
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ADIEL SEFFRIN SARATES JR.

Optimizing Two-dimesional Shallow Water
Based Flood Hydrological Model with

Stream Architectures

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Philippe O. A. Navaux

Porto Alegre
2015

CIP – CATALOGING-IN-PUBLICATION

Sarates Jr., Adiel Seffrin

Optimizing Two-dimesional Shallow Water Based Flood Hy-
drological Model with Stream Architectures / Adiel Seffrin
Sarates Jr.. – Porto Alegre: PPGC da UFRGS,

.

79 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS,

. Advisor: Philippe O. A. Navaux.

1. Hydrological Model. 2. Stream Architecthures. 3. GPGPU.
4. LISMIN. I. Navaux, Philippe O. A.. II. Optimizing Two-
dimesional Shallow Water Based Flood Hydrological Model with
Stream Architectures.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Die Realität ist für diejenigen,
die ihre Träume nicht aushalten”

— SPIELZEITSPRUCH SAISON 2013/2014 RESIDENZ THEATHER MÜNCHEN

— MOTE DA TEMPORADA 2013/14 DO RESIDENZ THEATHER DE MUNIQUE

AGRADECIMENTOS

Agradeço a todos que de alguma forma contribuíram para a realização deste trabalho.
Desde o apoio e palavras de incentivo dos familiares durantes estes dois anos de pesquisa
e aprendizado.

Aos amigos e colegas que ocuparam seu tempo com a leitura, correções e sugestões
para aprimorar os resultados obtidos e a uma melhor clareza na exposição das ideias.
Em especial, agradeço à Francis Birck Moreira pela correção do inglês nos capítulos
os quais pôde e ao Rodrigo Kassick pelas dicas de programação necessárias. Agradeço
também aos demais integrantes do GPPD por todo suporte e conversas, onde foi possível
ver pontos diferentes para tornar este trabalho mais abrangente. Agradeço ao professor
Philippe Navaux pela oportunidade de desenvolver este trabalho.

Aproveito para agradecer aos professores Walter Collischonn e Rodrigo Paiva, do
Instituto de Pesquisas Hidráulicas - IPH/UFRGS, pelo auxílio nos temas relacionados ao
seu campo, bem como ao professor Jeffrey Neal da universidade de Bristol, que forneceu
uma versão de seu modelo, a qual serviu como base e ponto de partida para este trabalho.

A todos amigos e também àqueles não citados, um grande abraço e obrigado por tudo.

ABSTRACT

This study aims to explore the difficulties and the benefits of using Streams architec-
tures for the simulation of hydrological events based on shallow water equations. For
this purpose, is created foundation on hydrological modeling and some classes of existing
models, heterogeneous architectures, and more specifically the two-dimensional model
based on the equations used Saint-Venan. A timeline is constructed relating the applied
optimizations beginning from the first serial model optimized for a GPU version showing
each step taken in the form of an algorithm to reach the best performance. With these
optimizations a speedup about 4 times was obtained for small areas and 10 times with a
middle level of detailing for a large area with a high level of detailing. These results were
produced comparing the GPU performance with a CPU and 24 threads version.

Keywords: Hydrological Model, Stream Architecthures, GPGPU, LISMIN.

RESUMO

Otimizando Modelos de Inundação Bidimensionais baseados em Águas Rasas com
arquiteturas Stream.

O presente trabalho tem como objetivo explorar as dificuldades bem como os be-
nefícios da utilização de arquiteturas Streams para a simulação de eventos hidrológicos
baseados nas equações de águas rasas. Pra tal, é criado embasamento sobre modelagem
hidrológica e os algumas classes de modelos existentes, arquiteturas heterogêneas e mais
especificamente do modelo bidimensional usado baseado nas equações de Saint-Venan.
Com isso é construida a linha de tempo referente às otimizações aplicadas ao modelo
inicialmente serial até sua versão otimizada para GPUs, exibindo cada passo tomado em
forma de algoritmo para chegar ao objetivo. Com estas otimizações foi obtido um spe-
edup de quatro vezes para pequenas áreas e de 10 vezes com uma resolução média para
uma grande área com um alto nível de detalhamento, quando comparado com uma versão
de 24 threads.

Palavras-chave: Modelagem Hidrológica, Arquiteturas Stream, GPGPU, LISMIN.

LIST OF FIGURES

2.1 Time-series plots of 30-day annual-maxima series in Thames River
at Kingston. 26

2.2 Classification of hydrologic models based on the way they represent
variations of space, time and uncertainty of hydrologic systems. . . . 28

2.3 Three approaches of hydrological models. From left to right: lumped,
semi-distributed and distributed model approach. 28

3.1 One single-chip CBEA with a CPU core and eight SIMD accelerator
cores. 35

3.2 A diagram of the FPGA architecture. 35
3.3 A diagram of the GPU architecture. 36
3.4 SISD, SIMD, and stream processing compared 37
3.5 Comparative of theoretical peak power of single and double precision

for CPU and GPU . 39

4.1 Spatial representation of the finite difference using three points to
increase the model stability . 46

5.1 Flowchart of model execution steps. 50
5.2 Steps for generation of matrix H, representing the water depth of each

area in analyzed map area. 52
5.3 Visual model elements responsible for generation of simulation’s ma-

trices. 53
5.4 Steps for flow computing. 53
5.5 Event hydrograph simulated in test case. 55
5.6 Grid of Thread Blocks . 59
5.7 Pageable Data Transfer vs Pinned Data Transfer 61
5.8 Developer view of memory hierarchy with and without unified memory 63

6.1 Map areas used in this work. 66
6.2 Execution time and speedup for serial and parallel version of Glasgow

simulation in CPU. 67
6.3 Execution time and speedup for parallel version of Glasgow simula-

tion in CPU with 24 threads and GPU optimization. 68
6.4 Plots of simulated water depth over he time for OpenMp and CUDA

versions with no difference in results. 69
6.5 Execution time and speedup for serial and parallel version of Glasgow

simulation in CPU and GPU. 70

6.6 Hydrogram related to equation 6.1. 71
6.7 Execution time parallel versions of Itajaí-Açu River simulation in

CPU and GPU. 71

LIST OF TABLES

6.1 Measured improvement over time for technique on the line over col-
umn and the average time for each technique. 69

LIST OF ALGORITHMS

1 Model Pseudocode . 51
2 Serial Implementation (Timestep Computation) 53
3 Serial Implementation (Flow Discharge Computation) 54
4 Serial Implementation (New Water Level Computation) 54
5 Serial Implementation (Boundary Conditions) 55
6 OpenMp Implementation . 56
7 GPU Implementation (Allocation and Copy for matrix H) 57
8 GPU Implementation (Cuda kernels) . 58
9 GPU Implementation (Thread Control) 59
10 GPU Implementation (memory allocation) 61
11 GPU Implementation (Streams) . 62
12 GPU Implementation (Unified Memory) 63

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CBEA Cell Broadband Engine Architecture

CPU Central Processing Unit

cuBLAS CUDA Basic Linear Algebra Subroutines

CUDA Compute Unified Device Architecture

DEM Digital Elevation Model

DMA Direct memory access

FLOPS Floating-point Operations Per Second

FPGA Field Programmable Gate Array

FPGA Field Programmable Gate Array

GDDR5 Graphics Double Data Rate Type Five

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processor Unit

GR4J Modèle du Génie Rural à 4 paramètres Journalier

GSSHA Gridded Surface Subsurface Hydrologic Analysis

HBV Hydrologiska Byråns Vattenbalansavdelning

HDL Hardware Description Language

HPC High Performance Computing

HRU Hydrological Response Units

I/O Input and Ouput

LiDAR Light Detection And Ranging

LISMIN LISFLOOD Minimal version

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MOHYSE Modèle Hydrologique Simplifié à l’Extrême

MPMD Multiple Program Multiple Data

PC Personal Computer

PCI-E Peripheral Component Interconnect Express

PDE Partial Differential Equation

RAM Random Access Memory

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SMX Streaming Multiprocessor

SPMD Multiple Program Multiple Data

TOPLATS TOPMODEL based land atmosphere transfer scheme

CONTENTS

1 INTRODUCTION . 21
1.1 Problems . 21
1.2 Motivation . 22
1.3 Subject . 23
1.4 Text Organization . 23

2 HYDROLOGICAL MODELLING . 25
2.1 Flood Types . 25
2.2 Hydrological Models . 26
2.3 Model’s evolution . 26
2.4 Model Type . 27
2.5 Lumped Models . 29
2.6 Quasi-Distributed Models . 30
2.7 Distributed Models . 30
2.8 Stochastic Models . 32
2.9 Modeling Conclusion . 32

3 HETEROGENEOUS ARCHITECTURE 33
3.1 Architectural characteristics . 34
3.2 GPU Computing . 36
3.3 Conclusion of Heterogeneous Architectures 38

4 TWO-DIMENSIONAL FLOOD INUNDATION MODELING 41
4.1 Initial formulation . 41
4.2 Inertial formulation of the shallow water equations 44
4.3 Improving the stability of inertial formulation 45
4.4 Conclusion of two-dimensional flood inundation modeling 47

5 PROPOSAL OF OPTIMIZATIONS TO LISMIN MODEL FOR GPU EN-
VIRONMENT . 49

5.1 Base model and pseudo-code . 49
5.2 Serial Code . 51
5.3 CPU Parallel Code . 56
5.4 GPU Parallel Code . 56
5.4.1 GPU code recode . 57
5.4.2 GPU block management . 58
5.4.3 Gpu code with pinned memory . 60
5.4.4 GPU code with streams . 61

5.4.5 GPU code with Unified Memory . 62

6 RESULTS . 65
6.1 CPU results . 65
6.2 GPU results . 66
6.2.1 Summarized results . 66
6.2.2 Resources . 68
6.3 Scalability results . 69

7 ANALYSIS AND CONCLUSIONS . 73

REFERENCES . 75

21

1 INTRODUCTION

Flood events in urban areas are becoming more frequent as a consequence of several
factors including population growth, increasing pressure on communities to develop on
flood prone areas, climate change which has magnified the intensity of rainfall, sea level
rise which threatens coastal areas, and decaying or poor infrastructure. The effects of
inundations vary from wetlands to extreme flood events that result in entire cities with
underwater houses. These events generate economic and social impacts, high cost aid
programs in addition to the infrastructural damages. Warning systems and action plans in
case of flooding are already part of the daily life of dozens of countries. Unfortunately, to
be prepared for all kinds of flood events, a high investment in several areas is necessary,
which makes it impossible for many societies. To overcome this issue, it is necessary
to understand what are the principal flood events that put in risk determined location.
The most familiar type of flood event is the pluvial flooding which occurs when intense
rainfall’s runoff cannot drain away the water quickly enough. Understanding this and
knowing which are the flood events that have more probability to happen, the entities
responsible for warnings and safety can focus on these problems.

In order to predict this range of events, flood models need to support emergency man-
agement directly and for urban planning. Flood models can help to identify the most
effective risk reduction measures through comparative analysis of the socio-economic
and environmental consequences of each alternative found.

Future flood impacts can be limited through risk reduction measures such as changes
in land use and building codes, selective relocation of vulnerable assets, improvement of
flood defenses, emergency awareness and insurance. Moreover, flood inundation models
play a central role in the evaluation, selection and in some cases the implementation of
these measures.

1.1 Problems

As hydrological model simulations need to have a short enough time to achieve a
final state and produce useful results, it is necessary to develop models that compute this

22

simulation in the fastest possible way.

The major problems to obtain this efficiency is due to the tenporal data dependencies
related to environmental models, which evolve through time, making it impossible to
compute a future step without knowledge of current simulation state. Moreover the size
of analyzed area can difficult simulation as we need to manage this data to compute in
correct order. However, although each simulation step is necessary to compute the next
one, computing different environmental effects of the same step that can be considered
independent to each other (e.g. the flow between two different cells) can be parallelized.
Working with large area models allows us to use a parallel approach in the analyzed area
and improve the computational time to find the next simulation state.

In order to speed up such models, the utilization of hardware that uses Stream ar-
chitectures introduces extra work due to reported difficulty to recode these models when
compared with other methods that do not need external hardware to run (NEAL et al.,
2010). Stream architectures explore the concurrency in processing applications where the
applications are considered as a sequence of computation instructions (RIXNER, 2001).

In this way, the main theme of this dissertation is related to the impact and influence
of stream architectures in the behavior and performance of such models.

1.2 Motivation

With the evolution and advances of processing resources, several applications could
take advantage of these new technologies. The possibility to run portions of your applica-
tion in different processing elements (i.e. many processors in the same system, different
cores in the same processor) enables the application to achieve its final stage faster given
a good parallelization. This opportunity to speed up applications allows scientific and
business communities to scale out their applications, expanding the horizons of research
and efficiency. Execution time has always been a concern for both communities.

An example of this can be seen in the gaming industry. It leveraged the development
of graphic cards to accelerate and improve the quality of created games, and as a collateral
effect also enabled a new way to compute non-game applications. The high performance
achievable with graphic cards is possible due to the type of processing available, where
we apply the same operation to different data in parallel.

As the High Performance Computing (HPC) community reaches to scientific applica-
tions, many solutions were developed to improve the performance of scientific simulations
through the use of new architectures. Once the gaming industry has shown the great ad-
vance in applying small instructions to several data in games using its Graphics Processor
Unit (GPU), it became obvious that a large portion of scientific simulations could also
take advantage of GPUs. This work aims to explore the benefits of this architecture when
using hydrological models focused in flood events.

23

1.3 Subject

Given the performance problems of the models, we defined the main subjects of this
work as listed below. Analysis of potential bottlenecks in hydrological simulations: we
search the critical areas of a given model applying some known resolution method and
consider manners to solve or minimize them. Analysis of potential independent portions
of model: we look for improvements in the instructions call aiming for a better simula-
tion performance for all related architectures used. Evaluation of difficulty to re-code a
hydrological model: In order to be able to execute simulations in a stream architecture,
we evaluate the difficulty to do this translation of the original model’s code. Evaluation
of global performance: we analyze the losses or gains in performance using one of these
architectures when compared with the original model architectures.

1.4 Text Organization

In Chapter 2 we describe the state-of-the-art of hydrological modeling. The differ-
ences among some flood types are introduced as well as a classification of hydrological
models based on the way they represent variations of space and time giving examples
of each model. In Chapter 3 we introduce the state-of-the-art about heterogeneous ar-
chitectures which provides tools to speed up several applications. A review of Flynn’s
taxonomy is made and features some of the components used to create heterogeneous
architectures. In Chapter 4, we make a study of the model that was used to evaluate this
work, showing the main equations of shallow water models as well as the latest mathe-
matical and computational improvements, and why they are made. In Chapter 5 we detail
which optimizations can be made in codes based in stream architectures to take advan-
tage in simulation of this specific hardware. In Chapter 6 , the results of optimization
cited in the last chapter are shown along with their respective analysis. And finally, the
last Chapter is reserved for conclusions of this work.

24

25

2 HYDROLOGICAL MODELLING

In this chapter, we define basic concepts, such as the types and differences among
flood types. With these concepts we can move on to the definition and evolution of hy-
drological models and then to a detailed explanation of the main models used today.

2.1 Flood Types

Flooding can take many forms. Between the most familiar pluvial flood and the prob-
ably least familiar, the groundwater flooding, there are several types of floods. The plu-
vial flooding occurs when the urban drains cannot drain the water from a intense rainfall
quickly enough. When this flooding event merges the rainfall water with another terrain
source, like small Urbain watercourses, this event is called a surface-water flooding. In
some cases where there are combined sewer and storm draining systems, storm water can
cause sewage to flow into streets and rivers, contributing to surface water flooding. There
are cases in which the rainfall is heavier than usual causing a very quick inundation. This
event is called flash flooding. The Bobscastle flood in 2004 is a well known example
(GOLDING; CLARK; MAY, 2005).

For communities that live near rivers, the most common flood event is called fluvial
flooding. It occurs when there is too much water in a river and it spills on to adjacent flood
plains. This flood event has a big impact for families that lives in the shore of these rivers.
Besides this, weather systems interact with the oceans creating storm surges and large
waves. When combined with high tides or earthquakes, these can overtop and undermine
sea defenses and lead to coastal erosion and flooding. That is the flood event that hit India
in 2004 and 2007 (GOSLING et al., 2011).

Finally, maybe the least familiar flooding comes from a rising water table. When the
water table reaches the surface and more rain falls, groundwater flooding can happen.
(HARDAKER; COLLIER, 2013)

26

2.2 Hydrological Models

Hydrological modeling has become an indispensable tool for studying flood-related
processes and water management in catchments. Extreme flood events are becoming
common and faster warnings are necessary so that appropriate actions can be taken. Fig-
ure 2.1 shows the distribution of the water flow in River Thames at Kingston. In the last
100 years, the river has had a huge water flow several times (ROBSON, 2002).

Computer based hydrological models have been developed and applied at an ever in-
creasing rate during the past four decades, due to the improvement of models and method-
ologies that are continuously emerging from the research community. The demand for
improved tools increases with the increasing pressure on water resources. These mod-
els help to forecast events simulating the duration of inundation, flood depth, velocity
and associated water forces. Monetary losses are primarily scaled by flood depth and
duration, while flood velocity and associated force is important for structural damage as-
sessment. High velocity flows occur on steep topography, such as alluvial fans found
in arid regions, with dam-break and dike-break flooding, and with coastal flooding from
tsunami and storm surge (SCHUBERT; SANDERS, 2012). According to Nicandrou et.

al. (NICANDROU, 2011), the hydrological models may vary in terms of how processes
are represented, in time and in space, the adopted scales and methods of solution to ap-
plied equations. More than that, all hydrological models can be classified according to its
space dimensions, time and randomness.

2.3 Model’s evolution

Hydrological modeling is more than a hundred years old, with the firsts insight of
mathematical models for relating storm runoff to rainfall intensity. Over this period,
several concepts and models have been developed. The 30’s ∼ 40’s was a ’theoretical

period’, where researchers like Sherman , Horton and Keulegan among others developed
important theories. One of these theories is know as Horton’s law, which constitutes the

Figure 2.1: Time-series plots of 30-day annual-maxima series in Thames River at
Kingston.

Source: (ROBSON, 2002)

27

foundation of quantitative geomorphology. The next years could be called as ’develop-

ment of concepts period’. Until the middle of the 1960s, hydrologic modeling primarily
involved the development of concepts, theories and models of individual components of
the hydrologic cycle, such as overland flow, channel flow, infiltration, depression storage,
evaporation, interception, subsurface flow, and base flow (SINGH; WOOLHISER, 2002).

In the end of 20’s century, between the year of 1970 and 2000, several papers with a
now solid ground were published. The hydrological models had been divided in groups
such as physically based, conceptual, process-oriented, lumped, distributed and more.
With its evolution and the advance of tools to get data, new models issues have emerged.
Parameters estimative (SCHUMANN, 1993), parametrization, calibration and validation
(REFSGAARD, 1997) (SAHOO; RAY; CARLO, 2006), how to scale the surface to be an-
alyzed (BLÖSCHL; SIVAPALAN, 1995) are now a intrinsic part of hydrologic research.

Nowadays, to optimize these models, in addition to new approaches, new resources
to compute them are necessary. Models that execute computations in a high precision
for big scales demand powerful units of processing. In this way, the older CPUs could
not compete with these models in a satisfactory time. With the advance of computational
architectures, new model implementations are emerging, decreasing the execution time
without losing the required precision.

2.4 Model Type

In Bates et.al. (BATES, 2012) a quick overview about the flood research was made.
In the paper he argues that in the last 10 years, flood inundation research had rapidly
moved from being a ‘data-poor’ to a ‘data-rich’ science, with promising possibilities for
model development and process insight. Until the late 1990s, the only data available to
build, parameterize, calibrate and validate hydraulic models were from limited ground
topographic surveys and sparse ground gauging stations with spacings in the ranges be-
tween 10 and 60 km. Occasionally, air photos of flooding were available, but these were
not used to test model performance in a systematic way because the available terrain data
were insufficiently detailed to provide confidence in distributed model predictions. The
errors in the then-available data and their limited information content meant that it was
very difficult to discriminate between different model physics and parameters, such that
many different models could fit the available validation data equally well yet lead to dif-
ferent future predictions or process inferences. Nowadays, these parameters are derived
directly from digital representations of the topography being easier to retrieve, refine and
analyze these data.

Citting Nicandrou et. al. (NICANDROU, 2011), "The different types of models are
separated according to the type of their processes, i.e. whether they are lumped or dis-
tributed (see Figure 2.2). The system (hydrological model) can be classified into two

28

Figure 2.2: Classification of hydrologic models based on the way they represent variations
of space, time and uncertainty of hydrologic systems.

Source: (CHOW et al., 1988)

main categories, deterministic (no randomness) and the stochastic (randomness). These
categories are then broken down into further classifications. The deterministic model is
classified as lumped (processes are assumed to be spatially uniform) or distributed (pro-
cesses vary in space). Each type is further classified as steady or unsteady depending on
variations with time."

In a majority of cases the system (catchment) characteristics, many of the processes,
the input, and even some of the boundary conditions are all lumped, but some of the
processes that are directly linked to the output are distributed - for example, the rainfall-
runoff process. These models are not fully distributed; rather they are quasi-distributed at
best. The figure 2.3 introduce these subdivisions and the next three subsections will detail
each of them.

Figure 2.3: Three approaches of hydrological models. From left to right: lumped, semi-
distributed and distributed model approach.

Source: (RESEARCH, 2006).

29

2.5 Lumped Models

A lumped model is generally described as the model which is expressed by ordinary
differential equations taking no account of spatial variability of processes, input, bound-
ary conditions and the system’s (catchments) geometric characteristics, in other words,
the lumped models treat the complete watershed as a single homogeneous element and
develop a single outflow hydrograph.

Lumped models make significant simplifications about the real world, therefore these
models require a fewer number of parameters or data to be calibrated for their operation.
Even with these simplifications, lumped models have proven to be quite successful in
simulating an observed flow hydrograph (PAUDEL; NELSON; DOWNER, 2009). One
of these simplifications is that rainfall is uniformly distributed over a watershed both spa-
tially and temporally over a given time period. We know that this rainfall distribution
does not occur in the real world watershed, although there might be a limited number
of cases where this might become a closer approximation (REED et al., 2004). Lumped
models assume uniform soil types, vegetation types, and land use practices over a water-
shed. This is a significant assumption as the infiltration properties that are often governed
by the soil and land use widely vary in a watershed. Mean aerial runoff for the drainage
basin is computed by making abstractions from the mean aerial precipitation (PAUDEL
et al., 2010).

In 1932, Sherman introduced the concept of the unit hydrograph. The unit hydrograph
is the runoff that results at the downstream outlet of a drainage basin from a unit depth
(i.e. 1 inch or 1 mm) of excess rainfall for a storm of uniform intensity for a specified
duration over an entire watershed drainage (MAIDMENT; MAYS, 1988). Traditional
lumped models use this unit concept to transform this runoff to determine the total stream
flow at the basin outlet (SHERMAN, 1932).

The major benefit of using such simplified models is the ease in their calibration as
smaller number of control parameters is used and it is easy to establish some pattern
in their variation to produce desired watershed response. In general, their applicabil-
ity is limited to gauged watersheds where the expected conditions are within the his-
toric data used for calibration and no significant change in catchment conditions has oc-
curred (REED et al., 2004).

Some lumped models are listed in the current bibliography (SEILLER; ANCTIL;
PERRIN, 2011). One of them is the french model called Modèle Hydrologique Sim-

plifié à l’Extrême (MOHYSE, Hydrological Model Simplified at Extreme) (FORTIN;
TURCOTTE, 2006). The MOHYSE is a lumped conceptual model of surface flow pro-
cesses using four reservoirs which include the main processes found in more complex
models (snow accumulation and melt, evaporation and transpiration, surface runoff, in-
filtration, subsurface flow, groundwater recharge, base flow and river routing). For each

30

of these processes a simple, and in most cases linear, representation of the process is
used (LAROCQUE et al., 2010). Another recent work is the modèle du Génie Rural à 4

paramètres Journalier (GR4J, Model of Rural Engineering with 4 daily parameter). This
is a conceptual lumped four-parameter rainfall-runoff model, either lumped or gridded
application, daily rainfall-runoff model. The strongest point of this model is that it gives
good performance in a range of catchment contexts with only four calibration parameters,
besides being well established and widely used. However, it has some weaknesses. GR4J
is unable to account for partial area contributions to stream flow and has no water quality
modeling capability (PERRIN; MICHEL; ANDRÉASSIAN, 2003).

2.6 Quasi-Distributed Models

Between the lumped models and the distributed models, some authors have defined
alternative models, called quasi-distributed or semi-distributed models. These models
discretize the watershed into homogeneous sub-areas or sub-basins based on the topogra-
phy or drainage area, having a less complex spatial representation. This group of models
simulates all hydrological process within spatially non-explicit Hydrological Response
Units (HRU). Results for each HRU can be lumped within sub catchments and routed
downstream. HRUs can be defined based on soil units, land use or a combination of both.
Although the impact of environmental change is not simulated with the same spatial res-
olution as in the spatially explicit approach, these semi-distributed models still require a
considerable amount of parameters that might be difficult to obtain. A further simplifica-
tion is achieved when hydrological fluxes are simulated with the sub catchment scale as
the smallest spatial unit (BORMANN et al., 2009).

The Hydrologiska Byråns Vattenbalansavdelning model (HBV, Hydrological Agency’s
Water Balance Department model) is an example of this group. HBV model is classified
as a semi-distributed conceptual model. It consists of three main components: (1) subrou-
tines for snow accumulation and melt; (2) subroutines for soil moisture accounting; (3)
response and river routing subroutines. Data requirements and corrections are outlined.
Input data are precipitation and, in areas with snow, air temperature. The soil mois-
ture accounting procedure requires data on potential evapotranspiration (BERGSTRÖM;
SINGH et al., 1995).

2.7 Distributed Models

Unlike lumped models, spatially explicit models can be conceptual or physically
based, and can simulate both spatial and temporal variability of the watershed char-
acteristics. Besides, these models can be parameterized and validated to spatially dis-
tributed observations (limited by the constraints of the scale triplet: scaling, support and

31

extent) (BORMANN et al., 2009).

The physically based fully distributed models divide the entire basin into elementary
unit areas such as grid cells and flows are passed/routed from one grid cell to another
as water drains through the basin. These models take an explicit account of spatial vari-
ability of processes, input, boundary conditions, and/or system (catchment) characteris-
tics (NICANDROU, 2011).

This allows the heterogeneity of the watershed to be simulated at each of the grid cells.
Grid resolution is generally chosen in such a way that it is small enough to represent the
spatial variation of major runoff processes such as rainfall, infiltration, transformation,
etc., but large enough to be computationally practical (PAUDEL et al., 2010). The re-
lationship between rainfall and runoff is a complicated process which is defined by nu-
merous parameters, each with inherent uncertainties. To better incorporate the variations
and uncertainties involved in defining a watershed response to the rainfall, a physically
based distributed model is always preferable. These models, because of the larger com-
putational requirements, add a massive computational burden. Historically, these compu-
tational resources were unavailable to general practitioners. With the advent of powerful
computers, numerous quasi-distributed and distributed hydrologic models are emerging
and many claim to be the best model, or at least capable of solving a wide variety of
problems. Between several models, some models are listed below:

The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) is a physically based,
distributed-parameter hydrologic model intended to identify runoff mechanisms and sim-
ulate surface water flows in watersheds. The GSSHA model is capable of simulating
stream flow generated from Hortonian runoff, saturated source areas, exfiltration, and
groundwater discharge to streams. The model employs mass-conserving solutions of par-
tial differential equations (PDEs) and closely links the hydrologic compartments to assure
an overall mass balance and correct feedback. (PAUDEL; NELSON; DOWNER, 2009)

The TOPMODEL based land atmosphere transfer scheme (TOPLATS) is a spatially
explicit, grid based, time continuous, and multi-scale model (PETERS-LIDARD; ZION;
WOOD, 1997). It combines soil-atmosphere-transfer-scheme, calculating the local scale
vertical water fluxes, with the TOPMODEL approach which laterally redistributes the
water in the catchment. While the processes within the lower atmosphere are described
in a physically based way, the soil water flow is simulated using an approximation of the
Richards’ equation for a limited number of soil layers. Inter-flow as well as a routing
routine is not integrated into the model. Base flow is calculated using a recession function
based approach (BORMANN et al., 2009) (BEVEN; KIRKBY, 1979).

32

2.8 Stochastic Models

During the last few decades, several types of stochastic models have been devel-
oped and proposed for modeling hydrological time series and generating synthetic stream
flows. Some of such stochastic models are autoregressive (AR), Moving Average, Au-
toregressive Moving Average, and Autoregressive Integrated Moving Average (BHAT;
MILLER, 1972) (HABERLANDT; RADTKE, 2014) . These models are called system
theoretic transfer function models because they attempt to establish a linkage between sev-
eral phenomena without internal description of the physical processes involved. Broadly,
the stochastic models are classified as Autoregressive Moving Average models, disag-
gregation models, and models based on the concept of pattern recognition (LOHANI;
KUMAR; SINGH, 2012). Stochastic models explicitly consider the probabilistic nature
of model inputs and parameters. Results take the form of probability distributions or pro-
cesses rather than single numbers. These models have the advantage of accounting for
the stochasticity inherent in real systems. However, it has some limitations, as probability
distributions must be estimated, synthetic time series generated, the presentation of results
is more difficult, and there are difficulties reproducing persistence (Hurst phenomenon)
and non-stationarity of time series (HAROU et al., 2009).

2.9 Modeling Conclusion

With these concepts we are able to define the main subject of this work with more de-
tails. The model used as test case is defined as a distributed model, however it is a reduced
version of a bigger model. This reduction was made to analyze only the computational
part of this model in some heterogeneous architecture, which will be studied and detailed
in the following chapter.

33

3 HETEROGENEOUS ARCHITECTURE

The history of the development and practical application of hydrology and other envi-
ronmental models has been closely aligned with the development of computer hardware
and software. While there has always been a focus on the scientific aspects of model
improvements (BEVEN, 2001), there have also been constraints on what can be achieved
given the available computing power.

Along the decades of 1960 and 1970, according with Tristam (TRISTRAM; HUGHES;
BRADSHAW, 2014) when the computational models started to be developed, access to
mainframe digital computers was largely restricted to universities or large state agen-
cies, and even those computers were relatively slow and lacked memory in comparison
to modern computers. Consequently the development made within research institutions
were generally unavailable to practicing scientists and engineers.

With the increased availability and use of desktop computers (PCs) through the 80’s,
it was possible for the environmental models to become a part of the everyday toolbox
of scientific and engineering practitioners. Until the 90’s, many that proposed scientific
developments remained constrained by computing limitations and were still not generally
available for practical use.

However, it was only around 2005 that it became practical to run complex, spatially
detailed models on PCs. Computer processors are continuously getting faster and more
complex. As well as the drive for scientific advancement, the demand for faster proces-
sors can be attributed to the ever increasing computation requirements of the research,
industrial, business, and entertainment sectors. In the past, computer users simply waited
for reliable increases in processor speeds to handle computation problems that were not
really feasible at the time. However, it is believed that the single-core processors have
hit the power wall (MEENDERINCK; JUURLINK, 2009), meaning that the single-core
frequency improvements can no longer be easily made because of the power and heat
constraints (ROSS, 2008). CPU manufacturers have then changed their focus from single-
core processors to multicore processors.

With the growth in computing power and data, also grows the willingness to run the
hydro-meteorological simulations at greater model resolution as well as the use of new

34

archiving and backup services for historical analysis available in remote data centers in
the cloud fashion. Moreover, major hardware vendors promote highly parallel, many-
core and power-efficient computing devices, focusing on low power computing cores
rather than increasing their complexity and clock frequency, as well as new computing
approaches such as General Purpose Graphics Processing Unit (GPGPU) based com-
puting, Cell B.E. or Field Programmable Gate Array (FPGA). These new architectures
bring the current tendency to increase performance by parallelism instead of clock fre-
quency. This means that increased performance must come from multi-chip, multi-core
or multi-context parallelism. Flynn’s taxonomy defines four levels of parallelism in hard-
ware (BRODTKORB et al., 2010):

1. Single Instruction Single Data (SISD)

2. Single Instruction Multiple Data (SIMD)

3. Multiple Instruction Single Data (MISD)

4. Multiple Instruction Multiple Data (MIMD)

In addition, two subdivisions of MIMD are defined:

1. Single Program Multiple Data (SPMD)

2. Multiple Program Multiple Data (MPMD)

However, to benefit from modern computing architectures, applications and data struc-
tures have to be adapted properly. In other words, legacy applications simply cannot take
full advantage of the new computing hardware as they have to be often rewritten or imple-
mented from scratch in a multi-threaded or multi-process manner to take full advantage
of the hardware. (KUROWSKI; KULCZEWSKI; DOBSKI, 2011)

3.1 Architectural characteristics

In this section, some features of Cell BE, FPGA and GPU architectures are detailed.

The single Cell Broadband Engine Architecture (CBEA) chip, illustrated in Figure
3.1, is a multi-core microprocessor, it means that is a micro-architecture that combines
a general-purpose Power Architecture core of modest performance (also called Power
Processing Element - PPE in figure 3.1) with streamlined co-processing elements (Spe-
cialized Processing Element - SPE). It consists of a traditional CPU core and eight SIMD
accelerator cores. It is a very flexible architecture, where each core can run separated pro-
grams in a MPMD fashion and communicate through a fast on-chip bus (EIB). Its main
design criteria has been made to maximize performance while consuming a minimum
amount of power. It greatly accelerates multimedia and vector processing applications, as
well as many other forms of dedicated computation.

A field-programmable gate array (FPGA), illustrated in Figure 3.2, is an integrated

35

Figure 3.1: One single-chip CBEA with a CPU core and eight SIMD accelerator cores.

Source: (SCHARFE; PIELOT; SCHREIBER, 2010).

circuit designed to be configured by a customer or a designer after manufacturing—hence
"field-programmable". Consisting of an array of logic blocks in combination with a stan-
dard multi-core CPU. FPGAs can also incorporate regular CPU cores on-chip, making
it a heterogeneous chip by itself. The FPGA configuration is generally specified using a
hardware description language (HDL), similar to the one used for an application-specific
integrated circuit (ASIC). They offer fully deterministic performance and are designed for
high throughput, for example, in telecommunication applications.

Figure 3.2: A diagram of the FPGA architecture.

Source: cursos.olimex.cl/fpga/

In contrast to modern CPUs, which follow the multiple instruction, multiple data ar-
chitecture, graphics processing units (GPUs) are built as massively parallel processors
using a single instruction, multiple data (SIMD) architecture. Driven primarily by the
computer gaming industry, commodity GPUs have become powerful and highly paral-
lel computation devices. In recent years, their increased programmability has made them

36

attractive for general purpose on computation, and GPU manufacturers have been improv-
ing the ability of GPUs to perform such computations efficiently. Arguably, a solution to
existing efficiency problems in uncertainty environmental modeling is the use of powerful
GPUs instead of effective accelerators for the problems that map well to a SIMD archi-
tecture (TRISTRAM; HUGHES; BRADSHAW, 2014). The architecture of the NVIDIA
GK100 is illustrated in figure 3.3. This device consists in 13 multiprocessor that shares an
L2 cache and has a L1 cache integrated to share data among all the proccesing elements
contained within them. It also contains a global DDR5 memory.

Figure 3.3: A diagram of the GPU architecture.

Source: http://techreport.com/review/22989/a-brief-look-at-nvidia-gk110-graphics-chip

3.2 GPU Computing

The first GPUs were designed as graphics accelerators cards, supporting only specific
fixed-function pipelines. Starting in the late 1990s, the hardware became increasingly
programmable. In the next years, artists and game developers weren’t the only ones doing
ground-breaking work with the technology: Researchers were tapping on its excellent
floating point performance. The General Purpose GPU (GPGPU) movement had dawned.

But GPGPU was far from easy back then, even for those who knew graphics pro-
gramming languages such as OpenGL. Developers had to map scientific calculations onto
problems that could be represented by triangles and polygons. This start to change when
a group of Stanford University researchers set out to re-imagine the GPU as a "streaming
processor."

In 2003, a team of researchers led by Ian Buck unveiled Brook, the first widely adopted
programming model to extend C with data-parallel constructs. Using concepts such as
streams, kernels and reduction operators, the Brook compiler and runtime system ex-
posed the GPU as a general-purpose processor in a high-level language. Most impor-

37

tantly, Brook programs were not only easier to write than hand-tuned GPU code, they
were seven times faster than similar existing code. (NVIDIA, 2013)

Stream processing is a computer programming paradigm, related to SIMD, that al-
lows some applications to more easily exploit a limited form of parallel processing. Such
applications can use multiple computational units without explicitly managing alloca-
tion,synchronization, or communication among those units.

The stream processing paradigm simplifies parallel software and hardware by restrict-
ing the parallel computation that can be performed. Given a set of data (a stream), a series
of operations (kernel functions) is applied to each element in the stream. Commonly one
kernel function is applied to all elements in the stream as showed in figure 3.4.

Kernel functions are usually pipelined, and local on-chip memory is reused to mini-
mize external memory bandwidth. Since the kernel and stream abstractions expose data
dependencies, compiler tools can fully automate and optimize on-chip management tasks.
Stream processing hardware can use score boarding, for example, to launch a direct mem-
ory access (DMA) at runtime, when dependencies become known. The elimination of
manual DMA management reduces software complexity, and the elimination of hard-
ware caches reduces the amount of the area not dedicated to computational units such as
Arithmetic Logic Units. However with the advance of technology, the size of processing
elements are reduces and the cache are present in the newer devices.

Figure 3.4: SISD, SIMD, and stream processing compared

Source: dmi.unict.it/ bilotta/gpgpu/notes/05-gpgpu-history.html

GPU devices are now attracting more attention because they can accelerate digital

38

terrain analysis in a more efficient and economical way than multi-core CPUs in single
PCs or than clusters and were used to compare performance with traditional CPU paral-
lelism (QIN; ZHAN, 2012) (LIMA, 2014). Modern GPU computing enables application
programmers to exploit parallelism using new parallel programming languages such as
CUDA and OpenCL and a growing set of familiar programming tools, leveraging the
substantial investment in parallelism, which high-resolution real-time graphics require.
For a better performance in NVIDIA GPU’s, it is necessary to rewrite the model’s code
to Compute Unified Device Architecture (CUDA).

CUDA is a parallel computing platform and programming model that enables dra-
matic increases in computing performance by harnessing the power of the GPU. CUDA
gives program developers direct access to the virtual instruction set and memory of the
parallel computational elements in CUDA GPUs. Using CUDA, the GPUs can be used for
general purpose processing, the GPGPU approach. Unlike CPUs, however, GPUs have
a parallel throughput architecture that emphasizes executing many concurrent threads
slowly, rather than executing a single thread quickly.

The GPU architecture provides large memory bandwidth and floating point operations
per seconds (FLOPS) when compared to conventional CPU. Using high-level languages,
GPU-accelerated applications run the sequential part of their workload on the CPU –
which is optimized for single-threaded performance – while accelerating parallel pro-
cessing on the GPU.

For example, NVIDIA Tesla GK110B achieves 288 GB/s of memory bandwidth com-
pared to a 3.9 GHz Haswell family, Intel Core i7-4770K unit whose theoretical peak
memory bandwidth is 25.6 GB/s. NVIDIA Tesla GK110B can provide 1.43 TFlop of
double precision throughput against 40.11 GFlop of Intel Core i7-4770.

The figure 3.5 shows a comparative of theoretical peak performance of GPU’s and
CPU’s expliciting the huge advantage that modern GPU obtained opposite to CPU’s even
when comparing double precision performance from GPU with single precision from
CPU.

3.3 Conclusion of Heterogeneous Architectures

Among the studied architectures in this chapter, the GPU architecture was chosen due
it great performance in large data set. In the next chapter will be studied the model in a
mathematical way to understand the behavior of used set of equations.

39

Figure 3.5: Comparative of theoretical peak power of single and double precision for CPU
and GPU

Source: michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html

40

41

4 TWO-DIMENSIONAL FLOOD INUNDATION MODELING

Since the methods to predict floodplain inundations proposed by (ZANOBETTI et
al., 1970), such methods have become really popular. Along all these years, several
improvements were made in these methods. The most recently was made by (BATES;
HORRITT; FEWTRELL, 2010) giving a more efficient formulation of the shallow water
for fllod inundation modeling. Following will be showed an overview of these equations
and its evolution as well as the concepts used in the LISFLOOD model, which was used
to validate this work. LISFLOOD is a two-dimensional hydrodynamic model specifically
designed to simulate floodplain inundation in a computationally efficient manner over
complex topography developed in University of Bristol.

4.1 Initial formulation

Initially, the methods to predict floodplain inundation discretized floodplains into ir-
regular polygonal units representing surface areas between 1 and 10 km2 of natural stor-
age cell and calculated the fluxes of water between these according to some uniform flow
formulas such as Manning’s equations.

For many models, flows are calculated using some form of the one dimensional Saint-
Venant equations, and when bankfull flow is exceeded, water is routed into and be-
tween the floodplain storage units. More recently the availability of powerful computing
and detailed floodplain topography available through remote sensing (e.g. LiDAR data)
(MARKS; BATES, 2000) has allowed to move from large, irregular storage units of the
floodplain discretization as a fine spatial resolution regular grid with cell areas between
10−3 and 10−2km2.

In this formulation each cell inside the grid is a storage area, for which the mass
balance is updated at every time step according to the fluxes of water into and out of
each cell. Similar to polygonal storage cell models, the flux is calculated analytically
using uniform flow formula, but with the advantage of higher resolution predictions and
removal of the need for the modeler to make explicit decisions about the location of
storage compartments and the linkages between these.

42

Such models solves a continuity equation relating flow into a cell and its change in
volume:

∆h

∆t
=

∆Q

∆x∆y
(4.1)

where h is the water free surface height [m], t is the time [s], Q is the volumetric flow
rate and ∆x and ∆y are the cell dimensions. These models also solves a flux equation for
each direction where flow between cells is calculated according to Manning’s law:

Qi,j
x =

h
5/3
flow

n

(
hi−1,j − hi,j

∆x

)1/2

∆y (4.2a)

Qi,j
y =

h
5/3
flow

n

(
hi,j−1 − hi,j

∆y

)1/2

∆x (4.2b)

where h i,j is now the water free surface height [m] at the node (i, j), n is the Manning’s
friction coefficient [m−1/3s], and Qx and Qy describe the volumetric flow rates between
floodplain cells [m3s−1]. The flow depth, hflow, represents the depth through which water
can flow between two adjacent cells and is defined as the difference between the highest
water free surface in these cells and the highest bed elevation of them. These equations
are solved explicitly using a finite difference discretization of the time derivative term:

hi,jt+∆t − h
i,j
t

∆t
=
Qi−1,j
x,t −Q

i,j
x,t +Qi,j−1

y,t −Q
i,j
y,t

∆x∆y
(4.3)

where ht and Q∗,t represent depth and volumetric flow rate at time t respectively for x
and y direction, and ∆t is the model time step which is held constant throughout the
simulation.

Instead of computing the numerical solution of the full shallow water equations, the
storage cell formulation have the advantage that fluxes are calculated analytically having
the computational costs per time step potentially much lower. Such methods also interface
readily with newly available remotely sensed terrain data which typically arrives in the
form of a regular grid and for this reason the number of research codes based on these
techniques has proliferated over the last decade (HUNTER et al., 2007).

Although this method can only be applied to gradually varied flows and does not in-
clude inertia or the ability to capture supercritical effects, for many floodplain inundation
problems the representation is appropriate. Such models were originally conceived for
application at coarse grid resolutions (25–100 m) and early applications showed that at
these scales there was a distinct computational advantage over full solutions of the 2D
Saint–Venant equations (HORRITT; BATES, 2001).

However, some concerns appear. Unless the constant time step used to solve Eq. 4.3
was small, simulations with storage cell models quickly developed ‘chequerboard’ type

43

instabilities as all the water in a particular cell drained into the adjacent ones in a single
and large time step and at the next time step, this situation would reverse and all the water
would flow back. To solve this, many modelers include a ’flow limiter’ to prevent too
much water leaving a given cell in one time step. Unfortunately flow-limited storage cell
models often showed very little sensitivity to floodplain friction and their results were
strongly dependent on the grid size and time step selected.

A solution to this problem was provided by (HUNTER et al., 2005) based on adap-
tive time-stepping. This approach aims to remove the need to invoke the flow limiter by
finding the optimum time step i.e. large enough for computational efficiency and small
enough for stability at each iteration. This optimum time step is obtained using an anal-
ysis of the governing equations and their analogy to a diffusion system which gives the
following expression for time variation:

∆t =
∆x2

4
min

(
2n

h
5/3
flow

∣∣∣∣∂h∂x
∣∣∣∣1/2 , 2n

h
5/3
flow

∣∣∣∣∂h∂y
∣∣∣∣1/2
)

(4.4)

To implement this scheme is necessary to search the entire domain for the minimum
time step value and using this value to update h in Eq. 4.3. The time step will be adaptive
and change during the course of a simulation, but still uniform in space at each time
step. The adaptive time step model showed a better absolute performance (HUNTER
et al., 2006) than the classical fixed time-step version at this spatial resolution, but at
approximately six times the computational cost. In particular the adaptive model appeared
able to simulate floodplain wetting and drying more realistically.

Even with the success of this new set of equations, the timestep found with the Eq. 4.4
has a fundamental problem when decreasing the grid size, the timestep reduces quadrati-
cally. For applications with grid sizes in the range 25 to 100 m, this cause a 2 - 10 times
increase in simulation time which could be offset through advances in processor speed
(BATES; ROO, 2000). However, applications of hydraulic models to simulate urban ar-
eas usually uses finer resolution grids (less than 10 m) increases costs by several orders of
magnitude such that at these scales adaptive time step storage cell codes actually proved
slower than full 2D solutions of the shallow water equations (FEWTRELL et al., 2008).

Adaptive time step storage cell codes are therefore incompatible with the fine spatial
resolution grids increasingly required for urban flood modeling. The best solution in the
last years was to invoke a flow limiter, but this leads to a poor representation of flow
dynamics. Once for fine grids full 2D models gives shorter simulation times, for practical
applications they were only able to treat small (less than 1km2) areas at the required
detail level. To allow wide area urban flood modeling at fine spatial resolution a new
hydraulic model formulation is required. With this objective, a new set of equations for
adaptive time step storage cell were formulated being possible to overcome the quadratic
dependency solving analytically the Eq. 4.2 with approximately the same computational

44

cost. The new scheme therefore retains all the computational advantages of storage cell
models over full 2D codes whose equations require expensive numerical solution, yet with
none of the previous listed disadvantages (BATES; HORRITT; FEWTRELL, 2010).

4.2 Inertial formulation of the shallow water equations

In the urban model benchmarking study of (HUNTER et al., 2008) became clear that
the lack of mass and inertia in Eq. 4.2 was the main reason why storage cell models
required the strict time step control imposed by Eq. 4.4. In this equation flux is a function
of gravity and friction and this flux is overestimated specially in areas of deep water
where there is only a small free surface gradient. However, in a gradually varying shallow
water flows the effect of inertia is to reduce fluxes between cells, avoiding the use of flow
limiters. In this study, it was proposed that the solution was to modify explicit storage
cell codes to include inertial terms that allow the use of a larger stable time step, being
the simulation with quicker run times.

The starting point for derivation of new equation is the momentum equation from the
quasi-linearized one-dimensional Saint–Venant or Shallow Water equations:

∂Q

∂t︸︷︷︸
acceleration

+
∂

∂x

[
Q2

A

]
︸ ︷︷ ︸
advection

+
gA∂(h+ z)

∂x︸ ︷︷ ︸
waterslope

+
gn2Q2

R4/3A︸ ︷︷ ︸
frictionslope

(4.5)

where Q [m3s−1] is the discharge, A is the flow cross section area [m2], z is the bed
elevation [m], R is the hydraulic radius [m], g is the acceleration due to gravity [ms−2]
and all other terms are defined as above.

For many floodplains flows advection is relatively unimportant (HUNTER et al., 2007)
so this term can be neglect. Assuming a rectangular channel, dividing through by a con-
stant flow width, w [m] and approximate the hydraulic radius (R) with the flow depth (h)
is possible to discretize Eq. 4.5 to obtain the equation in terms of time step:(

qt+∆t − qt
∆t

)
+
ght∂(ht + z)

∂x
+
gn2q2

t

h
7/3
t

= 0 (4.6a)

qt+∆t = qt − ght∆t

[
∂(ht + z)

∂x
+
n2q2

t

h
10/3
t

]
(4.6b)

Equations 4.6 exhibit the same equation. Eq. 4.6a show the discretized version while Eq.
4.6b shows the explicit discretized Saint-Venant equation with respect to the time step.

To improve the stability of equation, since instabilities may still arise at shallow depths
when the friction term becomes large, replaces a qt in the friction term by a qt+∆t leads the
equation to a linear equation in the unknown qt+∆t wich has some of the improved conver-
gence properties. With some arrangements detailed in (BATES; HORRITT; FEWTRELL,

45

2010) we have the final equation to compute the flux:

qt+∆t =
qt − ght∆t∂(ht+z)

∂x

1 + g∆tn2qt/h
7/3
t

(4.7)

The advantage of this formulation is that since the acceleration term is included, the
water is modeled with some mass and it is therefore less likely to generate the rapid re-
versals in flow which lead to a chequerboard oscillation. Shallow water wave propagation
will also be represented, rather than the diffusive behavior typical of previous storage cell
models. The enhanced stability of Eq. 4.7 stems from the increase in the denominator
as the friction term increases, forcing the flow to zero, as would be expected for shallow
depths.

Although, Eq. 4.7 still subject to the Courant–Friedrichs–Levy condition:

Cr =
V∆t

∆x
(4.8)

where the non-dimensional Courant number, Cr , needs to be less than 1 for stability and
V is a characteristic velocity [ms−1]. In the case of a shallow water flow where advection
is ignored this characteristic velocity is equals to celerity of a long wave with small gravity
amplitude:

√
gh (4.9)

Eq.4.8 gives a necessary but not sufficient condition for model stability, and is used to
estimate a suitable model time step at t+ ∆t:

∆tmax = α
∆x√
ght

(4.10)

where α is a coefficient in the range 0.2–0.7 used to produce a stable simulation for most
floodplain flow situations calculated with experimental tests. This time step is typically
1–3 orders of magnitude larger than the stable time step for the purely diffusive scheme of
Eq. 4.4. Moreover, within this range, proportionally larger time step differences become
apparent as the grid size decreases, as for Eq. 4.10 time step scales with 1/∆x rather than
(1/∆x)2.

4.3 Improving the stability of inertial formulation

With this set of new equations, several models adopted then resulting in a higher use
and analysis of it. One of the mayor point was a remaining unsolved stability problems.
(BATES; HORRITT; FEWTRELL, 2010) when published the set of equations related
that considerable numerical instabilities arise at low friction scenarios. These instabili-
ties represented a huge obstacle to application that simulates flood in urban areas, where

46

relatively smooth surfaces are found.

In 2012, (ALMEIDA et al., 2012) proposed a modification in equation of the model.
Instead of using the previous flow and the information of water depth of the neighbors of
border cell (where is computed the flow), they propose to use a centered finite difference
method taking both water depth cells data besides the 3 related flow borders.

The mathematical difference is how to compute de partial derivative ∂q
∂t

. The first
term on the left side on eqution 4.6a shows the previous scheme to compute the partial
difference, where only time changes. For simplicity, we can rewrite equation 4.6a as:

∂q

∂t
|i−1/2 =

q
i−1/2
t+∆t − q

i−1/2
t

∆t
(4.11)

introducing the superscript notation to denote the spatial location from previous com-
puted flux. Figure 4.1 shows how the model space are now considered, where yn = ht+z,
yn+1 = ht+∆t + z and yn+1

i denotes the next iteration on position i.

Figure 4.1: Spatial representation of the finite difference using three points to increase the
model stability

To introduce the centered finite difference, qi−1/2
t+∆t will be estimated as a weighted

average of qi−1/2
t and qt values in the two neighboring interfaces. With this changes,

equation 4.12 will be replaced by:

∂q

∂t
|i−1/2 =

q
i−1/2
t+∆t −

[
θq

i−1/2
t + (1−θ)

2
(q
i−3/2
t − qi+1/2

t)
]

∆t
(4.12)

which also replace equation 4.7 for:

q
i−1/2
t+∆t =

[
θq

i−1/2
t + (1−θ)

2
(q
i−3/2
t − qi+1/2

t)
]
− ght∆t∂(ht+z)

∂x

1 + g∆tn2q
i−1/2
t /h

7/3
t

(4.13)

With this modifications, it was expected and related an increase in computational cost,
however was noticed a considerable increase in model stability, allowing the computation
with larger timestep, which means even with a bigger cost, it is possible to achieve the

47

final state of simulation faster.

4.4 Conclusion of two-dimensional flood inundation modeling

The modifications applied in the model equations are helpful to understand all possi-
ble bottlenecks in serial and parallel executions. The equation used to produce the stable
model have more parameters consequently have a higher computational cost. All the
conclusions made along this chapter allow us to move on and study all optimization tech-
niques that can be applied to accelerate this model.

Some techniques will be detailed in the next chapter to make possible the comparison
between CPU and GPU versions of this model.

48

49

5 PROPOSAL OF OPTIMIZATIONS TO LISMIN MODEL
FOR GPU ENVIRONMENT

With the advance of stream architectures, several new features are developed with the
purpose of accelerate the computational time. Previous results show the great potential of
GPUs to accelerate flood models (KALYANAPU et al., 2011), however one of the counter
point to migrate an application to a different architecture or even update the version of one
GPU, is that sometimes, different versions of running framework made the model code
incompatible.

This chapter will address the details of the migration of a reduced version of LIS-
FLOOD, called LISMIN, from a serial code to a parallel code able to run in GPUs that
support the NVIDIA CUDA framework version 5.5 and one final optimization that re-
quires the version 6.5 of the same framework.

5.1 Base model and pseudo-code

The starting point of the optimizations is to analyze the models pseudocode to under-
stand its behavior. The pseudocode is showed in Algorithm 1. The model can be classified
in five phases.

1. I/O

2. Temporal Evolution

3. Computation of the flow between cells

4. Computation of the total amount of water in a cell

5. Update boundary conditions

Algorithm 1 and Figure 5.1 give us a high level of the model behavior expliciting the
five steps listed above.

The I/O phase in models that run only in CPU consist basically in read setup and
initial state files as well as write the intermediate state of simulation for further analyze.
However in a stream based architecture, the I/O is present in every data transfer between
the CPU and in this case the GPU.

50

Figure 5.1: Flowchart of model execution steps.

Source: The Author

Common simulations have thousand iterations, being the I/O a constant part and some-
times one of the main areas of bottlenecks in simulation performance. The main files
read by this model are related to water depth (referenced as H in codes), terrain topology
(referenced as Z in codes) and the flow in x and y-direction (referenced as Qx and Qy in
codes). Each file will generate an independent matrix where the dependency is managed
by the model. Figure 5.2 shows how the water depth file is interpreted in the model.

The relation among physical variables, like water depth and flow are related as fol-
lowing. Looking at figure 5.3 it is possible to differentiate 3 main elements. (a) the green
columns (vertical lines); (b) the yellow rows (horizontal lines); and (c) the blue dots. Each
of these elements will generate a matrix.

For convenience and easiness, let m the number of rows in the grid and n the number
of columns. In case (a), each segment of a column that are a common border for 2 cell,
will generate an element of the matrix related to the flow in y-direction. So each green
column will contribute with m elements in matrix Qy. An analogous reasoning can be
applied to generate the matrix Qx, where each line will contribute with n elements. The
blue dots are an average of the water level inside a cell and each one will be interpreted
as a value in the matrix H and the terrain height where each one will be interpreted as
a value in the matrix Z. With these 4 matrices, the model manages the water flow along
the simulation, reading the initial data and write files whenever be necessary for a further
visual reproduction.

With the use of GPU to compute, every time that a data need to be updated in a
different area of the actual computation a data transfer is necessary, so techniques to hide
the transfer time or to reduce this time are useful optimizations.

51

Algorithm 1 Model Pseudocode
1: procedure MAIN

2: Read data files and setup model
3: while execution time < total time do
4: Compute new time step
5: Compute the flow in x-direction
6: Compute the flow in y-direction
7: Update cells water depth
8: Apply boundary condition
9: Increment execution time

10: if Condition to output = true then
11: Write out updated data files
12: End simulation

Source: The Author

The temporal evolution is a common part of all environmental model. This control
is usually simple, however the process to compute the time step to be taken can vary in
complexity and affect the total time. Usually this control is observed in a loop function
incremented at the end of water movement phase, restricted to a simulation time condition.
When a setted time is reached, the simulation is complete and the program ends.

The next two phases are strongly dependent of the resolution method used. In this
work and model, the domain is splited in a grid and the flow between two cell is com-
puted for all cells in domain. In this model all flow are computed in two steps, one for
the flow in x direction and another for y direction once the Saint-Venant equations are
unidimensional. To solve this, it is checked if there is a flow between two adjacent cells
(figure 5.3a) and in positive case, the flow is computed for x (figure 5.3b) and further for
y direction (figure 5.3c). When all cells have their flow updated, a matrix with these flows
is stored to update the water depth in next phase and for the flow computation in next
iteration.

After that, the next kind of phase begin where all the flow computed in the previous
phase are gathered, adding both incoming and outcome water to compute the new depth
of the water in every cell.

And finally the last kind of phase is when the boundary conditions are applied to
model. In this test case the water is added in one single cell and spreads over the ground.
Being a single cell update, a better performance is expected running this step in CPU
instead in GPU even with transfer time.

5.2 Serial Code

The first version of the model was the serial version, that was also used as baseline
for performance to compare with the parallel versions. The serial code was developed in

52

Figure 5.2: Steps for generation of matrix H, representing the water depth of each area in
analyzed map area.

(a) It is defined a ter-
rain to analyze

(b) The selected do-
main are split in sev-
eral cell according to
required resolution

(c) The water is de-
tected and the depth-
ness is computed

(d) Each area with wa-
ter are aggregate to de-
termine the average of
depthness for this re-
gion

(e) A matrix is
generated where
each cell has a value
corresponding to
related depthness of
an area in the map.

Source: The Author

C++ due the easiness to parallelize with OpenMP and further to recode in CUDA.

In the serial version, the input data phase is a single phase at the beginning of simu-
lation. In this phase the digital elevation model (DEM) file is loaded as well as the initial
water state. Once all simulation was computed in CPU, there is no need to transfer data
between CPU and an external device.

All versions implement the same inertial solver, using the equation 4.10. In this ver-
sion, this equation was implemented as follow:

Being H the matrix related to the water depth, the first step is to find the maximum
value in this matrix. To avoid a division by zero, when all domain is dry, it was defined
a minimum water depth, that was used when the maximum level of water is lower than
this constant (here, we used 0.001). After the stable time step was found, to avoid lose
this stability, some checks are made to guarantee this. This stable time step is included in
equation 4.10 and are limited by the relation 4.8. Finally, it is checked if when the new
time step is added, the simulation time will not exceed the total defined time and if be
overtaken, the time step will set as the difference between the final time and the actual
time. An explained algorithm is showed in Algorithm 2.

53

Figure 5.3: Visual model elements responsible for generation of simulation’s matrices.

Source: The Author

Figure 5.4: Steps for flow computing.

(a) Check if there is flow
between two cells

(b) Compute the
flow in x-direction

(c) Compute the flow in
y-direction

Source: bristol.ac.uk/geography/research/hydrology/models/lisflood/

Algorithm 2 Serial Implementation (Timestep Computation)
1: procedure COMPUTE TIMESTEP

2: maxH = max_element(H,H + (rows ∗ cols)); . find the max value in H
3: maxH = max(maxH, 0.001); . Avoiding null water depth
4: localT imeStep = alpha ∗ dx/sqrt(g ∗maxH); . Compute new time step
5: Tstep = min(Tstep, localT imeStep); . Keeping the already know stable time

step
6: Tstep = min(maxDtF lood, Tstep); . time step must be lower than a defined

upperbound
7: Tstep = min(Tstep, totalT ime− executionT ime); . time step do not

overcome total time

Source: The Author

To compute the flow between two adjacent cells, all domain is analyzed. Having one
cell as base, the relative water depth, i.e. the water depth added the terrain height, is
compared with the adjacent cell. If there is a difference, it means that a flow between
these cells will occur and this flow is calculated based on Equation 4.7. Algorithm 3
shows how to compute the flow in x-direction and for y-direction the code is analogous.

54

In this version, all discharges in x-direction are calculated and when it is complete are
calculated the y-direction flow. The order was set arbitrarily, however as the matrices that
stores the flow states are independent for both direction, there is no difference computing
x-direction before y-direction or vice versa.

Algorithm 3 Serial Implementation (Flow Discharge Computation)
1: procedure COMPUTE FLOW DISCHARGE

2: for i = 1 to i ≤ rows do
3: for j = 1 to j ≤ cols do
4: flow = max(z0 + h0, z1 + h1)−max(z0, z1); . z is the terrain height

and h is the water depth
5: if flow > 0 then
6: Sf = −(z0 + h0− z1− h1)/dx; . ’Sf’ represent the friction slope

coefficient
7: QoldPrev = Qx[prevCell]/dx; . Take previous flow at position i-1
8: Qold = Qx[baseCell]/dx; . Take previous flow at position i
9: QoldNext = Qx[nextCell]/dx; . Take previous flow at position i +1

10: Q = ((theta ∗Qold+ ((1− theta)/2) ∗ (QoldPrev+QoldNext))−
g ∗ flow ∗ Tstep ∗ Sf)/(1 + g ∗ Tstep ∗ FPn2 ∗ |Qold|/hflow7/3) ∗ dx; .
Equation 4.7

11: Qx[baseCell] = Q; . Store new flow

Source: The Author

After compute the flow in both directions for all cells in domain an extra functions is
executed gathering this information to update the water depthness, also for all cells. This
new depth depends of all input and output of water that cross cell borders as well as the
time step, that represents the amount of time that the related flow cross the cell area. The
Algorithm 4 shows how it is updated. The acronyms rb, lb, tb and bb means, respectively,
right border, left border, top border and bottom border.

Algorithm 4 Serial Implementation (New Water Level Computation)
1: procedure UPDATE WATER LEVEL

2: for i = 1 to i ≤ rows do
3: for j = 1 to j ≤ cols do
4: vol = Tstep ∗ (Qx[rb]−Qx[lb] +Qy[tb]−Qy[bb]) . Compute flow of

the 4 borders

Source: The Author

Finishing the water movement, boundary conditions are applied to model and will
be part of the model in the next iteration. In this work, a variable amount of water are
added in a single point of domain following the experiment related in (BATES; HOR-
RITT; FEWTRELL, 2010). Figure 5.5 shows the hydrograph for the simulated event.

55

This behavior was generated using a linear interpolation of a list of discharges in fixed
given times. Algorithm 5 shows how this condition is applied.

Figure 5.5: Event hydrograph simulated in test case.

.

Source: (BATES; HORRITT; FEWTRELL, 2010)

Algorithm 5 Serial Implementation (Boundary Conditions)
1: procedure APPLY BOUNDARY CONDITION

2: boundary_i = boundary_i_old;
3: while boundary_i ≤ nbdy do . nbdy is the number or data in boundary file
4: if boundaryList[boundary_i] < executionT ime then
5: deltaBoundary = boundaryList[boundary_i] −
boundaryList[boundary_i− 1];

6: a1 = (executionT ime − boundaryList[boundary_i −
1])/deltaBoundary;

7: a2 = 1− a1;
8: H[location] = Tstep ∗ (a1 ∗ boundaryWaterAmount[boundary_i] +
a2 ∗ boundaryWaterAmount[boundary_i− 1])/dx;

9: boundary_iold = boundary_i;
10: boundary_i = nbdy;

11: boundary_i+ +

Source: The Author

After all procedures finished, the execution time is updated with the actual time step
and a check is made. If 1% more of total simulation was achieved since the last record of
output files, a new set of files are stored in disk saving the state of simulation, else there
is no output until the next per cent be achieved and simulation goes on with the data only
in memory.

56

5.3 CPU Parallel Code

In order to optimize the execution time of this simulation, one of the easiest way to
parallelize code is the OpenMP API. OpenMP is a set of compiler directives and callable
runtime library routines that extend Fortran, C and C++ to express shared-memory paral-
lelism (DAGUM; MENON, 1998).

To compare the performance achieved with the use of GPUs, it was also optimized the
model to run with the openMP API, to do a ’fair’ comparison of execution times. Another
point to use this method of parallelism is due it easiness when compared with GPU to
program the model. With use of compiler directives is possible to run the model with a
large number of process aiming a better result.

In this work, it was possible to parallelize with this technique the computation of
flows in both direction as well as the new water level for all cells in domain. For the flows
computation was used a directive in external for loop to maintain the same thread with
the maximum number of elements near together to maximize the cache hits. Algorithm 6
shows an generic call from the used directive. The difference between the call from flows
is only the related matrix to read values, while for the water level update a new set of
variables is necessary to compute it.

Algorithm 6 OpenMp Implementation
1: procedure PRAGMA DIRECTIVE

2: #pragma omp parallel for private(private vars) shared(shared vars)
3: for i = 1 to i ≤ rows do
4: for j = 1 to j ≤ cols do
5: ...

Source: The Author

The temporal control and the application of boundary conditions, in this work are not
parallelized, once a single variable is necessary to do this control and the value is shared
by all process, however no parallel process change the value, i.e. the time step value.
For the boundary condition, once only one point is changed, there is no reason to do this
in parallel, however for other cases that are no concurrency to update several places, is
indicated to use this technique too.

5.4 GPU Parallel Code

This section describes the five optimizations made in this work with utilization of a
GPU card. They are:

1. GPU code recode

2. Block and Grid size analysis

57

3. Utilization of pinned memory

4. Utilization of stream for concurrent processing

5. Use of Unified memory

5.4.1 GPU code recode

The first technique is not a real optimization because for some programs, when exe-
cuted inside a GPU card their performance is worst than when are executed only in CPU.
However, this model has the main characteristic that incentive the use of GPU, the large
repetition of a same function, not only a single instruction, in multiple data.

This recode brings the first high impact in development time once it is more difficult
to parallelize a code using GPUs with CUDA than using CPUs with openMP. The first
difference is the need to allocate memory also for GPU card and not only for CPU. More
than that, it is necessary to manage where the data need to be to correctly compute the
simulation. The data need to be transfered from CPU to GPU and vice versa whenever is
necessary.

The algorithm 7 gives an example of these processes for the matrix H, however for all
matrices that need to be in CPU and GPU need to have these functions called.

Algorithm 7 GPU Implementation (Allocation and Copy for matrix H)
1: procedure CPU MALLOC

2: H = new double[cols ∗ rows]();
3: ...
4: procedure GPU MALLOC

5: cudaMalloc((void**)&d_H, cols ∗ rows ∗ sizeof(double));
6: ...
7: procedure CPU TO GPU MEMORY COPY

8: cudaMemcpy(d_H,H, [size], cudaMemcpyHostToDevice);
9: ...

10: procedure GPU TO CPU MEMORY COPY

11: cudaMemcpy(H, d_H, [size], cudaMemcpyDeviceToHost);
12: ...

Source: The Author

The new version of code changes the method to manage the temporal evolution and
execute the computation of flow discharge and update the water level in cells. For tem-
poral evolution it was used the cuBLAS library to find the maximum elements inside the
matrix H. The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) library is
a GPU-accelerated version of the complete standard BLAS library that delivers a better
performance than the older libraries. It has a complete support for all 152 standard BLAS
routines for single, double, complex, and double complex data types and other features
(NVIDIA, 2014).

58

However, the temporal evolution management is still on CPU and the updated matrix
H present in GPU memory will deliver his maximum value in GPU, hence is necessary
copy this value back to CPU to calculate new time step. Once the routine to find the
maximum element is optimized and the data to be transfered is only one element (with
the size of a double), we already have an improvement in this function call. The remaining
steps for temporal evolution stay the same from previous listed versions.

All function used to compute flow discharge and update the water level are converted
to GPU kernels. Kernels are defined as C functions that, when called, are executed N
times in parallel by N different CUDA threads, as opposed to only once like regular C
functions. Each kernel receives the amount of threads that its allowed to use. This value
is specified using a <<< ... >>> syntax between the function call and the parameters
pass. The kernel calling in this model can be viewed in algorithm 8 and used as example
to illustrate that. Variables dimGrid and dimBlock can have one, two, or three dimensions
and are represented by structures that contains the values of block dimension and grid
dimension of threads respectively.

Algorithm 8 GPU Implementation (Cuda kernels)
1: procedure KERNEL CALL

2: calculateQx <<< dimGrid, dimBlock >>> (parameters)
3: calculateQy <<< dimGrid, dimBlock >>> (parameters)
4: updateWaterLevel <<< dimGrid, dimBlock >>> (parameters)

Source: The Author

An illustration of the grid of thread blocks behavior is given in figure 5.6. This struc-
ture allow the programmer to have a visual idea about what is happening inside the GPU.

Inside these kernels, some changes were made in relation to standard C functions
from previous versions. The nested for loops were replaced by a check function of the
total threads reaching the kernel. This check function is an if clause that allow threads
with a characteristic to start its computing. Having more than rows ∗ columns threads to
execute this kernel, is necessary only to guarantee that only the right number of threads
will work or, in case were exists less threads than rows ∗ columns is necessary share the
work among the active and current threads. The control of which threads are allowed to
execute the calculus is given by algorithm 9.

To apply the boundary condition in matrix H, it is necessary copy the matrix to CPU,
apply the condition and then copy back to GPU for the next iteration.

5.4.2 GPU block management

In order to tune our model when running in GPU, one of the firsts optimization that
will be shared with the next techniques, is to achieve the highest occupancy in a GPU
multiprocessor (SMX). To do this, is necessary to study how many threads are available in

59

Figure 5.6: Grid of Thread Blocks

Source: arc.vt.edu/resources/software/cuda/

Algorithm 9 GPU Implementation (Thread Control)
1: procedure THREAD CONTROL INSIDE A KERNEL

2: y = blockIdx.x ∗ blockDim.x+ threadIdx.x; . Column id
3: x = blockIdx.y ∗ blockDim.y + threadIdx.y; . Row id
4: tid = x ∗ blockDim.x ∗ gridDim.x+ y; . Thread id
5: if tid < columns ∗ rows then
6: ...

Source: The Author

each block and how many blocks can be executed in GPU. In this study we use a NVIDIA
TESLA K20, that allow address 2048 threads for each multiprocessor with no more than
1024 threads in each block and can run 16 thread blocks in a SMX. The cardinalities
of the three different dimensions of each block must be defined on each CUDA kernel
launch and for a given problem encoding, the different threadblock sizes and shapes can
significantly affect the overall code performance (TORRES; GONZALEZ-ESCRIBANO;
LLANOS, 2011). With this information is possible to analyze the best shape and size for
our application and optimize them.

To avoid to spent unnecessary resource, three strategies as described in (TORRES;
GONZALEZ-ESCRIBANO; LLANOS, 2011):

1. The number of threads per block must be a divisor of the number of maximum

60

threads per multiprocessor

2. The number of threads per block must be a multiple of the number of threads per
warp, to fill them

3. The number of threads per block must be large enough to not generate more block
per multiprocessor than the total allowed

To meet these requirements we need to consider that the maximum threads per SMX
in K20 is 2048. For the number of threads per block be a divisor, this number must be a
power of 2, hence the number of threads possible considering item 1 are {1, 2, 4, 8, 16,
32, 64, 128, 256, 512, 1024}. 2048 is not an option due the fact that one block can have
only 1024 threads inside of it. The item 2 reduces the number of possibilities dropping off
the blocks with few threads, letting as possible option {32, 64, 128, 256, 512, 1024} for
the number of threads per block. The third item limit the number of blocks inside a SMX.
Once we have 16 block as the maximum number of blocks, it implies in each block need
to have at least 128 threads, what generate the 16 blocks. After these three consideration
we have the final possible option of the number of threads per block as {64, 128, 256,
512, 1024}.

5.4.3 Gpu code with pinned memory

One of the most knew bottleneck of GPU compute is the large amount of data that
need to be transfered from CPU to GPU and vice versa. To allow programmers to use
a larger virtual address space than is actually available in the RAM, CPUs implement
a virtual memory system called non-locked memory, in which a physical memory page
can be swapped out to disk. When the CPU needs that page, it loads it back in from the
disk. Unfortunately this cause a delay in memory transaction letting the bandwidth of
the PCI-E bus to connect CPU and GPU not fully exploited. This method stores non-
locked memory not only in memory once it can be swapped, therefore the drive needs
to access all pages of the non-locked memory, copy it into pinned buffer and send it to
the Direct Memory Access (DMA) and this process is synchronous, i.e. it is a page-by-
page copy. In practice, all PCI-E transfers are made using DMA-based transfers, once
the driver does this in background when you do not use a page-locked memory directly.
To do this, the drive need to allocate a block of paged-locked memory, do a CPU copy
from regular memory to the page-locked memory, initiate the transfers, wait the transfer
be completed and then free the page-locked memory (COOK, 2013). Figure 5.7 exhibits
how the memory flux occurs in pageable and pinned memory.

This was important when the memory capacity is limited, however, with todays mem-
ories, being easy and cheap to expand this limit, the use of virtual memory is no longer
necessary for many applications which will fit within the CPU memory space. There-
fore, for a better performance in memory transfers, lock the CPU memory to avoid that

61

Figure 5.7: Pageable Data Transfer vs Pinned Data Transfer

Source: devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

be swapped and enable the DMA between CPU and GPU memory rather than using a
staging buffer, can result in faster transfers.

To enable the pinned memory allocation, it is necessary to change the normal malloc

(or new command in this work) in C code for the cudaMallocHost as showed in algorithm
10.

Algorithm 10 GPU Implementation (memory allocation)
1: procedure PAGEABLE MEMORY ALLOCATION

2: H = new double(size) . or H = malloc(size);

3: procedure PINNED MEMORY ALLOCATION

4: cudaMallocHost((void**)&H, size)

Source: The Author

The counterpoint is that once pinned, this portion of memory is unavailable to other
processes, including the operational system. However, with the easiness of upgrade the
amount of total memory, this can be overpassed with few efforts.

5.4.4 GPU code with streams

One of the main reasons to use GPU is the great parallel performance. The ability
to perform an operation in multiple data simultaneously enable great speedups in several
programs. With the advance of these technologies, not only data could be parallelized.
In newest GPU cards multiple operation can also be executed simultaneously. To do this,
processing streams were created. A stream is defined as a sequence of operations that
execute in issue-order on the GPU. It means, in NVIDIA cards that support CUDA, that
CUDA operations in different streams may run concurrently and operations from different
streams may be interleaved.

To use this method is necessary a page-locked memory, and for concurrent streams,
also is needed that CUDA operation must be in different, non-0, streams. The default

62

stream is also knew as stream 0 and can run concurrently with other streams.

The difference among previous GPU codes is in kernel calling. The syntax <<<

... >>> need to be used with the four expected components, i.e., number of blocks,
number of threads, amount of allocate dynamically memory per block and associated
stream The last argument will set in with stream the kernel will be executed. Algorithm
11 shows the creation of two streams and the kernel to compute the flow in x and y-
direction concurrently.

Algorithm 11 GPU Implementation (Streams)
1: procedure STREAMS CREATION

2: cudaStream_t stream1, stream2;
3: cudaStreamCreate (&stream1) ;
4: cudaStreamCreate (&stream2) ;
5: procedure KERNEL CALL OVER A STREAM

6: calculateQx <<< dimGrid, dimBlock, 0, stream1>>>(parameters);
7: calculateQy <<< dimGrid, dimBlock, 0, stream2>>>(parameters);

Source: The Author

Once the computation of flow in both direction is calculated separately and each one
has it own matrix, there are no issues in execute in parallel and concurrently.

5.4.5 GPU code with Unified Memory

With the release of CUDA 6, one of the biggest barriers to consider the GPU pro-
gramming in programs development, the difficulty to program, starts to left behind. Until
CUDA 6 the view for programmer when related to memory was exactly the real world.
The memories of the CPU and GPU are physically distinct and separated by the PCI-
Express bus and data that is shared between them must be allocated in both memories and
explicitly copied.

Unified Memory creates a pool of managed memory that is shared between the CPU
and GPU and this memory is accessible to both the CPU and GPU using a single pointer.
The key is that the system automatically migrates data allocated in Unified Memory be-
tween host and device so that it looks like CPU memory to code running on the CPU, and
like GPU memory to code running on the GPU (HARRIS, 2013). Figure 5.8 illustrate
how it works.

The two main benefits published by this new feature are the simpler programming
and memory model and performance through data locality. Unified Memory reduces the
effort to programming in CUDA environment by making device memory management
an optimization, rather than a requirement. More, by migrating data on demand between
the CPU and GPU, Unified Memory can offer the performance of local data on the GPU,
while providing the ease of use of globally shared data.

63

Figure 5.8: Developer view of memory hierarchy with and without unified memory

Source: devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-6/

Unified memory do not replace all previous optimizations, it only offer more resources
to programmer. So programmers still having access to explicit device memory allocation
and asynchronous memory copies to optimize data management and CPU-GPU concur-
rency.

The difference in code can be viewed in algorithm 12. All memory allocations (CPU
and GPU) are replaced by the new cudaMallocManaged(). More, all copies are no more
necessary, and kernel calls do not need receive pointers of GPU allocated variables and
structures. Now they receive the same CPU pointer that points to common memory area.

Algorithm 12 GPU Implementation (Unified Memory)
1: procedure UNIFIED MEMORY ALLOCATION

2: cudaMallocManaged((void ∗ ∗)&H, cols ∗ rows ∗ sizeof(double)); . H is the
CPU pointer for matrix H

3: ...
4: procedure KERNEL CALL WITH UNIFIED MEMORY

5: calculateQx <<< dimGrid, dimBlock, 0, stream1>>>(CPU parameters);
6: ...

Source: The Author

64

65

6 RESULTS

With the utilization of GPGPU’s and remodeling both hydrological and environmental
models great results were produced. Natural phenomenas and flood situations could be
modeled and computed with an interesting speedup. Besides the hardware capabilities,
the area of flood or flow to be analyzed is also a major factor of impact in the execu-
tion time, depending on the detail level and area resolution. Each optimization achieve
interesting results and will be discussed in this chapter.

All test were realized in a system running Ubuntu 12.04.5 version with 3.13.0-37-
generic kernel. The machine Dell PowerEdge R720 with 2 Xeon E5-2630 processor with
6 cores each and 2 threads per core running at 2,3GHz totaling 24 threads and 32GB of
memory. For GPU tests was used a NVIDIA TESLA K20 with 2496 CUDA cores, 5GB
GDDR5 memory and a memory bandwidth up to 208GB/sec.

To validate the obtained results was simulated a flood event in Greenfields area in
Glasgow, UK (figure 6.0a), comprising an area of 0.7 x 0.4 km with a grid resolution
about 2 x 2m as described in Test 4 of (BATES; ROO, 2000) and profile code of (NEAL
et al., 2010) resulting in a computational grid about 350 x 200 cells.

Then to evaluate the model scalability, was created a synthetic scenario simulating a 2
hours rain over the Itajaí-açú river in Santa Catarina, BR (figure 6.0b), comprising an area
of approximately 5 x 4.6 km with a grid resolution about 1.0353 x 1.0353 m resulting in
a grid of computation about 4871 x 4414 cells.

6.1 CPU results

The serial version of the model that simulate 2 hours of a flood in an urban area of
Greenfields in Glasgow (UK), spent 152.91 seconds running, on average. To do a fair
comparison between CPU and GPU, were generated parallel versions that uses openMP
with 6, 12 and 24 threads to compare the best of then with GPU results, once is expected
for this scenario a better performance of GPU version. The best speed up is achieved with
the 24 threads, when the total time to simulate was 47.64 seconds and the average time
for 12 threads was 49.26 seconds.

66

Figure 6.1: Map areas used in this work.

(a) Greenfields area in Glasgow(UK) used for validation tests

(b) Itajai area in Santa Catarina (BR) used for scal-
ability test

Source: The Author

The overall performance and speedup for these instances can be viewed in figure 6.2.

6.2 GPU results

In GPU were made 5 progressive optimizations, where in each of then a new feature
was added to previous model. After that, the results will be listed and discussed.

6.2.1 Summarized results

Recode: The first technique was responsible to recode the model to be able to run
in GPU. This process allowed the simulation of Glasgow area to gain more than 23% in
performance, reducing the best average time in CPU (47.64 seconds) to 36.33 seconds in
GPU. This initial achieve was possible due the high data parallelism in this model, being
possible to increase the performance when compared with a few CPU threads.

Block and Size: The second optimization, focused in optimize CUDA blocks size
to fill the SMX, has a small impact in performance overall compared with the recoded
model, being statistically the same, running in 36.36 seconds. For this result, were used

67

Figure 6.2: Execution time and speedup for serial and parallel version of Glasgow simu-
lation in CPU.

(a) Execution time for serial and parallel ver-
sions of the model.

(b) Speedup achieved for serial and parallel
versions of the model.

Source: The Author

128 threads inside each of 600 blocks. Increasing the number of threads, in this example,
had no improvement in performance. With the related work, is possible to expect a better
improvement in larger models that keep the multiprocessors filled.

In both previous techniques, the occupation was approximately of 70% of total pro-
cessing. A bigger occupancy can be achieved if more single precision data was used.

Next optimizations explore the benefits of different kind of memory allocation.

Pinned Memory: The second great gain in performance were achieved when we
began to use the pinned memory instead the pageable memory. The improvement in
performance achieved was about 42% compared with the last optimization, accumulating
an decrease of 56.29% in execution time against the CPU better time. This result is
important to show that even with fast computational resources, the memory still being a
bottleneck in performance that needs to be evaluated.

Streams: Like the adjustment of size of blocks, the introduction of streams to execute
some kernels in parallel also produces no effects (or very low) in performance in this
scenario and this can be caused due the small amount of data and the explicit need to
synchronize those streams. For large problems, this technique could be useful if there are
space inside the SMX. If we fill up the SMX, the streamed kernels also need wait to be
executed.

Unified Memory: The last optimization, that requires at least a CUDA 6 version to be
implemented also have a great achievement in performance, more 29% in execution time
were reduced in relation to Stream technique. This technique allow the CUDA framework
to manage all copies, avoiding unnecessary idles due the explicit copy.

68

With all these optimizations, to simulate 2 hours of flood in this scenario was neces-
sary 14.76 seconds, being this time 69.01% lower than the CPU version with 24 threads
or 3.22 times faster. If we compare with the initial serial version, the time to solution was
10.35 times faster.

6.2.2 Resources

All optimization made using GPU were tested 20 times and used the average time. At
end of each optimization scenario, more two runnings are made generating 3 output set
of files that were compared with the serial model output, which was validated in previous
papers. In this comparison, the error was lower than 10−6 in all scenarios. For an overview
of performance results when compared with the best version used OpenMp, figure 6.3
exhibit all times for GPU instances and the performance of 24 threads using OpenMp
version.

Figure 6.3: Execution time and speedup for parallel version of Glasgow simulation in
CPU with 24 threads and GPU optimization.

Source: The Author

After all optimization was also tested the water depth in 4 control points as showed
in figure 6.3a. Figure 6.3b show the water depth over the time when the simulation was
executed with OpenMp while figure 6.3c shows the same test when used GPU. Data are
collected at every 0.5% of running time generating 200 plotable points. Note that the
values are the same, implying in no difference between two versions.

69

Figure 6.4: Plots of simulated water depth over he time for OpenMp and CUDA versions
with no difference in results.

(a) Control points to measure water depth in Greenfield area
tests

(b) Water depth plotted over the time at the four
control points for LISMIN-OMP version with 24
threads

0 1000 2000 3000 4000 5000 6000 7000 8000

Time [s]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

D
e
p
th

 [
m

]

Point 1
Point 2
Point 3
Point 4

Water depth over time in OpenMP

(c) Water depth plotted over the time at the four
control points for LISMIN-GPU version

0 1000 2000 3000 4000 5000 6000 7000 8000

Time [s]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

D
e
p
th

 [
m

]

Point 1
Point 2
Point 3
Point 4

Water depth over time in CUDA

Source: The Author

A complete comparison between CPU and GPU execution times are also showed in
figure 6.5 where is possible to see the final performance being more than 10 times faster
than the initial serial version. A detailed view can be obtained in table 6.1.

Table 6.1: Measured improvement over time for technique on the line over column and
the average time for each technique.

CPU Recode Block Pinned Stream Umd Avg. Time
CPU - 23.74% 23.68% 58.19% 58.06% 70.84% 47.64

Recode - -0.08% 45.17% 45.00% 61.77% 36.33
Block - 45.21% 45.05% 61.80% 36.36
Pinned - -0.30% 30.27% 19.92
Stream - 30.48% 19.98
Umd - 13.89

6.3 Scalability results

The last test to compare performance of CPU and GPU is the scalability of the model
simulation. The scenario used to test the scalability is 280 times larger than the used to

70

Figure 6.5: Execution time and speedup for serial and parallel version of Glasgow simu-
lation in CPU and GPU.

Source: The Author

validate the model. Now is simulates a huge in-flow in Itajai-Açu river and analyzed the
time to simulate all flow.

To compare the CPU and GPU versions, only the CPU version with 24 threads are
executed and the most optimized version in GPU. To simulate the in-flow in the river was
used a synthetic hystrogram proposed in (BRITAIN, 1975) and cited by (PONTES, 2011).
This hydrogram can be defined as follow and represented by figure 6.6:

Q(t) = Qbase + (Qpeak −Qbase)[
t

Tp
exp(1− t

Tp
)]β (6.1)

Where:

• Qbase is the baseline of flow and in this scenario defined as 3m3/s

• Qpeak is the peak achieved set as 1000m3/s

• Tp is the time when the peak was achieved, here set as 1 hour

• β is the curvature parameter, maying vary between 2 and 20. Here was used a value
of 4.

Exploiting equation 6.1 it is possible to see that was necessary more than 3 hours and
less than 4 to the input flow return to base value. Therefore in this scenario was simulated
4 hours of flood instead 2 hours like previous test cases.

For the case where the stability equations are not included, the timestep was lower
the when the equation is applied. In this case, the GPU simulation of this 4 hours, takes
5.136 hours while in CPU the time was 47.7 hours. It gives a improvement of 9.28 times
in processing time. Using the same constant that bounds the timestep, but with the stable

71

Figure 6.6: Hydrogram related to equation 6.1.

0 1 2 3 4 5

Time [h]

0

200

400

600

800

1000

1200

Fl
o
w

 [
m

³/
s]

Flow hydrogram

Source: The Author

equation, these times rise to 5.588 hours in GPU and 48.417 in CPU, giving a performance
of 8.66 times better.
Increasing the constant and consequently the timestep, simulations times were reduced
to 2.533 hours in GPU and 19.363 hours in CPU, giving a performance of 7.642 times
better. The execution time of the implemented scalability test is exhibited in figure 6.7

Figure 6.7: Execution time parallel versions of Itajaí-Açu River simulation in CPU and
GPU.

Source: The Author

72

73

7 ANALYSIS AND CONCLUSIONS

The study of environmental models, including the hydrological models, is recent if
compared with other sciences. Computer based hydrological models have been developed
and applied at an ever increasing rate during the past four decades, due to the improvement
of models and methodologies. Several concepts and classes of models were established,
each one with specified features. For more simple implementation, the lumped models
can be very helpful while for more detailed results, the distributed models are also more
complex to calibrate and spend more time giving better results.

Innumerably models were formulated and validated, covering several characteristics
of natural phenomenas, enabling a better prediction of climatic events, natural disasters
or accidents. Dam break flood and others natural or not events, can be handled quickly
to alert all possible affected. This agility to manage flood events is very important for
the economy, since structural damages are avoided and less resources in reconstruction
programs need to be invested.

The increased availability of desktops computers and the advance of computational
architectures contributed to accelerate these models in the last years enabling the accel-
eration of the models execution time. Selecting appropriated hardware resource, faster
models can be developed without hard work to recode them. With the parallel hardwares
and technologies, several different resources could be used to achieve a good speedup for
environmental models. MIMD or stream applications explores the parallelism that can be
extract from models.

Here was analyzed the performance that can be obtained from GPU cards including
its evolution. The performance obtained shows that from small or large areas, stream
architectures can avoid great losses. For small analyzed areas, predict the event in ap-
proximately 15 seconds can be crucial to handle situations inside a specific area in some
cities or neighborhoods, while with all this potential applied in large areas, is possible to
reduce the impact of natural disaster, like the flood event that hits Santa Catarina, Brazil
in 2008 where more than 1.5 million people are affected. This works also analyzed a
simulation of an river in this area, obtained a complete simulation of water behavior in
less than 3 hours against almost 20 hours without the use stream architectures. For more

74

detailed areas, with high water slopes, e.g. rivers that bypasses some hills, the processing
time in CPU is about 45 hours being beat from GPU, that simulate the same problem in
less than 6 hours.

The great performance achieved in this work is primary due the chosen model behav-
ior. To obtain the maximum of GPU performance, the application need to fit in the goal
of this architecture. GPU as other stream architectures have their peak performance when
applying an instruction or a set of instructions in several data. Once the environmental
model needs to compute the physical changes along the simulation in multiple locations,
the improvement in performance as well explained.

Besides the scientific community, open access models are developed diffusing the
information about flood events to everyone who wants. Cloud and mobile applications
are now more popular than before but this resources need to evolve more to aggregate
information from all the globe. In a non far future, when the exascale era begins, the
hydrological models may be executed in real-time for every location, helping the govern-
ments take more effective actions, save money and most important, helping the population
not to lose their belongings.

This work open some new goals to future works as the analysis of different models
with different concepts as well as the study of others heterogeneous architectures to com-
pare the benefits with the result obtained in this work. In this context, hybrid models that
combine rainfall models and other kinds of models are a relevant field as well as the im-
plementation of these techniques in complete version of LISFLOOD and the analyze of
this work in different devices, like multi GPUs as NVIDIA K10 or Xeon Phi.

75

REFERENCES

ALMEIDA, G. A. et al. Improving the stability of a simple formulation of the shallow
water equations for 2-d flood modeling. Water resources research, Wiley Online
Library, v. 48, n. 5, p. 5528, 2012.

BATES, P.; ROO, A. D. A simple raster-based model for flood inundation simulation.
Journal of hydrology, Elsevier, v. 236, n. 1, p. 54–77, 2000.

BATES, P. D. Integrating remote sensing data with flood inundation models: how far
have we got? Hydrological Processes, Wiley Online Library, v. 26, n. 16, p. 2515–2521,
2012.

BATES, P. D.; HORRITT, M. S.; FEWTRELL, T. J. A simple inertial formulation of
the shallow water equations for efficient two-dimensional flood inundation modelling.
Journal of Hydrology, Elsevier, v. 387, n. 1, p. 33–45, 2010.

BERGSTRÖM, S.; SINGH, V. et al. The hbv model. Computer models of watershed
hydrology., Water Resources Publications, p. 443–476, 1995.

BEVEN, K.; KIRKBY, M. A physically based, variable contributing area model of basin
hydrology/un modèle à base physique de zone d’appel variable de l’hydrologie du bassin
versant. Hydrological Sciences Journal, Taylor & Francis, v. 24, n. 1, p. 43–69, 1979.

BEVEN, K. J. Rainfall-runoff modelling: the primer. [S.l.]: Wiley Chichester, 2001.

BHAT, U. N.; MILLER, G. K. Elements of applied stochastic processes. [S.l.]: J.
Wiley, 1972.

BLÖSCHL, G.; SIVAPALAN, M. Scale issues in hydrological modelling: a review.
Hydrological processes, Wiley Online Library, v. 9, n. 3-4, p. 251–290, 1995.

BORMANN, H. et al. Spatially explicit versus lumped models in catchment hydrology–
experiences from two case studies. In: Uncertainties in environmental modelling and
consequences for policy making. [S.l.]: Springer, 2009. p. 3–26.

BRITAIN, N. E. R. C. G. Flood studies report. [S.l.]: The Council, 1975.

BRODTKORB, A. R. et al. State-of-the-art in heterogeneous computing. Scientific
Programming, IOS Press, v. 18, n. 1, p. 1–33, 2010.

CHOW, V. T. et al. Applied hydrology. [S.l.: s.n.], 1988.

76

COOK, S. CUDA programming: a developer’s guide to parallel computing with
GPUs. [S.l.]: Newnes, 2013.

DAGUM, L.; MENON, R. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, IEEE, v. 5, n. 1, p.
46–55, 1998.

FEWTRELL, T. et al. Evaluating the effect of scale in flood inundation modelling in
urban environments. Hydrological Processes, Wiley Online Library, v. 22, n. 26, p.
5107–5118, 2008.

FORTIN, V.; TURCOTTE, R. Le modèle hydrologique mohyse. Note de cours pour
SCA7420, Département des Sciences de la Terre et de l’Atmosphère, Université du
Québec à Montréal, v. 23, 2006.

GOLDING, B.; CLARK, P.; MAY, B. The boscastle flood: Meteorological analysis of
the conditions leading to flooding on 16 august 2004. Weather, Wiley Online Library,
v. 60, n. 8, p. 230–235, 2005.

GOSLING, S. N. et al. Climate: Observations, projections and impacts - bangladesh.
Climate: Observations, projections and impacts, Met Office, 2011.

HABERLANDT, U.; RADTKE, I. Hydrological model calibration for derived flood
frequency analysis using stochastic rainfall and probability distributions of peak flows.
Hydrology and Earth System Sciences, Copernicus GmbH, v. 18, n. 1, p. 353–365,
2014.

HARDAKER, P.; COLLIER, C. Flood risk from extreme events (free)—a national
environment research council directed programme. Quarterly Journal of the Royal
Meteorological Society, John Wiley & Sons, Ltd., v. 139, n. 671, p. 281–281, 2013.
ISSN 1477-870X. Available from Internet: <http://dx.doi.org/10.1002/qj.2129>.

HAROU, J. J. et al. Hydro-economic models: Concepts, design, applications, and future
prospects. Journal of Hydrology, Elsevier, v. 375, n. 3, p. 627–643, 2009.

HARRIS, M. Unified Memory in CUDA 6. 2013. <http://devblogs.nvidia.com/
parallelforall/unified-memory-in-cuda-6/>. [Online; accessed 13-july-2014].

HORRITT, M.; BATES, P. Predicting floodplain inundation: raster-based modelling
versus the finite-element approach. Hydrological processes, Wiley Online Library, v. 15,
n. 5, p. 825–842, 2001.

HUNTER, N. et al. Improved simulation of flood flows using storage cell models.
Proceedings of the ICE-Water Management, Thomas Telford, v. 159, n. 1, p. 9–18,
2006.

HUNTER, N. et al. Benchmarking 2d hydraulic models for urban flooding. Proceedings
of the ICE-Water Management, Thomas Telford, v. 161, n. 1, p. 13–30, 2008.

HUNTER, N. M. et al. Simple spatially-distributed models for predicting flood
inundation: a review. Geomorphology, Elsevier, v. 90, n. 3, p. 208–225, 2007.

http://dx.doi.org/10.1002/qj.2129
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

77

HUNTER, N. M. et al. An adaptive time step solution for raster-based storage cell
modelling of floodplain inundation. Advances in Water Resources, Elsevier, v. 28, n. 9,
p. 975–991, 2005.

KALYANAPU, A. J. et al. Assessment of gpu computational enhancement to a 2d flood
model. Environmental Modelling & Software, Elsevier, v. 26, n. 8, p. 1009–1016,
2011.

KUROWSKI, K.; KULCZEWSKI, M.; DOBSKI, M. Parallel and gpu based strategies
for selected cfd and climate modeling models. In: Information Technologies in
Environmental Engineering. [S.l.]: Springer, 2011. p. 735–747.

LAROCQUE, M. et al. Groundwater contribution to river flows–using hydrograph
separation, hydrological and hydrogeological models in a southern quebec aquifer.
Hydrology and Earth System Sciences Discussions, Copernicus GmbH, v. 7, n. 5, p.
7809–7838, 2010.

LIMA, J. V. F. A runtime system for data-flow task programming on multicore
architectures with accelerators. Dissertation (Master) — Universidade Federal do Rio
Grande do Sul, 2014.

LOHANI, A.; KUMAR, R.; SINGH, R. Hydrological time series modeling: A
comparison between adaptive neuro-fuzzy, neural network and autoregressive
techniques. Journal of Hydrology, Elsevier, v. 442, p. 23–35, 2012.

MAIDMENT, D.; MAYS, L. Applied Hydrology. Tata McGraw-Hill Education,
1988. (McGraw-Hill series in water resources and environmental engineering). ISBN
9780070702424. Available from Internet: <http://books.google.com.br/books?id=
RRwidSsBJrEC>.

MARKS, K.; BATES, P. Integration of high-resolution topographic data with floodplain
flow models. Hydrological Processes, v. 14, n. 11-12, p. 2109–2122, 2000.

MEENDERINCK, C.; JUURLINK, B. (when) will cmps hit the power wall? In:
EURO-PAR 2008 WORKSHOPS-PARALLEL PROCESSING, 2009. Proceeding...
[S.l.]: Springer, 2009. p. 184–193.

NEAL, J. C. et al. A comparison of three parallelisation methods for 2d flood inundation
models. Environmental Modelling & Software, Elsevier, v. 25, n. 4, p. 398–411, 2010.

NICANDROU, A. Hydrological assessment and modelling of the river fani catchment,
albania. University of Glamorgan, 2011.

NVIDIA. HISTORY OF GPU COMPUTING. 2013. <http://www.nvidia.com.br/
object/cuda_home_new.html>. [Online; accessed 13-july-2014].

NVIDIA. NVIDIA cuBLAS library. 2014. <https://developer.nvidia.com/cublas>.
[Online; accessed 28-September-2014].

PAUDEL, M.; NELSON, E. J.; DOWNER, C. W. Assessment of lumped, quasi-
distributed and distributed hydrologic models of the us army corps of engineers. In:
WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2009, 2009.
Proceeding... Great Rivers: ASCE, 2009. p. 5932–5942.

http://books.google.com.br/books?id=RRwidSsBJrEC
http://books.google.com.br/books?id=RRwidSsBJrEC
http://www.nvidia.com.br/object/cuda_home_new.html
http://www.nvidia.com.br/object/cuda_home_new.html
https://developer.nvidia.com/cublas

78

PAUDEL, M. et al. An examination of distributed hydrologic modeling methods as
compared with traditional lumped parameter approaches. Department of Civil and
Environmental Engineering Brigham Young University, 2010.

PERRIN, C.; MICHEL, C.; ANDRÉASSIAN, V. Improvement of a parsimonious model
for streamflow simulation. Journal of Hydrology, Elsevier, v. 279, n. 1, p. 275–289,
2003.

PETERS-LIDARD, C.; ZION, M.; WOOD, E. A soil-vegetation-atmosphere transfer
scheme for modeling spatially variable water and energy balance processes. Journal
of Geophysical Research: Atmospheres (1984–2012), Wiley Online Library, v. 102,
n. D4, p. 4303–4324, 1997.

PONTES, P. R. M. Comparação de modelos hidrodinâmicos simplificados de
propagação de vazão em rios e canais. Dissertation (Master) — Universidade Federal
do Rio Grande do Sul, 2011.

QIN, C.-Z.; ZHAN, L. Parallelizing flow-accumulation calculations on graphics
processing units—from iterative dem preprocessing algorithm to recursive multiple-
flow-direction algorithm. Computers & Geosciences, Elsevier, v. 43, p. 7–16,
2012.

REED, S. et al. Overall distributed model intercomparison project results. Journal of
Hydrology, Elsevier, v. 298, n. 1, p. 27–60, 2004.

REFSGAARD, J. C. Parameterisation, calibration and validation of distributed
hydrological models. Journal of Hydrology, Elsevier, v. 198, n. 1-4, p. 69–97, 1997.

RESEARCH, T. U. C. for A. Basic Hydrologic Science Course Runoff Processes
- Section Five: Runoff Modeling Concepts. 2006. <http://wegc203116.uni-graz.at/
meted/hydro/basic/Runoff/print_version/05-runoffmodeling.htm#14>. [Online; accessed
10-april-2014].

RIXNER, S. Stream processor architecture. [S.l.]: Springer Science & Business
Media, 2001.

ROBSON, A. J. Evidence for trends in uk flooding. Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, The Royal Society, v. 360, n. 1796, p. 1327–1343, 2002.

ROSS, P. E. Why cpu frequency stalled. Spectrum, IEEE, IEEE, v. 45, n. 4, p. 72–72,
2008.

SAHOO, G.; RAY, C.; CARLO, E. D. Calibration and validation of a physically
distributed hydrological model, mike she, to predict streamflow at high frequency in
a flashy mountainous hawaii stream. Journal of Hydrology, Elsevier, v. 327, n. 1, p.
94–109, 2006.

SCHARFE, M.; PIELOT, R.; SCHREIBER, F. Fast multi-core based multimodal
registration of 2d cross-sections and 3d datasets. BMC bioinformatics, BioMed Central
Ltd, v. 11, n. 1, p. 20, 2010.

http://wegc203116.uni-graz.at/meted/hydro/basic/Runoff/print_version/05-runoffmodeling.htm#14
http://wegc203116.uni-graz.at/meted/hydro/basic/Runoff/print_version/05-runoffmodeling.htm#14

79

SCHUBERT, J. E.; SANDERS, B. F. Building treatments for urban flood inundation
models and implications for predictive skill and modeling efficiency. Advances in Water
Resources, Elsevier, v. 41, p. 49–64, 2012.

SCHUMANN, A. Development of conceptual semi-distributed hydrological models and
estimation of their parameters with the aid of gis. Hydrological sciences journal, Taylor
& Francis, v. 38, n. 6, p. 519–528, 1993.

SEILLER, G.; ANCTIL, F.; PERRIN, C. Multimodel evaluation of twenty lumped
hydrological models under contrasted climate conditions. Hydrology and Earth System
Sciences Discussions, v. 8, p. 10895–10933, 2011.

SHERMAN, L. K. Streamflow from rainfall by the unit-graph method. Eng. News
Record, v. 108, p. 501–505, 1932.

SINGH, V. P.; WOOLHISER, D. A. Mathematical modeling of watershed hydrology.
Journal of hydrologic engineering, American Society of Civil Engineers, v. 7, n. 4, p.
270–292, 2002.

TORRES, Y.; GONZALEZ-ESCRIBANO, A.; LLANOS, D. R. Understanding the
impact of cuda tuning techniques for fermi. In: HIGH PERFORMANCE COMPUTING
AND SIMULATION (HPCS), 2011 INTERNATIONAL CONFERENCE ON.
Proceeding... [S.l.]: IEEE, 2011. p. 631–639.

TRISTRAM, D.; HUGHES, D.; BRADSHAW, K. Accelerating a hydrological
uncertainty ensemble model using graphics processing units (gpus). Computers &
Geosciences, Elsevier, v. 62, p. 178–186, 2014.

ZANOBETTI, D. et al. Mekong delta mathematical model program construction.
Journal of the Waterways, Harbors and Coastal Engineering Division, ASCE, v. 96,
n. 2, p. 181–199, 1970.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problems
	1.2 Motivation
	1.3 Subject
	1.4 Text Organization

	2 Hydrological Modelling
	2.1 Flood Types
	2.2 Hydrological Models
	2.3 Model's evolution
	2.4 Model Type
	2.5 Lumped Models
	2.6 Quasi-Distributed Models
	2.7 Distributed Models
	2.8 Stochastic Models
	2.9 Modeling Conclusion

	3 Heterogeneous architecture
	3.1 Architectural characteristics
	3.2 GPU Computing
	3.3 Conclusion of Heterogeneous Architectures

	4 Two-dimensional flood inundation modeling
	4.1 Initial formulation
	4.2 Inertial formulation of the shallow water equations
	4.3 Improving the stability of inertial formulation
	4.4 Conclusion of two-dimensional flood inundation modeling

	5 Proposal of Optimizations to LISMIN model for GPU environment
	5.1 Base model and pseudo-code
	5.2 Serial Code
	5.3 CPU Parallel Code
	5.4 GPU Parallel Code
	5.4.1 GPU code recode
	5.4.2 GPU block management
	5.4.3 Gpu code with pinned memory
	5.4.4 GPU code with streams
	5.4.5 GPU code with Unified Memory

	6 Results
	6.1 CPU results
	6.2 GPU results
	6.2.1 Summarized results
	6.2.2 Resources

	6.3 Scalability results

	7 Analysis and Conclusions
	References

