

5.1 Frequency and Critical Path 

 

 Frequency and critical path of the system are considered as a metric to measure a well-

designed architecture. One of our goals was to enhance the system architecture without 

causing a significant loss in performance. Table 5.1 illustrates the result of frequency and 

critical path of the proposed solution in comparison to the original ReFree design, showing 

that frequency went from 74.00 MHz to 72.20 MHz. There had been a reduction in terms of 

operating frequency, mostly due to the new functionalities added to the FUs. For instance, 

Mul PE needs a 32-bit x 32-bit multipler, since original ReFree only performs 32-bit x 16-bit 

operations. Some airthmetic and logic operations also had to be implemented in ALU units. 

 In spite of some units had shown critical path increase, the overall critical path was not 

Table 5.1 - Critical Path and Frequency Comparison 

 
ReFreeMIPS Original ReFree 

Critical Path (ns) Frequency (MHz) Critical Path (ns) Frequency (MHz) 

IF 3.46 289.0 1.46 684.93 

ID 9.62 103.95 1.40 714.28 

Crossbar 3.32 301.20 3.32 301.20 

ALU PE 6.13 163.13 5.41 184.84 

Mem PE 3.509 284.90 3.20 312.5 

Mul PE 9.11 109.76 4.77 209.64 

ReFree 13.85 72.20 13.513 74.00 

System 13.85 72.20 13.513 74.00 

Source: Created by the author. 
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compromise as Xilinx toolchain makes optimization, and, thus, minimizes the frequency gap 

between the two architectures. Moreover, table 5.1 demonstrates that our presumption of EX 

and MEM stage as a unique stage was true, as the critical path is represented by the ALU and 

Multiplier and not the memory.  

 

5.2 Area 

 

 Another factor to be considered is how integrating MIPS into the architecture affected 

area utilization. Table 5.2 shows the results regarding area utilization for ReFreeMIPS and 

original ReFree, and also compares the overhead caused .  

 

 

 No measurements for IF in Original Refree was done, since there is no logic nor 

circuit for this unit, as this stage basically consists of an instruction memory, an address input 

and instruction output signals. Furthermore, the overall area increase shows that 45% FFs and 

14% look-up tables (LUTs) were added to the architecture, in order to add MIPS 

compatibility. This number  

Table 5.2 - Area utilization on ReFreeMIPS and Original ReFree 

 
ReFreeMIPS Original ReFree 

ReFreeMIPS / ReFree 

Ratio 

FFs LUTs FFs LUTs FFs LUTs 

IF 12 39 N/A N/A N/A N/A 

ID 368 1096 0 444 N/A 2.46 

Crossbar 0 2560 0 2560 - 1 

ALU PE 64 809 64 744 1 1.08 

Mem PE 64 273 64 207 1 1.31 

Mul PE 187 438 83 201 2.25 2.17 

ReFree 1166 16550 1062 15088 1.09 1.04 

System 1546 17685 1062 15532 1.45 1.14 

N/A - Not applicable 

Source: Created by the author. 
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5.3 Performance 

 

 A set of benchmarks was used to attest the correctness of our system: Adpcm, Cjpeg, 

DFT, Matrix and x264. We have also used these benchmarks to compare our solution with a 

standard MIPS implementation, showing the performance our architecture achieves. 

We have considered two scenarios: in the first, benchmarks were compiled using 

optimization flag –O0 in GNU GCC Compiler, that is, with no code optimization. The second 

scenario considers benchmarks generated using the –O2 optimization flag, hence, allowing 

GCC to optimize code. Results are displayed in terms of number of cycles and overall 

speedup, considering the standard MIPS as our baseline. 

Figure 5.1 illustrates the first scenario. For benchmarks like x264 and Cjpeg, 

ReFreeMIPS might achieve as nearly as 20% better performance in number of cycles. 

However, the overall speedup is compromised due to its operating frequency, causing 20% 

slowdown on average. 

Still, there are few considerations regarding this performance comparison: 

1. The critical path of ReFreeMIPS is formed by a crossbar interconnection and a PE, 

therefore, ReFreeMIPS frequency will be considerably lower than a standard 

MIPS. Frequencies for ReFreeMIPS and the standard MIPS were measured as 

72.2MHz and 96.61MHz, respectively. 

Figure 5.1 - –O0 Optimization Results 

 

Source: Created by the author 
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2. Both architectures issue one instruction per cycle. There would be no huge 

performance increasing when executing in ReFreeMIPS over regular MIPS, as the 

major difference in the execution of MIPS instructions are how hazards are treated. 

A standard MIPS processor needs to stall the pipe when an instruction tries to read 

a register following a load instruction that writes the same register (PATTERSON; 

HENNESSY, 2009). 

3. ReFreeMIPS is, in fact, a supplement to ReFree. MIPS mode should mostly be 

used in balance with ReFree mode. Using MIPS mode uniquely would mean 

wasting lots of resources only to issue a single instruction per cycle. 

 

There is even more gap in the second scenario, shown in Figure 5.2. The compiler tries 

to eliminate data dependencies between instructions, favoring the standard MIPS  

implementation. Because of that, performance in MIPS increases and overtakes ReFreeMIPS, 

causing slowdown in overall speed up and number of cycles. 

In terms of performance improvements, there appears to be no advantages regarding 

the integration of MIPS on ReFree. However, one must think that our architecture is still 

capable of executing up to 16 instructions per cycle, when operating in ReFree mode. 

Moreover, there is no need to reload registers with different values when switching between 

modes, since both operate using the same registers and the state of the processor is always 

preserved.  

Figure 5.2 - –O2 Optimization Results 

 

Source: Created by the author 
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6 CONCLUSION 

 

CGRAs normally include Global Register Files as a key component to share data 

between multiple PEs within the architecture. Although they offer flexibility, high bandwidth 

is required in order to provide a fast access to data. Refree, particularly, uses a different 

approach where no register file is needed. This architecture was primarily designed to explore 

parallelism in multimedia applications by executing only data-flow instructions. 

This work proposed to extend the architecture by adding support to MIPS-I ISA, 

therefore, allowing the execution of control-flow instructions. This integration permits ReFree 

to be used not only as a coprocessor, but as the main processor of a system. In addition, the 

proposed architecture, ReFreeMIPS, executes instructions in the same PEs used for ReFree 

parallel execution mode. 

ReFreeMIPS was prototype on the top of a FPGA and results shown that an increasing 

of 45% in FFs and 14% in LUTs were necessary to implement the solution. During 

performance analysis, the architecture was compared to a standard MIPS implementation and 

results shown an expected slowdown, since ReFreeMIPS frequency is around 25% less  than 

a standard MIPS.   

 

6.1 Future Works 

 

Though it is very powerful, ReFree parallel mode needs a 512-bit instruction word to 

operate . If the compiler cannot find high ILP on the code, most PEs will be executing NOP 

operations, and therefore, waste memory resources. On the other hand, MIPS only needs 32-

bit of instruction to execute. 

As future work, we will combine the benefits of both ReFree and MIPS ISAs, which 

ReFreeMIPS executes, in order to provide a good balance between code density and 

performance, since ReFree ISA can issue up to 16 instructions per cycle and MIPS ISA 

instructions only occupies 32 bits per instruction. We may use code analysis to determine 

when each ISAs should be used, depending on how parallel our applications are. If one gets to 

find the optimal balance between two ISAs,  applications may be both efficient in terms of 

performance and compact, when it comes to memory resource utilization. 
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Abstract. Reconfigurable computing is gaining lots of attentions lately, especially 

CGRA (Coarse-grained Reconfigurable Architecture), devices that exploit 

reconfigurability to achieve high performance and efficient power consumption. 

They are considered as powerful as ASICs and much more flexible, enabling 

reconfiguration on-the-fly to maximize performance and minimize power 

consumption. This project will focus on the development of the RefreeMIPS, a 

MIPS-based architecture that is tightly coupled to a register file free CGRA. 

 

1. Introduction 

During the past decades, innumerable advances have been made in computer architecture 

and organization. Computer architects are taking advantage of today's nanometer technology 

to build smaller, more compact and powerful chips. Most of those chips are designed as 

ASICs (Application-specified Integrated Circuits) and microprocessors. ASICs are high 

performance devices used to execute specific-purpose tasks. Microprocessors, on the other 

hand, are more flexible than ASICs, but not quite as powerful. By combining the high 

performance of ASICs and the flexibility of microprocessors, FPGAs (Field-programmable 

Gate array) have made possible new types of applications, since they can be reprogrammed to 

perform theoretically any digital circuit [Beck and Carro 2010]. Traditional FPGAs have also 

made possible to design systems that adapt themselves according to the software they are 

executing. This new approach is best known as Reconfigurable Computing.  

 Reconfigurable Architectures can be classified according to a different set of 

categories, such as, granularity, reconfiguration models, among others. Granularity refers to 

the smallest block of which a reconfigurable device is made. Reconfigurable architectures can 

be divided into two major groups according to their granularity, fine-grain and coarse-grain 

systems. 

 Fine-grain reconfigurable architectures are systems that can be reconfigured at a bit 

level. They are characterized by being very flexible, however, with a high reconfiguration 

overhead due to the size of its configuration memory. On the other hand, Coarse-grain 

architectures manipulate larger reconfigurable blocks, such as, ALUs and Memories. Despite 

being less flexible, they are more suitable for performing word-level data processing 

[Vassiliadis and Soudris 2007], since fewer bits are needed to reconfigure the system, 

improving performance and area utilization. 

 According to the reconfiguration models, architectures can be classified as statically or 

dynamically reconfigurable. Statically reconfigurable architectures can only be programmed 
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once for its running time. In order to reconfigure the system, it has to be halted and apply a 

new configuration to it.  Dynamically reconfigurable architectures are much more flexible and 

a new configuration can be loaded or unloaded during the operation of the system. 

 According to [Patterson and Hennessy 1996], most programs tend to reuse data and 

instructions they have used recently. A general rule of thumb is that most applications spend 

90% of its running in 10% of the code. This special program property is known as the 

Principle of Locality and architects design systems to take advantage of this property. If one 

gets to find parallelism in this small piece of code, a considerable improvement in 

performance is achieved. Multimedia and digital processing applications make good use of 

inner-loops, therefore, CGRA is a good option to accelerate such applications. 

 In this work, we will be focusing on developing a MIPS architecture that is tightly 

coupled to a CGRA called Refree. Register file free, a.k.a. Refree, was proposed here at the 

Laboratório de Sistemas Embarcados (UFRGS) and is composed of a set of dynamically 

reconfigurable Functional Units that can be used to accelerate different parts of an 

application. We will discuss Refree later in this text. The main purpose of this project is to 

show how a regular processor like MIPS can benefit from the integration with a dynamically 

reconfigurable device. 

 The remaining of this work is organized as follows: Section 2 presents an overview of 

CGRAs and its main characteristics. Section 3 discusses the Refree Architecture. Section 4 

gives a brief overview of the MIPS Architecture. Section 5 presents the project and the 

methodology of the work. Section 6 presents the chronogram regarding the next steps of this 

research. Finally, Section 7 concludes this work. 

 

2. CGRA - Overview 

Increasing performance of a system is not always an easy task to achieve. Architects 

utilize different hardware to accomplish that goal. GPUs, for example, are suitable for running 

vectorized applications and CPU are the best for control-based applications. When it comes to 

data-flow applications, Coarse Grain Reconfigurable Architectures can be used. CGRA are 

specialized hardware best suitable to run intensive inner-loop applications [Ferreira et al. 

2014]. Since they are reconfigurable, a different configuration can be applied on-the-fly 

allowing the device to extend its functionality and even reducing power consumption. If 

compared to FPGAs, CGRAs reduce considerably the mapping process, at the cost of 

flexibility. 

 A CGRA is usually composed of a set of Processing Elements (PEs), also called 

Functional Units (FUs), a global register file and a configuration Memory, as depicted in 

Figure 1. The PEs can be connected through different networks, such as, crossbar and mesh. 

The configuration memory is responsible for configuring the units and register file to 

manipulate data that flows through the PEs. This configuration memory is previously 

generated using a compiler, which identifies the portion of code it can be parallelized, 

generates the proper configuration bits for each PE and handles any data dependency that 

might be associated with the code. As it will be seen shortly, a global register file is not 

required, however, most of the architectures use it for simplicity on their configuration. 

 A Processing Element can perform different operations, such as, ALU operations, 

memory operation, etc. Homogeneous systems are characterized by having PEs of the same 

type. Heterogeneous systems, however, have PEs of different type. As it will be shown later, 

the Refree Architecture can be used in either approach. 

 Regarding the host processor integration, CGRAs can be classified as tightly coupled 

or loosely coupled. In loosely coupled systems, the CGRA is used as an application-specific 

unit or external accelerator, connected to the main processor via a bus, and operating 

asynchronously. The main processor will enable its units and supply it with a set of 
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parameters. The host will be able to perform other tasks while the CGRA is also executing, 

improving performance. However, since they operate asynchronously, a resynchronization 

mechanism must be added when the CGRA units finish executing. In tightly coupled systems, 

the CGRA is treated as an internal functional unit of the microprocessor, avoiding the need 

for a bus interconnection and the communication latency between host and CGRA. When 

there is a reconfigurable unit working as functional unit in the main processor, it is called a 

Reconfigurable Functional Unit, or RFU [Beck and Carro 2010]. 

 Choosing between a loosely coupled or tightly coupled approach is a design decision. 

Loosely coupling is often preferred when the bus connection is not a bottleneck and area 

limitation is not required, since loosely coupled approach consumes more area. Tightly 

coupling minimizes the overhead on the communication bus and allows the CGRA and 

microprocessor to share resources, minimizing area consumption [Beck and Carro 2010]. 

 

 
Figure 8. A typical CGRA structure 

 

 

 The beauty of CGRA is its capability of reconfiguration on-the-fly. As already 

mentioned, a good compiler is a key component on that process. If the compiler cannot find 

enough instructions to fill the PEs with, meaning there are too many dependencies, resources 

will be wasted, compromising area utilization. Different techniques are been explored to deal 

with those problems, such as, loop unrolling, software pipeline [Rau 1994], among others. 

Applying such techniques improve hardware usability and performance. Despite being of 

great interest in the academy, this will not be the focus of this work. 

 Countless reconfigurable architectures were proposed in the past decade to accelerate 

execution of data-flow application, however, they haven't been used in mainstream 

application mainly due to their architectural complexity and lack of automated tool support 

[Vassiliadis and Soudris 2007]. Two of the most successful architectures are ADRES 

(Architecture Dynamically Reconfigurable Embedded Systems) [Vernalde et al. 2003] and r-

Vex. 
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ADRESS consists of a VLIW processor and a coarse-grain reconfigurable matrix that has 

direct access to register files, caches and memories [Vassiliadis and Soudris 2007], as 

illustrated in Figure 2. The architecture is configured using a XML template, where the 

characteristics of the architecture should be described, such as, communication topology, 

resource allocation, etc. [Vernalde et al. 2002].  This file is analyzed by DRESC 

(Dynamically Reconfigurable Embedded Systems Compiler), a retargetable compiler that 

uses a modulo scheduling (MS) algorithm to map efficiently the code, exploring the 

reconfigurable array. More information on ADRES and DRESC can be found in [Vernalde et 

al. 2003] and [Vernalde et al. 2002]. 

 
Figure 2. ADRES Architecture. Reprinted from [Vassiliadis and Soudris 2007] 

 

 Another important architecture is 𝜌-VEX, a reconfigurable and extensible Very Long 

Instruction Word (VLIW) processor. 𝜌-VEX architecture is based on the VEX Instruction Set 

Architecture (ISA), which offers a scalable technology platform that allows variation in many 

aspects, including instruction issue width, organization of functional units, and instruction set 

[Wong, van As and Brown 2008]. It uses a four-stage pipeline design, as illustrated in Figure 

3. The figure shows a 4-issue configuration composed by 4 ALU units, 2 multiplier units, 1 

branch control unit, 1 memory access unit, however, its issue width can vary between 1, 2 and 

4. This architecture will be of particular interest, since it will be compared to our RefreeMIPS 

architecture. In spite of that, more detailed information about this architecture can be found in 

[Wong, van As and Brown 2008]. 
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Figure 3. 𝝆-VEX Processor. Reprinted from [Wong, van As and Brown 2008] 

 

 
3. Refree Architecture 

The Register File Free Architeture, or Refree, was proposed here at the Instituto de 

Informática – UFRGS and designed to run in the top of an FPGA. The idea behind this new 

architecture is to eliminate the bottleneck caused by accessing a global register file (GRF), 

that would be shared among PEs in the CGRA. Instead of having a GRF visible for all PEs, 

each PE consist of an Internal Functional Unit, two registers and a table of constant 

immediate values, as depicted in Figure 4. 

 When a PE needs to be used to execute an operation, data is directly forwarded to 

those two registers and control signals are properly configured. It is worth mentioning that 

any register value can be forwarded to any other register inside the architecture, as it will be 

shown later on. Also, a value that comes from port A can easily be used in register B and 

vice-versa. This approach does not restrict the use of registers in any way, since data can be 

rotate to any port of a functional unit. 

 

Figure 4. PE structure in Refree  

 

 Another important characteristic of Refree is related to the interconnection network. A 

crossbar network interconnects the PEs units, i.e., all PEs are connected to one another, 

simplifying the placement and routing process. Although the mapping is NP-complete even 

for crossbar-based CGRAs, experimental results in [Ferreira et al. 2013] demonstrate a huge 

reduction in compilation time and low area overhead if compared to mesh-based CGRAs. The 
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crossbar is divided into two networks, one for port A and one for port B. This approach 

reduces area utilization by a factor of four if compared to a full crossbar network. 

 The Functional Units can be configured to operate as memory interface, ALU or 

multiplier. If set to be a memory interface unit, base addr port defines the base address for 

memory operations. Registers A and B will carry the values for data to be written in memory 

and address offset, respectively. The constant immediate table holds up to eight predefined 

immediate values that may be used to operate as one of the sources in the ALU. The compiler 

might use this table to perform operations without having to rotate immediate values coming 

from the current instruction, simplifying the mapping process. 

 Because Refree will be integrated with MIPS, some necessary changes will have to be 

made inside the PEs to maintain compatibility. Other muxes will be added and some 

adaptations will be done. Section 5 is presented with a deeper focus on these modifications. 

 

 4. MIPS Architecture 

Considering we will be designing a CGRA-based MIPS processor, it is fundamental to 

understand the basic characteristics of the MIPS architecture. MIPS (Microprocessor with 

Interlocked Pipeline Stages) is a 32-bit RISC-based (Reduce Instruction Set Computer) 

architecture designed primarily for academic purpose at Stanford University. Despite 

becoming a commercial product in middle 80's and many other improvements on the 

architecture were added, we will be focusing on the first ISA (Instruction Set Architecture) of 

MIPS. 

 MIPS includes 32 general-purpose register 32-bits wide (R0-R31). These registers are 

located in a Global Register File with two read ports and one write port, which might limit the 

architecture and cause control hazards in it.  All instructions in MIPS are 32-bit long and they 

can be divided into three categories, as illustrated in figure 5. Each category represents a set 

of instructions on the ISA and bits on the instruction word are treated differently according to 

this representation. Basic ALU instructions with two registers as operands are from type R. I-

type holds instructions with immediate operand and branches. Jump instructions belongs to 

the J-Type.  

 
Figure 5. Instruction Categories 

 
 Pipelining is an important technique highly explored in almost any architecture 

nowadays. MIPS implements a five-stage pipeline that is briefly described below: 

 Instruction Fetch - the Program Counter is used as the address of the instruction to be 

fetched in the instruction memory. The value is stored in the Instruction Register (IR) 

and the PC is incremented by 4 (the memory is byte-oriented and 4 bytes are needed 

for each memory); 

 Instruction Decode and Register File Read - instruction is decoded and the register file 

is read to obtain the proper registers to be used in the next stage; 

 Execution - stage where, in fact, the instruction gets executed; 

 Memory access - load and store instructions use this stage to perform memory 

operations on the data memory; 
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 Write-back - this stage, if needed, update registers modified at the execution stage.

   

 
Figure 6. MIPS Pipeline. Reprinted from [Patterson and Hennessy 1998] 

 
 Figure 6 above illustrates the five-stage pipeline, however, it is only a simplification of 

the architecture. Hazard treatment, bypassing and forwarding are not represented in this 

figure. More information in MIPS architecture is found in [Patterson and Hennessy 1996] and 

[Patterson and Hennessy 1998]. Nonetheless, it gives a good idea of how the pipeline is used 

in MIPS and how it will be the basic pipeline structure of RefreeMIPS. 

 

5. RefreeMIPS 

 
In this section we will describe the methodology use to develop RefreeMIPS. The project 

will be divided into two distinct phases. The first phase will focus on the development of a 

monocycle RefreeMIPS processor. The second will consist on the development of a pipelined 

architecture, similar of what MIPS offers. The project will be implemented using VHDL 

language and Xilinx ISE Design Suite.  

 One of the main advantages of tightly coupled architectures is its proximity to the 

microprocessor, which decreases communication overhead. However, the area taken by the 

processor itself may be compromised. In order to minimize area, the global register file from 

MIPS will be exploded and will correspond to the 32 registers spread throughout the 16 PEs 

of Refree, namely PE0-PE15. With this new configuration, multiple writes can be performed 

at the same time, eliminating the limitation of the register file. PE0 consists of a memory 

interface unit to an external data memory and the others are configured as ALUs units.  

 RefreeMIPS will be fully compatible with regular MIPS instructions and also with the 

new CGRA instruction. When working as regular MIPS, two PEs will be used, one as an 

interface to an external data memory (PE0) and one for executing instructions (PE1), since 

only one instruction is issued at every cycle. When working as CGRA, as many as 16 

instructions may be issued at every cycle, 15 performing ALU operations and one performing 

memory operation. The speedup when running as CGRA will depend on how easily the 

compiler can find instructions to fill the empty PEs. 

 Two instruction memories are necessary, one for regular MIPS instructions and 

another for the CGRA instructions. To be able differentiate when each memory should be 

accessed, two instructions will be used to inform that a new instruction should be fetched at a 

different memory. For example, a 32-bit instruction will be added to the MIPS ISA to inform 
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that the next instruction should be fetched from the CGRA instruction. This same approach 

will be used for the CGRA. 

 

5.1. Monocycle RefreeMIPS 

 

Some characteristics are specifically of a monocycle design. If one takes the MIPS stages 

as an example, one sees that only at the end of the last stage a register ought to be written. 

This means that all five stages will be executed at one single cycle. From a research 

perspective, it was useful to start developing a monocycle version of RefreeMIPS before 

adventuring into a pipeline approach. This will give a full understanding on the major 

problems faced during the implementation of the pipelined architecture.  

 At the decode process, signals will be generated to rotate the registers to the specific 

PEs and no bypassing is required for this case. It is very straightforward, since signals need 

not to propagate through other clock cycles.  Nonetheless, modifications inside the PEs are 

needed for both monocycle and pipelined versions. Figures 7 illustrate these modifications. 

Muxes are added in both PEs types to ensure that bypassing can be performed, without the 

need of passing to a register. Figure 7a also shows muxes at the end of the PE due to necessity 

of bypassing the memory.  

 

 
              Figure 7. (a) Memory PE                                      (b) ALU PE 

 

5.2. Pipelined RefreeMIPS 

 

After concluding the monocycle architecture, RefreeMIPS will be extended to a pipelined 

approach. More complexity will be added in the development of the project. A five-stage 

pipeline, much like depictured in Figure 5, characterizes the architecture. Nevertheless, stages 

3 to 5 will be inside the Refree component and PEs will be similar to those described in 

Figure 7.  

 Pipes will be connected at the end of PEs 0 and 1, because those are only ones used by 

MIPS instruction. There is no need for adding pipes at the end of other PEs, mostly because 

synchronized registers are inside them. It is also worth mentioning that other changes might 

be considered during implementation, since one cannot estimate if the solution will work 

properly. 

 To ensure the good performance of the proposed architecture, a comparison with 𝜌-

VEX will be done. Benchmarks are still to be chosen. 
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6. Chronogram 

 
A chronogram of the activities that will be developed in this work is display in Table 1. It 

is important to clarify that Refree has already been implemented, however, modifications are 

needed to make it compatible with MIPS. 

 

Table 1. Activities Chronogram 

Activities Jul. Aug. Sep. Oct. Nov. Dec. 
Adapting PEs from Original 

Refree 
X      

Monocycle Architecture X X     

Pipelined Architecture  X X X   

Comparison with 𝜌-VEX    X X X 

 

 
7. Conclusion 

 
CGRAs normally include Global Register Files to share data between PEs. Refree, 

particularly, uses a different approach where no register file is used. By integrating Refree 

with MIPS, a range of applications and benchmarks can used to verify performance and 

efficiency. This project will attest whether this new CGRA integrated with MIPS is efficient 

and faster than 𝜌-VEX, a VLIW processor with reconfigurable instructions. 
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