
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RAFAEL PEREIRA ESTEVES

Application-Aware Adaptive Provisioning
in Virtualized Networks

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Lisandro Zambenedetti Granville
Advisor

Porto Alegre, December 2014

CIP – CATALOGING-IN-PUBLICATION

Esteves, Rafael Pereira

Application-Aware Adaptive Provisioning in Virtualized Net-
works / Rafael Pereira Esteves. – Porto Alegre: PPGC da UFRGS,
2014.

104 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2014. Advisor: Lisandro Zambenedetti Granville.

1. Network Virtualization. 2. Network Management. 3. Re-
source Allocation. 4. Simulation. I. Granville, Lisandro Zam-
benedetti. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

First of all, I would like to thank my beloved parents that devoted their lives to give me
the opportunity to have the education that they could not have and sacrificed themselves
so I could pursue my dreams. I love you and I am forever grateful for all you have done
for me.

I would like to thank my advisor Lisandro Zambenedetti Granville for his valuable
guidance during all these years. His patience, optimism, enthusiasm, and excellence have
inspired me to become a better researcher. He has always encouraged me to follow my
own ideas and has given crucial feedbacks to improve my research.

I would not be here right now if Antonio Abelem from UFPA had not given me the
opportunity to work in a research project back in 2003, when I was a second-year un-
dergraduate student in the distant Belém. This opportunity changed my life forever and
inspired me to pursue an academic career. In other words, he is the one to blame!

During the last years, I had the privilege to meet and work with many good friends in
Porto Alegre. Thank you for the good times I shared with you in trips around the world,
barbecues, soccer matches, and some parties. You helped me to stay sane and get the
energy necessary to complete this work. I would like to apologize to my friends that are
in Belém or spread around the world for my absence, especially in these last months.

As part of my PhD, I spent one year as a visiting student at the Network and Dis-
tributed Systems Group of the David R. Cheriton School of Computer Science of the
University of Waterloo. This was by far one of the greatest experiences of my life. I
thank professor Raouf Boutaba for hosting me and supporting me during that period. His
guidance was essential to define the focus of my research. In Waterloo, I have met some
brilliant individuals that helped me with valuable discussions and advices.

I would also like to thank my thesis committee. Their valuable feedback has indeed
improved this thesis and made my life way easier.

Finally, I would like to acknowledge CNPq for supporting me with a scholarship dur-
ing all these years.

“For everything there is a season,

and a time for every matter under heaven.”

— ECCLESIASTES 3:1

ABSTRACT

Network virtualization is a feasible solution to tackle the so-called Internet ossification
by enabling the deployment of novel network architectures in a flexible and controlled
way. With network virtualization, it is possible to have multiple virtual networks (VNs)
running simultaneously on top of a shared physical infrastructure. Network management
with virtualization support, however, poses challenges that need to be addressed in order
to fully achieve an effective and reliable networking environment.

One of the main aspects related to the management of network virtualization environ-
ments is virtual network provisioning. Virtual network provisioning defines how virtual
network resources (nodes and links) are allocated in the physical infrastructure. VN provi-
sioning often relies on embedding algorithms that aim to achieve well defined objectives,
such as reducing allocation cost, load balancing, or minimizing energy consumption.

Although VNs share the same infrastructure, they typically host diverse applications
with different goals. Unfortunately, current provisioning solutions focus on a single or
a limited set of objectives that may not simultaneously match the requirements of an
increasing number of applications deployed in networks everyday. Novel applications
may require different objectives that are not supported by the active provisioning system.

In this thesis, we formulate the Application-Aware Virtual Network Provisioning Prob-
lem (AVNP) and propose an adaptive provisioning framework for virtualized networks
that takes into consideration the characteristics of multiple applications and their distinct
performance objectives. The proposed framework is based on the concept of allocation
paradigm, which is defined as a set of provisioning policies that guide the resource al-
location process. A paradigm translates objectives from both Infrastructure Providers
(InPs) and Service Providers (SPs) to individual allocation actions that actually provision
VNs. A policy language is also defined to express the relationship between paradigms,
objectives, and actions.

To determine the efficiency of a particular paradigm, we propose a virtual network
performance computation model based on data measured from existing virtualization
benchmarks. The model is able to quantify the performance of allocated VNs and guide
paradigm changing decisions. Extensive simulations were performed to verify the viabil-
ity of the proposed solution and compare different paradigms. Results show the feasibility
of allocation paradigms in helping network providers to select the best provisioning strat-
egy given a set of InP/SP objectives.

Keywords: Network Virtualization, Network Management, Resource Allocation, Simu-
lation.

RESUMO

Aprovisionamento Adaptativo Orientado à Aplicação em Redes Virtualizadas

A virtualização de redes é uma solução proposta para superar a chamada ossificação
da Internet pois permite o desenvolvimento de novas arquiteturas de rede de forma flexí-
vel e controlada. Com a virtualização de redes, é possível criar múltiplas redes virtuais
operando simultaneamente em uma infraestrutura física compartilhada. No entanto, o
gerenciamento de redes com suporte a virtualização apresenta desafios que precisam ser
resolvidos para obter um ambiente de rede confiável e funcional.

Um dos principais aspectos relacionados ao gerenciamento de ambientes de virtuali-
zação de redes diz respeito ao aprovisionamento de redes virtuais. O aprovisionamento
de redes virtuais define como os recursos de rede virtuais (nós e enlaces) são alocados
na infraestrutura física. O aprovisionamento de redes virtuais é comumente baseado em
algoritmos de mapeamento que possuem objetivos bem definidos como reduzir o custo de
alocação, realizar balanceamento de carga ou minimizar o consumo de energia.

Embora redes virtuais compartilhem a mesma infraestrutura, elas tipicamente são uti-
lizadas para hospedar várias aplicações que possuem diferentes objetivos. Infelizmente,
as soluções de aprovisionamento atuais focam em um único ou em um conjunto muito li-
mitado de objetivos que podem não ser capazes de satisfazer os requisitos de um número
cada vez mais crescente de aplicações. Novas aplicações podem exigir objetivos diferen-
tes dos que são suportados pelo sistema de aprovisionamento que está em operação em
uma infraestrutura de virtualização de redes.

Nesta tese, o problema de Aprovisionamento de Redes Virtuais Orientado à Aplicação
é formulado e um arcabouço de aprovisionamento adaptativo para redes virtualizadas que
considera as caracteristicas de várias aplicações bem como seus requisitos de desempenho
é proposto. O arcabouço proposto é baseado no conceito de paradigma de alocação, que
é um conjunto de políticas de aprovisionamento que guiam o processo de alocação de
recursos. Um paradigma traduz objetivos de Provedores de Infraestrutura e Provedores de
Serviço para ações de alocação individuais que criam as redes virtuais. Uma linguagem
de políticas para paradigmas é também definida para expressar o relacionamento entre
paradigmas, objetivos e ações.

Para determinar a eficiência de um paradigma de alocação, é proposto um modelo para
quantificar o desempenho de redes virtuais que é baseado em dados coletados de sistemas
de benchmarking aplicados no contexto de ambientes virtualizados. O modelo proposto
é capaz de calcular o desempenho das redes virtuais alocadas e influenciar mudanças em
paradigmas de alocação. Simulações foram conduzidas para verificar a viabilidade da so-
lução proposta e comparar diferentes paradigmas de alocação. Resultados mostram que
o uso de paradigmas de alocação pode ajudar administradores de ambientes de virtuali-
zação de redes a escolher a melhor estratégia de alocação dado um conjunto de objetivos
definidos pelos Provedores de Infraestrutura e pelos Provedores de Serviço.

Palavras-chave: Virtualização de Redes, Gerenciamento de Redes, Alocação de Recur-
sos, Simulação.

LIST OF FIGURES

Figure 2.1: Network virtualization environment model 27
Figure 2.2: Management of NVEs . 30
Figure 2.3: 4WARD VNet provisioning scenario 34
Figure 2.4: ProtoGENI main entities . 36
Figure 2.5: UCLP . 37
Figure 2.6: VNARMS . 38
Figure 2.7: SNMP manager and agent using VR-MIB 39
Figure 2.8: UCVS . 41
Figure 2.9: VROOM . 41

Figure 3.1: Virtual network embedding . 48
Figure 3.2: Allocation paradigms, goals, and actions 53
Figure 3.3: VN allocation procedures . 54
Figure 3.4: Allocation windows and rounds . 55
Figure 3.5: Architecture of the paradigm-based provisioning system 60
Figure 3.6: Example of paradigm policy - High server utilization + load balanc-

ing + low communication cost . 64
Figure 3.7: Another example of paradigm policy - Protected + redundant 65
Figure 3.8: Score vs. number of tiles . 67

Figure 4.1: Clos topology . 72
Figure 4.2: Acceptance ratio over time . 74
Figure 4.3: Provisioning cost over time . 75
Figure 4.4: CPU utilization over time . 76
Figure 4.5: Link utilization over time . 77
Figure 4.6: Paradigm quality . 78
Figure 4.7: Number of rounds - Green goal . 79
Figure 4.8: Paradigm efficiency - Green goal . 80
Figure 4.9: Acceptance ratio - Green goal . 81
Figure 4.10: Provisioning cost - Green goal . 82
Figure 4.11: Paradigm efficiency - Load balancing goal 83
Figure 4.12: Acceptance ratio - Load balancing goal 84
Figure 4.13: Provisioning cost - Load balancing goal 85
Figure 4.14: Paradigm quality - Paradigm switching 86
Figure 4.15: Paradigm efficiency - Paradigm switching 87
Figure 4.16: Acceptance ratio - Paradigm switching 88
Figure 4.17: Provisioning cost - Paradigm switching 89

LIST OF TABLES

Table 2.1: Comparison of Virtualization Management Proposals 42

Table 3.1: VN provisioning proposals . 48
Table 3.2: InP Objectives Examples . 58
Table 3.3: VN Properties Examples . 59
Table 3.4: Auxiliary Functions Examples . 63
Table 3.5: Application performance metrics . 66

LIST OF ABBREVIATIONS AND ACRONYMS

4WARD Forward

AMS Autonomic Management System

API Application Programming Interface

APN Articulated Private Network

AS Allocation Service

AVNP Application-Aware Virtual Network Provisioning

AUTOI Autonomic Internet

CLI Command Line Interface

CNRMS Customer Network Resources Management System

CPU Central Processing Unit

COST Continent cOuntry State ciTy

FEDERICA Federated E-infrastructure Dedicated to European Researchers Innovating
in Computing Network Architectures

FP7 Seventh Framework Programme

FPGA Field Programmable Gate Array

GENI Global Environment for Network Innovations

GRE Generic Routing Encapsulation

HSU High Server Utilization

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

INM In-Network Management

InP Infrastructure Provider

IP Internet Protocol

ISP Internet Service Provider

L3VPN Layer 3 Virtual Private Network

LAN Local Area Network

LAP Location Awareness Protocol

LB Load Balancing

LCC Low Communication Cost

LSP Label Switched Path

MIB Management Information Base

MIP Mixed Integer Programming

MPLS Multiprotocol Label Switching

MS Monitoring Service

NETCONF Network Configuration Protocol

NF Non Functional

NOC Network Operation Center

NVE Network Virtualization Environment

PE Provider Edge

PMS Paradigm Management Subsystem

PSO Particle Swarm Optimization

QEMU Quick Emulator

QoS Quality of Service

RA Resource Agent

RCLI Remote Command Line Interface

SDH Synchronous Digital Hierarchy

SDN Software Defined Network

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SONET Synchronous Optical Networking

SP Service Provider

ToR Top of Rack

UCLP User Controlled Lightpaths

UCVS User Controlled Virtual Services

vCPI Virtualization Component Programmability Interface

VDC Virtual Data Center

VLAN Virtual LAN

VM Virtual Machine

VMI Virtualisation Management Interface

VN Virtual Network

VNARMS Virtual Network-based Autonomic Network Resource Control and Man-
agement System

VNE Virtual Network Embedding

VNRM Virtual Network Resource Manager

VR-MIB Virtual Router Management Information Base

VRRP Virtual Router Redundancy Protocol

VRRP-MIB Virtual Router Redundancy Protocol Management Information Base

vSPI Virtualization System Programmability Interface

XML Extensible Markup Language

XML-RPC Extensible Markup Language-Remote Procedure Call

LIST OF SYMBOLS

A Paradigm action

Alloc Allocator

G Paradigm goal

P Paradigm

W Paradigm window

s(W) Size of the paradigm window

Np Physical network

Mp Set of physical machines

mp Physical machine

c(mp) CPU capacity of the physical machine c(mp)

RP Set of physical network elements

Lp Set of physical links

lp Physical link

b(lp) Bandwidth of the link lp

Op Set of InP objectives

op InP objective

t(op) Target index of the objective op

N v Virtual network

M v Set of virtual machines

mv Virtual machine

c(mv) CPU requirement of the virtual machine mv

Lv Set of virtual links

lv Virtual link

b(lv) Bandwidth requirement of the virtual link lv

P v Set of desired properties

pv VN property

t(pv) Target index of the property pv

R Number of rounds
P

mv +
P

lv Total number of virtual resources
Pal

i=1 s(Wi) Maximum number of allocation actions allowed per round

al Number of allocators

c Policy condition

o Policy objective

a Policy action

p Policy paradigm

w Policy window

S Paradigm score

T Tile performance

⌧ Number of tiles

App Application performance

Ref Reference value

n Number of applications

S 0 Predicted score

Q Paradigm quality

U Reference score

E Paradigm efficiency

CONTENTS

1 INTRODUCTION . 21
1.1 Problem Definition . 22
1.2 Main Hypothesis and Research Questions 24
1.3 Contributions . 24
1.4 Thesis Roadmap . 25

2 MANAGEMENT OF NETWORK VIRTUALIZATION 27
2.1 Network Virtualization Environments 27
2.2 Management of Network Virtualization Environments 29
2.2.1 Characteristics of Management Solutions for NVEs 31
2.2.2 Network Virtualization Projects . 33
2.3 Research Opportunities . 43
2.3.1 Federations and SLA negotiations . 43
2.3.2 Interplay between InP management and SP management 43
2.3.3 Standard management protocols and information models 43
2.3.4 Management of Virtualized Cloud Computing Environments 43
2.3.5 Management of SDNs . 44
2.4 Summary . 45

3 APPLICATION-AWARE ADAPTIVE VIRTUAL NETWORK PROVISION-
ING BASED ON ALLOCATION PARADIGMS 47

3.1 Virtual Network Provisioning . 47
3.2 Related Work . 48
3.3 Motivation . 51
3.4 Application-Aware VN Provisioning using Allocation Paradigms 52
3.4.1 Basic concepts . 52
3.4.2 AVNP Problem Formulation . 57
3.4.3 Conceptual Architecture of a Paradigm-Based Provisioning System 59
3.4.4 Mapping application goals to paradigms 61
3.4.5 Paradigm Policy Specification . 62
3.5 Determining the Efficiency of Allocation Paradigms 65
3.5.1 Applications . 65
3.5.2 VN Scoring Methodology . 65
3.5.3 VN Performance Prediction Model . 66
3.5.4 Efficiency of an Allocation Paradigm . 67
3.5.5 Resource Allocation Algorithm . 68
3.6 Summary . 70

4 EVALUATION OF THE PARADIGM-BASED VN PROVISIONING AP-
PROACH . 71

4.1 Simulation scenario . 71
4.2 Evaluation - paradigm goals comparison 72
4.2.1 Metrics - paradigm goals comparison . 72
4.2.2 Results - paradigm goals comparison . 72
4.3 Evaluation - paradigm efficiency analysis 74
4.3.1 Metrics - paradigm efficiency analysis 75
4.3.2 Results - paradigm efficiency analysis 76
4.4 Summary . 90

5 CONCLUSIONS . 91
5.1 Answers to the Research Questions . 92
5.2 Contributions . 93
5.3 Future work . 94

REFERENCES . 95

APPENDIX A - SCIENTIFIC PRODUCTION 101
A.1 Published Papers . 101
A.2 Other collaborations . 101

APPENDIX B - CAPíTULO EM PORTUGUÊS 103

21

1 INTRODUCTION

Network virtualization has been considered a viable alternative to guide the develop-
ment of new network architectures and to overcome the Internet ossification (CHOWD-
HURY; BOUTABA, 2009) (CARAPINHA; JIMÉNEZ, 2009) (KHAN et al., 2012). Net-
work virtualization thus emerges as an enabling technology to support innovation in the
networking area. In a network virtualization environment (NVE) the underlying physical
infrastructure, commonly referred to as substrate, is shared among different users who cre-
ate virtual networks (VNs) that employ isolated protocol stacks. Future Internet advocates
claim that NVEs enable diverse network architectures to coexist in a single infrastructure
without affecting production services. Moreover, network virtualization is gaining atten-
tion from major industry players as commodity network devices (i.e., routers, switches)
with virtualization support become popular in the marketplace. In recent years, several
network virtualization testbeds have been deployed, allowing researchers to propose and
evaluate new solutions at large-scale with real traffic. There are two main opinions shared
by Future Internet enthusiasts. The first group states that network virtualization is a transi-
tory step towards the definition of a reference Future Internet architecture, while the other
declares that the Future Internet will be an NVE itself (ANDERSON et al., 2005).

Among the technical challenges to enable NVEs, management has a special impor-
tance. Management of NVEs is crucial to guarantee the proper operation of the physical
infrastructure, of the hosted virtual networks, and of the services supported by the virtual
networks. In an NVE, there exist different virtualized components (e.g., links, nodes, do-
mains, services) that present, each one, specific management challenges. For example, the
management of virtualized routers must guarantee the isolation of virtual routers’s CPUs,
memory, and routing tables. The management of virtualized links, in turn, has to deal
with performance guarantees for each virtual link. Also, from an end-to-end perspective,
inter-domain addressing and service level agreements (SLAs) across multiple domains
involved in supporting a virtual network need to be properly managed.

In an NVE, multiple management solutions can share the same physical infrastructure
to support different types of virtual networks and hosted applications. For example, vir-
tual networks may require different allocation schemes suited to particular performance
objectives defined by service providers. Likewise, a variety of management protocols
and models can be deployed in the same infrastructure. Recently, the management of
NVEs has started receiving special attention from the research community, motivating a
variety of research projects over the past few years, such as 4WARD (4WARD, 2008),
AUTOI (AUTOI, 2008), FEDERICA (SZEGEDI et al., 2009), and GENI (GENI, 2009).
These projects share the common goal of considering management at the network design
phase, as opposed to addressing it after network deployment. This allows to evaluate and
test new management architectures before deployment and facilitates the development of

22

customized management solutions for different types of users and applications.
The rest of this chapter is organized as follows. The formal problem definition is in-

troduced in Section 1.1. The main hypothesis and a set of fundamental research questions
used to guide this thesis are presented in Section 1.2. In Section 1.3, the main contribu-
tions of the thesis are listed. Finally, the organization of the thesis is outlined in Section
1.4.

1.1 Problem Definition

Management in NVEs includes provisioning, monitoring, and interfacing (ESTEVES;
GRANVILLE; BOUTABA, 2013). Provisioning consists of allocating VNs to SPs by
defining the mapping of VN resources to the physical counterparts. Monitoring involves
gathering updated status of physical resources and their associated VNs. Interfacing is
required for InPs and SPs to respectively access, operate, maintain, and administer the
physical and virtual nodes and links. In this thesis we focus on the provisioning aspect
from an application-oriented perspective. The provisioning problem is divided in two
subproblems. The first one relates to including application awareness to VN provisioning,
which ultimately will determine how VNs are mapped to the substrate. The second one
relates to make VN provisioning adaptable to the dynamics of the substrate, where VNs
are constantly created and terminated.

Typically, in an NVE, an infrastructure provider (InP) offers virtual network resources
to multiple service providers (SPs) that deploy a variety of applications on top of virtual
networks (VNs). The provisioning of VNs must consider requirements of both InPs and
SPs. While the main objective of InPs is to generate revenue by accommodating a large
number of VNs, SPs, on the other hand, have specific needs, such as guaranteed band-
width among virtual machines, load balancing, and high availability. Inefficiencies in the
provisioning process can lead to disastrous consequences for infrastructure providers in-
cluding reduced number of SPs, monetary penalties (e.g., financial credit) when Service
Level Agreements (SLAs) are not satisfied, and low utilization of the physical infrastruc-
ture.

SPs request VNs to deploy a variety of applications. SP applications have different
characteristics that could determine how VNs are allocated in the physical substrate. Dif-
ferent applications may require, for example, different performance requirements (i.e.,
belong to different service classes), different high-level objectives (e.g., energy efficiency,
load balancing), and different types of resources (e.g., servers, routers, switches, storage).
For example, business-critical applications (e.g., ticket reservation, order processing) may
require that virtual machine (VM) replicas are placed in distinct locations (i.e., different
physical servers). On the other hand, network-sensitive applications benefit if VMs are
placed in a single machine, to avoid network bottlenecks. In this respect, one limitation of
current VN provisioning schemes is that the specifics of the applications to be deployed
over a VN are commonly ignored in the provisioning process because InPs do not know
in advance which applications SPs will deploy over a VN.

An SP can deploy a single application on a VN or use a VN to host multiple appli-
cations. The choice depends on factors such as cost and performance. While deploying
one application per VN provides predictable performance for an SP’s applications, one
SP may not be able to afford one VN per application due to cost constraints. From the
InP perspective, high utilization of the substrate is an important goal because it reflects
in increased revenue. If applications can be grouped in a single VN without significant

23

performance degradation the InP operator will be able to deploy more VNs in the same
infrastructure. In this case, isolating one VN per application cannot guarantee high utiliza-
tion of the substrate. Therefore, there is a trade-off between the number of applications
a VN can host and the performance requirements of each applications that need to be
managed by an NVE provisioning system.

Current NVE provisioning systems allow SPs to request different resource configura-
tions (e.g., CPU, memory, disk) to build a VN. The SP is the main responsible for request-
ing resources that will better fit its applications. The InP then either allocates resources for
the VN in the physical network or rejects the allocation if there are not enough resources
to satisfy the SP’s request. InPs run allocation algorithms to find the best mapping of
VNs onto the physical substrate according to well-defined objectives, such as minimizing
the allocation cost, reducing energy consumption, or maximizing the residual capacity of
the infrastructure. Mapping virtual to physical resources is commonly referred to as em-
bedding and has been extensively studied in recent years (CHOWDHURY; RAHMAN;
BOUTABA, 2012) (YU et al., 2008) (CHENG et al., 2012).

Another important issue regarding VN embedding is the fact that most VN embedding
solutions map all virtual resources of a VN request as a single enclosed task, i.e., upon
receiving a VN request, the InP runs an embedding algorithm that generates as output
the complete mapping of virtual resources to their physical counterparts. Such enclosed,
single-operation mapping presents limitations. For example, previously allocated VNs
expire, releasing resources that could result in better mapping options for an ongoing VN
because they satisfy a high-level objective (e.g., map virtual nodes as closest as possible
to each other). In this atomic mapping approach, such resources cannot be allocated dur-
ing VN instantiation because embedding is defined before VN deployment. In order to
optimize resource allocation and leverage the existence of better mapping alternatives, the
VN will have to be migrated, which can result in additional costs for the InP. Moreover,
two simultaneous VN requests may end up competing for the same physical resource dur-
ing their instantiation; because no proper solutions for this race conditions exist, resulting
in failed VN requests.

In this thesis, we introduce the concept of allocation paradigms to guide resource pro-
visioning in virtualized environments. A paradigm encompasses goals representing with
the high-level objectives of the InP and of the SPs. Each objective is achieved through
actions (e.g., allocation) executed within a window (one per goal). The action is defined
at run-time according to the objectives and the current status of the substrate network. In
addition, VN allocation can be performed in several rounds instead of mapping all vir-
tual resources altogether. At each round, actions of each objective of the current active
paradigm are included in the allocation window and are executed. This approach allows
a quick adaptation of the provisioning process to the dynamics of the substrate and to the
characteristics of the deployed applications. Besides, allocation paradigms add flexibility
to VN allocations because objectives can be easily added or removed from a paradigm.
In this way, VN allocation is rapidly adjusted to reflect changes in either InP or SP ob-
jectives. If some of the targeted objectives are not satisfied or if applications running on
a particular VN exhibit poor performance, the current allocation paradigm may need to
be changed. The concept of allocation paradigms will be detailed through the rest of this
thesis.

24

1.2 Main Hypothesis and Research Questions
Given the limitations in current VN embedding approaches, the main objective of this

thesis is to answer the following research question.

Main question: How to manage resource provisioning in virtualized networks in
order to meet both requirements of the multiple applications and of the

infrastructure providers by taking advantage of the dynamics of the substrate?

To answer the above question this thesis presents the following hypothesis:

Hypothesis: Limitations in virtual network provisioning can be reduced through the
use of allocation paradigms

In order to guide the investigation of this thesis, additional research questions associ-
ated with the hypothesis are defined and presented as follows.

Research question I. How allocation paradigms can improve virtual network provision-
ing?

Research question II. What methods could be employed to calculate the efficiency of
an allocation paradigm?

Research question III. What are the possible disadvantages of providing a high level of
flexibility to VN provisioning?

1.3 Contributions
The major contributions of this thesis are outlined below.

• A model for the management of network virtualization environments. Because
of the importance of management as a first-class requirement for network virtualiza-
tion we define a conceptual network virtualization management model. The model
is generic and provides an overview on how management can be tackled in cur-
rent NVE implementations by describing the main management entities typically
in NVEs and how they interact in order to accomplish management tasks;

• A survey of management of NVEs. In order to place this thesis in the overall
spectrum of NVE management we first present a comprehensive survey on the man-
agement of NVEs. A number of representative research projects addressing diverse
NVE management aspects is presented and, most importantly, research challenges
and open opportunities in the area are discussed;

• A framework for multi-objective, application-aware adaptive VN provision-
ing using allocation paradigms. From the open opportunities, we focus on the
problem of provisioning virtual networks considering multiple and dynamic objec-
tives and propose the concept of allocation paradigms to tackle it. An allocation
paradigm encompasses a set of goals representing the high-level objectives of the
InP and the SPs. Each objective is achieved through actions (e.g., allocation) exe-
cuted within a window (one per goal). The action is defined at run-time according

25

to the objectives and the current status of the substrate network. This approach al-
lows a quick adaptation of the provisioning process to the dynamics of the substrate
(e.g., VN arrivals and departures) and to the characteristics of the deployed applica-
tions. If some of the targeted objectives are not satisfied or if applications running
on a particular VN exhibit poor performance, the current allocation paradigm may
need to be changed;

• A language to express application objectives and translate objectives to alloca-
tion actions. A policy language to allow InP operators to specify the relationship
between paradigms, objectives, and allocation actions is proposed. The paradigm
policies are used by InP operators to define proper allocation actions;

• A model to quantify the efficiency of allocation paradigms. A VN computation
model that measures the performance of an allocation paradigm based on the ap-
plications running on the embedded VNs is proposed. The model is based on three
main aspects: paradigm quality, provisioning time of VNs, and provisioning cost.
These aspects allow to evaluate the performance of paradigms so as to help InPs to
better define provisioning approaches.

1.4 Thesis Roadmap
The thesis is organized as follows.
In Chapter 2, the state of the art on the management of NVEs is presented. The

goal is to provide an overview of management network virtualization and enumerate open
research opportunities in the area.

In Chapter 3, the problem of provisioning virtual networks considering multiple and
dynamic InP and SP objectives is defined and the main concept of this thesis to address
the problem (i.e., allocation paradigms) is introduced. First, a conceptual architecture of
an adaptive provisioning system based on allocation paradigms is depicted. Then, basic
definitions associated with allocation paradigms are described. Next, a methodology to
map application high-level goals to allocation paradigms and a policy language used to
describe allocation paradigms are presented. A methodology to determine the efficiency
of an allocation paradigm in terms of provisioning quality is described and a VN compu-
tation model that measures the performance of an allocation paradigm based on that of
the applications running on the embedded VNs is proposed.

In Chapter 4, an overall evaluation of the proposed paradigm-based framework is con-
ducted and its advantages and limitations are discussed. Results regarding the efficiency
of allocation paradigms for applications, benefits and shortcomings of adaptive provision-
ing compared to traditional provisioning approaches, and impact of paradigm changes on
provisioning are presented.

In Chapter 5, final remarks and conclusions are discussed. The answers for the re-
search questions and contributions are exposed and justified. In addition, opportunities
for future research are identified and detailed.

26

27

2 MANAGEMENT OF NETWORK VIRTUALIZATION

The goal of this chapter is to provide a comprehensive background on the main top-
ics discussed along the thesis. We start with an overview of network virtualization and
discuss how management is currently tackled in such environments. Next, we introduce
a conceptual NVE management model and survey the most prominent solutions found in
the literature related to NVE management highlighting their main features, benefits, and
limitations. Finally, we discuss open research challenges related to NVE management.

2.1 Network Virtualization Environments

In this section, the main concepts of network virtualization are presented. We start
by describing the main components of an NVE. Next, we discuss the business model
typically employed in NVEs along with the relationship among participating entities.

As mentioned before, network virtualization is a promising approach to enable Future
Internet. A generic NVE model is depicted in Figure 2.1. In the substrate layer, physical
nodes and links from different network administrative domains serve as a substrate for
the deployment of virtual networks. Physical nodes, at the core of the physical networks,
represent network devices (e.g., routers) that internally run virtual (or logical) routers
instantiated to serve virtual networks’s routing necessities.

!! !!

!

!"#$%&'()*+,-) .%/01'()*+,- 23$0)(-4-(5 .%/01'()*+,-)26*,)(-4-(5
!"#$%&'()(%*7) .%/01'()(%*7)

819$0/'0-)('#-/)

.%/01'(%:'0%+*)('#-/)

Figure 2.1: Network virtualization environment model

28

In the virtualization layer, virtual nodes and links are created on the top of the sub-
strate and combined to build virtual networks. Virtual nodes are created on top of a layer
of software called hypervisor which is responsible, among other functions, to provide an
isolated view for each virtual node sharing the physical one. Virtual links are isolated
from each other by enabling technologies such as tunneling or virtual LANs. A virtual
network can use resources from different sources, including resources from other virtual
networks, which in this case results in a hierarchy of virtual networks. Virtual networks
can also be entirely placed into a single physical node (e.g., physical end-host). In this
case, since virtual links are not running on top of any physical counterpart, isolation and
performance guarantees should be offered, for example, through memory isolation and
scheduling mechanisms. In another setup, virtual networks can spread across different
adjacent physical infrastructures (i.e., different administrative domains). In this case, net-
work operators, at the substrate layer, must cooperate to provide a consistent view of the
underlying infrastructure used by networks from the virtualization layer.

In typical NVE implementations, physical routers can be built employing network
processors (GILADI, 2008) (COMER, 2005) or FPGAs (Field Programmable Gate Ar-
rays) (SHAH, 2001) in order to efficiently enable multiple virtual routers running inside
a physical one. Such technologies allow packet processing in very high speeds, dynamic
device reconfiguration, and the coexistence of multiple processors in a single physical
device (TURNER, 2004) (HEPPEL, 2003). Examples of networking devices supporting
network processors or FPGAs and that can be virtualized include the Juniper M Series
(JUNIPERNETWORKS, 2009) router and the NetFPGA (NetFPGA, 2009). Another al-
ternative is to use physical commodity servers as routers. Instances of routing software
such as XORP (XORP, 2012), Quagga (QUAGGA, 2010), Vyatta (VYATTA, 2010), or
Open vSwitch (OPENVSWITCH, 2010) can be deployed on virtual machines running on
top of hypervisors to enable router virtualization. The advantage of using physical servers
is cost reduction because routers and switches are way more expensive than servers. On
the other hand, environments deployed using this approach may experience lower per-
formance compared to real routers or switches that are optimized for routing/forwarding
tasks.

At the physical end hosts, Xen (XEN, 2013), VMware (VMWARE, 2013), and QEMU
(QEMU, 2013) are examples of popular virtualization platforms used to host several vir-
tual machines instances in a single computer. Finally, physical links employ technologies
such as Virtual LANs (VLANs) (IEEE, 2006), Generic Routing Encapsulation (GRE)
(FARINACCI et al., 2000), and MPLS LSPs (Label Switched Paths) to allow a single
physical link to be shared by several virtual ones and to provide isolation among different
virtual links belonging to a physical one.

Network virtualization can also be observed from a business point-of-view. The tradi-
tional model of an Internet service provider (ISP) offering both infrastructure and services
to its customers does not hold in network virtualization anymore. The original roles of
ISPs, in the light of virtualization, are now decoupled in two entities when NVEs take
place (CHOWDHURY; BOUTABA, 2009):

• Infrastructure providers (InPs) are responsible for leasing the physical resources
that are used to create virtual networks;

• Service providers (SPs) use resources from one or more infrastructure providers
to build their own virtual networks and offer services to their customers. SPs can
create virtual networks using resources from other SPs too, in a recursive manner.

29

When mapping InP and SP roles to the general model of NVEs, InPs belong to the
substrate layer, while SPs belong to the virtualization layer. In such business model, SPs
have flexibility to innovate and deploy new value-added services that ultimately affects
their revenue. NVEs also allow InPs to use dynamic pricing schemes by adjusting prices
according to supply and demand. Other benefits of network virtualization include:

• Improved testing and deployment: multiple VNs can be deployed over a single
physical network without affecting its normal operation and production services
because VNs are isolated from each other and from the underlying hardware.

• Scalability: in a first moment, virtual routers can support a small set of functional-
ities and be later extended to incorporate new features and adjust capacity accord-
ingly.

• Reduced costs: a physical resource can be shared by multiple VNs, thus eliminat-
ing the necessity to have one dedicated equipment for each service type.

• Security: because each virtual router handles its own addressing space, security
leaks, configuration errors, and software errors are less likely to happen.

Similar to traditional networks, NVEs need to be properly managed. In the next sub-
section, we discuss management of NVEs, based on the three different perspectives: man-
agement targets, management functions, and management approaches.

2.2 Management of Network Virtualization Environments
NVE management solutions can be classified according to three different perspectives:

management targets, management functions, and management approaches (ESTEVES;
GRANVILLE; BOUTABA, 2013). A management target refers to the component being
managed, such as physical and virtual nodes, intra-domain links, and inter-domain links.
A management function denotes a specific capability supported by a management appli-
cation, including resource provisioning and monitoring. Management approaches, i.e.,
the way management components are organized and interact with each other, typically
employed on an NVE vary from centralized and distributed management to manual and
autonomic/policy-based management (IFIP, 2011).

To allow a better understanding of the management of NVEs in terms of management
targets, functions, and approaches we first introduce a conceptual management model for
network virtualization describing the entities, relationships, and management operations
typically found in NVEs (ESTEVES; GRANVILLE; BOUTABA, 2013). Management
operations in NVEs can be classified into InP management and SP management opera-
tions. InP management includes, for example, provisioning of virtual networks and mon-
itoring of physical resources. SP management, in turn, deals with the operation of virtual
networks and provide services to end-users. Figure 2.2 depicts a conceptual management
model for network virtualization considering the relationship between InPs and SPs.

InPs offer their physical nodes to host virtual ones owned by SPs. Several virtual
nodes can be created and coexist in an isolated way inside a physical one. Physical nodes
are controlled by an infrastructure manager, which, using a management protocol, ex-
changes messages with the agent located at each physical node. Once new virtual nodes
are created, they are managed by the SP they belong to. In this respect, a service manager
communicates with the agents associated with each virtual node to collect information

30

and enforce management actions. SPs can lease resources from different InPs to build
their virtual networks. These InPs can be located in different administrative domains (or
autonomous systems) and, thus, some level of coordination among different infrastructure
managers is required.

!

Physical node Virtual node (SP A) Virtual node (SP B)

Physical link Virtual link

Substrate layer

Virtualization layer

Infrastructure
manager A

Agent Hypervisor

Virtual
router

Agent
Virtual
router

Agent

Service
manager A

Service
manager B

Infrastructure
manager B

Agent Hypervisor

Virtual
router

Agent
Virtual
router

Agent

InP A operator

SP A operator SP B operator

InP B operator

!!

"!
#!

$!

%!

Figure 2.2: Management of NVEs

A virtual node is hosted on a physical one. Virtual node placement can be done either
manually by the SP operator or automatically by the InP using an embedding algorithm.
Once the physical node is selected, the SP operator requests a virtual node creation to the
InP operator (step 1 in Figure 2.2) that, using the infrastructure manager, instantiates the
requested node (step 2 in Figure 2.2). Each physical node has a hypervisor that allows
the creation of virtual nodes. When the agent of the physical node receives a request
from the infrastructure manager (step 3 in Figure 2.2), it contacts the hypervisor (step
4 in Figure 2.2), which then performs the requested action i.e., virtual node creation in
the physical node (step 5 in Figure 2.2). In general, hypervisors provide APIs that allow
external programs to call internal operations such as virtual node creation, initialization,
removal, and to run scripts to perform fine-grained configuration of the virtual resources.

Similar to virtual nodes, virtual links are created through agents located at physical
network nodes. Before contacting the infrastructure manager, the SP operator specifies
the desired characteristics of the virtual links. The characteristics of a virtual link include
source node, destination node, and bandwidth. Accordingly, the infrastructure manager
contacts the agents at the physical nodes hosting the source and destination virtual nodes
to create the virtual link. Virtual links can be created by configuring Ethernet VLANs
between the physical nodes hosting the virtual ones. MPLS LSPs and GRE tunnels are
other candidates to establish virtual links. To complete the creation of a virtual link,
virtual network interfaces belonging to source and destination virtual nodes need to be
bound to their respective physical network interfaces.

The “owner” of a virtual network is usually a human operator or an entity different
from the owner of the physical substrate. Isolated management views have to be provided
to different human operators at both substrate and virtualization layers. The isolation at
the management plane is dependent on the isolation at the data plane and control plane,

31

which is provided by enabling technologies such as VLAN, MPLS, and hypervisors. In
the next subsection, we identify and discuss the criteria used to categorize NVE manage-
ment solutions.

2.2.1 Characteristics of Management Solutions for NVEs

We classify NVE management projects in terms of management targets, management
functions, and management approaches, which combined provide a holistic understand-
ing on how management is currently tackled in modern NVEs (ESTEVES; GRANVILLE;
BOUTABA, 2013). These criteria are commonly used to organize network management
problems in general and are applicable to NVEs as well (CLEMM, 2006) (IFIP, 2011)
(ESTEVES; GRANVILLE; BOUTABA, 2013). Although other criteria (e.g., manage-
ment lifecycle, management organization (CLEMM, 2006)) could be used to classify the
projects, we focused on the ones that are most significant from the technical point of view
since they lie in the core of any NVE management system and are critical at this stage of
virtual networks design.

2.2.1.1 Management Targets

A management target refers to a managed component of an NVE. Managed compo-
nents can belong to different layers of an NVE (i.e., physical, virtual, application). Single
targets can be combined into more complex ones (e.g., virtual networks) demanding ad-
ditional management efforts. Here, we classify management targets in node management,
link management, and network management, as described below.

• Node management: node management deals with the operation of virtual and
physical nodes of an NVE, including the initial creation of virtual nodes on the
substrate and node migration.

• Link management: link management addresses specific aspects related to the con-
figuration and operation of physical and virtual links, such as virtual link isolation
and flow scheduling.

• Network management: network management encompasses not only a single node
or link of the NVE, but an entire virtual network, including virtual networks that
span multiple physical networks.

Structuring management activities according to their target (e.g., node, link, and inter-
network) can help NVE operators to effectively identify and delegate management tasks
(e.g, providing isolation among multiple virtual links) based on their target. Next, we enu-
merate the main management functions that must be supported to realize the virtualization
management model presented in Section 2.2.

2.2.1.2 Management Functions

To discuss how network management has been tackled by network virtualization proje-
cts, we identify here the main management functions that are essential in any NVE man-
agement solution. These functions (i.e., provisioning, monitoring, and interfacing) are
already key in traditional networks, but gain more importance in NVEs. Provisioning
allows SPs to instantiate and use virtual networks. Monitoring is used to support several
other management tasks, such as fault management and billing. Interfacing defines how

32

management applications communicate with NVE resources and enabling interoperabil-
ity.

• Provisioning: resource provisioning in the context of network virtualization con-
sists in defining the mapping of virtual network resources (e.g., nodes, links) to their
physical counterparts and giving SPs operators access to their virtual networks.

• Monitoring: monitoring large NVEs involves gathering updated status of physical
resources and their associated virtual networks. Filtering, correlation, aggregation,
and compressing of monitoring information from different sources are required to
reduce management overhead.

• Interfacing: appropriate management interfaces are required for InPs and SPs to
respectively access, operate, maintain, and administer the physical and virtual nodes
and links. Physical network devices must present a uniform management interface
allowing virtual nodes and links located on heterogeneous physical nodes and links
to be part of the same virtual network and easily manageable by the SP. The func-
tionalities that a management interface must support include: registration, creation,
removal, copy, initialization, shutdown, and migration of virtual nodes and links;
configuration of individual attributes of virtual resources, such as CPU and memory
capacity of virtual nodes, bandwidth of virtual links, and routing tables; retrieval of
status variables; and notifications support.

Other management functions such as billing and maintenance are also important and
needed for the overall management of NVEs. However, we focus on basic management
tasks (i.e., provisioning and monitoring) required to enable any NVE. In the following,
we discuss the main management approaches employed in NVEs.

2.2.1.3 Management Approaches

Management solutions in NVEs vary in how managers and agents are organized.
Some solutions rely on a centralized node responsible for performing all management
tasks, while other systems allow multiple distributed nodes to share the task of managing
the infrastructure. In contrast to manual network management, i.e., a human operator is
responsible for all management tasks, management systems employed in NVEs can also
have different levels of automation. Autonomic management helps reducing human inter-
vention and allows dynamic adaptation to changes in the network. Policy-based manage-
ment is used to enable autonomic management and assists InP administrators to handle
the inherent complexity of an NVE by automating resource configuration according to
high-level business goals. These approaches are discussed next.

• Centralized and distributed management: in the centralized NVE management
approach, a single management station located at the InP (respectively the SP) is
responsible for overseeing the management of the InP (respectively SP) network
resources. On the other hand, in distributed NVE management, multiple nodes
work in a cooperative fashion to accomplish management tasks.

• Manual and autonomic/policy-based management: autonomic management al-
lows the NVE to manage itself according to the current state of the network as

33

opposed to have a human administrator performing all management tasks. Auto-
nomic management solutions typically rely on high-level policies which are gen-
eral rules defined to govern the functioning of the underlying network devices. In
NVEs, policies are also used by InPs to enforce isolation among virtual networks
by controlling access permissions for each SP.

Understanding such management approaches can help NVE administrators to evalu-
ate the tradeoff between the size of the NVE and the complexity of the solution required
to manage it. In the next section, we discuss representative projects related to the man-
agement of NVEs according to the presented criteria.

2.2.2 Network Virtualization Projects

In this subsection, we have selected twelve projects representative of recent work
on network virtualization at the basic research, applied research and testbed deployment
levels. The surveyed projects are among the first approaches to consider management
as a first-class requirement in their solutions. They also represent consolidated efforts at
advanced (or already completed) development stages. In the following, we discuss these
projects based on the criteria identified in the previous section.

2.2.2.1 4WARD (VNet)

The FP7 4WARD project (CORREIA et al., 2011) defines a network virtualization
framework called VNet designed to manage multiple virtual networks hosted on a shared
infrastructure. VNet proposes a business model composed of: infrastructure providers
(InP) that own the physical resources, the virtual network provider (VNP) responsible for
creating virtual networks from multiple InPs, the and virtual network operator (VNO) that
manages virtual networks. Figure 2.3 depicts the 4WARD management model along with
the relationships among participating entities.

The VNO selects the VNP who actually performs VN provisioning. The VNP pro-
vides two special nodes: the Provisioning Node and the Out-of-VNet Management Node
that are also present in each InP. The Provisioning Node gathers updated information of
the resources and runs embedding algorithms, while the Out-of-VNet Management Node
offers a management interface that VNO uses to access virtual networks.

Resource provisioning in VNet includes discovery, embedding, and instantiation. In
the discovery phase, the VNet provider generates a list of candidate resources to host the
virtual network. The InP uses this list to select the physical resources that will host the
virtual ones in the embedding phase. The embedding process employs a greedy algo-
rithm to define the mapping of virtual resources to the physical network. The embedding
process consists of two distributed algorithms. The first one is responsible for creating
virtual networks while the second one is aimed to handle failures and ensure SLAs. Both
algorithms rely on a multi-agent framework where autonomous agents placed at physi-
cal nodes interact to achieve the embedding. The instantiation phase consists in actually
reserving the selected virtual resources.

VNet agents (or probes) are placed at the physical nodes to provide updated infor-
mation about physical and virtual resources to the InP. The collected information is used
for different purposes, including resource discovery and self-organization of the virtual
networks. VNet relies on a situation awareness framework that aggregates monitoring
information and hides unnecessary details to ensure scalability and efficiency of the mon-
itoring process. VNet offers a management interface based on XML-RPC called VMI

34

(Virtualisation Management Interface) that defines a set of management operations, in-
cluding creation, termination, and concatenation of virtual resources. VNet implements a
distributed and autonomic management approach, referred to as In-Network Management
(INM). In INM, self-managing entities (SEs) embedded inside the network are responsible
for the autonomic operation of the physical infrastructure.

Physical node Provisioning node Out-of-VNet mgmt node

Physical link Virtual node setup

!

InP 1 InP 2

VNet Provider

! !

VNet
Operator

Out-of-VNet access

!

Figure 2.3: 4WARD VNet provisioning scenario

2.2.2.2 AUTOI

The AUTOI (Autonomic Internet) initiative (GALIS et al., 2009) aims to develop auto-
nomic management solutions for Future Internet. AUTOI is composed of five conceptual
planes: orchestration, service enablers, knowledge, management and virtualization. The
orchestration plane governs and controls the overall environment. The service enablers
plane provides a programmable environment for the rapid and controlled deployment of
new management services. The knowledge plane consists of information models and
ontologies used to support autonomic capabilities. Management plane functions (e.g.,
monitoring, adaptation) are performed by distributed Autonomic Management Systems
(AMSs). Different AMSs can cooperate with one another in order to build end-to-end
services. The AUTOI virtualization plane is responsible for the provisioning and opera-
tion of virtual networks.

Lattice (CLAYMAN; GALIS; MAMATAS, 2010) is the monitoring framework for
AUTOI. Lattice was conceived to be used in the monitoring of complex and dynamic vir-
tual environments. Lattice defines the basic building blocks of a monitoring solution for
virtual networks. The monitoring system is based on the general concept of producers and
consumers of monitoring data. Monitoring probes are responsible for gathering updated
information from virtual and physical resources. Data Sources, on the other hand, group
monitored information collected by probes and send it to interested consumers following a
previously defined communication model, such as publish/subscribe or IP multicast. Lat-

35

tice is designed to be a generic framework allowing customized, specific-purpose probes,
consumers, and data sources to be deployed.

Each AUTOI domain is managed by one AMS running a control loop. AMSs can
cooperate with one another in order to build end-to-end services. AMSs interact with
the virtualization plane through two well-defined interfaces: vSPI (Virtualization System
Programmability Interface) and vCPI (Virtualization Component Programmability Inter-
face). vSPI provides a macro view of the virtual resources to the AUTOI orchestration
plane, which, in turn, uses vCPI to build and manage virtual networks. vCPI defines
basic primitives for management of virtual nodes (registerVM, startVM, shutdownVM,
migrateVM, unregisterVM) and virtual links (instantiateLink, removeLink, modifyLink).

AMSs are also involved in self-fault management, self-configuring management, and
self-performance management tasks. Both self-fault management and self-performance
management rely on the orchestration plane to detect and react to QoS degradation. Self-
configuration management is related to the setup and adaptation of virtual infrastructures
and service deployment, and involves all AUTOI planes. Authorization, authentication,
and accounting are performed at the Service Enablers plane in order to allow end-users to
access AUTOI services.

2.2.2.3 FEDERICA

FEDERICA (Federated E-infrastructure Dedicated to European Researchers Innovat-
ing in Computing Network Architectures) (SZEGEDI et al., 2009) focuses on building a
large scale networking infrastructure to enable experimentation of new Internet protocols
and architectures.

FEDERICA assumes that a centralized NOC (Network Operation Center) entity per-
forms all administrative management actions in the infrastructure, such as resource dis-
covery, provisioning, and user control. In addition, FEDERICA offers a slice management
tool to facilitate resource management. This later allows the NOC operator to create slices
(i.e., aggregation of virtual network resources), add virtual resources to a slice, and ex-
port slices to the SPs. SPs, in turn, can perform configurations on their assigned slices
without affecting other SPs. Monitoring of physical nodes in FEDERICA is performed
mainly through SNMP. FEDERICA relies on the VMWare Remote Command Line Inter-
face (RCLI) to monitor virtual nodes.

In FEDERICA, when a researcher requests a slice, she/he contacts the FEDERICA
NOC which creates appropriate (i.e., public, private, management) interfaces on a virtual
server to allow users to access her/his slices. The NOC then creates credentials and sets
the expiration date and time of the slice. The NOC also defines the mapping of the slice
on the corresponding physical machines and links and creates VLANs to complete the
slice creation.

2.2.2.4 ProtoGENI

ProtoGENI (PROTOGENI, 2011) is a deployed prototype of GENI (Global Environ-
ment for Network Innovations) (GENI, 2009). In ProtoGENI, researchers can create slices
composed of slivers. Slivers are instances of virtual computing and networking resources.
The main management entities in ProtoGENI are the clearinghouse, slice authorities, and
component managers. The clearinghouse is the central management point in ProtoGENI,
responsible for registering and tracking all slices, users, and component managers, and
enabling the exchange of root certificates between ProtoGENI members. Slice authorities
are the entry points for researchers to request slices from several component managers

36

belonging to the participants of the ProtoGENI federation. Component managers control
resource provisioning inside a member of the ProtoGENI federation. Figure 2.4 illustrates
the main entities of ProtoGENI.

To obtain a slice, a researcher needs to register it at the level of a slice authority and
get a corresponding credential. The credential allows one to create slivers using compo-
nent managers belonging to the ProtoGENI federation. Then, the researcher contacts and
requests tickets from component managers. Tickets are special credentials guaranteeing
that requested resources will be bound to a given slice. Both slice authorities and com-
ponent managers implements an XML-RPC server and provide APIs for managing slices
and slivers, respectively.

Resources in ProtoGENI are described through an abstraction called RSpec. A RSpec
is an XML document describing the components that researchers can use in terms of the
available resources and associated constraints. There are three main types of RSpecs:
advertisements, requests, and manifests. Advertisement RSpecs list available resources
of a component manager. Request RSpecs specify the resources a researcher requested
from one or more component managers to build his/her slices. Manifest RSPecs provide
additional information about the slivers currently allocated to a researcher, such as dy-
namically assigned IP addresses, hostnames, and configuration options.

Clearinghouse

Registries
- !"#$"%
- &'()#"%
- *+,-+.#./%01.12#$"%

Certificate Revocation
Lists

%

Federate 1

Slice
Authority

Component
Manager

Root Certificates

%

Federate 2

Slice
Authority

Component
Manager

Root Certificates

%

Federate 3

Slice
Authority

Component
Manager

Root Certificates

%

Figure 2.4: ProtoGENI main entities

2.2.2.5 UCLP

UCLP (User Controlled Lightpaths) (BOUTABA; GOLAB; IRAQI, 2004) is a man-
agement system for provisioning and controlling optical networks across multiple do-
mains. UCLP is based on a service-oriented architecture (SOA) and allows end-users to
establish inter-domain lightpaths on-demand. Lightpaths can be created, destroyed, ad-
vertised, leased, and concatenated using distributed Web services. UCLP is structured in
three main layers: user access layer, service provisioning layer, and resource management

37

layer, illustrated in Figure 2.5.

!

Service Provisioning Layer

User Application

User Access Layer

Resource Management Layer

HTTP SOAP

SOAP

RMI

 SNMP, TL1

Lightpath

!

Figure 2.5: UCLP

The user access layer is the entry point from where human users can request and
manage lightpath objects through a Web interface. Lightpath operations are implemented
by a set of services defined in the service provisioning layer that also acts as an access
point for external applications (e.g., Grid). The resource management layer comprises a
set of resource agents, responsible for communicating with technology-specific physical
devices (e.g., SONET/SDH switches). Monitoring in UCLP is mainly performed through
standard SNMP.

UCLP allows SPs to configure their resources (Web services) in an easy and flexible
way because SPs do not need to know the internal details of managed devices nor they
need to contact the InP for every management task (e.g., provisioning). SPs have full
autonomy to perform modifications on lightpaths.

2.2.2.6 VNARMS

VNARMS (Virtual Network-based Autonomic network Resource control and Manage-
ment System) (KIM; LEON-GARCIA, 2007) relies on autonomic management to build
virtual networks with performance guarantees. In each virtual network, there are two ba-
sic entities: the Virtual Network Resource Manager (VNRM), responsible for managing
the virtual network by controlling a set of distributed Resource Agents (RAs) that com-
municate with individual network elements. Both entities are autonomic and monitor the
managed resources to identify problems and react accordingly.

VNARMS uses the concept of root-VN to abstract the physical network and create
virtual networks. The root-VN can be spawned in multiple child-VNs that satisfy specific
QoS requirements. When an SP requests a new virtual network, the VNRM of the root-
VN calculates a topology based on the SLA requirements of the SP, spawns a child-
VN from the root-VN, and instantiates a new VNRM for the child-VN. The RA of the
root-VN also creates new RAs to manage individual virtual resources of the child-VN.
Second-level virtual networks can be provisioned from a previously created child-VN

38

in a recursive way as illustrated in Figure 2.6. VNARMS relies on DiffServ for QoS
enforcement.

!

!

"!
#! $!

%! &!

'!(!

"!
#! $!

%! &!

'!(! "!
#! $!

%! &!

'!

"!
#!

%! &!

'!(!

$!

%! &!

'!(!

Physical network

Root-VN

1st-level VNs

2nd-level VNs

Figure 2.6: VNARMS

2.2.2.7 OpenFlow/FlowVisor

OpenFlow (MCKEOWN et al., 2008) is an abstraction layer that enables program-
ming network switches. That is achieved through a flow-based abstraction in which the
user/application determines the actions that will be performed by the switch on receiving
packets belonging to a specific flow type.

OpenFlow requires a virtualization layer to allow multiple users or applications to
share a switch. To this end, the FlowVisor (SHERWOOD et al., 2010) virtualization layer
has been introduced. With FlowVisor, a switch can be properly sliced and allocated to
different users. One of the main issues that FlowVisor has to deal with is managing isola-
tion among multiple slices. FlowVisor achieves isolation through a series of mechanisms.
For bandwidth isolation, FlowVisor configures minimum bandwidth queues for each slice
sharing a port of a switch. To deal with CPU isolation, FlowVisor limits the number of
control messages that a user can send. Other isolation mechanisms include limiting the
number of entries in the flow tables for each slice, and the re-writing of control messages
originated at a particular slice to prevent conflicts with other slices. OpenFlow-based
switches are typically managed by a centralized controller used to create, remove, and
modify flow entries.

2.2.2.8 SNMP for virtual router management

The Virtual Router MIB (VR-MIB) was proposed by IETF in 2003 (STELZER et al.,
2003) as a first attempt to provide an SNMP management interface for virtual routers.
Although already abandoned, this MIB module was originally designed for L3VPN man-
agement. The VR-MIB contains variables related to the high-level configuration of virtual
routers, organized in three main tables: the vrConfigTable, responsible for the cre-
ation and removal of virtual routers; the vrStatTable, which stores statistics of the

39

virtual routers that are hosted in a physical device; and the vrIfConfigTable that
deals with interface mapping between a virtual router and a physical one. This solution
assumes that a single SNMP agent is required to manage all the virtual routers located in
a Provider Edge (PE). This is achieved by the use of SNMP contexts that determine which
virtual router is being accessed, as depicted in Figure 2.7.

SNMP manager

Examples of contexts:

 “vr01” “vr09” “admin”

SNMP agent

Context: vr09 Context: vr01

!
Context: admin

OSPF MIB

BGP MIB

IP MIB

Another
MIB

OSPF MIB

!

BGP MIB

!

IP MIB

!

Another
MIB

!

OSPF MIB

!

BGP MIB

!

IP MIB

!

Another
MIB

!

Figure 2.7: SNMP manager and agent using VR-MIB

One drawback of this MIB module is the absence of objects to support proper binding
between virtual and physical network interfaces. The binding operation is essential, for
example, to limit the physical interfaces to which a virtual one can be mapped to. The
operator of the physical router may need to limit the mapping between physical and virtual
network interfaces to enforce isolation or to provide performance guarantees.

To overcome the limitations of the Virtual Router MIB (VR-MIB), Daitx et al. (DAITX;
ESTEVES; GRANVILLE, 2011) propose an extension to the VR-MIB module that allow
flexible interface bindings. The extension was evaluated for two virtualization platforms:
VMware and XenServer to investigate the virtualization platform influence in the SNMP
performance. However, the evaluation found out that SNMP performance largely de-
pends on the virtualization platform that is being used. Given a virtualization platform,
additional MIB objects may be required in an SNMP implementation, which also results
in different performance levels. Moreover, for large virtualization scenarios, SNMP is not
feasible because of the high number of objects that need to be managed.

Another MIB was proposed to the VRRP (Virtual Router Redundancy Protocol) pro-
tocol (HINDEN, 2004) that uses virtual routers acting as backup routers to reduce the
negative impact of failures. The VRRP-MIB (JEWELL, 2000) defines a set of managed
objects for the VRRP protocol. The VRRP-MIB is structured in three main groups:

• Operations: objects related to configuration and control of virtual routers.

• Statistics: objects containing statistics of virtual routers.

• Notifications: objects used to enable notifications sent from devices containing
virtual routers.

40

2.2.2.9 V-Mart

V-Mart (ZAHEER; XIAO; BOUTABA, 2010) is an automated framework for service
negotiation and contracting in NVEs. V-Mart assumes that large virtual networks are
likely to be deployed over several InPs. However, SPs are not aware of possible collab-
orations between multiple InPs that can ultimately influence the total cost of requested
VNs.

Given that multiple InPs can lease resources at varying prices. An SP should be able
to choose virtual network resources from different InPs in order to reduce the total cost
to deploy a virtual network. V-Mart is based on a two-stage auctioning model and on a
virtual network partitioning heuristic. The objective is to minimize costs for SPs and to
stimulate a fair competition among multiple InPs.

In V-Mart, the SP sends a Request for Quotation (RFQ) to all interested InPs con-
taining the VN requirements (e.g., location, CPU capacities, bandwidth of virtual links).
Then, each InP runs an embedding algorithm and indicates which virtual resources it can
host along with their corresponding prices. Next, having the price quotes of all virtual
resources from all InP, the SP runs a VN partitioning algorithm to generate a list of VN
segments and sends these VN segments to all InPs. Each InP makes a final bid for each
VN segment and the SP defines the winner InP for all VN segments. Finally, the SPs
contracts all winner InPs to actually build the VN.

2.2.2.10 UCVS

UCVS (CHERKAOUI; HALIMA, 2008) is a framework for resource control in net-
work virtualization. UCVS operates exposing virtual network resources as virtual objects
that can be combined to build up entire virtual networks. Virtual objects can belong to
different domains and can be mapped to Web services. Heterogeneity at the physical layer
is then tackled when physical resources are mapped to Web services. Workflows are used
to orchestrate Web services and combine them into more complex virtual networks.

In the UCVS model, a virtual network is called an Articulated Private Network (APN),
shown in Figure 2.8, formed by the concatenation of multiple individual services that
satisfy SP requirements. UCVS uses a repository called Virtual Network Service Object
Registry that contains a list of virtual objects and their corresponding properties.

UCVS provides operations to be performed over the virtual objects, such as sharing
and concatenation. Sharing allows a virtual object to be partitioned in smaller objects and
published for other users. Concatenation consists in combining two objects in a single
one. For example, two objects that represent adjacent virtual links can be combined into
a single virtual link.

2.2.2.11 VROOM

Virtual ROuters On the Move (VROOM) (WANG et al., 2008) enables live virtual
router migrations between different physical locations. VROOM can act as a network
management tool for transparent migration of virtual routers and links.

As can be observed in Figure 2.9, in VROOM, a hypervisor is responsible, among
other functions, for cloning control and data planes of a specific virtual router in order
to enable the migration to another location with minor interruptions. It also supports
dynamic interface bindings to help in this migration process. VROOM is used in net-
work management tasks, such as planned maintenance (where routers can be migrated to
another location while a physical router is under maintenance) and reduction of energy

41

!
!

Domain A Domain B Domain C

Multi-domain APN

Child APN

Figure 2.8: UCVS

consumption in periods of low network demand.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Virtual Router

Control
Plane

!

Virtual Router

Control
Plane

!

Virtual Router

Control
Plane

!

(1)

Data
Plane

!

Data
Plane

!

Data
Plane

!

(2)

Substrate

(1) Hypervisor Physical interface

(2) Dynamic interface mapping

Figure 2.9: VROOM

The main difference between VROOM and the other proposals is that VROOM is
used as a network management tool and is not the focus of the management itself.

2.2.2.12 MIBlets

MIBlets (NG et al., 1999) provides selective and isolated views of network resources
for VN end-users. Special agents inside a purpose node, called MIBlet controllers, par-
tition network resources (e.g., ports, bandwidth) among multiple end-users. Therefore,
the management systems of end-users, called CNRMS (Customer Network Resources
Management System) have access only to a subset of the physical resources (i.e., the
resources allocated to the end-user). MIB controllers are isolated from other MIBlet con-
trollers sharing the same physical node. As a consequence of such isolation, management
actions performed by one CNRMS do not affect other CNRMSs sharing the same device.

42

MIBlets are managed using six well-defined messages: creation-request, creation-
response, re-configuration-request, re-configuration-response, termination-request, termi-
nation-response. The MIBlet creation-request message specifies the parameters of the re-
quest such as a port number and an amount of bandwidth. The MIBlet creation-response
message returns a success indication if the request is accepted. A MIBlet re-configura-
tion-request message is issued when the CNRMS needs to modify an existing MIBlet.
For example, the CNRMS can increase the bandwidth allocated to its MIBlets. The
termination-request message is used to release an allocated message.

The communication between CNRMS and MIBlet controllers is based on SNMP.
Therefore, the CNRMS can directly access and configure the MIBlet as it is accessing
the actual MIB definition of the physical device.

Table 2.1: Comparison of Virtualization Management Proposals
Characteristic Management target Management function Management approach Management

protocol
Project/Proposal Node Link Network Provisioning Monitoring Interfacing Centralized Distributed Autonomic/policies Protocol

4WARD � � � � � � � � XML-RPC

AUTOI � � � � � � � � vSPI/vPCI

FEDERICA � � � � � � � SNMP (monitoring)

ProtoGENI � � � � � � � XML-RPC

UCLP � � � � � SNMP (monitoring)

VNARMS � � � � � � N/A

OpenFlow/FlowVisor � � � OFP

VR-MIB � � � � � SNMP

V-Mart � � � � � N/A

UCVS � � � � � � N/A

VROOM � � � � � N/A

Miblets � � � � � � SNMP

�

2.2.2.13 Comparison

A summary of the discussion is provided in Table 2.1. A checked cell means that the
referred aspect (i.e., target, function, or approach) is explicitly tackled by the proposal.
An unchecked cell does not mean that the aspect is not considered at all. It just means
that it was not possible to find sufficient information to state otherwise. The last column
refers to the management protocol used in provisioning or monitoring-related functions.
Again, in the case of N/A (not applicable), there was not enough information to define
precisely which protocol is used. Comparing the surveyed proposals (see Table 2.1), we
found that 4WARD and AUTOI cover most of the criteria we have identified, reflecting the
goal of these projects to consider management at the design stage. The other proposals
represent significant achievements in the area and emphasize the trend of considering
management as a first class requirement in future networks design. Another noteworthy
finding is that distributed and, to a lesser extent, autonomic management are considered
in many solutions, except perhaps from OpenFlow-based architectures, which reflects the
paradigm shift also occurring in traditional network management design, even though
some functions (e.g., registry) are still performed by centralized entities.

43

2.3 Research Opportunities
Research on management of network virtualization is still in its infancy. There are

management issues still uncovered and others that need further investigation. In this sec-
tion, we discuss the requirements we consider important for managing NVEs but not
sufficiently explored by current solutions, and which, in our opinion, reflect future trends
in managing modern NVEs. Also, considering the recent developments in cloud com-
puting and software-defined networks (SDNs), we dedicate special attention to the issues
arising in the management of virtualized cloud computing environments and SDNs.

2.3.1 Federations and SLA negotiations

The federation of virtualized infrastructures from multiple InPs enables access to
larger scale infrastructures. This is already happening with virtualized network testbeds
allowing researchers to conduct realistic network experiments at scale, which would not
have been possible otherwise. ProtoGENI is an example of federation that allows coop-
eration among multiple organizations. However, guaranteeing predictable performance
for participating entities through SLA enforcement has not been properly addressed by
current solutions and remains an open issue.

2.3.2 Interplay between InP management and SP management

This refers to the needed cooperation between the management systems of InPs and
SPs to avoid/resolve conflicts and ensure overall system stability. Indeed, InPs and SPs of-
ten have conflicting management goals whereas the InPs want to maximize the utilization
of their infrastructures and hence their revenue and the SPs want predictable performance
for their virtual networks.

2.3.3 Standard management protocols and information models

The VR-MIB module (STELZER et al., 2003) described a set of SNMP management
variables for the management of physical routers with virtualization support. However,
it did not progress in the IETF standardization track, leaving the area with no SNMP-
based solution. Other existing management protocols can be used instead. NETCONF,
for example, would be more appropriate for configuration aspects, while NetFlow could
be expanded for virtual router monitoring. There is a clear lack in this area today, which
represent an interesting opportunity for research and standardization.

2.3.4 Management of Virtualized Cloud Computing Environments

Virtualization is a key enabling technology of cloud computing. In order to sup-
port a large number of customers (a.k.a. tenants), modern cloud infrastructures require
that every resource (e.g., computing, storage, network) is virtualized. Open-source IaaS
platforms such as OpenStack and CloudStack represent noteworthy developments in this
respect by facilitating the development of private and hybrid clouds supporting multi-
tenancy and advanced management capabilities. Nevertheless, several management chal-
lenges are still open, some of which are discussed below.

• Dynamic resource scaling: this refers to the ability of dynamically modifying a
previous resource allocation to satisfy new SP objectives. For example, an SP may
need to add more virtual nodes or to increase the bandwidth of a virtual link to ac-
commodate an increasing customer (end-users) base. Cloud management systems

44

must provide this elasticity in order to allow rapid adaptation to changes in SPs’s
demands. Current solutions (e.g. Amazon EC2) provide elasticity at the virtual
machine level. However, dynamic capacity adjustment of network resources (e.g.,
bandwidth) requires further investigation.

• Application-aware resource provisioning: the main limitation of current resource
allocation schemes in clouds is that the characteristics of the applications are com-
monly ignored (ESTEVES et al., 2013). For example, business-critical applications
(e.g., ticket reservation, order processing) may require that virtual (service) nodes
are replicated and placed on distinct physical servers. On the other hand, delay-
sensitive applications benefit if virtual (service) nodes are placed in edge data cen-
ters (i.e., physically close to end users) in order to reduce response time (SAVI,
2011). Adaptive, application-driven resource provisioning can allow multiple ten-
ants and a large diversity of applications to efficiently share cloud infrastructures.

• Energy management: energy is a main concern in cloud data centers and account-
ing for a significant portion of the operational costs of the InP. Achieving energy
proportionality in data centers by consolidating virtual resources into a small num-
ber of physical devices can alleviate the problem. In this respect, finding a good
tradeoff between energy consumption and applications’ performance is a promis-
ing research direction.

• Data center network management: important network issues in data center net-
work management include address configuration, traffic management, and flow
scheduling. In modern cloud data centers, the identifier of a resource is decoupled
from its physical location, which requires a management infrastructure to efficiently
maintain ID/Locator mappings. Also, dealing with different flow patterns typically
found in data centers (short vs. long flows), flow scheduling, bandwidth allocation,
and leveraging the inherent path diversity of data center networks are important
challenges.

2.3.5 Management of SDNs

Software Defined Networking has recently become extremely popular as a means to
program network devices and customize their behavior. In SDN, the control and for-
warding functions of a networking device are decoupled. This separation of control and
data planes and their implementation in software offer flexibility in controlling how net-
work devices forward packets. Commonly, SDN architectures rely on a virtualization
layer which abstracts the underlying physical network devices and topology and provides
isolation in shared environments. The virtual resources are seamlessly controlled and or-
chestrated for the efficient delivery of network services. Management in this dynamic
environment is of paramount importance. Some of the management issues that need to be
addressed include:

• Management Abstractions: current SDN solutions require network operators to
develop customized management packages using low-level instructions of a net-
work operating system (e.g., NOX), which may be a hurdle for administrators.
Providing adequate management information models, interfaces and protocols and
advanced monitoring capabilities/tools represent opportunities to facilitate manage-
ment of SDNs. The OMNI system (MATTOS et al., 2011) is one attempt in this
direction.

45

• Interoperability and Management API: SDNs can be deployed using virtualized
forwarding resources from different providers using a variety of network operating
systems and implementations. The provisioning of services end-to-end and across
multiple administrative domains stresses the need for a widely accepted manage-
ment API.

2.4 Summary
This chapter presented an overview of the state of the art regarding network virtualiza-

tion and management of network virtualization environments. Network virtualization has
recently gained significant importance as a viable platform enabling the development of
novel solutions to known structural problems in the Internet. However, the management
of virtualized network environments raise a number of challenges yet to be addressed.
This chapter surveyed a set of representative research projects related to network vir-
tualization management. The surveyed projects have been analyzed from different per-
spectives, including their management targets, management functions, and management
approach. We found that some management aspects have received or currently receiv-
ing more attention than others. For example, resource allocation and monitoring have
been extensively addressed in existing projects. Other aspects have been less so such as
autonomic/policy-based management, management federations, SLA management, ded-
icated management information models and protocols, standard management APIs, and
cooperative management in a multi-tenant, multi-provider environment. The research is-
sues discussed in this chapter are by no means exhaustive, and will be complemented by
others, as the research in this area progresses. In general, we believe that the network vir-
tualization community should take advantage of the developments made by the network
management community over the last three decades. In turn, we believe that the network
management community should embrace this emerging area and leverage its expertise to
develop a management plane for virtualized environments. Virtualized clouds and SDNs
are example of such environments calling for novel management solutions. In the next
chapter, the application-aware virtual network provisioning problem (AVNP) is formu-
lated and the concept of allocation paradigms, which aims to enable flexible and adaptive
VN provisioning to tackle the AVNP problem is introduced.

46

47

3 APPLICATION-AWARE ADAPTIVE VIRTUAL NETWORK
PROVISIONING BASED ON ALLOCATION PARADIGMS

Provisioning is an essential management function in NVEs (Section 2.2.1.2) and one
related open challenge is how to adapt provisioning strategies to reflect changes in InP
objectives and to consider SP/application requirements (Section 2.3.4). In this chapter,
we propose and detail the concept of allocation paradigms to solve the application-aware
adaptive virtual network provisioning problem (AVNP). We start by providing a brief dis-
cussion on virtual network provisioning along with some related efforts. Next, we intro-
duce and describe our solution, named allocation paradigms, to tackle the AVNP problem.
Then, we define a methodology to quantify the efficiency of allocation paradigms in terms
of provisioning quality.

3.1 Virtual Network Provisioning

VN provisioning is one key NVE management task that defines how InPs allocate VNs
to SPs. Typically, VN provisioning consists in three main steps: discovery, embedding,
and instantiation (CORREIA et al., 2011). In the discovery phase, the InP generates a list
of candidate resources to host the virtual network. The list can be based on different crite-
ria, such as geographical location, type of the requested resources (e.g., a virtual router, a
slice of an OpenFlow switch, virtual machine), or the capacity of the requested resources
in terms of CPU in the case of virtual nodes or bandwidth in the case of virtual links.
The embedding phase consists of mapping virtual resources (i.e., virtual routers, virtual
switches, virtual machines, virtual links) to the substrate, i.e., the physical network. The
InP runs an embedding algorithm to find the best mapping according to a set of objectives
defined by the InP operator and/or by the SPs, such as high acceptance ratio and low com-
munication cost. In most cases, discovery and embedding are performed simultaneously.
It is also possible to allow the SP operator to explicitly select virtual resources that are
already mapped. In this case, there is no embedding algorithm. Examples of management
solutions that allow such flexibility include UCLP (BOUTABA; GOLAB; IRAQI, 2004)
for virtual links or UCVS (CHERKAOUI; HALIMA, 2008) for entire VNs. However,
this user-controlled allocation may not be the optimal allocation and, consequently, result
in low utilization and revenue loss. The virtual network embedding (VNE) problem is
illustrated in Figure 3.1. Finally, the instantiation phase consists in actually reserving the
selected virtual resources on the substrate using a management interface/protocol such as
SNMP, XML-RPC, or CLI.

48

Virtual network

Physical network

Figure 3.1: Virtual network embedding

3.2 Related Work
Several efforts related to VN provisioning have been proposed in recent years. In this

section we highlight some relevant proposals and summarize them in Table 3.1.

Table 3.1: VN provisioning proposals
Characteristic Management target Management function Management approach

Proposal Node Link Network Provisioning Monitoring Interfacing Centralized Distributed Autonomic/policies

Yu et al. (2008) � � � �

ViNEYard (2012) � � � �

Houidi et al. (2010) � � � � � �

NodeRank (2012) � � � �

Houidi et al. (2011) � � � � �

PolyViNE (2010) � � � � � �

VNet (2011) � � � � � � �

VINEA (2013) � � � � �

SecondNet (2010) � � � �

Oktopus (2011) � � � �

Yu et al. attempts to improve virtual network provisioning by allowing virtual links to
be mapped over multiple paths and periodically re-optimizing the mapping of virtual links
on the substrate (YU et al., 2008). This feature is called path splitting. The motivation
behind path splitting is to increase the chances of mapping a virtual link on the substrate
even if there is not a corresponding physical link with available bandwidth capacity to
host the virtual one. With path splitting, a virtual link can be spread over multiple physical
ones that combined offer the requested bandwidth. A direct benefit of such flexible path
splitting is an increase in the number of accepted VN requests. On the other hand, as VN
requests arrive and depart the substrate the network can become fragmented. In order to
improve resource utilization and maximize the acceptance ratio of future requests, virtual
links are periodically adjusted by changing their splitting ratio or migrating them to other
physical locations.

49

ViNEYard (CHOWDHURY; RAHMAN; BOUTABA, 2012) is a set of online embed-
ding algorithms for virtual networks that coordinate the node and link mapping phases.
The motivation behind this coordinated mapping relies on the fact that ignoring the re-
lation between node and link mapping can lead to poor performance. In ViNEYard, the
VNE problem is formulated as a mixed integer program that includes both node and link-
related constraints. In order to be solved in polynomial time, the MIP formulation is
transformed into a linear program through constraint relaxation. The main objective of
ViNEYard is to minimize the cost of embedding a VN request to a physical substrate and,
consequently, increase the InP revenue. One limitation of VINEYard is that is does not
consider explicitly other types of virtual resources that can have specific requirements,
such as ingress and egress bandwidth and storage capacity. Besides, it assumes that the
substrate supports path splitting, which is not always the case.

Houidi et al. propose an adaptive framework for virtual network provisioning to main-
tain virtual network topologies after their initial allocation (HOUIDI et al., 2010). The
goal is to allow already provisioned VNs to cope with variations in the substrate (e.g.,
failures, changes in traffic patterns, modifications of a previously allocated VN), while
guaranteeing the enforcement of SLAs. The authors propose a distributed fault-tolerant
embedding algorithm following a multi-agent based approach. Autonomous agents are
placed at the substrate nodes to offer situation awareness to the framework and support the
distributed fault-tolerant embedding. These agents are responsible for monitoring, select-
ing new substrate resources, migration, and re-instantiation of VN. Each agent computes
a dissimilarity metric between the non-functional (NF) attributes of a virtual node (e.g.,
available capacity/bandwidth) and the NF attributes of all physical nodes and chooses the
one that provides minimum dissimilarity.

NodeRank is a Markov random-walk model for computing resource ranking of a node
and include the notion of topology-awareness in node mapping (CHENG et al., 2012).
NodeRank is inspired by the Google’s PageRank and sort nodes according to their quality,
where a node is considered important if its connections forward to high capacity nodes.
Authors propose a two-stage greedy algorithm. In the node mapping stage, virtual and
physical nodes are sorted according to their rank. Virtual nodes with the highest rank
are mapped to physical nodes with the highest rank. In the link mapping stage, virtual
links are mapped to the physical ones using the shortest path algorithm. Since different
embeddings result in different costs for the InP, authors use a Particle Swarm Optimization
(PSO) to minimize embedding cost. In addition, the proposal does not assume that the
substrate support path splitting.

Houidi et al. extends the provisioning problem to the case where VNs request are
split across multiple InPs (HOUIDI et al., 2011). In such scenario, VN provisioning
is divided in four main phases: resource matching, VN splitting, VN embedding, and
resource binding. In the resource matching phase, the VN provider identifies a set of
candidate physical resources from different InPs that can host the VN request. The goal
of the VN splitting phase is to decide to which InP a virtual node should be sent to,
given that there are multiple candidate nodes in different InPs. Splitting is solved in
two different ways using heuristic solutions (based on a max-flow/min-cut approach) and
linear programming to provide an exact solution. In the embedding phase, virtual nodes
and links are mapped simultaneously following a MIP formulation. Authors propose two
approaches to process VN requests: sequential and parallel. Resource binding consists in
actually reserving the selected resources in the substrate using a variety of virtualization
platforms and management tools.

50

PolyViNE is a policy-based interdomain VN embedding framework that allows VNs
to be provisioned across InPs located at different administrative domains in a distributed
and decentralized manner (CHOWDHURY; SAMUEL; BOUTABA, 2010). In PolyViNE,
individual SPs can enforce their own administrative policies and do not need to expose
their internals. Besides, PolyViNE does not assume that an InP has complete knowl-
edge of the substrate network. An SP sends a VN request to multiple InPs. The InPs
in their turn will inform possible embeddings with their corresponding prices. Similar
to a bidding process, the SP will choose the InP(s) offering the most competitive prices.
PolyViNE introduces a distributed communication protocol to exchange information be-
tween SPs and InPs and coordinate the embedding. PolyViNE also supports location
awareness to avoid that VN requests are forwarded to InP that cannot meet the location
requirements defined by the SPs. To support location awareness, PolyViNE relies on a
novel addressing scheme, named COST (Continent cOuntry State ciTy), which is based
on postal addresses, and on a Location Awareness Protocol (LAP), which is based on
Gossip and Publish/Subscribe protocols to decide to which InPs a VN request should be
sent to, while enforcing InP internal policies.

SecondNet (GUO et al., 2010) proposes virtual data center (VDC) as the abstraction
for resource allocation in multi-tenant cloud environments. The goal of SecondNet is to
provide bandwidth guarantees by designing a scalable and deployable VDC embedding
algorithm, which results in high utilization of the infrastructure network and supports
elasticity when tenants’s requirements change. SecondNet’s VDC allocation algorithm
models the VDC embedding as a bipartite matching, which is reduced to the min-cost
flow problem. Physical servers are preconfigured into clusters before starting VDC allo-
cation to reduce the problem size and to take server locality into account. Performance
of the proposed allocation algorithm depends on the physical network topology. Network
utilization is high for a BCube (GUO et al., 2009) topology, however, it is low for fat-
tree (AL-FARES; LOUKISSAS; VAHDAT, 2008) and VL2 (GREENBERG et al., 2009)
topologies. Bandwidth reservation between VMs pairs may be inefficient because data
transmission between two VMs may vary. This may cause low utilization of network
bandwidth.

Oktopus (BALLANI et al., 2011) is data center network architecture that implements
two virtual data center abstractions (i.e., virtual cluster and virtual oversubscribed cluster)
for controlling the trade-off between the performance guarantees offered to tenants, their
costs, and the provider revenue. A virtual cluster provides the illusion of having all VMs
connected to a single non-oversubscribed virtual switch. A virtual oversubscribed cluster
emulates an oversubscribed two-tier cluster that is a set of virtual clusters interconnected
via a virtual root switch. Oktopus uses a greedy algorithm for the resource allocation to
the VDC. However, Oktopus has some limitations. It supports only two types of requests.
Besides, it can be applied only in tree-like physical topologies.

VN provisioning can be classified according to the criteria presented in Section 2.2.1.
With respect to management targets, VN provisioning solutions allows the SP to request
virtual nodes and links from the InP. It is also possible that SPs request VNs from mul-
tiple InPs located in different administrative domains. This is the case of PolyViNE
(CHOWDHURY; SAMUEL; BOUTABA, 2010) and of the solution proposed by Houidi
et al. (HOUIDI et al., 2011). Concerning management functions, in addition to the actual
VN allocation, VN provisioning solutions can rely on monitoring agents to get updated
status of the substrate and thus find the best mapping alternatives. Moreover, as previously
stated, a management interface is required to allow the InP to interact with the underlying

51

physical resources and complete the instantiation of the VN. However, proposals focused
on VN embedding usually do not explicitly define a management interface or protocol
for VN instantiation. VN provisioning can also be organized according to the manage-
ment approach. Most solutions assume that the InP operator has a complete view of the
substrate and defines the mapping in a centralized manner. Other proposals such VNet
(CORREIA et al., 2011), the solution proposed by Houidi et al. (HOUIDI et al., 2010),
and VINEA (ESPOSITO, 2013) employ distributed embedding algorithms. Autonomous
provisioning is applicable when the InP needs to modify a previous allocated VN in order
to optimize resource allocation or handle failures. Policy-based VN provisioning can be
used, for example, to enforce internal InP policies in a multi-domain scenario (CHOWD-
HURY; SAMUEL; BOUTABA, 2010) or to enable different allocation strategies to be
used (ESPOSITO, 2013).

3.3 Motivation

Despite the existence of a variety of VN embedding strategies, there are common lim-
itations shared by most approaches. First, current embedding strategies are static. InPs
cannot switch from an embedding strategy to another to satisfy a particular objective,
such as energy efficiency or load balancing, nor they can support specific application re-
quirements, such as fault-tolerance or exclusivity over resources (ESTEVES et al., 2014).
Second, current VN provisioning approaches consider VN embedding as an atomic oper-
ation, i.e., the complete mapping of virtual to physical resources is defined prior to VN
deployment, which in some cases may not capture the dynamics of the substrate. For
example, when a VN expires, it releases resources that could be used by an ongoing VN
request because they are better options towards a given objective (e.g., reduce commu-
nication cost). In current embedding approaches, if the InP wants to optimize resource
allocation and leverage the existence of better mapping alternatives, it has to migrate al-
ready deployed VNs to new locations, which increases operational costs.

Given the limited flexibility of current VN embedding strategies, especially because
they do not take into account possible changes in InP objectives, the particularities of ap-
plications, and the dynamics of the physical substrate, there is a need for more appropri-
ate VN embedding approaches for environments where InPs’ objectives change over time
and SPs hosting a large diversity of applications. Research has been conducted over the
recent years to employ adaptive allocation considering multiple objectives (RAO et al.,
2011) (ISLAM et al., 2012) (LI et al., 2011) (FRINCU; CRACIUN, 2011). Such pro-
posals, however, are limited to capacity adjustment of individual resources (e.g., virtual
servers), specific metrics (e.g., response time), and reconfiguration of already deployed
VNs.

In this thesis we address the problem of provisioning VNs considering multiple (pos-
sibly conflicting) InP and SP objectives to define how virtual resources are mapped in the
substrate. Adaptive, application-driven resource provisioning allows multiple SPs and a
large diversity of applications to efficiently share a virtualized network. To enable such
flexible resource allocation, we propose an architecture of a provisioning system for vir-
tualized networks that allows SPs to express high-level requirements for the requested
VNs, which ultimately influence how VNs should be allocated in the physical substrate.
The proposed provisioning approach is based on the concept of allocation paradigms. A
paradigm encompasses goals associated with the high-level objectives of the InP and of
the SPs. Each goal is realized by allocation actions executed within a window (one per

52

goal), which is defined in real-time according to the current status of the substrate. This
approach allows rapid adaptation of the provisioning process to the dynamics of the sub-
strate and to the characteristics of the deployed applications. If an objective is not satisfied
or applications of a VN present poor performance, the current allocation paradigm may
need to be changed. This approach allows rapid adaptation of the provisioning process to
the dynamics of the substrate and to the characteristics of the deployed applications.

3.4 Application-Aware VN Provisioning using Allocation Paradigms
In this section, we begin by defining the basic concepts and the formal problem formu-

lation of our paradigm-based adaptive provisioning approach. Then, we present the archi-
tecture of an adaptive provisioning system based on the concept of allocation paradigms.
Next, we then describe a methodology to map application high-level goals to allocation
paradigms and a policy language used to describe allocation paradigms.

3.4.1 Basic concepts

A paradigm defines how VNs are allocated in the physical substrate. Paradigms are
defined by the InP operator and run in the Infrastructure Manager component (Figure 2.2).
Each paradigm comprises a set of goals associated with application requirements. A goal
is derived in actions, which, in turn, allocate individual VN resources. The main concepts
of the paradigm-based provisioning approach are described below.

• Paradigm: a paradigm P represents a group of goals (G1, G2, ..., Gn) that are
considered in the provisioning of VNs;

• Goal: a goal G is a single high-level objective that is defined by the InP or requested
by the SP in the provisioning of VNs;

• Action: an action A is a single provisioning operation executed to achieve a goal
G.

• Window: a window W is a set of allocation Actions (A1, A2, ..., Am) executed se-
quentially according to a goal G. A paradigm P is thus realized by a set of windows
(W1,W2, ...,Wn) associated with the goals (G1, G2, ..., Gn) of the paradigm;

• Allocator: an allocator Alloc executes provisioning of VNs through an allocation
window W defined by a goal G. There is one allocator Alloc entity associated with
each goal G of a paradigm P .

• Round: a round R is the sequential execution of the actions (A1, A2, ..., Am) of a
window W triggered by an allocator Alloc.

When provisioning VNs, each goal G is translated into a list of actions (A1, A2, ..., Am)
that will be executed sequentially within a window W . Several goals can be combined
together in the provisioning of a VN. The choice for specific allocation actions depends
on the InP objectives and on the characteristics of the applications to be deployed over
the requested VN, on the active paradigm P , and on the current status of the physical
substrate (e.g., available servers/links). Unlike current multi-objective VN provisioning
proposals, allocation paradigms allow InP operators to modify the VN allocation “on-
the-fly” by using different goals for each request. This flexibility is important to make

53

VN provisioning systems adaptable to a large diversity of VNs, where each one may run
different applications. Figure 3.2 depicts the relationship between paradigms, goals, and
actions.

��

Window 1

Action

Action

Action

Allocator 1

Goal 1

��

Window 2

Action

Action

Action

Allocator 2

Goal 2

��

Window N

Action

Action

Action

Allocator N

Goal N

Paradigm

Figure 3.2: Allocation paradigms, goals, and actions

An allocation paradigm can be also seen as a group of provisioning-related policies
that are considered in VN provisioning and defines how VNs are allocated in the physical
substrate. Each policy is associated with a high-level goal defined by the InP operator or
the SP, such as “low latency” or “resiliency”. Therefore, the decomposition of high-level
goals to low-level actions is a form of policy refinement (MOFFETT; SLOMAN, 1993)
(BANDARA et al., 2004). Allocation paradigms have two main design characteristics
that make them suitable to guide resource allocation in NVEs:

Application awareness - Because VNs are used to host applications, the InP needs
to define the relationship between VNs and the applications that ultimately will run on
them. A possible approach is to simplify the problem by allowing only one application
per VN. The disadvantage of such approach is the underutilization of resources when
the application is not active. On the other hand, deploying multiple applications over
a single VN can improve resource utilization at the cost of more complex allocations.
The paradigm model allows both approaches to be used by the InP through three basic
procedures illustrated in Figure 3.3. An application can require one or more goals for the
VNs, such as “low latency” and/or “reliability”.

The first procedure (Figure 3.3(a)) allows only one goal to be associated with a VN.
Different VNs may support different goals. Such procedure is better suited when there
is one application per VN or when multiple similar applications share a single VN. In
the second procedure (Figure 3.3(b)), all goals of an allocation paradigm are applied si-
multaneously during the allocation of a VN, resulting in hybrid VNs tailored for different
goals. It is important to note that, in this procedure, some goals can predominate over

54

others, depending on how the corresponding policies are defined (ESTEVES et al., 2013).
Such policy adjustment can be used to handle conflicts between different goals. The third
procedure (Figure 3.3(c)) reflects how VN allocation is tackled by current provisioning
systems, where one goal is applied to all VNs. In summary, allocation paradigms aim to
cope with the diversity of applications inherent in NVEs that require a variety of strategies
to coexist under a single provisioning framework.

VN1

VN2

VNn

Goal1

Goal2

Goaln

(a) One goal per VN

VN1

Goal1

Goal2

Goaln

(b) Multiple goals per VN

VN1

VN2

VNn

Goal1

(c) One goal, multiple VNs

Figure 3.3: VN allocation procedures

Adaptive provisioning - Typical VN embedding schemes map the whole VN on the
physical substrate, at once, upon receiving a VN request. Mapping all resources of a
VN in an atomic operation is straightforward because the InP has the complete view
of the substrate network and the associated capacities. However, some approaches as-
sume that individual resources (i.e., virtual nodes) of the same VN request cannot share
a physical one and have to be mapped at distinct locations (CHOWDHURY; RAHMAN;
BOUTABA, 2012) (GUO et al., 2010). This limitation may reduce the chances of a suc-
cessful embedding. In addition, most VN embedding approaches do not properly tackle
the case where multiple VN requests arrive simultaneously, which is the typical case in
realistic scenarios. Therefore, two or more ongoing VN requests can compete for the
same physical resource increasing the chances of failed VN requests.

To overcome the aforementioned problems and allow rapid adaptation of current pro-
visioning approaches to the dynamics of the physical substrate, we argue that a VN re-
quest should be mapped in parts. To realize such concept we propose the use of allocation
windows and rounds. One allocation window encompasses a fixed number of individual
allocation actions defined in real-time by the current allocation paradigm, such as virtual
machine creation. The execution of the actions within an allocation window is called a
round. Several rounds may be needed in order to complete the full allocation of a VN.
In each round, the corresponding window executes the appropriate allocation actions de-
fined by the active paradigm. Figure 3.4 illustrates how a VN would be mapped using the
concepts of windows and rounds. The numbers represent the order virtual resources (i.e.,
nodes and links) are allocated. The order actions are executed is defined by the policies
included in the active paradigm.

The benefits of this partial and multi-iteration mapping is threefold. First, it allows
multiple virtual resources of the same VN request to be mapped on the same physical
asset. Second, windows allow rapid adaptation to changing network conditions. Two
consecutive allocation rounds can result in different mappings compared to mapping all
resources at once. For example, after the first round, the mapping of virtual machines can
be modified dynamically to select a physical server that turned out to be a better mapping
option for a given objective (e.g., reduce number of active physical servers) and that was

55

not available at the first round. Finally, a window can run actions from different VN
requests making the problem of managing multiple ongoing VN requests more tractable.

1 2 3 4 5

10

11 12

Round 1

Round 2

Round N

 6

7 8 9 1

2 3

4

5 6

7
8

9

10
11

12

Figure 3.4: Allocation windows and rounds

Possible disadvantages of this paradigm-based allocation may appear in small-sized
static scenarios (i.e., VNs having long duration, InP or SP objectives not changing over
time) because in such scenarios it is unlikely that allocating VNs in parts will produce
a different (and better) result compared to a single round allocation and can potentially
increase provisioning times. Besides, it may be not feasible to accommodate conflicting
goals in a single paradigm without harming application performance. Partial allocation
can also produce incomplete VNs if there are not available resources to complete the
request in the subsequent rounds.

Examples -To better illustrate the paradigm-based allocation approach we next pro-
vide some examples of paradigms, goals, and actions that can be considered in VN pro-
visioning. This is not an exhaustive list and can be complemented accordingly.

Goal: High server utilization

Description: The high server utilization goal aims to group virtual machines inside
the smallest set of physical servers in order to increase server utilization and reduce
operational costs. A paradigm using this goal tries to group VMs in a single physical
server until it reaches its full capacity.

Goal: Green

Description: The green goal aims to minimize the number of used physical nodes
and links in order to reduce energy consumption. To achieve this, virtual nodes and
links have to be grouped in a small number of physical resources. It is similar to
high server utilization goal described above.

Goal: Load balancing

Description: The load balancing goal aims to spread virtual resources in the sub-
strate. When allocating a virtual resource, this goal will choose a unused physical
asset or the least used one, i.e., have the maximum residual capacity. For exam-
ple, a virtual link will be placed in the physical link having the highest available
bandwidth.

Goal: Low latency

56

Description: The low latency goal tries to allocate resources close to each other in
order to minimize the number of hops between two virtual nodes. Therefore, virtual
links should be mapped on physical path with small hop number.

Goal: Redundant

Description: The redundant goal creates a copy of each created resource in a dif-
ferent physical location for reliability purposes.

Goal: Protected

Description: When the SP, for security purposes, requires exclusivity over a physi-
cal resource or is not willing to share physical resources with potential competitors
it may rely on the protected goal to map resources on top of unused nodes and links.

Goal: Cheapest

Description: In scenarios where the price of placing a virtual node on link may vary
according to the location (for example, the energy price is different) the cheaper
goal may be useful by selecting less expensive physical resources to host virtual
resources.

Goal: Low communication cost

Description: When virtual nodes need to exchange large amounts of information it
is preferable that they are close to each other in order to reduce not only the latency
but the whole communication cost, thus preventing link congestion.

Goal: Random

Description: This objective selects random physical resources to host virtual ones.
It may be useful for testing purposes.

Paradigms can be composed of one or more goals. Next we list some possible paradigm
combinations that can be useful for InP operators.

Paradigm: Green + low communication cost

Description: This paradigm can be useful to minimize energy consumption and at
the same time reduce traffic between physical nodes.

Paradigm: Load balancing + redundant

Description: This paradigm may be used when the InP wants to increase VN accep-
tance rate and provide backup VNs for premium SPs. Mission critical application
can also benefit from this paradigm.

Paradigm: Protected + redundant

Description: In addition to secure VNs the SP may require reliable VNs.

Paradigm: Green + cheaper

57

Description: This paradigm is useful when the InP wants to reduce energy con-
sumption (and consequently its operational costs) and the SP wants to acquire cheap
VNs.

Paradigm: Low latency + protected + redundant

Description: This paradigm is useful when the SP requires secure/reliable VNs
having low latency among virtual nodes in order to support high performance ap-
plications, such as e-science.

Actions can include any provisioning operation in the context of NVEs such as cre-
ation/removal of virtual resources (e.g., , machines, routers, links, images, volumes), de-
ployment/undeployment of virtual resources, virtual node migration or copy, virtual link
establishment, and configuration of the attributes of virtual nodes and links (GRANVILLE;
ESTEVES; WICKBOLDT, 2015).

Paradigm operations - The InP manager may create, remove, modify, or switch allo-
cation paradigms. The active allocation paradigm may need to be modified by adding or
removing policies from it, or another paradigm may be activated to allow rapid adaptation
of the provisioning service to other types of VN requests or to changes in the physical
substrate (e.g., new resources that became available after VN release). The decision to
modify or switch to another allocation paradigm depends on the effectiveness of the cur-
rent active one. The effectiveness of an allocation paradigm can be defined in terms of the
performance achieved by the applications running over a VN.

3.4.2 AVNP Problem Formulation

In this subsection we formulate the application-aware virtual network provisioning
(AVNP) problem. We model the physical network, the virtual network request, and the
allocation paradigm, respectively.

3.4.2.1 Physical Network

We model the physical network as a weighted undirected graph Np = (Mp, Rp, Lp, Op),
where Mp is the set of physical machines, RP is the set of physical network elements
(e.g., routers and switches), Lp is the set of physical links used to connect physical ma-
chines and network elements, and Op is the set of InP objectives that can be considered
during VN provisioning. Each physical machine mp 2 Mp has an associated CPU ca-
pacity c(mp) 2 R+. Each physical link lpij 2 Lp connecting two physical machines
i, j 2 Mp [Rp has an associated bandwidth b(lpij) 2 R+. An objective op 2 Op is an
overall goal that can be chosen by the InP. Each objective is associated with target index
t(op) 2 N. Possible values that t(op) can take are listed in Table 3.2. New objectives can
be defined by the InP resulting in additional op and t(op) values.

3.4.2.2 Virtual Network Request

In our model, a virtual network (VN) request is defined as a weighted undirected
graph N v = (M v, Lv, P v), where M v is the set of virtual machines, Lv is the set of
virtual links, and P v is the set of properties desired for the applications running on the
VN. Different from the physical network, a virtual network has no intermediate nodes
for routing or switching; virtual links are requested, however, in order to have allocated
bandwidth between key virtual machines. Similar to the physical network, each virtual

58

machine mv 2 M v requests an amount of CPU capacity c(mv) 2 R+, and each virtual
link lvij 2 Lv connecting two virtual machines i, j 2 M v has a bandwidth requirement
denoted by b(lvij) 2 R+. A property pv 2 P v is a non-functional requirement defined
by the applications running on the VN. Each property has a corresponding target index
t(pv) 2 N that is associated with a high-level requirement requested for the VN. For now,
the values that t(pv) can take are listed in Table 3.3. These values are used as reference.
The model can be easily extended to include as many properties as supported by the InP.
In this case, if the InP supports a new VN property (e.g., , low price) a new pv and a
corresponding t(pv) value have to be included in the model.

Table 3.2: InP Objectives Examples
Target Goal Description
0 Green Virtual machines and

links should be mapped
on the smallest set of
physical assets

1 Load balancing Virtual machines and
links should be mapped
in distinct locations and
cannot share the same
physical resource

2 Low communication cost Virtual machines with
more capacity should
be placed close to each
other

3 High server utilization Virtual machines of the
same request should be
grouped in the same
server

4 Random Picks random physical
resources to host virtual
ones. Used for testing

3.4.2.3 Allocation paradigm

An allocation paradigm P is defined by a set of goals (G1, G2, ..., Gn) that are consid-
ered in VN provisioning. Each goal Gi 2 P reflects an InP objective or a characteristic
desired for an application running in the VN, having the same meaning of an objective
op 2 Op supported by the InP or a property pv 2 P v defined in a VN request, respectively.
An individual goal Gi is realized by a set of allocation actions (A1, A2, ..., An) executed
sequentially within a window Wi. Each window Wi has a size attribute s(Wi) 2 N+ cor-
responding to the number of actions that are executed in each round. An allocator entity
Alloc is responsible to trigger each window W . Multiple allocators can run in parallel to
speed up the provisioning process.

The provisioning of a VN is thus a function of: the number of resources (i.e., virtual
machines and virtual links) that need to be allocated for the requested VN, the number of
allocators deployed, and the maximum size of the window of each allocator, which can
be dynamically adjusted in each round. The minimum number of rounds R required to

59

provision a VN is given by:

R =

&P
mv +

P
lv

Pal
i=1 s(Wi)

'
(3.1)

where (
P

mv+
P

lv) is the total number of virtual resources (i.e., machines and links)
that need to be instantiated per VN, (

Pal
i=1 s(Wi)) is the maximum number of allocation

actions allowed per round, and al is the number of allocators deployed.

Table 3.3: VN Properties Examples
Target Property Description
0 Reliability Replicas of allocated

resources should be
placed in different
locations

1 Security A virtual machine
should not share the
same physical machine
of another SP

2 Best-effort Virtual machines can be
placed at any location

3 Cheap cheap physical ma-
chines should be
selected to host virtual
ones

4 Low latency Virtual links should be
mapped on physical
paths with small hop
number

The size of allocation windows can vary according to the current provisioning status
of the requested VNs. If a VN is already deployed and no changes are expected in the
short run, the size of the allocation window for that VN is zero. On the other hand, if
the VN provisioning has just started or modifications on a previously allocated VN are
scheduled, then the size of the window is greater than zero. The size of an allocation
window can also be adjusted to prioritize one goal over the others. The higher the priority
of a goal, the larger the size of its corresponding allocation window because more actions
of the goal are executed in a single round. There is a clear tradeoff between the size of the
allocation windows and the provisioning time. A large paradigm window requires fewer
rounds to allocate a whole VN, but it is unlikely to take advantage of a better allocation
option that becomes available. On the other hand, a small paradigm window is more
adaptable to dynamic environments at the price of higher overhead, which can result in
larger provisioning times.

3.4.3 Conceptual Architecture of a Paradigm-Based Provisioning System

A conceptual architecture of the paradigm-based provisioning system that is run by
the InP operator in the Infrastructure Manager (Figure 2.2) is depicted in Figure 3.5. The
system is structured in four main layers: Access Layer, Operator Layer, Provisioning

60

Layer, and Infrastructure Layer. The access layer is the entry point for SP operators to
request VNs from the InP. In the operator layer, InP operators can define paradigms, goals,
and associated actions. The provisioning layer implements the core logic of the system
and comprises allocation and monitoring services. The infrastructure layer consists of a
set of resource agents that are responsible for device-level resource management. The
resource agents also collect device status data that is forwarded to the upper layers.

InP operator

Paradigm
Management
Subsystem

Monitoring
Service

Allocation
Service

Resource agents

Provisioning Layer

Infrastructure Layer

Operator Layer

Access Layer

API

SP operator

Figure 3.5: Architecture of the paradigm-based provisioning system

The SP operator requests virtual resources from the physical infrastructure to build
VNs using an API supported by the InP. The InP operator defines paradigms using a
Paradigm Management Subsystem (PMS). The PMS allows InP operators to create new
paradigms, goals, define the set of allocation actions available to an objective, and deter-
mine the current active paradigm. The Allocation Service (AS) is responsible to deploy the
active paradigm and execute allocation actions. The AS supports two operation modes:
system-driven or human-driven. In the system-driven mode, the AS automatically deter-
mines the set of allocation actions to be executed during the next paradigm window. In
contrast, the human-driven mode requires the InP operator to explicitly select the actions
to be included in the window of the next round. The Monitoring Service (MS) provides
updated status of the applications running on the physical substrate to the InP operator
and to the AS component. The monitored data collected by the MS is used in AS system-
driven mode to determine the next set of allocation actions. Similarly, the InP operator
can use the information provided by the MS to manually decide upon the actions to be
included in the subsequent round.

61

In the system-driven AS operation mode, the actions of a paradigm window are se-
lected automatically by the system. The decision on which actions will be included in the
next window is based on a combination of the requirements of both SPs and InPs and on
the current status of the substrate. Policies must be initially defined by the InP operator
to allow the system to automatically reconfigure the allocation process for each objective.
For example, if a goal is defined to support applications requiring low response times, the
policy can be, for example, “create next virtual machine in the least overloaded physical
server” or “create next virtual machine in the same physical machine of the previous one”
(to avoid network bottlenecks). Guided by this high-level policy, the AS contacts the MS
to retrieve updated information about the residual capacities of the physical machines.
The AS then selects the physical servers with the highest residual capacity.

In the human-driven AS operation mode, the InP operator is responsible for manually
selecting the actions to be included in a paradigm window. The operator can define both
the number and the nature of actions of a paradigm window. The human-driven mode is
useful to assist InP operators in new situations that are not covered by the policies defined
for the system-driven mode. For example, the InP operator may want to evaluate a new
paradigm in order to define the best set of actions to be modified or included in a policy
of the system-driven mode. The human-driven mode is thus useful in fine adjustments of
policies of the system-driven mode and to handle exceptional situations that can arise in
allocating virtual networks.

3.4.4 Mapping application goals to paradigms

The choice of a paradigm by the InP operator is influenced by the requirements of
the customers of the physical infrastructure (i.e., SPs). However, in virtualized networks,
InP operator has no means to know in advance which applications will run in his/her in-
frastructure. SPs usually request a number of virtual resources (e.g, VMs, virtual routers)
with specific capacities (e.g., high memory, large disk space) and do not specify particular
performance objectives. Therefore, specific requirements of the application(s) running in
a VN are not considered in resource allocation. For example, a VN that hosts services
needing high reliability can be duplicated, while virtual resources running applications
requiring low response times can be placed close to one another.

The SP must express the requirements of the applications that will ultimately run
in their VN to allow InP operators to change between allocation paradigms and choose
the best one. To enable such application-oriented adaptive allocation we argue that the
interface between SPs and InP operators should be extended to allow the specification
of high-level goals that need to be fulfilled by the VN. The high-level goals defined by
the SP will be mapped to the paradigm goals and actions, which, in turn, actually allocate
resources. The API component of the access layer should provide a means to allow the SP
operator to define VN properties. For example, the API can offer a fixed-set of properties
that can be selected by the SP operator for his/her VNs.

In our solution, the SP can choose among a set of predefined high-level properties
those that better fit the application(s) he/she wants to deploy in a VN. The SP can specif-
ically select, for example, “reliability” and/or “security”, among all available properties,
to build a VN able to support applications requiring high availability and security, re-
spectively. With this information, the InP operator selects the most appropriate allocation
paradigm to satisfy the goals defined by the SP. If there is no paradigm suitable to handle
a specific set of goals, the InP operator will have to define a policy to allow the system to
automatically define the best allocation actions.

62

3.4.5 Paradigm Policy Specification

As a part of our paradigm-based provisioning approach, we have developed a policy
language to allow InP operators to specify the relationship between paradigms, goals, and
allocation actions. Although there are many policies available (IETF-POLICY, 2012) de-
signed for a variety of purposes, none of them define adequate constructs to allow InP
operators expressing allocation paradigms. Our paradigm policies are used by the PMS
to automatically define the allocation actions in the system-driven mode. The main con-
structs of our paradigm-policy language are described below and an example of paradigm
policy is given in Figure 3.6.

• goal: an objective g defines a customized allocation goal for a paradigm p. Each
goal g has a corresponding window attribute w specifying the identifier of the allo-
cation window hosting the actions (a1, a2, ..., an) associated with the goal;

• action: each action a is defined by an identifier, a list of conditions (c1, c2, ..., cn)
that trigger the action, and an operation that actually implements the action, such
as SelectServer or MoveToServer that are used to place or migrate a VM to a given
physical machine, respectively;

• window: a window w defines a group of actions that are executed sequentially. A
window w has a size attribute s that defines the number of actions that are executed
before the next scheduling. A window also defines the order on which the actions
are verified in each turn.

The general format of a paradigm policy is depicted below.

goal <name> := <list-of-actions>

<window>

action <name> := <conditions>

<operation>

window := <size> <order>

An action is triggered when a set of associated conditions is satisfied. The action is
then realized by a low-level operation (e.g., create a VM) supported by the substrate. The
window construct defines the size of allocation windows and the order that the actions of
a policy are evaluated.

In addition to the main constructs, the paradigm policy language can use a set of
auxiliary functions in the main constructs. The auxiliary functions provide updated infor-
mation about the physical infrastructure and underway requests. Such functions can also
refer to individual allocation actions (e.g., virtual machine creation, virtual machine mi-
gration). A non-exhaustive list of auxiliary functions that can be used in policy language
is given in Table 3.4. The functions provided here are used for a proof of concept. They
can, however, be extended to include other operations. In practice, the implementation
of auxiliary functions like the ones of Table 3.4 is dependent on the API provided by the
underlying virtualization platform.

In the paradigm policy example of Figure 3.6 there are three defined objectives: High-
ServerUtilization, LoadBalancing, and LowCommunicationCost. The HighServerUtiliza-
tion objective tries to map all virtual machines to a reduced number of physical machines.

63

Table 3.4: Auxiliary Functions Examples
Function Description
Num_Allocated_VMs(VNR) returns the number of already allocated virtual machines of

a given VN request
VMs_ToAllocate(VNR) returns the number of remaining virtual machines of a given

VN request that were not yet allocated
UnusedServers(VNR) returns the number of physical machines that do not host a

VM of a given VN request
UnusedLinks(VNR) returns the number of physical links that do not host a vir-

tual link of a given VN request
SelectServer(V, P) maps a virtual machine V to a physical machine P if P has

enough capacity
MoveToServer(V, S, D) migrates a virtual machine V from the physical machine S

to the physical machine D
SelectPath(VL, PL) maps a virtual link V L to a physical link PL if PL has

enough bandwidth
random(RES) returns a random physical resource (i.e., machine or link)

from the subset RES
lowest_residual_capacity(type) returns the resource (i.e., machine or link) with the lowest

residual capacity in terms of a given resource (e.g., CPU,
memory, disk, bandwidth) or a combination of the available
resources

highest_residual_capacity(type) returns the resource (i.e., machine or link) with the highest
residual capacity in terms of CPU, memory, disk, or band-
width

all() returns all available resources of the physical substrate
used_servers(VNR) returns all physical machines used to host virtual machines

of a given VN request
used_links(VNR) returns all physical links used to host virtual links of a given

VN request
closest_server(machine) returns the closest physical machine to a given one in terms

of number of hops
shortest_path(S, D) returns the shortest physical path for a virtual link starting

and terminating at physical machines S and D, respectively

If there is not enough capacity to map all virtual machines of a VN request in a single
physical one, the AS component finds the physical machine with the lowest residual ca-
pacity. In contrast, the LoadBalancing objective spreads the virtual resources (i.e., virtual
machines and virtual links) among all available physical machines and links by selecting
the machines and links with highest residual (i.e., more available) capacity at each round.
The LowCommunicationCost objective is very similar to the HighServerUtilization ob-
jective, except that LowCommunicationCost tries to keep virtual machines of the same
VN close to one another, even if they are not sharing the same physical server.

Figure 3.7 illustrates another example of paradigm composed of two objectives. The
Protected objective ensures that a VM of a request is placed alone in a physical machine or
shares a physical machine with other VMs of the same request. The Redundant objective
forces the creation of an additional VM in a distinct location for each VM of a VN request.

64

�
HSU_LB_LCC {
 goal HighServerUtilization {
 action HSU-CreateVM-first {
 conditions = {Num_Allocated_VMs = 0, VMs_toAllocate > 0}
 operation = {SelectServer(VM, random(all))}
 }
 action HSU-CreateVM-others {
 conditions = {Num_Allocated_VMs > 0, VMs_toAllocate > 0}
 operation = {SelectServer(VM, lowest_residual_capacity(machine))}
 }
 action HSU-MigrateVM {
 conditions = {VMs_toAllocate = 0}
 operation = {MoveToServer(VM, S, lowest_residual_capacity(machine))}
 }
 window HSU {
 size = 5

order = {HSU-CreateVM-first, HSU-CreateVM-others, HSU-MigrateVM}
 }
 }
 goal LoadBalancing {
 action LB-CreateVM-first (HSU-CreateVM-first)
 action LB-CreateVM-others {
 conditions = {Num_Allocated_VMs > 0, VMs_toAllocate > 0}
 operation = {SelectServer(VM, highest_residual_capacity(machine))}
 }
 action LB-CreateVL-first {
 conditions = {Num_Allocated_VLs = 0, VLs_toAllocate > 0}
 operation = {SelectPath(VL, shortest_path(S,D)}
 }
 action LB-CreateVL-others {
 conditions = {Num_Allocated_VLs > 0, VLs_toAllocate > 0}
 operation = {SelectPath(VL, highest_residual_capacity(link))}
 }

window LB {
size = 3
order = {LB-CreateVM-first, LB-CreateVM-others, LB-CreateVL-first, LB
CreateVL-others}

}
 }
 goal LowCommunicationCost {
 action LCC-CreateVM-first (HSU-CreateVM-first)
 action LCC-CreateVM-others {
 conditions = {Num_Allocated_VMs > 0, VMs_toAllocate > 0}
 operation = {SelectServer(VM, closest_server(first))}
 }
 action LCC-MigrateVM {
 conditions = {VMs_toAllocate = 0}
 operation = {MoveToServer(VM, S, closest_server(last_used)}
 }
 window LCC {
 size = 4

order = {LCC-CreateVM-first, LCC-CreateVM-others, LCC-MigrateVM}
 }
 }
}

Figure 3.6: Example of paradigm policy - High server utilization + load balancing + low
communication cost

The paradigm policy language is flexible to allow InP operators to describe cus-
tomized objectives and actions tailored for a variety of VN requests and associated ap-
plications. Embedding algorithms and heuristics can be translated into objectives and
actions through appropriate auxiliary functions. For example, if the InP operator wants to
deploy a paradigm based on an algorithm that aims at minimizing energy consumption,
he/she can use or implement an auxiliary function that prioritizes nodes and links with
high utilization, i.e., , high residual capacity. New functions can be implemented using
basic primitives provided by underlying virtualization platforms. Paradigm policies are
used by the AS to automatically schedule actions during the provisioning of a VN.

65

Protected_redundant {
 goal Protected {
 action Protected-CreateVM-new {
 conditions = {VMs_toAllocate > 0}
 operation = {SelectServer(VM, empty(all))}
 }
 action Protected-CreateVM-shared {
 conditions = {VMs_toAllocate > 0}
 operation = {SelectServer(VM, used_servers(request))}
 }
 window Protected {
 size = 2

order = {Protected-CreateVM-new, Protected-CreateVM-shared}
 }
 }
 goal Redundant {
 action Redundant-CreateVM {
 conditions = {VMs_toAllocate > 0}
 operation = {SelectServer(VM, empty(all))}
 operation = {SelectServer(VM, unused_servers(request))}
 }

window Redundant {
 size = 3

order = {Redundant-CreateVM}
}

 }
}

Figure 3.7: Another example of paradigm policy - Protected + redundant

3.5 Determining the Efficiency of Allocation Paradigms

Evaluating the efficiency of an allocation paradigm and determining the associated
conditions for paradigm switching is a critical task. That is highly dependent on the
performance achieved by the applications running on top of a VN, which requires proper
feedback from SPs. Current research focuses on static provisioning approaches that do not
support changes in InPs’ and SPs’ objectives. In this section, we address the problem of
evaluating the effectiveness of allocation paradigms in terms of application performance.
We propose a VN computation model that considers all the applications running in a VN
and whose output is used to guide paradigm switching. The model is based on multiple
linear regression.

3.5.1 Applications

In our model we consider three basic types of applications: Mail, Web 2.0, and E-
commerce. Such applications represent typical workloads of virtualized environments
(VMMARK, 2012a) (SPECVIRT, 2012). The Mail application is a typical mail server
running on a virtual machine to provide communication for the employees of an organi-
zation. The Web 2.0 application simulates a social network and is structured in two tiers
(Web and database) running on separate virtual machines. The E-commerce application
reflects a multi-tiered system composed of four virtual machines (three Web servers and
one database server).

The performance of each application is defined by a particular metric. We follow the
same definition adopted in measurements using the VMmark benchmark (VMMARK,
2012a). For each application, VMmark defines a reference value for the associated metric.
Table 3.5 summarizes the characteristics of the applications considered in our model.

3.5.2 VN Scoring Methodology

The VN computation model is based on the concepts of tiles and scores, typically
found in benchmarking systems (VMMARK, 2012a) (SPECVIRT, 2012). A tile is a

66

Table 3.5: Application performance metrics
Application VMs Metric Reference value
Mail 1 Actions/minute 330.25 actions/minute
Web 2.0 2 Operations/minute 4641.43 operations/minute
E-commerce-A 4 Transactions/minute 2199.18 Transactions/minute
E-commerce-B 4 Transactions/minute 1518.55 Transactions/minute
E-commerce-C 4 Transactions/minute 1058.05 Transactions/minute

fixed-size group of virtual machines running multiple applications. In our case, a tile
is composed by seven VMs belonging to individual instances of the Mail (1 VM), Web
2.0 (2 VMs), and E-commerce (4 VMs) applications, respectively. The score is a nu-
merical value attributed to the VN reflecting the combined performance of all tiles (and
applications). Our score calculation is adapted from the VMMark benchmarking system
(VMMARK, 2012a) (VMMARK, 2012b), used to measure the performance of applica-
tions running in virtualized environments. The score metric S for a VN is calculated as
follows:

S =
⌧X

i=1

Ti (3.2)

where Ti is the performance of the tile i and ⌧ is the total number of tiles a VN
supports. The total score of a VN is thus the sum of the performance of all its tiles. The
performance of a individual tile T is defined by:

T = (
nY

j=1

Appj
Refj

)
1
n (3.3)

where Appj refers to the performance achieved by the jth application in terms of the
metrics defined in Table 3.5, Refj is the reference value for the application Appj , and n
is the total number of applications of the tile. The T value is thus the geometric mean of
the normalized performance of all applications of a tile.

3.5.3 VN Performance Prediction Model

In order to evaluate the efficiency of an allocation paradigm in terms of application
performance, the InP operator needs to monitor the performance of the applications run-
ning on a VN. However, such reactive evaluation may result in excessive monitoring
traffic in large NVE scenarios and in performance degradation of short-lived applications.
Therefore, predicting the performance of the applications to be deployed over a VN and
evaluating allocation paradigms in advance can improve overall VN performance. As
a first step towards the definition of a VN performance model we analyze the relation
between the number of tiles and the total score of a VN by analyzing data submitted to
the VMmark Web site. By the time we collected this data, the number of tests sent to
VMmark was around 60. Figure 3.8 depicts a scattered plot showing the VN score as a
function of the number of tiles.

From Figure 3.8, it is possible to observe that the overall score of a VN grows linearly
with the number of tiles. We thus propose a simple linear regression model to predict the
performance of a VN given the number of tiles used. Using the R statistical package (R,
2013) we found that the predicted score S 0 of a VN can be defined by:

67

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

!" #!" $!" %!" &!" '!" (!")!"

Sc
or

e

Number of tiles

Figure 3.8: Score vs. number of tiles

S 0 = 0.1573 + ⌧ ⇥ 1.0206 (3.4)

where ⌧ is the number of tiles. The adjusted R-squared is 0.973.

3.5.4 Efficiency of an Allocation Paradigm

The efficiency of an allocation paradigm is influenced by two main factors: the num-
ber of rounds required to complete the provisioning of a VN and the predicted score of the
allocated VNs. The number of rounds is directly related to the provisioning time of the
VN. The score, in turn, reflects the quality of the allocation paradigm because VNs with
high score indicate that hosted applications experience good performance and the VN is
unlikely to change in the short run. The quality of an allocation paradigm Q is given by:

Q =
S 0

U (3.5)

where U is the performance of the reference system obtained when applying Equations
3.2 and 3.3 to the reference values of Table 3.5.

The ultimate goal of an allocation paradigm is to reduce the number of necessary
rounds to allocate a VN, which impacts VN deployment time, and avoid excessive paradigm
changes, which is related to the stability of the provisioning system. A paradigm change
can occur when the score of the provisioned VNs are below a threshold defined by the
InP operator. Therefore, the efficiency of an allocation paradigm is defined as:

E =
1

↵R+ �(1�Q)
(3.6)

where R is the number of rounds as defined in Equation 3.1, Q is the paradigm quality,
↵ and � are adjusting factors to weigh the influence of R and Q in the paradigm efficiency
E .

The main objective of our paradigm-based provisioning framework is to:

minimize
X 1

E (3.7)

subject to:

68

0 <
X

W2P

s(W)
X

mv +
X

lv (3.8)

8mv 2M v, 8lv 2 Lv

⌧ > 0 (3.9)

The objective is to minimize the ‘inneficiency’ (i.e., maximize the efficiency E) of an
allocation paradigm P . Constraint 3.8 assures that the number of rounds is bounded by
the sum of the required virtual resources of a VN. Constraint 3.9 guarantees that at least
one tile is allocated.

3.5.5 Resource Allocation Algorithm

We propose an algorithm to guide resource allocation in virtualized networks using the
concept of paradigms. The algorithm is triggered upon receiving of a VN request. The al-
gorithm checks each goal of the paradigm and the corresponding policy set (lines 10-12).
For each policy, the algorithm verifies its set of conditions following the order predefined
in the policy (lines 16 and 17). If a condition is met (line 18), the associated allocation
action is added to the next allocation window (line 19) until the window reaches its max-
imum size defined in the policy. The algorithm then executes the allocation windows for
each goal of the paradigm (lines 22-25).

In order to avoid that a request waits indefinitely for resources that may not be avail-
able in the subsequent rounds we define a parameter called maxrounds, which is the max-
imum number of waiting rounds for an ongoing request. If such number is reached then
the request must be “rolled-back” by releasing previously allocated resources. After each
execution, the algorithm calculates the efficiency of the active paradigm. The number of
used tiles is obtained from the VN request (line 29) and the predicted score S 0 is calcu-
lated (line 30). The quality Q is also calculated (line 31). If Q and is below a certain
threshold defined by the InP operator, then the active paradigm is updated by adding,
removing goals, or switching to another paradigm (lines 32-34).

For example, using a Paradigm Management Subsystem (PMS) (ESTEVES et al.,
2013) the InP operator initially defines that the allocation paradigm is composed by the
Green goal only. Since the paradigm is composed by one goal only, there will be only
one policy in LP . However, it is possible to have as many policies as there are goals in
the allocation paradigm. The policy related to the Green goal has a condition regarding
machine allocation that states that if there are machines to be allocated for a given request,
the correspondent action is to select the machine with lowest residual capacity (CPU,
memory, disk) satisfying the request to host the virtual one (the LB goal policy on the
other hand chooses the machine with highest residual capacity instead). If such condition
is met, the action (select the machine with lowest residual capacity) is included in the
allocation window to be executed until there are no action to be included or the window
reaches its maximum size s(W).

69

Algorithm 1 Paradigm-Based Allocation Algorithm
1: W : window of the paradigm P
2: LR M v [Lv

3: NLR size of LR
4: maxrounds maximum number of rounds
5: nrounds round number
6: nrounds 0
7: while NLR > 0 and nrounds <= maxrounds do
8: run active paradigm:
9: W empty

10: for all G 2 P do
11: schedule actions:
12: LP policy set of the paradigm P
13: for each p 2 LP do
14: C conditions of the policy p
15: A actions of the policy p
16: repeat
17: check next condition c 2 C
18: until c = true
19: Add action a 2 A triggered by c to W
20: end for
21: run allocation window:
22: for i 1 to s(W) do
23: Execute action W (i)
24: NLR NLR� 1
25: end for
26: end for
27: nrounds nrounds+ 1
28: calculate the efficiency of the active paradigm:
29: determine the number of tiles m
30: calculate the predicted performance S 0

31: calculate the quality Q of the current paradigm
32: calculate the efficiency E of the current paradigm
33: if E < threshold then
34: Update current paradigm P
35: end if
36: end while

70

The actions of an allocation window are executed sequentially until the window is
empty, which completes a round. Next, the system calculates the efficiency of the allo-
cation paradigm by comparing the predicted performance of the paradigm quality with a
threshold that was manually defined by the InP operator. If the efficiency is below this
threshold then the system notifies the InP operator, which, in turn, using the PMS, has the
option to change the current allocation paradigm by adding, removing goals, modyfing
the policies, or switching to another paradigm.

3.6 Summary
In this chapter, we have proposed a provisioning framework based on the concept

of allocation paradigms that enables adaptive allocation in NVEs. Our proposal allows
SPs to express high-level requirements for their VNs, which are used by InP operators
to define how a VN is allocated on the physical substrate. Furthermore, multiple InP ob-
jectives can be considered when allocating a single VN, enabling flexibility and allowing
a large number of diverse applications to coexist in an NVE. In addition, we have pro-
posed a methodology to evaluate the efficiency of allocation paradigms. We have defined
a quality metric for allocation paradigms that summarizes the predicted performance of
applications running in a VN. The paradigm quality can be used by the InP operator to
decide on the changing of replacement of a current deployed allocation paradigm. In
the next chapter, we conduct an evaluation of our proposed paradigm-based provisioning
approach.

71

4 EVALUATION OF THE PARADIGM-BASED VN PROVI-
SIONING APPROACH

In this chapter we evaluate our paradigm-based provisioning framework. The goal
of this evaluation is to quantify the benefits of our approach in terms of a set of met-
rics reflecting different aspects of VN provisioning. The metrics we have defined in our
evaluation include: acceptance ratio, provisioning cost, resource (CPU and link) utiliza-
tion, paradigm quality, number of rounds, and paradigm efficiency. We have adopted a
simulation-based approach for evaluating allocation paradigms. We begin by describing
the simulation scenario. Next, we define and explain the metrics we used to conduct the
evaluation. Finally, we discuss the results achieved so far.

4.1 Simulation scenario

We have adapted the discrete-event simulator used by Chowdhury et al. (CHOWD-
HURY; RAHMAN; BOUTABA, 2012) (CHOWDHURY, 2011) to implement the core
logic of the paradigm-based VN allocation. The ViNE-Yard simulator was adapted for
convenience purposes. It has classes to represent both the physical substrate and virtual
requests, and comes with a workload generator. New classes to represent paradigms, ob-
jectives, and actions were created and the mapping methods were replaced by the ones
defined in the paradigm policies. We have also extended the simulator to include our
paradigm efficiency calculation and to allow paradigm changes on the fly. The scenario
we consider in the simulations is of a virtualized data center network (BARI et al., 2012).
We have chosen virtualized data center networks as the evaluation scenario because such
networks form the core of modern cloud computing environments and are typically shared
by a variety of applications with diverse requirements.

The physical substrate is represented by a Clos-based topology (GREENBERG et al.,
2009), which is a topology typically used in data center networks, as shown in Figure 4.1.
The physical topology is composed of 24 servers, 22 switches, and 72 links. Bandwidth
capacity of links varies according to the type of switch used: 1000 Mbps for ToR (Top-
of-Rack) switches, and 10000 Mbps for aggregate and intermediate switches (RABBANI
et al., 2013). Server CPU and storage capacities are uniformly distributed between 50 and
100 units each. The unit for CPU is GFLOPS. The unit for storage is Gigabytes.

Similar to Chowdhury et al. (CHOWDHURY; RAHMAN; BOUTABA, 2012), VN
requests arrive in a Poisson process with an average rate of 4 VNs per 100 time units and
an average duration of 1000 time units, exponentially distributed. The number of virtual
machines of each VN request is randomly defined by a uniform distribution between 2
and 10. CPU requirements of virtual machines are uniformly distributed between 0 and

72

20 GFLOPS, and the bandwidth requirements of virtual links are uniformly distributed
between 0 and 50 Mbps.

Figure 4.1: Clos topology

Our evaluation is divided in two main parts. In the first part, the goal is to quantify
the benefits of our proposed paradigm-based adaptive provisioning approach in terms of
acceptance ratio, provisioning cost, and resource (CPU and link) utilization when mul-
tiple objectives are considered in VN provisioning. In the second part, we measure the
efficiency of allocation paradigms in terms of application performance and number of
required rounds to complete VN provisioning.

4.2 Evaluation - paradigm goals comparison
In the first part of the evaluation we have defined three main goals to compose alloca-

tion paradigms: HighServerUtilization (HSU) and LoadBalacing (LB), detailed in Section
3.4.5, and a Random goal, which tries to map all virtual machines randomly. The window
size is 1 for all paradigms, which means that one action of each goal of a paradigm is
executed in each round.

4.2.1 Metrics - paradigm goals comparison

We have defined four metrics in the first evaluation. Acceptance ratio is the num-
ber of VN requests that are accepted over the total number of requests. Provisioning
cost is defined in terms of allocated resources and calculated using the model of Chowd-
hury et al. (CHOWDHURY; RAHMAN; BOUTABA, 2012) where the cost is defined asP

lvij2Lv

P
lpij2Lp b(lvij) +

P
mv2Mv c(mv). CPU utilization and link utilization reflect the

average usage of individual servers and links over their total capacity. For each experi-
ment, we evaluate 3 paradigms composed of one single goal (HSU, LB, and Random) and
a paradigm combining the HSU and LB goals. Figures 4.2 to 4.5 summarize the obtained
results. Each experiment was repeated 30 times with a confidence level of 95%.

4.2.2 Results - paradigm goals comparison

The average acceptance ratio over time is shown in Figure 4.2. The LB goal achieves
very high acceptance ratio indicating that distributing virtual machines over the substrate

73

is better than concentrating requests in a limited subset of machines. Such behavior can
be explained by the fact that LB always try to find the resources with highest residual
capacity, which increases the chances of a successful mapping. Randomizing resource
allocation also results in high acceptance ratio, comparable to LB. According to the lit-
erature, randomization can lead to good results in some scenarios, especially when the
number of machines is high (CHOWDHURY; RAHMAN; BOUTABA, 2012) (MITZEN-
MACHER; RICHA; SITARAMAN, 2000). On the other hand, HSU has the worst perfor-
mance among all paradigms because HSU, in contrast to LB, looks for the machines with
the lowest residual capacity in order to reduce the number of used resources (i.e., mini-
mize resource fragmentation). The side effect is that such machines run out of capacity
very quickly, reducing the mapping possibilities. However, when HSU and LB goals are
combined under the same paradigm, the acceptance ratio improves considerably, achiev-
ing similar performance to LB and Random goals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU

(a) HSU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

LB

(b) LB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

Random

(c) Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU+LB

(d) HSU+LB

Figure 4.2: Acceptance ratio over time

The average cost of provisioning a VN in terms of allocated resources is depicted in
Figure 4.3. The cost is a function of the number of allocated virtual resources defined
as(CHOWDHURY; RAHMAN; BOUTABA, 2012). Here, LB and Random goals result
in higher provisioning costs compared to HSU. The reason is twofold. First, since LB
and Random goals accept more requests, the number of allocated resources is also higher.
Second, LB and Random goals use more resources when provisioning a single VN (be-

!

Ac
ce

pt
an

ce
 ra

tio

!
Ac

ce
pt

an
ce

 ra
tio

!

Ac
ce

pt
an

ce
 ra

tio

!

Ac
ce

pt
an

ce
 ra

tio

74

cause virtual resources tend to be spread) and more links are allocated. In HSU, in turn,
because multiple virtual machines of the same VN are mapped to a smaller subset of
available servers (some can even share the same server), the number of used links is min-
imized, reducing the overall cost of the VN. Again, when HSU and LB are combined, the
provisioning cost approximates to the ones achieved by LB and Random.

0

100

200

300

400

500

600

700

800

900

1000

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU

(a) HSU

0

100

200

300

400

500

600

700

800

900

1000

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

LB

(b) LB

0

100

200

300

400

500

600

700

800

900

1000

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

Random

(c) Random

0

100

200

300

400

500

600

700

800

900

1000

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU+LB

(d) HSU+LB

Figure 4.3: Provisioning cost over time

Figure 4.4 depicts the average CPU utilization over time achieved by the four paradigms.
HSU achieves the highest CPU utilization, since it attempts to increase server utilization
mapping virtual machines on the servers with the lowest residual capacity. LB and Ran-
dom, in turn, go on the opposite way by choosing resources with high residual capacity
and low utilization. It is possible to observe that LB has a big influence in the combined
(HSU+LB) paradigm compared to HSU because CPU utilization values are closer to the
ones achieved by LB than to the ones obtained when HSU is applied isolated.

Finally, the average link utilization over time is illustrated in Figure 4.5. As stated
before, HSU tends to use less links when provisioning VNs, which explains in part why
HSU has the lowest link utilization. The other reason is the fact the HSU rejects more
requests (Figure 4.2). By using less links, VNs provisioned with HSU are “cheaper”, as
discussed in the cost comparison. The Random objective has slightly superior perfor-
mance compared to LB and HSU+LB. The similarity between link utilization achieved
by both LB and HSU+LB confirms again that LB dominates over HSU, even in the com-

!

Co
st

!

Co
st

!

Co
st

!

Co
st

75

bined paradigm. LB has the major influence even in the combined paradigm because the
number of physical machines (24) is more than twice the number of virtual machines of
a request (10). Therefore, LB will likely find a suitable machine to host a VM for all
requests. In a more restrictive scenario, e.g., few physical machines and many VMs to be
requested, there is no guarantee that LB would still dominate over HSU.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU

(a) HSU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

LB

(b) LB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

Random

(c) Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU+LB

(d) HSU+LB

Figure 4.4: CPU utilization over time

!

CP
U

ut
iliz

at
io

n

!
CP

U
ut

iliz
at

io
n

!

CP
U

ut
iliz

at
io

n

!

CP
U

ut
iliz

at
io

n

76

0

0.01

0.02

0.03

0.04

0.05

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU

(a) HSU

0

0.01

0.02

0.03

0.04

0.05

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

LB

(b) LB

0

0.01

0.02

0.03

0.04

0.05

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

Random

(c) Random

0

0.01

0.02

0.03

0.04

0.05

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

HSU+LB

(d) HSU+LB

Figure 4.5: Link utilization over time

4.3 Evaluation - paradigm efficiency analysis
In this section we evaluate the efficiency of an allocation paradigm in terms of ap-

plication performance and investigate the benefits of paradigm switching. To determine
the efficiency of a paradigm we use the VN performance prediction model proposed in
Section 3.5. In order to obtain the efficiency of allocation paradigms, we have extended
the simulator described in Section 4.1 to include our paradigm efficiency calculation and
to allow paradigm switching on-the-fly.

4.3.1 Metrics - paradigm efficiency analysis

We defined three additional metrics in this second evaluation. Paradigm quality re-
flects the quality of an allocation paradigm in terms of the score predicted for the provi-
sioned VNs. In order to have higher precision and facilitate the interpretation of the results
we plot paradigm quality as a harmonic series (HAVIL; DYSON, 2003), where each point
is calculated by

Pnreq
i=1

Qi
i , where nreq is the number of the current VN request. Number

of rounds is the number of allocation rounds necessary to complete the provisioning of
a VN as defined in Section 1.1. Paradigm efficiency combines both previous metrics ac-
cording to Equation 3.6. ↵ and � have the same weight (1) indicating that the number of
rounds and the paradigm quality have the same importance.

!
Li

nk
 u

tili
za

tio
n

!

Li
nk

 u
tili

za
tio

n
!

Li
nk

 u
tili

za
tio

n

!
Li

nk
 u

tili
za

tio
n

77

For each experiment, we evaluate two allocation paradigms composed of a single goal:
Green and Load Balancing (LB) defined in Table 3.3 and a combination of the two. We
also vary the size of the allocation window from 1 to 3. We also investigate the impact
of switching from one paradigm (Green) to another (LB) during the simulation. In the
paradigm switching evaluation, actions of one goal are scheduled and executes at each
round. In the next round, actions of the other goal are included in the window and the
process continues until the provisioning is complete. The maximum number of rounds
for each request is defined as the number of requested resources over the size of the
allocation window (Equation 3.1). The number of tiles of each request is calculated by
dividing the number of request machines (mv) by 7, which is the size of one tile.

4.3.2 Results - paradigm efficiency analysis

The quality of the paradigms composed by the Green, LB, and the combination of
Green and LB goals is depicted in Figure 4.6. It is possible to observe that the paradigm
quality is better for small-sized paradigm windows and gets worse when the paradigm
window size is large. This happens because mapping a high number of resources in
a single round reduces the adaptability of VN provisioning because the effect of VN
arrivals and departures will only be perceived in the next round, which will happen when
the actions of the current one are completed. As a consequence, the chances of taking
advantage of better mapping alternatives are smaller for paradigms having large windows.

0

1

2

3

4

5

6

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Qu
ali

ty

Time

Green LB Green+LB

(a) s(W) = 1

0

1

2

3

4

5

6

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Qu
ali

ty

Time

Green LB Green+LB

(b) s(W) = 2

0

1

2

3

4

5

6

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Qu
ali

ty

Time

Green LB Green+LB

(c) s(W) = 3

Figure 4.6: Paradigm quality

78

When s(W) = 1 the Green goal presents quality slightly inferior than LB and the com-
bination of the two. This happens because LB always searches for the physical machine
with the highest residual capacity. Since the initial configuration (i.e., capacity) of physi-
cal machines is the same, LB selects a different machine in each turn, thus increasing the
number of allocated tiles and, consequently, the paradigm quality. The quality of the com-
bined paradigm approaches the values obtained by the LB goal isolated. The explanation
for such behavior is that the size of the requests are relatively small (2 to 10 virtual ma-
chines) and since LB goal tends to select a different physical machine for each virtual one,
the impact of such spreading is more evident for small VN requests. The performance of
the goals tend to converge when the window size increases.

Figure 4.7 shows the average number of rounds required to complete the allocation of
a VN with varying window sizes for the Green goal. For the sake of simplicity we use the
paradigm approach to allocate the virtual machines, while the virtual links are mapped in
a single step using the shortest path first (SPF) algorithm. When s(W) = 1 the number
of rounds to complete the allocation is the exact number of virtual machines of the VN
request. For s(W) = 2, the number of rounds is static because most of the virtual machines
were allocated in only two rounds. As expected, when s(W) = 3 most VN requests are
completed in two rounds and some (the smallest ones) in just one round. The number of
rounds influences the time needed to allocate a VN. VNs allocated in few rounds (i.e.,
large paradigm windows) are rapidly available to SPs while VN requests taking many
rounds to be deployed have larger provisioning times.

0

1

2

3

4

5

6

7

8

9

10

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

1

2

3

4

5

6

7

8

9

10

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

1

2

3

4

5

6

7

8

9

10

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.7: Number of rounds - Green goal

!

Ro
un

ds

!

Ro
un

ds

!

Ro
un

ds

79

Figure 4.8 shows the efficiency of the Green goal, which is a function of both number
of rounds and paradigm quality. When s(W) = 1, the efficiency presents a high variation.
This can be explained by the fact that the number of rounds needed to allocate VNs
also varies more for s(W) = 1 (Figure 4.7(a)). When s(W) = 2, the number of rounds is
the same (2) most of the simulation (Figure 4.7(b)). This results in a stable efficiency
of approximately 0.55 most of the time, except for two VN requests that did not achieve
good quality. The efficiency presents a variation in the first part of the simulation for s(W)
= 3 because the quality is the lowest in this case (Figure 4.6(c)). The efficiency becomes
stable for all window sizes after some point of the simulation because the quality also
stabilizes as shown in Figure 4.6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.8: Paradigm efficiency - Green goal

The acceptance ratio for the Green goal is illustrated in Figure 4.9. For s(W) = 1,
acceptance ratio stays above 40% for the whole simulation time. When s(W) = 2, the
acceptance ratio rapidly decreases after 2000 time units and stays between 55% and 27%
for the rest of the simulation. The situation is even worse for s(W) = 3, when acceptance
ratio is no higher than 25%, indicating that similar to paradigm quality, there is a clear
association between the size of the window and the acceptance ratio of VN requests.
VN requests allocated using paradigms with small windows are more adaptable and less
unlikely to be rejected, while larger windows result in a higher number of rejected requests
because the Green paradigm will tend to choose the same node in a single round and the
capacity of the chosen node will run out fast.

!

Ef
fic

ien
cy

!

Ef
fic

ien
cy

!

Ef
fic

ien
cy

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.9: Acceptance ratio - Green goal

Figure 4.10 presents the average cost of provisioning a VN. During most of the simu-
lation (time < 36000), the cost of allocated VNs is higher for s(W) = 1 compared to s(W)
= 2, which, in turn, results in higher costs compared to s(W) = 3. This can be explained
in part by the fact that the acceptance ratio is higher for s(W) = 1, which means that more
resources are allocated and the overall cost for the InP increases. However, after 36000
time units, the cost of allocated VNs converges regardless the size of the paradigm win-
dow. This indicates that the size of the paradigm windows does not have a major influence
in the overall performance of provisioning in the long term for the Green goal.

The number of rounds used by the LB goal to provision VNs is the same of the Green
goal, which can be easily explained by the fact that the number of rounds depends only on
the size of the paradigm window s(W) and not on the goals employed. s(W) defines the
number of allocation actions that will be executed independent of which goal they belong
to. The efficiency of the LB goal is illustrated in Figure 4.11.

The LB efficiency presents a higher variability when s(W) = 1 if compared to the
Green goal. This happens because the quality of LB goal is higher compared to Green.
Even if the efficiency suffers a momentary reduction due to an increase in the number
of rounds, LB is able to produce good quality VNs, thus rapidly increasing the overall
efficiency. When s(W) = 2 or s(W) = 3 the LB efficiency approximates the values achieved
by Green because the quality of the goals tend to converge as the paradigm window gets
larger (Figure 4.6).

!
Ac

ce
pt

an
ce

 ra
tio

!

Ac
ce

pt
an

ce
 ra

tio

!

Ac
ce

pt
an

ce
 ra

tio

81

0

50

100

150

200

250

300

350

400

450

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

50

100

150

200

250

300

350

400

450

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

50

100

150

200

250

300

350

400

450

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.10: Provisioning cost - Green goal

Acceptance ratio for the LB goal is shown in Figure 4.12. s(W) = 1 provides the best
results where all VNs are successfully allocated. This can be explained by the fact that LB
tends to select a different machine with high residual capacity in each round, increasing
the chances of accepting the VN request. For s(W) = 2, the acceptance ratio stays between
55% and 30%, similar to the results of the Green goal, indicating that performance of
allocation paradigms tend to converge when the window size increases. The same holds
when s(W) = 3.

The cost of VN provisioning for the LB goal is presented in Figure 4.13. Unlike Green
goal, the cost of VNs provisioned with the LB goal when s(W) = 1 is higher than s(W) = 2
and s(W) = 3 for most of the simulation. This reflects the fact that more VNs are allocated
when s(W) = 1 and, consequently, the total InP cost increases because cost is defined in
terms of allocated resources (i.e., virtual machines and links) per VN request. Similar to
acceptance ratio, the average cost of allocated VNs for s(W) = 2 and s(W) = 3 converge
after 36000 time units and is comparable to the cost obtained by the Green goal.

Figure 4.14 shows the paradigm quality when s(W) = 1 and the current allocation
paradigm is switched during simulation time. In our experiments, the used thresholds to
switch between paradigms were defined manually (half of the simulation time). However,
our approach is still valid even if we consider more sophisticated techniques to estimate
these thresholds. The quality of the allocation in the first half of the simulation stays
between 1.2 and 4.2, which reflects the performance of the Green goal (see Figure 4.6).

!
Co

st

!

Co
st

!

Co
st

82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.11: Paradigm efficiency - Load balancing goal

After that, the quality increases and stays between 4.5 and 4.7, which are close to the
values obtained by the LB goal, which shows that changing between goals can improve
paradigm quality.

The paradigm efficiency when paradigm switch occurs is illustrated in Figure 4.15.
When s(W) = 1, the paradigm efficiency is exactly the efficiency obtained by the Green
goal in the first part of the simulation. After the paradigm switches from Green to LB,
the efficiency resembles the values achieved by the LB goal. The same behavior can be
observed for s(W) = 2 and s(W) = 3.

The acceptance ratio for paradigm switching is shown in Figure 4.16. The impact of
paradigm switching is more evident for s(W) = 1. After paradigm switching, the accep-
tance ratio starts to increase because LB offers very high acceptance ratio (Figure 4.12).
The provisioning cost is depicted in Figure 4.17. Again, for s(W) = 1 the cost does not
reduce as in Green goal (see Figure 4.10) after paradigm switching. Instead, the aver-
age provisioning cost stays higher than s(W) = 2 and s(W) = 3, confirming the impact of
changing between goals during VN provisioning on the InP revenue.

!
Ef

fic
ien

cy

!

Ef
fic

ien
cy

!

Ef
fic

ien
cy

83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.12: Acceptance ratio - Load balancing goal

!

Ac
ce

pt
an

ce
 ra

tio

!

Ac
ce

pt
an

ce
 ra

tio

!

Ac
ce

pt
an

ce
 ra

tio

84

0

100

200

300

400

500

600

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

100

200

300

400

500

600

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

100

200

300

400

500

600

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.13: Provisioning cost - Load balancing goal

!

Co
st

!

Co
st

!

Co
st

85

0

1

2

3

4

5

6

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

1

2

3

4

5

6

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

1

2

3

4

5

6

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.14: Paradigm quality - Paradigm switching

!

Qu
ali

ty

!

Qu
ali

ty

!

Qu
ali

ty

86

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.15: Paradigm efficiency - Paradigm switching

!

Ef
fic

ien
cy

!

Ef
fic

ien
cy

!

Ef
fic

ien
cy

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.16: Acceptance ratio - Paradigm switching

!

Ac
ce

pt
an

ce
 ra

tio

!

Ac
ce

pt
an

ce
 ra

tio

!

Ac
ce

pt
an

ce
 ra

tio

88

0

100

200

300

400

500

600

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

100

200

300

400

500

600

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

100

200

300

400

500

600

21
7

21
73

43

47

71
05

97

36

12
17

3
14

34
7

16
90

4
19

28
5

22
10

5
24

73
6

27
17

3
29

34
7

31
66

6
33

75
0

36
00

0
38

00
0

40
19

2
42

11
5

44
03

8
46

57
8

49
21

0
51

11
1

52
50

0
53

88
8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Figure 4.17: Provisioning cost - Paradigm switching

!

Co
st

!

Co
st

!

Co
st

89

4.4 Summary
In this chapter, we have evaluated our paradigm-based provisioning framework. The

evaluation was divided in two parts. The first one compares different goals in terms of
acceptance ratio, provisioning cost, and resource utilization. The second part evaluates
the efficiency of allocation paradigms (and associated goals) analyzing different paradigm
configurations (i.e., window size) and including new metrics such as paradigm quality,
number of rounds, and paradigm efficiency.

Regarding paradigm goals comparison, it is possible to conclude that HSU goal is
better suited for bandwidth-limited scenarios and useful to allocate VNs hosting network-
sensitive applications. HSU uses less links, reducing the occurrence of bottlenecks in
the network. On the other hand, LB is appropriate for best-effort scenarios and for VNs
that need high availability (i.e., VNs hosting critical applications) because resources are
spread over the network. LB also results in increased revenue for InPs, since more VNs
are allocated when LB is employed (isolated or combined). When HSU and LB are used
together, provisioned VNs share characteristics of both goals, although LB has a larger
influence on the achieved performance.

When analyzing paradigm efficiency, the LB goal presents better performance in terms
of paradigm quality when compared to the Green goal. This happens because LB tries to
spread VN requests over a high number of physical resources, thus increasing the accep-
tance ratio, which reflects in the quality of the provisioned VNs. However, this comes at
the cost of more expensive VNs because more resources are allocated by LB compared
to Green. When s(W) = 1 the number of rounds required to provision VN is higher,
which means that VNs will take longer to be fully allocated. Paradigm quality can also
be helpful for InP operators to decide on changing between paradigms and improve VN
provisioning.

When we increase the window size to 2 we observe that the quality of the provisioned
VNs decreases. This reflects in the reduction in the acceptance ratio of the provisioned
VNs. The explanation for lower quality of the allocated VNs when the window size is
higher relies on the fact that simultaneous mapping of multiple resources increases the
chances of failed requests. On the other hand, the number of rounds is smaller and cost
also reduces, which results in cheaper VNs that are rapidly deployed. This behavior is
more evident when we increase the window size to 3.

Paradigm efficiency combines both paradigm quality and number of rounds. When
s(W) = 1 the paradigm efficiency presents high variability. This happens because the
number of rounds also changes more often in this case. For s(W) = 2, the number of
rounds is stable most of time, which reflects in the paradigm efficiency. The quality
reduction observed for s(W) = 3 also impacts the overall paradigm efficiency, indicating
that paradigm quality and number of rounds have to be considered together.

90

91

5 CONCLUSIONS

The investigation carried out during this thesis demonstrated the feasibility of the
our proposed application-aware virtual network provisioning approach. Specifically, our
proposal is based on the hypothesis that “Limitations in virtual network provisioning
can be reduced through the use of allocation paradigms”. Based on the hypothesis,
we proposed a provisioning framework based on the concept of allocation paradigms
that enables adaptive allocation in virtualized networks. In addition to allowing InPs to
consider different goals in VN provisioning, our proposal empowers SPs to express high-
level requirements for their VNs, which are used by InP operators to define how a VN is
allocated on the physical substrate. Furthermore, multiple objectives can be considered
when allocating a single VN, enabling multi-tenancy and allowing a large number of
diverse applications to coexist in an NVE.

Our paradigm-based provisioning represents a novel way of looking at the VN pro-
visioning problem. Instead of dealing with complex analytical VN provisioning models
that may be a hurdle for many InP operators, allocation paradigms can be easily defined
and do not require advanced expertise in order to be deployed. Besides, an important
characteristic of our proposal is its adaptability, that is, the capacity of capturing the dy-
namics (i.e., VN arrivals and departures) of the NVE and respond rapidly to them. This is
achieved by splitting a VN request in several parts that are allocated independently. This
mapping in parts represents another break with current VN provisioning approaches that
consider VN mapping as a single, atomic operation.

Another noteworthy feature of our approach is to give the opportunity to the SPs
to have an active role in VN provisioning. SPs can specify desired properties for their
VNs that are considered by InPs in VN provisioning, which usually is not possible in
most provisioning solutions deployed today. The InP is also able to change the current
paradigm on-the-fly to reflect a new objective or to better support the requirements of its
customers.

In order to evaluate the efficiency of allocation paradigms, we formulated a VN com-
putation model, based on multiple linear regression, which considers all the applications
running in a VN and whose output can be used by InP operators to decide whether to
change a current allocation paradigm. The model resulted in the definition of a paradigm
quality metric that reflects the aggregated performance of the applications running in a
VN. In addition to paradigm quality, the number of rounds necessary to complete the pro-
visioning of a VN has a significant impact on the overall efficiency of the paradigm and
has to be considered accordingly.

The evaluation aimed at analyzing two different dimensions of our paradigm-based
provisioning approach. In the first evaluation, we demonstrated the feasibility of our
approach to accommodate multiple goals and compared the performance of different

92

paradigms. When multiple goals are combined together, some may prevail over the others
depending on factors such as the paradigm window size and the amount of available phys-
ical resources. In the second evaluation, we analyzed the efficiency of different paradigms
considering the combined performance of applications running in a VN, i.e., the quality,
and verified the impact of changing between paradigms during VN provisioning.

5.1 Answers to the Research Questions
The motivation behind the definition of the research questions was to define the main

points to be analyzed during the investigation of the hypothesis and to establish the
roadmap to achieve the contributions of this thesis. Therefore, the description below
summarizes and highlights answers to each research question.

Research question I. How allocation paradigms can improve virtual network provision-
ing?

Answer: Allocation paradigms improve virtual network provisioning by adding
flexibility to resource allocation. Different allocation strategies based on ap-
plication requirements and on InP objectives can be designed using paradigms.
Besides, allocation paradigms allow rapid adaptation to the changes that can
occur in the substrate and in the allocated VNs through the use of varied-size
windows. Furthermore, allocation paradigms allow SPs to participate actively
in the provisioning of their VNs by indicating high-level characteristics for
VNs that may influence the paradigm selection.

Research question II. What methods could be employed to calculate the efficiency of
an allocation paradigm

Answer: The efficiency of allocation paradigms can be calculated by models that
capture and quantify the performance of applications running in the VNs. By
using a simple model, we have defined a new metric, called paradigm quality,
that reflects the combined performance of all applications deployed in the VNs
allocated using a specific paradigm. The number of rounds taken to complete
the provisioning of a VN also has a high influence on the overall performance
of VN provisioning because it is related to VN provisioning time. The InP
can adjust these two factors (i.e., paradigm quality and number of rounds)
according to its priorities. Acceptance ratio can also be a good indicator of the
performance of a paradigm from the InP perspective.

Research question III. What are the possible disadvantages of providing a high level of
flexibility to VN provisioning?

Answer: Although adding flexibility to VN provisioning has several benefits,
there are some situations where such advantages may not be present and there
are scenarios where the use of allocation paradigms can lead to inefficient VN
allocation. For example, small NVEs where VNs are active for long periods
and similar VN requests will probably not benefit of splitting a VN request
in several parts because the resulting mapping will most likely be the same
as if the VN was allocated in a single step at the cost of more rounds, and,
consequently, taking longer.

93

The InP operator is free to choose any goals to compose a paradigm and he/she
may end up choose conflicting goals (e.g., green and load balancing) that un-
dermine the performance of each other. The InP operator can handle such
situations, for example, by adjusting the paradigm window sizes. Also, an
ongoing VN request that cannot complete because there are not available re-
sources in an allocation round will become a partial allocated VN, potentially
increasing the fragmentation of the substrate.

5.2 Contributions
The contributions of this thesis can be divided into: conceptual and specific ones.

Conceptual contributions could be identified from the investigations of the literature and
the experiences gathered during the development of thesis. In contrast, specific contribu-
tions are associated with individual solutions developed in this thesis. Both contributions
are listed as follows.

• Conceptual contributions are:

– Identification of management requirements of NVEs and definition of a con-
ceptual NVE management model. The model provides an holistic view of how
management is tackled in modern NVEs and helped us to place our proposal
in the NVE management spectrum.

– This thesis presents a survey on NVE management. Prominent proposals re-
lated to NVE management are reviewed and the research challenges in this
context are discussed. By analyzing the open challenges, it was possible to
identify and explore a new opportunity to tackle the VN provisioning problem
in this thesis.

• Specific contributions are:

– Introduction of a new and flexible provisioning framework based on the con-
cept of allocation paradigms that allows multiple InP and SP objectives to
be considered during VN provisioning. Allocation paradigms also allow rapid
adaptation of provisioning actions to the dynamic nature of NVEs by mapping
VNs in parts.

– Specification of a policy language to allow InP operators to create allocation
paradigms and associate paradigms with goals and allocation actions

– Definition of a VN computation model to quantify the efficiency of alloca-
tion paradigms. The efficiency of an allocation paradigm can be defined in
terms the performance of the applications running in the deployed VNs and
the number of rounds necessary to complete the allocation of a VN. Two new
metrics were defined to this end: paradigm quality and paradigm efficiency.

The concept of allocation paradigms is a novel approach for provisioning virtual net-
works. Although such approach may add some level of complexity to resource allocation,
InPs can offer value-added services to their customers and increase their revenue by using
such flexible allocation. The advantage of VN virtualization is not reduced because InPs
do not need to know which applications will run on the VNs.

94

5.3 Future work
The investigation developed in this thesis leads to the identification of further oppor-

tunities for research. These opportunities are described in this section as future work.

Analysis of the cost of using allocation paradigm vs. resource migration - a further
analysis comparing the performance of our paradigm-based provisioning approach
with the current model of reconfiguring VNs, typically using migrations, is impor-
tant to verify when the cost of migration justifies the need for the paradigm concept.

Concurrency and fault tolerance - Concurrency and fault tolerance issues constitute
good research opportunities. Proper strategies to handle the situation where two
VN requests attempt to use the same resource at the same time, rollback mecha-
nisms to release partially allocated VNs that cannot be completed due to absence of
resources, and appropriate methods to allow allocation paradigms to react in case
of failures require further investigation.

Goal refinement and handling of conflicts - Allocation paradigms can be seen as
a group high-level policies that are translated to low-level actions. In network
and systems management, transforming high-level policies to low-level ones is
commonly referred to goal or policy refinement (MOFFETT; SLOMAN, 1993)
(BANDARA et al., 2004). Therefore, policy refinement techniques developed for
other contexts can be used to improve the process of mapping InP and SP goals
to paradigms. In addition to that, solutions aimed at detecting and solving policy
conflicts (LUPU; SLOMAN, 1999) (MOFFETT; SLOMAN, 1994) can be used to
handle the cases where conflicting goals coexist in the same paradigm.

Application performance models - In this thesis we proposed a simple linear regression
model to quantify the performance of the applications that are hosted in a VN.
Other models (e.g., queueing, autoregressive) to reflect the performance of a higher
number of applications can improve the paradigm efficiency analysis.

The list of future work presented above represents the major opportunities of research
that can be directly derived from the work presented in this thesis. Nevertheless, other
opportunities that require further investigation include extending allocation paradigms to
handle inter-domain VN provisioning, developing monitoring approaches to collect appli-
cation performance data, and using additional constructs from existing policy languages
to improve paradigm definition.

95

REFERENCES

4WARD. The FP7 4WARD Project. Available at http://www.4ward-project.eu/. Ac-
cessed in January 2013.

AL-FARES, M.; LOUKISSAS, A.; VAHDAT, A. A Scalable, Commodity Data Center
Network Architecture. In: ACM SIGCOMM. Anais. . . [S.l.: s.n.], 2008.

ANDERSON, T. et al. Overcoming the Internet Impasse through Virtualization. Com-
puter, [S.l.], v.38, n.4, p.34–41, April 2005.

AUTOI. autoi - Autonomic Internet. Available at http://ist-autoi.eu. Accessed in January
2013.

BALLANI, H. et al. Towards Predictable Datacenter Networks. In: ACM SIGCOMM.
Anais. . . [S.l.: s.n.], 2011.

BANDARA, A. et al. A Goal-based Approach to Policy Refinement. In: IEEE INTERNA-
TIONAL SYMPOSIUM ON POLICIES FOR DISTRIBUTED SYSTEMS AND NET-
WORKS. Anais. . . [S.l.: s.n.], 2004. p.229–239.

BARI, M. et al. Data Center Network Virtualization: a survey. IEEE Communications
Surveys and Tutorials, [S.l.], v.15, n.2, p.909–928, 2012.

BOUTABA, R.; GOLAB, W.; IRAQI, Y. Lightpaths on Demand: a web-services-based
management system. IEEE Communications Magazine, [S.l.], v.42, n.7, p.101–107,
2004.

CARAPINHA, J.; JIMÉNEZ, J. Network Virtualization: a view from the bottom. In:
ACM SIGCOMM WORKSHOP ON VIRTUALIZED INFRASTRUCTURE SYSTEMS
AND ARCHITECTURES. Anais. . . [S.l.: s.n.], 2009. p.73–80.

CHENG, X. et al. Virtual Network Embedding Through Topology Awareness and Opti-
mization. Computer Networks, [S.l.], v.56, n.6, p.1797 – 1813, 2012.

CHERKAOUI, O.; HALIMA, E. Network Virtualization under User Control. Interna-
tional Journal of Network Management, [S.l.], v.18, n.2, p.147–158, Mar. 2008.

CHOWDHURY, M. ViNE-Yard. [S.l.: s.n.], 2011.

CHOWDHURY, M.; RAHMAN, M.; BOUTABA, R. ViNEYard - Virtual Network Em-
bedding Algorithms With Coordinated Node and Link Mapping. IEEE/ACM Transac-
tions on Networking, [S.l.], v.20, n.1, p.206 –219, feb. 2012.

96

CHOWDHURY, M.; SAMUEL, F.; BOUTABA, R. PolyViNE: policy-based virtual net-
work embedding across multiple domains. In: ACM SIGCOMM WORKSHOP ON
VIRTUALIZED INFRASTRUCTURE SYSTEMS AND ARCHITECTURES. Anais. . .
[S.l.: s.n.], 2010. p.49–56.

CHOWDHURY, N.; BOUTABA, R. Network Virtualization: state of the art and research
challenges. IEEE Communications Magazine, [S.l.], v.47, n.7, p.20–26, July 2009.

CLAYMAN, S.; GALIS, A.; MAMATAS, L. Monitoring Virtual Networks with Lat-
tice. In: IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM
WORKSHOPS. Anais. . . [S.l.: s.n.], 2010. p.239–246.

CLEMM, A. Network Management Fundamentals. [S.l.]: Cisco Press, 2006.

COMER, D. E. Network systems design using network processors: intel 2xxx version.
[S.l.]: Prentice-Hall, 2005.

CORREIA, L. et al. Architecture and design for the future internet: 4ward project.
[S.l.]: Springer, 2011.

DAITX, F.; ESTEVES, R. P.; GRANVILLE, L. Z. On the Use of SNMP as a Management
Interface for Virtual Networks. In: IFIP/IEEE INTERNATIONAL SYMPOSIUM ON
INTEGRATED NETWORK MANAGEMENT. Anais. . . [S.l.: s.n.], 2011. p.177–184.

ESPOSITO, F. A Policy-Based Architecture for Virtual Network Embedding. 2013.
Tese (Doutorado em Ciência da Computação) — Graduate School of Arts and Sciences,
Boston University.

ESTEVES, R. P. et al. Paradigm-Based Adaptive Provisioning in Virtualized Data Cen-
ters. In: IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK
MANAGEMENT. Anais. . . [S.l.: s.n.], 2013. p.169–176.

ESTEVES, R. P. et al. Evaluating Allocation Paradigms for Multi-objective Adaptive
Provisioning in Virtualized Networks. In: IEEE/IFIP NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM. Anais. . . [S.l.: s.n.], 2014. p.1–9.

ESTEVES, R. P.; GRANVILLE, L. Z.; BOUTABA, R. On the Management of Virtual
Networks. IEEE Communications Magazine, [S.l.], v.51, n.7, p.2–10, July 2013.

FARINACCI, D. et al. RFC 2784 - Generic Routing Encapsulation (GRE). [S.l.]: In-
ternet Engineering Task Force, 2000.

FRINCU, M.; CRACIUN, C. Multi-objective Meta-heuristics for Scheduling Applica-
tions with High Availability Requirements and Cost Constraints in Multi-Cloud Envi-
ronments. In: IEEE INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD
COMPUTING. Anais. . . [S.l.: s.n.], 2011. p.267 –274.

GALIS, A. et al. Management Architecture and Systems for Future Internet Networks.
Towards the Future Internet–A European Research Perspective, [S.l.], p.112–122,
2009.

GENI. Global Environment for Network Innovations (GENI). Available at
http://www.geni.net. Accessed in January 2013.

97

GILADI, R. Network Processors: architecture, programming, and implementation.
[S.l.]: Morgan Kaufmann, 2008.

GRANVILLE, L. Z.; ESTEVES, R. P.; WICKBOLDT, J. A. Virtualization in the cloud.
In: Cloud services, networking and management. [S.l.: s.n.], 2015. p.1–28.

GREENBERG, A. et al. VL2 - A Scalable and Flexible Data Center Network. In: ACM
SIGCOMM. Anais. . . [S.l.: s.n.], 2009.

GUO, C. et al. BCube: a high performance, server-centric network architecture for mod-
ular data centers. In: ACM SIGCOMM. Anais. . . [S.l.: s.n.], 2009.

GUO, C. et al. SecondNet - A Data Center Network Virtualization Architecture with
Bandwidth Guarantees. In: INTERNATIONAL CONFERENCE ON EMERGING NET-
WORKING EXPERIMENTS AND TECHNOLOGIES. Anais. . . [S.l.: s.n.], 2010.

HAVIL, J.; DYSON, F. The Harmonic Series. Gamma: Exploring Eulerâs Constant,
[S.l.], p.21–25, 2003.

HEPPEL, A. An Introduction to Network Processors. Available at
http://www.roke.co.uk/download/white_papers/network_processors_introduction.pdf.
Accessed in January 2013.

HINDEN, R. Virtual Router Redundancy Protocol (VRRP). [S.l.: s.n.], 2004.

HOUIDI, I. et al. Adaptive Virtual Network Provisioning. In: ACM SIGCOMM
WORKSHOP ON VIRTUALIZED INFRASTRUCTURE SYSTEMS AND ARCHITEC-
TURES. Anais. . . [S.l.: s.n.], 2010. p.41–48.

HOUIDI, I. et al. Virtual Network Provisioning Across Multiple Substrate Networks.
Computer Networks, [S.l.], v.55, n.4, p.1011–1023, Mar. 2011.

IEEE. Virtual Bridged Local Area Networks. Available at
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf. Accessed in January
2013.

IETF-POLICY. Policy Languages Review - Policy Languages Interest Group.
[S.l.: s.n.], 2012.

IFIP. Network and Service Management Taxonomy. 2011.

ISLAM, S. et al. Empirical Prediction Models for Adaptive Resource Provisioning in the
Cloud. Future Generation Computer Systems, [S.l.], v.28, n.1, p.155–162, 2012.

JEWELL, B. Definitions of managed objects for the virtual router redundancy pro-
tocol. [S.l.: s.n.], 2000.

JUNIPERNETWORKS. The Juniper M Series Multiservice Edge Routers for
IP/MPLS. [S.l.: s.n.], 2009.

KHAN, A. et al. Network Virtualization: a hypervisor for the internet? IEEE Commu-
nications Magazine, [S.l.], v.50, n.1, p.136–143, January 2012.

98

KIM, M.-S.; LEON-GARCIA, A. Autonomic Network Resource Management Using
Virtual Network Concept. In: MANAGING NEXT GENERATION NETWORKS AND
SERVICES. Anais. . . [S.l.: s.n.], 2007. p.254–264. (LNCS, v.4773).

LI, J. et al. CloudOpt - Multi-goal Optimization of Application Deployments Across a
Cloud. In: INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MAN-
AGEMENT. Anais. . . [S.l.: s.n.], 2011. p.1 –9.

LUPU, E.; SLOMAN, M. Conflicts in Policy-based Distributed Systems Management.
IEEE Transactions on Software Engineering, [S.l.], v.25, n.6, p.852–869, Nov 1999.

MATTOS, D. et al. OMNI: openflow management infrastructure. In: INTERNATIONAL
CONFERENCE ON THE NETWORK OF THE FUTURE. Anais. . . [S.l.: s.n.], 2011.
p.52–56.

MCKEOWN, N. et al. OpenFlow: enabling innovation in campus networks. ACM Com-
puter Communication Review, [S.l.], v.38, n.2, p.69–74, 2008.

MITZENMACHER, M.; RICHA, A. W.; SITARAMAN, R. The Power of Two Ran-
dom Choices: a survey of techniques and results. In: HANDBOOK OF RANDOMIZED
COMPUTING. Anais. . . Kluwer, 2000. p.255–312.

MOFFETT, J. D.; SLOMAN, M. S. Policy conflict analysis in distributed system man-
agement. Journal of Organizational Computing, [S.l.], v.4, n.1, p.1–22, 1994.

MOFFETT, J.; SLOMAN, M. Policy Hierarchies for Distributed Systems Management.
IEEE Journal on Selected Areas in Communications, [S.l.], v.11, n.9, p.1404–1414,
Dec 1993.

NetFPGA. The NetFPGA Project. [S.l.: s.n.], 2009.

NG, W. et al. MIBlets - A Practical Approach to Virtual Network Management. In:
IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MAN-
AGEMENT. Anais. . . [S.l.: s.n.], 1999. p.201 –215.

OPENVSWITCH. Open vSwitch: an open virtual switch. 2010.

PROTOGENI. ProtoGENI. Available at http://www.protogeni.net. Accessed in January
2013.

QEMU. QEMU: open source processor emulator. Available at
http://wiki.qemu.org/MainPage.AccessedinJanuary2013.

QUAGGA. Quagga software routing suite. [S.l.: s.n.], 2010.

R. The R Project for Statistical Computing. . [S.l.: s.n.], 2013.

RABBANI, M. G. et al. On Tackling Virtual Data Center Embedding Problem. In:
IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MAN-
AGEMENT, Ghent, Belgium. Anais. . . [S.l.: s.n.], 2013.

RAO, J. et al. DynaQoS - Model-free Self-Tuning Fuzzy Control of Virtualized Resources
for QoS Provisioning. In: INTERNATIONAL WORKSHOP ON QUALITY OF SER-
VICE. Anais. . . [S.l.: s.n.], 2011. p.31:1–31:9.

99

SAVI. Smart Applications on Virtual Infrastructure. [S.l.: s.n.], 2011.

SHAH, N. Understanding Network Processors. 2001. Dissertação (Mestrado em Ciên-
cia da Computação) — Department of Electrical Engineering and Computer Science,
University of California, Berkeley.

SHERWOOD, R. et al. Can the Production Network Be the Testbed? In: USENIX SYM-
POSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION. Anais. . .
[S.l.: s.n.], 2010. p.1–6.

SPECVIRT. Standard Performance Evaluation Corporation (SPECvirt_sc2010).
[S.l.: s.n.], 2012.

STELZER, E. et al. Virtual router management information base using SMIv2.
[S.l.: s.n.], 2003.

SZEGEDI, P. et al. With Evolution for Revolution: managing federica for future internet
research. IEEE Communications Magazine, [S.l.], v.47, n.7, p.34–39, July 2009.

TURNER, J. Towards a Diversified Internet. Available at
http://www.arl.wustl.edu/netv/contrib/diversifiedInternet.pdf. Accessed in January
2013.

VMMARK. VMmark Benchmark. [S.l.: s.n.], 2012.

VMMARK. VMware VMmark Benchmarking Guide. [S.l.: s.n.], 2012.

VMWARE. VMWare. Available at http://www.vmware.com. Accessed in January 2013.

VYATTA. Vyatta open networking. [S.l.: s.n.], 2010.

WANG, Y. et al. Virtual Routers on the Move - Live Router Migration as a Network-
Management Primitive. SIGCOMM Computer Communication Review, [S.l.], v.38,
p.231–242, Aug. 2008.

XEN. The Xen Project. Available at http://www.xenproject.org. Accessed in January
2013.

XORP. XORP: extensible open router platform. 2012.

YU, M. et al. Rethinking Virtual Network Embedding - Substrate Support for Path Split-
ting and Migration. ACM Computer Communication Review, [S.l.], v.38, n.2, p.17–29,
April 2008.

ZAHEER, F.-E.; XIAO, J.; BOUTABA, R. Multi-Provider Service Negotiation and Con-
tracting in Network Virtualization. In: IEEE/IFIP NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM. Anais. . . [S.l.: s.n.], 2010. p.471–478.

100

101

APPENDIX A - SCIENTIFIC PRODUCTION

A.1 Published Papers
1. RAFAEL PEREIRA ESTEVES, Lisandro Zambenedetti Granville, Mohamed Faten

Zhani, Raouf Boutaba. Evaluating Allocation Paradigms for Multi-Objective
Adaptive Provisioning in Virtualized Networks. 14th IFIP/IEEE Network Opera-
tions and Management Symposium (NOMS 2014), 5-9 May 2014, Krakow, Poland,
pp. 1-9.

• Status. Published.

2. RAFAEL PEREIRA ESTEVES, Lisandro Zambenedetti Granville, Raouf Boutaba.
On the Management of Virtual Networks. IEEE Communications Magazine, v.
51, n. 7, pp. 80-88, July 2013. ISSN: 0163-6804.

• Status. Published.

3. RAFAEL PEREIRA ESTEVES, Lisandro Zambenedetti Granville, Hadi Bannazadeh,
Raouf Boutaba. Paradigm-Based Adaptive Provisioning in Virtualized Data
Centers. 13th IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM 2013), 27-31 May 2013, Ghent, Belgium, pp. 169-176.

• Status. Published.

4. Fábio Fabian Daitx, RAFAEL PEREIRA ESTEVES, Lisandro Zambenedetti Granville.
On the use of SNMP as a Management Interface for Virtual Networks. 12th
IFIP/IEEE International Symposium on Integrated Network Management (IM 2011),
23-27 May 2011, Dublin, Ireland, pp. 177-184.

• Status. Published.

A.2 Other collaborations
1. Runxin Wang, RAFAEL PEREIRA ESTEVES, Lei Shi, Juliano Araujo Wickboldt,

Brendan Jennings, Lisandro Zambenedetti Granville. Network-aware Placement
of Virtual Machine Ensembles using Effective Bandwidth Estimation. 10th
International Conference on Network and Service Management (CNSM 2014), 17-
21 November 2014, Rio de Janeiro, Brazil.

• Status. Published.

102

2. Juliano Araujo Wickboldt, RAFAEL PEREIRA ESTEVES, Márcio Barbosa de
Carvalho, Lisandro Zambenedetti Granville. Resource Management in IaaS Cloud
Platforms made Flexible through Programmability. Elsevier Computer Net-
works (COMNET), Special Issue on Communications and Networking in the Cloud,
Volume 68 (2014), pp. 54-70, ISSN 1389-1286.

• Status. Published.

3. Márcio Barbosa de Carvalho, RAFAEL PEREIRA ESTEVES, Guilherme da Cunha
Rodrigues, Clarissa Cassales Marquezan, Lisandro Zambenedetti Granville, Liane
Margarida Rockenbach Tarouco. Efficient Configuration of Monitoring Slices
for Cloud Platform Administrators. 19th IEEE Symposium on Computers and
Communications (ISCC 2014), 23-26 June 2014, Madeira, Portugal, pp. 1-7.

• Status. Published.

4. Md. Faizul Bari, Raouf Boutaba, RAFAEL PEREIRA ESTEVES, Lisandro Zam-
benedetti Granville, Maxim Podlesny, Md. Golam Rabbani, Qi Zhang, Mohamed
Faten Zhani. Data Center Network Virtualization: A Survey. IEEE Commu-
nications Surveys and Tutorials, v. 15, n. 2, pp. 909-928, Second Quarter 2013.
ISSN: 1553-877X.

• Status. Published.

5. Márcio Barbosa de Carvalho, RAFAEL PEREIRA ESTEVES, Guilherme da Cunha
Rodrigues, Lisandro Zambenedetti Granville, Liane Margarida Rockenbach Tarouco.
A Cloud Monitoring Framework for Self-Configured Monitoring Slices Based
on Multiple Tools (short paper). 9th International Conference on Network and
Service Management (CNSM 2013), 14-18 October 2013, Zurich, Switzerland, pp.
180-184.

• Status. Published.

6. Md. Golam Rabbani, RAFAEL PEREIRA ESTEVES, Maxim Podlesny, Gwendal
Simon, Lisandro Zambenedetti Granville, Raouf Boutaba. On Tackling Virtual
Data Center Embedding Problem. 13th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), 27-31 May 2013, Ghent, Belgium, pp.
177-184.

• Status. Published.

103

APPENDIX B - CAPÍTULO EM PORTUGUÊS

A investigação conduzida durante esta tese demonstrou a viabilidade da nossa pro-
posta de aprovisionamento de redes virtuais orientado à aplicação. Especificamente,
nossa proposta é baseada na hipótese de que “Limitações no aprovisionamento de re-
des virtuais podem ser reduzidas através do uso de paradigmas de alocação”. Com
base nessa hipótese, foi proposto um arcabouço de aprovisionamento baseado no conceito
de paradigmas de alocação que permite a alocação adaptativa de recursos em ambientes
de rede virtualizados. Além de permitir que provedores de infraestrutura considerem
diferentes objetivos durante o aprovisionamento de redes virtuais, a proposta permite que
provedores de serviço expressem objetivos de alto-nível para as suas respectivas redes
virtuais, que por sua vez são considerados pelos provedores de infraestrutura para definir
como redes virtuais são mapeadas no substrato físico. Múltiplos objetivos podem ser
considerados na alocação de uma única rede virtual, o que permite que diferentes prove-
dores de serviço e um grande número de aplicações compartilhem o mesmo ambiente de
virtualização de rede.

O aprovisionamento baseado em paradigmas de alocação representa uma forma in-
édita de se olhar para o problema de alocação de redes virtuais. Ao invés de ter que lidar
com modelos analíticos complexos, o que pode se mostrar uma dificuldade para admin-
istradores de rede, paradigmas de alocação podem ser facilmente criados e não exigem
conhecimentos avançados por parte dos administradores para serem utilizados. Ademais,
uma importante característica da nossa proposta é a sua adaptabilidade, isto é, a capaci-
dade de se capturar a dinâmica (i.e., chegadas e partidas de redes virtuais) do substrato
e reagir rapidamente às mesmas. Isso é conseguido pelo particionamento de redes vir-
tuais em partes menores que são alocadas de forma independente. Este mapeamento em
partes representa outra ruptura com as abordagens tradicionais de aprovisionamento, que
realizam o mapeamento como uma operação única e indivisível.

Outra característica notável da nossa solução é a possibilidade de que os provedores
de serviço tenham papel ativo no aprovisionamento de redes virtuais. Os provedores
de serviço podem especificar propriedades desejadas para suas redes virtuais. Essas pro-
priedades são consideradas pelos provedores de infraestrutura na alocação da rede virtual.
Essas característica não é encontrada na grande maioria das soluções de aprovisionamento
atuais. Os provedores de infraestrutura podem também mudar o paradigma atual de forma
dinâmica para refletir um novo objetivo ou para atender melhor os requisitos dos prove-
dores de serviço.

Para avaliar a eficiência de paradigmas de alocação, foi formulado um modelo de
computação de redes virtuais, baseado em regressão linear múltipla, que considera todas
as aplicações que rodam em uma rede virtual e cuja saída pode ser utilizada por admin-
istradores de rede para decidir quando mudar um paradigma de alocação. O modelo

104

proposto resultou na definição de uma métrica chamada qualidade do paradigma, que re-
flete o desempenho combinado das aplicações que rodam em uma rede virtual. Além da
qualidade do paradigma, o número de rodadas necessárias para completar a alocação de
redes virtuais apresenta um impacto significativo na eficiência do paradigma e também
deve ser considerado na análise.

A avaliação analisou duas dimensões diferentes do arcabouço proposto. A primeira
avaliação demonstrou a viabilidade da proposta em acomodar mútliplos objetivos e com-
parou o desempenho de diferentes paradigmas. Quando vários objetivos coexistem no
mesmo paradigma, é possível que alguns se sobressaiam sobre os demais, dependendo de
fatores como o tamanho da janela do paradigma e a quantidade de recursos disponíveis.
A segunda avaliação verificou a eficiência de diferentes paradigmas de alocação con-
siderando o desempenho agregado das aplicações que rodam nas redes virtuais e analisou
o impacto de se trocar paradigmas durante o aprovisionamento de redes virtuais.

O conceito de paradigmas de alocação representa uma abordagem nova de alocação
de redes virtuais. Embora esta abordagem possa adicionar complexidade na alocação de
recursos, ela permite que provedores de infraestrutura podem oferecer serviços diferenci-
ados para seus clientes e, assim, aumentar sua receita utilizando uma abordagem flexível
de alocação de redes virtuais. As vantagens da virtualização de redes não são perdidas
uma vez que os provedores de infrestrutura não precisam saber detalhes sobre que apli-
cações serão de fato hospedadas nas redes virtuais.

