
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JEFERSON SANTIAGO DA SILVA

Architectural Exploration of Digital
Systems Design for FPGAs Using

C/C++/SystemC Specification Languages

Thesis presented in partial fulfillment
of the requirements for the degree of
Master in Computer Science

Prof. Dr. Sergio Bampi
Advisor

Porto Alegre, January 2015

CIP – CATALOGING-IN-PUBLICATION

da Silva, Jeferson Santiago

Architectural Exploration of Digital Systems Design for FP-
GAs Using C/C++/SystemC Specification Languages / Jeferson
Santiago da Silva. – Porto Alegre: PPGC da UFRGS, 2015.

83 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2015. Advisor: Sergio Bampi.

1. High-level Synthesis. 2. FPGA. 3. Design Space Explo-
ration. 4. Digital Design. 5. Optimization Techniques. I. Bampi,
Sergio. II. Architectural Exploration of Digital Systems Design
for FPGAs Using C/C++/SystemC Specification Languages.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Best remain silent and be thought a fool,
than open your mouth and remove all doubt.”

— ABRAHAM LINCOLN

ACKNOWLEDGMENTS

I would like to thank all my family, specially to my wife Clara. I want to thank
Prof. Bampi, my advisor in this work. My thanks also go to all staff of PPGC, including
professors and administrative personnel.

ABSTRACT

The increasing demand for high computational performance and massive data pro-
cessing has driven the development of systems-on-chip. One implementation target for
complex digital systems are FPGA (Field-programmable Gate Array) devices, heavily
used for prototyping systems or complex and fast time-to-market electronic products de-
velopment. Certain inefficient aspects of FPGA devices relate to performance and power
degradation with respect to custom hardware design.

In this context, this master thesis proposes a survey on FPGA optimization techniques.
This work presents a literature review on methods of power and area reduction applied
to FPGA designs. Techniques for performance increasing and design speedup enhancing
will be presented based on classic and state-of-the-art academic works. The main focus
of this work is to discuss high-level design techniques and to present the results obtained
in synthesis examples we developed, comparing with hand-coded HDL (Hardware De-
scription Language) designs.

In this work we present our methodology for fast digital design development using
High-Level Synthesis (HLS) environments. Our methods include efficient high-level
code partitioning for proper synthesis directives exploration in HLS tools. However, a
non-guided HLS flow showed poor synthesis results when compared to hand-coded HDL
designs. To fill this gap, we developed an iterative design space exploration method aim-
ing at improving the area results. Our method is described in a high-level script language
and it is compatible with the Xilinx VivadoTM HLS compiler. Our method is capable of
detecting optimization checkpoints, automatic synthesis directives insertion, and check
the results aiming at reducing area consumption.

Our Design Space Exploration (DSE) experimental results proved to be more efficient
than non-guided HLS design flow by at least 50% for a VLIW (Very Long Instruction
Word) processor and 62% for a 12th-order FIR (Finite Impulse Response) filter imple-
mentation. Our area results in terms of flip-flops were up to 4X lower compared to a
non-guided HLS flow, while the performance overhead was around 38%, for the VLIW
processor compilation. In the FIR filter example, the flip-flops reduction were up to 3X,
with no relevant LUTs and performance overhead.

Keywords: High-level Synthesis, FPGA, Design Space Exploration, Digital Design, Op-
timization Techniques.

RESUMO

Exploração Arquitetural no Projeto de Sistemas Digitais para FPGAs Utilizando
Linguagens de Especificação C/C++/SystemC

A crescente demanda por alto desempenho computacional e massivo processamento
de dados tem impulsionado o desenvolvimento de sistemas-on-chip. Um dos alvos de im-
plementação para sistemas digitais complexos são os dispositivos FPGA (Field-programmable
Gate Array), muito utilizados para prototipação de sistemas e rápido desenvolvimento de
produtos eletrônicos complexos. Certos aspectos ineficientes relacionados aos dispositi-
vos FPGA estão relacionadas com degradação no desempenho e na potência consumida
em relação ao projeto de hardware customizado.

Neste contexto, esta dissertação de mestrado propõe um estudo sobre técnicas de oti-
mização em FPGAs. Este trabalho apresenta uma revisão da literatura sobre os métodos
de redução de potência e área aplicados ao projeto de FPGA. Técnicas para aumento
de desempenho e aceleração do tempo de desenvolvimento de projetos são apresentadas
com base em referencias clássicas e do estado-da-arte. O principal foco deste trabalho
é discutir sobre as técnicas de alto nível e apresentar os resultados obtidos nesta área,
comparando com os projetos HDL (Hardware Description Language) codificados a mão.

Neste trabalho, é apresentado uma metodologia para o desenvolvimento rápido pro-
jetos digitais utilizando ambientes HLS (High-Level Synthesis. Estes métodos incluem
eficiente particionamento de código de alto nível, para a correta exploração de diretivas
de síntese em ferramentas HLS. Porém, o fluxo HLS não guiado apresentou pobres resul-
tados de síntese quando comparado com modelos HDL codificado a mão. Para preencher
essa lacuna, foi desenvolvido um método iterativo para exploração de espaço de projeto
com o objetivo de melhorar os resultados de área. Nosso método é descrito em uma
linguagem de script de alto nível e é compatível com o VivadoTM HLS Compiler. O mé-
todo proposto é capaz de detectar pontos chave para otimização, inserção automatica de
diretivas síntese e verificação dos resultados com objetivo de reduzir o consumo de área.

Os resultados experimentais utlizando o método de DSE (Design Space Exploration)
provaram ser mais eficazes que o fluxo HLS não guiado, em ao menos 50% para um
processador VLIW e em 43% para um filtro FIR (Finite Impulse Response de 12a ordem.
Os resultados em área, em termos de flip-flops, foram até 4X menores em comparação
com o fluxo HLS não guiado, enquanto redução no desempenho ficou em cerca de 38%,
no caso do processador VLIW. No exemplo do filtro FIR, a redução no número flip-flops
chegou a 3X, sem relevante aumento no número de LUTs e redução no desempenho.

Palavras-chave: Síntese de Alto Nível, FPGA, Exploração de Espaço de Projeto, Siste-
mas Digitais, Técnicas de Otimização.

LIST OF ABBREVIATIONS AND ACRONYMS

ABEL Advanced Boolean Expression Language

ABL A Block diagram Language

ALU Arithmetic and Logic Unit

ANSI American National Standards Institute

APL A Programming Language

ASIC Application-Specific Integrated Circuit

CE Clock Enable

CMOS Complementary Metal-Oxide-Semiconductor

CT Compute Time

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DSE Design Space Exploration

DDDG Dynamic Data Dependence Graphs

DSP Digital Signal Processing

EDA Electronic Design Automation

FF Flip-flop

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GIMP GNU Image Manipulation Program

GPU Graphic Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HW Hardware

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

ISP Instruction Set Processing

JPEG Joint Photographic Experts Group

LDMC Logic Delay Measurement Circuit

KARL Kaiserslautern RTL

LE Logic Element

LUT Look-up Table

MAC Multiply and Accumulate

MIPS Microprocessor without Interlocked Pipeline Stages

MPEG Moving Picture Experts Group

OpenCL Open Computing Language

PLL Phase-locked loop

QoR Quality of Results

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register-Transfer Level

SDK Software Development Kit

SRAM Static RAM

SW Software

TCL Tool Command Language

Vex VLIW Example

VLIW Very Long Instruction Word

VHDL VHSIC HDL

VHSIC Very-High-Speed IC

LIST OF SYMBOLS

α Switching Rate

C Capacitance

f Operation Frequency

Vdd Power-Supply Voltage

τDN Wire Delay

L Wire Length

c Capacitance of a Wire per Unit Area

r Sheet Resistance of a Wire (Ω/square)

ρ-Vex Reconfigurable Vex Processor

LIST OF FIGURES

1.1 Typical FPGA Scheme. 15
1.2 Classic FPGA Design Flow. 17

2.1 Resource Sharing. a) Behavioural description. b) Data and Control
Path. c) Data and Control Path with Sum/Sub Operations Merged . . 19

2.2 Internal Architecture of a FPGA Logic Element inside VirtexTM 5. . . 20
2.3 Gated Clock Circuits: a) Falling edge. b) Rising edge. 21
2.4 LDCM scheme proposed in (CHOW et al., 2005). 22
2.5 Four issue VLIW scheme. 22
2.6 Fan-out Reduction Circuit (N = 2). 23

3.1 Verilog Implementation for a D-FF. 26
3.2 VHDL Implementation for a D-FF. 27
3.3 SystemC Implementation for a D-FF. 27
3.4 SPARK Design Flow. 30
3.5 LOPASS Design Flow. 31
3.6 LegUp Design Flow. 32
3.7 FIR Filter Design Space Exploration. 34
3.8 Loop Unrolling. a) Loop Pseudo-code. b) Unrolled Data Flow. c)

Tree Reduction Structure. 35
3.9 Kernel Graph. R represents a memory reading while VR represents

an variable latency for an external memory access. 35

4.1 Pareto Curve. 37
4.2 DSE methodology by Xydis. 38
4.3 Tuned and Untuned C code comparison. 39

5.1 Code transformation example: Original code, on left. On right, code
partitioned. 41

5.2 Code Snippet Example of a VLIW Implementaion. 41
5.3 DSE Framework Flow. 43
5.4 Example Code for ALU operation. 44

6.1 Square Root Algorithm Pseudo-code. 48
6.2 FIR Filter Pseudo-code. 50
6.3 DSE Area Results with VivadoTM. 52
6.4 DSE Performance Results with VivadoTM. 53
6.5 Multiple Size FIR Filters. a) Area Versus Filter Size Curve. b) Per-

formance Versus Filter Size Curve. 56

LIST OF TABLES

3.1 Hardware Design Domains and Abstraction Levels. 28
3.2 Differences between C/C++ and SystemC. 30

6.1 MIPS Implementation Comparison. 47
6.2 Square Root Algorithm Implementation Comparison. 48
6.3 ρ-Vex Synthesis Results Using LegUp Compiler. 49
6.4 ρ-Vex Synthesis Results Using VivadoTM HLS. 49
6.5 Synthesis Results for FIR Filter Example: Target Altera CycloneTM IV. 50
6.6 Synthesis Results for FIR Filter Example: Target Xilinx SpartanTM 6

and Xilinx VirtexTM II. 51
6.7 DSE Framework Results: VLIW processor. 54
6.8 DSE Framework Results: FIR Filter. 55
6.9 Synthesis Results for Multiple Order FIR Filter Example. 55

CONTENTS

1 INTRODUCTION . 14
1.1 Motivation . 15
1.2 Contributions . 16
1.3 Thesis Organization . 16

2 HARDWARE DESIGN OPTIMIZATION TECHNIQUES 18
2.1 Area Saving Methods . 18
2.2 Power Saving Methods . 18
2.3 Performance Enhancing Methods . 21
2.4 Hardware Optimization Methods Summary 23

3 METHODS TO REDUCE DESIGN TIME 25
3.1 Evolution of Hardware Description Languages 25
3.2 High-Level Synthesis Tools . 28
3.3 High-level Optimization Techniques . 32
3.4 HLS tools and Methods Summary . 34

4 DESIGN SPACE EXPLORATION IN HARDWARE SYSTEMS 36
4.1 Introduction . 36
4.2 Architectural Exploration . 36
4.3 Conclusions . 39

5 METHODOLOGY PROPOSED FOR ARCHITECTURAL EXPLORATION 40
5.1 High-Level Code Tuning . 40
5.2 Iterative Design Space Exploration Method with High-level Synthesis . 42
5.2.1 High-level Design Entry . 42
5.2.2 High-Level Parsing . 42
5.2.3 Design Constraints . 44
5.2.4 Update HLS Directives . 44
5.2.5 Results Parsing and Analysis . 45
5.3 Methodology Summary . 45

6 HIGH-LEVEL SYNTHESIS EXPERIMENTS 46
6.1 High-Level Synthesis Tools and Design Methods Comparison Results . . 46
6.1.1 MIPS processor . 46
6.1.2 32 bit Integer Square Root Algorithm . 47
6.1.3 VLIW Processor . 48
6.1.4 12th-order FIR Filter . 49

6.2 Design Space Exploration Results . 51
6.2.1 Interactive DSE Results . 51
6.2.2 Iterative DSE Method Results . 53

7 CONCLUSIONS . 57

REFERENCES . 59

APPENDIX A RESUMO DA DISSERTAÇÃO "ARCHITECTURAL EXPLO-
RATION OF DIGITAL SYSTEMS DESIGN FOR FPGAS US-
ING C/C++/SYSTEMC SPECIFICATION LANGUAGES" . . 63

A.1 Introdução . 63
A.1.1 Motivação . 64
A.1.2 Contribuições . 64
A.1.3 Organização da Dissertação . 65
A.2 Resumo das Contribuições da Dissertação: Exploração Arquitetural no

Projeto de Sistemas Digitais para FPGAs Utilizando Linguagens de Es-
pecificação C/C++/SystemC . 65

A.3 Conclusões . 66

APPENDIX B VLIW PROCESSOR SOURCE CODES 68
B.1 C-code Design Entry . 68
B.1.1 Constants Definitions (r_vex.h) . 68
B.1.2 Instruction Memory (r_vex_imem.h) . 71
B.1.3 Branches and Memory Access Functions (r_vex_fun.h) 72
B.1.4 Functions Prototype (r_vex_top.h) . 73
B.1.5 ρ-Vex Processor Core (r_vex_top.c) . 73
B.1.6 ρ-Vex Processor Testbench (r_vex_tb.h) 82
B.2 Synthesis Directives Generated by DSE Script (directives.tcl) 83

14

1 INTRODUCTION

FPGA devices are widely used for faster implementation of digital functions in hard-
ware and for ASIC (Application-Specific Integrated Circuit) emulation. However, even
state-of-the-art FPGAs have serious limitations in terms of performance, area utilization
and power consumption. With the increasing complexity of digital systems, optimization
techniques must be performed to make digital projects with these devices competitive.

In this work we discuss the most common techniques available in the literature target-
ing FPGA design optimization. These methods include power savings such techniques
as clock gating and frequency/voltage scaling. In terms of area, we will discuss the im-
portance of resource sharing. For performance enhancing, techniques such as pipelining,
parallelism and fan-out reduction will be reviewed.

The main purpose of this master thesis is to discuss and to explore high-level design
optimization techniques applied to FPGA systems. The Register-Transfer Level (RTL)
design is the project schedule bottleneck in digital systems design. HLS (High-Level
Synthesis) methods and utilization will be discussed for fast turn-around purpose. Com-
mercial and academic HLS tools will be presented, as well as, advanced design techniques
using high-level specification languages, for example C/C++ or SystemC.

Many algorithm standards are open-source available in high-level languages, such as
C. In the classic FPGA design flow, hardware designers must to translate these algo-
rithms onto FPGA hardware performing all steps of optimization using register-transfer
level languages. RTL development and verification is a complex and expensive task when
compared to software implementations. Higher level abstractions allow software design-
ers to develop FPGA hardware using HLS compilers. HLS tool providers affirm that for
the certain test-cases, the productivity can be increased up to 50% using HLS methods
compared to hand-coded RTL design. The addition of directives/pragmas in the HLS
compilers allows the designers to guide the algorithm implementation for a specific de-
sign trade-off, for example, performance or area reduction. The verification process in a
RTL based flow is very hard due to limitations of HDL languages in describing the real
world circuit behaviour, while using higher abstraction languages it is possible to emulate
the operation conditions. Moreover, a RTL simulation can take several hours, even days
depending of circuit complexity, which normally requires powerful simulation servers.

In this context, this work presents a methodology for digital design using high-level
languages through HLS design flow. We explore techniques of code partitioning and
pragmas insertion targeting Quality of Results (QoR) improvement. In our work, we
developed an iterative method for wide design space exploration with HLS aiming at area
reduction. Our method proves to be very effective when compared to a non-guided HLS
design flow, being up to 50% more efficient, using an academic VLIW processor as design
benchmark.

15

1.1 Motivation

The FPGA is a pre-defined chip, which contains a large number of macro-cells, in-
terconnected with each other by routing wires and routing switches. Each macro-cell has
inside a programmable input multiplexer logic which is capable to implement all possi-
ble logic equations of its inputs combinations and a storage element (flip-flop). Modern
FPGA devices include RAM (Random Access Memory) blocks, DSP (Digital Signal Pro-
cessing) blocks, PLLs (Phase-locked loop), gigabit transceivers and even embedded hard
processors. Figure 1.1 illustrates a typical FPGA diagram.

Figure 1.1: Typical FPGA Scheme.

Source: Xilinx, Inc.

According to data from the FPGA vendors, normally more than 70% of the silicon area
of an FPGA is destined to interconnections, which makes these devices very inefficient
in terms of area consumption. As a pre-defined silicon wafer, the power consumption is a
problem, because the power leakage component is always present in the entire chip, even
if its logic cells and flip-flops are not used. In terms of dynamic power, the major vendors
of FPGA have made a hard effort to make these devices more efficient. Hard components
- like blocks of SRAM (Static Random Access Memory) and DSPs - also consume power,
but these components optimization methods and utilization will not be discussed in this
work.

The performance in FPGAs is worse than in ASIC devices. While ASICs are designed
targeted to a specific application, FPGAs are generic and this impacts directly the timing
issues. Many logic levels between storage elements, large fan-outs, the clock tree, the wire
delay - including nets and routing switches - and fixed logic element placement contribute
to decreasing of maximum operation frequency.

The hardware development is high cost and takes a large fraction of design time. The
traditional FPGA development is based on system level architecture, RTL description,
functional simulation and at end, logical synthesis and place and routing. In this method,
the hardest task is the RTL description, normally a slow and meticulous task. Advanced

16

HLS techniques automate task, generating a synthesizable RTL code from a high-level
language. Figure 1.2 shows the classic design flow. Recent efforts in HLS research have
made the high-level systems design competitive for FPGA-based systems. Regular archi-
tectures, such as those DSP algorithms, are normally present in works in the literature
to evaluate the high-level implementations. Algorithm scheduling, loop/function pipelin-
ing, parallelism and loop unrolling are common techniques used by HLS tools providers
aiming at results improvement.

Even with HLS tools enhancement in recent years, some designs still difficult to obtain
good synthesis results. Irregular architectures and control based algorithms, for instance,
have limited synthesis results comparing to the hand-coded HDL designs. In this context,
it is necessary to develop architectural design exploration for these designs, providing the
necessary adaptations in the design entry code and to explore efficiently the HLS compiler
parameters.

1.2 Contributions

The main contribution of this master thesis is to propose high-level exploration tech-
niques for digital systems design targeted to FPGA devices. The main contributions of
this work are listed below:

• High-level Architectural Exploration: to achieve good synthesis results with
high-level descriptions it is necessary some code improvements. We discuss in our
methodology some techniques used in HLS environments. We propose an efficient
code partitioning combined with appropriate HLS compilation directives/pragmas
aiming at synthesis results improvement. Our experiments addressed two HLS
tools: the LegUp compiler and the VivadoTM HLS compiler.

• Design Space Exploration Method with High-level Synthesis: addressing higher
Quality of Results in the HLS environment, we proposed an iterative method for
DSE of hardware systems. Our method is multi-platform, it is written in Lua lan-
guage (LUA, 2014) and it is compatible with VivadoTM HLS compiler. This method
is basically composed of these steps: high-level code parsing and analysis, auto-
matic compilation directives insertion and results evaluation.

1.3 Thesis Organization

This master thesis is organized as follows: Hardware optimization techniques and
methods are reviewed in Chapter 2. In this chapter, we discuss about well-known method-
ologies for design optimization in terms of area, power and performance for FPGAs. HLS
tools and methods are revisited in Chapter 3, presenting the evolution of HDL languages
and the state-of-the-art HLS tools and the known HLS optimization methods available
in the literature. Design Space Exploration in hardware systems is presented in Chap-
ter 4, where are introduced important concepts for high-efficient DSE applied to hard-
ware design. In the Chapter 5 we present our methodology for this work, which includes
high-level code tuning and an iterative DSE method with HLS. Chapter 6 presents our
experimental results, for both HLS tools comparison and DSE methodology in a HLS
environment. Finally, the conclusions of this work are drawn in the Chapter 7.

17

Figure 1.2: Classic FPGA Design Flow.

Source: the author.

18

2 HARDWARE DESIGN OPTIMIZATION TECHNIQUES

FPGA devices are known for being very inefficient in terms of power consumption,
useful silicon area and performance, when compared to equivalent dedicated ASIC de-
vices. Over the last decades, researchers have addressed much effort to make this design
flow more competitive compared to ASICs. Clock enable and clock gating methods have
driven the power reduction techniques in recent years. Deep pipelines and hardware par-
allelism are widely used targeting performance increasing in FPGAs. For area purposes, a
well known method is resource sharing combined with efficient scheduling mechanisms.

In this context, this chapter will discuss design techniques applied to FPGA-based
systems. These methods address different design trade-offs. Area saving techniques,
power reduction methods and performance optimization methods are presented according
to state-of-the-art literature.

2.1 Area Saving Methods

EDA (Electronic Design Automation) tools from FPGA providers have in their de-
sign suites, many synthesis options for area saving purpose. These options include reg-
ister sharing, equivalent registers removal, hierarchy destruction and FSM (Finite State
Machine) extraction into RAMs.

In the literature, a common area saving method is the resource sharing/re-utilization.
Figure 2.1 shows an illustration of the resource sharing method proposed in (RAJE;
BERGAMASCHI, 1997). This technique includes the optimal component placement and
task scheduling allowing efficient resource sharing (SUN; WIRTHLIN; NEUENDORF-
FER, 2007).

2.2 Power Saving Methods

As in ASIC design, frequency scaling is a common power saving technique when we
talk about FPGA design. Many works present in the literature illustrates the good results
in terms of power reduction using frequency scaling. One method applied to synchronous
system is the clock enable. All modern FPGAs have a clock enable pin in their flip-flops.
This pin is used to perform the clock enable technique in FPGA devices. Figure 2.2
illustrates a typical LE (Logic Element) of an FPGA device.

When CE (Clock Enable) is asserted, the storage element in the FPGA LE works ex-
actly like the D-type FF (Flip-flop). When the CE pin is setted to 0, the clock source is
disabled in the flip-flop and the outputs do not change their logic states. According Equa-
tion 2.1, the dynamic power in a CMOS (Complementary Metal-Oxide-Semiconductor)

19

Figure 2.1: Resource Sharing. a) Behavioural description. b) Data and Control Path. c)
Data and Control Path with Sum/Sub Operations Merged

Source: (RAJE; BERGAMASCHI, 1997).

circuit is a function, between others parameters, of the switching rate:

Pdyn = CV 2
ddfα (2.1)

where Pdyn is the dynamic power, C represents the capacitance, Vdd represents the supply
voltage and α is the switching rate. If CE pin is not asserted the dynamic power goes to 0.
However, the clock enable method reduces power only in the flip-flop and combinational

20

Figure 2.2: Internal Architecture of a FPGA Logic Element inside VirtexTM 5.

Source: Xilinx, Inc.

logic, being not effective in the clock tree.
On the other hand, the clock gating technique is independent from FPGA technology

and optimize power consumption, including in the clock tree. This method is performed
using simple circuits, according to clock polarity. Many works have been presented in
recent years considering this topic. (ZHANG; ROIVAINEN; MAMMELA, 2006), pre-
sented in 2006 a comparative study between FPGA and ASIC clock gating. His experi-
ments suggest good results for dynamic power reduction in FPGAs, compared to ASIC,
however this power reduction is insignificant because of static FPGA power consumption.
Huda presented in 2009 (HUDA; MALLICK; ANDERSON, 2009), a clock-gating tech-
nique based on efficient FPGA clock region division and a placement algorithm. Pandey
proposes in (PANDEY et al., 2013), two latch-based gated clock generator, as shown in
Figure 2.3. The gated clock generated by the circuits drives the registers and it controls
the global reset for an ALU (Arithmetic and Logic Unit).

In 2012, Oliver presented in (OLIVER et al., 2012), a comparative study between
three power saving techniques, two of them, clock-enable and clock gating, were already
previously discussed. The other technique used in his work was the inputs blocking. It
was made implementing a kind of latch, which is enabled with the CE pin of FPGA LE.
In his results section it was clear the impact of clock tree on power consumption, because
in standby-mode, the clock-enable and inputs blocking techniques had power increasing
with enlarging circuits, while using the clock gating technique the power consumption

21

Figure 2.3: Gated Clock Circuits: a) Falling edge. b) Rising edge.

Source: (PANDEY et al., 2013).

had no changes. On the other hand, the active-mode experiment had almost the same
consumption for all three cases.

The voltage scaling - as frequency scaling was initially developed for ASIC designs
- is a technique used in FPGA-based systems for power saving purpose. This technique
reduces the power consumption in some areas in the chip. Remembering the Equation 2.1,
the dynamic power is proportional to square of the supply voltage.

Adaptive voltage scaling systems have been developed in last years. The goal of this
technique is tuning the correct supply voltage according the performance requirements.
In this context, Chow (CHOW et al., 2005) proposed in 2005, dynamic voltage scaling
method based on LDMC (Logic Delay Measurement Circuit) to control the supply volt-
age. This LDMC is a 128 components inverter chain, which analyses the logic delay to
find out the critical delay with no data errors, and the tuned LDMC value is used to cali-
brate the external power supply controller. The LDMC scheme is illustrated in Figure 2.4.

2.3 Performance Enhancing Methods

Most of performance optimizations techniques targeted to ASIC devices are also ap-
plicable to FPGA systems. Pipelining and parallelism are main methods for performance
increasing. The MIPS (Microprocessor without Interlocked Pipeline Stages) processor,
the precursor of the modern RISC (Reduced Instruction Set Computer) machines, was
developed in mid-1980s with pipelinig technique (PATTERSON; HENNESSY, 2007).
Most of present applications’ datapath use deep pipelines to increase performance. In
high definition video coding, for instance, it is common architectures with more than ten
stages of pipeline.

22

Figure 2.4: LDCM scheme proposed in (CHOW et al., 2005).

Source: (CHOW et al., 2005).

The concept of parallelism is to define the operations which could be executed at
same time in parallel, using multiple hardware units. For proper operation of parallelism
method, the processed data cannot have dependency with each other. Examples of par-
allelism application are vectorial and super-scalar processors. The characteristic of these
machines are the massive datapath computing. Wong proposed in (WONG; AS; BROWN,
2008), a flexible VLIW implementation targeted to FPGA. The processor is basically
a regular MIPS, where is included a flexible number of parallel ALUs. The processor
scheme is illustrated in Figure 2.5.

Figure 2.5: Four issue VLIW scheme.

Source: (WONG; AS; BROWN, 2008).

The methods cited in previous paragraphs refer only to architectural optimizations for

23

FPGA devices. Others techniques address how is possible to deal the technology charac-
teristics, such as long wires in CMOS circuits, which could represent a bad design guide
in a performance-oriented system. The Equation 2.2 (RABAEY; CHANDRAKASAN;
NIKOLIC, 2003) associates the wire length and specific resistance/capacitance. The re-
lation between net delay and wire length is quadratic, then the wire increasing means a
drastic frequency reduction:

τDN =
rcL2

2
(2.2)

where τDN represents the wire delay, r is the specific resistance per square, c is the ca-
pacitance per unit area, and L is the wire length.

The fan-out reduction technique could be useful to reduce long wires and wire capac-
itance. One known method of fan-out control is based on a binary tree. Its a register-
oriented technique and each FF has maximum of two internal register fan-out. The num-
ber of output is 2N with latency N. The area overhead of this fan-out reducing proposal is∑N−1

i=0 2i. Figure 2.6 shows a typical circuit for a factor 2 fan-out reduction.

Figure 2.6: Fan-out Reduction Circuit (N = 2).

Source: the author.

2.4 Hardware Optimization Methods Summary

The methods discussed in previous sections are a few of possible techniques available
on a large digital design optimization universe. In the last 50 years, several other tech-
niques were presented in the literature and all possible techniques cannot be presented in
single work.

In this chapter, we revisited the most known area saving methods, as resource shar-
ing and re-utilization. In terms of power reduction techniques, we reviewed some works:
clock gating, clock enable and voltage scaling were introduced. For performance opti-
mization, we discussed over pipelining, parallelism and fan-out reduction.

24

This work focuses in architectural exploration with high-level synthesis, aiming at
improving timing-to-market. Next chapters present the state-of-the-art on HLS research,
work methodology and experimental results with HLS methods.

25

3 METHODS TO REDUCE DESIGN TIME

The complexity increase of digital systems has motivated designers worldwide to de-
scribe digital designs faster, where multi-million logic cells are normal in recent digital
projects. The productivity increase is related to discovering how it is possible to accel-
erate the time necessary to describe and verify a hardware system. A known method is
using high-level synthesis tools. HLS tools map directly an algorithmic description into a
sysnthesizable RTL language, making the design cycle shorter.

This chapter will discuss how to reduce time-to-market in the design flow. Recent
research and tools allow the utilization of HLS methods aiming at improving the design
time. In this chapter we revisited the evolution of HDL languages over the last decades in
Section 3.1. Section 3.2 reviews academic and commercial HLS tools. In Section 3.3 we
present the high-level techniques applied to FPGA systems.

3.1 Evolution of Hardware Description Languages

Since the transistor invention and the establishment of the integrated circuit technol-
ogy in 1947 and after 1958 respectively, designers have tried to accelerate the digital
design. First know design entry was the schematic capture. Using schematics were pos-
sible to create small-to-medium complexity circuits. However, Moore’s law (MOORE,
1998) was far away to be achieved using schematic design.

In 1971, C. Gordon Bell and Allen Newell, introduced in (BELL; NEWELL, 1971)
the concept of RTL description (i.e. hardware description at the register transfer level).
The RTL still being a major characteristic today in all synthesizable hardware descrip-
tion languages. In their book, they show the PDP-8 processor and present the RTL
through ISP (Instruction Set Processing) language. In the end of 1970 decade, the Univer-
sity of Kaiserslautern developed their own register-transfer level language, called KARL
(Kaiserslautern Register-Transfer Level). KARL was developed simultaneously with
ABL (A Block diagram Language) language. Both together formed a common VLSI
framework in Europe, in middle 1980’s (HARTENSTEIN, 1993).

The 1980 decade was the peak for the HDL development. In the first half (1983)
the ABEL (Advanced Boolean Expression Language) language was created. The ABEL
developed framework was presented in 1985 (LEE et al., 1985). This framework was
composed by the ABEL HDL language and the ABEL processor. ABEL syntax and
semantics are derived from C language. It is composed by conditional and sequential
statements, and logical and arithmetical operators.

The two most important HDL languages today, Verilog and VHDL (Very-high-speed
integrated circuit Hardware Description Language, were developed in 1980’s. Verilog was
standardized by IEEE (Institute of Electrical and Electronics Engineers) 1364 Standard.

26

Verilog was developed by Gateway Design Automation, in 1985. Verilog is similar to C
language, and this characteristic made the designers to become interested in this language.
Two other derivations of C are the case-sensitive code and the preprocessor, allowing
conditional compilation. The reserved words for sequential and conditional statements or
logical and arithmetical operators are equal to C. Some differences among C and Verilog
are the bit-width definition for variables and the clock orientation. Beside this, Verilog
has four logic values for bit representation: 1 (high), 0 (low), floating and undefined.
Digital circuits are represented, in Verilog, as modules, where each module has ports
and parameters. Ports are defined according direction: in, out and inout. In Verilog,
all statements are executed in parallel, except some ones that are placed inside always
statement, in this case the execution is sequential. In the always statement is defined
the sensitivity list for sequential execution. This characteristic of parallelism makes the
Verilog design complicated for software designers, because the execution of programs in
C is assumed to be sequential only. In the Figure 3.1 is shown a D type FF implementation
in Verilog. The most recent version of Verilog is from 2005.

Figure 3.1: Verilog Implementation for a D-FF.

module d f f (c lock , r e s e t , d) ;
input c lock , r e s e t , d ;
output q ;
reg q ;
always @ (r e s e t or posedge c l o c k)

i f (r e s e t == 1)
q <= 0 ;

e l s e
q <= d ;

end
endmodule

Source: the author.

VHDL is defined in the IEEE 1076 Standard. VHDL was initially developed by the
US Department of Defense for ASIC development purpose. VHDL syntax and semantics
were based on Ada language. Similar to Verilog, VHDL has no defined bit-width for its
variables. VHDL has nine logic values for each bit: uninitialized (’U’), unknown (’X’),
high (’1’), low (’0’), high impedance(’Z’), week signal (’W’), weak high (’H’), weak low
(’L’) and don’t care (’-’) . Another characteristic similar to Verilog is the parallelism.
Architectures in VHDL are executed in parallel, while the code inside the processes are
sequential, being in the process statement the definition for the sensitivity list. Figure 3.2
presents a VHDL implementation for a D type flip-flop. The last version of VHDL is
from 2009.

For the last 30 years, Verilog and VHDL have struggled among themselves aiming at
being the standard HDL language for FPGA/ASIC design. While Verilog is most appreci-
ated in United States, VHDL is more common in Europe and Asia. This competition and
the difficulties encountered by software designers for the RTL description understanding
have motivated the development of higher level languages for hardware description pur-
pose. In the beginnings of 2000’s, a set of EDA providers created the SystemC language.
SystemC is a class of C++ thought for hardware modelling. SystemC is defined in the

27

Figure 3.2: VHDL Implementation for a D-FF.

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;

e n t i t y d f f i s
port (

c lock , r e s e t , d : in s t d _ l o g i c ;
q : out s t d _ l o g i c

) ;
end d f f ;
a r c h i t e c t u r e d f f of d f f i s
begin

p r o c e s s (c lock , r e s e t)
begin

i f r e s e t = ’1 ’ then
q <= ’ 0 ’ ;

e l s i f r i s i n g _ e d g e (c l o c k) then
q <= d ;

end i f ;
end p r o c e s s ;

end d f f ;

Source: the author.

IEEE 1666 Standard. SystemC introduces a set of characteristics for hardware descrip-
tion, for instance: clocking and bit-width for variables. Similar to VHDL and Verilog,
SystemC is organized in modules connected to others using ports. In SystemC, all mod-
ules are executed in parallel, while methods have sequential execution. A D-FF SystemC
implementation is presented in Figure 3.3.

Figure 3.3: SystemC Implementation for a D-FF.

i n c l u d e " sys t emc . h "
SC_MODULE(d f f) {

s c _ i n _ c l k c l o c k ;
s c _ i n <bool > r e s e t ;
s c _ i n <bool > d ;
s c _ o u t <bool > q ;
void f f () {

i f (r e s e t . r e a d ())
q . w r i t e (0) ;

e l s e
q . w r i t e (d . r e a d ()) ;

}
SC_CTOR(d f f) {

SC_METHOD(f f) ;
s e n s i t i v e << c l o c k . pos () << r e s e t ;

}
} ;

Source: the author.

28

Another recent high-level HDL language is the SystemVerilog. The SystemVerilog
conception was standardized in 2005 by IEEE 1800 Standard. SystemVerilog is an object-
oriented language derived from Verilog. It introduces a series of higher level abstractions
for verification purpose, such as classes and structures. In 2009, the most recent version of
Verilog was merged onto SystemVerilog, since then SystemVerilog presents all character-
istics of Verilog plus itself functionalities. SystemVerilog is widely used for verification,
allowing designers building elaborated testbenches using behavioural constructions very
similar to real-world applications, which is hard to make using Verilog and VHDL.

The evolution of High-Level Synthesis (HLS) tools in recent years, bring back the re-
search on C-based languages for HW (hardware) development. The complexity increase
of digital systems has also boosted this design methodology. The micro-architecture ex-
ploration is a role of the HLS compiler and the designer can direct his thoughts to a
systemic exploration, because state-of-the-art HLS compiler can provide the lower level
optimizations which before were made by the hand of the designer.

3.2 High-Level Synthesis Tools

The beginnings of HLS design were related with the ALERT system (FRIEDMAN;
YANG, 1969), developed by IBM, in the T. J. Watson Research Center, in the 1960’s.
The objective of ALERT system was mapping a behavioural RTL, using APL (A Pro-
gramming Language) language, to logic cells. Many other academic tools were devel-
oped until the beginning of the 1980’s, for example: CMUDA (DIRECTOR et al., 1981),
MIMOLA (ZIMMERMANN, 1979). After 1980’s hiatus, (MCFARLAND; PARKER;
CAMPOSANO, 1990) presented a detailed paper which explained the methodology used
in the HLS design. According (MCFARLAND; PARKER; CAMPOSANO, 1990), a
hardware system is divided in "domains" regions, and each abstraction level of the system
has its own domain. These domains are composed by: Behaviour, Structure and Physi-
cal domains. Table 3.1 presents an adaptation of the hardware system domains along the
abstraction levels proposed by (MCFARLAND; PARKER; CAMPOSANO, 1990).

Table 3.1: Hardware Design Domains and Abstraction Levels.
DOMAINS

Level Behaviour Structure Physical
System Communicating Processors Cabinets

Process Memories Cables
Switches

Algorithm Input-Output Memory, Ports Board
Processors Floorplan

Register-Transfer Register Transfers ALUs, Regs ICs
Muxes, Bus Macro Cells

Logic Logic Equations Gates, flip-flops Std Cell, Layout
Circuit Network Equations Transistors Transistor, Layout

Connections

Source: adapted from (MCFARLAND; PARKER; CAMPOSANO, 1990).

(MCFARLAND; PARKER; CAMPOSANO, 1990) define High-Level Synthesis (HLS)
being a directly mapping of the behaviour specification to a RTL level structure which im-

29

plements that behaviour, and this high-level specification should constrain the synthesis
steps as little as possible. The HLS tools should take the behaviour requirements and
produce the datapath description as a set of logical operators, multiplexers, registers, etc.
In this process, it is also role of the HLS tool to specify the control part (control path) of
the system, in terms of finite state machines (FSMs).

It is also defined in this work the basic concepts related to HLS design, such as: tasks
definitions, design space, scheduling and datapath allocation. These concepts are briefly
presented below:

• Tasks Definitions: the synthesis tool should organize the tasks according priority
and hierarchy. The input high-level language must provide mechanisms of hierar-
chy definition (like functions or procedures) and a way of specifying concurrent
tasks. The tasks are normally represented in terms of a graph, respecting the prece-
dence and concurrence characteristics of the input behavioural code.

• Design Space: a digital system can be implemented in several ways. High perfor-
mance applications require more processing capacity, while other low cost applica-
tions require lower silicon area or power consumption. All these design methods
compose the design space. A design space can be represented by a curve of area
versus performance, for instance, where each point in the graphic represents a given
implementation of the design space.

• Scheduling: this step is responsible to schedule the tasks. The scheduling step must
detect the priority of the tasks in order to map for an specific hardware block. The
data dependency is also analysed by the scheduler in order to find out operations
which could be executed in parallel.

• Datapath Allocation: this step is responsible to map the operations into hardware
operators, such as registers, adders, multipliers, etc. This step is also responsible
for performing optimizations for area reduction or performance improvement, for
instance.

In a more recent work, Coussy and Morawiec (COUSSY; MORAWIEC, 2008) discuss
in their book, many characteristics and methods in high-level synthesis. One of them deals
about high-level languages and their relations with each others. The most acceptable
languages for HLS design are ANSI (American National Standards Institute) C/C++ and
SystemC. Table 3.2 shows us a comparison between them. Scheduling techniques, design
space exploration in HLS environments and binding techniques are also presented in this
work.

In the first years of 2000’s, the research in HLS reached another level. Academic
research efforts produced many HLS tools around the world. In 2003, (GUPTA et al.,
2003) presented the SPARK tool. SPARK takes an ANSI-C behavioural code as input,
compiles and generates a synthesizable register transfer level VHDL code. In his work,
the complete SPARK design flow is introduced and the results are presented for the two
case studies dealt by the authors: a MPEG-1 (Moving Picture Experts Group) and GIMP
(GNU Image Manipulation Program) image processing tool. The performance were in-
creased up to 70%, without significant increase in area. Figure 3.4 shows the SPARK
flow.

LOPASS is an academic low power HLS tool proposed by (CHEN et al., 2010) target-
ing FPGA-based designs. This work presents a power estimator tool, a binding register

30

Table 3.2: Differences between C/C++ and SystemC.
ANSI C/C++ SystemC

Synthesizable code Untimed C/C++ Untimed/timed SystemC
Abstraction level Very high High

Concurrency Proprietary support Standard support
Bit accuracy Proprietary support Standard support

Specific timing model Very hard Standard support
Complex interface design Impossible Standard support, but hard

Ease of use Easy Medium

Source: (COUSSY; MORAWIEC, 2008).

Figure 3.4: SPARK Design Flow.

Source: (GUPTA et al., 2003).

algorithm and an efficient port assignment algorithm to reduce interconnections in FPGA
devices. LOPASS power results are significantly better than commercial HLS vendors,
between 30% and 60% depending on the specific HLS tool considered. The area results -
as measured by the FPGA LUTs and registers usage - are almost the same. The LOPASS
HLS flow is shown in Figure 3.5.

31

Figure 3.5: LOPASS Design Flow.

Source: (CHEN et al., 2010).

(CANIS et al., 2011) presented in 2011 a hybrid academic HLS tool called LegUp.
The LegUp is an open source HLS framework, which takes a standard C algorithm as
input, compiles and generates a hybrid solution based on Verilog RTL and a MIPS soft-
core processor, interconnected by a bus. The results of LegUp have quality comparable
with commercial HLS vendors. Figure 3.6 presents the LegUp design flow.

The major vendors of EDA tools have invested much capital in HLS tool develop-
ment. Xilinx and Altera, the largest FPGA providers, have included in their packages
HLS tools. In case of Xilinx, the HLS tool is the VivadoTM HLS (XILINX, 2014). The
VivadoTM HLS supports C, C++ and SystemC mapped directly onto Xilinx FPGAs. The
hard-IP components, like DSP macros or memories, could be used as inference directly in
the high-level language. On the other hand, Altera has a similar HLS tool. The language
supported by Altera SDK (Software Development Kit) is the OpenCL (Open Computing
Language) (ALTERA, 2014), a standard architectural language developed for heteroge-
neous environments, based on concurrent parallel execution. The HLS tool of Synopsys
is the Synphony C Compiler (SYNOPSYS, 2014). The supported input languages of Syn-
phony are C and C++. According Synopsys, the speedup of development time is up to ten
times compared to a hand-coded HDL.

32

Figure 3.6: LegUp Design Flow.

Source: (CANIS et al., 2011).

3.3 High-level Optimization Techniques

Hara (HARA et al., 2008), presents a set of benchmark codes written in C, for HLS
evaluation proposal. This work shows the synthesis results for several C-based algorithms,
since a MIPS processor until a JPEG (Joint Photographic Experts Group) processor. In
his work, Hara was not concerned in application of any aggressive optimization technique
before HLS compilation. Another contribution of his work is presenting a case study on
functions transformations, as function inlining, partitioning and goto conversions, ex-
plaining pros and cons of these transformations on complexity of generated RTL codes,
for instance, larger control FSMs.

Many other several works around HLS usage for FPGA-target digital design have been
developed over the last ten years. Most of them address specific design trade-offs, like
power, area or performance. (LHAIRECH-LEBRETON; COUSSY; MARTIN, 2010), for
instance, developed a dedicated HLS flow targeted to low power FPGA design. This
work proposed the reduction of clock frequency in some parts of design, reducing thus
the clock tree complexity and long wires. Another power saving technique implemented
in this work is the clock gating, in other words, the clock is gated not allowing switching
of states in the logic blocks which are not active. The results for DSP algorithms were up
to 15% of power reduction, in the multi clock domain design, compared to single clock
domain implementation.

Hadjis presents in (HADJIS et al., 2012), the impact of the target FPGA device in
HLS design aiming at area saving through resource sharing technique. He discussed about
some code patterns to allow an efficient resource sharing. His synthesis experiments were
addressed to two different FPGA devices, one of them with 4 inputs LE and other with
6 inputs. According his work, the results of 6 inputs LE FPGA were better than 4 inputs
FPGA, due to ability of the synthesis tool of mapping muxes and operators at same LE,
reducing LUTs under-utilization.

33

In 2011, (ROSADO-MUñOZ et al., 2011) presented two approaches for FPGA adap-
tive noise filter implementation. One of them is based on hand-coded VHDL and another
using HLS flow. The quality of both implementations is basically the same, while the
code complexity in the hand-coded VHDL method is higher. The area results of both so-
lutions are almost the same, but the performance for three different FPGA devices, Xilinx
SpartanTM 3, Xilinx VirtexTM 4 and Xilinx VirtexTM 5, is two times better in hand-made
VHDL code.

Similar to (ROSADO-MUñOZ et al., 2011), (SANCHEZ et al., 2013) proposed a
comparative study between HLS methods and HDL implementation of a grid synchro-
nization algorithm. In this study, the hand-coded HDL implementation is superior in the
area utilization. However, the usage of hard-IP blocks - DSP blocks and block RAMs -
were better in the HLS implementation mode, due to the resource re-utilization heuristic
of the HLS tool, in this case VivadoTM HLS, which could explain the large area consump-
tion.

Aiming at area saving, (SCHAFER, 2014) presented in his work an optimized alloca-
tion technique for FPGA DSP-blocks. In this this paper, the proposed method is targeted
to multi-process DSP algorithms. Basically, the allocation algorithm places the DSP-
blocks in optimized locations for hardware re-utilization purpose and area minimization.
The design space exploration of used HLS tool is presented in terms of area and perfor-
mance. That is illustrated by Figure 3.7. In the figure the area-performance curve for
three different space explorations are shown in the background. The results, in terms of
area, were up to 12.90% of reduction compared to direct/auto DSP-block allocation.

In (GURUMANI et al., 2013) the authors proposed an implementation of multiple
dependent CUDA (Compute Unified Device Architecture) Kernels in FPGA using HLS
techniques. In this work a comparison between the HLS implementation and a GPU
(Graphic Processing Unit) based implementation is presented. (GURUMANI et al., 2013)
showed the HLS flow for CUDA kernels implementation. A step-by-step design flow and
the challenges in the automatic CUDA kernel synthesis were also presented. The results
with HLS implementation reduced up to sixteen times the energy consumption compared
to a GPU implementation. The performance obtained for both implementations are almost
the same. The HLS tool used in this work was the AutoPilot-C, the FPGA synthesis was
made with Xilinx VivadoTM. The FPGA device target in their experiments was the Xilinx
VirtexTM 7.

Wakabayashi presents in (WAKABAYASHI; TAKENAKA; INOUE, 2014), a HLS
and CPUs (Central Processing Unit) comparison in terms of compiler point of view. In
his work, he showed the compiler optimization possibilities in HLS environments. Tasks
scheduling, pipeline and loop unrolling - limited for CPUs - are easily performed in high-
level design mapped to FPGA devices. One example of these techniques is shown in
Figure 3.8.

Recent efforts have addressed the pipelining exploration in HLS environments. Most
of the HLS tools provide pipelining optimizations including: modulo scheduling, memory
port reduction and polyhedral analysis. Although, the HLS compilers have to insert stalls
in pipelines when some operation takes mores time than average, for instance when a
cache miss is detected and it is necessary to access an external memory. Tan presented in
(TAN et al., 2014), an approach for efficient pipelining synthesis for data-parallel kernels.
He used the concept of context data switching using a context buffer to perform out-of-
order kernel processing. Using buffer context is possible to avoid stalls due to latency
processing of a pipeline stage, where regular pipelining synthesis stalls all stages, causing

34

Figure 3.7: FIR Filter Design Space Exploration.

Source: (SCHAFER, 2014).

reduction in the data processing throughput. He also presented a proposal of buffer micro-
architecture with a low cost scheduler for the storage kernels. Figure 3.9 presents the
context buffer in a kernel graph. His results in terms of throughput are up to 17.5x when
compared to a baseline HLS kernel synthesis.

3.4 HLS tools and Methods Summary

This chapter reviewed the well-known methods for design speedup. The first sec-
tion revisited the evolution of the HDL languages over the last 40 years. The two more
important languages, VHDL and Verilog, are presented in more details. The high-level
languages introduced in the beginnings of 2000’s, SystemC and SystemVerilog, were re-
vised.

In the second section, we revisited the academic and commercial HLS tools. We
introduced some basic concepts in HLS design and we reviewed a set of academic HLS
tools in details. The SPARK, LOPASS and LegUP HLS flow were presented, as well as,
the state-of-the-art commercial HLS tools.

The third section presented the high-level methods with HLS. We presented a litera-
ture review for design optimizations with HLS tools. These methods include high-level
code transformations, pipelining approaches and resource sharing techniques were pre-
sented.

35

Figure 3.8: Loop Unrolling. a) Loop Pseudo-code. b) Unrolled Data Flow. c) Tree
Reduction Structure.

Source: (WAKABAYASHI; TAKENAKA; INOUE, 2014).

Figure 3.9: Kernel Graph. R represents a memory reading while VR represents an variable
latency for an external memory access.

Source: (TAN et al., 2014).

36

4 DESIGN SPACE EXPLORATION IN HARDWARE SYS-
TEMS

4.1 Introduction

Design space exploration (DSE), in hardware systems, refers to design trade-offs bal-
ancing for the best implementation cost-benefit. These trade-offs for hardware systems
normally include at least three variables: silicon area, power consumption and perfor-
mance. Project time, or time-to-market, could be added to DSE variables for commercial
applications. At end, the main purpose of DSE in digital systems design is reduce re-
source investment. With a smaller circuit is possible to manufacture/buy a smaller and
cheaper chip. High performance applications require modern technologies to achieve
high frequencies, in other words, more expansive integrated circuits. Power-hunger de-
signs require stronger power supplies, which means spending more money. Summarizing,
optimizations in any of main variables mean costs reduction.

4.2 Architectural Exploration

Palermo presented in (PALERMO; SILVANO; ZACCARIA, 2003) his definition for
design space. In his work, he defined design space as a set of all possible architectural
implementations in a specific platform. Any possible configuration for an architecture
is defined as a geometric point in the design space. This point, in the multidimensional
space, is a vector a ∈ A, being A the architectural space defined as:

A = Sp1 × ...Spl...× Spn (4.1)

where Spn is a set of possible configurations for the parameter pn. Each point has a set
of metrics associated. These metrics compose a multi-dimensional space named design
evaluation space. He also introduced the concept of Pareto point, which it is the point
in the design space where it is impossible to make an individual objective better without
making at least one individual objective worse. A set of Pareto points form the trade-off
curve or Pareto curve. Figure 4.1 presents a example of trade-off curve.

Pareto curves are widely used in many different knowledge areas - for instance Eco-
nomics, Engineering and Life Sciences - to represent cost-benefit relations. In HW sys-
tems, the Pareto curve represents the best cost-benefit for a specific architecture. The area
of the graphic under the trade-off curve we consider the entire design space.

In other work, Palermo presented in (PALERMO; SILVANO; ZACCARIA, 2005) a
multi-objective DSE applied to embedded systems. He discussed in this work about a
multi-objective DSE, in this case energy and delay. He also presented a framework for

37

Figure 4.1: Pareto Curve.

Source: Wikipedia, the free encyclopedia.

for DSE in order to approximate the Pareto optimality. This framework presents a com-
position of three Pareto approximation algorithms, basically derived from Monte Carlo
analysis.

In the literature, we can find many works on DSE applied to digital systems. Most
of them present methodologies for high efficient DSE, which include exploration algo-
rithms and efficient hardware design partitioning. Sotiropoulou, for example, presented
in (SOTIROPOULOU; NIKOLAIDIS, 2010) a methodology for DSE applied to FPGA-
based multiprocessing systems. In her work, she presented an efficient JPEG algorithm
partitioning in processors implemented in an FPGA, allowing data and task-level par-
allelism for each processor. She presented four different multiprocessing architectures,
each one optimized for a specific design exploration. She also defined a relation called
HW efficiency, presented as follows:

38

HWeff =
SpeedUp

Areainc
(4.2)

where the SpeedUp represents the performance improvement and Areainc represents the
area increasing for that SpeedUp result.

High-level synthesis researchers have studied how to apply DSE concepts in their
designs. Xydis discussed in (XYDIS et al., 2010), a methodology for design space explo-
ration with HLS using a combination of exhaustive exploration and gradient-based pruned
searching. In his work, he proposed an iterative DSE technique using both exhaustive and
heuristic methods. In Figure 4.2 is shown the DSE flow methodology of his work. In his
heuristic algorithm, he defines the space boundary - as number of adders or multipliers -
in order to define the Pareto curve for the implemented architecture. The Pareto curve is
extracted iterating step-by-step on boundaries variables.

Figure 4.2: DSE methodology by Xydis.

Source: (XYDIS et al., 2010).

In (SHAO et al., 2014), Shao proposed a framework for power-performance simu-
lation allowing large DSE for custom architectures. In her work, she discusses about
dynamic data dependence graphs on digital designs. Her framework is composed by two
phases: optimization and realization phases. On optimization phase, the framework de-
tects and performs the code optimizations, as DDDG (Dynamic Data Dependence Graphs)
and architectures optimizations (node/loop unrolling and memory accesses). The realiza-
tion phase performs the power-performance estimation based on input constraints, data/-

39

control dependencies, etc. She also discusses about code tuning and presented a com-
parison between tuned/untuned C codes, which is presented in Figure 4.3. Code tuning
is a key factor in HLS design flow, allowing hardware parallelism, pipelining and false
data/control dependencies removal.

Figure 4.3: Tuned and Untuned C code comparison.

Source: (SHAO et al., 2014).

4.3 Conclusions

HLS methods can help considerably the design space exploration. The basics of this
exploration is introduced in this chapter. The importance of optimizing the input high-
level description was emphasized, based on previous works presented in the literature.

40

5 METHODOLOGY PROPOSED FOR ARCHITECTURAL
EXPLORATION

This chapter presents the methodology used for this work. The current work targets
the high-level architectural exploration, thereby our methodology is mainly focused in
two high-level methods: high-level code tuning and an iterative method for design space
exploration. The first method was based on similar works (SOTIROPOULOU; NIKO-
LAIDIS, 2010; SHAO et al., 2014) present in the literature. The framework we developed
is based on Xydis work (XYDIS et al., 2010). Next sections will present these methods
in details.

5.1 High-Level Code Tuning

High-level code abstractions, normally, are not well welcome in HLS tools. How-
ever, high abstraction is common in C-based languages and this property makes the HLS
development easier for fast turn-around purpose. To fill this gap, we have to adapt the
source code to get the expected results. These code transformations include: efficient
code partitioning and appropriate HLS directives exploration.

C-based codes are serially executed. As an FPGA designer, we have to translate this
serial code onto an FPGA-targeted parallel code. A transformation we studied in this work
was the efficient code partitioning (PELLERIN; THIBAULT, 2005). A well partitioned
code allows the HLS tool to interpret correctly the source code for proper optimizations.
Techniques as loop pipelining, loop unrolling and resource sharing are possible using this
method. The technique we implemented in this work detects code snippets working as a
block and isolate them in a function. Figure 5.1 shows an example of code transformation
on a kernel C-based snippet code. This code transformation allows to drive the synthesis
for at lest for two parameters: area reduction and performance improvement. For area
reduction, the synthesis tool implements only one hardware block for the function kernel.
Aiming at performance increase, the synthesis process implements the necessary number
of kernel hardware modules for maximum parallelism.

Code partitioning and HLS parameters exploration are closely related. On VivadoTM

HLS, the implementation parameters could be inserted directly on the source code - using
pragmas - or through a constraint script. With the source code functionally divided, the
HLS parameters insertion can be more assertive. For performance purpose, the more
useful parameters are: pipelining, loop unrolling, array partitioning and datapath. When
the target is area, common used parameters are inlining functions and resource sharing. As
example of HLS parameters usage, we present the snippet code below extracted from our
C-based VLIW processor implementation, based on Wong work (WONG; AS; BROWN,

41

Figure 5.1: Code transformation example: Original code, on left. On right, code parti-
tioned.

void foo () { void k e r n e l (i n t ∗a , i n t ∗b) {
f o r (i n t i = 1 ; i < 1 0 ; i ++) f o r (i n t i = 1 ; i < 1 0 ; i ++)

b [i] += b [i −1]∗ a [i] ; b [i] += b [i −1]∗ a [i] ;
f o r (i n t i = 1 ; i < 1 0 ; i ++) }

d [i] += d [i −1]∗ c [i] ; void foo () {
f o r (i n t i = 1 ; i < 1 0 ; i ++) k e r n e l (a , b) ;

f [i] += f [i −1]∗ e [i] ; k e r n e l (c , d) ;
} k e r n e l (e , f) ;

}

Source: the author.

2008):

Figure 5.2: Code Snippet Example of a VLIW Implementaion.

void e x e c u t e (. . .)
{
. . .

/∗ Perform ALU o p e r a t i o n s ∗ /
L2 : f o r (i = 0 ; i < ALU_NUM; i ++) {

a l u (op_code [i] , A_op [i] , B_op [i] , &a l u _ r e s u l t [i]) ;
}

. . .
}

Source: the author.

For area optimization, we used the snippet script below:

s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t 1 −type f u n c t i o n " e x e c u t e / L2 " a l u

This directive forces the HLS tool to implement just one alu function. This func-
tion is translated to just one RTL block, which is shared for each loop iteration. This
implementation reduces area, but increases the execution time by a factor of the integer
ALU_NUM.

For speed optimization, we used the snippet script below:

s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t ALU_NUM −type f u n c t i o n " e x e c u t e / L2 " a l u
s e t _ d i r e c t i v e _ u n r o l l " e x e c u t e / L2 "

Using the script above, the alu is implemented ALU_NUM times. This code has
no data dependency, thus, the function alu is translated to ALU_NUM hardware blocks,
which are executed in parallel. The area overhead increases by a factor ALU_NUM.

42

5.2 Iterative Design Space Exploration Method with High-level Syn-
thesis

The methods discussed in the Section 5.1 are tedious to exploit all possible combi-
nations and have a lower efficiency if applied manually. To support these methods, we
implemented an iterative DSE framework. This method allows a quick response in terms
of trade-off analysis.

In this section we present the DSE methodology adopted in our DSE framework. Our
framework explores efficiently the design space aiming at achieving better area results
compared to non-guided HLS flow. This framework is targeted to Xilinx FPGAs and
the framework result is the best directives file for the VivadoTM HLS tool, in a TCL (Tool
Command Language) format. It is important to highlight that our method does not provide
any architectural transformation in the source code, it only discovers the proper set of
HLS directives for efficient DSE. Hence, it is a fact that a true design space exploration
in general terms requires a more complex, designer-driven exploration.

Our framework is an iterative, recursive and multi-platform method, developed in a
free and high-level language, called Lua (LUA, 2014). The Lua executable is available
for download at http://www.lua.org/download.html.

We used as a basis for this framework implementation the work proposed by Xydis in
(XYDIS et al., 2010). The Xydis work was already discussed in the Chapter 4.

Figure 5.3 presents a simplified view of our framework flow for DSE, which uses the
VivadoTM commercial tool at its core as an engine to be driven by our strategy for DSE. In
the next sub-chapters, we will discuss the implementation of our automatic DSE method.

5.2.1 High-level Design Entry

The current version of our DSE framework supports as input languages both ANSI C
and C++. Some code guidelines should be observed for proper functioning of the DSE
script. These guidelines include:

• Loops labelling, for instance: Loop1: for (int i = 0; i <10; i++);

• Sequential and conditional blocks markers, the ’{’ character, should be placed on a
new line;

• Array declarations should be written just one per line;

• Returning function types cannot be a defined type. The input high-level description
supports only language native type, such as: void, int, short int, etc.

Furthermore, for maximization of optimization results, a well partitioned high-level
code is extremely necessary. The code writing guidelines are important to steer the HLS
tool through the steps of synthesis. A snippet C code example is shown in Figure 5.4.

5.2.2 High-Level Parsing

High-level parsing step is responsible for detecting key points in the C/C++ code
where some optimization directive can be inserted. Our DSE script is capable of detecting
functions and arrays declarations, loops and multiple function execution. As a start, we
have decided to detect these kind of checkpoints, due to the wide possibilities for area
optimizations.

http://www.lua.org/download.html

43

Figure 5.3: DSE Framework Flow.

Source: the author.

For this step, we had to work with regular expressions and a searching algorithm to
find out the correct points for design optimization. The high-level parsing algorithm had
to be able to determine when multiple blocks are executed inside others. To synthesize
area-efficient hardware with HLS, it is necessary to discover the exact number of possible
functions execution.

Observing snippet code shown in Figure 5.4, our framework is able to detect the
checkpoints below:

• Function declarations: r_vex_core and execute;

• Loops execution: L2;

• Array declarations: op_code, A_op, B_op and alu_result;

• Multiple function execution: ALU_NUM*execute.

44

Figure 5.4: Example Code for ALU operation.

void e x e c u t e (char ∗op_code , i n t ∗ a l u _ r e s u l t)
{

i n t A_op [SYLLABLE_NUM] ;
i n t B_op [SYLLABLE_NUM] ;

. . .
/∗ Perform ALU o p e r a t i o n s ∗ /
L2 : f o r (i = 0 ; i < ALU_NUM; i ++) {

a l u (op_code [i] , A_op [i] , B_op [i] , &a l u _ r e s u l t [i]) ;
}

. . .
}

void r _ v e x _ c o r e ()
{

char op_code [ALU_NUM] ;
i n t a l u _ r e s u l t [ALU_NUM] ;

. . .
e x e c u t e (op_code , a l u _ r e s u l t) ;

. . .
}

Source: the author.

5.2.3 Design Constraints

For obtaining convergence for an optimized and acceptable synthesis in Figure 5.3, we
need to define some design constraints. These constraints are the guide for our iterative
method. As our trade-off is area, the DSE script uses the following design constraints:

• Minimum and maximum function/loop execution time in clock cycles;

• Minimum and maximum resource allocation at function granularity;

• Array partitioning threshold. The threshold value is the limit for a single array.
Larger arrays will be partitioned into smaller arrays, where the maximum dimension
is the threshold value.

We have decided not to define or set an allocation constraint for FPGA operators -
adders/subtracters, comparators, multipliers - due to the high cost of large data-width
multiplexers in FPGAs. This decision for not constraining the operators was based on the
finding that VivadoTM HLS gets better area reduction by letting function sharing instead
of operation sharing.

5.2.4 Update HLS Directives

Exploring VivadoTM HLS optimization directives (XILINX, 2014) is fundamental for
this framework success. Using the checkpoints detected in Section 5.2.2, we insert the
appropriate directives for each checkpoint. The relation between code checkpoints and
HLS directives are explained as follows:

• Array declaration: array partitioning directive. This directive defines the partition-
ing and memory resource allocation for an array;

45

• Function declaration: code inline directive. Inline a code snippet;

• Loop detection: execution time directive. Set a defined latency for execution, re-
moving pipelining inferring;

• Multiple function execution: resource allocation directive. Allows HW resource
sharing.

5.2.5 Results Parsing and Analysis

The criterion of acceptance for our DSE framework is better area results. We assume
as area elements the number of FFs and LUTs. The area consumption information is
extracted from the parsing of the synthesis report file. Regular expressions were used to
detect LUTs, FFs, latency and maximum frequency from report file. Being an iterative
method, our stop criterion is the convergence of the DSE script, in other words, we stop
when the maximum area optimization was achieved for the target design (Areaiteration n

>Areaiteration n-1).

5.3 Methodology Summary

This chapter presented the methodology proposed in this work. This first section dis-
cuss about high-level code transformation aiming at Quality of Results (QoR) improve-
ment. We presented a code partitioning methodology and how to explore the HLS com-
pilation directives.

We also presented a automatic DSE method for area reduction purpose. We describe
all steps and requirements for the convergence of the proposed framework. This method
is described in a high-level script language and it is compatible with VivadoTM HLS Com-
piler. Out method trades-off area and performance aiming at achieving the best QoR for
the given implementation. At this moment we are not concerned in the power impacts
of the propose DSE method, however, reducing the area usage also contributes to power
savings.

46

6 HIGH-LEVEL SYNTHESIS EXPERIMENTS

To support this study, this chapter presents the results on HLS design flow. The results
chapter is in two parts: i) HLS tools and design methods comparison and ii) design space
exploration in HLS environment using the method discussed in the Chapter 5. In the first
section, we present the comparison between two different HLS tools: an academic tool
called LegUp and the commercial VivadoTM HLS. In this section, we also compare the
results of the HLS flow with hand-coded design for each test-case. For second section,
we present the results of design exploration methods on HLS. At this time we are only
able to present the DSE methods results for VivadoTM HLS flow.

6.1 High-Level Synthesis Tools and Design Methods Comparison Re-
sults

This section presents the HLS compilers comparison results for HLS design. It is
also presented in this section the comparison between high-level description flow against
hand-coded HDL design flow. For results evaluation we used four test cases:

• a MIPS processor;

• an integer square root algorithm;

• a VLIW processor;

• a FIR filter.

Next sub-sections describe the experiments and their results.

6.1.1 MIPS processor

This experiment aims at comparing two different implementations for a MIPS proces-
sor. As discussed previously, the MIPS architecture was introduced by Patterson (PAT-
TERSON; HENNESSY, 2007) in the 1980’s and this processor is still usual for perfor-
mance evaluation purpose. A high-level MIPS processor, proposed by Hara in (HARA
et al., 2008), written in C language and a VHDL implementation were compared in terms
of area, CT (Compute Time), frequency and code complexity. The MIPS processor used
as benchmark, for both C/C++ and VHDL, is a monocycle machine, with no cache and
no external memory. The hand-code VHDL was developed by the author for this project.
For this experiment we used the LegUp compiler (CANIS et al., 2011) as HLS tool,

47

QuartusTM II as synthesis tool and the FPGA target was a CycloneTM IV. Both, synthe-
sis tool and FPGA device are provided by Altera Inc. The results of this experiment are
shown in Table 6.1.

For performance evaluation, we considered CT as the time necessary for a test pro-
gram execution. The test program used as benchmark was a bubble-sort algorithm. The
assumed code complexity metric is the sum of the lines of code of all source files used for
this experiment, excluding comment lines. The area metric was measured in terms of LE,
which in case of CycloneTM IV FPGA has one four inputs LUT (Look-up Table) and one
FF.

Table 6.1: MIPS Implementation Comparison.
Method Area CT Frequency Code Complexity

(LE) (cycles) (MHz) (lines of code)
C/C++ 4579 5472 72.22 320

Hand-coded VHDL 9070 611 44.92 1200

The results shown in the Table 6.1 suggest:

1. Area reduction in HLS method: That suggests that the HLS tool has an area oriented
mapping algorithm, including resources sharing and re-utilization.

2. Better performance in hand-coded method: even with the higher frequency on HLS
method, the CT is much shorter in the microprocessor obtained by hand-coded RTL
design. This could be explained because of HLS tool heuristics for area reduction.

3. Lower complexity using C language: high-level constructions make the code easier
and shorter compared to RTL design. RTL descriptions normally require bit-level
accuracy, while in high-level it is not necessary. Some code guidelines are required
on hand-coded RTL design, such latch-avoid techniques and careful FSM imple-
mentations. These techniques are automatically performed by HLS tool.

6.1.2 32 bit Integer Square Root Algorithm

Four different implementations for a 32 bits Integer Square Root Algorithm were done
for RTL hand-made versus HLS comparison. The algorithm used for this experiment is
shown in Figure 6.1. Both RTL and high-level implementations were provided by author
for this work.

The algorithm shown in Figure 6.1 was directly used as input of HLS tool using C
language. Three different VHDL implementation were proposed: a non-optimized de-
scription, an area-oriented description and a performance-oriented description.

In this experiment, we used the LegUp C compiler for HLS flow, QuartusTM II and
CycloneTM IV as FPGA device. For performance comparison we considered CT as the
time necessary for a 32 bit integer square root calculation, in this case it was the worst
case input interger: 0xFFFFFFFF. The code complexity metric was the same used in the
Section 6.1.1. Table 6.2 shows the results obtained for these different implementations.

According Table 6.2 we can conclude:

1. Similarity between VHDL SW (Software) pipeline implementation and HLS method:
That suggests the HLS tool has some datapath optimization technique. Pipeline is
a very common technique in datapath oriented algorithms.

48

Figure 6.1: Square Root Algorithm Pseudo-code.
function SQRT(I)

r ← 1
d← 2
s← 4
while s− I ≤ 0 do

r ← r + 1
d← d+ 2
s← s+ d+ 1

end while
return r

end function

Source: the author.

Table 6.2: Square Root Algorithm Implementation Comparison.
Method Area CT Frequency Code Complexity

(LE) (cycles) (MHz) (lines of code)
C/C++ 255 46343 123.9 15

Hand-coded VHDL 180 185368 311.14 240
Hand-coded VHDL (HW re-utilization) 101 231707 308.93 200

Hand-coded VHDL (SW Pipeline) 227 46353 233.48 230

2. Worst performance in VHDL, excepts with SW pipeline implementation: even
achieving higher frequency, the VHDL techniques are much worse than HLS. The
area reduction is not good enough to compensate the worst performance.

3. Code complexity: all three VHDL implementations have more than 10 the times
number of lines of code compared to high-level implementation.

6.1.3 VLIW Processor

In this experiment, we implemented an academic VLIW processor aiming at com-
paring HLS tools. The chosen VLIW processor was the ρ-Vex processor, designed by
Wong in (WONG; AS; BROWN, 2008). The RTL model is open source available for
download at https://code.google.com/p/r-vex/. We developed a high-level
implementation for ρ-Vex processor using C language and this code was used as design
entry for both HLS tools. The processor implemented was a four issue VLIW architec-
ture, according to the scheme already presented in the Section 2.3. The high-level input
C code is available in the Appendix B.1.

The main purpose of this experiment was the HLS tools comparison. For this, we used
the LegUp C HLS compiler and the VivadoTM HLS compiler, provided by Xilinx Inc. For
performance analysis, we considered CT as the worst case instruction compute time, for
this case a 32 bits multiplication. The code complexity metric was the same used in the
Section 6.1.1. In this experiment we considered for area consumption analysis not just
logic elements, but also memory blocks and DSP blocks, due to processor complexity.

The LegUp results are shown in the Table 6.3. The synthesis tool used in this experi-
ments was QuartusTM II and the target FPGA was a CycloneTM IV. Each RAM block on

https://code.google.com/p/r-vex/

49

a CycloneTM IV has storage capacity of 8 kb. The multipliers on this device can operate
inputs with 9 bits width.

Table 6.3: ρ-Vex Synthesis Results Using LegUp Compiler.
Method Area DSP RAM CT Frequency Code Complexity

(LE) Blocks Blocks (cycles) (MHz) (lines of code)
C/C++ 7122 24 29 514 123.9 801

Hand-coded VHDL 1771 2 0 7 311.14 4359

In the Table 6.4 are presented the synthesis results obtained using VivadoTM HLS.
As synthesis tool we used VivadoTM and the target FPGA was an SpartanTM 6. Both
synthesis tool and FPGA device are provided by Xilinx Inc. The area metric used in this
experiment was LUTs and FFs. SpartanTM 6 has 6 input LUT, and its RAM blocks have
16 kb of storage capacity and the embedded multipliers can operate 18 bits inputs.

Table 6.4: ρ-Vex Synthesis Results Using VivadoTM HLS.
Method Area Area DSP RAM CT Frequency Code Complexity

(LUT) (FF) Blocks Blocks (cycles) (MHz) (lines of code)
C/C++ 6765 12535 5 2 300 333 801

Hand-coded 4944 1765 10 1 7 119.64 4359
VHDL

Comparing Table 6.3 and Table 6.4 we can conclude about each HLS tool:

1. LUTs consumption similarity with both tools: resource allocation mechanism is
similar on both LegUp and VivadoTM.

2. Large RAM blocks usage with LegUp: the schedule algorithm could explain large
consumption. It is necessary memories to store data context for time scheduling.

3. Large DSP blocks consumption with LegUp: hard blocks allocation technique is
worse than VivadoTM, although FFs and LUTs allocation mechanism are better.

4. Better performance on VivadoTM: summarizing previous two topics is clear the
performance results. DSP and RAM macros have a fixed latency, around 3 ns,
which explain the best performance on VivadoTM.

6.1.4 12th-order FIR Filter

In this experiment, we implemented a 12-tap FIR filter. The main goal of this ex-
periment is to compare two different HLS tools: LegUp and VivadoTM HLS. For this
experiment, we used a C code provided by Xilinx Inc. The source code could be down-
loaded at VivadoTM HLS tutorials web page. The pseudo-code for this FIR filter is shown
in Figure 6.2.

We also synthesized a 12-tap FIR filter in VHDL. The implementation is described by
Meyer-Baese in (MEYER-BAESE, 2001). In his book, Meyer-Baese describes a generic
filter implementation, where parameters as input and output data width, tap number and
multiplier pipeline stage number can be customized. The original code only supports
Altera devices, we modified the VHDL code to support both Xilinx and Altera devices.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-design-files.zip

50

Figure 6.2: FIR Filter Pseudo-code.
function FIR(x, c[12])

acc← 0
data← 0
shiftreg[12]← 0
i← 11
for i ≥ 0 do

if i = 0 then
shiftreg[i]← x
data← x

else
shiftreg[i]← shiftreg[i− 1]
data← shiftreg[i]

end if
acc← acc+ data ∗ c[i]
i← i− 1

end for
return acc

end function

Source: the author.

It is important emphasizing that RTL optimizations were not performed, because it is not
the purpose of this implementation, it is used only for propose of comparison.

A FIR filter implementation, proposed by Mirzaei in (MIRZAEI; HOSANGADI;
KASTNER, 2006), was also used as benchmark comparison. In his work, Mirzaei pro-
poses a multiplier-less 12-bits FIR filter implementation, based on add-shift method. He
presented multiples FIR filter sizes, but we will compare only the 13-tap filter, which
could be considered a good approximation to our filters. Furthermore, we considered
only the area results, in terms of LUTs/FFs, because the FPGA device used in this work
is legacy, thereby the performance or power results cannot be considered.

In Table 6.5, we present the comparison between two implementations: Meyer-Baese
RTL based and a high-level implementation with LegUp. Both implementations were
targeted to CycloneTM IV FPGA device and were synthesized with QuartusTM II. Com-
parison metrics were the same used in the Section 6.1.3, except CT. CT metric, in this
experiment, was defined as the time necessary to complete one filtering operation for one
input sample.

Table 6.5: Synthesis Results for FIR Filter Example: Target Altera CycloneTM IV.
Method Area DSP RAM CT Frequency Code Complexity

(LE) Blocks Blocks (cycles) (MHz) (lines of code)
C/C++ 990 9 13 60 115.15 20
VHDL 511 22 0 1* 242.48 150

by Meyer-Baese

* 14 cycles initial pipeline latency.

51

Table 6.6 shows synthesis results for Xilinx FPGAs. The target FPGA was a SpartanTM

6, synthesized with Xilinx ISE, except for Mirzaei work, which was implemented on a
VirtexTM II, also provided by Xilinx Inc.

Table 6.6: Synthesis Results for FIR Filter Example: Target Xilinx SpartanTM 6 and Xilinx
VirtexTM II.

Method Area Area DSP RAM CT Frequency Code
(LUT) (FF) Blocks Blocks (cycles) (MHz) Complexity

(lines of code)
C/C++ 730 8220 4 0 47 594 20
VHDL 378 353 11 0 1* 128 150

by Meyer-Baese
VHDL 334 739 - - - - -

by Mirzaei**

* 14 cycles initial pipeline latency.
** Performance and code complexity metrics not considered.

Analysing Table 6.5 and Table 6.6 we can conclude:

1. Lower code complexity using HLS tools: HLS utilization reduces in almost 10
times the code complexity in terms of lines of code. Architectural structures, for
instance pipelining, are automatically performed by both used HLS tools.

2. Large area consumption with HLS method: both tools have similar area consump-
tion (LEs or LUTs/FFs), which is worse comparing to VHDL implementations.
Although, both tools optimized the design for DSP macros re-utilization.

3. Extremely high frequency using VivadoTM HLS: VivadoTM HLS implements deep
pipelines, mainly in the multipliers, increasing the frequency. The large FF utiliza-
tion in this method has the same cause: FFs are used in the pipeline registers.

6.2 Design Space Exploration Results

This section presents the results for both interactive and automatic design exploration
methods. Section 6.2.1 shows the results for three compilation methods applied to a
VLIW processor. Section 6.2.2 presents the experiments for the proposed iterative DSE
method for two benchmarks: the ρ-Vex processor and a set of FIR filters.

6.2.1 Interactive DSE Results

The design space exploration is easy with VivadoTM HLS. With VivadoTM it is possible
to define area and performance constraints, using a TCL script, aiming at discovering the
best cost-benefit for the target design. For the VLIW processor we defined 3 different
constraints:

• Functions sharing: resource sharing is made at level of functions and logical blocks.

• Operators sharing: resource sharing is made at level of operators, for instance adder-
s/subtracters, comparators, multipliers.

52

• Un-inlined functions: force functions being executed un-inlined, avoiding HW re-
utilization/resource sharing. This method allows the tool instantiate multiple HW
modules.

Figure 6.3 illustrates the area results of manual design space exploration with VivadoTM.
Figure 6.4 shows the performance obtained through interactive DSE using VivadoTM. The
processor implemented and the assumed compute time (CT) for this experiment are the
same presented in 6.1.3. The baseline flow is the non-guided HLS flow, where it is not
setted any design constraint or synthesis directive.

Figure 6.3: DSE Area Results with VivadoTM.

Source: the author.

According graphics presented in Figure 6.3 and Figure 6.4 we can conclude:

1. Smaller area usage results from using the function sharing method: allows HW
resource re-utilization. This method is very effective, lower multiplexers overhead
compared to total area.

2. Bad area result at operators sharing: multiplexers are very expensive in FPGAs.
This technique requires a large number of multiplexers and register to select/store
the operators, increasing area.

3. Better performance with un-inlined functions: this technique allows unrolling loops.
Loop unrolling is a very effective method for HW parallelism.

4. Higher frequency at baseline: this method infers pipeline in most of operations,
increasing frequency, although the CT is also higher. This benchmark is a sequential
machine, thus it is necessary to finish an operation to start a new one. In this case,
the higher frequency does not compensate the large compute time.

53

Figure 6.4: DSE Performance Results with VivadoTM.

Source: the author.

6.2.2 Iterative DSE Method Results

This section presents the results for the iterative DSE method with HLS flow proposed
in Section 5.2. We have tested our DSE framework using a VirtexTM 7 FPGA. As first
benchmark we choose a four-issue academic VLIW processor, called ρ-Vex(WONG; AS;
BROWN, 2008). The C code describing this processor was developed by the author. The
benchmark design description in high-level has 800 lines of code.

For this benchmark we defined the following design constraints:

• Array threshold = 12;

• Maximum execution time = 8 cycles;

• Minimum execution time = 1 cycle;

• Maximum number of function instances = 4;

• Minimum number of function instances = 1.

The machine used for framework execution was an AMD AhtlonTM 7550 Dual-core
processor @ 2.5 GHz, 32 bits, 3 GB of RAM memory and Windows 7 operational system.
The total framework execution time took 140 minutes, running 70 HLS compilations. The
results of framework execution are shown in Table 6.7. We consider for this analysis -
normalized by baseline results - area metrics, in terms of FFs and LUTs, and performance,
represented by the compute time (CT) taken to run out the benchmark. We assume CT
as the necessary time to execute the worst case of one ρ-Vex instruction (32 bits integer
multiplication). For comparison analysis, we assume the baseline as a non-guided HLS

54

flow. This non-guided synthesis uses no design constraints nor sets specific directives
to the HLS tool. For a more realistic analysis, we also ran one synthesis constraining
the HLS tool to optimize the results for area reduction, applying only a function inline
directive to all functions. This synthesis flow was called the "first pass", because it uses
the results obtained in the first iteration of our DSE method. The directives file generated
by DSE script is available in the Appendix B.2.

Table 6.7: DSE Framework Results: VLIW processor.

Benchmark Method FF LUT CT Performance

ρ-Vex Baseline 1.0 1.0 1.0 1.0

ρ-Vex First Pass 0.89 1.08 0.98 1.02

ρ-Vex DSE 0.28 0.68 1.38 0.72

Observing the results obtained in Table 6.7, the area reduction is evident. The number
of FFs used by our method is almost 4x lower than a non-guided HLS flow. Our proposed
method also reduces number of LUTs by 32% compared to the baseline flow. The FF
and LUT reductions cause an overhead of 38% in the CT through our methodology. Our
method in comparison to the manual-guided first pass flow also proves to be much better
in terms of area reduction, due to similarity between first pass and baseline flow.

Analysing the cost-benefit ratio of our solution, we had to define a QoR metric. This
metric was derived from speed/area relation proposed in (SOTIROPOULOU; NIKO-
LAIDIS, 2010). A global HW efficiency metric was defined as the quotient among nor-
malized performance and area results:

HWeff =
Speednorm
Areanorm

(6.1)

Considering the QoR metric defined by Equation 6.1, our DSE framework respects
the relation in Equation 6.2. For this relation we used the medium value between LUTs
and FFs to define a normalized area metric.

HWeffDSE
> HWeffbaseline

(6.2)

The QoR metric indicates HLS flow using our DSE framework is 50% more efficient
than a baseline HLS flow, i.e., the normalized HWeffDSE = 1.5.

The second test-case used with our DSE method was a 12th-order FIR filter. The C
code was provided by Xilinx Inc. and it has around 20 lines of code. The machine used
for DSE execution was the same used for first benchmark. Total runtime of our DSE script
was 40 minutes, running 20 HLS compilations. Table 6.8 presents the results of our DSE
method. The metrics used in this experiment are the same as in first benchmark, except
for CT. In this case, CT is the time taken for one filtering operation.

Analysing the results in the Table 6.8, we can observe the area reduction using our
method. The FFs consumption are reduced more than 3x, while the LUTs utilization and
performance are almost the same, compared to the baseline flow. Our method also proves
being around 62% more efficient for this test-case compared to the baseline flow. For
this benchmark, the first pass synthesis had the same results of the baseline, i.e., only the
function inline directive was not effective for this example.

55

Table 6.8: DSE Framework Results: FIR Filter.
Benchmark Method FF LUT CT Performance HWeff

FIR filter Baseline 1.0 1.0 1.0 1.0 1.0

FIR Filter First Pass 1.0 1.0 1.0 1.0 1.0

FIR filter DSE 0.31 1.02 0.92 1.08 1.62

To assure the scalability capability of the proposed method, we compiled a set of FIR
filters with multiple orders, from 4 taps to 40 taps, with steps of 4 taps. For this we used
the same generated directives script used for the 12-tap FIR filter experiment. In this
experiment we used the same machine, HLS tool and FPGA device of previous automatic
DSE experiments. The results of this experiment are shown in Table 6.9.

Table 6.9: Synthesis Results for Multiple Order FIR Filter Example.
Filter Size Area Area DSP RAM CT Frequency HWeff

(LUT) (FF) Blocks Blocks (cycles) (MHz)
4-taps 270 205 2 0 10 81.96 2.85
8-taps 285 174 2 0 18 81.96 2.14

12-taps 343 190 2 0 38 81.96 1.62
16-taps 365 190 2 0 50 81.96 1.87
20-taps 378 234 2 0 142 136.80 1.37
24-taps 399 234 2 0 170 136.80 1.36
28-taps 421 234 2 0 198 136.80 1.34
32-taps 271 170 2 1 226 136.80 1.59
36-taps 277 174 2 1 254 136.80 1.57
40-taps 277 174 2 1 282 136.80 1.57

Analysing data from Table 6.9 we drew two relation graphics: area consumption ver-
sus filter size, and performance versus filter size. For area analysis we considered the
usage of LUTs and FFs. For performance evaluation we considered the compute time and
maximum operation frequency. These relation curves are presented in Figure 6.5.

Considering data from Table 6.9 and the curves of Figure 6.5 we can affirm that our
proposed method has a regular scalability with the circuit increase. Analysing the per-
formance curve we can see a linearity characteristic on compute time increasing, which
is expected in our model, since our optimizations address only area trade-off. In the
area curve, one point calls attention, the drastic area reduction with 32-taps filter. It oc-
curs because the data samples and internal products are mapped into block RAMs, not in
registers. Another interesting data from Table 6.9 is the same number DSP macros con-
sumption by all filter sizes. It is another characteristic of our method, the MAC (Multiply
and Accumulate) operations are forced to not being unrolled in the kernel loop.

56

Figure 6.5: Multiple Size FIR Filters. a) Area Versus Filter Size Curve. b) Performance
Versus Filter Size Curve.

Source: the author.

57

7 CONCLUSIONS

This work presented a study about recent techniques in FPGA development flow. We
discussed about well-known methods for FPGA development aiming at improving FPGA
efficiency in terms of area, performance and power. We reviewed the state-of-the art of
the HLS tools and HLS project methodology aiming at fast turn-around purpose. We also
revisited the evolution of the HDL languages over the last decades.

Our practical experiments were focused in high-level synthesis utilization targeted to
FPGA devices. In this work, we evaluate the results of two HLS tools, one of them is an
academic and open source tool, the LegUp. The other tool analysed in our work was a
commercial tool, the VivadoTM HLS compiler. Our practical results with using both tools
show a notable code complexity and development time reduction, although, in the most
cases, the complexity reduction means a performance decreasing or area overhead, when
compared to a hand-coded HDL design.

Some synthesis results call attention due to the similarity between the RTL design
and the HLS method, for instance, the square-root implementation using SW pipeline
technique. This is explained due to the capability of the HLS tool to perform a pipeline
implementation with few stalls, because we do not have data dependency in this algo-
rithm. On the other hand, we observe a wide disparity in some other cases, as in the
VLIW implementation, comparing the hand-coded HDL design with the HLS compila-
tion for both HLS tool providers. The explanation for this is due the large number of
conditional statements avoiding a efficient scheduling and pipelining technique.

To address this area/performance overhead, we had to improve the high level descrip-
tions aiming at better synthesis results. Combining efficient code partitioning and the
flexibility of synthesis parameters insertion of VivadoTM HLS compiler, we introduced
an iterative method for efficient design space exploration with HLS targeting area re-
duction. To support method design, we revisited recent methods for DSE in hardware
system, where is introduced the Pareto optimally concept, used to evaluate a cost-benefit
of a solution.

Our DSE method results for two test-cases, a VLIW processor and a 12th-order FIR
Filter, proved to be very effective when compared to a non-guided HLS flow. Our results
in terms of area are up to 4X better for the VLIW processor and 3X for the FIR Filter
benchmark. Our method is also much better than the baseline flow in terms of QoR. Our
iterative method is 50% and 62% more efficient than baseline, for the VLIW processor
and for the digital filter, respectively.

As future work we addressed improving the proposed DSE method, making it no
purely exhaustive, but using an synthesis heuristic to guide the HLS compilation, reduc-
ing then the convergence time. It is also desired to extend the iterative DSE method to
other design parameters, such as power and performance. Moreover, this method can and

58

should be extended to others HLS tools and FPGA providers, not limited to an specific
vendor.

59

REFERENCES

ALTERA. Altera, Inc. http://www.altera.com, [S.l.], 2014.

BELL, C. G.; NEWELL, A. Computer structures: readings and examples. New York,
St. Louis, San Francisco: McGraw-Hill, 1971 c, 1971. (McGraw-Hill computer science
series).

CANIS, A. et al. LegUp: high-level synthesis for fpga-based processor/accelera-
tor systems. In: ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD PRO-
GRAMMABLE GATE ARRAYS, 19., New York, NY, USA. Proceedings. . . ACM,
2011. p.33–36. (FPGA ’11).

CHEN, D. et al. LOPASS: a low-power architectural synthesis system for fpgas with in-
terconnect estimation and optimization. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, [S.l.], v.18, n.4, p.564–577, April 2010.

CHOW, C. et al. Dynamic voltage scaling for commercial FPGAs. In: FIELD-
PROGRAMMABLE TECHNOLOGY, 2005. PROCEEDINGS. 2005 IEEE INTERNA-
TIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2005. p.173–180.

COUSSY, P.; MORAWIEC, A. High-Level Synthesis: from algorithm to digital circuit.
1st.ed. [S.l.]: Springer Publishing Company, Incorporated, 2008.

DIRECTOR, S. et al. A design methodology and computer aids for digital VLSI systems.
Circuits and Systems, IEEE Transactions on, [S.l.], v.28, n.7, p.634–645, Jul 1981.

FRIEDMAN, T.; YANG, S.-C. Methods Used in an Automatic Logic Design Generator
(ALERT). Computers, IEEE Transactions on, [S.l.], v.C-18, n.7, p.593–614, July 1969.

GUPTA, S. et al. SPARK: a high-level synthesis framework for applying parallelizing
compiler transformations. In: VLSI DESIGN, 2003. PROCEEDINGS. 16TH INTERNA-
TIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2003. p.461–466.

GURUMANI, S. et al. High-level synthesis of multiple dependent CUDA kernels on
FPGA. In: DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2013 18TH ASIA
AND SOUTH PACIFIC. Anais. . . [S.l.: s.n.], 2013. p.305–312.

HADJIS, S. et al. Impact of FPGA Architecture on Resource Sharing in High-level
Synthesis. In: ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD PRO-
GRAMMABLE GATE ARRAYS, New York, NY, USA. Proceedings. . . ACM, 2012.
p.111–114. (FPGA ’12).

60

HARA, Y. et al. CHStone: a benchmark program suite for practical c-based high-
level synthesis. In: CIRCUITS AND SYSTEMS, 2008. ISCAS 2008. IEEE INTERNA-
TIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2008. p.1192–1195.

HARTENSTEIN, R. The History of KARL and ABL. [S.l.]: Universität Kaiserslautern,
1993. (Fachbereich Informatik: Interner Bericht).

HUDA, S.; MALLICK, M.; ANDERSON, J. Clock gating architectures for FPGA power
reduction. In: FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2009. FPL
2009. INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2009. p.112–118.

LEE, K. et al. A high level design language for programmable logic devices. VLSI De-
sign, [S.l.], p.50–62, Jun 1985.

LHAIRECH-LEBRETON, G.; COUSSY, P.; MARTIN, E. Hierarchical and Multiple-
Clock Domain High-Level Synthesis for Low-Power Design on FPGA. In: FIELD PRO-
GRAMMABLE LOGIC AND APPLICATIONS (FPL), 2010 INTERNATIONAL CON-
FERENCE ON. Anais. . . [S.l.: s.n.], 2010. p.464–468.

LUA. Lua: the programming language. http://www.lua.org/, [S.l.], 2014.

MCFARLAND, M. C.; PARKER, A.; CAMPOSANO, R. The high-level synthesis of
digital systems. Proceedings of the IEEE, [S.l.], v.78, n.2, p.301–318, Feb 1990.

MEYER-BAESE, U. Digital Signal Processing with Field Programmable Gate Ar-
rays. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2001.

MIRZAEI, S.; HOSANGADI, A.; KASTNER, R. FPGA Implementation of High Speed
FIR Filters Using Add and Shift Method. In: COMPUTER DESIGN, 2006. ICCD 2006.
INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2006. p.308–313.

MOORE, G. Cramming More Components Onto Integrated Circuits. Proceedings of the
IEEE, [S.l.], v.86, n.1, p.82–85, Jan 1998.

OLIVER, J. et al. Clock gating and clock enable for FPGA power reduction. In: PRO-
GRAMMABLE LOGIC (SPL), 2012 VIII SOUTHERN CONFERENCE ON. Anais. . .
[S.l.: s.n.], 2012. p.1–5.

PALERMO, G.; SILVANO, C.; ZACCARIA, V. A Flexible Framework for Fast Multi-
objective Design Space Exploration of Embedded Systems. In: INTEGRATED CIR-
CUIT AND SYSTEM DESIGN, POWER AND TIMING MODELING, OPTIMIZA-
TION AND SIMULATION, 13TH INTERNATIONAL WORKSHOP, PATMOS 2003,
TORINO, ITALY, SEPTEMBER 10-12, 2003, PROCEEDINGS. Anais. . . [S.l.: s.n.],
2003. p.249–258.

PALERMO, G.; SILVANO, C.; ZACCARIA, V. Multi-objective Design Space Explo-
ration of Embedded Systems. J. Embedded Comput., Amsterdam, The Netherlands,
The Netherlands, v.1, n.3, p.305–316, Aug. 2005.

PANDEY, B. et al. Clock Gating Aware Low Power Global Reset ALU and Implemen-
tation on 28nm FPGA. In: COMPUTATIONAL INTELLIGENCE AND COMMUNI-
CATION NETWORKS (CICN), 2013 5TH INTERNATIONAL CONFERENCE ON.
Anais. . . [S.l.: s.n.], 2013. p.413–417.

61

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design: the hard-
ware/software interface. 3rd.ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

PELLERIN, D.; THIBAULT, S. Practical FPGA Programming in C. [S.l.]: Prentice
Hall Professional Technical Reference, 2005. (Prentice Hall modern semiconductor de-
sign series).

RABAEY, J. M.; CHANDRAKASAN, A.; NIKOLIC, B. Digital Integrated Circuits: a
design perspective. 2nd.ed. [S.l.]: Prentice Hall, 2003.

RAJE, S.; BERGAMASCHI, R. Generalized resource sharing. In: COMPUTER-AIDED
DESIGN, 1997. DIGEST OF TECHNICAL PAPERS., 1997 IEEE/ACM INTERNA-
TIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 1997. p.326–332.

ROSADO-MUñOZ, A. et al. FPGA Implementation of an Adaptive Filter Robust to Im-
pulsive Noise: two approaches. Industrial Electronics, IEEE Transactions on, [S.l.],
v.58, n.3, p.860–870, March 2011.

SANCHEZ, F. et al. Comparative of HLS and HDL implementations of a grid synchro-
nization algorithm. In: INDUSTRIAL ELECTRONICS SOCIETY, IECON 2013 - 39TH
ANNUAL CONFERENCE OF THE IEEE. Anais. . . [S.l.: s.n.], 2013. p.2232–2237.

SCHAFER, B. Allocation of FPGA DSP-macros in multi-process high-level synthesis
systems. In: DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2014 19TH ASIA
AND SOUTH PACIFIC. Anais. . . [S.l.: s.n.], 2014. p.616–621.

SHAO, Y. et al. Aladdin: a pre-rtl, power-performance accelerator simulator enabling
large design space exploration of customized architectures. In: COMPUTER ARCHI-
TECTURE (ISCA), 2014 ACM/IEEE 41ST INTERNATIONAL SYMPOSIUM ON.
Anais. . . [S.l.: s.n.], 2014. p.97–108.

SOTIROPOULOU, C.-L.; NIKOLAIDIS, S. Design space exploration for FPGA-based
multiprocessing systems. In: ELECTRONICS, CIRCUITS, AND SYSTEMS (ICECS),
2010 17TH IEEE INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2010.
p.1164–1167.

SUN, W.; WIRTHLIN, M.; NEUENDORFFER, S. FPGA Pipeline Synthesis Design Ex-
ploration Using Module Selection and Resource Sharing. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, [S.l.], v.26, n.2, p.254–265,
Feb 2007.

SYNOPSYS. Synopsys, Inc. http://www.synopsys.com, [S.l.], 2014.

TAN, M. et al. Multithreaded Pipeline Synthesis for Data-Parallel Kernels. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 33.
Proceedings. . . [S.l.: s.n.], 2014. (ICCAD’14).

WAKABAYASHI, K.; TAKENAKA, T.; INOUE, H. Mapping complex algorithm into
FPGA with High Level Synthesis reconfigurable chips with High Level Synthesis com-
pared with CPU, GPGPU. In: DESIGN AUTOMATION CONFERENCE (ASP-DAC),
2014 19TH ASIA AND SOUTH PACIFIC. Anais. . . [S.l.: s.n.], 2014. p.282–284.

62

WONG, S.; AS, T. van; BROWN, G. ρ-VEX: a reconfigurable and extensible softcore
vliw processor. In: ICECE TECHNOLOGY, 2008. FPT 2008. INTERNATIONAL CON-
FERENCE ON. Anais. . . [S.l.: s.n.], 2008. p.369–372.

XILINX. Xilinx, Inc. http://www.xilinx.com, [S.l.], 2014.

XYDIS, S. et al. Efficient High Level Synthesis Exploration Methodology Combining
Exhaustive and Gradient-Based Pruned Searching. In: VLSI (ISVLSI), 2010 IEEE COM-
PUTER SOCIETY ANNUAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2010. p.104–109.

ZHANG, Y.; ROIVAINEN, J.; MAMMELA, A. Clock-Gating in FPGAs: a novel and
comparative evaluation. In: DIGITAL SYSTEM DESIGN: ARCHITECTURES, METH-
ODS AND TOOLS, 2006. DSD 2006. 9TH EUROMICRO CONFERENCE ON. Anais. . .
[S.l.: s.n.], 2006. p.‘584–590.

ZIMMERMANN, G. The Mimola Design System a Computer Aided Digital Proces-
sor Design Method. In: DESIGN AUTOMATION, 1979. 16TH CONFERENCE ON.
Anais. . . [S.l.: s.n.], 1979. p.53–58.

63

APPENDIX A RESUMO DA DISSERTAÇÃO "ARCHITEC-
TURAL EXPLORATION OF DIGITAL SYSTEMS DESIGN
FOR FPGAS USING C/C++/SYSTEMC SPECIFICATION LAN-
GUAGES"

A.1 Introdução

Dispositivos FPGA são largamente utilizados para rápida implementação de funções
digitais em hardware e para emulação de circuitos ASIC (Application-Specific Integrated
Circuit). Entretanto, mesmo os FPGAs do estado-da-arte possuem sérias limitações em
termos de desempenho, utilização de área e consumo de potência. Com o aumento da
complexidade dos sistemas digitais, técnicas de otimização são necessárias para tornar os
projetos com esses devices competitivos.

Este trabalho discute técnicas conhecidas disponíveis na literatura visando otimização
de projeto em FPGAs. Estes métodos incluem técnicas de redução de potência, como
clock gating e voltage/frequency scaling. Em termos de área, é discutida a importância
do compartilhamento de recursos de hardware. Para aumento do desempenho, técnicas
como pipelining, paralelismo e redução de fan-out são revisadas.

O principal objetivo desta dissertação de mestrado é discutir e explorar técnicas de
otimização em alto nível aplicadas a sistemas com FPGAs. O projeto RTL (Register-
Transfer Level) é um gargalo nos cronogramas de projetos de sistemas digitais. A uti-
lização e métodos HLS (High-Level Synthesis) são discutidos visando aumento de produ-
tividade em projetos baseados em FPGA. Ferramenta HLS acadêmicas e comerciais são
apresentadas, bem como técnicas avançadas de projeto utilizando linguagens de especifi-
cação, por exemplo C/C++ ou SystemC.

Muitos algoritmos possuem seus padrões em código aberto e estão disponíveis em
linguagens de alto nível, como C. No clássico fluxo de projeto para FPGA, os projetistas
de hardware necessitam traduzir esses algoritmos para FPGAs, desempenhando todos as
etapas de otimização utilizando linguagens RTL. O desenvolvimento e a verificação RTL
é uma tarefa complexa e cara quando comparada a implementações em software. Níveis
de abstração mais altos permitem que projetistas de software desenvolvam sistemas para
FPGA utilizando compiladores HLS. Fornecedores de ferramentas HLS afirmam que em
certos casos, a produtividade pode aumentar em até 50% utilizando HLS comparada ao
projeto RTL codificado a mão. A adição de diretivas/pragmas nos compiladores HLS per-
mitem que o projetista guie a implementação do algoritmo visando um trade-off especí-
fico, por exemplo, desempenho ou redução de área. O processo de verificação utilizando
fluxo RTL é bastante complexo devido à dificuldade das linguagens HDL (Hardware De-
scription Languages) em descrever comportamento dos circuitos no mundo real, enquanto

64

utilizando linguagens de mais alta abstração é possível emular as condições de operação.
Além disso, uma simualação RTL pode levar muitas horas, e até dias, dependendo da
complexidade do circuito, o que normalmente requer poderosos servidores de simulação.

Neste contexto, este trabalho apresenta um metodologia para projeto digital utilizando
linguagens de alto nível através do fluxo HLS. São exploradas técnicas de particionamento
de código e inserção de pragmas visando aumento no Quality of Results (QoR). Neste tra-
balho, foi desenolvido um método para exploração de espaço de projeto com HLS visando
redução de área. Este método provou ser muito efetivo quando comparado ao fluxo de
projeto HLS não guiado, sendo até 50% mais eficiente em termos de área utilizando um
processador VLIW (Very Long Instruction Word) acadêmico como benchmark.

A.1.1 Motivação

O FPGA é um chip pré definido, que possui um grande número de macro célu-
las interconectadas uma com as outras através de linhas de roteamento e chaves. Cada
macro célula tem em seu interior um multiplexador configurável que é capaz de imple-
mentar todas as equações lógicas das combinações de suas entradas e um elemento de
armazenamento de dados (flip-flop). Dispositivos FPGA modernos incluem blocks de
memória RAM (Random Access Memory), blocos de DSP (Digital Signal Processing),
PLLs (Phase-locked loop), gigabit transceivers e até processadores.

De acordo com dados de fabricantes de FPGAs, normalmente mais de 70% da área
de silício em um FPGA é destinada a interconxões, o que faz esses dispositivos muito
ineficientes em termos de consumo de área. Como uma pastilha pré definida de silício,
o consumo de potência é uma problema, porque o componente de potência estática está
sempre presente em todo chip, mesmo se as células lógicas e os flip-flops não são usa-
dos.Em termos de potência dinâmica, os grandes fabricantes tem feito um grande esforço
em fazer os FPGAs mais eficientes. Componentes hard, como blocos de SRAMs e DSPs -
também consomem potência, mas a tésnicas de otimização desses componentes não serão
discutidas neste trabalho

O desempenho em FPGAs é pior do que em dispositivos ASIC. Enquanto ASICs são
projetados visando uma aplicação específica, FPGAs são genéricos e isto impacta direta-
mente no desempenho. Muitos níveis lógicos entre elementos de armazenamento, grandes
fan-outs, a árvore de relógio, o atraso das linhas de roteamento e o posicionamento fixo
dos elementos lógicos contribuem para redução da máxima frequência de operação.

O desenvolvimento de hardware tem um alto custo e toma grande porção do tempo de
projeto. O tradicional desenvolvimento para FPGAs é baseado em arquitetura sistêmica,
descrição RTL, simulação funcional, e por fim, a síntese lógica e place and route. Neste
método, a tarefa mais difícil é a descrição RTL, normalmente um trabalho lento e meticu-
loso. Técnicas avançadas em HLS automatizam esta etapa, gerando um código RTL sin-
tetizável a partir de uma linguagem de alto nível. Esforços recentes tornaram o projeto de
sistemas em alto nível competitivos para sistemas baseados em FPGAs. Arquiteturas reg-
ulares, como algoritmos DSPs, frequentemente estão presentes na literatura para avaliar
implementações em alto nível. Escalonamento de algoritmos, pipelining de laços/funções
e loop unrolling são técnicas comuns utilizadas pelos fabricantes de ferramentas HLS
visando melhoria nos resultados de síntese.

A.1.2 Contribuições

A principal contribuição desta dissertação de mestrado é propor técnicas de explo-
ração em alto nível para sistemas digitais que tem como alvo dispositivos FPGAs. As

65

contribuições deste trabalho estão listadas abaixo:

• Exploração Arquitetural em Alto Nível: para atingir bons resultados de sín-
tese com descrições de alto nível, melhorias no código se fazem necessárias. A
metodologia adotada neste trabalho discute algumas destas técnicas utilizadas em
ambientes HLS. Neste trabalho é proposto uma técnica de particionamento de código
combinada com inserção de diretivas/pragmas apropriadas de compilação visando
melhoria dos resultados de síntese. Estes métodos foram testados com duas fera-
mentas HLS: o LegUp compiler e o VivadoTMHLS compiler.

• Exploração de Espaço de Projeto com Síntese de Alto Nível: visando melhor
QoR em ambientes HLS, foi proposto um método iterativo para DSE (Design Space
Exploration) em sistemas de hardware. Este método é multi plataforma escrito em
linguagem e é compatível com o VivadoTMHLS compiler. Este método é basi-
camente composto por: análise do código em alto nível, inserção automática de
diretivas de compilação e avaliação dos resultados.

A.1.3 Organização da Dissertação

Esta dissertação de mestrado está organizada da seguinte forma: as técnicas de otimiza-
ção de hardware são revisadas no Capítulo 2, onde são discutidas metodologias conheci-
das para otimização de projetos em termos de área, potência e desempenho para FPGAs.
Ferramentas e métodos HLS são revistos no Capítulo 3, sendo apresentado a eveolução
das linguagens HLS, as ferramentas HLS do estado-da-arte e os métodos de otimização
em HLS presentes na literatura. Eploração de espaço de projeto em sistemas de hard-
ware é apresentado no Capítulo 4, onde são introduzidos importantes conceitos para um
eficiente DSE aplicado ao projeto de hardware. No Capitulo 5 é apresentada a metodolo-
gia proposta neste trabalho, que inclui melhorias propostas no código em alto nível e um
método iterativo para DSE em HLS. O Capítulo 6 apresenta os resultados experimentais,
para avaliação das ferramentas HLS e a metodologia de DSE em um amibiente HLS.
Finalmente, as conclusões são apresentadas no Capítulo 7.

A.2 Resumo das Contribuições da Dissertação: Exploração Arquite-
tural no Projeto de Sistemas Digitais para FPGAs Utilizando
Linguagens de Especificação C/C++/SystemC

Códigos com altos níveis de abstração, normalmente, não são bem aceitos por fer-
ramentas HLS. Entretanto, níveis de abstração mais altos são comuns em linguagens
derivadas do C e essas propriedades facilitam o desenvolvimento HLS visando aumento
na produtividade. Para preencher esta lacuna, é necessário adaptar o código fonte para
obter os resultados esperados. Essas transformações no código incluem: eficiente parti-
cionamento de código e exploração adequada das diretivas HLS.

Códigos baseados na liguagem C são serialmente exeutados. O projetista de FPGA
deve traduzir este código serial em um código paralelo para execução em FPGA. Uma
transformação estudada neste trabalho foi o particionamento de código (PELLERIN;
THIBAULT, 2005). Um código bem particionado permite que a ferramenta HLS inter-
prete corretamente o código fonte visando otimizações apropriadas. Técnicas como loop
pipelining, loop unrolling e compartilhamento de recursos de hardware são possíveis uti-
lizando esse método. A técnica implementada neste trabalho detecta trechos de código
que executam como um bloco e os isola em uma função.

66

Particionamento de código e exploração de parâmetros HLS estão intimamente rela-
cionados. No VivadoTM HLS, os parâmetros de compilação podem ser introduzidos di-
ratamente no código, através de pragmas, ou através de um script TCL (Tool Command
Language). Com um código funcionalmente dividido, a inserção das diretivas HLS são
mais assertivas. Para aumento de performance, os parâmetros mais úteis são: pipelining,
loop unrolling, array partitioning e datapath. Quando o objetivo é redução de área, as
diretivas mais comuns são inlining functions e resource sharing.

É difícil e tedioso explorar todas as combinações dos métodos discutidos nos pará-
grafos anteriores, e seria ineficiente explorá-los manualmente. Para suportar esses méto-
dos, foi implementado um framework iterativo para DSE em ambientes HLS. Este método
permite uma rápida resposta em termos de análise de trade-off.

Neste contexto é apresentado a metodologia adotada neste método de DSE. O método
proposto explora eficientemente o espaço de projeto visando atingir melhores resultados
de área comparado ao fluxo HLS não guiado. Este framework tem como alvo FPGAs
Xilinx e o seu resultado é um arquivo de diretivas TCL visando o menor consumo possível
de área. é importante salientar que este método não provê nenhuma alteração arquitetural
no código fonte, somente descobre quais são as melhores diretivas de otimização para o
código em questão.

O framework é um método iterativo, recursivo e multi plataforma desenvolvido em
linguagem Lua. Foi utilizado como base para este método parte do framework proposto
por Xydis em (XYDIS et al., 2010). A Figura 5.3 apresenta uma visão simplificada do
framework DSE proposto, o qual utiliza o VivadoTM HLS como compilador HLS.

A versão atual do método de DSE suporta C/C++. O código de entrada para o script
DSE precisa seguir algumas diretrizes para facilitar a convergência do script de DSE.
Entre essas diretrizes estão: adicionar labels nos laços, posicionar o caracter de abertura
de bloco ’{’ sempre em uma nova linha, declarar a variávies uma por linha e utilizar
somente tipos nativos das linguagens C/C++. Além disso, é fundamental que o código
fonte esteja particionado funcionalmente para maximização dos resultados.

A etapa de análise do código de entrada é responsável por identificar pontos chave
no código onde é possível inserir alguma diretiva de otimização. O script é capaz de
identificar declaração de funções e vetores, laços e execuções multiplas de uma mesma
função. Nesta etapa, foi necessário utilizar-se de expressões regulares e algoritmos de
busca para descobrir os pontos exatos para otimização.

Visando convergência do método porposto, foi necessário definir uma lista de re-
strições para delimitar o espaço de projeto. Essas restrições servem como guia para o
script de DSE proposto. Entre essas restrições destacam-se: mínimo/máximo tempo de
execução de laços e funções (em ciclos), número mínimo/máximo de recursos para alo-
cação em granularidade de função e threshold para particionamento de vetores.

Utilizando os pontos chave de otimização descobertos pelas etapas anteriores, é então
autilizado o arquivo TCL de restrições e então invoca-se o Xilinx VivadoTM HLS com-
piler. Depois da excução da compilação, os resultados são analisados e o script define
se continua a iterar sobre o espaço de projeto ou não. O critério de aceitação é menor
consumo de área em relação a iteração anterior.

A.3 Conclusões

Este trabalho apresentou um estudo sobre recentes técnicas no fluxo de desenvolvi-
mento de projetos utilizando FPGAs. Foram discutidas métodos conhecidos para desen-

67

vimento com FPGAs visando melhorar a eficiência na síntese em termos de área, desem-
penho e pontência. Foram revisadas ferramentas HLS do estado-da-arte e a metodologia
de projeto HLS visando aumento de produtividade no projeto de sistemas digitais. Este
trabalho também revisitou a evolução das liguagens HLS nas últimas décadas.

O experimentos deste trabalho focaram na utilização de ferramentas de siíntese de alto
nível tendo como alvo dispositivos FPGA. Este trabalho avaliou os resultados de duas fer-
ramentas HLS, uma delas é uma ferramenta acadêmica e código aberto, o LegUp. A outra
ferramenta utilizada foi uma ferramenta comercial, o VivadoTM HLS compiler. Os resul-
tados práticos utilizando ambas ferramentas mostram a notória redução na complexidade
dos códigos e tempo de desenvolvimento, embora, na maioria dos casos, esta redução de
complexidade representou piores resultados em desempenho e área, quando comparados
a projetos codificados a mão utlizando linguagens HDL.

Alguns resultados chamam atenção devido a similaridade entre o projeto RTL e os
métodos HLS, como, por exemplo, a implementação do algoritmo da raiz quadrada uti-
lizando a técnica de SW (software) pipelining. Isto é explicado devido à capacidade da
ferramenta em implementar um pipeline com poucos stalls, porque não há dependência de
dados neste algoritmo. Por outro lado, foi observado uma grande disparidade em outros
casos, como na implementação do processador VLIW, comparando com o projeto HDL
codificado a mão e a compilação HLS com ambas as ferramentas analisadas. A expli-
cação para isto é o grande número de comandos sequenciais, impossibilitando o eficiente
escalonamento de tarefas e implementação de pipeline pelos compiladores HLS.

Para lidar com esses resultados insatisfatórios de área/desempenho, foi necessário
melhorar as descrições em alto nível visando melhores resultados de síntese. Combi-
nando eficiente particionamento de código e a flexibilidade na inserção de diretivas de
compilação do VivadoTM HLS compiler, foi introduzido um método iterativo para efi-
ciente exploração de espaço de projeto em HLS visando redução de área. Para suportar o
método proposto, foram revisado recentes métodos para DSE em sistemas de hardware,
onde é introduzido o conceito de otimalidade de Pareto, utilizado para avaliar o custo-
benefício de uma solução.

Os resultados do método DSE iterativo para dois exemplos, um processador VLIW e
um filtro FIR (Finite Impulse Response), provaram ser bastante efetivos quando compara-
dos do fluxo HLS não guiado. Os resultados em termos de área foram até 4X melhores
para o processador VLIW e 3X melhores para o exemplo do filtro FIR. O método proposto
também é muito melhor que o fluxo não guiado em termos de QoR, sendo 50% e 62%
mais eficiente que o fluxo não guiado, para o processador VLIW e para o filtro digital,
respectivamente.

Como trabalho futuro, deseja-se melhorar este método DSE, fazendo com que não
seja mais puramente exaustivo, utilizando alguma heurística para guiar a compilação,
reduzindo então o tempo de convergência. Pretende-se também estender o método DSE
desenvolvido neste trabalho para otimizações envolvendo outros parâmetros de projeto,
como potência e desempenho. Além disso, este método DSE pode e deve ser estendido
a outros fabricantes de ferramentas HLS e fornecedores de FPGAs, não limitado a um
fabricante específico.

68

APPENDIX B VLIW PROCESSOR SOURCE CODES

B.1 C-code Design Entry

B.1.1 Constants Definitions (r_vex.h)

/∗ ∗∗ ∗ /
/∗ Name : r−Vex p r o c e s s o r c o n s t a n t d e f i n i t i o n s ∗ /
/∗ Purpose : C o n t r o l and DataPath o f Academic VLIW p r o c e s o r ∗ /
/∗ Author : J e f e r s o n S a n t i a g o da S i l v a ∗ /
/∗ Notes : Based on r−Vex s u i t e (h t t p s : / / code . g oo g l e . com / p / r−vex /) ∗ /
/∗ ∗∗ ∗ /
i f n d e f RVEX_H
d e f i n e RVEX_H

i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>

/∗ Misc ∗ /
d e f i n e DEBUG_LEVEL 0

/∗ Gener i c d e f i n i t i o n s ∗ /
d e f i n e DATA_MEM_SIZE 64
d e f i n e SYLLABLE_NUM 4
d e f i n e ALU_NUM 4
d e f i n e MUL_NUM 2
d e f i n e INI_MUL_SLOT 1
d e f i n e CTRL_SLOT 0
d e f i n e MEM_SLOT 3
d e f i n e REGISTER_GR_NUM 64
d e f i n e REGISTER_BR_NUM 8

/∗ Fixed r e g i s t e r s ∗ /
d e f i n e LINK_REGISTER REGISTER_GR_NUM − 1
d e f i n e STACK_POINTER 1

/∗ Opcode d e f i n i t i o n s ∗ /
d e f i n e OP_CODE(X) (X >> 25)
d e f i n e IMM_OP(X) (X >> 23) & 3

/∗ Operands ∗ /
d e f i n e DEST_GR(X) (X >> 17) & 63
d e f i n e SRC1_GR(X) (X >> 11) & 63
d e f i n e SRC2_GR(X) (X >> 05) & 63
d e f i n e DEST_BR(X) (X >> 02) & 7

69

d e f i n e SHORT_IMM_DATA(X) (X >> 02) & 511
d e f i n e BRANCH_IMM_DATA(X) (X >> 05) & 4095
d e f i n e LONG_LO_IMM_DATA(X) (X >> 01) & 1023
d e f i n e LONG_HI_IMM_DATA(X) (X >> 03) & 0x1FFFFF

/∗ O p e r a t i o n s ∗ /
/∗ Op code as I n p u t ∗ /
d e f i n e NOP_TYPE(X) X == 0
d e f i n e STOP_TYPE (X) X == 31
d e f i n e ALU_TYPE(X) (X >> 6) == 1
d e f i n e MUL_TYPE(X) (X >> 4) == 0 && !NOP_TYPE(X)
d e f i n e CTRL_TYPE(X) (X >> 4) == 2
d e f i n e MEM_TYPE(X) (X >> 4) == 1

/∗ D e s t i n y o p e r a t i o n as i n p u t ∗ /
d e f i n e BRANCH_DEST(X) X == 0

/∗ Immedia te s w i t c h ∗ /
/∗ Immedia te o p e r a t i o n as i n p u t ∗ /
d e f i n e NO_IMM 0
d e f i n e SHORT_IMM 1
d e f i n e BRANCH_IMM 2
d e f i n e LONG_IMM 3

/∗ ALU O p e r a t i o n s opcodes ∗ /
d e f i n e ADD 65 / / Add
d e f i n e AND 67 / / B i t w i s e AND
d e f i n e ANDC 68 / / B i t w i s e complement and AND
d e f i n e MAX 69 / / Maximum s i g n e d
d e f i n e MAXU 70 / / Maximum u n s i g n e d
d e f i n e MIN 71 / / Minimum s i g n e d
d e f i n e MINU 72 / / Minimum u n s i g n e d
d e f i n e OR 73 / / B i t w i s e OR
d e f i n e ORC 74 / / B i t w i s e complement and OR
d e f i n e SH1ADD 75 / / S h i f t l e f t 1 and add
d e f i n e SH2ADD 76 / / S h i f t l e f t 2 and add
d e f i n e SH3ADD 77 / / S h i f t l e f t 3 and add
d e f i n e SH4ADD 78 / / S h i f t l e f t 4 and add
d e f i n e SHL 79 / / S h i f t l e f t
d e f i n e SHR 80 / / S h i f t r i g h t s i g n e d
d e f i n e SHRU 81 / / S h i f t r i g h t u n s i g n e d
d e f i n e SUB 82 / / S u b t r a c t
d e f i n e SXTB 83 / / S ign e x t e n d b y t e
d e f i n e SXTH 84 / / S ign e x t e n d h a l f word
d e f i n e ZXTB 85 / / Zero e x t e n d b y t e
d e f i n e ZXTH 86 / / Zero e x t e n d h a l f word
d e f i n e XOR 87 / / B i t w i s e XOR
d e f i n e MOV 88 / / Copy s1 t o o t h e r l o c a t i o n
d e f i n e CMPEQ 89 / / Compare : e q u a l
d e f i n e CMPGE 90 / / Compare : g r e a t e r e q u a l s i g n e d
d e f i n e CMPGEU 91 / / Compare : g r e a t e r e q u a l u n s i g n e d
d e f i n e CMPGT 92 / / Compare : g r e a t e r s i g n e d
d e f i n e CMPGTU 93 / / Compare : g r e a t e r u n s i g n e d
d e f i n e CMPLE 94 / / Compare : l e s s than e q u a l s i g n e d
d e f i n e CMPLEU 95 / / Compare : l e s s than e q u a l u n s i g n e d
d e f i n e CMPLT 96 / / Compare : l e s s than s i g n e d
d e f i n e CMPLTU 97 / / Compare : l e s s than u n s i g n e d

70

d e f i n e CMPNE 98 / / Compare : n o t e q u a l
d e f i n e NANDL 99 / / L o g i c a l NAND
d e f i n e NORL 100 / / L o g i c a l NOR
d e f i n e ORL 102 / / L o g i c a l OR
d e f i n e MTB 103 / / Move GR t o BR
d e f i n e ANDL 104 / / L o g i c a l AND

/∗ ALU O p e r a t i o n s ∗ /
d e f i n e ALU_ADD(A, B) A + B
d e f i n e ALU_AND(A, B) A & B
d e f i n e ALU_ANDC(A, B) (~A) & B
d e f i n e ALU_MAX(A, B) (A > B) ? A : B
d e f i n e ALU_MAXU(A, B) ((unsigned i n t) A > (unsigned i n t) B) ? A :

B
d e f i n e ALU_MIN(A, B) (A < B) ? A : B
d e f i n e ALU_MINU(A, B) ((unsigned i n t) A < (unsigned i n t) B) ? A :

B
d e f i n e ALU_OR(A, B) A | B
d e f i n e ALU_ORC(A, B) (~A) | B
d e f i n e ALU_SH1ADD(A, B) (A << 1) + B
d e f i n e ALU_SH2ADD(A, B) (A << 2) + B
d e f i n e ALU_SH3ADD(A, B) (A << 3) + B
d e f i n e ALU_SH4ADD(A, B) (A << 4) + B
d e f i n e ALU_SHL(A, B) A << B
d e f i n e ALU_SHR(A, B) A >> B
d e f i n e ALU_SHRU(A, B) ((unsigned i n t) A) >> B
d e f i n e ALU_SUB(A, B) A − B
d e f i n e ALU_XOR(A, B) A ^ B
d e f i n e ALU_CMPEQ(A, B) A == B
d e f i n e ALU_CMPGE(A, B) A >= B
d e f i n e ALU_CMPGEU(A, B) (unsigned i n t) A >= (unsigned i n t) B
d e f i n e ALU_CMPGT(A, B) A > B
d e f i n e ALU_CMPGTU(A, B) (unsigned i n t) A > (unsigned i n t) B
d e f i n e ALU_CMPLE(A, B) A <= B
d e f i n e ALU_CMPLEU(A, B) (unsigned i n t) A <= (unsigned i n t) B
d e f i n e ALU_CMPLT(A, B) A < B
d e f i n e ALU_CMPLTU(A, B) (unsigned i n t) A < (unsigned i n t) B
d e f i n e ALU_CMPNE(A, B) A != B
d e f i n e ALU_NANDL(A, B) ~(A && B)
d e f i n e ALU_NORL(A, B) ~(A | | B)
d e f i n e ALU_ORL(A, B) A | | B
d e f i n e ALU_ANDL(A, B) A && B
d e f i n e ALU_SXTB(A) (A << 24) >> 24
d e f i n e ALU_SXTH(A) (A << 16) >> 16
d e f i n e ALU_ZXTB(A) A & 0xFF
d e f i n e ALU_ZXTH(A) A & 0xFFFF

/∗ CTRL O p e r a t i o n s opcodes ∗ /
d e f i n e GOTO 33 / / U n c o n d i t i o n a l r e l a t i v e jump
d e f i n e IGOTO 34 / / U n c o n d i t i o n a l a b s o l u t e i n d i r e c t jump t o

l i n k r e g i s t e r
d e f i n e CALL 35 / / U n c o n d i t i o n a l r e l a t i v e c a l l
d e f i n e ICALL 36 / / U n c o n d i t i o n a l a b s o l u t e i n d i r e c t c a l l t o

l i n k r e g i s t e r
d e f i n e BR 37 / / C o n d i t i o n a l r e l a t i v e branch on t r u e

c o n d i t i o n
d e f i n e BRF 38 / / C o n d i t i o n a l r e l a t i v e branch on f a l s e

c o n d i t i o n

71

d e f i n e RETURN 39 / / Pop s t a c k frame and go to l i n k r e g i s t e r
d e f i n e RFI 40 / / Re tu rn from i n t e r r u p t
d e f i n e XNOP 41 / / M u l t i c y c l e NOP

/∗ MUL O p e r a t i o n s opcode ∗ /
d e f i n e MPYLL 1 / / M u l t i p l y s i g n e d low 16 x low 16 b i t s
d e f i n e MPYLLU 2 / / M u l t i p l y u n s i g n e d low 16 x low 16 b i t s
d e f i n e MPYLH 3 / / M u l t i p l y s i g n e d low 16 (s1) x h igh 16 (

s2) b i t s
d e f i n e MPYLHU 4 / / M u l t i p l y u n s i g n e d low 16 (s1) x h igh 16

(s2) b i t s
d e f i n e MPYHH 5 / / M u l t i p l y s i g n e d h igh 16 x h igh 16 b i t s
d e f i n e MPYHHU 6 / / M u l t i p l y u n s i g n e d h igh 16 x h igh 16 b i t s
d e f i n e MPYL 7 / / M u l t i p l y s i g n e d low 16 (s2) x 32 (s1)

b i t s
d e f i n e MPYLU 8 / / M u l t i p l y u n s i g n e d low 16 (s2) x 32 (s1)

b i t s
d e f i n e MPYH 9 / / M u l t i p l y s i g n e d h igh 16 (s2) x 32 (s1)

b i t s
d e f i n e MPYHU 10 / / M u l t i p l y u n s i g n e d h igh 16 (s2) x 32 (s1)

b i t s
d e f i n e MPYHS 11 / / M u l t i p l y s i g n e d h igh 16 (s2) x 32 (s1)

b i t s , s h i f t l e f t 16

d e f i n e MUL_MPYLL(A, B) (A & 0xFFFF) ∗ (B & 0xFFFF)
d e f i n e MUL_MPYLLU(A, B) ((unsigned i n t) (A) & 0xFFFF) ∗ ((unsigned

i n t) (B) & 0xFFFF)
d e f i n e MUL_MPYLH(A, B) (A >> 16) ∗ (B & 0xFFFF)
d e f i n e MUL_MPYLHU(A, B) ((unsigned i n t) (A) >> 16) ∗ ((unsigned i n t)

(B) & 0xFFFF)
d e f i n e MUL_MPYHH(A, B) (A >> 16) ∗ (B >> 16)
d e f i n e MUL_MPYHHU(A, B) ((unsigned i n t) (A) >> 16) ∗ ((unsigned i n t)

(B) >> 16)

/∗ MEM O p e r a t i o n s opcodes ∗ /
d e f i n e LDW 17 / / Load word
d e f i n e LDH 18 / / Load h a l f w o r d s i g n e d
d e f i n e LDHU 19 / / Load h a l f w o r d u n s i g n e d
d e f i n e LDB 20 / / Load b y t e s i g n e d
d e f i n e LDBU 21 / / Load b y t e u n s i g n e d
d e f i n e STW 22 / / S t o r e word
d e f i n e STH 23 / / S t o r e h a l f w o r d
d e f i n e STB 24 / / S t o r e b y t e
d e f i n e PFT 25 / / P r e f e t c h

e n d i f

B.1.2 Instruction Memory (r_vex_imem.h)

/∗ ∗∗ ∗ /
/∗ Name : I n s t r u c t i o n memory f o r r−Vex p r o c e s s o r ∗ /
/∗ Purpose : C o n t r o l and DataPath o f Academic VLIW p r o c e s o r ∗ /
/∗ Author : J e f e r s o n S a n t i a g o da S i l v a ∗ /
/∗ Notes : Based on r−Vex s u i t e (h t t p s : / / code . g oo g l e . com / p / r−vex /) ∗ /
/∗ ∗∗ ∗ /

i f n d e f RVEX_IMEM_H

72

d e f i n e RVEX_IMEM_H

i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e " r_vex . h "

d e f i n e INST_MEM_SIZE 5

/∗ I n s t r c t i o n memory ∗ /
unsigned i n t imem [SYLLABLE_NUM] [INST_MEM_SIZE] =
{

{0 x82840005 , 0x4B000061 , 0 x43000021 , 0 x00000001 , 0 x3E000001 } ,
{0 x829400B0 , 0xB2004940 , 0 x00000000 , 0 x00000000 , 0000000000} ,
{0 xB0020000 , 0 x82060040 , 0 x82020060 , 0xB0120000 , 0 x00000000 } ,
{0 x829E0006 , 0 x82040842 , 0 x82924806 , 0x2C027802 , 0 x00000002 }

} ;

e n d i f

B.1.3 Branches and Memory Access Functions (r_vex_fun.h)

/∗ ∗∗ ∗ /
/∗ Name : r−Vex p r o c e s s o r f u n c t i o n s ∗ /
/∗ Purpose : C o n t r o l and DataPath o f Academic VLIW p r o c e s o r ∗ /
/∗ Author : J e f e r s o n S a n t i a g o da S i l v a ∗ /
/∗ Notes : Based on r−Vex s u i t e (h t t p s : / / code . g oo g l e . com / p / r−vex /) ∗ /
/∗ ∗∗ ∗ /

i f n d e f RVEX_FUN_H
d e f i n e RVEX_FUN_H

i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e " r_vex_imem . h "

/∗ CTRL O p e r a t i o n s opcodes ∗ /
void c t r l _ g o t o (i n t ∗ pc_goto , i n t o f f s e t)
{

∗ pc_go to = o f f s e t ;
re turn ;

}

void c t r l _ b r (i n t ∗ pc_goto , i n t o f f s e t , char br)
{

i f (b r) ∗ pc_go to = o f f s e t ;
re turn ;

}
void c t r l _ b r f (i n t ∗ pc_goto , i n t o f f s e t , char br)
{

i f (! b r) ∗ pc_go to = o f f s e t ;
re turn ;

}

/∗ MEM O p e r a t i o n s ∗ /
void mem_ldw (i n t ∗dmem , char a d d r e s s , i n t ∗mem_rdata) {

∗mem_rdata = dmem[a d d r e s s] ;

73

re turn ;
}
void mem_stw (i n t ∗dmem , char a d d r e s s , i n t mem_wdata) {

dmem[a d d r e s s] = mem_wdata ;
re turn ;

}

e n d i f

B.1.4 Functions Prototype (r_vex_top.h)

/∗ ∗∗ ∗ /
/∗ Name : r−Vex p r o c e s s o r F u n c t i o n s P r o t o t y p e s ∗ /
/∗ Purpose : C o n t r o l and DataPath o f Academic VLIW p r o c e s o r ∗ /
/∗ Author : J e f e r s o n S a n t i a g o da S i l v a ∗ /
/∗ Notes : Based on r−Vex s u i t e (h t t p s : / / code . g oo g l e . com / p / r−vex /) ∗ /
/∗ ∗∗ ∗ /

i f n d e f RVEX_TOP_H
d e f i n e RVEX_TOP_H

i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e " r _ v e x _ f u n . h "

/∗ ∗∗ ∗ /
/∗ F u n c t i o n s p r o t o t y p e ∗ /
/∗ ∗∗ ∗ /
void advance_pc (i n t ∗ nex t_pc , i n t pc_go to) ;
void f e t c h (unsigned i n t imem [SYLLABLE_NUM] [INST_MEM_SIZE] , unsigned i n t

∗ s y l l a b l e , i n t pc) ;
void decode (unsigned i n t ∗ s y l l a b l e , char ∗op_code , char ∗imm_op , char ∗

d e s t _ g r , char ∗ s r c 1 _ g r , char ∗ s r c 2 _ g r , char ∗ d e s t _ b r , i n t ∗
shor t_ imm_da ta , i n t ∗ branch_imm_data , i n t ∗ long_imm_data) ;

void e x e c u t e (i n t ∗ r eg_g r , i n t dmem[DATA_MEM_SIZE] , char ∗ r eg_b r , char ∗
op_code , char ∗imm_op , char ∗ d e s t _ g r , char ∗ s r c 1 _ g r , char ∗ s r c 2 _ g r ,

char ∗ d e s t _ b r , i n t ∗ shor t_ imm_da ta , i n t ∗ branch_imm_data , i n t ∗
long_imm_data , i n t ∗ pc_goto , i n t ∗ a l u _ r e s u l t , i n t ∗m u l t _ r e s u l t , i n t
∗mem_rdata) ;

void a l u (char op_code , i n t A_op , i n t B_op , i n t ∗ a l u _ r e s u l t) ;
void mul t (char op_code , i n t A_op , i n t B_op , i n t ∗m u l t _ r e s u l t) ;
void c t r l (i n t ∗ pc_goto , char op_code , i n t o f f s e t , char br) ;
void mem(i n t dmem[DATA_MEM_SIZE] , char op_code , char a d d r e s s , i n t

mem_wdata , i n t ∗mem_rdata) ;
void w r i t e b a c k (i n t ∗ r eg_g r , char ∗ r eg_b r , char ∗ d e s t _ g r , char ∗ d e s t _ b r ,

char ∗op_code , i n t ∗ a l u _ r e s u l t , i n t ∗m u l t _ r e s u l t , i n t ∗mem_rdata) ;
void r _ v e x _ c o r e (i n t ∗done , i n t ∗ c y c l e s) ;

e n d i f

B.1.5 ρ-Vex Processor Core (r_vex_top.c)

/∗ ∗∗ ∗ /
/∗ Name : r−Vex p r o c e s s o r ∗ /
/∗ Purpose : C o n t r o l and DataPath o f Academic VLIW p r o c e s o r ∗ /

74

/∗ Author : J e f e r s o n S a n t i a g o da S i l v a ∗ /
/∗ Notes : Based on r−Vex s u i t e (h t t p s : / / code . g oo g l e . com / p / r−vex /) ∗ /
/∗ ∗∗ ∗ /

i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e " r _ v e x _ t o p . h "

/∗ ∗∗ ∗ /
/∗ PC c a l c u l a t i o n r o u t i n e ∗ /
/∗ ∗∗ ∗ /
void advance_pc (i n t ∗ nex t_pc , i n t pc_go to)
{

∗ n e x t _ p c = pc_go to ;
re turn ;

}

/∗ ∗∗ ∗ /
/∗ Fetch i n t r u c t i o n s t a g e r o u t i n e ∗ /
/∗ ∗∗ ∗ /

void f e t c h (unsigned i n t imem [SYLLABLE_NUM] [INST_MEM_SIZE] , unsigned i n t
∗ s y l l a b l e , i n t pc)

{
i n t i ;
L1 : f o r (i = 0 ; i < SYLLABLE_NUM; i ++) {

s y l l a b l e [i] = imem [i] [pc] ;
}
re turn ;

}

/∗ ∗∗ ∗ /
/∗ Decode i n t r u c t i o n s t a g e r o u t i n e ∗ /
/∗ ∗∗ ∗ /
void decode (unsigned i n t ∗ s y l l a b l e , char ∗op_code , char ∗imm_op , char ∗

d e s t _ g r , char ∗ s r c 1 _ g r , char ∗ s r c 2 _ g r , char ∗ d e s t _ b r , i n t ∗
shor t_ imm_da ta , i n t ∗ branch_imm_data , i n t ∗ long_imm_data)

{
i n t i = 0 ;

/∗ Get o p e r a t i o n s and Operands ∗ /
L1 : f o r (i = 0 ; i < SYLLABLE_NUM; i ++) {

/∗ Get o p e r a t i o n s ∗ /
op_code [i] = OP_CODE(s y l l a b l e [i]) ;
imm_op [i] = IMM_OP(s y l l a b l e [i]) ;

/∗ Get Operands ∗ /
d e s t _ g r [i] = DEST_GR(s y l l a b l e [i]) ;
s r c 1 _ g r [i] = SRC1_GR(s y l l a b l e [i]) ;
s r c 2 _ g r [i] = SRC2_GR(s y l l a b l e [i]) ;
d e s t _ b r [i] = DEST_BR(s y l l a b l e [i]) ;

s h o r t _ i m m _ d a t a [i] = SHORT_IMM_DATA(s y l l a b l e [i]) ;
b ranch_imm_data [i] = BRANCH_IMM_DATA(s y l l a b l e [i]) ;
long_imm_data [i] = (LONG_HI_IMM_DATA(s y l l a b l e [i]) << 11) +

LONG_LO_IMM_DATA(s y l l a b l e [i]) ;
}

75

re turn ;
}

/∗ ∗∗ ∗ /
/∗ E x e c u t e s t a g e r o u t i n e s ∗ /
/∗ ∗∗ ∗ /
void e x e c u t e (i n t ∗ r eg_g r , i n t ∗dmem , char ∗ r eg_b r , char ∗op_code , char
∗imm_op , char ∗ d e s t _ g r , char ∗ s r c 1 _ g r , char ∗ s r c 2 _ g r , char ∗ d e s t _ b r
, i n t ∗ shor t_ imm_da ta , i n t ∗ branch_imm_data , i n t ∗ long_imm_data ,
i n t ∗ pc_goto , i n t ∗ a l u _ r e s u l t , i n t ∗m u l t _ r e s u l t , i n t ∗mem_rdata)

{
i n t i = 0 ;
i n t A_op [SYLLABLE_NUM] ;
i n t B_op [SYLLABLE_NUM] ;
i n t mem_wdata = r e g _ g r [d e s t _ g r [MEM_SLOT]] ;
char br = r e g _ b r [d e s t _ b r [MEM_SLOT]] ;

/ / Get operands
L1 : f o r (i = 0 ; i < SYLLABLE_NUM; i ++) {

A_op [i] = r e g _ g r [s r c 1 _ g r [i]] ;
sw i t ch (imm_op [i])
{

/ / R e g i s t e r s o p e r a t i o n
case NO_IMM:

B_op [i] = r e g _ g r [s r c 2 _ g r [i]] ;
break ;

/ / S h o r t Immedia te o p e r a t i o n
case SHORT_IMM:

B_op [i] = s h o r t _ i m m _ d a t a [i] ;
break ;

/ / Branch Immedia te o p e r a t i o n
case BRANCH_IMM:

B_op [i] = branch_imm_data [i] ;
break ;

/ / Long immed ia t e o p e r a t i o n
d e f a u l t :

B_op [i] = long_imm_data [i] ;
break ;

}
}

/∗ C o n t r o l o p e r a t i o n s ∗ /
c t r l (pc_goto , op_code [CTRL_SLOT] , branch_imm_data [CTRL_SLOT] , (char

) b r) ;

/∗ Perform ALU o p e r a t i o n s ∗ /
L2 : f o r (i = 0 ; i < ALU_NUM; i ++) {

a l u (op_code [i] , A_op [i] , B_op [i] , &a l u _ r e s u l t [i]) ;
}

/∗ Perform MUL o p e r a t i o n s ∗ /
L3 : f o r (i = 0 ; i < MUL_NUM; i ++) {

mul t (op_code [INI_MUL_SLOT + i] , A_op [INI_MUL_SLOT + i] , B_op [
INI_MUL_SLOT + i] , &m u l t _ r e s u l t [i]) ;

}

/∗ Perform memory o p e r a t i o n s ∗ /

76

mem(dmem , op_code [MEM_SLOT] , (char) A_op [MEM_SLOT] , mem_wdata ,
mem_rdata) ;

re turn ;
}

/∗ ∗∗ ∗ /
/∗ ALU r o u t i n e s ∗ /
/∗ ∗∗ ∗ /
void a l u (char op_code , i n t A_op , i n t B_op , i n t ∗ a l u _ r e s u l t)
{

/ / O p e r a t i o n s e l e c t i o n
sw i t ch (op_code) {

/ / Add
case ADD:

∗ a l u _ r e s u l t = ALU_ADD(A_op , B_op) ;
break ;

/ / B i t w i s e AND
case AND:

∗ a l u _ r e s u l t = ALU_AND(A_op , B_op) ;
break ;

/ / B i t w i s e complement and AND
case ANDC:

∗ a l u _ r e s u l t = ALU_ANDC(A_op , B_op) ;
break ;

/ / Maximum s i g n e d
case MAX:

∗ a l u _ r e s u l t = ALU_MAX(A_op , B_op) ;
break ;

/ / Maximum u n s i g n e d
case MAXU:

∗ a l u _ r e s u l t = ALU_MAXU(A_op , B_op) ;
break ;

/ / Minimum s i g n e d
case MIN:

∗ a l u _ r e s u l t = ALU_MIN(A_op , B_op) ;
break ;

/ / Minimum u n s i g n e d
case MINU:

∗ a l u _ r e s u l t = ALU_MINU(A_op , B_op) ;
break ;

/ / B i t w i s e OR
case OR:

∗ a l u _ r e s u l t = ALU_OR(A_op , B_op) ;
break ;

/ / B i t w i s e complement and OR
case ORC:

∗ a l u _ r e s u l t = ALU_ORC(A_op , B_op) ;
break ;

/ / S h i f t l e f t 1 and add
case SH1ADD:

∗ a l u _ r e s u l t = ALU_SH1ADD(A_op , B_op) ;
break ;

/ / S h i f t l e f t 2 and add
case SH2ADD:

∗ a l u _ r e s u l t = ALU_SH2ADD(A_op , B_op) ;
break ;

/ / S h i f t l e f t 3 and add

77

case SH3ADD:
∗ a l u _ r e s u l t = ALU_SH3ADD(A_op , B_op) ;
break ;

/ / S h i f t l e f t 4 and add
case SH4ADD:

∗ a l u _ r e s u l t = ALU_SH4ADD(A_op , B_op) ;
break ;

/ / S h i f t l e f t
case SHL :

∗ a l u _ r e s u l t = ALU_SHL(A_op , B_op) ;
break ;

/ / S h i f t r i g h t s i g n e d
case SHR:

∗ a l u _ r e s u l t = ALU_SHR(A_op , B_op) ;
break ;

/ / S h i f t r i g h t u n s i g n e d
case SHRU:

∗ a l u _ r e s u l t = ALU_SHRU(A_op , B_op) ;
break ;

/ / B i t w i s e XOR
case XOR:

∗ a l u _ r e s u l t = ALU_XOR(A_op , B_op) ;
break ;

/ / Compare : e q u a l
case CMPEQ:

∗ a l u _ r e s u l t = ALU_CMPEQ(A_op , B_op) ;
break ;

/ / Compare : g r e a t e r e q u a l s i g n e d
case CMPGE:

∗ a l u _ r e s u l t = ALU_CMPGE(A_op , B_op) ;
break ;

/ / Compare : g r e a t e r e q u a l u n s i g n e d
case CMPGEU:

∗ a l u _ r e s u l t = ALU_CMPGEU(A_op , B_op) ;
break ;

/ / Compare : g r e a t e r s i g n e d
case CMPGT:

∗ a l u _ r e s u l t = ALU_CMPGT(A_op , B_op) ;
break ;

/ / Compare : g r e a t e r u n s i g n e d
case CMPGTU:

∗ a l u _ r e s u l t = ALU_CMPGTU(A_op , B_op) ;
break ;

/ / Compare : l e s s than e q u a l s i g n e d
case CMPLE:

∗ a l u _ r e s u l t = ALU_CMPLE(A_op , B_op) ;
break ;

/ / Compare : l e s s than e q u a l u n s i g n e d
case CMPLEU:

∗ a l u _ r e s u l t = ALU_CMPLEU(A_op , B_op) ;
break ;

/ / Compare : l e s s than s i g n e d
case CMPLT:

∗ a l u _ r e s u l t = ALU_CMPLT(A_op , B_op) ;
break ;

/ / Compare : l e s s than u n s i g n e d
case CMPLTU:

∗ a l u _ r e s u l t = ALU_CMPLTU(A_op , B_op) ;

78

break ;
/ / Compare : n o t e q u a l
case CMPNE:

∗ a l u _ r e s u l t = ALU_CMPNE(A_op , B_op) ;
break ;

/ / L o g i c a l NAND
case NANDL:

∗ a l u _ r e s u l t = ALU_NANDL(A_op , B_op) ;
break ;

/ / L o g i c a l NOR
case NORL:

∗ a l u _ r e s u l t = ALU_NORL(A_op , B_op) ;
break ;

/ / L o g i c a l OR
case ORL:

∗ a l u _ r e s u l t = ALU_ORL(A_op , B_op) ;
break ;

/ / Move GR t o BR
case MTB:

∗ a l u _ r e s u l t = A_op & 1 ;
break ;

/ / S u b t r a c t
case SUB:

∗ a l u _ r e s u l t = ALU_SUB(A_op , B_op) ;
break ;

/ / S ign e x t e n d b y t e
case SXTB :

∗ a l u _ r e s u l t = ALU_SXTB(A_op) ;
break ;

/ / S ign e x t e n d h a l f word
case SXTH:

∗ a l u _ r e s u l t = ALU_SXTH(A_op) ;
break ;

/ / Zero e x t e n d b y t e
case ZXTB:

∗ a l u _ r e s u l t = ALU_ZXTB(A_op) ;
break ;

/ / Zero e x t e n d h a l f word
case ZXTH:

∗ a l u _ r e s u l t = ALU_ZXTH(A_op) ;
break ;

/ / Copy s1 t o o t h e r l o c a t i o n
case MOV:

∗ a l u _ r e s u l t = A_op ;
break ;

/ / D e f a u l t − Decode Error
d e f a u l t :

break ;
}
re turn ;

}

/∗ ∗∗ ∗ /
/∗ M u l t i p l i c a t i o n r o u t i n e s ∗ /
/∗ ∗∗ ∗ /
void mul t (char op_code , i n t A_op , i n t B_op , i n t ∗m u l t _ r e s u l t)
{

/ / O p e r a t i o n s e l e c t i o n

79

sw i t ch (op_code) {
/ / M u l t i p l y s i g n e d low 16 x low 16 b i t s
case MPYLL:

∗m u l t _ r e s u l t = MUL_MPYLL(A_op , B_op) ;
break ;

/ / M u l t i p l y u n s i g n e d low 16 x low 16 b i t s
case MPYLLU:

∗m u l t _ r e s u l t = MUL_MPYLLU(A_op , B_op) ;
break ;

/ / M u l t i p l y s i g n e d low 16 (s1) x h igh 16 (s2) b i t s
case MPYLH:

∗m u l t _ r e s u l t = MUL_MPYLH(A_op , B_op) ;
break ;

/ / M u l t i p l y u n s i g n e d low 16 (s1) x h igh 16 (s2) b i t s
case MPYLHU:

∗m u l t _ r e s u l t = MUL_MPYLHU(A_op , B_op) ;
break ;

/ / M u l t i p l y s i g n e d h igh 16 x h igh 16 b i t s
case MPYHH:

∗m u l t _ r e s u l t = MUL_MPYHH(A_op , B_op) ;
break ;

/ / M u l t i p l y u n s i g n e d h igh 16 x h igh 16 b i t s
case MPYHHU:

∗m u l t _ r e s u l t = MUL_MPYHHU(A_op , B_op) ;
break ;

/ / D e f a u l t − Decode Error
d e f a u l t :

break ;
}

re turn ;
}

/∗ ∗∗ ∗ /
/∗ C o n t r o l r o u t i n e s ∗ /
/∗ ∗∗ ∗ /
void c t r l (i n t ∗ pc_goto , char op_code , i n t o f f s e t , char br)
{

/ / O p e r a t i o n s e l e c t i o n
sw i t ch (op_code)
{

/ / U n c o n d i t i o n a l r e l a t i v e jump
case GOTO:

c t r l _ g o t o (pc_goto , o f f s e t) ;
break ;

/ / C o n d i t i o n a l r e l a t i v e branch on t r u e c o n d i t i o n
case BR:

c t r l _ b r (pc_goto , o f f s e t , b r) ;
break ;

/ / C o n d i t i o n a l r e l a t i v e branch on f a l s e c o n d i t i o n
case BRF :

c t r l _ b r f (pc_goto , o f f s e t , b r) ;
break ;

d e f a u l t :
break ;

}
re turn ;

}

80

/∗ ∗∗ ∗ /
/∗ Memory a c c e s s r o u t i n e s ∗ /
/∗ ∗∗ ∗ /
void mem(i n t ∗dmem , char op_code , char a d d r e s s , i n t mem_wdata , i n t ∗

mem_rdata)
{

/ / O p e r a t i o n s e l e c t i o n
sw i t ch (op_code) {

/ / Load word
case LDW:

mem_ldw (dmem , a d d r e s s , mem_rdata) ;
break ;

/ / S t o r e word
case STW:

mem_stw (dmem , a d d r e s s , mem_wdata) ;
break ;

/ / D e f a u l t − Decode Error
d e f a u l t :

break ;
}
re turn ;

}

/∗ ∗∗ ∗ /
/∗ W r i t e b a c k r o u t i n e ∗ /
/∗ ∗∗ ∗ /
void w r i t e b a c k (i n t ∗ r eg_g r , char ∗ r eg_b r , char ∗ d e s t _ g r , char ∗ d e s t _ b r ,

char ∗op_code , i n t ∗ a l u _ r e s u l t , i n t ∗m u l t _ r e s u l t , i n t ∗mem_rdata)
{

i n t i ;
L1 : f o r (i = 0 ; i < SYLLABLE_NUM; i ++) {

i f (ALU_TYPE(op_code [i])) {
i f (d e s t _ g r [i] == 0) {

r e g _ b r [d e s t _ b r [i]] = a l u _ r e s u l t [i] ;
}
e l s e {

r e g _ g r [d e s t _ g r [i]] = a l u _ r e s u l t [i] ;
}

}

sw i t ch (i) {
case CTRL_SLOT :

i f (CTRL_TYPE(op_code [CTRL_SLOT])) {
}
break ;

case 1 :
i f (MUL_TYPE(op_code [i])) {

r e g _ g r [d e s t _ g r [i]] = m u l t _ r e s u l t [0] ;
}
break ;

case 2 :
i f (MUL_TYPE(op_code [i])) {

r e g _ g r [d e s t _ g r [i]] = m u l t _ r e s u l t [1] ;
}
break ;

case MEM_SLOT:

81

i f (MEM_TYPE(op_code [MEM_SLOT])) {
r e g _ g r [d e s t _ g r [i]] = ∗mem_rdata ;

}
break ;

}

}

}

/∗ ∗∗ ∗ /
/∗ r−Vex core ∗ /
/∗ ∗∗ ∗ /
void r _ v e x _ c o r e (i n t ∗done , i n t ∗ c y c l e s)
{

i n t i , j = 0 ;

/∗ Flow c o n t r o l ∗ /
i n t n e x t _ p c = 0 ;
i n t pc_go to = 0 ;

/∗ R e g i s t e r s : g e n e r a l purpose and branch ∗ /
i n t r e g _ g r [REGISTER_GR_NUM] = { 0 } ;
char r e g _ b r [REGISTER_BR_NUM] = { 0 } ;

/∗ Fec th ∗ /
unsigned i n t s y l l a b l e [SYLLABLE_NUM] ;

/∗ Decode v a r i a b l e s ∗ /
char op_code [SYLLABLE_NUM] ;
char imm_op [SYLLABLE_NUM] ;

char d e s t _ g r [SYLLABLE_NUM] ;
char s r c 1 _ g r [SYLLABLE_NUM] ;
char s r c 2 _ g r [SYLLABLE_NUM] ;
char d e s t _ b r [SYLLABLE_NUM] ;

i n t s h o r t _ i m m _ d a t a [SYLLABLE_NUM] ;
i n t branch_imm_data [SYLLABLE_NUM] ;
i n t long_imm_data [SYLLABLE_NUM] ;
char c ;

i n t dmem[DATA_MEM_SIZE] ;

i n t a l u _ r e s u l t [ALU_NUM] ;
i n t m u l t _ r e s u l t [MUL_NUM] ;
i n t mem_rdata ;

/∗ Main Loop ∗ /
r _ v e x _ c o r e _ l a b e l 0 : whi le (1) {

/∗ PC c a l c u l a t i o n ∗ /
advance_pc (& next_pc , pc_go to) ;

/∗ Fix PC o f f s e t [nPC = nPC + 1] ∗ /
pc_go to = n e x t _ p c + 1 ;
∗ c y c l e s = ∗ c y c l e s + 1 ;

82

/∗ Fetch i n t r u c t i o n s t a g e r o u t i n e ∗ /
f e t c h (imem , s y l l a b l e , n e x t _ p c) ;

/∗ Decode i n t r u c t i o n s t a g e r o u t i n e ∗ /
decode (s y l l a b l e , op_code , imm_op , d e s t _ g r , s r c 1 _ g r , s r c 2 _ g r ,

d e s t _ b r , shor t_ imm_da ta , branch_imm_data , long_imm_data) ;

/∗ D e t e c t s end o f program ∗ /
L1 : f o r (i = 0 ; i < SYLLABLE_NUM; i ++) {

i f (STOP_TYPE (op_code [i])) {
∗done = 1 ;
re turn ;

}
}

/∗ E x e c u t i o n S t a g e ∗ /
e x e c u t e (r eg_gr , dmem , reg_br , op_code , imm_op , d e s t _ g r ,

s r c 1 _ g r , s r c 2 _ g r , d e s t _ b r , shor t_ imm_da ta , branch_imm_data ,
long_imm_data , &pc_goto , a l u _ r e s u l t , m u l t _ r e s u l t , &

mem_rdata) ;

/∗ W r i t e b a c k s t a g e ∗ /
w r i t e b a c k (r eg_g r , r eg_b r , d e s t _ g r , d e s t _ b r , op_code , a l u _ r e s u l t

, m u l t _ r e s u l t , &mem_rdata) ;

}
}

B.1.6 ρ-Vex Processor Testbench (r_vex_tb.h)

/∗ ∗∗ ∗ /
/∗ Name : r−Vex p r o c e s s o r T e s t b e n c h ∗ /
/∗ Purpose : T e s t b e n c h C o n t r o l and Datapath o f VLIW p r o c e s s o r ∗ /
/∗ Author : J e f e r s o n S a n t i a g o da S i l v a ∗ /
/∗ Notes : Based on r−Vex s u i t e (h t t p s : / / code . g oo g l e . com / p / r−vex /) ∗ /
/∗ ∗∗ ∗ /

i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e " r_vex . h "

i n t main ()
{

i n t i = 0 , j = 0 ;
i n t program_done = 0 ;
i n t c y c l e s = 0 ;

/∗ r−Vex core ∗ /
r _ v e x _ c o r e (& program_done , &c y c l e s) ;

p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ") ;
p r i n t f (" F i n a l e x e c u t i o n \ n ") ;
p r i n t f (" Program done : %d \ n " , program_done) ;
p r i n t f (" Number o f i n s t r u c t i o n s : %d \ n " , c y c l e s) ;
p r i n t f (" R e s u l t : ") ;

83

i f (c y c l e s != 94) {
p r i n t f (" E r r o r \ n ") ;

}
e l s e {

p r i n t f (" Pas se d \ n ") ;
}
p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ") ;

re turn 0 ;

}

B.2 Synthesis Directives Generated by DSE Script (directives.tcl)

s e t _ d i r e c t i v e _ i n l i n e " advance_pc "
s e t _ d i r e c t i v e _ i n l i n e " decode "
s e t _ d i r e c t i v e _ i n l i n e " e x e c u t e "
s e t _ d i r e c t i v e _ i n l i n e " c t r l "
s e t _ d i r e c t i v e _ i n l i n e "mem"
s e t _ d i r e c t i v e _ i n l i n e " w r i t e b a c k "
s e t _ d i r e c t i v e _ i n l i n e " r _ v e x _ c o r e "
s e t _ d i r e c t i v e _ i n l i n e −off " a l u "
s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t 1 −type f u n c t i o n " e x e c u t e / L2 " a l u
s e t _ d i r e c t i v e _ i n l i n e −off " mul t "
s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t 1 −type f u n c t i o n " e x e c u t e / L3 " mul t
s e t _ d i r e c t i v e _ p i p e l i n e −off " decode / L1 "
s e t _ d i r e c t i v e _ p i p e l i n e −off " e x e c u t e / L1 "
s e t _ d i r e c t i v e _ p i p e l i n e −off " e x e c u t e / L2 "
s e t _ d i r e c t i v e _ p i p e l i n e −off " e x e c u t e / L3 "
s e t _ d i r e c t i v e _ p i p e l i n e −off " w r i t e b a c k / L1 "
s e t _ d i r e c t i v e _ p i p e l i n e −off " r _ v e x _ c o r e / L1 "
s e t _ d i r e c t i v e _ p i p e l i n e −off " advance_pc "
s e t _ d i r e c t i v e _ p i p e l i n e −off " decode "
s e t _ d i r e c t i v e _ p i p e l i n e −off " e x e c u t e "
s e t _ d i r e c t i v e _ p i p e l i n e −off " a l u "
s e t _ d i r e c t i v e _ p i p e l i n e −off " mul t "
s e t _ d i r e c t i v e _ p i p e l i n e −off " c t r l "
s e t _ d i r e c t i v e _ p i p e l i n e −off "mem"
s e t _ d i r e c t i v e _ p i p e l i n e −off " w r i t e b a c k "
s e t _ d i r e c t i v e _ p i p e l i n e −off " r _ v e x _ c o r e "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " decode / L1"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " e x e c u t e / L1"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " e x e c u t e / L2"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " e x e c u t e / L3"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " w r i t e b a c k / L1"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " r _ v e x _ c o r e / L1"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " advance_pc "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " decode "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " e x e c u t e "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " a l u "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " mul t "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " c t r l "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 "mem"
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " w r i t e b a c k "
s e t _ d i r e c t i v e _ l a t e n c y −min 1 −max 1 " r _ v e x _ c o r e "

	Introduction
	Motivation
	Contributions
	Thesis Organization

	Hardware Design Optimization Techniques
	Area Saving Methods
	Power Saving Methods
	Performance Enhancing Methods
	Hardware Optimization Methods Summary

	Methods to Reduce Design Time
	Evolution of Hardware Description Languages
	High-Level Synthesis Tools
	High-level Optimization Techniques
	HLS tools and Methods Summary

	Design Space Exploration in Hardware Systems
	Introduction
	Architectural Exploration
	Conclusions

	Methodology Proposed for Architectural Exploration
	High-Level Code Tuning
	Iterative Design Space Exploration Method with High-level Synthesis
	High-level Design Entry
	High-Level Parsing
	Design Constraints
	Update HLS Directives
	Results Parsing and Analysis

	Methodology Summary

	High-Level Synthesis Experiments
	High-Level Synthesis Tools and Design Methods Comparison Results
	MIPS processor
	32 bit Integer Square Root Algorithm
	VLIW Processor
	12th-order FIR Filter

	Design Space Exploration Results
	Interactive DSE Results
	Iterative DSE Method Results

	Conclusions
	References
	Resumo da Dissertação "Architectural Exploration of Digital Systems Design for FPGAs Using C/C++/SystemC Specification Languages"
	VLIW Processor Source Codes

