
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RENATO SILVEIRA

Configurable Flows

Thesis presented in partial fulfillment

of the requirements for the degree of

Doctor of Computer Science

Advisor: Prof. Dr. Luciana Porcher Nedel

Coadvisor: Prof. Dr. Edson Prestes

Porto Alegre

April 2015

CIP – CATALOGING-IN-PUBLICATION

Silveira, Renato

Configurable Flows / Renato Silveira. – Porto Alegre:

PPGC da UFRGS, 2015.

115 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação, Porto Alegre, BR–

RS, 2015. Advisor: Luciana Porcher Nedel; Coadvisor: Edson

Prestes.

1. Path-planning. 2. Agent navigation. 3. Pedestrian simu-

lation. 4. Potential field. 5. Boundary value problem. I. Nedel,

Luciana Porcher. II. Prestes, Edson. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb

Coordenador do PPGC: Prof. Luigi Carro

Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Science is the belief in the ignorance of experts.”

— RICHARD FEYNMAN

ACKNOWLEDGMENT

I would like to express my gratitude to every person that contributed to this thesis.

First of all, I would like to thank my advisors Luciana Nedel and Edson Prestes. Their

brilliant observations have helped shape this work.

Next, I would like to thank all my colleagues at the Computer Graphics lab. Their helpful

suggestions and discussions really helped me. Thank all my friends who made the present work

possible.

A word of thanks goes to Prof. Dr. Antonio Tavares da Costa Junior, who teach me all

the mathematics background I know today. Thank Prof. Dr. Benamy Turkienicz for all the

motivation to complete the thesis.

I would like to thank all the PPGC/UFRGS members for helping me solve the problems

experienced on this journey. Thank CAPES and CNPq for financial support.

Lastly, I would like to thank my family for all the support. This thesis is dedicated to them,

especially to the memory of my father José Vítor Silveira.

ABSTRACT

In this work, we propose a new solution to agent navigation based upon boundary value prob-

lems (BVP), called Configurable Flows, to control steering behaviors of characters in dynamic

environments. We use a potential field formalism that allows synthetic actors to move negotiat-

ing space, avoiding collisions, and attaining goals while producing very individual paths. The

individuality of each character can be set by changing its inner field parameters leading to a

broad range of possible behaviors without jeopardizing its performance.

BVP Path Planners generate potential fields through a differential equation whose gradient de-

scent represents navigation routes from any point of the environment to a goal position. Re-

sulting paths are smooth and free from local minima. In spite of these advantages, these kind

of planners consumes a lot of time to produce a solution. Our approach combines a BVP Path

Planner with the Full Multigrid Method, which solves elliptic partial differential equations using

a hierarchical strategy. The proposed planner enables real-time performance in large environ-

ments. Results show that our proposal spends less than 1% of the time needed to compute a

solution using the original BVP planners in several environments.

We refine our Path Planner by introducing a new form of the core equation that permits to

easily cope with terrain inhomogeneities. This is accomplished by locally changing the con-

cavity/convexity of the potential, and then creating regions with higher or lower navigation

preferences. As the potential field requires several steps to converge, this approach can be ex-

pensive computationally. To overcome this problem, we integrate this novel core equation to

the hierarchical planner, emerging a wide variety of applications. We believe our proposal can

contribute to several areas of research including agent navigation, pathfinding for games, crowd

simulation and robotics. Our publications reinforce the relevance of the proposed method.

Keywords: Path-planning. agent navigation. pedestrian simulation. potential field. boundary

value problem.

Fluxos Configuráveis

RESUMO

A animação de agentes autônomos em aplicações que exigem uma resposta em tempo real

ainda é um desafio, se o problema necessitar que o agente alcance um local com precisão em

um mundo virtual (planejamento de caminho), mover-se realisticamente de acordo com sua

personalidade, intenções e humor. É muito difícil produzir um comportamento natural através

de alguma estratégia que foque no controle global dos agentes. Por outro lado, levar em conta

a individualidade de cada agente pode ser uma tarefa custosa.

A proposta dessa tese é uma nova solução para o problema da navegação de agentes, baseada

em problemas de valores de contorno (BVP), chamada “Configurable Flows”, para controlar a

navegação de agentes em ambientes dinâmicos. Nós usamos um formalismo baseado em cam-

pos potenciais para possibilitar que agentes virtuais se movam negociando o espaço, evitando

colisões, e alcançando seus objetivos, através de caminhos diferenciados. A individualidade de

cada agente pode ser definida alterando parâmetros internos dos agentes.

Planejadores BVPs produzem campos potenciais através de equações diferenciais das quais o

gradiente descendente representa rotas navegacionais de qualquer lugar do ambiente para al-

gum destino. Os caminhos resultantes são suaves e livres de mínimos locais. Apesar dessas

vantagens, estes tipos de planejadores consomem muito tempo de execução para produzir uma

solução. A nossa abordagem combina nosso planejador BVP com o método Full Multigrid, o

qual resolve equações diferenciais parciais elípticas usando uma estratégia hierárquica. Os re-

sultados mostram que a nossa proposta gasta menos que 1% do tempo necessário para computar

a solução usando os planejadores BVPs tradicionais.

Nós refinamos o planejador introduzindo uma nova forma para o núcleo da equação que permite

facilmente lidar com terrenos não-homogêneos. Isto é obtido através de mudanças locais na

concavidade/convexidade do potencial, criando regiões com altas ou baixas preferências de

navegação. Nós integramos esta nova equação ao planejador hierárquico, surgindo uma ampla

variedade de aplicações. Nossa proposta contribui para diversas áreas incluindo a navegação

de agentes, pathfinding em jogos, simulação de multidões, e a navegação de robôs. Nossas

publicações reforçam a relevância e robustez do método proposto.

Palavras-chave: Planejamento de caminho, navegação de agentes, simulação de pedestres,

campos potenciais, problema de valores de contorno.

LIST OF ABBREVIATIONS AND ACRONYMS

BVP Boundary Value Problem

CF Configurable Flows

FMG Full Multigrid method

GPU Graphics Processing Unit

GS Gauss-Seidel Method

HCF Hierarchical Configurable Flows

PDE Partial Differential Equation

PP Path Planner

PRM Probabilistic Roadmap

RRT Rapidly Exploring Random Trees

RTS Real-Time Strategy

SOR Successive Over-Relaxation method

LIST OF FIGURES

Figure 1.1 Multiple agents simulation. .. 17
Figure 1.2 Starcraft II. Multi-agent navigation. ... 19
Figure 1.3 Dead Rising. This game uses crowd simulation to populate the environment. 20
Figure 1.4 Battle of Helms Deep in the movie Lord of the Rings. Most of the people are

virtual. .. 21
Figure 1.5 Robot navigation. A quality path with clearance from obstacles is required. 22
Figure 1.6 Pedestrian in a daily situation. Simulate pedestrian is important to predict and

prevent accidents.. 23

Figure 2.1 Path planning problem: find a path that takes an agent from its initial position
to its goal position without colliding with obstacles.. 24

Figure 2.2 Cell decomposition consisting of circles (a), a Delaunay triangulation (b) and
a Quadtree (c)... 26

Figure 2.3 Path produced by the A* algorithm: the environment (a), its discretization (b)
and the path found connecting the green cell to the blue one (c). 27

Figure 2.4 Visibility Graph. Connect vertices that see each other (a), add the initial po-
sition (qI) and final position (qG) to the graph (b) and search for a path (red line)
(c). .. 29

Figure 2.5 PRM. The graph representing the environment is built through randomly sam-
pled vertices (a). The vertex α is sampled and linked to the nearest vertices if a
collision-free path connects them (b). .. 30

Figure 2.6 Rapidly Exploring Random Trees. The tree’s growth after some iteration are
showed in (a),(b) and (c). ... 30

Figure 2.7 The designer specifies some points (a) and creates a graph connecting these
points (b). The agent initial and goal positions are added to the graph (c) and a path
is queried.. 31

Figure 2.8 Potential Field. The potential is generated by the superposition of fictitious
forces: obstacle forces that repel the agent to prevent collisions; and target forces
that attract the agent. .. 32

Figure 2.9 Local Minimum. The agent gets stuck in the environment due to the forces
that act on the agent canceling each other.. 32

Figure 2.10 Crowd simulation. Illustrations from the works of Treuille et al. (a), Yeh et
al. (b) and Narain et al. (c)... 34

Figure 2.11 Crowd simulation. Illustrations from the works of Yersin et al. (a) and Guy
et al. (b).. 36

Figure 2.12 The velocity obstacle V OAB for a robot A, with the position XA, induced
by another robot B, with the position XB and the velocity VB. 38

Figure 3.1 Overview of the work on potential fields based on BVP done by our research
group. ... 41

Figure 3.2 Different paths followed by agents using Equation 3.2. Paths produced using
ε = 1, v = (0, 0) (a), ε = 1, v = (1, 0) (b) and ε = 1, v = (1, sin(0.6t)) (c)................. 43

Figure 3.3 Configurable Flows. To solve the global path planner, the potential should be
one in the contours of the obstacles (red cells) and zero in the region of the target
(blue cells).. 45

Figure 3.4 Representation of pc, pb, pt, pr and pl on the grid. ... 46
Figure 3.5 Agents in an environment and their local maps.. 47

Figure 3.6 Agent Local Map. White, green and red cells comprise the update, free and
border zones, respectively. Blue and red cells correspond to the intermediate goal
and obstacles respectively. ... 48

Figure 3.7 Defining agent motion. (a) Situation before the agent A2 enters in the field of
view of A1. (b) If the agent A1 follows the direction defined by the gradient descent
(ζ), it will change its direction in nearly π/2, what is undesirable. However, if the
agent uses the orientation ϕ, it will achieve a smooth curve, which is more natural
and realistic. ... 50

Figure 3.8 Terrain with inhomogeneous navigation capabilities. A diver would prefer to
navigate on water while ordinary agents would prefer to navigate through grassland.
Also, agents may want to navigate through the road, without stepping on the grass. 52

Figure 3.9 Paths on heterogeneous terrains. The potential field flow can be configured,
handling different traversal preferences. The light-blue and the light-red areas rep-
resent regions with high and low preferences, respectively. The dark blue area in
the middle of the terrain represents the target position for all agents that are placed
along the borders.. 54

Figure 3.10 Terrain. The blue square is a region where the planner will act, producing
paths following the terrain elevation.. 55

Figure 3.11 Path following the terrain elevation. The terrain elevation is ignored dur-
ing the path generation, εi = 0 (a) and the path produced updating εi correctly,
according to Equation 3.13 (b).. 56

Figure 3.12 Potential flatness due to floating-point precision.. 57
Figure 3.13 Effect of flatness with different resolutions: (a) 60 × 60, (b) 120 × 120 and

(c) 200× 200. .. 57

Figure 4.1 Hierarchical environment representation. The environment is represented by
a hierarchy of 4 gridsMk with different resolution. Red and blue cells correspond
to obstacles and goals, respectively, while the arrows illustrate the vector field. 59

Figure 4.2 Grid discretization. Uniform grid (0, Lx)× (0, Ly) with mesh size h................... 60
Figure 4.3 Grid representation and stencil notation. .. 62
Figure 4.4 Two-grids representation. The method makes use of grid 2h to quickly solve

the problem in grid h.. 63
Figure 4.5 Restriction operator. This operator constructs the vector x2h taking the com-

ponents of xh associated with the points of the grid 2h. ... 65
Figure 4.6 Prolongation operator. This operator constructs yh taking the components of

y2h associated with the points of the grid h. Two or more arrows represent the
average of the respective components of y2h... 66

Figure 4.7 Multigrid representation. A hierarchy of grids where each grid has twice the
resolution of its previous grid. ... 68

Figure 4.8 V-cycle representation. ... 69
Figure 4.9 W-cycle representation. .. 70
Figure 4.10 Full Multigrid V-cycle representation... 71

Figure 5.1 Different paths followed by the same agent from a fixed start position to the
goal (blue cell) just varying the parameter v of his local map. 15 paths were gener-
ated setting ε = 1 and randomly varying v in the interval [−1, 1]................................... 77

Figure 5.2 Two animation sequences illustrating collision avoidance produced with dif-
ferent values for the behavior vector and ε. ... 78

Figure 5.3 (a) Agent map with 25x25 cells. The agent always walks inside the obstacle
region. (b) Agent map with 50x50 cells. The agent always walks outside the ob-
stacle region. In both situations, the obstacle region density is equal to 0.1 and the
obstacle region radius is equal to 10 units. .. 79

Figure 5.4 Relationship between the size of the agent map L and the density γ in a region
with radius r = 10 units. L ∈ [15, 55], γ ∈ [3%, 51%].. 80

Figure 5.5 Fitting with an exponential function over a circular obstacle region with radius
r = 10 units. The blue region ρ0 guarantees that the agent always crosses the
obstacle region. The green region ρ2 guarantees that the agent always passes outside
the obstacle region. The red region ρ1 defines a region where is not possible to
predict the agent’s behavior. .. 81

Figure 5.6 Simulation of an agent passing through a corridor with many dynamic obsta-
cles moving vertically. Dynamic obstacles are seen by an agent as other agents, as
you can see by the individual map representation (a). In (b), the path followed by
the agent (black circle) after crossing the corridor is shown. .. 82

Figure 5.7 We adjusted the parameters of our planner to generate a path that leads the
agent to the same goal of the real person with a similar behavior. In each row of this
figure we show: the path followed by a human being (a, e); the representation of the
environment generated by our planner (b, f); the agent path (in black) calculated by
the Laplace’s Equation compared with the real path (in yellow) (c, g); and the agent
path (in black) calculated by our planner after the parameters adjusting (d, h)............... 83

Figure 5.8 Flatness problem: potential field generated by BVP based planners (a); and a
zoom at the central region (b). ... 84

Figure 5.9 Flatness solution: potential field generated by the HCF using ε = 1.6; and a
zoom at the central region (b). ... 85

Figure 5.10 Performance evaluation. The black line shows the relationship between the
number of agents with their steps per second. 3300 agents are allowed to move at
the same time without affecting the quality of the simulation... 86

Figure 5.11 An example of crowd simulation with 600 walking robots.................................. 87
Figure 5.12 Two groups of agents passing through each other. ... 94
Figure 5.13 Different levels of discretization of an environment. In (a), (b) and (c) the

environment is correctly represented. From (c) to (d) there is a loss of information
in the environment’s representation. The circular regions highlighted these losses........ 95

Figure 5.14 Paths produced by the CF different resolutions. The path produced by HCF
is a combination of these paths. ... 95

Figure 5.15 Path produced by the HCF. Red, green, dark blue and light blue line seg-
ments illustrate the paths using grids with 17× 17, 33× 33, 65× 65 and 129× 129
cells, respectively. .. 96

Figure 5.16 Paths produced by the agents using the HCF. The red, green, dark blue and
light blue lines illustrate the agent’s path using HCF grids with 17 × 17, 33 × 33,
65× 65 and 129× 129 cells, respectively. .. 96

Figure 5.17 Paths produced by the agents using the HCF. The agents start to move using
the coarsest grid and switch to grids with finer resolution insofar it was computed.
Red, green, dark blue and light blue lines illustrate the agents path using grids with
17× 17, 33× 33, 65× 65 and 129× 129 cells, respectively.. 97

Figure 5.18 Non-smooth path. This happens because the agents avoid collisions with
others, diverting them. ... 97

Figure 5.19 Agents walking down the street. Agents walking without respecting cross-
walks, with ε(r) = 0 everywhere in the environment (a,b,c,d). Using ε(r) = 0.6 in
crosswalk regions causes the agents to walk through it... 98

Figure 5.20 Paths produced by the CF in a quadtree structure (a), in a homogeneous grid
(b) and the largest path produced by the A∗ algorithm in this same grid (c). 98

LIST OF TABLES

Table 5.1 Performance evaluation. Comparing the HCF with the CF using SOR, GS, GS
in a Quadtree subdivision and the A* algorithm. To compute the A* performance,
we considered the largest path found in each environment simulation. 90

Table 5.2 HCF performance considering a percentage of the environment covered by
obstacles... 91

Table 5.3 Comparison of agent navigation models.. 93

CONTENTS

1 INTRODUCTION.. 15
1.1 Motivation... 16
1.2 Objectives.. 17
1.3 Applications .. 18
1.3.1 Games ... 19
1.3.2 Movies... 20
1.3.3 Robotics .. 21
1.3.4 Pedestrian Simulation ... 21
1.4 Organization... 22
2 RELATED WORK .. 24
2.1 Grid Based Algorithms.. 25
2.2 Roadmap... 28
2.2.1 Visibility Graphs ... 28
2.2.2 Probabilistic Roadmap Method... 29
2.2.3 Rapidly Exploring Random Trees... 29
2.2.4 Waypoints ... 30
2.3 Potential Fields ... 31
2.4 Crowd Simulation .. 32
2.5 Collision Avoidance.. 37
2.6 Discussion ... 39
3 CONFIGURABLE FLOWS.. 40
3.1 Overview ... 40
3.2 Background .. 42
3.3 Global Path Plannner .. 44
3.4 Local Path Planner .. 46
3.4.1 The Agent’s Local Map .. 46
3.4.2 Updating Local Maps from Global Maps ... 47
3.4.3 Motion Generation .. 49
3.5 Algorithm.. 49
3.6 Preferential Regions... 50
3.6.1 Configuring the Flows... 52
3.6.2 Paths Following Terrain Elevation .. 54
3.7 The Flatness Problem .. 56
4 HIERARCHICAL CONFIGURABLE FLOWS... 58
4.1 Hierarchical Configurable Flows.. 58
4.2 Multigrid Methods for Boundary Value Problems ... 59
4.2.1 Problem Discretization.. 60
4.2.2 From One-Grid, through Two-Grid to Multigrid .. 63
4.2.3 Multigrid Method.. 67
4.2.3.1 V-cycle method .. 69
4.2.3.2 W-cycle method ... 70
4.2.4 Full Multigrid Method .. 70
4.3 Developing Our Solver... 71
4.4 Computing the Potential Field.. 72
5 RESULTS.. 76
5.1 Configurable Flows ... 76
5.1.1 Reaching the Same Goal in Different Ways ... 76
5.1.2 Varying the Size of the Agent Map... 77

5.1.3 Dealing with Dynamic Obstacles.. 81
5.1.4 Generating Realistic Paths .. 82
5.2 Solution to the Flatness Problem .. 84
5.2.1 Considerations about Performance ... 85
5.3 Hierarchical Configurable Flows.. 86
5.3.1 Tuning the Algorithm.. 87
5.3.2 Choosing the Number of Grids ... 88
5.3.3 Path quality ... 88
5.3.3.1 Paths produced by the global planner .. 88
5.3.3.2 Paths produced by the local planner .. 89
5.3.4 Considerations about Performance ... 90
5.4 Discussion ... 92
6 CONCLUSIONS .. 99
6.1 Future Work ... 100
7 CONTRIBUTIONS.. 102
8 SUPPLEMENTARY MATERIAL: FUNDAMENTAL CONCEPTS 104
8.1 System of Linear Equations .. 104
8.2 Iterative Methods ... 105
8.2.1 Jacobi Method... 105
8.2.2 Gauss-Seidel Method .. 106
8.2.3 Successive Over-Relaxation Method .. 106
REFERENCES.. 107

15

1 INTRODUCTION

The use of synthetic actors acting as autonomous agents in interactive applications such as

games and virtual reality experiences is becoming more and more common (KAPADIA et al.,

2013a). Autonomous agents, also called non-player characters, are characters with the ability

of playing a role in the environment with life-like and improvisational behavior. Some suitable

skills for these characters (often simulating human beings) include a realistic appearance, the

ability to produce natural movements, and the aptitude to reason and act in an unforeseeable

way (NINOMIYA et al., 2014).

The simulation of virtual humanoids moving in a synthetic world involves the semantic

representation of the environment, the definition of the agent initial position and its goal (target

position). By setting these parameters, an algorithm can be used to find a trajectory to be

followed from the initial position to the goal position. The process of detailing this trajectory

into discrete motion is known as path-planning. This will be the central topic of this thesis.

In real world, if we consider different persons (all in the same initial position) looking to

achieve the same target position, each path followed will be unique. Even for the same task,

the strategy used for each person to reach his/her goal depends on his/her physical constitution,

personality, mood, reasoning, urgency, and so on. From this point of view, a good algorithm to

move characters across virtual environments should generate expressive, natural and unexpected

steering behaviors. The search for realistic behaviors requires high-performance for real-time

graphics applications which compel developers to look for more efficient and fewer expensive

methods that produce yet good and almost natural movements, making this a challenging prob-

lem.

Many researchers are working on methods to improve the quality of the steering behavior

of synthetic agents with a low computational cost (WOLINSKI et al., 2014; GARCIA; KAPA-

DIA; BADLER, 2014; KAPADIA et al., 2013a; KAPADIA et al., 2013b), It is very difficult to

produce natural behavior by using a strategy that focuses on the global control of characters.

Additionally, taking into account the individuality of each character may be a costly task. As a

consequence, most of the approaches proposed in computer graphics literature do not take into

account the individual behavior of each agent, compromising the simulation quality.

Despite humanoid, autonomous agent, and behavior being terms used in many different

contexts, in this work we limit their usage in order to match our goals. For the sake of simplicity,

we consider humanoids as a kind of autonomous agent with behaviors (driven by stimulus),

represented by a computational model, and capable of producing physical manifestations in a

16

virtual world. The term behavior will be used mainly as a synonym of animation or steering

behavior and intends to refer to improvisational and personalized action of a humanoid.

1.1 Motivation

Recent advances in computer hardware, especially on GPUs, allow the creation of synthetic

actors visually indistinguishable from real actors. They also allow the performance improve-

ment in the realistic and intelligent behaviors, making virtual agents more convincing. This

permits the use of more elaborate and robust techniques that customize the path found based on

the individuality of the agents’ behavior. These behaviors can be represented using a set of con-

straints or rules that ensures the agent will avoid certain areas, minimize risks, avoid collisions,

reduce the cost (usually distance) of the path, and so on.

A wide variety of path-planners has been developed mixing ideas from many fields such as

networking, graph theory, search and combinatorial optimization, algorithms and data-structures.

Unfortunately, none of the approaches completely solves the problem, because each situation

can have different restrictions and assumptions. As an example, Robotics needs paths to a finite-

dimensional object that avoid obstacle collisions by some margin (due to sensors imprecision).

Computer games need paths to be found very fast, using a restricted quantity of memory.

A great performance is fundamental in both situations, mainly in computer games, since a

scene, defined by agents’ positioning in the environment, must be rendered with a frequency of

about 30 to 100 frames per second to be visually convincing. The application has about 0.02

seconds per frame in order to update the system’s states, to handle input and output data, to

do graphics processing, to perform physics computation, IA, path planning, and so on. This

implies a time less than 1 milliseconds for planning the agents’ path.

Considering those issues, the proposed planner provides an efficient and configurable solu-

tion to navigation of virtual actors while producing individual and quality paths. The planner is

formulated as a Boundary Value Problem (BVP) and is able to handle different situations using

this same formalism. Parameters can be configured to sculpt the potential field, producing navi-

gation routes with preferences while keeping the best property of this kind of planner, that is the

absence of local minima. The planner’s efficiency is obtained through a hierarchical approach.

17

1.2 Objectives

Our proposal is to create an efficient and robust technique to control the navigation of agents

in a virtual world that generates individual and natural behaviors for humanoids. For this, we

improve some aspects of a path planner develop by our group (DAPPER et al., 2006). The

planner is based on two levels: the global planner and the collision avoidance module. The

global path planner is responsible for finding a path through the environment. The collision

avoidance module is responsible for controlling the behavior of the agent for avoiding moving

obstacles. Despite some applications requiring a blend of the two previous concepts (global

planner and collision avoidance), the distinction has many advantages including simplicity, a

modular implementation, and easy integration with existing collision avoidance techniques.

This planner had some limitations which made impossible its use in real-time applications.

Also, a wide varieties of validations are needed to be done. Our goal was to contribute punc-

tually in these validations and create a new planner, more efficient, to be used in real-time

applications. This new planner is our main contribution.

Figure 1.1 – Multiple agents simulation.

Source: Created by the author.

Efficiency is achieved by reducing the complexity of the problem by means of a hierarchical

approach where the environment is represented in several levels of discretization. Paths on the

low-resolution level are computed very fast and is used to accelerate subsequent levels where

18

paths are refined and smooth. In each level of the hierarchy, a potential field is computed, whose

gradient descent represents navigational routes. The resulting trajectories are smooth and free

of local minima. The advantage of the proposed technique compared with existing agent navi-

gation techniques is that the same principle is used to achieve a wide variety of features required

for agent’s navigation and simulation. These features include high-quality paths (smooth and

natural paths), collision avoidance from static and moving obstacles, distinctive behavior for

each agent and real-time performance.

Figure 1.1 illustrates a screenshot of multiple agents simulation using our method. Basically,

the proposed technique should be able to deal with:

• Multiple agents: a large number of agents moving around in the virtual environment

must be handled and those must avoid each other.

• Agents’ individuality: different paths should be produced based on agent’s distinctive

behavior, which represents individual characteristics of each agent like its own personal-

ity, intentions and mood. These characteristcs should be dynamically changed, impacting

the generated path.

• Real time: agents’ motion must be computed in real time. The planner should be able to

provide a path in real time while the simulation is being executed.

• Dynamics: virtual environments should contain not only static obstacles, but also dy-

namic obstacles. They must be handled in real time.

• Coherence: a group of agents in a virtual environment may share the same goal. The

agents must stay together and follow the same route to the goal, while keeping their

individual paths, avoiding obstacles.

• Inhomogeneous Terrain: The potential field should be adjusted to generate regions with

higher or lower preference which helps the designer to deal with terrain reasoning (STER-

REN, 2001) and tactical planning at the path planning step. The same principle used to

produce the potential field is used in order to achieve these features.

1.3 Applications

In this section, we discuss some potential applications for our technique in the games indus-

try, the film industry, robotics and simulation industry.

19

1.3.1 Games

Real-time path planning in games is a challenging and still unsolved problem (NIEUWEN-

HUISEN; KAMPHUIS; OVERMARS, 2007), since good paths and real-time response are

needed. There are several workaround done by the game industry to adjust path planners to

the game needs. One of the most well-known game styles is Real-Time Strategy (RTS). In such

games, the user commands groups of agents, usually over a planar surface. Figure 1.2 shows

a screenshot of the Starcraft II (ENTERTAINMENT, 2010) game, where a group of zergs are

attacking the terran’s base. Details of the navigation technique are not shared by the company,

but several bugs and unnatural paths are criticized by players. The most common issues of path-

planners reported by gamers include the quality of motion, occurrence of collisions, repeated

motions, reaction on dynamic changes and unnatural behavior of groups of characters.

Figure 1.2 – Starcraft II. Multi-agent navigation.

Source: <http://www.365waystopay.com/play-starcraft-2/>. Last access: February 2015.

In addition to criticism of bugs and unnatural paths another comment is the fact that game

path-planners provide the shortest path which is quite stereotyped and it is not exhibited by

humans during navigation. Generally, natural paths are close to the shortest path, but not exactly

the shortest path. Another example of games that highlight agent navigation and simulation are

the games Dead Rising (CAPCOM, 2006) and Assassin’s Creed (UBISOFT, 2007). In Dead

Rising, the main character should escape from a crowd of zombies. In Assassin’s Creed, the

http://www.365waystopay.com/play-starcraft-2/

20

main character is an assassin who masquerades in the crowd. In both games, a crowd simulation

technique is used to populate the environment. Figure 1.3 illustrates the crowd in Dead Rising

game.

Figure 1.3 – Dead Rising. This game uses crowd simulation to populate the environment.

Source: <http://newenglandgamer.com/dead-rising-film-works/>. Last access: February 2015.

1.3.2 Movies

Another application that uses large numbers of agents is cinema. In this context, virtual

actors are used for populating a scene since they are cheaper than using real actors. For instance,

in the trilogy Lord of the Rings (CINEMA, 2003), illustrated in Figure 1.4, epic wars were

populated by virtual actors.

For a greater realism, the virtual actors need to move and act as a crowd. To simulate this

situation, human behavior and interaction were analyzed to replicate the collective behavior of

crowds. Dealing with a large amount of virtual characters, conventional animation techniques,

such as path sketching, are not sufficient to represent and handle the whole crowd. This re-

sults in the need for specific techniques to control crowd trajectories, as well as the individual

trajectories of each agent in the crowd.

Unlike games, in the movie industry the real-time performance is not the bottleneck. There

is a greater exigency in the realism of the behavior of virtual actors. The path planner has to

provide high-quality paths to achieve it.

http://newenglandgamer.com/dead-rising-film-works/

21

Figure 1.4 – Battle of Helms Deep in the movie Lord of the Rings. Most of the people are virtual.

Source: <http://lotr.wikia.com/wiki/Battle_of_the_Pelennor_Fields>. Last access: February 2015.

1.3.3 Robotics

One of the main goals of robotics is to create robots that can act autonomously in the envi-

ronment. This goal is very complex and requires advances in several domains, as localization,

mapping, and planning. At the autonomous navigation domain, the path planner should produce

a fast answer, particularly in problems that involve risk to human life, like rescue operations

during natural disasters, for instance. In these cases, robots are expected to act efficiently and

spending a minimum time in path planning. Figure 1.5 illustrates the robot navigation. The

feasibility of real-time path planning is dependent on the accuracy of the map acquired by the

robot sensors. As there are inaccuracies in the robot’s sensors, one requirement is that the path

planner must provide a path with clearance from obstacles.

1.3.4 Pedestrian Simulation

Modern airports, shopping centers, bridges and train stations are complex buildings with a

high frequency of pedestrians, as illustrated in Figure 1.6. People must be able to move inside

these buildings without disturbances and with comfort, and it is crucial that in emergency cases

people can be evacuated safely and in time. Pedestrian jams caused by unknown bottlenecks are

disastrous and few seconds can be determinant over life and death. To evaluate a problem-free

walkability and a secure emergency evacuation in complex buildings the pedestrian simulation

is necessary. The agent-based pedestrian simulation allows the flexible modeling of pedestrian

behavior based on the architectural topology of the building or environment in question. Several

http://lotr.wikia.com/wiki/Battle_of_the_Pelennor_Fields

22

Figure 1.5 – Robot navigation. A quality path with clearance from obstacles is required.

Source: (BARTEL et al., 2007). Page 1.

areas benefit from this simulation, such as: design, safety and egress audit of public spaces

and buildings (train stations, airports, hospitals, public places, etc.), control and improvement

of pedestrian flows in urban planning and architecture, walkability studies, implementation of

human movement in traffic scenarios and marketing research tool.

1.4 Organization

The rest of the text is organized as follow:

• Chapter 2 presents the existing approaches to handle the path-planning problem. They

are classified as Grid Based algorithms, Roadmaps algorithms including Visibility Graphs,

Probabilistic Roadmaps, Rapidly Exploring Random Tree, Waypoints and Potential Fields.

Finally, Collision Avoidance techniques are presented to handle local collisions.

• Chapter 3 shows the fundamental concepts used to develop the formalism of Config-

urable Flows. Also, it shows the strategy to use the Configurable Flows as global and

local planner. This chapter introduces a way to sculpt the potential field, changing its

concavity/convexity and configuring the flows, which allows path-planning in terrains

with different traversal characteristics.

• Chapter 4 presents the Hierarchical Configurable Flows Path-Planner, which is an effi-

23

Figure 1.6 – Pedestrian in a daily situation. Simulate pedestrian is important to predict and prevent
accidents.

Source: <http://www.kennislink.nl/publicaties/waarom-we-altijd-te-weinig-tijd-hebben>. Last access:
February 2015.

cient version of Configurable Flows suitable for being used in real-time applications.

• Chapter 5 presents quantitative and qualitative results obtained using both planners.

• Chapter 6 presents our conclusions and future works.

• Chapter 7 shows contributions obtained during the Ph.D..

• Chapter 8 provides supplemental materials to complement the theory of presented meth-

ods.

http://www.kennislink.nl/publicaties/waarom-we-altijd-te-weinig-tijd-hebben

24

2 RELATED WORK

In the literature, there are many different terms for the problem addressed in this proposal,

such as motion planning, path planning, navigation, route planning and pathfinding. Motion

Planning, also known as “the Piano Mover’s Problem” (SCHWARTZ; SHARIR, 1983) is a fun-

damental problem in robotics (LAVALLE, 2006) . The classical motion planning problem can

be described as the following: given a three-dimensional rigid body and a known set of obsta-

cles, the task is to find a collision-free path from a start configuration to a goal configuration.

Most of the time, this problem becomes to find a collision-free trajectory that will move

a robot from its initial position to its final position. This type of motion planning problem is

commonly called Path Planning. Path planning, navigation, and pathfinding are terms used

in many different contexts. In this proposal, we will use these terms with the same meaning.

Figure 2.1 illustrates the path planning problem.

Figure 2.1 – Path planning problem: find a path that takes an agent from its initial position to its goal
position without colliding with obstacles.

Source: <http://marius.sucan.ro/blog/2008/new-works/>. Last access: February 2015.

The basic principles to generate a path between two known positions in a bi-dimensional

world are relatively simple and well-studied in the robotics field. However, to find the path is

not enough when we want to endow artificial characters with natural and realistic movements

similar to humans. Most of the approaches proposed in computer graphics literature use two-

step strategies. In the first step – path planning step – a valid path is defined, and in the second

http://marius.sucan.ro/blog/2008/new-works/

25

one – the collision avoidance step – this path is adjusted to fit a realistic movement. These

steps are often addressed as separate problems that need to be interfaced with a fully functional

navigation system.

A path planning algorithm usually have a representation of the environment (with a graph

or a discretization) and then searches for a path between the initial and the goal positions for

the agent. There is a large number of methods for solving the basic path planning problem.

Not all of them solve the problem in its full generality. Despite many external differences, the

methods are based on few different general approaches which are: cell decomposition or grid

based, roadmaps, and potential fields.

2.1 Grid Based Algorithms

Grid-based or Cell Decomposition methods consist of decomposing environment into cells.

Two general methods can be distinguished: the approximate cell decomposition and the ex-

act cell decomposition. The approximate cell decomposition consists of using predefined cell

shapes (uniform grids, quadtrees, circles) (BANDI; THALMANN, 1998; SHILLER; YAMANE;

NAKAMURA, 2001; PETTRé; LAUMOND; THALMANN, 2005; SHAO; TERZOPOULOS,

2005), whose union is the environment discretization. The exact cell decomposition con-

sists of computing cells such that their union is exactly the environment (constrained Delau-

nay triangulation, convex polygons, trapezoidal) (KALLMANN; BIERI; THALMANN, 2003;

LAMARCHE; DONIKIAN, 2004). Figure 2.2 illustrates these decompositions.

The representation complexity of the latter method is directly dependent on the input geom-

etry complexity. If the environment is small and fits well into a grid, this technique is useful.

However, when the environment becomes complicated and large, grid based methods take a

large amount of computation time. With the environment discretization, a search algorithm is

used to obtain a sequence of cells which the agent must traverse in order to go from the initial

position to the goal position. The path created by grid search tends to look unnatural, being a

rough approximation for the smooth path that a human would follow. To produce smooth paths

using grid searches, the paths need to be smoothed in the post-processing phase resulting in

expensive queries.

Search algorithms are responsible for finding paths, whereas the search space is the dis-

cretization of the environment. We can think of the search space as a map, while the search algo-

rithm is the set of rules that allows to find a path on the map. There are several search algorithms

used for navigation, such as the Best-first search (PEARL, 1984), Breadth-first search (PEARL,

26

(a) (b)

(c)

Figure 2.2 – Cell decomposition consisting of circles (a), a Delaunay triangulation (b) and a Quadtree
(c).

Source: (a) (PETTRé; LAUMOND; THALMANN, 2005), page 6, (b) (KALLMANN; BIERI; THAL-
MANN, 2003), page 18 , (c) (SHAO; TERZOPOULOS, 2005), page 22.

1984), Depth-first search (PEARL, 1984), D* (STENTZ; MELLON, 1993), Dijkstra (DIJK-

STRA, 1959), and so on. Their use depends on the amount of available memory and the way

that the search space should be available.

One of the most used search algorithms was proposed by Hart et al. (HART; RAPHAEL,

1968), called A*. A* is an improved version of the Dijkstra (DIJKSTRA, 1959) work. Dijkstra

introduced a heuristic graph search algorithm that, given a source and a destination node, finds

the shortest path connecting the two nodes. Initially, the algorithm finds the distance between

the source and all nodes of the graph. Next, it determines the path with minimal cost, following

the graph nodes from the source to the destination. A* works in the same way, but it uses a

27

heuristic to reduce the search space. Figure 2.3 illustrates the path produced by the A* algo-

rithm. First, the environment (Figure 2.3 (a)) is discretized (Figure 2.3 (b)), and then, a path is

found connecting the green cell to the blue cell ((Figure 2.3 (c)).

(a) (b) (c)

Figure 2.3 – Path produced by the A* algorithm: the environment (a), its discretization (b) and the path
found connecting the green cell to the blue one (c).

Source: Created by the author.

Several variations of the original A* algorithm have been proposed. The recent work of

Bleiweiss (BLEIWEISS, 2008), Kapadia et al. (KAPADIA et al., 2013b) and Garcia et al.

(GARCIA; KAPADIA; BADLER, 2014) presented a technique to implement graph search al-

gorithms in the graphics hardware. Others focus on inputting behavior into the search algorithm,

besides finding the shortest path. For instance, Hara et al. (HARABOR; BOTEA, 2008a) recent

work that plan a path for agents with different sizes in heterogeneous environments and Huang

et al. (HUANG MUBBASIR KAPADIA; KALLMANN, 2014) that plan a path for coherent and

persistent groups in arbitrarily complex environments, producing splitting and merging behav-

iors. Also, the works of Ninomiya et al. (KAPADIA et al., 2013c; NINOMIYA et al., 2014)

that present a path planner that satisfies multiple spatial constraints imposed on the path such as

staying behind a building, walking along walls, or avoiding the line of sight of patrolling agents.

Considering grid based discretizations, Kang et al. (KANG; KIM; KIM, 2010) use an adap-

tive Delaunay discretization and a map of regions of interest to plan a path of agents enabling

user interaction. Wang et al. (WANG; DANG; PAN, 2010) uses a time-variable grid discretiza-

tion to find paths in unknown environments. Torchelsen et al. (TORCHELSEN et al., 2010)

uses the triangular discretization that represents the 3D surface mesh to find a path on arbitrary

surfaces. Finally, Kallmann et al. (KALLMANN, 2010) uses a new type of navigation meshes

to have the environment discretization to find quality shortest-paths.

28

2.2 Roadmap

Roadmap is a topological graph which represents an abstraction of the environment where

each vertex is a position and each edge is a path that connects two positions (LAVALLE, 2006).

This graph must contain a sufficient amount of paths to make any path planning query easily

solvable. Basically, roadmap techniques can be described in three steps. First, a graph that

contains the connectivity of the environment is built. Then, the agent initial and goal positions

are added as vertices in this graph. Finally, a path connecting the initial and goal positions is

searched, using a search algorithm like A* mentioned in Section 2.1. Different approaches can

be used to create roadmaps, the most used are Visibility Graph, Probabilistic Roadmap, Rapidly

Exploring Random Trees and Waypoints. Generally, they differ in the way the graph is built.

Most of the paths produced by roadmap methods are piecewise linear, have many redundant

trajectories, and little clearance to the obstacles, resulting in unnatural paths. While techniques

exist for smoothing the paths (GERAERTS; OVERMARS, 2004; KAMPHUIS et al., 2004;

KARAMOUZAS; OVERMARS, 2008) they are too slow to be applied in the query phase in

real-time applications. There are several works using roadmaps for agent navigation, such as

Lamarche’s work (LAMARCHE, 2009) that analyzes unstructured 3D triangular meshes to

construct the roadmap and the work of Roland et al. (GERAERTS; OVERMARS, 2007) that

creates a special kind of roadmap, called Corridor Maps, that generates a corridor through a

path queried in the roadmap and uses a potential field inside this corridor to steer the agent’s

navigation.

2.2.1 Visibility Graphs

The Visibility Graph (LOZANO-PéREZ; WESLEY, 1979) connects together vertices of

the environment’s geometry if and only if they see each other. Then, the agent initial and goal

positions are added as vertices in this graph and a path is searched. Figure 2.4 exemplifies this

method. Grey polygons are obstacles and the graph is created connecting two vertices that are

visible to each other (Figure 2.4 (a)). To query for a path, a start vertex (qI) and a goal vertex

(qG) is inserted in the graph (Figure 2.4 (b)) and a path is found connecting those two vertices,

represented by the red line, in Figure 2.4 (c).

This approach ensures finding the shortest path between two configurations, but it can be

memory consuming in open environments with sparse obstacles. Also, the generated paths are

very close to obstacles, which implies on unnatural movement of agents. An alternative is to

29

compute the generalized Voronoi diagram (Ó’DÚNLAING; YAP, 1985) inside the environment,

which generates paths that maximize clearance with obstacles.

(a) (b) (c)

Figure 2.4 – Visibility Graph. Connect vertices that see each other (a), add the initial position (qI) and
final position (qG) to the graph (b) and search for a path (red line) (c).

Source: Created by the author.

2.2.2 Probabilistic Roadmap Method

The Probabilistic Roadmap Method (PRM) consists of generating vertices by randomly

sampling positions in the environment (Figure 2.5 (a)) and linking those positions if a collision-

free path connects them (Figure 2.5 (b)). Due to the random nature of the PRM method, the

paths generated have low quality and can take long detours. Such method has been used to plan

paths inside populated 2D virtual environments (BAYAZIT; LIEN; AMATO, 2002; BERG et

al., 2008) or huge 3D environments (SALOMON et al., 2003) and has demonstrated its capacity

to deal with relatively high dimensional problems (KAVRAKI et al., 1996).

2.2.3 Rapidly Exploring Random Trees

Another way of generating alternative paths is through the Rapidly Exploring Random

Trees (LAVALLE, 1998) (RRTs). An RRT is a tree where the root is the initial position and

the some leaves converge to the goal. This method is particularly suitable for solving single-

query path planning problems in high dimensional spaces. Due to their random nature, RRTs

seem ideal for obtaining different paths given a specific path query. Although the construction

method is simple, it is not an easy task to find a method that acts in this tree and yields a de-

sirable behavior. Figure 2.6 illustrates this tree in a square region in the plane. The center of

the square region is chosen as the initial position (Figure 2.6 (a)), and the tree expands in a few

30

(a) (b)

Figure 2.5 – PRM. The graph representing the environment is built through randomly sampled vertices
(a). The vertex α is sampled and linked to the nearest vertices if a collision-free path connects them (b).

Source: Created by the author.

directions (Figure 2.6 (b)) to explore the four corners of the square (Figure 2.6 (c)).

(a) (b) (c)

Figure 2.6 – Rapidly Exploring Random Trees. The tree’s growth after some iteration are showed in
(a),(b) and (c).

Source: <http://msl.cs.uiuc.edu/rrt/about.html>. Last access: February 2015.

2.2.4 Waypoints

The Waypoint method is based on a graph whose vertices and edges are manually placed

by the designer to get the most efficient environment representation (Figure 2.7 (a)). Traveling

from one waypoint to another, like other roadmap methods, is expressed as a graph search

problem (Figure 2.7 (b) and (c)). This method has the benefit of representing the environment

with the least amount of vertices for the path planner to deal with. Waypoints are useful for

http://msl.cs.uiuc.edu/rrt/about.html

31

creating efficient obstacle free pathways through static environments but are unable to deal with

dynamic environments.

(a) (b) (c)

Figure 2.7 – The designer specifies some points (a) and creates a graph connecting these points (b). The
agent initial and goal positions are added to the graph (c) and a path is queried.

Source: Created by the author.

2.3 Potential Fields

In a classical work in the field of robotics, Khati (KHATIB, 1980) proposed an elegant path

planning method. He considered that instead of looking for a good path and trying to control

the agent’s movement around it a good planner should provide a potential field, or a force field

(its gradient), that spanned the whole region of maneuver, producing a continuum of alternative

paths. The potential field is devised to incorporate obstacles and goals, and should guide the

agents at all times indicating the best direction to follow. Figure 2.8 illustrates this method.

Its most straightforward implementation is a simple superposition of fictitious forces: obstacles

forces that repel the agent to prevent collisions; and target forces that attract the agent. Such

superposition is not always successful since for some environment configuration the agent can

end up trapped in local minima before reaching the target.

The classical use of potential fields often presents local minima and unnatural paths (KO-

REN; BORENSTEIN, 1991). Figure 2.9 illustrates this problem. The agent gets stuck in the

environment due to the forces that act on the agent, canceling each other. This problem can be

partially solved by providing good potential functions or by executing random moves (BAR-

RAQUAND; LANGLOIS; LATOMBE, 1992). The path from the start to the goal can be found

by following the direction of the steepest descent of the potential toward the goal. While this

32

Figure 2.8 – Potential Field. The potential is generated by the superposition of fictitious forces: obstacle
forces that repel the agent to prevent collisions; and target forces that attract the agent.

Source: <https://taylorwang.files.wordpress.com/2012/04/potential-field1_robot.jpg>. Last access:
February 2015.

method has some flexibility to avoid local hazards (such as small obstacles and other moving

objects), it is not useful for path planning in interactive virtual environments as it might take

too much time to create the path. Since a change in target or environment requires significant

re-computation, these navigation methods are generally confined to systems with non-changing

goals and static environments.

Figure 2.9 – Local Minimum. The agent gets stuck in the environment due to the forces that act on the
agent canceling each other.

Source: Created by the author.

2.4 Crowd Simulation

Researches from a broad range of fields, as architecture (SCHELHORN et al., 1999),

robotics (MOLNAR; STARKE, 2001), computer graphics (REYNOLDS, 1987; HODGINS;

BROGAN, 1994; BOUVIER; GUILLOTEAU, 1996; MUSSE; THALMANN, 1997) and physics

https://taylorwang.files.wordpress.com/2012/04/potential-field1_robot.jpg

33

(HELBING; MOLNáR, 1995) have attempted to simulate collective behavior by computer

models. These models focus on different aspects of the collective behavior that emerges in

a spontaneous way when people act as a crowd. There are several research branches in crowd

simulation, such as crowd animation, crowd behavior generation, crowd interaction and crowd

rendering (THALMANN; MUSSE, 2007). The recent works that follow the crowd animation

branch are relevant to this proposal.

Shao et al. (SHAO; TERZOPOULOS, 2005) emulate the rich behavior complexity of real

pedestrians in urban environments. The virtual environment is represented by a hierarchical

collection of maps: a topological map, a perception map and a path map. These maps are used in

the perceptual, behavioral, and cognitive control steps and are handled by a state machine. This

technique has the ability to produce prodigious quantities of intricate animation of pedestrians

carrying out various individual and group activities.

Treuille et al. (TREUILLE; COOPER; POPOVIć, 2006) proposed a model based on con-

tinuum dynamics. Continuum dynamics is a branch of dynamics that deals with the analysis of

the kinematics and the dynamical behavior of materials modeled as a continuous mass rather

than as discrete particles. The crowd is handled through a continuum potential field that si-

multaneously integrates global navigation with moving obstacles such as people. This solves

the motion of large crowds without the need for explicit local collision avoidance. This tech-

nique can simulate thousands of people at real-time frame rates. Figure 2.10 (a) illustrates this

technique.

Pelechano et al.(PELECHANO; ALLBECK; BADLER, 2007) create the HiDAC system

for High-Density Autonomous Crowds. This system uses a combination of psychological and

geometrical rules with a social and physical forces model to produce a variety of emergent be-

haviors. These behaviors varying from agent line formation to pushing behavior, i.e., behavior

relative to the current situation, personalities of the individuals and perceived social density.

This system can handle up to 1800 agents with real-time frame rate.

Lerner et al. (LERNER et al., 2007) present an example-based crowd simulation technique

that allows autonomous agents to display complex natural behaviors that are often missing

in crowd simulations, like subtle variations of the people speed and direction, unpredictable

behaviors, like people stop and change direction and walk against the flow. Examples are cre-

ated from tracked video segments of real pedestrian crowds. During a simulation, autonomous

agents search for examples, in the video data, that closely match the situation that they are fac-

ing. Trajectories taken by real people in similar situations are copied to the simulated agents,

resulting in natural behaviors. Although the system enables agents to exhibit natural behavior,

34

only the crowd consisting of few people runs in real-time.

Yeh et al. (YEH et al., 2008) model agent interactions through the use of composite agents.

Each composite agent consists of a basic agent that is associated with one or more proxy agents.

This formulation allows an agent to exercise influence over other agents greater than that im-

plied by its physical properties, which allows modelling a variety of emergent behaviors such

as aggression, social priority, authority, protection and guidance. Figure 2.10 (b) illustrates this

technique.

Van den Berg et al. (BERG et al., 2008) use a PRM to represent a cognitive map of the

environment to provide a macroscopic pathfinding, and combines it with fast and localized

navigation for each agent. During runtime, each agent travels toward its goal using the precom-

puted roadmap of the static environment taking into account various constraints (such as speed

limit, path clearance, shortest ways, fastest routes), while purposely avoiding collision with

nearby obstacles or incoming agents through local rules. This technique can handle thousands

of agents using a multi-core implementation.

Narain et al. (NARAIN et al., 2009) modeled the crowd as a continuum fluid described by

a density and flow velocity. Local collision avoidance is mapped into a continuous domain to

obtain a variational constraint on the crowd flow, which is introduced as the unilateral incom-

pressibility constraint. This constraint acts as a large-scale collision avoidance step to accelerate

the simulation. The flow varies from freely compressible when the density is low to incompress-

ible when the agents are close to each other. This technique can handle thousands of agents in

small grids (40× 40 cells) in real time. Figure 2.10 (c) illustrates this technique.

(a) (b) (c)

Figure 2.10 – Crowd simulation. Illustrations from the works of Treuille et al. (a), Yeh et al. (b) and
Narain et al. (c)

Source: (a) (TREUILLE; COOPER; POPOVIć, 2006), page 1, (b) (YEH et al., 2008), page 9, (c)
(NARAIN et al., 2009), page 1.

Yersin et al. (YERSIN et al., 2009) extend the concept of motion patches (LEE; CHOI; LEE,

35

2006) to densely populate large environments. They build a population from a set of blocks

containing a pre-computed local crowd simulation. Each block is called a crowd patch. They

address the problem of computing patches, assembling them to create virtual environments,

and controlling their content to answer designers’ needs. The main advantage is the handling

of large-scale environments and populations by drastically lowering the need for computation

resources dedicated to simulation. Figure 2.11 (a) illustrates this technique.

Lerner et al. (LERNER et al., 2009) present a data-driven approach for fitting behaviors to

simulated pedestrian crowds. The method annotates agent trajectories, generated by any crowd

simulator with action tags. In a preprocessing stage, the stimuli which motivate a person to

perform an action are encoded in examples. Using the examples, specific influence functions

are encoded into two-dimensional maps which evaluate, for each action, the relative importance

of a stimulus within a configuration. At runtime, given an agent stimulus configuration, the im-

portance of each stimulus is determined and compared to the examples. Then, the probability of

performing each action is approximated and an action tag is chosen accordingly. This technique

is not suitable if real-time performance is required.

Ju et al. (JU et al., 2010) proposed a method that blends existing crowd data to generate

a crowd animation. The animation can include an arbitrary number of agents, extends for an

arbitrary duration, and yields a natural-looking mixture of the input crowd data. This animation

is accomplished by introducing a morphable crowd model that allows to encode the formations

and individual trajectories in crowd data. Then, its original spatiotemporal behavior can be

reconstructed and interpolated at an arbitrary scale. This technique can handle almost one

hundred agents in real time.

Sewall et al. (SEWALL et al., 2010) proposed a method for the synthesis and animation

of realistic vehicle traffic flows. This technique is based on a continuum model of traffic flow

using single-lane continuum flow model to handle multi-lane traffic. This correctly handles lane

changes and merges, as well as traffic behaviors due to changes in speed limit. This technique

is limited to networks of highway-class roads.

Guy et al. (GUY et al., 2010) use an optimization method to compute a biomechanically

energy-efficient, and collision-free trajectory that minimizes the amount of effort for each het-

erogeneous agent in a large crowd. Also, it is possible to automatically generate many emergent

phenomena such as lane formation, crowd compression, edge and wake effects. This technique

can interactively simulate large crowds with thousands of agents. Figure 2.11 (b) illustrates this

technique.

Bicho et al. (BICHO et al., 2012) propose a method for interactively controlling the move-

36

(a) (b)

Figure 2.11 – Crowd simulation. Illustrations from the works of Yersin et al. (a) and Guy et al. (b)

Source: (a) (YERSIN et al., 2009), page 1, (b) (GUY et al., 2010), page 11.

ments of crowds where individual agents affect each other by competing for the space where

they move. This was motivated by space colonization algorithm, classically used to model

leaf venation pattern and the branching architecture of trees. Emergent behaviors like collision

avoidance, relationship of crowd density and speed of agents, and the formation of lanes are

observed.

Kapadia et al. (KAPADIA et al., 2013a) proposes a real-time planning framework for multi-

agent navigation that uses multiple heterogeneous problem domains of differing complexities

for navigation in large and dynamic virtual environments. A path planning problem (start and

goal configuration) is dynamically decomposed into a set of smaller problem instances across

different domains, where an anytime dynamic planner is used to efficiently compute and repair

plans for each of these problems. It ensures precise navigation control and little computational

overhead.

Dutra et al. (DUTRA et al., 2013) propose the use of precomputed potential fields com-

bined with RVO (BERG; LIN; MANOCHA, 2008) – described in the next section – enabling

the change of the agent’s goal momentary through local goals. These goals provide different

behaviors for a group of agents.The potential field is a modified version of those proposed by

Treuille et al. (TREUILLE; COOPER; POPOVIć, 2006) and is used to control the velocity of

agents in a group. The RVO is used to handle collision among agents. This technique can

handle thousands of agents in interactive rates.

Golas et al. (GOLAS; NARAIN; LIN, 2014) postulated that modeling interpersonal forces

is necessary for simulating crowd turbulence. To validate their hypothesis they propose a novel

37

model for turbulent crowds, being able to simulate stop-and-go waves as well as chaotic behav-

ior symptomatic of crowd turbulence. The model shows good correspondence with quantitative

metrics proposed for detecting crowd turbulence and establishes the importance of modeling

friction for simulating crowd turbulence.

Musse et al. (MUSSE; CASSOL; JUNG, 2012) propose a new model to quantitatively com-

pare characteristics of two crowds. The local velocity and spatial position is compared using a

histogram distances, in 4-D. There are very few works proposing quantitative metrics to com-

pare crowds characteristics. The results of this work correlate with visual inspection.

Berset (BERSETH; KAPADIA; FALOUTSOS, 2013) presented a framework that aims to

estimate the complexity of a steering situation given the configuration of the obstacles and the

agents involved. The core of the framework is a novel set of complexity-related features and

their combination into a single metric, the scenario complexity. Their statistical experiments

with three steering algorithms showed a strong negative correlation between our metric and

the dynamic performance of the algorithms. This work complements recent research in eval-

uating crowd techniques and provides a strong foundation for developing a standard suite of

challenging benchmarks for testing and comparing crowd simulation algorithms.

Another work to compare and evaluate crowd simulation was proposed by Wolinski et

al. (WOLINSKI et al., 2014). They created a framework to evaluate multi-agent crowd sim-

ulation based on real-world observations of crowd movements. The idea is to automatically

estimate the parameters that enable the simulation algorithms to best fit the given data through

a combinatorial optimization problem.

The main similarity between most of the crowd simulation techniques is the use of a global

path planner and local collision avoidance technique. Each of these techniques has also been

studied separately. Path Planning was mentioned previously and some collision avoidance tech-

niques are commented below.

2.5 Collision Avoidance

Collision avoidance problems have been studied in control theory, traffic simulation, robotics

and crowd simulation. Different techniques have been proposed for collision avoidance in group

and crowd simulations (MUSSE; THALMANN, 1997; REYNOLDS, 1999; SUGIYAMA;

NAKAYAMA; HASEBE, 2001; LAMARCHE; DONIKIAN, 2004; HELBING et al., 2005;

FOUDIL; NOUREDDINE, 2006; THALMANN, 2006; SUD et al., 2007; GOLAS; NARAIN;

LIN, 2013). These are based on local coordination schemes, velocity models, prioritization

38

rules, force-based techniques, or adaptive roadmaps. Other techniques (YERSIN et al., 2008)

have used LOD techniques to trade-off fidelity for speed. Recently, a common technique used

for collision avoidance is the Velocity Obstacles (VO).

VO is the set of all velocities of a robot that will result in a collision with another robot at

some moment in time, assuming that the other robot maintains its current velocity (FIORINI;

SHILLERT, 1998). If the robot chooses a velocity inside the velocity obstacle then the two

robots will eventually collide, if it chooses a velocity outside the velocity obstacle, such a

collision is guaranteed not to occur. Figure 2.12 shows the VO of a robot A induced by another

robot B.

Figure 2.12 – The velocity obstacle V OAB for a robot A, with the position XA, induced by another
robot B, with the position XB and the velocity VB .

Source: <http://en.wikipedia.org/wiki/Velocity_obstacle>. Last access: February 2015.

The VO for a robot A induced by a robot B may be formally written as

V OA|B = {v|∃t > 0 : (v − vB)t ∈ D(xB − xA, rA + rB)}

where A has position xA and radius rA, and B has position xB, radius rB, and velocity vB. The

notation D(x, r) represents a disc with center x and radius r.

The notion of VO was proposed for path planning in dynamic environments and has been

extended to deal with uncertainty in sensor data (FIORINI; SHILLERT, 1998; FULGENZI;

SPALANZANI; LAUGIER, 2007). Recently, Berg et al. (BERG; LIN; MANOCHA, 2008;

BERG et al., 2008) extended the VO formulation for reducing collisions between agents. Berg’s

technique, however, relies on extensive sampling for computing collision-free velocities which

http://en.wikipedia.org/wiki/Velocity_obstacle

39

prevents fast implementations. Other extension (PARIS; PETTRE; DONIKIAN, 2007) have

also been proposed. However, this technique provides higher-order path-planning with imple-

mentations that are not yet fast enough for very large simulations.

2.6 Discussion

There is a large number of methods for solving the basic path planning problem. Not all of

them completely solve the problem. Despite many external differences, the methods are based

on a few different general approaches, which are cell decomposition or grid-based, roadmaps,

and potential fields.

Grid methods work better in small environments. When the environment becomes large,

grid based methods take a large amount of computation time, and generally produce non-smooth

paths. Most of the paths produced by roadmap methods are piecewise linear. They have many

redundant trajectories, and little clearance to the obstacles, resulting in unnatural paths. Also, a

roadmap that works for a particular agent, may not work for an agent with different size since a

wider agent cannot fit into a narrow path valid for a thinner agent. Occasionally, potential fields

may present the local minima problem.

Crowd simulation generally uses hybrid methods to overcome these problems. Also, they

can focus on a macroscopic level, dealing with a crowd as a whole, or on a microscopic level,

dealing with agents individual interactions. Our proposed technique makes use of a hybrid idea,

using the grid based potential field to control agent navigation. Also, the agent’s individuality

is taken into account, allowing the use of our technique in a macroscopic or microscopic level.

40

3 CONFIGURABLE FLOWS

The classical use of potential fields often presents local minima and unnatural paths (KO-

REN; BORENSTEIN, 1991). A way to generate a potential field that is free from local minima

and produces natural paths is through the proposed technique, that use a numerical solution of

a convenient partial differential equation with boundary conditions - a boundary value problem

(BVP). Boundary conditions are central to the method and indicate which regions in the envi-

ronment are obstacles and which ones are targets. Hence, the obstacles’ configuration influences

the path followed by the agents.

3.1 Overview

Our research group has been working with potential fields based on BVP for several years.

In 2001, Prestes et al. (PRESTES et al., 2001) proposed use of relaxation methods for calcula-

tion of harmonic potentials to robot exploration of unknown environments. The potential field

calculated indicated safe paths towards the unexplored regions.

In 2006, Dapper et al. (DAPPER et al., 2006) proposes the use of BVP for virtual agent

navigation. The proposed work allows a group of synthetic actors to move negotiating space,

avoiding collisions, attaining goals in prescribed sequences while at the same time producing

very individual paths. The individuality of each pedestrian could be set by changing its inner

field parameters. This led to a broad range of possible agents’ behaviors.

We (SILVEIRA et al., 2010a) showed a better understanding of the use of this kind of po-

tential field, presenting some results exploring situations as steering behavior in corridors with

collision avoidance and competition for a goal, and searching for objects in unknown environ-

ments. Also, a proposal to produce different behaviors for agents by automatically changing

the size of the field of view of each agent. This planner was named “Configurable Flows”.

Meanwhile, in 2008, we (SILVEIRA; PRESTES; NEDEL, 2008) presented a new approach

to managing the movement of groups in dynamic environments using an algorithm that includes

a strategy to keep formations during the displacement of the agents’ group. Also, they proposed

a sketch-based navigation.

Fischer et al. (FISCHER; SILVEIRA; NEDEL, 2009) presented a strategy to implement this

planner using CUDA on GPU. With the GPU-based strategy, a speed up of 56 times the previous

implementation was achieved, allowing its use in situations with a large number of autonomous

characters, which is commonly found in games. We also implemented our planner in an RTS

game engine (SILVEIRA et al., 2010b) obtaining better results than the native path planner.

41

Figure 3.1 – Overview of the work on potential fields based on BVP done by our research group.

Source: Created by the author.

Inspired by these works, Fischer et al. (FISCHER; NEDEL, 2011) presented a technique

for path-planning over 3D surfaces. The planner handles complex surfaces of arbitrary genus

or curvature, represented by a triangle mesh, without the need of 2D parametrizations. The

technique was able to generate paths on arbitrary surfaces with similar quality as those generated

by BVP-based methods in planar environments.

In 2010, we proposed a hierarchical path planner, called “Hierarchical Configurable Flows”,

that integrates the previous planner with the Full Multigrid Method, which solves elliptic par-

tial differential equations using a hierarchical strategy. Our new approach produced real-time

performance in large environments. Results showed that our proposal spends less than 1% of

the time needed to compute a solution using our original planner in several environments. This

path planner is the main contribution of this thesis.

Later in 2010, Prestes et al. (PRESTES; IDIART, 2010) proposed a new form of the plan-

ner’s core equation allowing it to deal with inhomogeneous environments. This technique was

able to control the curvature of the potential field creating regions with higher or lower naviga-

42

tion preferences. Figure 3.1 shows a schematic of all these works in chronological order.

Recently, we integrate the HFC Path Planner with preferential regions, introducing a solu-

tion to the Flatness Problem for multi-agent simulation.

3.2 Background

In the literature, the first proposal on potential fields based on BVP was made by Connolly

and Grupen (CONNOLLY; GRUPEN, 1993) and is called the method of the harmonic functions.

In their method, the potential fields are the solutions of a boundary value problem using the

Laplace’s Equation,

∇2 p(r) =
∂2p(r)

∂x2
+
∂2p(r)

∂y2
= 0. (3.1)

They also proposed boundary conditions such as the potential should be one in the contours

of the obstacles and zero in the region of the target. Setting up the value of the function in the

boundaries is called a Dirichlet boundary condition in the language of a BVP. The agent uses

the gradient descent of this potential to determine the path free of obstacles that connects its

current position to the target.

The solution of the Laplace’s Equation 3.1, called harmonic functions, does not have local

minima (CONNOLLY; BURNS; WEISS, 1990). This means there is only one minimum defined

in target position and exactly one path from any point to the target. We could imagine it in an

intuitive way. For each position in the environment, there is only one gradient direction. In

other words, there is only one direction that will guide an agent in its goal, at each position.

This method is formally complete (CONNOLLY; GRUPEN, 1993), i.e., if there is a path that

connects the agent’s position to the target, then it will be found. Otherwise, the method notifies

the lack of a path. The resulting path is smooth, safe and minimizes the collision probability

with the obstacles.

Recently, Trevisan et al. (TREVISAN et al., 2006) came up with a path planner for agent

navigation based on a family of potential field functions that do not have local minima. This

family is generated through the numeric solution of a BVP using Dirichlet boundary conditions

and the following equation

∇2 p(r) + εv.∇p(r) = 0 (3.2)

where v is a bias unity vector and ε is a scalar value. In navigation tasks, the use of terms ε

and v produce different behaviors for humanoids. They distort the potential field providing a

43

preferred direction to be followed, illustrated through the path followed by each agent.

When ε = 0, Equation 3.2 reduces to ∇2 p(r) = 0 which corresponds to Laplace’s Equa-

tion 3.1. This equation is used as the core of the path planner based on harmonic function

developed by Connolly and Grupen (CONNOLLY; GRUPEN, 1993), as stated before. This

planner produces paths that minimize the collision probability of the agent with obstacles, i.e.,

in an indoor environment the agent will tend to follow a path that is equidistant to the walls. This

behavior is not always adequate to simulate humanoid motion since it looks very stereotyped

because humans do not always walk equidistant to the walls.

To generate realistic steering behaviors, we need to conveniently adjust both parameters ε

and v. Vector v, called behavior vector, can be thought of as an external force that pulls the

agent to its direction, whenever possible, whereas the parameter ε can be understood as the

strength or influence of this vector on the agent behavior. The allowed values of parameters ε

and v permit to generate an expressive amount of action sequences – displacement sequences

– that virtual humanoids can use to reach a specific target position. Figure 3.2 shows three

different paths followed by the agents using Equation 3.2 and changing the parameters ε and v.

(a) (b) (c)

Figure 3.2 – Different paths followed by agents using Equation 3.2. Paths produced using ε = 1,
v = (0, 0) (a), ε = 1, v = (1, 0) (b) and ε = 1, v = (1, sin(0.6t)) (c).

Source: Created by the author.

44

After the potential field is computed, the agent moves from its current position in the di-

rection of the gradient descent of this potential. This process is an intuitive way of controlling

the agent’s motion. However, it can easily fail to produce realistic steering behaviors, as those

observed in the real world. One of the reasons is that the agent changes its direction based

solely on the gradient descent of its position. For instance, if the field of view of the agent is

small, its reaction time will be very short to treat dynamic obstacles. Then, those obstacles will

produce a strong repulsion force that will change the agent’s direction abruptly. To handle this

problem, we use this strategy as a global planner while agents use a local planner, described in

Section 3.4, to generate better quality paths.

3.3 Global Path Plannner

To solve the global path planner numerically, we can consider that the solution space is

discretized into a regular grid, as illustrated in Figure 3.3. Each cell (i, j) is associated to a

squared region of the real environment and stores a potential value p(i, j). Using the Dirichlet

boundary conditions, the cells associated with obstacles in the real environment store a potential

value of 1 (high potential) whereas those containing the target store a potential value of 0 (low

potential). A high potential value prevents the agent from running into obstacles whereas a low

value generates an attraction basin that pulls the agent.

We can write Equation 3.2 using the approximation to the first and second derivative. Equa-

tion 3.2 becomes:

pr − 2pc + pl
h2

+
pu − 2pc + pb

h2
+ ε

[
vx

(
pr − pl

2h

)
+ vy

(
pt − pb

2h

)]
= 0

which implies that the potential in each cell is updated by an iterative method according to:

pc =
pr + pl + pu + pb

4
+
εh

8
[vx (pr − pl) + vy (pt − pb)] (3.3)

where v = (vx, vy), h is the cell width and pr, pl, pt, pb are illustrated in Figure 3.4.

Equation 3.3 computes the potential value at the center of each cell. That equation depends

on the value of neighbor cells, that also must be computed. Enforcing the equation at the center

of every cell generates a linear system of equations that need to be solved numerically. For

that, we can employ a relaxation method, which is an iterative method for solving systems of

equations. The relaxation methods usually employed to compute the potentials of free space

cells are Gauss-Seidel (GS) and Successive Over-Relaxation (SOR).

45

Figure 3.3 – Configurable Flows. To solve the global path planner, the potential should be one in the
contours of the obstacles (red cells) and zero in the region of the target (blue cells).

Source: Created by the author.

The GS method updates the potential of a cell c through Equation 3.3, as follow:

p(k)c =
pb + pt + pr + pl

4
+
εh((pr − pl)vx + (pt − pb)vy)

8
(3.4)

SOR is an extension of the GS method with a convergence accelerator factor. However,

the error produced by SOR often grows before the convergence sets in, resulting in oscillatory

potential fields during the calculation. On the other hand, the error produced by the GS method

monotonically decays during the computation of the potential. This makes the GS more use-

ful in tasks like agent exploration and navigation since the agent can use partial results as an

approximation of the potential field (PRESTES et al., 2001).

The SOR method updates the potential of a cell c through:

p(k)c = p(k−1)c + ω

(
pb + pt + pr + pl − 4p

(k−1)
c

4
+
εh[(pr − pl)vx + (pt − pb)vy]

8

)
(3.5)

where ω = 4
2+
√
4−c2 with c = cos π

m
+ cos π

n
where m and n are the grid dimensions. Equation

3.3 assumes that hx = hy = h, which implies that m and n must be a multiple of h.

After computing the potential field, the agent at position (i, j) will be guided by the gradient

46

Figure 3.4 – Representation of pc, pb, pt, pr and pl on the grid.

Source: Created by the author.

descent at its position, which is calculated by the following equation:

−∇p(i,j) =

(
pi−1,j − pi+1,j

2h
,
pi,j−1 − pi,j+1

2h

)
. (3.6)

3.4 Local Path Planner

To avoid the collisions between the agents and to handle dynamic obstacles we propose, for

each agent, one map that stores the current local information about the environment obtained

from the agent’s field of view. This local map is centered on the current agent position and

represents a small fraction of the global map, as illustrated in Figure 3.5.

3.4.1 The Agent’s Local Map

Each agent ak has one map mk that stores the current local information about the environ-

ment obtained by its own sensors. This map is centered at the agent’s current position and

represents a small fraction of the global map, usually about 10% of the total area covered by

the global map. The map mk has lkx × lky cells, denoted by {cki,j} and is divided into three re-

gions: the update zone (u-zone); the free zone (f-zone) and the border zone (b-zone), as shown in

Figure 3.6. Each cell corresponds to a squared region centered at the environment coordinates

r = (ri, rj) and stores a particular potential value pki,j .

The area associated with the cell of an agent’s map is smaller than the area associated with

the cell of the global map. The main reason is that the agent map is used to produce refined

motion while the global map is used only to assist the long-term agent navigation. Hence, the

smaller the size of the cell of the local maps, the better the quality of motion.

47

Figure 3.5 – Agents in an environment and their local maps.

Source: Created by the author.

3.4.2 Updating Local Maps from Global Maps

For each agent, a goal, a particular vector v that controls its behavior, and a ε should be

stated. The same goal, v and ε can be designated to several agents. If vk or εk is dynamic, then

the function that controls it must also be specified.

To navigate through the environment, an agent ak uses its sensors to perceive the world

and to update its local map with information about obstacles and other agents. The agent’s

sensor sets a view cone with aperture α. The u-zone cells cki,j that are inside the view cone and

correspond to obstacles or other agents have their potential value set to 1. Agents inside the

u-zone but out of the agent’s view cone is not mapped as an obstacle into the local map. This

procedure assures that dynamic or static obstacles behind the agent do not interfere with its

future motion.

For each agent ak, the global gradient descent on the cell in the global map, provided by the

global planner, that contains its current position is calculated. The gradient direction is used to

generate an intermediate goal in the border of the local map, setting the potential values to 0

of a couple of b-zone cells, while the other b-zone cells are considered as obstacles, with their

potential values set to 1. As the agent local map is delimited by obstacles, the agent is pulled

towards the intermediate goal using the direction of its local gradient. The intermediate goal

48

Figure 3.6 – Agent Local Map. White, green and red cells comprise the update, free and border zones,
respectively. Blue and red cells correspond to the intermediate goal and obstacles respectively.

Source: Created by the author.

helps the agent ak to reach its target while allowing it to produce a particular motion.

In some cases, the goal is inside both the view cone and the u-zone, and consequently,

local map cells associated are set to 0. The intermediate goal is always projected, even if the

target is mapped onto the u-zone. F-zone cells are always considered free of obstacles, even

when there are obstacles inside. The absence of this zone may close the connection between

the current agent cell and the intermediate goal due to the mapping of obstacles in front of the

intermediate goal. When this occurs, the agent gets lost because there is no information coming

from the intermediate goal to produce a path to reach it. F-zone cells handle that situation,

always allowing the propagation of the information about the goal cells to the cells associated

with the agent’s position.

49

3.4.3 Motion Generation

After the mapping steps, the agent computes the potential value of its map cells with its pair

vk and εk. After computing the potential, the agent adjusts its current position by

∆ d = υ (cos(ϕt), sin(ϕt)) Ψ(|ϕt−1 − ζt|) (3.7)

where function Ψ : < → < is

Ψ(x) =

0 if x > π/2

cos(x) otherwise
(3.8)

and ζ is the orientation of the gradient descent computed from the potential field stored in its

local map in the central position (dlkx/2e, dlky/2e) and ϕ is the agent’s direction, which is updated

as follows:

ϕt = η ϕt−1 + (1− η) ζt (3.9)

where η ∈ [0, 1).

If |ϕt−1 − ζt| is higher than π/2, then there is a high hitting probability and this function

Ψ(.) returns the value 0, making the agent stop. Otherwise, the agent’s speed will change

proportionally to the collision risk. In regions cluttered with obstacles, agents will tend to move

slowly. If a given agent is about to cross the path of another, one of them will stop and wait

until the other get through. When η = 0, the agent adjusts its orientation using only information

about the gradient descent. Figure 3.7(a) shows a particular situation where an agent is walking

in a straight line, when he faces another agent. If η = 0.5, the previous agent’s direction

(ϕt−1) and the gradient descent direction influence equally the computation of the new agent’s

direction. Figure 3.7(b) shows the agent orientation ϕt computed with η = 0.5.

The parameter η can be viewed as an inertial factor that tends to keep the agent direction

constant insofar η → 1. When η → 1, the agent reacts slowly to unexpected events, increasing

its hitting probability with obstacles. η is a flexible parameter that the user is able to control.

However, a learning strategy could be used to specify what is the best η to a specific situation.

3.5 Algorithm

The algorithm that implements the concepts shown before and produces the humanoids’

movement is presented in Algorithm 1.

50

(a) (b)

Figure 3.7 – Defining agent motion. (a) Situation before the agent A2 enters in the field of view of A1.
(b) If the agent A1 follows the direction defined by the gradient descent (ζ), it will change its direction
in nearly π/2, what is undesirable. However, if the agent uses the orientation ϕ, it will achieve a smooth
curve, which is more natural and realistic.

Source: Created by the author.

The first two steps are performed in a pre-processing phase. In relation to the second loop,

each agent can execute independent and asynchronously the actions from 6 to 11. This algo-

rithm considers that each agent must reach only one target. However, the agent is able to reach

several targets orderly. In this case, the step 11 must be changed to Algorithm 2.

3.6 Preferential Regions

Robust path planners should be able to deal with inhomogeneous terrains. It is a very com-

mon situation in the real world. Imagine an inhomogeneous terrain with different type of pref-

erence or different navigation capabilities, just like the one illustrated in Figure 3.8. Each

different terrain has an associated preference that indicates the difficulty of traveling, i.e., the

difficulty to navigate in grassland is smaller than the difficulty to navigate on water. However,

a diver can navigate easily in water than in grassland. This problem is commonly referred to as

weighted region problem (MITCHELL; PAPADIMITRIOU, 1991; MITCHELL; PAPADIM-

ITRIOU, 1987).

Using Equation 3.2, a certain but limited freedom to redesign the paths can be obtained

by changing the boundary conditions from Dirichlet to Neumann. Dirichlet boundary condi-

tion specifies the values a solution needs to take on the boundary of the domain, while Neu-

mann boundary condition specifies the values that the derivative of a solution has to take on the

boundary of the domain. In our context, the domain is the environment.

51

Algorithm 1 Configurable Flows

1: Compute all the environment’s global maps.{one for each possible goal ok}
2: for each agent ak do
3: Define the behavior vector vk and εk{Each variable can be either static or dynamic. If a

variable is dynamic, then the function that controls it must be specified}
4: end for
5: for each agent ak do
6: Read its sensors to detect static and dynamic obstacles
7: Update its map with local information about obstacles and other agents
8: Compute the global gradient descent and generate the intermediate goal
9: Update the potential field

10: Compute the local gradient descent and follow the gradient direction according to Equa-
tion 3.7

11: while not reaching the target ogoal(k) do
12: Repeat steps 6 to 11
13: end while
14: Stop moving
15: end for

Algorithm 2
while not reaching the target ogoali(k) do

Repeat steps 6 to 11
end while
if goali(k) = goallast(k) then

Stop moving
else

Repeat the process with the next target ogoali+1(k)

end if

52

Figure 3.8 – Terrain with inhomogeneous navigation capabilities. A diver would prefer to navigate
on water while ordinary agents would prefer to navigate through grassland. Also, agents may want to
navigate through the road, without stepping on the grass.

Source: <http://www.matakishi.com/printedsceneryreview.htm>. Last access: February 2015.

In fact, Equation 3.2 also allows us to slightly distort the potential field without changing

the boundary conditions while keeping the main property of our potential field: the lack of local

minima. The parameters v and ε are used to control the potential field distortion. However, we

need to conveniently adjust both parameters to obtain the desired behavior, and although we

specify a direction, we do not have complete control of the distortion. Techniques that let the

user interact and distort the potential field usually suffer from local minima. For instance, Jin’s

work (JIN et al., 2008), where users specify some directions, and a potential field is generated

through an interpolation using Radial Basis Function.

3.6.1 Configuring the Flows

Recently, our research group refine Equation 3.2 by introducing a novel form (PRESTES;

IDIART, 2009; PRESTES; IDIART, 2010) that can be easily applied to environments composed

of inhomogeneous terrains with different types of preferences. The preference can be defined

using the terrain type, the terrain elevation, or any other property. The “trick” is to keep v

parallel with the streamlines of the potential represented by ∇p(r). An important observation

is that the curvature of the potential is dependent on the angle θ(r) that v makes with the

streamlines of the potential, represented by its gradient ∇p(r). By choosing a v parallel to

http://www.matakishi.com/printedsceneryreview.htm

53

the gradient, i.e., θ(r) = 0, ε becomes a configurable parameter, which allows us to sculpt

the potential field. Increasing a positive ε makes the potential more concave and with a faster

ascent. Thus, Equation 3.2 becomes:

∇2p(r) = ε(r) |∇p(r)| . (3.10)

The factor |∇p(r)| is necessary to avoid local minima since the concavity/convexity dimin-

ishes or increases proportionally to the variation of the potential. Because the computation of

|∇p(r)| is numerically time consuming (we should know the exact solution p(r), i.e., we have

to compute the harmonic potential), we use the triangular inequality,

∇p(r) ≤
∣∣∣∣∂p(r)

∂x

∣∣∣∣+

∣∣∣∣∂p(r)

∂y

∣∣∣∣ (3.11)

to obtain a more efficient equation,

∇2p(r) = ε(r)

(∣∣∣∣∂p(r)

∂x

∣∣∣∣+

∣∣∣∣∂p(r)

∂y

∣∣∣∣) . (3.12)

The configurable function ε(r) changes the curvature of the potential and changing the

curvature, we can manipulate the region traversing preferences. A low preference region can be

created by locally increasing its potential convexity, giving rise to an effective attractive force

that pulls the trajectories towards the path. Higher preferences are linked to higher concavity,

and expel agents from the distorted region. The smaller the ε, the more the agent will avoid a

region. The higher the ε, the more the agent will be attracted to a region. In order to illustrate

it, Fig. 3.9 shows a set of navigational paths. We used ε = 1 to create high preference regions

(the light-blue regions on Fig. 3.9(a)), and ε = −1 to create low preference regions (the light-

red regions on Fig. 3.9(c)). Fig. 3.9(c) presents an environment with obstacles and preferential

regions, with ε = −0.5 and ε = 0.5, respectively. Observe that an essential difference between a

low preference region and an obstacle is that low preference regions can be crossed, if necessary.

But obstacles will never be crossed.

Fig. 3.9(b) and (d) show how these preferential regions sculpts the potential field. We can

configure the navigational preference on the global planner, or in the local planner, producing

very individual paths for the agents. The parameter ε can also be configurable in real time. It

enables the planner to deal with unexpected situations as a sudden landslide, that forces some

of the agents to avoid this region. If an agent must follow any specific path, we can configure

the potential to produce this path, locally changing its curvature. As mentioned, to avoid local

54

(a) (b)

(c) (d)

Figure 3.9 – Paths on heterogeneous terrains. The potential field flow can be configured, handling
different traversal preferences. The light-blue and the light-red areas represent regions with high and low
preferences, respectively. The dark blue area in the middle of the terrain represents the target position
for all agents that are placed along the borders.

Source: Created by the author.

minima |ε| < 2.

Using the ability to deal with the inhomogeneous terrain facilitates the integration of the path

planning stage with terrain reasoning (STERREN, 2001), a making the planner more robust and

creating broad application possibilities. The integration with a hierarchical method enables the

real-time performance, allowing dynamic changes in the regions’ preference.

3.6.2 Paths Following Terrain Elevation

An interesting application is to generate paths trying to preserve the terrain elevation. To

be able to do it, we must change εi appropriately based on the terrain elevation hi at grid cell

55

ci, where hmin ≤ hi ≤ hmax. To specify how hard the potential should keep the same terrain

elevation during the path generation, one must to define a lower εmin value and a higher εmax

value, where −2 ≤ εmin ≤ εmax ≤ 2. Each cell ci will have its εi value updated according to:

εi =

(
hi − hmin
hmax − hmin

)
× (εmax − εmin) + εmin. (3.13)

Figure 3.10 – Terrain. The blue square is a region where the planner will act, producing paths following
the terrain elevation.

Source: Created by the author.

Figure 3.10 and 3.11 shows this situation. Figure 3.10 shows a terrain and a square region

where the planner will act. Figure 3.11 highlight this region. To illustrate the terrain elevation,

each cell in this region is colored based on its difference of height from the cell which represents

the start path position. The intensity of blue represents a similar height and the red intensity

represents the difference of heights. The path starts at one extreme point of the yellow curve

and ends in the another extreme point. Figure 3.11(a) shows a path produced by the planner

with εi = 0. The terrain elevation is then ignored during the path generation. Figure 3.11(b)

shows the path produced updating εi correctly, according to Equation 3.13. The path produced

keep the terrain elevation, bypassing the fall.

56

(a) (b)

Figure 3.11 – Path following the terrain elevation. The terrain elevation is ignored during the path
generation, εi = 0 (a) and the path produced updating εi correctly, according to Equation 3.13 (b).

Source: Created by the author.

3.7 The Flatness Problem

Despite not having local minima, planners based on BVP (TREVISAN et al., 2006) present

an implementation problem due to the finite numerical precision of the computers, that we call

here the flatness problem. In certain regions, due to the exponential nature of the solution, the

potential is very close to 1 in regions separated from the goal position by narrow passages, so

the gradient is no longer correctly calculated, i.e., the potential is rounded to 1. Figure 3.12

shows the potential field computed using single-precision floating-point (32 bits) and double-

precision floating-point precision. The vector gradient has length equals to zero in the regions

represented by the light-blue dots.

The flatness problem does not depend on the grid resolution, but the environment geometry.

Fig. 3.13 shows a situation in which an environment is discretized using grids with different

resolutions. Regions with null gradient due to the flatness effect are unwanted because they

prevent agents located there from moving.

57

(a) Single-precision floating-point (32 bits) (b) Double-precision floating-point (64 bits)

Figure 3.12 – Potential flatness due to floating-point precision.

Source: Created by the author.

(a) (b) (c)

Figure 3.13 – Effect of flatness with different resolutions: (a) 60×60, (b) 120×120 and (c) 200×200.

Source: Created by the author.

58

4 HIERARCHICAL CONFIGURABLE FLOWS

A solution to improve the performance of path planners is to reduce the complexity of the

problem by means of a hierarchical approach (PAI; REISSELL, 1998; WU; LEE; TSAI, 1997;

HYUN; SUH, 1995; JUNG; RATTI; TSIOTRAS, 2009). The environment is represented in

different resolutions and used as input to the path planners, that will decide which resolution is

better for a given situation, using criteria such as time restriction or memory limitations.

A common hierarchical representation is the quadtree decomposition (NOLBORIO; NANIWA;

ARIMOTO, 1990), where the environment is first represented using a coarse grid which is then

subdivided generating patches with different resolutions. After that, any graph search algorithm

may be used to obtain the path.

Graph search algorithms used for generate paths, as A∗ or D∗, mentioned in a previous

chapter, also have hierarchical versions, called Hierarchical A∗ (HARABOR; BOTEA, 2008b)

and Hierarchical D∗ (CAGIGAS, 2005). Another way to generate paths hierarchically is using

wavelet functions for the environment decomposition (TSIOTRAS; BAKOLAS, 2007). The

wavelet transform is a very fast approach that allows the decomposition of the environment at

different levels of resolution. The smooth path is achieved using the information provided by

the coefficients in the wavelet expansion.

4.1 Hierarchical Configurable Flows

We propose a new method – so called Hierarchical Configurable Flows, or HCF – whose

core is based on the Full Multigrid Method (FMG), proposed by Brandt (BRANDT, 1977). The

FMG method is a technique to develop efficient solvers. This method solves elliptic partial

differential equations through a combination of solutions at several resolution levels. Basically,

it takes an instance of the problem on a grid of pre-specified fineness and generates coarser grids

containing a cruder problem representation. The method solves the problem on the coarsest

grid, which is easy and cheaper, and obtains successive solutions on finer and finer grids.

In the HCF algorithm, the entire environment is represented by a hierarchy of homogeneous

meshes {Mk}, where each mesh Mk has Lkx × Lky cells, denoted by {cki,j}. Each cell cki,j
corresponds to a squared region centered at the environment coordinates r = (ri, rj) and stores

a particular potential value pki,j , a configurable parameter εki,j and an error eki,j . Fig. 4.1 shows

the hierarchy of grids. Potential fields in all grids are computed using the FMG method.

In the remaining of this chapter we present the Full Multigrid Method, the Hierarchical

Configurable Flows algorithm, and how should one proceed to use the algorithm efficiently.

59

Figure 4.1 – Hierarchical environment representation. The environment is represented by a hierarchy of
4 gridsMk with different resolution. Red and blue cells correspond to obstacles and goals, respectively,
while the arrows illustrate the vector field.

Source: Created by the ahtor.

4.2 Multigrid Methods for Boundary Value Problems

Multigrid methods are usually considered the fastest numerical methods for developing

solvers for elliptic partial differential equations. In addition, they are among the fastest methods

for solving many other problems, like other types of partial differential equations or integral

equations. They are a family of methods for solving linear systems Ax = f that arise in the

process to solve discretized computational models. Unfortunately, there is not a single multi-

grid algorithm that solves all problems. Rather, there is a multigrid technique that provides

the framework for solving these problems. We have to adjust the various components of the

algorithm within this framework.

In this thesis, we are interested in solving variations of the Laplace’s Equation 3.1 with

Dirichlet boundary conditions. For simplicity, we will show how to use the multigrid method

to solve Poisson’s Equation which is a more general case of Laplace’s Equation, with the right-

hand side of the equation equals to a function f . We are seeking a function p(r) that satisfies

the following system:
∇2 p(r) = f, r ∈ Ω

p(r) = 1, r ∈ ∂Ω

p(r) = 0, if r ∈ Ω and r is a goal position.

(4.1)

where Ω represents an open set in plane <2 and ∂Ω represents the set’s boundary. For conve-

60

nience, we consider Ω as the rectangle (0, Lx)× (0, Ly).

4.2.1 Problem Discretization

To computationally solve Equation 4.1, we turn it into a system of linear equations whose

solution is an approximation of the solution p(r) which we can obtain through numerical

methods (i.e., Jacobi, Gauss-Seidel, SOR). Instead of working with the continuous domain

Ω, we consider only a finite set of points in Ω. Since by convenience we are dealing with

a rectangular Ω, we can use the pattern illustrated in Figure 4.2. Each row has a sequence

{0 = x0 < x1 < ... < xi−1 < xi < xi+1 < ... < xn−1 < xn = Lx} with n + 1 equally

spaced points. We call h the distance between two consecutive points xi’s which implies

xi = xi−1 + h for all i from 1 to n) in the domain[0, Lx]. Similarly, each column has a se-

quence {0 = y0 < y1 < ... < yi−1 < yi < yi+1 < ... < yn−1 < yn = Ly} with n + 1 equally

spaced points with distance h between two consecutive points. This set is called a uniform grid

with mesh size h on (0, Lx)× (0, Ly).

Figure 4.2 – Grid discretization. Uniform grid (0, Lx)× (0, Ly) with mesh size h.

Source: Created by the ahtor.

61

Using Taylor series, we obtain approximations of values that ∂
2p(r)
∂x2

and ∂2p(r)
∂y2

take at a point

rij = (xi, yj) (remember that xi = yj = ih and jh) of the grid in terms of values that p takes at

a neighborhood of xij . By Taylor series we have:

p(xi + h, yj) = p(xi, yj) + px(xi, yj)h+
1

2
pxx(xi, yj)h

2 +O(h3) (4.2)

p(xi − h, yj) = p(xi, yj)− px(xi, yj)h+
1

2
pxx(xi, yj)h

2 +O(h3) (4.3)

and

p(xi, yj + h) = p(xi, yj) + py(xi, yj)h+
1

2
pyy(xi, yj)h

2 +O(h3) (4.4)

p(xi, yj − h) = p(xi, yj)− py(xi, yj)h+
1

2
pyy(xi, yj)h

2 +O(h3). (4.5)

Adding term by term Equation 4.2 with Equation 4.3 and Equation 4.4 with Equation 4.5,

and putting pxx(xi, yj) and pyy(xi, yj) in evidence, we get:

pxx(xi, yj) =
p(xi − h, yj)− 2p(xi, yj) + p(xi + h, yj)

h2
+O(h3) (4.6)

pyy(xi, yj) =
p(xi, yj − h)− 2p(xi, yj) + p(xi, yj + h)

h2
+O(h3) (4.7)

Denoting, for convenience, p(xi, yj) = pij , then Equation 4.6 and Equation 4.7 lead to the

formula of five points because the left term is approximated using five points of the grid:

pxx(xi, yj) + pyy(xi, yj) ≈
1

h2
(pi−1,j + pi,j−1 − 4pi,j + pi+1,j + pi,j+1). (4.8)

Combining this expression with the requirements of the problem (Equation 4.1 and denoting

f(xi, yj) = fij , we have:

1
h2

(p0,1 + p1,0 − 4p1,1 + p2,1 + p1,2) = f1,1

1
h2

(p0,2 + p1,1 − 4p1,2 + p2,2 + p1,3) = f1,2
...

1
h2

(p(i−1),j + pi,(j−1) − 4pi,j + p(i+1),j + pi,(j+1)) = fi,j
...

(4.9)

62

This system of linear equations written in the matrix form will present a sparse pentadiag-

onal matrix, i.e., with five diagonals (around the main diagonal) having some non-zero entries

and all other entries being zero. Thus, the matrix is usually represented by the stencil notation

Ah, which consist in having coefficients p(i−1),j , pi,(j−1), pi,j , p(i+1),j and pi,(j+1) of the five

points of Equation 4.8 with the same position where the points x(i−1),j , xi,(j−1), xi,j , x(i+1),j and

xi,(j+1) are on the grid. Figure 4.3 illustrates the correspondence of points on the grid with the

points in the stencil notation. We can think that the discretization matrix Ah as a discretization

(or approximation) of the∇ operator.

Figure 4.3 – Grid representation and stencil notation.

Source: Created by the ahtor.

With this notation, we can represent the system of equations 4.9 as:

1

h2


1

1 −4 1

1


h︸ ︷︷ ︸

Ah

ph = fh (4.10)

If we ensure that the system of linear equations 4.9 has a unique solution, then we can apply

iterative numerical methods such as Jacobi or Gauss-Seidel to obtain our solution. However,

these methods show very slow when the discretization matrix is large, i.e., when we take many

points in [0, Lx]× [0, Ly] to compose a finer grid and then obtain a discrete solution ph closest

to the continuous solution p(r). The multigrid algorithm uses these properties efficiently to find

the numerical solution.

63

4.2.2 From One-Grid, through Two-Grid to Multigrid

The key idea of the multigrid method can be understood by considering the simplest case of

a two-grid method (PRESS et al., 2007). As mentioned on the previous section, we must use a

grid with as many points as possible for the solution ph of the discretized problem Ahph = fh,

presented in Equation 4.9, to be a good approximation of the solution of the continuous problem

p(r) (Equation 4.1). However, this means that we have a large array of discretization Ah, then

the iterative methods to find ph will be very slow, even though several of them have the property

to quickly eliminate the high-frequency components of the initial error. Figure 4.7 illustrates

the two grid representation.

Figure 4.4 – Two-grids representation. The method makes use of grid 2h to quickly solve the problem
in grid h.

Source: Created by the ahtor.

This smoothing property of iterative methods will be of great importance to the multigrid

method because low-frequency components in grid h are high-frequency components in grid 2h

(grid with cells two times larger than the original grid). Because an iterative smoothing method

quickly eliminates high-frequency components of the initial error [eh](0) and leaves the low

frequency components almost unchanged, it would be interesting that, after a few iterations to

eliminate the high-frequency components, we move the problem to a subgrid with fewer points.

In a subgrid with fewer points, the method is able to quickly eliminate components that were

low-frequency in the original grid.

64

To this end, comes the Residual Equation. Note that the algebraical error

eh = ph − [ph](k) (4.11)

of an iterated [p](k) has only theoretical importance since we do not know it (for this, we should

know the exact solution ph). Thus, to measure the “distance” between the iterated p(k) and the

exact solution ph we use what is called residual:

rh = fh −Ah[ph](k) (4.12)

We can see that the algebraical error eh and the residual rh are related. Since p̂h is an

approximate solution to Equation 4.10 and ph is the exact solution, we can rewrite Equation

4.10 as

Ah(p̂h + eh︸ ︷︷ ︸
ph

) = fh

Ahp̂h + Aheh = fh

Aheh = fh −Ahp̂h

Aheh = rh (4.13)

resulting in the Residual Equation 4.13.

Solve Ahph = fh is equivalent to solve Equation 4.13 related to an iterated ph since in both

cases we need to know the exact solution ph (in the second case we have ph = [ph](k)+eh). The

process to solve Ahph = fh through the Residual Equation can be schematically represented

as

[ph](k) → rh = fh −Ah[ph](k) → Aheh = rh → ph = [ph](k) + eh (4.14)

The scheme 4.14 does not present any numerical advantage. However, if we can approxi-

mate Ah by a more simple Ah , then the solution of Â
h
êh = rh is an approximation of eh,

so we can use scheme 4.14 to obtain a new iterate [ph](k+1), resulting in the following iterative

method:

[ph](k) → rh = fh −Ah[ph](k) → Â
h
êh = rh → ph = [ph](k) + êh (4.15)

To obtain this approximation, we can approximate Aheh = rh through A2he2h = r2h. For

this, we need a way to transfer information from the grid h to the grid 2h. To convert a vector

65

xh from grid h to a vector x2h of grid 2h, we define the following restriction operator:

Ih→2h :

{
x2h
i,j = xh2i,2j. (4.16)

Figure 4.5 illustrate the restriction operator that constructs the vector x2h taking the com-

ponents of xh associated with the points of the grid 2h.

Figure 4.5 – Restriction operator. This operator constructs the vector x2h taking the components of xh

associated with the points of the grid 2h.

Source: Created by the ahtor.

Similarly, to convert a vector y2h from grid 2h to a vector yh of the grid h, we define the

prolongation operator I2h→h, such that yh = I2h→hy
2h. The most used is to take I2h→h to be

the following linear interpolation operator:

I2h→h :



yh2i,2j = y2h
i,j 1 ≤ i, j ≤ n

2
− 1

yh2i+1,2j = 1
2
(y2h

i,j + y2h
i+1,j) 0 ≤ j ≤ n

2
− 1

yh2i,2j+1 = 1
2
(y2h

i,j + y2h
i,j+1) 0 ≤ j ≤ n

2
− 1

yh2i+1,2j+1 = 1
4
(y2h

i,j + y2h
i+1,j + y2h

i,j+1 + y2h
i+1,j+1) 0 ≤ j ≤ n

2
− 1

(4.17)

that constructs yh taking the components of y2h associated with the points of the grid h, which

are the points of grid h that are present in grid 2h, illustrated in Figure 4.6(a). Also, taking

the average of the adjacent components of y2h to be the odd components of y2h, which are

associated with the points of grid h that are not present in grid 2h, illustrated in Figure 4.6(b)-

66

(d).

(a) (b)

(c) (d)

Figure 4.6 – Prolongation operator. This operator constructs yh taking the components of y2h associated
with the points of the grid h. Two or more arrows represent the average of the respective components of
y2h.

Source: Created by the ahtor.

We can approximate Aheh = r as follow. First, we transfer the residual rh to the grid 2h

through r2h = Ih→2hr
h; Then, we exactly solve A2he2h = rh to get ê2h = [A2h]−1r2h; Finally,

we transfer back ê2h to grid h, through êh = I2h→hê
2h.

If êh is a good approximation to the solution Aheh = rh, then this equation is well ap-

proximated by the simpler equation A2he2h = r2h. If the error eh associated with an iterated

[ph](k) is smooth, i.e., it does not have high frequency components, then the interpolation of ê2h

gives a good approximation to eh (PRESS et al., 2007). With this approach, the iterative process

67

becomes:

Grid h: [ph](k) −→ rh = fh −Ah[ph](k) [ph](k+1) = [ph](k) + êh

↓ r2h = Ih→2hr
h ↑ êh = I2h→hê

2h

Grid 2h: A2he2h = r2h −→ ê2h = [A2h]−1r2h

(4.18)

which is commonly called Two-Grid Correction Scheme (PRESS et al., 2007). With this

scheme, we obtain the Two-Grid cycle, which will be the basis for any multigrid method. This

cycle consists of three steps:

1. Pre-smoothing. Apply an iterative smoothing method α1 times in Ahph = fh with

initial approximation [ph](0) to obtain [ph](k1).

2. Two-Grid Correction Scheme. Apply the Two-Grid Correction Scheme 4.18 in [ph](k1)

to obtain [ph](k1+1).

3. Post-smoothing. Apply an iterative smoothing method α2 times in Ahph = fh with

initial approximation [ph](k1+1) to obtain [ph](k2).

The Two-Grid Correction Scheme is responsible for eliminating the low-frequency com-

ponents of the error while pre and post-smoothing steps are responsible for eliminating high-

frequency components of the error. The convergence of the Two-Grid cycle strongly depends

on the following components:

• The smoothing method;

• The number of smoothing iterations α1 and α2;

• The subgrid, i.e., the discretization matrix;

• The inter-grid transfer operators.

4.2.3 Multigrid Method

In the Two-Grid cycle, we exactly solve the Residual Equation A2he2h = r2h in the sub-

grid 2h. However, if the grid h has too many points, then the subgrid 2h will also have too

many points. Thus, solving the equation in the subgrid 2h will be as difficult as solving the

original problem Ahph = fh. This suggests that we apply the Two-Grid cycle again, but

now in A2he2h = r2h following to subgrid 4h. This will take us to the problem of solving

A4he4h = r4h, to which we can apply again the Two-Grid cycle. Figure 4.7 illustrates this

hierarchy of grids.

68

Figure 4.7 – Multigrid representation. A hierarchy of grids where each grid has twice the resolution of
its previous grid.

Source: Created by the ahtor.

We continue this process until we reach the subgrid with only one interior point, where the

problem is reduced to find e in Ae = r, which can be solved exactly. Thus, the procedure can

be described by the following steps:

1. Apply, α1 times, an iterative smoothing method to Ahph = fh, on grid h, with initial

approximation [ph](0) to obtain [ph](k);

2. Obtain the residual rh = fh−Ah[ph](k) and transfer it to the subgrid 2h, through f 2h =

Ih→2hr
h;

3. Apply, α1 times, an iterative smoothing method to A2hp2h = f 2h, on the grid 2h, with

initial approximation [p2h](0) to obtain [p2h](k);

4. Obtain the residual r2h = f 2h − A2h[p2h](k) and transfer it to the subgrid 4h, through

f 4h = I2h→4hr
2h;

5.
...

69

6. Exactly solve Athpth = f th in grid th. The grid th is the smallest grid possible.

7.
...

8. Transfer p̂4h to the grid 2h through p̂2h = I4h→2hp̂
4h obtaining [p2h](k+1) = [p2h](k)+p̂2h;

9. Apply, α2 times, an iterative smoothing method to A2hp2h = f 2h, on the grid 2h, with

initial approximation [p2h](0) = [p2h](k+1) to obtain p̂2h;

10. Transfer p̂2h to the grid h through p̂h = I2h→hp̂
2h obtaining [ph](k+1) = [ph](k) + p̂h;

11. Apply, α2 times, an iterative smoothing method to Ahph = fh, on the grid h, with initial

approximation [ph](0) = [ph](k+1) to obtain p̂h.

4.2.3.1 V-cycle method

The previous steps define the V-cycle method because its schematic representation presents

the “V” shape. The “V” shape is illustrated in Figure 4.8. This cycle efficiently eliminates all

the initial error components since it lets the “heavier” computation, i.e., those involved with the

resolution of Athpth = f th, to the grids with lower resolution.

Figure 4.8 – V-cycle representation.

Source: Created by the ahtor.

V-cycle method can be described more compactly as follows:

1. Apply, α1, times an iterative smoothing method to Ahph = fh, on the grid h, with initial

approximation [ph](0) to obtain [ph](k);

2. If the grid h is the lower resolution grid, then go to step 5 using [ph](k+1) = [ph](k).

Otherwise, continue.

3. Obtain the residual rh = fh−Ah[ph](k) and transfer it to the subgrid 2h, through f 2h =

Ih→2hr
h;

70

4. Apply the V-cycle method to the grid 2h, i.e., start again the step 1 but this time, for the

grid 2h, µ = 1 times.

5. Transfer p̂2h to the grid h through p̂h = I2h→hp̂
2h obtaining [ph](k+1) = [ph](k) + p̂h;

6. Apply, α2 times, an iterative smoothing method to Ahph = fh, on the grid h, with initial

approximation [ph](0) = [ph](k+1) to obtain p̂h.

4.2.3.2 W-cycle method

The multigrid V − cycle method is just one of a family of multigrid cycles, which are called

µ-cycle method. A µ-cycle is obtained when we use an arbitrary µ instead of 1 in step 4 of

V-cycle method, expressed previously. Commonly uses only µ = 1 (V-cycle) and µ = 2 which

generates the W-cycle. Figure 4.9 illustrates the W-cycle method. To generate the W-cycle,

we replace the steps of the V-cycle with µ = 2, described previously, which lead us to obtain

a solution p̂h very close to the exact solution when applied only a few times to the original

problem Ahph = fh.

Figure 4.9 – W-cycle representation.

Source: Created by the ahtor.

4.2.4 Full Multigrid Method

We can improve the µ-cycle method if we use a better initial approximation [ph](0), i.e.,

values closer to ph in the iteration over Ahph = fh of the original grid h (step 1 of the V-

cycle method). For this, a feasible alternative is to transfer fh to the subgid 2h through f 2h =

Ih→2hf
h. Then, solve A2hp2h = f 2h approximately to obtain p̂2h, using the µ-cycle. After,

transfer p̂2h to the grid h through p̂h = I2h→hp̂
2h and use this p̂h as an initial approximation for

Ahph = fh. Because we use the µ-cycle in grid 2h to solve A2hp2h = f 2h, we again will need

71

a better initial approximation for [p2h](0).

This process can be condensed into the following steps:

1. Transferfh to the subgrid 2h through f 2h = Ih→2hf
2h;

2. Transferf 2h to the subgrid 4h through f 4h = I2h→4hf
4h;

3.
...

4. Solve Athpth = f th in the grid th, which is the lower resolution grid, to obtain p̂th;

5.
...

6. Transfer p̂4h to the subgrid 2h through [p2h](0) = I4h→2hp̂
4h;

7. Apply the µ-cycle η1 times to A2hp2h = f 2h using [p2h](0) as initial approximation to

obtain p̂2h;

8. Transfer p̂2h to grid h through [ph](0) = I2h→hp̂
2h

9. Apply the µ-cycle η2 times to Ahph = fh using [ph](0) as initial approximation to obtain

p̂h;

This process to obtain appropriated initial approximations to the higher resolution grids

using the coarser grids is called Nested Iteration and its fusion with the µ-cycle method produces

the Full Multigrid Method. Figure 4.10 illustrates the Full Multigrid Method, using the v-cycle

method. Currently, the Full Multigrid Method is the most powerful method to develop solvers

for differential equations.

Figure 4.10 – Full Multigrid V-cycle representation.

Source: Created by the ahtor.

4.3 Developing Our Solver

In order to use the FMG method in our planner, we consider that Equation 3.2 is discretized

into a uniform grid with cell size h. Let the linear elliptical operator (∇2 − ε(r). |∇|) be Ah

72

and Equation 3.2 in matrix form, becomes

Ahph(r) = 0, (4.19)

with fh = 0, for better understanding the algorithm.

Assuming that p̃h is an approximate solution to Equation 4.19 and ph is the exact solution,

we can define the error eh = ph − p̃h and the residual rh = fh −Ahp̃h.

With this information, we can rewrite Equation 4.19 as

Aheh = rh, (4.20)

which is the Residual Equation.

We can obtain numerical advantage if we approximate Ah by a simpler operator, whose

solution is an approximation of eh. To obtain this approximation we need a manner to transfer

information from the grid with discretization h to a coarser grid.

To propagate the information through the grid hierarchy, we must define two operators: the

Restriction Operator R, and the Prolongation Operator P . R takes the information in the fine

grid, level i in the hierarchy, and restricts it to the coarser grid, level i+1 in the hierarchy. Level

i represents the grid with discretization h, while level i+1 represents the grid with discretization

2h. P takes the information in the coarser grid, level i + 1, and interpolates it to the finer grid,

level i. Fig. 4.1 illustrates the direction of information propagation of these operators through

the grid hierarchy. With eh solved at level i + 1, we transfer it back to the grid i and compute

the potential through ph = p̃h + eh. Extending this idea to more levels on the hierarchy, we

have what is known as Multigrid V-cycle, which is a fundamental step of the FMG method.

4.4 Computing the Potential Field

To compute the potential field, initially, all grids {M1,M2, ..,MN} will represent the en-

vironment in a specific resolution, where MN is the coarsest representation. The planner re-

ceives as input the hierarchy of grids, and computes the potential in the coarsest grid MN

through Equation 3.4 using any relaxation method. That results in a coarse representation of

the potential field.

The potential of the other grids Mi+1 is prolongated to Mi, with N − 1 ≥ i ≥ 2. This

initial approximation is smoothened α1 iterations using Eq 3.4. Then, the residual of the grid

73

Mi is computed through the equation:

rc =
4pc − pl − pr − pb − pt

h2
+
εc · (|pr − pl|+ |pt − pb|)

2h
(4.21)

The Multigrid V-cycle, aforementioned, is then executed to compute the error used to correct

the potential of the grid Mi, which is smoothened α2 iterations. The grid Mi is then ready

to be used in the navigation process. These steps: smooth the potential α1 iterations, process

Multigrid V-cycle and smooth the new potential α2 iterations are executed until the potential

convergence, with a tolerance ||ẽ||2 < γ. These steps are illustrated in Algorithm 3.

The fundamental step, Multigrid V-cycle, illustrated in Algorithm 4, receives as input the

gridMi and acts on the error ẽ from the potential convergence for each gridMj , with i ≤ j ≤

N . Initially, the Multigrid V-cycle minimizes the error associated to the gridMj through

ec =
eb + et + er + el

4
− εh · (|er − el|+ |eb − et|)

8
, (4.22)

that is smoothened α1 iterations. Notice that this process acts on the error. If the current grid is

the coarsest gridMN then the algorithm solves the error until its convergence, i.e., ||ẽ||2 < γ.

Otherwise, the residual of the error is computed in the gridMj , through

rkc = rk−1c +
4ec − el − er − eb − et

h2
+
εc · (|er − el|+ |et − eb|)

2h
, (4.23)

and restricted to the gridMj+1. The Multigrid V-cycle is recursively called to compute the error

of the grid Mj+1. Finally, the potential of the grid Mj is corrected with the error computed

from the coarse grid Mj+1 and smoothened α2 iterations. Several operators can be used as

restriction and prolongation operators. The most commonly used is

R =


1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 and P =


1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4


because it is a good approximation Equation 3.2 (BRANDT, 1977). These operators, as well

as the residual and potential computation, are applied only to the free-space cells.

The FMG method obtains a solution in O(n) time (BRIGGS; HENSON; MCCORMICK,

2000), which implies that the time complexity of HCF is also O(n), scaling linearly with the

number of free-space cells.

The HCF is used as global planner. When a goal is set, the HCF starts running. Often, in

74

Algorithm 3 HCF
1: {Make sure all the grids have the correct environment representation.}
2: Solve exactly the coarsest gridMN . {GS or SOR}
3: SetMN as the finer grid ready to use.
4: for i← N to 2 do
5: Set initial guess p̃i−1 ← I.p̃i

6: for j← 1 to η do
7: Relax α1 times on Ai−1p̃i−1 = 0.
8: ri ← R.ri−1

9: ẽi ← 0

10: calls V-cycle(Mi)

11: Correct p̃i−1 ← p̃i−1 + P.ẽi

12: Relax α2 times on Ai−1p̃i−1 = 0.
13: end for
14: SetMi−1 as the finer grid ready to use.
15: end for

Algorithm 4 V-cycle
1: Relax α1 times on Aiẽi = −ri.
2: ifMi is the coarsest grid then
3: Go to line 11.
4: else
5: ri ← −Aiẽi.
6: ri+1 ← R.ri

7: ẽi+1 ← 0

8: calls V-cycle(Mi+1)

9: end if
10: Correct p̃i ← p̃i + P.ẽi+1

11: Relax α2 times on Aip̃i = ri.

75

the collision avoidance step, described later, a direction from the global planner will be needed

to guide the agents. The HCF uses the higher resolution grid where its potential field is already

computed to provide this direction, through Equation 3.6, while the potential field of better

resolution grids is still being computed.

76

5 RESULTS

5.1 Configurable Flows

This section presents several features of the HCF, including quantitative and qualitative

analysis. Also, we show the algorithm’s performance comparing the proposed technique with

the previous one, as well as the A∗ algorithm, which is one of the fastest techniques commonly

used in agent navigations.

In order to illustrate the potentialities and validate our path-planning approach, we made

a set of experiments considering some usual situations. Taking into account the scenario de-

scribed bellow, we have simulated different behaviors for agents in order to verify some of the

considerations made before, as: how to accomplish the same task in different ways; or how

different agents avoid collisions with static or dynamic obstacles, for example. In another set

of tests, we have run the algorithm considering a variable number of agents with random ob-

jectives, behaviors and velocities. Our goal with these experiments was to verify the motion

diversity. Experiments simulating realistic paths were also performed.

5.1.1 Reaching the Same Goal in Different Ways

As previously mentioned, for each pair ε and v there is only one path and this path can vary

according to the information gathered by the agent (e.g. dynamic obstacles). To illustrate the

generation of different paths using different pairs ε and v, we generate 15 paths produced by

the same agent to reach a goal, without reproducing any specific behavior. In order to produce

each path, we fix ε = 1 and vary randomly each v component in the interval [−1, 1]. We use

the local map composed of 15× 15 cells. Figure 5.1 illustrates this situation.

Figure 5.2 shows two frames of a simple animation of two agents. One agent walks from the

north to the south while the other one walks from the south to the north. Using our algorithm,

the collision between the two agents is automatically avoided since each agent is considered

as a dynamic obstacle by the other. However, the final path definition can be more or less

natural, depending on the parameters’ definition. In the sequence presented on Figure 5.2(a), ε

was set as 0. In this way, the behavior vector v is not considered. For the animation shown in

Figure 5.2(b), both agents begin the animation with ε = 0.0. When the proximity is detected ε is

changed to 0.6 and the behavior vector v of each agent is oriented orthogonally to the collision

direction, forcing the movement to its right direction.

77

Figure 5.1 – Different paths followed by the same agent from a fixed start position to the goal (blue
cell) just varying the parameter v of his local map. 15 paths were generated setting ε = 1 and randomly
varying v in the interval [−1, 1].

Source: Created by the author.

5.1.2 Varying the Size of the Agent Map

Interesting results can be produced in the way that agents interact with each other in the

environment by varying the size of the agent map. The more information on the environment

is available to the agent the more it will tend to change its behavior to avoid regions cluttered

with obstacles. Figure 5.3 shows two situations where an agent finds a group in its path. In

Figure 5.3(a), the agent map has 25x25 cells, whereas, in Figure 5.3(b), the agent map has

50x50 cells. Each cell represents a mapping of 1x1 units of the whole environment. In the first

case, the agent crosses the group in the middle, whereas in the second case, the agent avoids

the group trying to pass beside it. Based on these experiments, we can see that the map size

influences directly the way that the agent behaves in the environment.

78

Figure 5.2 – Two animation sequences illustrating collision avoidance produced with different values
for the behavior vector and ε.

Source: Created by the author.

In order to explain this influence objectively, we performed a couple of experiments varying

parameters as the size of the agent map, the density of the obstacle region, and the size of the

obstacle region. The relationship between these parameters was then extracted. We have also

identified which parameters should be changed to ensure the agent will pass inside a region with

plenty of obstacles, or to guarantee it will pass outside. In all simulated situations, the agent

starts in the same fixed position and goes towards the same fixed goal position.

We assume the agent map is a squared region with length L, where 15 ≤ L ≤ 55 cells. We

also consider the agent will find a group of other agents randomly distributed in a circular region

with radius r, where 5 ≤ r ≤ 30 units. The circular region occupancy varies in a γ rate, where

3% ≤ γ ≤ 50%. For each tuple (r, L, γ) we made 10 experiments to compute the average

minimal distance from the agents to the center of the obstacle region while walking through the

crowd. Figure 5.4 shows the relationship between parameters L and γ for an obstacle region

with r = 10 units. In this case, we observe that some pairs (L, γ) will always force the agents to

walk through the obstacle region when the average minimal distance is less than 10 (blue zone).

There is an intermediate region in the graph where agents sometimes pass inside, and other

time pass outside the obstacles’ region. Figure 5.5 shows the results presented in Figure 5.4

from another perspective. We partitioned the surface in Figure 5.4 in three regions according

to the values of the average minimal distance produced by each pair (L, γ). If the pair (L, γ)

generates, in all experiments, a minimal distance lesser than the radius r, this pair is classified

as a point that belongs to the region ρ0. If the pair generates, in all experiments, a minimal

79

(a) (b)

Figure 5.3 – (a) Agent map with 25x25 cells. The agent always walks inside the obstacle region. (b)
Agent map with 50x50 cells. The agent always walks outside the obstacle region. In both situations, the
obstacle region density is equal to 0.1 and the obstacle region radius is equal to 10 units.

Source: Created by the author.

distance greater than the radius r, this pair is classified as a point that belongs to the region

ρ2. Otherwise, the pair belongs to the region ρ1 – where some experiments produce minimal

distances smaller than r and others produce minimal distances greater than r.

Analyzing this classification, we can observe a very interesting result. The intermediate

region has an exponential shape defined by the tuple (L,γ, r)

γ = e−(L−β)/r + α (5.1)

where α e β are constants.

Fitting this region with an exponential function, we get an expression that relates the agent

local map, the density of the obstacle region, and the radius of the obstacle region with the

agent’s behavior. The relationship between these values is given by the equation:

f(L, γ, r) = e−(L−β)/r + α− γ (5.2)

where the parameters are the same as in Equation 5.1. Using this information we found two

functions that classify the parameters’ space in ρ0, ρ1 and ρ2:

fi(L, γ, r) = e−(L−βi)/r + αi − γ

80

(a)

Figure 5.4 – Relationship between the size of the agent map L and the density γ in a region with radius
r = 10 units. L ∈ [15, 55], γ ∈ [3%, 51%].

Source: Created by the author.

fo(L, γ, r) = e−(L−βo)/r + αo − γ

where βi < βo and αi = −αo.

To specific values of α and β, these functions limit the regions where the agent will have a

predetermined behavior, always passing outside the obstacle’s region, or always passing inside

the obstacle region. If fi(L, γ, r) < 0 then the tuple (L, γ) belongs to ρ0, that is, the agent

always crosses the other agents region. If fo(L, γ, r) > 0 then the tuple (L, γ) belongs to

ρ2 region, that is, the agent always passes along the other agents. When fi(L, γ, r) > 0 and

fo(L, γ, r) < 0 it is not possible to predict the agent’s behavior. The agent may occasionally go

inside or outside the obstacle’s region, depending on the arrangement of obstacles. Therefore,

the pair (L, γ) belongs to ρ1. In Figure 5.5, functions fo and fi use the following parameters:

αo = 0.3, βo = 23, αi = −0.3 and βi = 7.

With these experiments we conclude that, if the agent has a small map – L << r – it will

tend to cross through the obstacle’s region, unless that region’s density is large. On the other

hand, if the agent has a large map – L >> r – it tends to consider obstacle’s region a single

obstacle, passing outside it, unless the density of that region is very small. For the same density,

the agent’s map size will determine the way the agent will walk through the region. The size

of the local map can also be controlled adaptively using, for example, information about the

81

(a)

Figure 5.5 – Fitting with an exponential function over a circular obstacle region with radius r = 10
units. The blue region ρ0 guarantees that the agent always crosses the obstacle region. The green region
ρ2 guarantees that the agent always passes outside the obstacle region. The red region ρ1 defines a region
where is not possible to predict the agent’s behavior.

Source: Created by the author.

internal status of the agent.

5.1.3 Dealing with Dynamic Obstacles

As mentioned above, this technique naturally handles dynamic obstacles. Since each agent

is considered by the others as an obstacle, we can map these dynamic obstacles on the agent

local map in the same way that other agents are mapped.

When an obstacle is in the agent’s field of view, the corresponding cells in the agent’s local

map are changed to obstacle cells. It means that the agent will continue in a direction free of

obstacles. Figure 5.6(a) and (b) shows a situation where the agent must pass through a corridor.

In this corridor, there are obstacles moving from one side to another.

When the agent is about to collide, it stops and waits until it is able to continue. Figure 5.6(b)

shows the path followed by the agent. The peaks shown in the path means that the agent stops

to avoid collision.

82

(a)

(b)

Figure 5.6 – Simulation of an agent passing through a corridor with many dynamic obstacles moving
vertically. Dynamic obstacles are seen by an agent as other agents, as you can see by the individual
map representation (a). In (b), the path followed by the agent (black circle) after crossing the corridor is
shown.

Source: Created by the author.

5.1.4 Generating Realistic Paths

In order to demonstrate that the proposed algorithm produces realistic behaviors for hu-

manoid agents, we compared the paths produced by us with a real human’s paths. Real data

was obtained from the CAVIAR (CAVIAR, 2011) project database. The CAVIAR project had

the objective of improving image-based recognition processes. As a product of this project, a

database of human paths extracted from video sequences were generated and is freely accessible

over the internet.

To generate realistic steering behaviors we need to conveniently adjust both parameters: ε

and v. Figure 5.7(a) shows a path extracted from a human walking in the INRIA Labs at Greno-

ble, France. We discretized this environment and applied the CF planner. Figure 5.7(b) shows

the potential field for this environment after the goal position was defined. The experiment con-

sisted of an agent starting at the same human start position and trying to reach the same goal

position, following a similar path.

When the parameter ε = 0 or v = (0, 0) we are not specifying any specific behavior to

the agent and the path followed by the agent is produced by Laplace’s Equation, as we can see

in Figure 5.7(c). This path differs significantly from the real human’s path. However, if we

83

(a) (b) (c)

(d) (e) (f)

Figure 5.7 – We adjusted the parameters of our planner to generate a path that leads the agent to the same
goal of the real person with a similar behavior. In each row of this figure we show: the path followed
by a human being (a, e); the representation of the environment generated by our planner (b, f); the agent
path (in black) calculated by the Laplace’s Equation compared with the real path (in yellow) (c, g); and
the agent path (in black) calculated by our planner after the parameters adjusting (d, h).

Source: Created by the author.

associate specific values to the parameters ε and v, the agent’s path produced by our planner

approaches the human’s path. Figure 5.7(d) shows a path generated by dynamically changing

ε and v. Up to the half of the path, the parameters ε = 0.1 and v = (0,−1) were used. Half

the path forward, the parameters were changed to ε = 0.7 and v = (1, 0). These values were

empirically obtained. We can visually compare and observe that the calculated path is very

close to the real one.

Figure 5.7(e) illustrates another situation: the human walks back to his start position. We

changed the goal position in the CF planner (see Figure 5.7(f)) and the agent also walks imitat-

ing the human. Figure 5.7(c,g) shows the path followed by the agent using Laplace’s Equation,

i.e., when ε = 0 or v = (0, 0). We have dynamically defined again two different behaviors. Up

to the half of the path, the parameters ε = 1.5 and v = (1, 0) were used. Half the path forward,

the parameters were changed to ε = 1.5 and v = (1,−1). As before, the path generated by the

agent looks very similar to the real human’s path. With this simple and qualitative analysis, we

can see that our planner is able to generate natural and realistic paths, that can be confounded

84

with a real one. Also, we can ensure that agents follow a specific path creating regions with

high traversal preference over that path.

5.2 Solution to the Flatness Problem

Zhang et al. (ZHANG et al., 2010) proposed a solution to solve this problem manually

changing the boundary conditions. However, although their solution is able to change the po-

tential flow, the values to be used depend upon the configuration of the obstacles. We solve this

problem automatically, increasing ε(r) on free cells. Fig. 5.8 shows a situation where flatness

occurs and Fig. 5.9 shows the potential computed using ε = 1.6. The higher the ε value, the

more concave the potential becomes, increasing the influence of the goal position. To choose

the ε value, we started with ε = 1.0 and, during the potential field computation, if a cell pre-

sented a null potential value, we increased ε in 0.1 units and continue with the potential field

calculation until convergence.

(a) (b)

Figure 5.8 – Flatness problem: potential field generated by BVP based planners (a); and a zoom at the
central region (b).

Source: Created by the author.

85

(a) (b)

Figure 5.9 – Flatness solution: potential field generated by the HCF using ε = 1.6; and a zoom at the
central region (b).

Source: Created by the author.

5.2.1 Considerations about Performance

Considering the visualization of pedestrian simulations, for each new step the agent do, the

motion planner should provide its new position and orientation. According to Mazarakis and

Avaritsiotis (MAZARAKIS; AVARITSIOTIS, 2005), the frequency of human steps varies from

0.9 to 1Hz for someone walking slowly to 3.5Hz for someone walking very fast, with a mean

of 2Hz. Then, the performance of a real-time algorithm should be enough to at least: calculate

up to 3.5 (2 as a mean) steps per second per agent; animate it; and render the complete scene.

In the experiments performed by us, we were not yet concerned with the rendering quality,

but only with the quality of the generated behaviors and the number of agents handled by the

algorithm. Figure 5.10 illustrates the results obtained on an ATHLON 64 3500+ 2.21GHz

computer with 2.0 GB RAM and graphics board nVidia 7800 GTX. For each step of each

agent, considering the mean of 2 steps per second, we have done 60 relaxations of the matrix

representing the local map. This allows the management of up to 3300 agents concurrently. If

we consider the max of 3.5 steps per second, almost 2500 agents are allowed at the same time.

However, this performance evaluation is simplistic since 3D animation and rendering is not

86

Figure 5.10 – Performance evaluation. The black line shows the relationship between the number of
agents with their steps per second. 3300 agents are allowed to move at the same time without affecting
the quality of the simulation.

Source: Created by the author.

being considered, as well as algorithm optimizations. Besides, a better compromise between

rendering, animation and path planning algorithms can be obtained by reducing the number of

relaxations for the local maps. In several examples presented in the previous section, we used 30

relaxations per step done, instead of 60. As an example of our planner potentials, we simulate a

crowd with 600 robots walking in real-time in an interactive 3D environment. We also simulate

two group of agents, each one with 45 agents. Figure 5.11 and Figure 5.12 shows a snapshot of

this situations.

5.3 Hierarchical Configurable Flows

This section presents several features of the HCF, including quantitative and qualitative

analysis. Also, we show the algorithm performance comparing the proposed technique with

the previous one, as well as the A∗ algorithm, which is one of the fastest techniques commonly

used in agent navigations.

87

Figure 5.11 – An example of crowd simulation with 600 walking robots.

Source: Created by the author.

5.3.1 Tuning the Algorithm

In order to obtain a better performance, parameters α1, α2 and γ, mentioned above, must

be carefully set. Parameters α1 and α2 are related, respectively, to the number of pre and

post-iterations required to smooth the potential while γ is the error allowed to reaches the con-

vergence. These parameters depend on the obstacle and goal configurations.

In our experiments using arbitrary environments with 9 × 9 cells up to 257 × 257 cells,

both parameters (α1, α2) are in the interval [1, 5] and γ = 10−3. We considered grids with

dimensions d = 2N−i+1 + 1 cells with size h = 1
d
, where i is the i-th grid on the hierarchy.

However, the HCF is not restricted to this grid size. According to Brandt (BRANDT, 1977),

this size is more convenient to be used with the prolongation and restriction operators previ-

ously mentioned. Usually, the greater the number of coarse grids, the faster is the potential

convergence. However, coarse grids do not represent correctly the environment, but even so

it should be used in the calculation because it provides a good initial approximation for the

potential field, as demonstrated in Chapter 5, but it must never be used during navigation.

88

5.3.2 Choosing the Number of Grids

During the calculation of the potential field, the convergence rate depends on the number

of pre and post iterations and the number of grids used. Usually, the more the number of

grids with lower resolution than a particular grid, the faster is the potential convergence in this

grid. If the lower resolution grid does not represent correctly the environment, even then it

should be used in the calculation of the next level potential field, because it provides a good

initial approximation of the potential field, accelerating the convergence. Figure 5.13 shows

an environment represented in five different levels of resolutions. The environment is correctly

represented in Figure 5.13(a,b,c), but in Figure 5.13(d), the discretization is not sufficient to

represent the obstacles. Still, Figure 5.13(e) must be used to accelerate the calculation of the

potentia fieldl in the other grids.

5.3.3 Path quality

The HCF has two planning steps: a global and a local planning. The global planner provides

a free from obstacles path from any position in the environment to the goal, to guide the agents.

The local planner is used to move each agent avoiding dynamic obstacles and to allow that each

agent has an individual behavior. We analyze the paths generated by each path planner.

5.3.3.1 Paths produced by the global planner

We compared the paths produced by the HCF with those produced by the CF using a hier-

archy of grids with resolution 17× 17, 33× 33, 65× 65 and 129× 129 cells. In all experiments

we used the parameters (α1 = 3, α2 = 4), and η, allowing the error ‖e‖2 ≤ 10−3. Figures

5.14(a)-(d) show the quality of the path produced by the CF in an arbitrary environment with

several different resolutions. In low-resolution grids, with 17×17 or 33×33 cells, the potential

field converges quickly but the path produced has low-quality. In high resolution grids, 65× 65

or 129 × 129 cells, we achieved high-quality paths. The borders of the maps were represented

only to delimit the environment and it is essential to the operation of the algorithm. The border

on the coarse map occupies a larger area in the environment than the border on the finest map.

The discretization size of the coarse map has to be chosen, ensuring that the whole environment

will be represented within the map.

Figure 5.15(a) shows the path produced by four levels in the HCF grid hierarchy in the same

environment of Figure 5.14. Red, green, dark blue and light blue illustrate the path segments

89

produced by grids with 17 × 17, 33 × 33, 65 × 65 and 129 × 129 cells, respectively. Figures

5.15(b) and (c) show the path produced in other different environments. When the potential

field of a coarse map converges, it becomes available to be used by the agent. Meanwhile, the

potential field in other grids are being calculated and, when it converges, the agent can use it.

The better the resolution of the grid, the better the path quality. We can see that the union of

paths in grids with different resolutions is smooth, continuous and has almost the same quality

of the path computed using the finest grid resolution (Figure 5.14(d)).

5.3.3.2 Paths produced by the local planner

The global planner is consulted and a direction free from obstacle is given each time an

agent moves. The agent uses this direction to update his local map to continue the navigation

process. Figure 5.17 and Figure 5.16(a,b,c) show fifty agents using the HCF to navigate in

arbitrary environments. Red, green, dark blue and light blue illustrate the agent path using the

HCF grids with 17× 17, 33× 33, 65× 65 and 129× 129 cells, respectively. The agents start to

move immediately after the coarsest grid is computed.

Fig. 5.16(a,b,c) show fifty agents using the HCF to navigate in arbitrary environments. Red,

green, dark-blue and light-blue lines illustrate the agent path using the HCF grids with 17× 17,

33 × 33, 65 × 65 and 129 × 129 cells, respectively. Agents start to move immediately after

the coarsest grid is computed, with 17 × 17 cells (Fig. 5.16(a)), whose potential is computed

very fast. When the grid with 33 × 33 cells is ready, the agents switch to this grid, producing

the green path shown in Fig. 5.16(b). Then, while agents navigate, the HCF computes a better

resolution grid (Fig. 5.16(c) and (d)). In all experiments we used the parameters (α1 = 3,

α2 = 4), and γ = 10−3. We can see that transitions between paths in grids with different

resolutions are smooth and continuous. Our planner does not produce paths that minimize the

distances. Figure 5.17 highlights that.

Figure 5.18 presents a path with a non-smooth stretch. The non-smoothness is caused

when agents avoid collisions with others and stop moving until the corridor was unobstructed.

Fig. 5.19 shows five hundred agents walking down the street. The goal was set in the bottom

left corner. Fig 5.19(a-d) shows the situation where there is no preferential regions, ε(r) = 0.

Agents cross the street without respecting crosswalks. In Fig 5.19(e-h), we use ε(r) = 0.6 in

the crosswalks, causing the agents to prefer these regions. To handle agent collisions we use the

RVO (BERG; LIN; MANOCHA, 2008) collision avoidance.

90

5.3.4 Considerations about Performance

To compute the performance of the HCF, we use 10 different environments with arbitrary

obstacles and goal configurations. In all cases, the parameters α1 and α2 used in Algorithms 1

and 2, were set as 3 and 4, respectively, whereas the parameter η was calculated based on the

error ‖e‖1 ≤ 10−3.

Table 5.1 shows the performance of the HCF, the original CF (using GS, SOR and a Quadtree

discretization), and the A∗ algorithm in an Intel Quad Core 2.4 GHz with 4 GB RAM. The en-

vironments have different sizes and were represented using grids with 9× 9, 17× 17, 33× 33,

65× 65, 129× 129 and 257× 257 cells. We can observe that the HCF far surpasses the original

CF using both GS and SOR algorithms. It is also important to stress that the time spent by the

HCF is the time required to compute the potential in every lower level grid in the hierarchy. For

a map with 129 × 129 cells, we need to generate and compute the potential of all maps in the

hierarchy, i.e., maps with 9× 9, 17× 17, 33× 33, 65× 65, and 129× 129 cells.

Table 5.1 – Performance evaluation. Comparing the HCF with the CF using SOR, GS, GS in a Quadtree
subdivision and the A* algorithm. To compute the A* performance, we considered the largest path found
in each environment simulation.

Resolution Technique

HCF CF (Quadtree) CF (SOR) CF (GS) A∗

9× 9 0.00004s 0.00013s 0.00006s 0.00068s 0.00008s

17× 17 0.00033s 0.00082s 0.00097s 0.00126s 0.00022s

33× 33 0.00176s 0.00379s 0.00191s 0.00776s 0.00057s

65× 65 0.00755s 0.03746s 0.01430s 0.14758s 0.00174s

129× 129 0.03948s 0.08331s 0.11827s 2.10312s 0.00557s

257× 257 0.13049s 0.58274s 3.00010s 113.00941s 0.01981s

Source: Created by the author.

Most experiments show that the HCF performance is about 100 to 700 times faster than the

original CF. As the HCF is computationally efficient, any changes in the environment can be

mapped into the grids and the potential field is quickly recomputed. Despite the time required

to compute the potential field in a large environment (as grids over 217 × 217 cells) is not ac-

ceptable for real-time simulation, the HCF guarantees the real-time since the agent can move

immediately when the potential field in lower level grids converge. Using a Quadtree struc-

ture to discretize the environment we achieved better results than the original CF. Although

a quadtree has fewer cells than the regular homogeneous grids used in the HCF, the HCF sur-

91

passed the performance of the quadtree in all experiments and still produces better quality paths,

as we can see in Figure 5.20(a),(b).

In most cases, for a single agent, the A∗ algorithm is faster than the HCF. The reason is that

the A∗ computes only one path from the agent current position to its goal, while the HCF com-

putes all paths from any free position of the environment to the goal, i.e., we have 16,384 paths

produced by HCF, as we can see in Figure 5.20(b),(c). This allows the planning of different

paths for many agents simultaneously and with no additional cost. Moreover, in the HCF the

agent starts moving immediately when the coarsest grid is computed, i. e., the HCF coarsest

grid is computed while the A∗ was being processed. Furthermore, the HCF generates smooth

paths, whereas A∗ needs a post-processing step to smooth the path generated in order to ensure

a high-quality navigation.

The performance of the HCF also depends on the obstacle configurations. Table 5.2 shows

the performance of HCF insofar we increase the amount of obstacles in the environment. In this

experiment, we consider 0% up to 60% of the environment area covered by obstacles. In each

situation, we use 10 different environments with arbitrary obstacles and goal configurations. We

can see that HCF’s performance varies depending on the amount of obstacles. The best case

was when the environment has no obstacles. In this situation, the restriction and prolongation

operators efficiently approximate the solution. The worst case was when the obstacles cannot

be properly represented in the grids with lower resolutions. This situation occurred in the grid

with 10% of its area covered by obstacles, where there are obstacles too small to be represented

in all grids. It is important to stress that despite the variation in performance for computing

the finer resolution grids (grids over 127 × 127 cells), the navigation process starts after the

calculation of the potential field on the grids with the lowest resolution possible, which takes

place in real-time regardless the amount of obstacles in the environment.

Table 5.2 – HCF performance considering a percentage of the environment covered by obstacles.

Resolution Percentage of the environment covered by obstacles

0% 10% 20% 30% 40% 50% 60%

33× 33 0.00145s 0.00391s 0.00130s 0.00165s 0.00146s 0.00173s 0.00146s

65× 65 0.00624s 0.00738s 0.00889s 0.00850s 0.00827s 0.00810s 0.00546s

129× 129 0.02890s 0.03273s 0.06647s 0.06423s 0.05446s 0.05222s 0.03031s

257× 257 0.239716s 0.75886s 0.71448s 0.42049s 0.60265s 0.63038s 0.34974s

Source: Created by the author.

In our implementation, we are only considering grids with size equal to 2i + 1, where i is

92

the i-th grid on the hierarchy. The HCF is not restricted to this grid size. However, according

to Brandt (BRANDT, 1977), this size is more convenient and economic than any other sizes in

the prolongation and restriction processes and accelerates the convergence.

5.4 Discussion

We qualitatively compare our technique with classically known techniques: Pelechano,

Allbeck and Badler (2007), Treuille, Cooper and Popović (2006), Berg et al. (2008), Yeh et

al. (2008), Patil et al. (2011), Harabor and Botea (2008a) and our HCF planner.

Most of the techniques used in current games are property of industries and are not revealed.

Were chosen for comparison techniques that can be used for virtual agents navigation. The items

selected for comparison were those significant for someone to choose the technique for use in

an application. The comparison is shown in Table 5.3.

There are two important points that must be commented about the HCF. Obstacles must be

correctly represented in all grids. In our implementation, we defined the obstacles on the finest

grid and assumed that the reduction operator will naturally propagate it to other maps during

the algorithm execution. It is important to observe that the coarse grid should be discretized

enough to represent all obstacles, ensuring a consistent and smooth path during navigation.

The second limitation is that the HCF algorithm only handles regions with higher or lower

traversal preferences but not directional preferences. Until now we cannot configure regions

with preferential directions.

93

Ta
bl

e
5.

3
–

C
om

pa
ri

so
n

of
ag

en
tn

av
ig

at
io

n
m

od
el

s.

Pe
le

ch
an

o
Tr

eu
ill

e
va

n
de

n
B

er
g

Y
eh

Pa
til

H
ar

a
H

C
F

U
sa

bi
lit

y
co

m
pl

ex
m

ed
iu

m
ea

sy
ea

sy
m

ed
iu

m
m

ed
iu

m
co

m
pl

ex
H

ar
dw

ar
e

Su
pp

or
t

–
–

pa
ra

lle
liz

ab
le

–
–

–
pa

ra
lle

liz
ab

le
Pe

rf
or

m
an

ce
th

ou
sa

nd
s

th
ou

sa
nd

s
th

ou
sa

nd
s

th
ou

sa
nd

s
th

ou
sa

nd
s

hu
nd

re
ds

of
th

ou
sa

nd
s

th
ou

sa
nd

s
Pr

ep
ro

ce
ss

in
g

no
no

ye
s

no
no

ye
s

no
In

te
gr

at
io

n
(o

th
er

te
ch

s.
)

no
no

no
ye

s
ye

s
no

ye
s

Pa
th

qu
al

ity
m

ed
iu

m
go

od
go

od
go

od
go

od
m

ed
iu

m
go

od
G

ro
up

of
ag

en
ts

no
ye

s
no

no
ye

s
no

ye
s

M
ul

ti-
Si

ze
ag

en
ts

no
no

no
no

no
ye

s
no

A
ge

nt
’s

in
di

vi
du

al
ity

ye
s

no
no

ye
s

ye
s

ye
s

ye
s

D
yn

am
ic

ob
st

ac
le

s
ha

nd
le

ha
nd

le
ha

nd
le

ha
nd

le
m

ay
ha

ve
lo

ca
lm

in
im

a
ha

nd
le

ha
nd

le
E

nv
ir

on
m

en
t

la
rg

e/
co

m
pl

ex
m

ap
pe

d
to

a
gr

id
la

rg
e/

co
m

pl
ex

la
rg

e/
co

m
pl

ex
m

ap
pe

d
to

a
gr

id
m

ap
pe

d
to

a
gr

id
m

ap
pe

d
to

a
gr

id
In

te
ra

ct
iv

e
no

ye
s

no
no

ye
s

no
ye

s
Te

rr
ai

n
tr

av
.c

ap
ab

ili
te

s
no

no
no

no
no

ye
s

ye
s

So
ur

ce
:C

re
at

ed
by

th
e

au
th

or
.

94

Figure 5.12 – Two groups of agents passing through each other.

Source: Created by the author.

95

(a) 129× 129 (b) 65× 65 (c) 33× 33 (d) 17× 17

Figure 5.13 – Different levels of discretization of an environment. In (a), (b) and (c) the environment is
correctly represented. From (c) to (d) there is a loss of information in the environment’s representation.
The circular regions highlighted these losses.

Source: Created by the author.

(a) 17× 17 cells (b) 33× 33 cells (c) 65× 65 cells (d) 129× 129 cells

Figure 5.14 – Paths produced by the CF different resolutions. The path produced by HCF is a combi-
nation of these paths.

Source: Created by the author.

96

(a) (b) (c)

Figure 5.15 – Path produced by the HCF. Red, green, dark blue and light blue line segments illustrate
the paths using grids with 17× 17, 33× 33, 65× 65 and 129× 129 cells, respectively.

Source: Created by the author.

(a) (b) (c)

Figure 5.16 – Paths produced by the agents using the HCF. The red, green, dark blue and light blue
lines illustrate the agent’s path using HCF grids with 17 × 17, 33 × 33, 65 × 65 and 129 × 129 cells,
respectively.

Source: Created by the author.

97

(a) (b) (c) (d)

Figure 5.17 – Paths produced by the agents using the HCF. The agents start to move using the coarsest
grid and switch to grids with finer resolution insofar it was computed. Red, green, dark blue and light
blue lines illustrate the agents path using grids with 17 × 17, 33 × 33, 65 × 65 and 129 × 129 cells,
respectively.

Source: Created by the author.

Figure 5.18 – Non-smooth path. This happens because the agents avoid collisions with others, diverting
them.

Source: Created by the author.

98

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.19 – Agents walking down the street. Agents walking without respecting crosswalks, with
ε(r) = 0 everywhere in the environment (a,b,c,d). Using ε(r) = 0.6 in crosswalk regions causes the
agents to walk through it.

Source: Created by the author.

(a) Quadtree path (b) HCF path (c) A∗ path

Figure 5.20 – Paths produced by the CF in a quadtree structure (a), in a homogeneous grid (b) and the
largest path produced by the A∗ algorithm in this same grid (c).

Source: Created by the author.

99

6 CONCLUSIONS

Our proposal consists in a novel method of agent navigation in environments that can be

mapped to a grid. We had punctual contributions on the Configurable Flows, a path planner

based on the numerical solution of boundary value problems that can generate realistic and

natural steering behaviors for virtual humans. The main advantage of the proposed technique

compared with existing agent navigation techniques is that the same principle is used to achieve

a wide variety of features required for the agent navigation and simulation.

We demonstrate that the correct adjustment of the behavior vector v and the parameter ε

can produce interesting behaviors. These behaviors can be interchanged to produce complex

motions, revealing the agent personality, mood and intentions.

The guiding potential is free of local minima, what constitutes a great advantage when

compared to the traditional potential fields method. Furthermore, the method proposed is com-

plete (TREVISAN et al., 2006) and generates smooth and safe paths that can be directly used

in mobile robots and virtual agents. The local information gathered by agent sensors allows

treating dynamic obstacles, as other agents navigating in the environment. Experiments using

real human paths obtained from the CAVIAR (CAVIAR, 2011) project shows that our technique

can generate natural and realistic paths.

A drawback is that the potential gets flat far from the target position due to numerical pre-

cision. In these regions, the gradient’s length becomes equal to zero. We call this the “Flatness

Problem”. We solve this problem by introducing a novel form to the core equation to control

the potential field’s curvature that can be easily applied to environments composed of inhomo-

geneous terrains with different types of preferences. The preference can be defined using the

terrain type, the terrain elevation, or any other property.

Using the ability to deal with the inhomogeneous terrain facilitates the integration of the path

planning stage with terrain reasoning (STERREN, 2001), a making the planner more robust and

creating broad application possibilities

Our main contribution is a hierarchical path planner that combines our Configurable Flows

Planner with the Full Multigrid method. The main weakness of this CF Planner is the computa-

tional cost to find a solution. On the other hand, the Full Multigrid method solves elliptic PDEs

efficiently – as Laplace’s Equation – through a combination of solutions at several resolution

levels.

Basically, this method takes an instance of the problem on a grid of pre-specified fineness

and generates coarser grids containing a cruder problem representation. The method solves the

100

problem on the coarsest grid, which is easy and cheaper, and obtains successive solutions on

finer and finer grids. This combination improves the efficiency of the CF Planner expressively.

Results in simulation shown that the HBVP PP spends less than 1% of the time needed to

compute a solution using the original planner. Our proposal can contribute to several areas

of research including agent navigation, game pathfinding, crowd simulation and robotics. Our

publications reinforce the relevance of this contribution.

6.1 Future Work

As future work, there are several branches where we can improve the technique presented

here. We suggest:

• A parallel version of the HCF. A GPU-based version seems to be effective because the

grid hierarchy can be directly acquired through the mipmapping process.

• Extend to 3D environments. The technique proposed here handles 2D environments and

surfaces that can be mapped into a grid. However, we are restricted to navigate on the

surface, not taking into account the degrees of freedom of a 3D environment. There is

no mathematical limitation to extend the technique to handle 3D environments, but the

computational cost could be a limitation.

• Extend to planning over triangular meshes. Using the triangular mesh as the environment

discretization can have significant improvements. First, we can perfectly fit the obstacles’

shape and we can deal with looping surfaces, since the environment is discretized in set

of triangular cells and the neighborhood are connected. Also, we can use the mesh Level

of Detail (LOD) the represent the hierarchy of grids on the HCF.

• Implement the HCF using a Quadtree since it is already a hierarchical structure and has

much fewer cells to be used to compute the potential field. Because it is an adaptative

structure, it best fits the obstacle’s shape.

• Deal with very large environments. We can use a hybrid technique or a composition

of multigrid to handle large environments, as those presented in a Massive Multiplayer

Online Role-Playing Game.

• We are able to handle preferential regions controlling the curvature of the potential field.

We can include a directional parameter to control the direction of the curvature distortion,

handling directional preferential regions.

• Explore agent’s behavior. We show that is possible to generate realistic and natural paths.

101

Using the preferential regions, we can explore a family of functions based on agent’s

personality, mood and reasoning.

102

7 CONTRIBUTIONS

Five papers about the CF Path Planner have been proposed during the course. In addition,

another paper is being revised to be sent to a journal yet to be chosen. The last one is about

HCF integration with Preferential Regions and exposing the solution of the Flatness Problem,

i. e., a problem that occurs when the precision is not sufficient to represent the potential field,

causing the gradient to vanish. Publications achieved during the Ph.D. time are listed below.

The fist four papers are related to the thesis. The last two papers are directly about the thesis.

Manage Coherent Groups (SILVEIRA; PRESTES; NEDEL, 2008),

proposing a method to handled group of virtual characters;

GPU Accelerated Path Planning for Multi-agent in Virtual Envi-

ronments (FISCHER; SILVEIRA; NEDEL, 2009), presenting a GPU-based

implementation of the BVP Path Planner;

Natural Steering Behaviors for Virtual Pedestrians (SILVEIRA et

al., 2010a), describing the BVP Path Planner with several analysis;

Path-Planning for RTS Games Based on Potential Fields (SILVEIRA

et al., 2010b), showing the application of the BVP Path Planner in a RTS

game and comparing its performance with the native RTS planner;

Papers directly about the thesis:

103

Fast Path Planning using Multi-Resolution Boundary Value Prob-

lems (SILVEIRA; PRESTES; NEDEL, 2010), proposing the use of the

HBVP Path Planner in the robotics domain;

Hierarchical Configurable Flows: a path-planning method for real-

time agents. HFC Path Planner integrated with Preferential Regions as

well as the solution to the Flatness Problem for multi-agent simulation,

submitted to journal IEEE Transactions on Visualization and Computer

Graphics.

104

8 SUPPLEMENTARY MATERIAL: FUNDAMENTAL CONCEPTS

The study of systems of linear equations are very important on science computation, since

they result from discrete models of various types of applications, such as fluid dynamics,

weather prediction, climate simulation, motion planner, linear programming, combinatorial op-

timization and so on. This chapter presents some methods that can be used to solve systems of

linear equations obtained from the discretization of partial differential equations.

8.1 System of Linear Equations

A system of linear equations can be defined as a set of m equations with n unknowns. In

the general form, it can be written as:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm,

where x1, x2, ..., xn are the unknowns, a11, a12, ..., amn are the coefficients of the system, and

b1, b2, ..., bm are the constant terms.

Another helpful view is the matrix form. In this form, the linear system above can be

Ax = b, (8.1)

where A is an m×n matrix, x is a column vector with n entries, and b is a column vector with

m entries, i. e.,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · . . . · · ·

am1 am2 · · · amn

 , x =


x1

x2
...

xn

 , b =


b1

b2
...

bm

 . (8.2)

A solution for a linear system is an assignment of numbers to the variables x1, x2, ..., xn

such that each of the equations is simultaneously satisfied. There are several algorithms for

solving a system of linear equations, however, there are two basic classes of methods for solving

a system. The first class is represented by direct methods. They theoretically give an exact

105

solution in a (predictable) finite number of steps. Unfortunately, this does not have to be true in

computational solvers due to rounding errors: an error made in one step spreads in all following

steps. Direct methods are robust and can be used to solve any type of system. However, they

are inadequate for solving sparse systems since they do not take advantage of the sparsity of the

coefficient matrix vectA, making this approach impractical due to storage problems.

The second class is called iterative methods. The idea is to start with an initial approximation

to the solution (which does not have to be accurate at all), changing this approximation in several

steps to bring it closer to the true solution. Once the approximation is sufficiently accurate, this

is taken to be the solution to the system. Unlike direct methods and due to its storage efficiency,

iterative methods are often used to solve large and sparse systems of equations. Many scientific

applications use differential equations in its formulation, and when discretized, resulting in

large and sparse systems of equations. The use of iterative methods is more appropriate in these

cases.

8.2 Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors xk from an initial

guess x0 which converges to the exact solution x of the matrix equation Ax = b. For a con-

vergent sequence of vectors xk, we must ensure that the matrix equation has a unique solution,

or that matrix A is invertible. These methods are commonly called smoothing methods, due to

their capacity to remove the eigenfunctions with high-frequencies.

8.2.1 Jacobi Method

The Jacobi method is an iterative technique that solves the left-hand side of this expression

for x, using the previous value for x on the right-hand side. Analytically, this may be written

as:

x
(k+1)
i =

1

aii

(
bi−

∑
j 6=i

aijx
(k)
j

)
, i = 1, 2, ..., n. (8.3)

It is important to observe that the computation of x(k+1)
i requires each element in x(k) except

itself. We cannot overwrite x(k)i with x(k+1)
i , as that value will be needed by the rest of the

computation. Equation 8.3 is then iterated until it converges.

106

8.2.2 Gauss-Seidel Method

The Gauss-Seidel method (GS) is an iterative technique that solves the left-hand side of this

expression for x, using the previous value for x on the right-hand side. Analytically, this may

be written as:

x
(k+1)
i =

1

aii

(
bi−

∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

)
, i = 1, 2, ..., n. (8.4)

The formula for the Gauss-Seidel method is extremely similar to that of the Jacobi method.

The computation of x(k+1)
i uses only the elements of x(k+1) that have already been computed,

and only the elements of x(k) that have yet to be advanced to iteration k + 1. This means that,

unlike the Jacobi method, only one storage vector is required as elements can be overwritten as

they are computed, which can be advantageous for very large problems.

8.2.3 Successive Over-Relaxation Method

The method of Successive Over-Relaxation (SOR) is a variant of the Gauss-Seidel method

for solving a linear system of equations, resulting in faster convergence. Like the GS method,

SOR is an iterative technique that solves the left-hand side of this expression for x, using the

previous value for x on the right-hand side. Analytically, this may be written as:

x
(k+1)
i = (1− ω)x

(k)
i

ω

aii
+

(
bi−

∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

)
, i = 1, 2, ..., n. (8.5)

where ω is a relaxation factor that accelerates the convergence.

The method is convergent only for 0 < ω < 2. The weak point of this method is the choice

of the ω value. The acceleration of the SOR method occurs only in a fairly narrow window

around the correct value of ω. As a heuristic, it is better to take ω slightly too large, rather

than slightly too small. The optimum ω value depends on the system of linear equations we are

solving. There are some heuristics in the literature (PRESS et al., 2007) to choose the optimum

value.

107

REFERENCES

BANDI, S.; THALMANN, D. Space discretization for efficient human navigation. Computer
Graphics Forum, v. 17, p. 195–206, 1998.

BARRAQUAND, J.; LANGLOIS, B.; LATOMBE, J.-C. Numerical potential field techniques
for robot path planning. IEEE Transactions on Systems, Man, and Cybernetics, v. 22, p.
224–241, 1992.

BARTEL, A. et al. Real-time outdoor trail detection on a mobile robot. In: Proceedings
of the 13th IASTED International Conference on Robotics and Applications.
Anaheim, CA, USA: ACTA Press, 2007. (RA ’07), p. 477–482. Available from Internet:
<http://dl.acm.org/citation.cfm?id=1659997.1660096>.

BAYAZIT, O. B.; LIEN, J.-M.; AMATO, N. M. Roadmap-based flocking for complex
environments. In: Proceedings of the 10th Pacific Conference on Computer Graphics
and Applications. Washington, DC, USA: IEEE Computer Society, 2002. (PG ’02), p. 104–.
Available from Internet: <http://portal.acm.org/citation.cfm?id=826030.826615>.

BERG, J. van den; LIN, M. C.; MANOCHA, D. Reciprocal velocity obstacles for real-time
multi-agent navigation. In: IEEE International Conference on Robotics and Automation.
[S.l.]: IEEE, 2008. (ICRA’08), p. 1928–1935.

BERG, J. van den et al. Interactive navigation of multiple agents in crowded environments.
In: Proceedings of the 2008 symposium on Interactive 3D graphics and games.
New York, NY, USA: ACM, 2008. (I3D ’08), p. 139–147. Available from Internet:
<http://doi.acm.org/10.1145/1342250.1342272>.

BERSETH, G.; KAPADIA, M.; FALOUTSOS, P. Steerplex: Estimating scenario complexity
for simulated crowds. In: Proceedings of Motion on Games. New York, NY, USA: ACM,
2013. (MIG ’13), p. 45:67–45:76. ISBN 978-1-4503-2546-2. Available from Internet:
<http://doi.acm.org/10.1145/2522628.2522650>.

BICHO, A. de L. et al. Simulating crowds based on a space colonization algorithm.
Computers & Graphics, v. 36, n. 2, p. 70–79, 2012. Available from Internet: <http:
//dblp.uni-trier.de/db/journals/cg/cg36.html#BichoRMJPM12>.

BLEIWEISS, A. Gpu accelerated pathfinding. In: Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2008. (GH ’08), p. 65–74. Available
from Internet: <http://portal.acm.org/citation.cfm?id=1413957.1413968>.

BOUVIER, E.; GUILLOTEAU, P. Crowd simulation in immersive space management.
In: Proceedings of the Eurographics workshop on Virtual environments and scientific
visualization. London, UK: Springer-Verlag, 1996. (WVESE’96), p. 104–110. Available from
Internet: <http://portal.acm.org/citation.cfm?id=276034.276045>.

BRANDT, A. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, v. 31, p. 330–390, 1977.

BRIGGS, W. L.; HENSON, V. E.; MCCORMICK, S. F. A multigrid tutorial (2nd ed.).
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000.

http://dl.acm.org/citation.cfm?id=1659997.1660096
http://portal.acm.org/citation.cfm?id=826030.826615
http://doi.acm.org/10.1145/1342250.1342272
http://doi.acm.org/10.1145/2522628.2522650
http://dblp.uni-trier.de/db/journals/cg/cg36.html#BichoRMJPM12
http://dblp.uni-trier.de/db/journals/cg/cg36.html#BichoRMJPM12
http://portal.acm.org/citation.cfm?id=1413957.1413968
http://portal.acm.org/citation.cfm?id=276034.276045

108

CAGIGAS, D. Hierarchical d* algorithm with materialization of costs for robot path planning.
In: Robotics and Autonomous Systems. [S.l.: s.n.], 2005. (RAS’05), p. 190–208.

CAPCOM. Dead rising. 2006.

CAVIAR. EC Funded CAVIAR project/IST 2001 37540,
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/, last access: october (2011). 2011.

CINEMA, N. L. Lord of the rings: The return of the king. 2003.

CONNOLLY, C. I.; BURNS, J. B.; WEISS, R. Path planning using laplace’s equation. In: In
Proceedings of the 1990 IEEE International Conference on Robotics and Automation.
[S.l.: s.n.], 1990. (ICRA’90), p. 2102–2106.

CONNOLLY, C. I.; GRUPEN, R. A. On the applications of harmonic functions to robotics.
International Journal of Robotic Systems, v. 10, p. 931–946, 1993.

DAPPER, F. et al. Simulating Pedestrian Behavior with Potential Fields. Springer Berlin
Heidelberg, 2006. 324-335 p. (Lecture Notes in Computer Science, v. 4035). Available from
Internet: <http://dx.doi.org/10.1007/11784203_28>.

DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische
Mathematik, Springer Berlin / Heidelberg, v. 1, n. 1, p. 269–271, dec. 1959. Available from
Internet: <http://dx.doi.org/10.1007/BF01386390>.

DUTRA, T. B. et al. A Multipotential Field Model for Crowds with Scalable Behaviors.
In: 26th Conference on Graphics, Patterns and Images. IEEE, 2013. (SIBGRAPI’13),
p. 31–38. Available from Internet: <http://www.ucsp.edu.pe/sibgrapi2013/eproceedings/
technical/114093_2.pdf>.

ENTERTAINMENT, B. Starcraft 2: Wings of liberty. 2010.

FIORINI, P.; SHILLERT, Z. Motion planning in dynamic environments using velocity
obstacles. International Journal of Robotics Research, v. 17, p. 760–772, 1998.

FISCHER, L.; NEDEL, L. Semi-automatic navigation on 3d triangle meshes using bvp based
path-planning. In: Proceedings of the 2011 24th SIBGRAPI Conference on Graphics,
Patterns and Images. Washington, DC, USA: IEEE Computer Society, 2011. (SIBGRAPI
’11), p. 33–40. Available from Internet: <http://dx.doi.org/10.1109/SIBGRAPI.2011.30>.

FISCHER, L. G.; SILVEIRA, R.; NEDEL, L. Gpu accelerated path-planning for multi-agents in
virtual environments. In: Proceedings of the 2009 VIII Brazilian Symposium on Games and
Digital Entertainment. Washington, DC, USA: IEEE Computer Society, 2009. (SBGAMES
’09), p. 101–110. Available from Internet: <http://dx.doi.org/10.1109/SBGAMES.2009.20>.

FOUDIL, C.; NOUREDDINE, D. Collision avoidance in crowd simulation with priority rules.
European Journal of Scientific Research, EuroJournals, v. 15, n. 1, oct. 2006.

FULGENZI, C.; SPALANZANI, A.; LAUGIER, C. Dynamic obstacle avoidance in uncertain
environment combining pvos and occupancy grid. In: in Proc. IEEE Int. Conf. on Robotics
and Automation. [S.l.: s.n.], 2007. (ICRA’07), p. 1610–1616.

http://dx.doi.org/10.1007/11784203_28
http://dx.doi.org/10.1007/BF01386390
http://www.ucsp.edu.pe/sibgrapi2013/eproceedings/technical/114093_2.pdf
http://www.ucsp.edu.pe/sibgrapi2013/eproceedings/technical/114093_2.pdf
http://dx.doi.org/10.1109/SIBGRAPI.2011.30
http://dx.doi.org/10.1109/SBGAMES.2009.20

109

GARCIA, F.; KAPADIA, M.; BADLER, N. Gpu-based dynamic search on adaptive resolution
grids. In: Robotics and Automation, 2014 IEEE International Conference on. [S.l.: s.n.],
2014. (ICRA’14), p. 1631–1638.

GERAERTS, R.; OVERMARS, M. Clearance based path optimization for motion planning. In:
IEEE International Conference on Robotics and Automation. [S.l.: s.n.], 2004. (ICRA’04),
p. 2386–2392.

GERAERTS, R.; OVERMARS, M. H. The corridor map method: a general framework for
real-time high-quality path planning. Journal of Visualization and Computer Animation,
v. 18, p. 107–119, 2007.

GOLAS, A.; NARAIN, R.; LIN, M. Hybrid long-range collision avoidance for crowd
simulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. New York, NY, USA: ACM, 2013. (I3D ’13), p. 29–36. Available from
Internet: <http://doi.acm.org/10.1145/2448196.2448200>.

GOLAS, A.; NARAIN, R.; LIN, M. C. Continuum modeling of crowd turbulence. Phys.
Rev. E, American Physical Society, v. 90, p. 042816, Oct 2014. Available from Internet:
<http://link.aps.org/doi/10.1103/PhysRevE.90.042816>.

GUY, S. J. et al. Pledestrians: a least-effort approach to crowd simulation. In: Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2010. (SCA ’10), p.
119–128. Available from Internet: <http://portal.acm.org/citation.cfm?id=1921427.1921446>.

HARABOR, D.; BOTEA, A. Hierarchical Path Planning for Multi-Size Agents in
Heterogeneous Environments. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Game. Perth, Australia: [s.n.], 2008. (CIG’08), p. 258–265.

HARABOR, D.; BOTEA, A. Hierarchical Path Planning for Multi-Size Agents in
Heterogeneous Environments. In: IEEE Symposium on Computational Intelligence and
Games. Perth, Australia: [s.n.], 2008. (CIG’08), p. 258–265.

HART, N. J. N. P. E.; RAPHAEL, B. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-4,
n. 2, p. 100–107, 1968.

HELBING, D. et al. Self-organized pedestrian crowd dynamics: Experiments, simulations, and
design solutions. Transportation Science, INFORMS, Institute for Operations Research and
the Management Sciences (INFORMS), Linthicum, Maryland, USA, v. 39, p. 1–24, February
2005. Available from Internet: <http://portal.acm.org/citation.cfm?id=1247226.1247227>.

HELBING, D.; MOLNáR, P. Social force model for pedestrian dynamics. Physical Review
E, American Physical Society, v. 51, n. 5, p. 4282–4286, may 1995. Available from Internet:
<http://dx.doi.org/10.1103/PhysRevE.51.4282>.

HODGINS, J.; BROGAN, D. C. Robot herds: Group behaviors for systems with significant
dynamics. In: In Proc. A-Life IV. [S.l.]: The MIT Press, 1994. (A-LIFE ’04), p. 319–324.

HUANG MUBBASIR KAPADIA, N. I. B. T.; KALLMANN, M. Path planning for coherent
and persistent groups. In: Proceedings of the IEEE International Conference on Robtics
and Automation. [S.l.]: IEEE, 2014. (ICRA ’14).

http://doi.acm.org/10.1145/2448196.2448200
http://link.aps.org/doi/10.1103/PhysRevE.90.042816
http://portal.acm.org/citation.cfm?id=1921427.1921446
http://portal.acm.org/citation.cfm?id=1247226.1247227
http://dx.doi.org/10.1103/PhysRevE.51.4282

110

HYUN, W. K.; SUH, I. H. A hierarchical collision-free path planning algorithm for robotics.
In: International Conference on Intelligent Robots and Systems. Washington, DC, USA:
IEEE Computer Society, 1995. (IROS’95), p. 2488.

JIN, X. et al. Interactive control of large-crowd navigation in virtual environments
using vector fields. IEEE Comput. Graph. Appl., IEEE Computer Society Press,
Los Alamitos, CA, USA, v. 28, p. 37–46, November 2008. Available from Internet:
<http://portal.acm.org/citation.cfm?id=1477045.1477081>.

JU, E. et al. Morphable crowds. ACM Trans. Graph., ACM, New York, NY, USA, v. 29,
p. 140:1–140:10, December 2010. Available from Internet: <http://doi.acm.org/10.1145/
1882261.1866162>.

JUNG, D.; RATTI, J.; TSIOTRAS, P. Real-time implementation and validation of a new
hierarchical path planning scheme of uavs via hardware-in-the-loop simulation. J. of Intell.
and Robotic Systems, Kluwer Academic Publishers, Hingham, MA, USA, v. 54, n. 1-3, p.
163–181, 2009.

KALLMANN, M. Shortest paths with arbitrary clearance from navigation meshes. In:
Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2010. (SCA
’10), p. 159–168. Available from Internet: <http://portal.acm.org/citation.cfm?id=1921427.
1921451>.

KALLMANN, M.; BIERI, H.; THALMANN, D. Fully dynamic constrained delaunay
triangulations. In: BRUNNETT B. HAMANN, H. M. L. L. G. (Ed.). Geometric Modelling
for Scientific Visualization. first. Heidelberg, Germany: Springer-Verlag, 2003. p. 241–257.

KAMPHUIS, A. et al. Automatic construction of roadmaps for path planning in games. In: In
Proc. Int. Conf. Computer Games: Artificial Intelligence, Design and Education. [S.l.:
s.n.], 2004. (CGAIDE’05), p. 285–292.

KANG, S.-J.; KIM, Y.; KIM, C.-H. Live path: adaptive agent navigation in the interactive
virtual world. Vis. Comput., Springer-Verlag New York, Inc., Secaucus, NJ, USA,
v. 26, p. 467–476, June 2010. Available from Internet: <http://dx.doi.org/10.1007/
s00371-010-0457-7>.

KAPADIA, M. et al. Multi-domain real-time planning in dynamic environments. In:
Proceedings of the 13th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. New York, NY, USA: ACM, 2013. (SCA ’13), p. 115–124. Available from
Internet: <http://doi.acm.org/10.1145/2485895.2485909>.

KAPADIA, M. et al. Dynamic search on the GPU. In: Intelligent Robots and Systems, 2013
IEEE/RSJ International Conference on. [S.l.: s.n.], 2013. (IROS’13), p. 3332–3337.

KAPADIA, M. et al. Constraint-aware navigation in dynamic environments. In: Proceedings
of the Seventh international conference on Motion in games. [S.l.: s.n.], 2013. (MIG’13).

KARAMOUZAS, I.; OVERMARS, M. H. Adding variation to path planning. Comput.
Animat. Virtual Worlds, John Wiley and Sons Ltd., Chichester, UK, v. 19, p. 283–293,
September 2008. Available from Internet: <http://portal.acm.org/citation.cfm?id=1410368.
1410380>.

http://portal.acm.org/citation.cfm?id=1477045.1477081
http://doi.acm.org/10.1145/1882261.1866162
http://doi.acm.org/10.1145/1882261.1866162
http://portal.acm.org/citation.cfm?id=1921427.1921451
http://portal.acm.org/citation.cfm?id=1921427.1921451
http://dx.doi.org/10.1007/s00371-010-0457-7
http://dx.doi.org/10.1007/s00371-010-0457-7
http://doi.acm.org/10.1145/2485895.2485909
http://portal.acm.org/citation.cfm?id=1410368.1410380
http://portal.acm.org/citation.cfm?id=1410368.1410380

111

KAVRAKI, L. E. et al. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Automation, v. 12, n. 4, p.
566–580, 1996.

KHATIB, O. Commande dynamique dans l’espace opérational des robots manipulaters
en présence d’obstacles. Thesis (PhD) — École Nationale Supérieure de l’Aéronatique et de
l’Espace, France, 1980.

KOREN, Y.; BORENSTEIN, J. Potential field methods and their inherent limitations for
mobile robot navigation. In: In Proc. IEEE Int. Conf. Robotics and Automation. [S.l.: s.n.],
1991. (ICRA’91, v. 2), p. 1398–1404.

LAMARCHE, F. TopoPlan: a topological path planner for real time human navigation under
floor and ceiling constraints. Computer Graphics Forum, Blackwell Publishing, v. 28, n. 2, p.
649–658, 2009. Available from Internet: <http://dx.doi.org/10.1111/j.1467-8659.2009.01405.
x>.

LAMARCHE, F.; DONIKIAN, S. Crowd of virtual humans: a new approach for real time
navigation in complex and structured environments. Computer Graphics Forum, v. 23, n. 3,
p. 509–518, 2004. Available from Internet: <http://dx.doi.org/10.1111/j.1467-8659.2004.
00782.x>.

LAVALLE, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. [S.l.],
1998.

LAVALLE, S. M. Planning Algorithms. Cambridge, U.K.: Cambridge University Press,
2006. Also available at http://planning.cs.uiuc.edu/.

LEE, K. H.; CHOI, M. G.; LEE, J. Motion patches: building blocks for virtual environments
annotated with motion data. ACM Trans. Graph., ACM, New York, NY, USA, v. 25, p.
898–906, July 2006. Available from Internet: <http://doi.acm.org/10.1145/1141911.1141972>.

LERNER et al. Crowds by example. Computer Graphics Forum, Blackwell Publishing,
v. 26, n. 3, p. 655–664, sep. 2007. Available from Internet: <http://www.cs.tau.ac.il/~{}alan/
Publications/Publications.h>.

LERNER, A. et al. Fitting behaviors to pedestrian simulations. In: Proceedings of
the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
New York, NY, USA: ACM, 2009. (SCA ’09), p. 199–208. Available from Internet:
<http://doi.acm.org/10.1145/1599470.1599496>.

LOZANO-PéREZ, T.; WESLEY, M. A. An algorithm for planning collision-free paths among
polyhedral obstacles. Commun. ACM, ACM, New York, NY, USA, v. 22, p. 560–570,
October 1979. Available from Internet: <http://doi.acm.org/10.1145/359156.359164>.

MAZARAKIS, G. P.; AVARITSIOTIS, J. N. A prototype sensor node for footstep detection.
In: Proc. of the Second European Workshop on Wireless Sensor Networks. [S.l.]: IEEE
Press, 2005. (EWSN’05), p. 415–418.

MITCHELL, J.; PAPADIMITRIOU, C. The weighted region problem. In: Proceedings of the
third annual symposium on Computational geometry. New York, NY, USA: ACM, 1987.
(SCG ’87), p. 30–38. Available from Internet: <http://doi.acm.org/10.1145/41958.41962>.

http://dx.doi.org/10.1111/j.1467-8659.2009.01405.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01405.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00782.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00782.x
http://doi.acm.org/10.1145/1141911.1141972
http://www.cs.tau.ac.il/~{}alan/Publications/Publications.h
http://www.cs.tau.ac.il/~{}alan/Publications/Publications.h
http://doi.acm.org/10.1145/1599470.1599496
http://doi.acm.org/10.1145/359156.359164
http://doi.acm.org/10.1145/41958.41962

112

MITCHELL, J. S. B.; PAPADIMITRIOU, C. H. The weighted region problem: finding shortest
paths through a weighted planar subdivision. J. ACM, ACM, New York, NY, USA, v. 38, p.
18–73, January 1991. Available from Internet: <http://doi.acm.org/10.1145/102782.102784>.

MOLNAR, P.; STARKE, J. Control of distributed autonomous robotic systems using principles
of pattern formation in nature and pedestrian behavior. IEEE Trans Syst Man Cybern B
Cybern, v. 31, n. 3, p. 433–5, 2001.

MUSSE, S. R.; CASSOL, V. J.; JUNG, C. R. Towards a quantitative approach for comparing
crowds. Computer Animation and Virtual Worlds, John Wiley & Sons, Ltd, v. 23, n. 1, p.
49–57, 2012. Available from Internet: <http://dx.doi.org/10.1002/cav.1423>.

MUSSE, S. R.; THALMANN, D. A model of human crowd behavior: Group inter-relationship
and collision detection analysis. In: Proc. Workshop of Computer Animation and
Simulation of Eurographics. [S.l.: s.n.], 1997. (WCASE’97), p. 39–51.

NARAIN, R. et al. Aggregate dynamics for dense crowd simulation. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 28, p. 122:1–122:8, December 2009. Available from Internet:
<http://doi.acm.org/10.1145/1618452.1618468>.

NIEUWENHUISEN, D.; KAMPHUIS, A.; OVERMARS, M. H. High quality navigation
in computer games. Sci. Comput. Program., Elsevier North-Holland, Inc., Amsterdam,
The Netherlands, The Netherlands, v. 67, p. 91–104, June 2007. Available from Internet:
<http://portal.acm.org/citation.cfm?id=1265616.1265864>.

NINOMIYA, K. et al. Planning approaches to constraint-aware navigation in dynamic
environments. Computer Animation and Virtual Worlds, p. n/a–n/a, 2014. Available from
Internet: <http://dx.doi.org/10.1002/cav.1622>.

NOLBORIO, H.; NANIWA, T.; ARIMOTO, S. A quadtree-based path-planning algorithm for
a mobile robot. v. 7, p. 555–574, 1990.

Ó’DÚNLAING, C.; YAP, C.-K. A "retraction" method for planning the motion of a disc. J.
Algorithms, v. 6, n. 1, p. 104–111, 1985.

PAI, D. K.; REISSELL, L.-M. Multiresolution rough terrain motion planning. IEEE
T. Robotics and Automation, v. 14, n. 1, p. 19–33, 1998. Available from Internet:
<http://dblp.uni-trier.de/db/journals/trob/trob14.html#PaiR98>.

PARIS, S.; PETTRE, J.; DONIKIAN, S. Pedestrian reactive navigation for crowd simulation:
a predictive approach. Computer Graphics Forum, Blackwell Publishing, v. 26, n. 3, p.
665–674, sep. 2007. Available from Internet: <http://www.irisa.fr/prive/donikian/articles/
EG07/EG07_final.pdf>.

PATIL, S. et al. Directing crowd simulations using navigation fields. IEEE Trans.
Vis. Comput. Graph., v. 17, n. 2, p. 244–254, 2011. Available from Internet: <http:
//doi.ieeecomputersociety.org/10.1109/TVCG.2010.33>.

PEARL, J. Heuristics: intelligent search strategies for computer problem solving. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1984.

http://doi.acm.org/10.1145/102782.102784
http://dx.doi.org/10.1002/cav.1423
http://doi.acm.org/10.1145/1618452.1618468
http://portal.acm.org/citation.cfm?id=1265616.1265864
http://dx.doi.org/10.1002/cav.1622
http://dblp.uni-trier.de/db/journals/trob/trob14.html#PaiR98
http://www.irisa.fr/prive/donikian/articles/EG07/EG07_final.pdf
http://www.irisa.fr/prive/donikian/articles/EG07/EG07_final.pdf
http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.33
http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.33

113

PELECHANO, N.; ALLBECK, J. M.; BADLER, N. I. Controlling individual agents in high-
density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2007. (SCA ’07), p. 99–108. Available from Internet: <http://portal.acm.org/
citation.cfm?id=1272690.1272705>.

PETTRé, J.; LAUMOND, J.-P.; THALMANN, D. A navigation graph for real-time crowd
animation on multilayered and uneven terrain. In: Proc. The First International Workshop
on Crowd Simulation. [S.l.: s.n.], 2005. (V-CROWDS’05).

PRESS, W. H. et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3.
ed. New York, NY, USA: Cambridge University Press, 2007.

PRESTES, E. et al. Exploration technique using potential fields calculated from relaxation
methods. In: Intelligent Robots and Systems. Proceedings. 2001 IEEE/RSJ International
Conference on. [S.l.: s.n.], 2001. (IROS’12, v. 4), p. 2012–2017 vol.4.

PRESTES, E.; IDIART, M. A. Sculping potential fields in the bvp path planner. In: IEEE Int.
Conf. on Robotics and Biomimetics. [S.l.: s.n.], 2009. (ROBIO’09).

PRESTES, E.; IDIART, M. A. Computing navigational routes in inhomogeneous environments
using bvp path planner. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. [S.l.: s.n.], 2010. (IROS’10).

PRESTES, E. et al. Exploration technique using potential field calculated from relaxation
methods. Intelligent Robots and Systems (IROS), v. 4, p. 2012–2017, 2001.

REYNOLDS, C. Steering behaviors for autonomous characters. In: Game Developers
Conference 1999. [s.n.], 1999. (GDC’99). Available from Internet: <http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.16.8035>.

REYNOLDS, C. W. Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, v. 21, n. 4, p. 25–34, 1987. Available from Internet: <http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7069>.

SALOMON, B. et al. Interactive navigation in complex environments using path
planning. In: Proceedings of the 2003 symposium on Interactive 3D graphics.
New York, NY, USA: ACM, 2003. (I3D ’03), p. 41–50. Available from Internet:
<http://doi.acm.org/10.1145/641480.641491>.

SCHELHORN, T. et al. Streets: An agent-based pedestrian model. In: RIZZI, P. (Ed.). Proc.
of the Conference on Computers in Urban Planning and Modelling. [S.l.: s.n.], 1999.
(CUMPUM’99).

SCHWARTZ, J. T.; SHARIR, M. On the piano movers’ problem: III. coordinating the motion
of several independent bodies. Int. J. Robot. Res., v. 2, n. 3, p. 97–140, 1983.

SEWALL, J. et al. Continuum traffic simulation. Computer Graphics Forum, v. 29, p.
439–448, 2010.

SHAO, W.; TERZOPOULOS, D. Autonomous pedestrians. In: SIGGRAPH: ACM SPECIAL
INTEREST GROUP ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES.
SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. New York, NY, USA: ACM Press, 2005. (SCA ’05), p. 19–28.

http://portal.acm.org/citation.cfm?id=1272690.1272705
http://portal.acm.org/citation.cfm?id=1272690.1272705
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.8035
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.8035
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7069
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7069
http://doi.acm.org/10.1145/641480.641491

114

SHILLER, Z.; YAMANE, K.; NAKAMURA, Y. Planning motion patterns of human figures
using a multi-layered grid and the dynamics filter. In: IEEE International Conference on
Robotics and Automation. [S.l.: s.n.], 2001. (ICRA ’01), p. 1–8.

SILVEIRA, R. et al. Natural steering behaviors for virtual pedestrians. Vis. Comput.,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, v. 26, p. 1183–1199, September 2010.
Available from Internet: <http://dx.doi.org/10.1007/s00371-009-0399-0>.

SILVEIRA, R. et al. Path-planning for rts games based on potential fields. In: Proceedings
of the Third international conference on Motion in games. Berlin, Heidelberg: Springer-
Verlag, 2010. (MIG’10), p. 410–421. Available from Internet: <http://portal.acm.org/citation.
cfm?id=1948395.1948446>.

SILVEIRA, R.; PRESTES, E.; NEDEL, L. Fast path planning using multi-resolution boundary
value problems. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. [S.l.: s.n.], 2010. (IROS’10), p. 4710–4715.

SILVEIRA, R.; PRESTES, E.; NEDEL, L. P. Managing coherent groups. Comput. Animat.
Virtual Worlds, John Wiley and Sons Ltd., Chichester, UK, v. 19, p. 295–305, September
2008. Available from Internet: <http://portal.acm.org/citation.cfm?id=1410368.1410399>.

STENTZ, A.; MELLON, I. C. Optimal and efficient path planning for unknown and dynamic
environments. Int. J. of Robotics and Automation, v. 10, p. 89–100, 1993.

STERREN, W. van der. Terrain reasoning for 3D action games. Game Programming Gems 2,
p. 307–316, 2001.

SUD, A. et al. Real-time navigation of independent agents using adaptive roadmaps. In:
Proceedings of the 2007 ACM symposium on Virtual reality software and technology.
New York, NY, USA: ACM, 2007. (VRST ’07), p. 99–106. Available from Internet:
<http://doi.acm.org/10.1145/1315184.1315201>.

SUGIYAMA; NAKAYAMA, A.; HASEBE, K. 2-dimensional optimal velocity models for
granular flows. p. 155–160, 2001.

THALMANN, D. Populating virtual environments with crowds. In: Proceedings of the
2006 ACM international conference on Virtual reality continuum and its applications.
New York, NY, USA: ACM, 2006. (VRCIA ’06), p. 11–11. Available from Internet:
<http://doi.acm.org/10.1145/1128923.1128925>.

THALMANN, D.; MUSSE, S. R. Crowd simulation. [S.l.]: Springer, 2007. I-XII, 1-242 p.

TORCHELSEN, R. P. et al. Real-time multi-agent path planning on arbitrary surfaces. In:
Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and
Games. New York, NY, USA: ACM, 2010. (I3D ’10), p. 47–54. Available from Internet:
<http://doi.acm.org/10.1145/1730804.1730813>.

TREUILLE, A.; COOPER, S.; POPOVIć, Z. Continuum crowds. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 25, p. 1160–1168, July 2006. Available from Internet:
<http://doi.acm.org/10.1145/1141911.1142008>.

TREVISAN, M. et al. Exploratory navigation based on dynamic boundary value problems.
Journal of Intelligent and Robotic Systems, v. 45, p. 101–114, 2006.

http://dx.doi.org/10.1007/s00371-009-0399-0
http://portal.acm.org/citation.cfm?id=1948395.1948446
http://portal.acm.org/citation.cfm?id=1948395.1948446
http://portal.acm.org/citation.cfm?id=1410368.1410399
http://doi.acm.org/10.1145/1315184.1315201
http://doi.acm.org/10.1145/1128923.1128925
http://doi.acm.org/10.1145/1730804.1730813
http://doi.acm.org/10.1145/1141911.1142008

115

TSIOTRAS, P.; BAKOLAS, E. A Hierarchical On-Line Path-Planning Scheme Using
Wavelets. In: European Control Conference. Kos, Greece: [s.n.], 2007. (ECC’07), p.
2807–2812.

UBISOFT. Assassin’s creed. 2007.

WANG, T.-K.; DANG, Q.; PAN, P.-Y. Path planning approach in unknown environment.
International Journal of Automation and Computing, Institute of Automation, Chinese
Academy of Sciences, co-published with Springer-Verlag GmbH, v. 7, n. 3, p. 310–316–316,
aug. 2010. Available from Internet: <http://dx.doi.org/10.1007/s11633-010-0508-6>.

WOLINSKI, D. et al. Parameter estimation and comparative evaluation of crowd simulations.
Comput. Graph. Forum, v. 33, n. 2, p. 303–312, 2014. Available from Internet:
<http://dx.doi.org/10.1111/cgf.12328>.

WU, C.-P.; LEE, T.-T.; TSAI, C.-R. Obstacle avoidance motion planning for mobile robots in
a dynamic environment with moving obstacles. Robotica, Cambridge University Press, New
York, NY, USA, v. 15, n. 5, p. 493–510, 1997.

YEH, H. et al. Composite agents. In: Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2008. (SCA ’08), p. 39–47. Available from Internet:
<http://portal.acm.org/citation.cfm?id=1632592.1632599>.

YERSIN, B. et al. Real-time crowd motion planning: Scalable avoidance and group behavior.
Vis. Comput., Springer-Verlag New York, Inc., Secaucus, NJ, USA, v. 24, p. 859–870,
September 2008. Available from Internet: <http://portal.acm.org/citation.cfm?id=1410249.
1410252>.

YERSIN, B. et al. Crowd patches: populating large-scale virtual environments for real-time
applications. In: Proceedings of the 2009 symposium on Interactive 3D graphics and
games. New York, NY, USA: ACM, 2009. (I3D ’09), p. 207–214. Available from Internet:
<http://doi.acm.org/10.1145/1507149.1507184>.

ZHANG, Y.-P. et al. Resolving local minima problem of potential field. In: International
Conference on Virtual Reality Continuum and Its Applications in Industry. New
York, NY, USA: ACM, 2010. (VRCAI ’10), p. 339–346. Available from Internet:
<http://doi.acm.org/10.1145/1900179.1900250>.

http://dx.doi.org/10.1007/s11633-010-0508-6
http://dx.doi.org/10.1111/cgf.12328
http://portal.acm.org/citation.cfm?id=1632592.1632599
http://portal.acm.org/citation.cfm?id=1410249.1410252
http://portal.acm.org/citation.cfm?id=1410249.1410252
http://doi.acm.org/10.1145/1507149.1507184
http://doi.acm.org/10.1145/1900179.1900250

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Applications
	1.3.1 Games
	1.3.2 Movies
	1.3.3 Robotics
	1.3.4 Pedestrian Simulation

	1.4 Organization

	2 Related Work
	2.1 Grid Based Algorithms
	2.2 Roadmap
	2.2.1 Visibility Graphs
	2.2.2 Probabilistic Roadmap Method
	2.2.3 Rapidly Exploring Random Trees
	2.2.4 Waypoints

	2.3 Potential Fields
	2.4 Crowd Simulation
	2.5 Collision Avoidance
	2.6 Discussion

	3 Configurable Flows
	3.1 Overview
	3.2 Background
	3.3 Global Path Plannner
	3.4 Local Path Planner
	3.4.1 The Agent's Local Map
	3.4.2 Updating Local Maps from Global Maps
	3.4.3 Motion Generation

	3.5 Algorithm
	3.6 Preferential Regions
	3.6.1 Configuring the Flows
	3.6.2 Paths Following Terrain Elevation

	3.7 The Flatness Problem

	4 Hierarchical Configurable Flows
	4.1 Hierarchical Configurable Flows
	4.2 Multigrid Methods for Boundary Value Problems
	4.2.1 Problem Discretization
	4.2.2 From One-Grid, through Two-Grid to Multigrid
	4.2.3 Multigrid Method
	4.2.3.1 V-cycle method
	4.2.3.2 W-cycle method

	4.2.4 Full Multigrid Method

	4.3 Developing Our Solver
	4.4 Computing the Potential Field

	5 Results
	5.1 Configurable Flows
	5.1.1 Reaching the Same Goal in Different Ways
	5.1.2 Varying the Size of the Agent Map
	5.1.3 Dealing with Dynamic Obstacles
	5.1.4 Generating Realistic Paths

	5.2 Solution to the Flatness Problem
	5.2.1 Considerations about Performance

	5.3 Hierarchical Configurable Flows
	5.3.1 Tuning the Algorithm
	5.3.2 Choosing the Number of Grids
	5.3.3 Path quality
	5.3.3.1 Paths produced by the global planner
	5.3.3.2 Paths produced by the local planner

	5.3.4 Considerations about Performance

	5.4 Discussion

	6 Conclusions
	6.1 Future Work

	7 Contributions
	8 Supplementary Material: Fundamental Concepts
	8.1 System of Linear Equations
	8.2 Iterative Methods
	8.2.1 Jacobi Method
	8.2.2 Gauss-Seidel Method
	8.2.3 Successive Over-Relaxation Method

	References

