
FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

INFORMATICS INSTITUTE
BACHELOR OF COMPUTER SCIENCE

LUCAS MENEZES FREIRE

A Regression Testing Prioritization Component for TestLink

Graduation Thesis.

Prof. Dr. Erika Cota
Advisor

M. Sc. Thomas Bauer
Coadvisor

Porto Alegre
2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do Curso de Ciência da Computação: Prof. Raul Fernando Weber
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

The last couple of years of my graduation was marked by two work experiences that
were essential to the development of this work, and for that I have to thank both my advisors
Érika Cota and Thomas Bauer. The project with Elo Sistemas Eletrônicos lead by Érika was
my first contact with software testing. It was followed by the enriching experience of working
in Fraunhofer where I was lucky enough to meet Thomas, who not only guided me in my
work but also contributed to the great experience of my year living in Germany.

A mandatory thanks to my friends Anderson Santos, Alexandre Kreismann,
Guilherme Dias, Luan Garcia, Lucas Tomasi and occasionally Guilherme Schievelbein and
Vinícius Graciolli. The conversations we had between classes are definitely an integral part of
my education. Thanks also to all the traveling companions that I met in Kaiserslautern.

An equally (or perhaps more than equally) mandatory thanks to my family. Namely
Christiane, Ronald, Caroline, Tiago, Breno and remaining family tree. Good families usually
support its members and you are not an exception.

ABSTRACT

Analytical software quality assurance is an expensive set of activities – both in time
and cost – on a software project development. The literature attributes more than 50% of the
costs of a project just for the testing process. Testing results are often managed by test
management tools. This type of software is used to define, plan and track the testing activities,
providing reports on the current status of the system under test quality.

Software testing automation is a widespread attempt to reduce the testing costs. In this
work, we will develop a module that automates the execution and planning of regression
testing, a recurring form of testing that checks if new modifications to a software do not
introduce new defects with them. This module shall be implemented as a component of an
existing test management framework.

We will analyze test management tools, consider their current features and licenses,
select the most appropriate one, and modify it in order to support the automated definition and
execution of regression tests in a time constrained environment. The execution results data of
the test plans will be used to prioritize the test cases in subsequent regression testing
executions. The data generated by the solution should then be available to focus subsequent
quality assurance activities based on defect and coverage data.

Keywords: Software Quality Assurance, Test Management, Regression Testing Automation.

Desenvolvimento de um componente para a determinação dinâmica e otimização de

estratégias de teste e sua integração em uma ferramenta de gerenciamento de testes

existente

RESUMO

Garantia de qualidade de software analítica é um caro conjunto de atividades – tanto
em tempo quanto em custo – do desenvolvimento de um projeto de software. A literatura
atribui mais de 50% dos custos de um projeto apenas para o processo de testes. Os resultados
dos testes são frequentemente gerenciados por ferramentas de gerência de testes. Este tipo de
software é usado para definir, planejar e rastrear as atividades de teste, fornecendo relatórios
do estado atual da qualidade do sistema em teste.

A automação de testes de software é uma difundida tentativa de reduzir os custos de
teste. Nesta tese, nós iremos desenvolver um módulo que automatiza a execução e
planejamento de testes de regressão, uma recorrente forma de testes que verifica se novas
modificações em um software não introduzem novos defeitos com elas. Este módulo deve ser
implementado como um componente em um framework existente de gerência de testes.

Nós analisaremos ferramentas de gerência de testes, consideraremos as
funcionalidades e licenças presentes, selecionaremos a mais apropriada, e a modificaremos
para que ela suporte a definição e execução automatizada de testes de regressão em um
ambiente com tempo limitado. Os dados dos resultados dos planos de teste serão usados para
priorizar os casos de teste em execuções subsequentes dos testes de regressão. Os dados
gerados pela solução devem, então, estar disponíveis para focar as subsequentes atividades de
garantia de qualidade baseadas em dados de defeito e cobertura.

Palavras-chave: Garantia de Qualidade de Software, Gerenciamento de Testes, Automação

de testes de Regressão.

LIST OF FIGURES

Figure 3.1 – Requirements in TestLink..16
Figure 3.2 – Test cases in TestLink..17
Figure 3.3 – Test cases in a TestLink's test plan before an execution......................................17
Figure 3.4 – Test cases in a TestLink's test plan after an execution...18
Figure 3.5 – Multiplication bug reporting in Mantis..18
Figure 3.6 – Partial view of a TestLink's test case execution result with an associated bug....19
Figure 3.7 – Test results based on requirements report..19
Figure 4.1 – Build and test cases parameters diagram example...21
Figure 4.2 – Implemented parameter management view..21
Figure 4.3 – Implemented parameter assignment view..21
Figure 4.4 – Test case source code file selection..22
Figure 4.5 – add.c source file..22
Figure 4.6 – Executions history part of the dashboard...23
Figure 4.7 – Execution group report table..24
Figure 4.8 – Scheduled executions table...24
Figure 4.9 – Manual tests reporting..25
Figure 4.10 – Automated tests reporting...25
Figure 4.11 – Running executions table...25
Figure 4.12 – Requirements coverage chart...26
Figure 4.13 – External module´s sequence diagram...27
Figure 4.14 –TCP algorithm pseudocode...29
Figure 4.15 – Requirements traceability report..30
Figure 4.16 – Linked bugs report..30
Figure 4.17 – Requirements by test executions chart...31
Figure 4.18 – Requirements by test executions table...31
Figure 4.19 – Test cases executions report...32
Figure 5.1 – Partial TCP algorithm pseudocode ..33
Figure 5.2 – Probabilities of test cases categories..34
Figure 5.3 – Generated test case code...35

LIST OF TABLES

Table 2.1 – Test management tools comparison...15
Table 5.1 – Executions results..36

LIST OF ACRONYMS

SQA Software Quality Assurance

TCP Test Case Prioritization

RTS Regression Testing Selection

V&V Verification and Validation

TABLE OF CONTENTS

1 INTRODUCTION..9
1.1 Motivation..9
1.2 Analytical Software Quality Assurance..9
1.3 Software Testing..10
1.3.1 Test Project Management..10
1.3.1.1 Test Project Management Tools...11
1.3.2 Regression Testing...11
1.3.2.1 Regression Testing Selection..11
1.3.2.2 Regression Testing Prioritization..12
1.4 Work Structure...12
2 BACKGROUND..13
2.1 Existing Regression Testing Prioritization Approaches..13
2.2 Test Management Tools Comparison Criteria...14
2.3 Analyzing the Candidate Tools..14
3 TEST MANAGEMENT TOOL PRESENTATION...16
3.1 TestLink Technologies..16
3.2 TestLink Functionalities...16
4 TESTLINK MODIFICATIONS...20
4.1 Used Technologies...20
4.2 Parameterized Tests..20
4.3 Test Case Source Code...22
4.4 Dashboard..23
4.4.1 Executions History...23
4.4.2 Scheduling and Running Executions...24
4.4.3 Requirements Coverage...25
4.5 External Module..26
4.5.1 Implemented Prioritization Algorithm...28
4.6 Additional Reports..29
4 REGRESSION TESTING PRIORITIZATION IMPLEMENTATION........................33
5.1 Evaluating the Algorithm...33
5.2 Generating a Project for the Evaluation Of the Algorithm..33
5.3 Running the Tests...35
5.4 Results..35
6 CONCLUSION..38
REFERENCES..39

9

1 INTRODUCTION

This introductory chapter presents the concepts necessary to understand the rest of this
work. It explains the motivation behind the work and how we decided to design our solution.

1.1 Motivation

Software testing is an expensive process. It consists of a set of activities with the goal
of detecting problems in a program. One of these activities is concerned with the execution of
tests. In this activity we can find regression testing, a type of test that is particularly expensive
due to its repetitive nature. Some strategies – like regressions testing prioritization - attempt to
reduce the regression testing costs.

The test activities have to be managed. Test management tools exist to facilitate this
task. Even though these tools often have support for test execution automation, they do not
include automated test strategies to reduce the regression testing costs.

In this work, we aimed to reduce the testing costs by proposing a regression testing
prioritization component for a test management framework. We selected an existing test
management tool and modified it to include our component. A regression testing prioritization
algorithm was implemented and an experiment was done to verify that the component is
operating as expected.

1.2 Analytical Software Quality Assurance

Software quality assurance (SQA) is defined as:

A set of activities that define and assess the adequacy of software processes to
provide evidence that establishes confidence that the software processes are
appropriate for and produce software products of suitable quality for their intended
purposes. […] ([28], p. 8).

As such, different activities of SQA can be present from the beginning until the very
end of the software development cycle. In fact, according to Wagner [33], the methods and
techniques of SQA can be divided into two categories: constructive and analytical quality
assurance. The constructive approach tries to improve the development of the software to
prevent defects. The analytical approach goal is to detect the problems. The techniques
described further in this work are related to the analytical software quality assurance
approach.

In the study made by Tassey [31], the costs of an inadequate environment for
analytical quality assurance yielded a figure as high as 80% of the total cost of the project just
for the detection and removal of defects. In Myers [32], the author uses the rule of thumb that
50% of the total development time is spent on testing a project and the costs of this process

surpass 50%. In a scenario like this, the investments and research for a better analytical SQA
strategy can be beneficial to significantly reduce the costs of a project.

Wagner [33] affirms that analytical quality assurance is also called Verification and
Validation (V&V). In Software Engineering [42], Sommerville asserts that the purpose of
V&V is to demonstrate that a system conforms to its specification and it meets the system
customer´s expectations. The author follows that statement with the affirmation that program
testing is the principal validation technique.

1.3 Software Testing

The definition of software testing is “An activity in which a system or component is
executed under specified conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or component” ([28], p. 8). According to Kaner et al. [29],
the purpose of software testing is to find problems in a program. Hence, software testing can
be classified as an analytical SQA process. As stated in section 1.1, analytical SQA can be
very costly. This justifies our interest in optimizing the testing process.

According to Graham et al. [43], the activities within the fundamental test process can
be divided in:

1. Planning and control;

2. Analysis and design;

3. Implementation and execution;

4. Evaluating exit criteria and reporting;

5. Test closure activities.

These activities are sequential, meaning that planning precedes the others. Graham et
al. [43] complement planning with control, affirming that the management of an activity is not
complete without controlling and measuring the progress against the plan. Section 1.2.1
describes test project management in further detail.

During the implementation and execution activity, where the designed tests are built
into executable test cases, a major task is repeating the tests. One of the cases where tests need
to be repeated is regression testing. Section 1.2.2 explains regression testing and how it can be
optimized.

A common strategy to reduce the costs of software testing is test automation. In
Managing the Testing Process [30], the author describes automation as a way of reducing the
time to run tests, saying that the extra time bought with automation can then be allocated to
analyze the failures detected by the tests.

1.3.1 Test Project Management

Rex [30] says that test projects require test project management because testing should
always respond to real project needs. The IEEE Standard for Software and System Test
Documentation [35] includes the following activities in the process of test management:

11

1. Monitoring of the plan execution;

2. Analysis of anomalies discovered during execution of the plan;

3. Reporting on progress of the test processes;

4. Assessing the test results for conformance to expectations;

5. Determining whether a testing task is complete;

6. Checking of the test results for completeness.

1.3.1.1 Test Project Management Tools

To help the management of the test projects, test management tools like XStudio [19]
or RTH [14] were developed. Graham et al. [43] list as features of test management tools:

1. Management of tests;

2. Scheduling of tests to be executed;

3. Management of testing activities;

4. Interfaces to other tools;

5. Traceability of tests, test results and defects to requirements or other sources;

6. Logging test results; preparing progress reports based on metrics.

Test Management tools can include other functionalities to support different processes
besides the ones listed. XStudio, for example, has requirements management support. In
Manage Software Testing [41], besides test case management, the author also includes
requirements management and bug management among other features in a desirable features
list of the test environment.

1.3.2 Regression Testing

Software in development is constantly changing. New features are included, old
features are modified and old issues are fixed. One of the software aspects that Brooks enlist
in No Silver Bullet is its Changeability: It is easy to change software, but the consequences of
a change is often overlooked [1].

Regression testing deals with those consequences by checking that changes to the
program have not introduced new bugs [43]. This is accomplished by re-running test cases of
an existing test suite [2].

1.3.2.1 Regression Testing Selection

Without the constraint of time, we could run all the test cases of the initial test suite
for the regression testing. This would yield the higher confidence that new changes do not
break old software. This approach is called retest all. But often time is a constraint. In this
case retesting all can be prohibitively expensive [2]. Therefore, instead of running all the test

cases of the test suite, only a subset of those test cases are selected. This process is called
Regression Testing Selection (RTS).

There are different techniques for Regression Testing Selection with varying degrees
of cost and effectiveness. For a study listing and comparing those techniques, see Graves and
others [2].

1.3.2.2 Regression Testing Prioritization

Regression testing prioritization is another technique for optimizing the regression
testing execution. In this case, it uses a Test Case Prioritization (TCP) algorithm to order the
test cases by a priority defined by one or more criteria. Rothermel et al. [34] formally defines
regression testing prioritization as follow:

Given: T, a test suite, PT, the set of permutations of T, and f, a function from PT to
the real numbers.

Problem: Find T' ∈ PT such that (∀T'') (T'' ∈ PT) (T'' ≠ T') [f(T') ≥ f(T'')] ([34], p.
930).

In the definition above, PT contains all the possible ways of ordering the test cases in
the T test suite, and the function f evaluates each ordering, yielding an award value. This
function can consider a variety of information to evaluate the orderings depending on the
specific technique used for TCP. Chapter 2 contains an explanation of different approaches,
chapter 4 explains the one used by this work.

According to Jung-Min and Porter [7], regression testing prioritization can be
combined with a RTS algorithm by selecting a subset of test cases of the initial test suite and
then applying the prioritization on the remaining test cases.

1.4 Work Structure

A comparison of test management tools is presented in chapter 2. We will enlist the
comparison criteria and select the tool that best fit them. Chapter 2 also contains a description
of related work regarding the automated decision and execution of regression testing. Chapter
3 contains a presentation of the chosen software features, explaining how it manages a test
project.

To implement the automated testing module, the chosen tool must be modified to
include new concepts such as parameterized tests and source file selection. The detailed
explanations of those modifications is included in chapter 4, along with new reporting
information that can be obtained with the introduced concepts. This chapter also explains the
constructed algorithm implemented in our module.

Chapter 5 presents the generation of a test project that will enable us to execute and
evaluate our solution with an experiment. The last section describes the results achieved by
the execution of our automated regression testing strategy applied to the created project in the
test management tool.

13

2 BACKGROUND

This chapter exposes related work regarding regression testing prioritization
approaches. It also compares different test management tools and select the most appropriate
one to be used in the development of our solution.

2.1 Existing Regression Testing Prioritization Approaches

A wide variety of TCP approaches have been proposed. According to Korel and
Koutsogiannakis [3], most of the test prioritization methods are code-based. Those techniques
use information of the source code to evaluate the test cases with code coverage metrics (e.g.
the number of covered statements, the number of functions called by the test case). This
evaluation is then used to prioritize the tests.

Model-based test prioritization can also be found in the literature [4-6]. This type of
technique uses system models to prioritize the test cases. One of the model-based solutions
described in Korel et al. 2007 [5] for example, uses two versions of models of the same
system. The idea is that after a modification of the model, the new modified model is
executed for a test suite to collect information to be used for the prioritization. This
information can be, for example, the execution of modified transitions in a model by a test
case. Test cases can then be prioritized based on the assumption that the probability of a test
revealing a fault is proportional to the number of modified transitions executed by it.

History-based prioritization is a third type of solution. As stated by Jung and Porter
[7], the idea is to use information of the test cases past executions to define the prioritization
order. Prioritizing, for example, tests that have failed in past executions over the tests that
have not. This approach is particularly interesting for this work due to the availability of the
test cases past executions data in a test management tool. For this reason, the implemented
algorithm described in section 4.5.1 is history-based. As a consequence, the chosen technique
does not need models or source code to extract information, just the data provided by
TestLink. Some approaches that use the results of past executions can be found in Jung and
Porter [7], Marijan et al. [8] and Chu-Ti et al. [9]. These three references use the faults of the
test cases (i.e. the failed or passed status) for the prioritization. Marijan et al. [8] also includes
the execution time of the test cases and a domain-specific heuristic to define the prioritization
order. Chu-Ti et al. [9] study whether the test cases that failed in previous versions of the
software have a higher probability of failing in a new version They used a hybrid of history-
based with a code-based technique.

Some solutions implement heuristic search techniques to determine the order. Ahmed
et al. [10] uses a genetic algorithm with code-based metrics. Particle swarm optimization is
used alongside with fault coverage and execution time by the prioritization phase of Tyagi
and Malhotra [11]. The implementation in this work uses a simple history-based approach and
is described in section 4.5.1. Proposing a better algorithm and comparing it to other solutions
is out of the scope of this work.

2.2 Test management Tools Comparison Criteria

To select an appropriate tool for this work, some features were considered in the
comparison. Besides the actual management of test cases, some test management tools
incorporate requirements and defects management. With a broader scope of QA information
available in the tool, more data can be used to generate reports and plan subsequent activities.
Supporting test automation is also a critical characteristic of the tool because we want to make
sure that we will be able to implement an automated regression test module.

Finally, in order to support modifications, open source software is a better solution
than closed source. Knowing that a software is open source, we can customize it without the
limitations provided by the developer.

2.3 Analyzing the Candidate Tools

The search for candidate tools was made using Google with “test management tools”
as the parameter. This search provided as result a web page [44] with a list of 29 open source
candidates. To filter this list, the discontinued tools were eliminated alongside the ones that
deviate from the test management tools functionalities described in section 1.2.1.1. Table 2.1
contains the resulting candidates for a hands-on comparison.

By analyzing table 2.1, the tools with more support for the criteria stated in section 2.2
are: TestLink, Squash TM and XStudio. The developer of XStudio has assembled a web page
[20] containing a comparison of test tools that include many of the software presented in table
2.1. In this comparison, it is presented a similar table to table 2.1, but containing additional
criteria that are not as relevant to this work, like support for specifications management or
load testing. Despite the apparent advantages of XStudio in this reference, this tool is not open
source and requires a commercial license to support any kind of customization [21]. Squash
TM uses an external software for the test automation called Squash TA [17], this can add
another layer of complexity for our component.

TestLink is an open source tool which covers all the criteria and provides an API for
test automation. In addition to that, there is an active forum [22] that can be consulted to
support the development of our implementation.

Given the information analyzed by this section, TestLink is the tool of choice for the
solution presented in the subsequent chapters.

15

Table 2.1 – Test management tools comparison

Tool Requirements
management

Support

Issue Tracking
Support

Automated Tests
Support

License

TestLink [12] X can be integrated
with other tools

X GPLv2 [36]

TesTopia [13] Bugzilla MPL 1.1 [37]

RTH [14] X X GPLv2 [36]

Tarantula [15] X can be integrated
with other tools

GPLv3 [38]

Squash TM
[16]

X interfaces natively
with Mantis

Squash TA [17] LGPL [39]

Requirements
and Tests
Management
Repository
[18]

X X

or

external bug tracker

GPLv3 [37]

XStudio [19] X X X Proprietary [40]

3 TEST MANAGEMENT TOOL PRESENTATION

This chapter explains the basic functionalities of TestLink and presets an overview of
its use technologies.

3.1 TestLink Technologies

TestLink was written in PHP and uses an object-relational database. Its front-end is
developed using HTML, CSS, Javascript and Smarty [45]. Smarty is a template engine for
PHP used to separate the presentation and the application logic. To communicate with other
software, TestLink provides an XML-RPC API. With this API, we can send commands to
create and get projects, builds, test plans and test cases; report test cases results, among others.

Even though the tool does not have independent bug tracking functionalities, it offers
a way to configure an integration with existing issue tracking tools. In this work, Mantis [46]
was chosen to account for this functionality. Mantis is an open source issue tracking system
that allow us to manage bugs. These bugs can be linked to test cases using the TestLink´s
issue tracking integration. Additionally, external software can communicate with mantis using
the Mantis SOAP API.

3.2 TestLink Functionalities

As presented in section 2.3, TestLink has support for requirements management, bug
tracker integration and test automation. This section describes how a project can be handled
by this tool during these different activities. The version of the software used for this
demonstration is TestLink 1.9.11.

For the sake of simplicity, a calculator project with basic operations is used to present
the tool. Figure 3.1 presents a list of the requirements of the project as described in TestLink.

Figure 3.1 – Requirements in TestLink

As can be seen in figure 3.1, the requirements are grouped by folders called
requirements specifications (the root folder is an exception, representing the test project
instead). Requirements specifications is a way of organizing the requirements of the project.
A requirement specification has the following fields: Document id, title, scope (i.e. a textual
description) and a type.

The Calculator folder is our project folder. The Operations folder is the requirement
specification of the following requirements: Addition, Subtraction, Division and
Multiplication. A requirement on TestLink has a title, a document id, a scope, a status (which
can assume values like draft, implemented or obsolete), a type (e.g. use case, user interface,
non functional) and the number of test cases needed to cover the requirement. Those

17

requirements can be linked to test cases and, upon the executions of those test cases, metrics
of requirements coverage can be extracted from TestLink.

Figure 3.2 – Test cases in TestLink

Figure 3.2 is a similar representation for the test cases. Here, the folders under the
project folder are test suites. In this example there is one test suite called Operations Tests. A
test suite has a name, details (its textual description), and keywords. Keywords are created by
the user and associated with test suites or test cases. They can be used to group elements with
a common characteristic.

Under a test suite, test cases can be created. The fields of the test cases are: Title,
summary, preconditions, status (same as requirements specification), importance (high,
medium or low), execution type (automated or manual), an estimation of the execution time in
minutes, and keywords. Once the test case is created, it is possible to add steps to it. Each step
has a step actions field, an expected results field (both are textual fields) and an execution
type (automated or manual).

For this example project, the requirements shown in figure 3.1 are linked with the test
cases of figure 3.2 according to the meaning of the test case. For example, the requirement
Addition is associated with the test cases “add positive”, “add negative”, and “add negative
and positive”. In order to execute those defined test cases, TestLink uses test plans and builds.

Test plans are used to group the test cases into a set of executable test cases. To
execute a test plan, we need to have one or more builds defined in the given test plan. Figure
3.3 presents a similar view to figure 3.2, but containing information of a test plan execution.

Figure 3.3 – Test cases in a TestLink's test plan before an execution

In figure 3.3, all of the test cases are highlighted in gray, indicating that they have not
been executed. A manual test result can be sent to TestLink through its user interface. In this
example, we are going to execute the tests automatically using the Testlink's XML-RPC API.

 Four simple methods were coded in python to perform the four basic math operations:
Addition, subtraction, multiplication and division. Each of these methods has an x and y input
parameter and returns the value of the operation applied to the parameters. Then, the tests of

figures 3.2 and 3.3 were coded using python's unit test library. To execute and send the results
to TestLink, and to reduce the coding work, Python-TestLinkRunner [23] was used. This
library uses the id of the tests in TestLink to report the status result of the python test cases
using the XML-RPC API. After the execution and the reporting of the results, the GUI
element shown in figure 3.3 now looks like figure 3.4.

Figure 3.4 – Test cases in a TestLink's test plan after an execution

The test cases highlighted in green correspond to a passed test case, while a test case
highlighted in red is a failed one. The failure of the “Multiply positive” test case was
intentionally included in this demonstration. Upon seeing the failed test case, the tester might
want to report a bug to the tool. TestLink does not have an integrated bug tracking module,
but it can be integrated with external bug tracking systems like Bugzilla, Mantis, JIRA and
others. For this section and subsequent work, we are going to use Mantis as the integrated bug
tracking tool. After setting up Mantis and configuring TestLink to work with the bug tracker,
the tester will need to manually create a bug in Mantis.

Figure 3.5 – Multiplication bug reporting in Mantis

This bug is then linked to the test case execution in TestLink using the bug id of the
reported bug created in Mantis, which is informed using the test management tool interface.
Notice how the bug description on figure 3.6 matches with the summary of the bug on figure
3.5.

19

Figure 3.6 – Partial view of a TestLink's test case execution result with an associated bug.

With the requirements, test cases, executions and bugs information, one can extract
reports from TestLink to support QA analysis. Figure 3.7 is an example of an available report
type. In this example we can see how each test case, and its last execution status result, relates
to their associated requirements.

Figure 3.7 – Test results based on requirements report

Another useful feature of TestLink, is the support for custom fields. A custom field
provides the ability to customize the tool to better fit one´s needs without having to modify
the software's source code. A custom field has a name, a label, a type (there are 13 types,
including string, checkbox, date and text area), and an “Enable on” field which sets the
custom field to the test execution, test specification design or test plan design.

This concludes the demonstration of this section. Other functionalities, like user
management or platform management were left out because they are not part of the
subsequent modifications applied to the tool. For more information of how TestLink works,
see the user manual [24].

20

4 TESTLINK MODIFICATIONS

This chapter contains the modifications applied to TestLink, and the software artifacts
constructed around the TestLink environment to support the integration of our regression
testing solution with the functionalities of the tool described in chapter 3.

4.1 Used Technologies

In our installation of TestLink we used MySQL as the object-relational database. This
means that the enhancements provided by this work modify the TestLink's PHP code and the
MySQL database. HTML, JavaScript and the Smarty web template system were also used for
the modifications on the front-end side of the application. Additionally, DataTables [25] was
used to better present tables in the tool. DataTables is a jQuery plug-in with the goal of
enhancing the accessibility of data in HTML tables.

Some of the functionalities provided here are not an integrated part of TestLink. In this
case, they use the XML-RPC API to communicate with the tool. The API had to be, in many
cases, extended to support additional data for the different software pieces to communicate.
The external software was built in Java. The main reason of this decision is that Java is
already well established in the Fraunhofer environment.

4.2 Parameterized Tests

For the parametrization of test cases, we propose an integrated solution on TestLink.
The idea is that the parameters can be defined on TestLink in such a way that, when the
automated test are executed, the tool chain is able to extract the correct parameters from
TestLink for each test case, and execute them with the provided values. Informing the
parameters to the tester is also important when the test results are manually informed.

In this implementation, the parameters will be defined for the test project and then
associated with builds and test cases. The calculator project presented on section 3.2 for
example, can have two input parameters x and y. Those parameters are then associated with
each test case that perform an operation with two input values (all of the test cases in this
example). For each association, the value that each parameter will assume is given by the
user. In this way, every parameterized test case will have the execution values for the
parameters.

To support different parameter values for different executions, our solution uses a
strategy of associating parameters with builds. Using the calculator project again as an
example, we can create the build A and associate the parameters x and y with the values 30
and 20 in this build. If we want another set of values for another execution we can create the
build B using other values for the same parameters. If a build does not have a particular
parameter associated with it, and the same parameter is used by a test case associated with the
test plan of that build, the value that the parameter will assume is the one associated with the
test case.

21

Figure 4.1 – Build and test cases parameters diagram example

Let us consider the diagram in figure 4.1. The edges that link the parameters with the
test cases and the build have the corresponding value written in it. What are going to be the
parameter values used if we execute the test cases 1 and 2 with the build A?

The build parameter has a higher priority. So since the test cases 1 and 2 require
parameter x, which is defined for the build A with the value 30, the values 15 and 22 are
going to be overwritten by 30 in this execution. The parameter y is used by test case 2 but is
not defined by build A, resulting in the value 8 in the execution. To summarize: Test case 1
will be executed with 30 as the parameter x and test case 2 will be executed with 30 as
parameter x and 8 as parameter y.

Figure 4.2 – Implemented parameter management view

Figure 4.2 shows how the interaction with the parameters information was assembled.
The user is able to create parameters with a name, a type, a default value and a description.
All of these fields are text fields, including the type. This means that the type is there just to
guide the user rather than being used for type checking. The parameters are created for the
current project and can be assigned to builds and test cases as shown in figure 4.3 below.

Figure 4.3 – Implemented parameter assignment view

For each parameter defined for the project, the user is able to check a checkbox to
associate the parameter with the current build or test case. The moment the user checks this
checkbox, the corresponding assigned value field is filled with the default value of the
parameter. This value can be changed by the user at will.

To implement the parameterized tests, PHP classes and Smarty templates were created
for parameters management. The test case and build classes were modified to support
parameter assignments. MySQL tables were created and the methods to support the CRUD

22

operations were included in the TestLink code. We also want the ability to use the XML-RPC
API as a mean of accessing the parameters information, resulting in new functionality added
in the API.

More specifically, the included functionality is the ability to create a parameter for a
test project, assign a parameter with a test case, assign a parameter with a build, get a specific
parameter value of a test case and get a specific parameter value of a build. Those methods
enable not only the ability of parameter creation and assignment programmatically, but also
the ability of getting the parameters information needed for the test automation.

4.3 Test Case Source Code

In order to automate the tests in such a way that the command to execute the test plan
is given through TestLink, knowing where to find the test cases code is necessary. The
proposed solution for this problem is illustrated by figure 4.4.

Figure 4.4 – Test case source code file selection

Figure 4.4 displays how the user associates a test case with its source code file. This
interface was included in the view of the test case creation and edition. With this addition,
when the user wants to run a test plan, the external module will be able to link the appropriate
files for the execution of the test cases. As an example, if the test case “add positive” is
defined in the project, we can select the file “add.c” represented by figure 4.5 as its source
code file, which contains the actual test code, using its abbreviated name “addPos”.

Figure 4.5 – add.c source file

23

To implement this feature, a folder named SUT was created in the TestLink server
directory. Inside this folder, each project created on TestLink will have a specific directory
with all its source code. As can be seen in figure 4.4, the interface displays the source code of
the Calculator project (presented in section 3.2).

4.4 Dashboard

One of the features that TestLink is lacking is a summary of the status of the project.
We decided to create a dashboard for the tool that makes it possible to view the results of past
executions, schedule and run new executions, view running executions and provide a
requirements coverage chart. Each of those features will be explained in the following
subsections.

4.4.1 Executions History

A major concept that was included in TestLink by this work is the execution group.
The execution group is a field that unifies the test cases executions that were executed
together, represented by the date and time which the user executed the test cases. This enable
us to access a group of test cases by its execution group date and time. Figure 4.6 shows how
this field is used by the executions history in the dashboard.

Figure 4.6 – Executions history part of the dashboard

The executions history is a table that contains every execution group. The user can use
this table to check the information of any past execution. The “Execution Time” column
represents the execution group itself and each field of the column is a link to a report of a
specific execution group. This report can be seen on figure 4.7.

The report shown in figure 4.7 is basically a table containing the information of every
test case execution of an execution group. The fields of the column “Name” are links to the
corresponding test cases page on TestLink. The column “Source” contains a link to the test
case's source code if it was automatically executed and contains the word Manual otherwise.
The column “Linked Bugs” is a list of links to each bug associated with a particular test case
execution. Those links lead the user to the corresponding Mantis bug page (this feature was
included only for the Mantis bug tracker and should be modified if another tool for bug

24

tracking is used). The “Parameter Values” column contains a list of every parameter and its
corresponding value of each executed test case.

Figure 4.7 – Execution group report table

The tables that appear on the figures of this section use the DataTables plug-in for
jQuery. The main reason for using this plug-in is its ability of displaying a large table on the
page, allowing us to have test plans with a large number of test cases without compromising
usability. In such a case, the table will be divided by pages. The plug-in also provides a search
field to access a specific test case in a large set of test cases.

4.4.2 Scheduling and Running Executions

To allow the user to run automated test cases using the TestLink GUI, the scheduled
executions portion of the dashboard was created. With this, a test plan and a build can be
specified. An optional time limit can be used to halt the execution of the test cases and the
user can also choose if he wants the test cases to be prioritized. Once the execution is
scheduled, it will appear on the scheduled executions table. Figure 4.8 shows how those
elements are represented by the tool.

Figure 4.8 – Scheduled executions table

As can be seen on figure 4.8, the table displays the name of the test plan, the name of
the build, the number of test cases to be executed, whether the test cases will be prioritized or
not, and the time limit (if any). Clicking on the “Execute” icon of a scheduled execution entry
on the table will lead the user to a page that lists the manual and automated tests of the test

25

plan. The manual tests have a form to enter the results of the execution. Figure 4.9 is an
example of such form.

Figure 4.9 – Manual tests reporting

Here we can select the status, and fill the execution duration, bug id and include notes.
If the status of the execution is Failed, the bug id field is mandatory. A link to the Mantis bug
creation page is included alongside the bug id input box for convenience. The tool also
informs the parameters values to be used by the test case.

Figure 4.10 – Automated tests reporting

After the manual tests forms, the page displays a list of the automated test of the test
plan and gives information about the time limit and prioritization. Figure 4.10 presents this
part of the page. Clicking on the submit button will make the external module prioritize (if
applied) and execute the automated test cases.

For each running execution of a test plan, the dashboard will show on a table the
information of the execution. This includes the time in which the execution started and how
much time it has currently taken to execute the test plan. Figure 4.11 contains the running
executions table of the dashboard.

Figure 4.11 – Running executions table

4.4.3 Requirements Coverage

The dashboard has on the top of the page the current status of the QA project in the
form of a requirements coverage metric. Figure 4.12 displays how this metric is presented. In
this representation, we can see how many requirements have all the test cases with the status

26

marked as passed, how many have all the test cases marked as failed, how many have test
cases with both of those status and how many have not a single test case result reported.

Figure 4.12 – Requirements coverage chart

4.5 External Module

Built in Java, the external module is responsible for prioritizing and executing the test
cases of a test plan. The module is executed when the user runs the automated test cases using
the dashboard. TestLink communicates the ids of the test project, test plan and build of the
execution. If there is a time limit for the execution it will be informed and a prioritization flag
will be on or off to indicate whether the test cases should be prioritized. Finally, a timestamp
is informed and is going to be used to group the test cases under the same execution group.

With these parameters, the external module communicates all the remaining
information using the XML-RPC API of TestLink. It will get the project and test plan
information and use it with the combination of the parameter values information to assemble a
main source code to execute the test cases. If the user decided that the test cases should be
priritized, the prioritization algorithm will re-order the test cases. Section 4.5.1 explains the
implemented prioritization approach. The source code is then compiled and executed and the
results are reported back to TestLink.

Figure 4.13 is a sequence diagram that illustrates how the external module operates
with TestLink, Mantis, a compiler and the compiled program that executes the test cases. The
interaction starts when the user clicks on the button to automatically execute a test plan and
ends after all the executed test cases have been reported back to TestLink.

27

Figure 4.13 – External module´s sequence diagram

In this particular implementation, we support projects written in the C programming
language. This means that our external module should be able to compile and run a C program

28

and that it can parse the results of a C unit testing framework. To do that, the Java code is
executing the MinGW [26] compiler and running the compiled binary.

The unit testing framework used is a modified version of MinUnit [27]. MinUnit is
being used because it consist of simple macros to run a test case, meaning that they can be
easily modified to suit our needs. We included on the MinUnit framework a standard message
of a failed test case. This message consist of the test case name, the line number and file name
of the failing assertion, and an additional string with a custom failing message. In our version,
the elapsed time is also calculated and displayed after each test case. This elapsed time is
particularly useful for the regression testing prioritization (see section 4.5.1). This result
format is parsed by the Java code and the information is reported to TestLink.

We gave the external module the functionality of automatically reporting bugs. Using
the data outputted by our version of MinUnit, we can use the Mantis SOAP API to create
bugs. These bugs are then linked to the execution of failed test cases in TestLink by reporting
the corresponding bug id of the execution.

The TestLink API had to be extended to support the additional information provided
by our external module. These modifications include 16 additional methods and changes on
existing methods to adapt them to the implemented functionalities. Namely, the additional
methods include creating requirement specifications; creating and assigning requirements;
creating and assigning parameters to builds and test cases; getting test cases and builds
parameters; getting test plans, builds, test case files and bugs.

4.5.1 Implemented Prioritization Algorithm

For the implementation of this work, three different items are considered in the
prioritization of the test cases:

1. Last Status: Test cases with the last execution status marked as failed will be
prioritized over the passed ones. This is done because failures of the past might supposedly
indicate a higher chance of finding a failure on the future.

2. Bugs Association: Test cases that have more reported bugs are prioritized over the
ones with less bugs. This item aims at identifying fragile code with the assumption that raised
bugs of the past can indicate a higher probability of finding new bugs.

The data available for each bug is also considered to weight each bug against the
other. We use the properties Severity and Priority. They are both found in Mantis, the bug
tracker used in this implementation.

3. Duration: By prioritizing test cases with shorter reported execution time, the
number of test cases that we can execute is expected to increase.

Figure 4.14 depicts the proposed algorithm in pseudocode that combines those items
to weight the test cases. The variable evaluation is used to sort the test cases in a descending
order.

29

Figure 4.14 – TCP algorithm pseudocode

We start the evaluation in the algorithm by assigning the number one instead of zero.
This is done because on line 6 the evaluation can be multiplied by two. If the evaluation
variable were 0 on line 6, the last status would have no effect in the evaluation.

Our algorithm tries to include the number of bugs and their significance in the
resulting evaluations. This is accomplished by multiplying the severity and priority of each
associated bug and accumulating the results. On Mantis we can find 8 levels of severity
ranging from 1 (named in Mantis as feature) to 8 (named as block) and 6 levels of priority
from 1 (none) to 6 (immediate).

The last status of the test case is taken into consideration on line 6 by doubling the
evaluation if the last status equals to failed. The multiplication factor could be different if we
want to emphasize or de-emphasize the influence of the last status on the algorithm. In this
case we are assuming that multiplying the value by 2 is enough to take the last status into
account. Chapter 5 explains an experiment that tests this assumption.

To prioritize test cases with shorter execution time, the evaluation is divided by the
test case´s last duration. The duration is increased by 1 on the seventh line of the algorithm to
avoid the division by zero that can arise when the reported last duration of the test case is
zero.

4.6 Additional Reports

Even though TestLink already has a significant number of report types, we have
included 4 new types of report with the goal of better visualization of the resulting coverage
data. Figure 4.15 shows the traceability matrix report. This table has all the test cases of the
test project in the rows and all the requirements on the columns. If a test case is associated
with a requirement, the cell with the test case as the row and requirement as the column is
checked. Figure 4.16 shows the linked bugs report. This report is a table listing all the bugs of
a project and their corresponding test cases. This report uses information retrieved from
Mantis to display the data of the bugs.

30

Figure 4.15 – Requirements traceability report

Figure 4.16 – Linked bugs report

The remaining reports give details about the execution groups results over time.
Figures 4.17 and 4.18 are two parts of the same report. They show the results of the test cases
by requirements per execution. Figure 4.17 is a stacked chart that, given a start and end
execution groups, displays the executions in the range provided as well as the evolution of the
requirements coverage over time. Its x-axis represents the execution groups and the y-axis is
the number of requirements. Figure 4.18 is a table that given an execution group, we can see
which tests are responsible for failing or passing a requirement. It consists of a similar view of
the traceability matrix (figure 4.15), but with the test results of a specific execution. The
results of the table are accumulated, meaning that if a test was not executed in the given

31

execution group, it will display the last result in which it was executed. This option can be
turned off by the user.

Figure 4.17 – Requirements by test executions chart

Figure 4.18 – Requirements by test executions table

Lastly, the test cases executions report is represented by figure 4.19. This report also
has a chart and a table. The chart is a stacked area chart with the total number of passed, failed
and not executed test cases over the execution groups. The x-axis contains the execution
groups and the y-axis contains the number of test cases. The table has the detailed information
of the execution groups, listing all of the test cases and their results. The test results of this
report are set to be accumulated as well and this option can also be turned off.

32

Figure 4.19 – Test cases executions report

33

5 REGRESSION TESTING PRIORITIZATION IMPLEMENTATION

This chapter explains an experiment to test if the implemented regression testing
prioritization strategies can improve the failure detection rate. It also explains how a testing
project was generated to evaluate the algorithm.

5.1 Evaluating the Algorithm

For the purpose of verifying that the algorithm can prioritize the test cases with the
goal of increasing the rate of detected failures over time, an experiment was done. The
experiment is also used in this work to test the influence of each one of the three items
described in section 4.5.1 (i.e. last status, bugs association and duration).

In this experiment, test cases of a test project are executed to feed our modified
version of TestLink with test results data. The resulting database is then used as a starting
point to execute the algorithm described in section 4.5.1 under different time limits and
variations. The time limits used are 20, 40 and 60 minutes. This means that, after the test
cases have been prioritized by the algorithm, they will be executed sequentially in the order
defined by the algorithm until the time limit value is reached. These three different values are
used to verify if the results of the technique is consistent under different time limits.

 We also want to verify if each of the historical information data of the test cases has a
positive effect on the algorithm results, and if the chosen method reasonably accounts for
these distinct items. To do that, some modifications on the algorithm presented in figure 4.14
were made. In order to isolate the influence of each item described before (last status, bug
association and duration), 7 versions of the code were generated in such a way that each
version is a unique selection of the three items. In one of the versions, for example, the bug
association is left out of the algorithm, resulting in the code shown by figure 5.1.

Figure 5.1 – Partial TCP algorithm pseudocode

5.2 Generating a Project for the Evaluation Of the Algorithm

To execute the algorithm and validate the results, a test project is needed. We want a
project that has a variety of test cases regarding execution time, status and bugs reported, yet
it should be easy to setup and compile for sake of simplicity. The fact that a custom unit
testing framework is being used in this implementation implies that, if we would use a real
project, the test cases would have to be rewritten. For these reasons, test cases that simulate
this behavior were generated.

A particular strategy was used to generate the test cases. The test cases can be divided
by status and execution time. The possible yielding status categories are:

34

1. A test case that will always be reported as passed.

2. A test case that will always be reported as failed. Test cases in this category
display always the same error message and thus, they will each raise one bug the first time
they are executed and will not raise new bugs in subsequent executions.

3. A test case with a probability of failure. This category is then subdivided in 3
categories regarding the probability of failure:

3.1 A test case with 20% chance of failure.

3.2 A test case with 40% chance of failure.

3.3 A test case with 80% chance of failure.

Test cases in this category will report a new bug almost every time it is executed and
failed. The exception will be explained by the end of this section.

4. A test case that will not be executed.

The possible execution time categories are:

1. Fast. Test cases in this category will take from 0 to 0.5 minutes to execute.

2. Medium. Test cases in this category will take from 0.5 to 2.3 minutes to execute.

3. Slow. Test cases in this category will take from 2.3 to 4.8 minutes to execute.

The script to generate the test cases uses random numbers to select the categories with
different probabilities of a test case falling in each category. The resulting test cases then will
have the following profile: 5% of the test cases will not be executed. 20% of the test cases
will always fail. 20% will always pass. 55% of the test cases can fail or pass. From these 55%:
80% have a 20% probability of failure. 15% have a 40% of failure and 5% have an 80%
probability of failure.

Figure 5.2 – Probabilities of test cases categories

The execution times categories are distributed using 60% of chance of being a fast test
case, 30% of being a medium test case and 10% of being a slow one. Figure 5.3 shows an
example of a resulting test case code.

35

Figure 5.3 – Generated test case code

The method getResult() is used to get a random number using the rand function of the
C standard library. Line 2 is used to select the sleep time. Line 3 calls the method to sleep for
the given time. Line 4 will get the actual “result” of the test case and Lines 5 and 6 will
compare this result with the chance of failure and yield the corresponding status result. Note
that failurePercentage is a parameter of the test case. The value of this parameter is defined
on TestLink and can assume the values 20, 40 or 80, as stated previously in this section.

As a final observation, bugs are reported to Mantis using the failure message outputted
be the 5th Line. If the message is exactly the same as a previously reported bug, instead of
generating a new bug, the test case will be associated with the existing bug with the same
message. This means that there is a chance of a test case with a probability of failure to not
raise a new bug in a failed execution. Consider the presented test case with a failure
percentage of 20 as an example. If during the execution E1 the result variable (Line 4)
assumes the value 12, a bug will be reported. If there is another execution EN where the result
variable also equals 12, a new bug will not be reported because there is a bug with the same
message and raised by the same test case in Mantis already.

5.3 Running the Tests

In order to acquire some data to feed the algorithm, the test plan was executed 10
times. Since the algorithm uses only the status and duration of a test case of the last execution,
we could have executed the test plan only once to get data for those properties. But the
reported bugs can give us information that goes beyond the last execution: A test case can fail
for different reasons each time it's executed, thus reporting different bugs.

After those 10 executions, the test cases code must be modified to eliminate the
random factor of the results. In order to compare different executions we will need the same
input data. This was accomplished with a script that scan all the test cases source codes and
change every call to the method that returns a random number with an actual return value of
the same method.

This will “freeze” the results of the next execution, allowing us to run the test cases,
get the information of passed and failed test cases, modify the algorithm as we want, return
the database to a previous state and do the same process again as much times as necessary to
compare different execution results with the same input data.

5.4 Results

Since the goal of a TCP technique is to increase the rate of fault detection with a time
constraint, a time limit was provided for the following executions. The full execution of all

36

the test cases without any time limit, considering the previous 10 executions, is 97 failed test
cases and 167 passed test cases. This result can be compared to different variations of the
proposed algorithm and considering different time limits. Table 4.1 shows the results for time
limits of 20, 40 and 60 minutes, and considering the influence of status, bugs, duration and all
its permutations.

Table 5.1 – Executions results

Prioritization
Time Limit

20 min 40 min 60 min

no. status bugs duration Failed Passed Failed Passed Failed Passed

1 11 21 30 50 40 71

2 x x x 18 29 54 51 71 61

3 x x 15 22 28 44 62 44

4 x x 49 13 66 45 78 93

5 x 37 0 56 6 56 39

6 x x 17 30 28 57 51 82

7 x 14 16 24 48 45 66

8 x 24 46 58 93 68 112

The fifth row has the higher failure to executed tests rate. Hence, for this particular set
of data, the last execution status was a better predictor than the associated bugs of a failure in
the future. Knowing if this claim can be made generally is out of the scope of this work. The
test case generation strategy used bias the results, and no statistical rigor was applied. How
the bug association weight is calculated also affects this influence. As a consequence of the
test case generation and bug reporting implementation, all bugs were reported with the same
severity and priority, thus eliminating the effect of prioritizing some bugs over others. More
important than this, however, is that the test cases programmed to always fail will raise only 1
bug per test case to simulate an unresolved issue, while the test cases with only a chance of
failure can raise a new bug each time it fails. Since it would be better to prioritize the test
cases that always fail over the ones that may fail, the bug association performs worse in this
situation. While those conclusions apply for this set of results, they might not apply in a real
environment given the unpredictability of the test cases or even a different bug reporting
strategy.

Looking at table 5.1 one can conclude that the more weight the duration has, the more
test cases we end up executing. The eight row has the highest number of executed test cases in
all the time limit categories. A combination of the last status and the duration was the one
with the most number of failed test cases detected. Combining the better predictor of status
with the characteristic of executing more test cases, and without the influence of detected
bugs, 60 minutes of time limit resulted in 78 detected failures. This means that it has detected
80% of the 97 failures of the execution without time limit, which is taking around 150
minutes to complete.

37

The impact of the prioritization algorithm execution time was not measured. The cost
of calculating the evaluation with only a subset of the history-data is trivially lower than the
cost of using the three items described at the beginning of section 4.5.1. Calculating the time
it takes to generate the priorities relative to the time it takes to run the test cases can reveal a
better understanding of the cost-benefit of each history information.

38

6 CONCLUSION

In this work, we chose a test management tool and we applied modifications to it in
order to include a module to automate the execution and determination of the test cases in a
test plan. Since testing is an integral part of the analytical software quality assurance
processes, which takes a relevant portion of the development costs, our solution aimed to
improve the cost-benefit of applying the SQA testing process.

TestLink appeared to be the best open source tool to our needs thanks to its XML-
RPC API, requirements management and external bug tracking support. Parameterized tests,
source code selection and a dashboard were included in TestLink to accommodate an external
module that prioritizes and executes test cases, reporting the results back to the tool and
automatically creating bugs for the failed test cases. These modifications raised the
opportunity of visualizing SQA data not originally supported by TestLink, thus new types of
reports were created.

Regression testing is a particularly expensive form of testing because of its repetitive
nature. The solution provided by this work uses a history-based test prioritization strategy
with the goal of maximizing the number of detected failures in an environment where there is
limited time for regression testing. To test the algorithm, a project was created in TestLink
with a particular strategy to generate tests cases. The results indicate that prioritizing tests
using the data of past executions can improve the ratio of detected failures to test execution
time for the generated project.

For future work, using the solution in a real project can reveal further details to be
modified or included in the tool. Our implementation made TestLink dependent on Mantis,
further modifications could be made to regain the support for other bug tracking systems. In
fact, creating an integrated bug tracking in TestLink is another possible improvement to the
tool. This would allow for more flexibility in the development of new reports, making the
bugs more integrated with the other concepts of the test management. Studying how TestLink
can communicate with other tools in a software development tool chain can also reveal
additional features. A connection with a project management software, for example, could
yield different report types using information available in both tools.

Implementing different test prioritization strategies and combining them with test
selection algorithms is also a possibility to explore what results can be achieved on the failure
detection optimization. As can be seen on the related work regarding the prioritization
approaches, a further solution could consist of a heuristic search with a combination of
history-based, code-based or even model-based techniques on a subset of test cases previously
selected by an RTS algorithm.

39

REFERENCES

1 BROOKS, F. P. No Silver Bullet: Essence and Accidents of Software Engineering.
IEEE Computer, v. 20, n. 4, p. 10-19, Apr. 1987.

2 GRAVES, T. L.; HARROLD, M. J.; KIM, J.; PORTER, A.; ROTHERMEL, G. An
empirical study of regression test selection techniques. In Proceedings of the
International Conference on Software Engineering, Kyoto, p. 267-273, Apr. 1998.

3 KOREL, B.; KOUTSOGIANNAKIS, G. Experimental Comparison of Code-Based and
Model-Based Test Prioritization. Software Testing, Verification and Validation
Workshops, 2009. ICSTW'09. International Conference on, Denver, p. 77-84, Apr.
2009.

4 KOREL, B.; TAHAT, L.H.; HARMAN, M. Test Prioritization Using System Models.
Software Maintenance, 2005. ICSM'05. Proceedings if the 21st IEEE International
Conference on, p. 559-568, Sept. 2005.

5 KOREL, B.; KOUTSOGIANNAKIS, G.; TAHAT, L.H. Model-Based Test
Prioritization heuristic methods and their evaluation. In Proceedings of the 3rd
International Workshop on Advances in Model-based Testing (A-MOST 2007), New
York, p. 34-43, 2007.

6 XIABO HAN; HONGWEI ZENG; HONGHAO GAO. A Heuristic Model-Based Test
Prioritization Method For Regression Testing. Computer, Consumer and Control
(IS3C), 2012 International Symposium on, Taichung, p. 886-889, June 2012.

7 JUNG-MIN KIM; PORTER, A. A history-based test prioritization technique for
regression testing in resource constrained environments. Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International Conference on, Orlando, p.
119-129, May 2002.

8 MARIJAN, D.; GOTLIEB, A; SEN, S. Test Case Prioritization for Continuous
Regression Testing: An Industrial Case Study. Software Maintenance (ICSM),
2013 29th IEEE International Conference on, Eindhoven, p. 540-543, Sept. 2013.

9 CHU-TI LIN; CHENG-DING CHEN; CHANG-SHI TSAI; KAPFHAMMER, G.M.
History-Based Test Case Prioritization with Software Version Awareness.
Engineering of Complex Computer Systems (ICECCS), 2013 18th International
Conference on, Singapore, p. 171-172, July. 2013.

10 AHMED, A.A.; SHAHEEN, M.; KOSBA, E. Software testing suite prioritization
using multi-criteria fitness function. Computer Theory and Applications (ICCTA),
2012 22nd International Conference on, Alexandria, p. 160-166, Oct. 2012.

11 TYAGI, M.; MALHOTRA, S. Test case prioritization using multi objective particle
swarm optimizer. Signal Propagation and Computer Technology (ICSPCT), 2014
International Conference on, Ajmer, p. 390-395, July 2014.

40

12 TestLink. Available at: <http://testlink.org/>. Access: Jan. 2015.

13 TesTopia. Available at: <https://developer.mozilla.org/en-
US/docs/Mozilla/Bugzilla/Testopia>. Access: Jan. 2015.

14 RTH. Available at: <http://sourceforge.net/projects/rth/>. Access: Jan. 2015.

15 Tarantula. Available at: <http://www.testiatarantula.com/>. Access: Jan. 2015.

16 Squash TM. Available at: <http://www.squashtest.org/index.php/en/squash-tm-
25664/squash-tm-overview/>. Access: Jan. 2015.

17 Squash TA. Available at: <http://www.squashtest.org/index.php/en/squash-ta/squash-ta-
overview/>. Access: Jan. 2015.

18 Requirements and Test Management Repository. Available at:
<http://rtmr.net/en/index.html>. Access: Jan. 2015.

19 XStudio. Available at: <http://www.xqual.com/products/xstudio.html>. Access: Jan.
2015.

20 Xqual test tools comparison. Available at: <http://www.xqual.com/qa/tools.html>.
Access: Jan. 2015.

21 XStudio licenses. Available at: <http://www.xqual.com/products/xstudio_license.html>.
Access: Jan. 2015.

22 TestLink forum. Available at: <http://forum.testlink.org/index.php>. Access: Jan. 2015.

23 Python-TestLink-Runner. Available at: <https://github.com/parthibann/Python-
TestLink-Runner>. Access: Jan. 2015.

24 TestLink user manual. Available at:
<https://wiki.openoffice.org/w/images/1/1b/Testlink_user_manual.pdf>. Access: Jan.
2015.

25 DataTables. Available at: <https://datatables.net/>. Access: Jan. 2015.

26 MinGW. Available at: <http://www.mingw.org/>. Access: Jan. 2015.

27 MinUnit. Available at: <http://www.jera.com/techinfo/jtns/jtn002.html>. Access: Jan.
2015.

28 IEEE Standard for Software Quality Assurance Processes. IEEE Std 730-2014
(Revision of IEEE Std 730-2002), p. 1-138, June 2014.

29 KANER, C.; FALK, j.; NGUYEN, H.Q. Testing Computer Software. 2Nd Edition.
New York: John Wiley & Sons, 1999.

http://testlink.org/
https://www.google.com/url?q=http://www.xqual.com/products/xstudio.html&usd=2&usg=ALhdy2_4ZrnV685BH-3bibHYifzxRhBoMA
https://www.google.com/url?q=http://rtmr.net/en/index.html&usd=2&usg=ALhdy2-mkgFItzAi1BYiJuqtK2UJ43OIng
https://www.google.com/url?q=http://www.testiatarantula.com/&usd=2&usg=ALhdy2-gl0yjQf-wc4SKTXAnNxoVAGs6xQ
https://www.google.com/url?q=http://sourceforge.net/projects/rth/&usd=2&usg=ALhdy2-H6xqBKFiqmF6nc443tJHdNLViMQ

41

30 REX, B. Managing the Testing Process: Practical Tools and Techniques for Managing
Hardware and Software Testing. 3Rd Edition. Indianapolis: John Wiley & Sons, 2009.

31 TASSEY, G. The Economic Impacts of Inadequate Infrastructure for Software
Testing. RTI Project 7007, National Institute of Standards and Technology,
Gaithersburg, May 2002.

32 MYERS, G. J.; SANDLER C.; BADGETT, T. The Art of Software Testing. 3Rd

Edition. Hoboken: John Wiley & Sons, November 2011.

33 WAGNER, S. Cost-Optimization of Analytical Software Quality Assurance: Models,
Data, Case Studies. Saarbrücken : VDM Publishing, 2008.

34 ROTHERMEL, G.; UNTCH, R. H.; CHENGYUN CHUN; HARROLD M.J.
Prioritizing Test Cases For Regression Testing. Software Engineering, IEEE
Transactions on, p. 929-948, Oct 2001.

35 IEEE Standard for Software and System Test Documentation. IEEE Std 829-2008,
p. 1-150, July 2008.

36 GNU General Public License, version 2. Available at:
<http://www.gnu.org/licenses/gpl-2.0.html>. Access: Jan. 2015.

37 Mozilla Public License Version 1.1. Available at:
<https://www.mozilla.org/MPL/1.1/>. Access: Jan. 2015.

38 GNU General Public License, version 3. Available at:
<http://www.gnu.org/licenses/gpl.html>. Access: Jan. 2015.

39 GNU Lesser General Public License. Available at:
<http://www.gnu.org/licenses/lgpl.html>. Access: Jan. 2015.

40 Xstudio License. Available at: <http://www.xqual.com/products/xstudio_license.html>.
Access: Jan. 2015.

41 FARREL-VINAY, P. Manage Software Testing. Boston: Auerbach publications,
March 2008.

42 SOMMERVILLE, I. Software Engineering. 9th Edition. Boston: Pearson, March 2010.

43 GRAHAM, D.; VEENENDAAL, E. V.; EVANS, I.; BLACK, R. Foundations of
Software Testing: ISTQB Certification. London: Cengage Learning EMEA, January 2008.

44 Open source test management tools. Available at:
<http://www.opensourcetesting.org/testmgt.php>. Access: May. 2015.

45 Smarty. Available at: <http://www.smarty.net/>. Access: June. 2015.

46 Mantis. Available at: <https://www.mantisbt.org/>. Access: June. 2015.

	LIST OF FIGURES

