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Abstract. Nonsequential automata constitute a categorial semantic domain based on labeled transition system with full
concurrency, where synchronization and hiding are functorial and a class of morphisms stands for reification. It is, for our
knowledge, the first model for concurrency which satisfies the diagonal compositionality requirement, i. e., reifications
compose (vertical) and distribute over combinators (horizontal). To experiment with the proposed semantic domain, a
semantics for a concurrent, object-based language is given. It is a simplified and revised version of the object-oriented
specification language GNOME, introducing some special features inspired by the semantic domain such as reification and
aggregation. The diagonal compositionality is an essential property to give semantics in this context.

1 Introduction

We construct a semantic domain with full concurrency for interacting systems which is, for our knowledge, the first
model for concurrency satisfying the diagonal compositionality requirement, i.e., reifications compose (vertically),
reflecting the stepwise description of systems, involving several levels of abstraction, and distributes through parallel
composition (horizontally), meaning that the reification of a composite system is the composition of the reification of
its parts, even in the presence of synchronization.

A nonsequential automaton (first introduced in [Menezes et al 95]) is a kind of automaton with monoidal structure
on states and transitions, inspired by [Meseguer & Montanari 90]. Structured states are "bags" of local states like
tokens in Petri nets (as in [Reisig 85]) and structured transitions specify a concurrency relationship between
component transitions in the sense of [Bednarczyk 88] and [Mazurkiewicz 88]. The resulting category is bicomplete
where the categorial product stands for parallel composition. Synchronization and hiding are functorial operations. A
synchronization restricts a parallel composition according to some table of synchronizations (at label level). A view of
an automaton is obtained through hiding of transitions introducing an internal nondeterminism. A hidden transition
cannot be used for interaction. A reification maps transitions into transactions reflecting an implementation of an
automaton on top of another. It is defined as an automaton morphism where the target object is enriched with all
conceivable sequential and nonsequential computations. Computations are induced by an endofunctor and composition
of reification morphisms is defined using Kleisli categories. Comparing with [Menezes et al 95], in this paper we
revise the reification morphisms, introduce the synchronization and hiding for reifications (extending the approach for
automata) and generalize the categorical definition for table of synchronizations.

In [Menezes & Costa 95] and [Menezes & Costa 95b] we show that nonsequential automata are more concrete
then Petri nets (in fact, categories of Petri nets are isomorphic to subcategories of nonsequential automata) extending
the approach in [Sassone et al 93], where a formal framework for classification of models for concurrency is set.

To experiment with the proposed semantic domain, a semantics for a concurrent object-based language is given.
The language named Nautilus is based on the object-oriented language GNOME [Sernadas & Ramos 94] which is a
simplified and revised version of OBLOG [SernadasC et al 92], [SernadasC et al 92b], [SernadasC et al 91]. Some
features inspired by the semantic domain (and not present on GNOME) such as reification and aggregation are
introduced. A reification implements an object over sequential or concurrent computations of another. The main
difference between interaction and aggregation is that, in the former, the relationship between objects is defined within
each object while in the later, the relationship is defined externally to the component objects. Also, the state-dependent
calling of GNOME is extended for interaction, aggregation and reification in Nautilus. For simplicity and in order to
keep the paper short, we do not deal with some feature of GNOME such as classes of objects and inheritance. The
diagonal compositionality requirement is essential to give semantics for Nautilus.

*  This work was partially supported by: UFRGS - Universidade Federal do Rio Grande do Sul and CNPq - Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico in Brazil; CEC under ESPRIT-III BRA WG 6071 IS-CORE, WG 6112 COMPASS, HCM
Scientific Network MEDICIS, JNICT (PBIC/C/TIT/1227/92) in Portugal.
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2 Nonsequential Automata

A nonsequential automaton is a reflexive graph labeled on arcs such that nodes, arcs and labels are elements of
commutative monoids. A reflexive graph represents the shape of an automaton where nodes and arcs stand for states
and transitions, respectively, with identity arcs interpreted as idle transitions. A structured transition specify a
concurrency relation between component transitions. Comparing with asynchronous transition systems (first
introduced in [Bednarczyk 88]), the independence relation of a nonsequential automaton is explicit in the graphical
representation. A structured state can be viewed as a "bag" of local states where each local state can be viewed as a
resource to be consumed or produced, like a token in Petri nets.

Nonsequential automata and its morphisms constitute a category which is complete and cocomplete with products
isomorphic to coproducts. A product (or coproduct) can be viewed as a parallel composition. In what follows CMon
denotes the category of commutative monoids and suppose that K is in {0, 1}. Also, for the proof or details omitted,
see [Menezes et al 95] and [Menezes & Costa 95b].

2.1 Nonsequential Automaton

Definition 2.1 Nonsequential Automaton. A nonsequential automaton N = (V, T, do, 91, 1, L, lab) is such that T=(T,
I, 1), V=(V, ®,e), L={(L, |, T) are CMon-objects of transitions, states and labels respectively, dg, d1: T — V are
CMon-morphisms called source and target respectively, 1: V — Tis a CMon-morphism such that dxo1 = idy and
lab: T— L is a CMon-morphism such that lab(t) = T whenever there is v in V where 1(v) = t. u]

We may refer to a nonsequential automaton N =(V, T, do, 91, 1, L, lab) by N = (G, L, lab) where G =(V, T, do,
01, 1) is a reflexive graph internal to CMon (i.e., V, T are CMorn-objects and dg, 91, L are CMon-morphisms). In an
automaton, a transition labeled by T represents a hidden transition (and therefore, can not be triggered from the
outside). Note that, all idle transitions are hidden. The labeling procedure is not extensional in the sense that two
distinct transitions with the same label may have the same source and target states (as we will se later, it is essential to
give semantics for an object reification in Nautilus). In this paper we are not concerned with initial states.

A transition t such that do(t) = X, d1(t) = Y is denoted by t: X — Y. Since a state is an element of a monoid, it may
be denoted as a formal sum N{A{®...®NnyHA,, with the order of the terms being immaterial, where A; is in V and n;
indicate the multiplicity of the corresponding (local) state, for i = 1...m. The denotation of a transition is analogous.
We also refer to a structured transition as the parallel composition of component transitions. When no confusion is
possible, a structured transition xIT: X&A — Y®A where t: X — Y and 1ao: A — A are labeled by X and T,
respectively, is denoted by x: X®A — Y@®A. For simplicity, in graphical representation, we omit the identity
transitions. States and labeled transitions are graphically represented as circles and boxes, respectively.

Example 2.2 Let ({A, B, X, Y}9, {t1, to, t3, A, B, C, X, Y}®, 9, 91, 1, {X, Y}®, lab) be a nonsequential automaton
with dg, d4 determined by the local arcs t1: 2A — B, to: X — Y, t3: Y — X and lab determined by t1 —» X, to - X,
t3 = y. The distributed and infinite schema in Figure 1 (left) represents the automaton. Since in this framework we
do not deal with initial states, the graphical representation makes explicit all possible states that can be reached by all
possible independent combination of component transitions. For instance, if we consider the initial state A@2X, only
the corresponding part of the schema of the automata in the figure has to be considered. In Figure 1 (right), we
illustrate a labeled Petri net which simulates the behavior of the automaton. Comparing both schema, we realize that,
while the concurrence and possible reachable markings are implicit in a net, they are explicit in an automaton.
Categories of Petri nets and categories of nonsequential automata can be unified through adjunctions. For details, see

[Menezes & Costa 95] and [Menezes & Costa 95b]. m}
© k@] @
2
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Figure 1. A nonsequential automaton (left) and the corresponding labeled Petri net (right)



Nonsequential Automata Semantics for a Concurrent Object Based Language 3

Definition 2.3 Nonsequential Automaton Morphism. A nonsequential automaton morphism h: Ny — No where N1 =
(V11, T1, 01, 911, U, Ly, 1abq) and No = (Vo, T, dop, 915, 2, Lo, labp) is a triple h = (hy, hT, hL) such that hy:
Vi— Vo, h1: Ty — Tp, hL: L1 — Lo are CMon-morphisms, hy©dk; = dko°hT, hTo14 = 1z0hy and h_ olaby =
laboohT. Qo

Nonsequential automata and their morphisms constitute the category NAut
Proposition 2.4 The category NAutis complete and cocomplete with products isomorphic to coproducts. Q

A categorical product (or coproduct) of two automata N1 = (V, T4, doq, 911, U1, L1, lab1), N2 =(Va, Ta, doy,
d12, 12, L2, labg) is N1 Xa@ueN2 = (V1 XcMon V2, T1XcMon T2, 901 X 002, 911 X012, 11 X12, L1 XcaMon L2,
lab4 X labg) where di4 X dko, 11 X 12 and labq X labg are uniquely induced by the product construction.

2.2 Synchronization and Hiding

Synchronization and hiding of transitions are functorial operations defined using fibration and cofibration techniques
inspired by [Winskel 87]. Both functors are induced by morphisms at the label level.

The synchronization operation restricts the product "erasing" all those transitions which do not reflect some given
table of synchronizations (suppose that i is in I):

a) let {Nj} be a set of nonsequential automata with {Lj} as the corresponding CMon-objects of labels, Table be a
commutative monoid, called table of synchronizations, determined by the tuples of labels to be synchronized and
sync: Table — X L;be the synchronization morphism which maps the table into the labels of a given automaton;

b) let u: NAut — CMon be the obvious forgetful functor taking each automaton into its commutative monoid of
labels. The functor «is a fibration and the fibers u- Table, w1 X L;are subcategories of NAut,

c) the fibration % and the morphism sync induce a functor sync: ulxLi— ulTable. The functor sync applied to
X N; provides the automaton reflecting the desired synchronizations.

Traditionally, in concurrency theory, the concealment of transitions is achieved by resorting to labeling and using
the special label T (cf. [Winskel 87]). Such hidden transitions cannot be used for synchronization since they are
encapsulated. The steps for hiding are the following:

a) let N be a nonsequential automaton with Ly as its commutative monoid of labels, let hide: Ly — Lo be a
morphism taking the transitions to be hidden into T;

b) let u: NAut — CMon be the same forgetful functor used for synchronization purpose. The functor  is a
cofibration (and therefore, a bifibration) and the fibers #-1 L4, u-1 L are subcategories of NAut;

¢) the cofibration % and the morphism hide induce a functor Aide: uX Ly — u L,. The functor Aide applied to N
provides the automaton reflecting the desired encapsulation.

Table of Synchronizations. In what follows, we show a categorial way to construct tables of synchronizations
for calling and sharing and the corresponding synchronization morphism. The following construction generalizes the
approaches in [Menezes et al 95] and [Menezes & Costa 93] for more than two systems.

The table of synchronizations for interaction is given by a colimit whose resulting diagram has a shape illustrated
in the Figure 2 (left) where the central arrow has as source an object named channel and as target the table of
synchronizations. We say that a shares X if and only if a calls X and X calls a. In what follows, we denote by a l Xa
pair of synchronized transitions.

CMon—
L{
W
L; Channel
colimit
Pi q
Table

Figure 2. Table of synchronizations
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Definition 2.5 Table of Synchronizations. Let {Nj} be a set of nonsequential automata with {L;} as the corresponding
commutative monoids of labels, Channel be the least commutative monoid determined by all tuples of transitions to
be synchronized, L;'be the least commutative submonoid of L; containing all transitions of Nj which call other
transitions, callj: Lj"— Channel be the morphisms such that, for a in L/, if a calls Xq,..., Xp then callj(a) =
al X1 s |xn and D be the diagram represented in the Figure 2 (right) where incj: L;'— Lj are inclusion morphisms.
The table of synchronizations Table is given by the colimit of D. Q

Example 2.6 Consider the free commutative monoids of labels Ly = {a, b, ¢}, Lo = { x, y}/. Suppose that a calls x,
b calls y and y calls b (i.e., b shares y). Then, Channel = {a|x, b|y}!, L1'= {a, b}!, Lo'= {y}! and Table =
{c,x,alx, bly}. Q

Let D be a diagram whose colimit determines Table and pj: L;j— Table. Then there are retractions for pj denoted
by pif such that, for every b in Table, if there is a in L;such that p(a) = b then pjR(b) = a else piR(b) = 7.

Definition 2.7 Synchronization Morphism. The synchronization morphism sync: Table — XL;is uniquely induced
by the product construction as illustrated in the Figure 3. Q

CMon—

Figure 3. Synchronization morphism

Synchronization Functor. First we show that the forgetful functor which takes each nonsequential automaton into
its commutative monoids of labels is a fibration and then we introduce the synchronization functor.

Proposition 2.8 The forgetful functor u: NAut— CMon that takes each nonsequential automaton onto its underlying
commutative monoid of labels is a fibration. Q
Proof: Let RGr(CMon) be the category of reflexive graphs internal to CMon and let id: RGr(CMon)—
RGr(CMon), emb: CMon — RGr(CMon) be functors. Then, NAut can be defined as the comma category
idlemb. Let f: L;i— Lobea CMon-morphism and N2 = (Gg, Lo, labg) be a nonsequential automaton where G =
(Va, T2, dop, 912, 12) is a RGr(CMon)-object. Let the object G4 together with laby: G1 — embL and ug: Gy —
G2 be the pullback of f: embLy — embLyp and laby: Go — emb L. Define N¢y = (G4, L4, labq) which is an
automaton by construction. Then u = (ug, f): Ny — Na is cartesian with respect to f and No. Q

Definition 2.9 Functor sync. Consider the fibration u: NAut — CMon, the automata N; = (Vj, Tj, do;, 91;, Ui, L, labj)
and the synchronization morphism sync: Table — X L;. The synchronization of Nj represented by llsync Nj is given
by the functor symnc: ul (xLp) — ul(Table) induced by uand sync applied to XN, i.e., | syncNi = sync(XN;j). O
Example 2.10 Consider the nonsequential automata Consumer and Producer (with free monoids) determined by
the labeled transitions prod: A — B, send: B — A for the Producer and rec: X — Y, cons: Y — X for the
Consumer. Suppose that we want a joint behavior sharing the transitions send and rec (a communication without
buffer such as in CSP [Hoare 85] or CCS [Milner 89]). Then, Channel = {send | rec}! and Table = {prod,
cons, send |rec }I. The resulting automaton is illustrated in the Figure 4. Note that the transitions send, rec are

Y prod A®X cons
/ send | rec ~a
prod cons B®X A®Y mnm

+ prod [ cons /
@ cons B&Y prod

Figure 4. Synchronized automaton
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erased and send | rec is included. Q

Hiding. For encapsulation purposes, we work with hiding morphisms. A hiding morphism is an injective morphism
except for those labels we want to hide (i.e., to relabel by T). In what follows e, denotes a zero object in C:Mon (any
monoid with only one element) and ! denotes the unique morphism with e as source or target.

Definition 2.11 Hiding Morphism. Let L4 be the commutative monoid of labels of the automata to be encapsulated, L
be least commutative submonoid of L containing all labels to be hidden and inc: L — Ly be the inclusion. Let L,
together with hide: Ly — Ly and q: € — Ly be the pushout of I: L — e and inc: L — L. Then, the hiding morphism
is the morphism hide. Q

Proposition 2.12 The forgetful functor w: NAut— CMon that maps each automaton onto its underlying
commutative monoid of labels is a cofibration.

Proof: Let f: Ly — Lobe a CMon-morphism and N1 = (Vy, Ty, oy, 911, U1, L7, lab1) be an automaton. Define No
=(V1, T1, doy, 911, U, Lo, folaby). Then u = (idy,, idty, f): Ny — Np is cocartesian with respect to f and Ny. Q0

Definition 2.13 Functor hide. Consider the fibration u: AAut — C?Mon, the nonsequential automata N = (V, T, do,
d1, 1, L4, lab) and the hiding morphism hide: L; — L. The hiding of N satisfying hide denoted by N\hide is
given by the functor Aide: u1L; — ul L,induced by uand hide applied to N, i.e., N\hide = AideN. Q

Example 2.14 Consider the resulting automata of the previous example. Suppose that we want to hide the
synchronized transition send | rec. Then, the hiding morphism is induced by send |rec — 1 and the encapsulated
automaton is as illustrated in the Figure 4 except that the transition send | rec has its label replaced by T. a

2.3 Reification

A reification is defined as a special automaton morphism where the target object is closed under computations, i.e., the
target (more concrete) automaton is enriched with all the conceivable sequential and nonsequential computations that
can be split into permutations of original transitions, respecting source and target states.

The category of categories internal to CMorn is denoted by Cat(CMon). We introduce the category LCat(CMon)
which can be viewed as a generalization of labeling on Cat(CMon). There is a forgetful functor from LCat(CMon)
into A{4ut. This functor has a left adjoint which freely generates a nonsequential automaton into a labeled internal
category. The composition of both functors from NAutinto LCat(CMon)leads to an endofunctor, called transitive
closure. The composition of reifications of nonsequential automata is defined using Kleisli categories (see [Asperti &
Longo 91]). In fact, the adjunction above induces a monad which defines a Kleisli category. Then we show that
reification distributes over the parallel composition and therefore, the resulting category of automata and reifications
satisfies the diagonal compositionality.

Definition 2.15 Category LCat(CMon). Consider the category Cat(CMon). The category LCat(CMon)is the
comma category idCat(CMon)V idCat(CMon) Where idCat(CMon)is the identity functor in Cat(CMon,). w}

Therefore, a LCat(CMon)-object is triple N = (G, L, lab) where G, L are Cat(CMon)-objects and [lab is a
Cat(CMon)-morphism.

Proposition 2.16 The category LCat(CMon) has all (small) products and coproducts. Moreover, products and
coproducts are isomorphic.

Definition 2.17 Functor cn. Let N.= (G, L, lab) be a LCat(CMon)-object and A = (ﬁg, hAr): N1 — Nzbea

LCat(CMon)morphism. The functor cn: LCat(CMon)— NAutis such that:

a) the Cat(CMon)-object G=(V, T, do, 91, 1, ;) is taken into the R(jmpﬁ(CMon)-object G=(V, T do, 01, 1),
where T'is T subject to the equational rule below and dg', d1', ' are induced by dg, 91, 1 considering the monoid
T the Cat(CMon)-object L=(V, L, dg, 91, 1, ;) is taken into the CMon-object L', where L'is L subject to the
same equational rule; the LCat(CMon)-object N = (G, L, lab) is taken into the NAut-object N = (G, L', lab)
where lab is the RGraph(CMon)}-morphism canonically induced by the Cat(CMon)}-morphism [ab;

tA->BeT uB—->CeTt:AA5B"' e T u:B'—>C €T
(ul(tsuy= () (uu) in T

b) the LCat(CMon}morphism A= (hg, hr): Ni— Nz with Aig= (hny, hnt), AL = (hLy, hLy) is taken into the
NAut-morphism h = {(hny, hnp, hLpy: Ny = No where hnp and h are the monoid morphisms induced by
hnT and hi 1, respectively. Q
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The functor ¢ has a requirement about concurrency which is (t;u)l(t';u') = (tIt');(ullu’). That is, the
computation determined by two independent composed transitions t;u and t';u’ is equivalent to the computation whose
steps are the independent transitions tlt' and ullu'.

Definition 2.18 Functor nc. Let A = (G, L, lab) be a \Aut-object and h = (hg, hL): A; — Ap be a NAut-

morphism. The functor ne: NAut — LCat(CMon)is such that:

a) the Rgrapﬁ(CMon}-object G =(V, T, do, 91, L) with V=(V, &, e), T=(T, I, T) is taken into the Cat(CMon}-
object G=(V, T¢, ag. 8?, 1, ;) with T¢=(T¢, ®, 1), 9S, 6?, _;_: T6x T¢ — TCinductively defined as follows:

tAsBeT t A>B e T° uC—-»D e T¢ tA>B e T® uB—>CeTC

tAsBe T t®u:A®C—->B@®D e T° tuwA>Ce TS
subject to the following equational rules:
teT ueT te T ueT® te TC teT® ueT veT®
tou = tju t®u = udt t®7 = t teuev) = (teu)ev
t A>B e TC tA2>BeT® uB5CeT® v:CoDeTC
nst=1 & tig =t t(u;v) = (tu)v
the CMon-object L is taken into the Cat(CMon)-object L=(1, L€, 1, 1,1, ;) as above; the NAut-object A = (G, L,

lab) is taken into the LCat(CMon}-object A = (G, L, lab) where [abis the morphism induced by lab;

d) the NAut-morphism h = (hy, ht, hL): Aj — Ay is taken into the Cat(CMon}morphism A= (hg, hr): A1 —
A2 where ﬁg =(hy, htc), Ar = (!, hLc) and hTe, hic are the monoid morphisms generated by the monoid

morphisms hTt and hT, respectively. Q
Proposition 2.19 The functor nc: NAut — LCat(CMon)is left adjoint to cn: LCat(CMon) — NAut.
Definition 2.20 Transitive Closure Functor. The transitive closure functor is tc = cno ne: NAut — NAut. Q

Example 2.21 Consider the nonsequential automaton with free monoids on states and transitions, determined by the
transitions a: A — B and b: B — C. Then, for instance, a;2b: A@B — B®C is a transition in the transitive closure.
Note that, a;2b represents a class of transitions. In fact, from the equations we can infer that a;2b = a;(bllb) =
(t[B]lla);(blib) = (T[B];b) Il (a;b) = bli(a;b) = (b;T[C])I (T[A];(a;b)) = (bIT[A]);(T[C]l(a;b)) = bsa;b = ... a

Let (nc, cn, M, €) be the adjunction from NAutinto LCat(CMon)as above. Then, T = (tc, 1, L) is a monad on
NAut such that |L = cn€ ne: tc? — tcwhere cn: cn— cnand ne: ne— neare the identity natural transformations and
cn€ ncis the horizontal composition of natural transformations. For some given automaton N, N is N enriched with
its computations, \N: N — #¢N includes N into its computations and [iN: 2N — £cN flattens computations of
computations of N into the computations of N.

In previous works we define a reification morphism ¢ from A into the computations of B as an AAut-morphism
®: A — tcB and the composition of reifications as in Kleisli categories (each monad defines a Kleisli category). In
this work, we modify the definition, since reifications should to not preserve labeling (and thus, they are not NAut-
morphisms). However, as we show below, each reification induces a AAut-morphism. Therefore, we may define a
category whose morphisms are NAut-morphisms induced by reifications. Both categories are isomorphic.

Definition 2.22 Reification. Let T = (tc, M, L) where | = (NG, ML), L = (LG, KLL) be the monad induced by the
adjunction (¢, cm, M, €): NAut — LCat(CMon). The category of nonsequential automata and reifications, denoted
by Reif NAut, is such that (suppose the NAut-objects N = (G, L, laby), for kin {1, 2, 3}):

a) Reif NAut-objects are the NAut-objects;

b) ®=@g: N1 > Naisa Kelfﬂ\[ﬂut—morphism where @g: G1 — tcGp is a RGr(CMon)morphism and for each

RGr(CMon)—

t
B —ge fiEy —e PE —eh 0

Ve ox Pa *

Figure 5. Composition of reifications is the composition in the Kleisli category forgetting about the labeling
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NAut-object N, @ =MG: N — N is the identity morphism of N in Reif NAut,
c) let @: Ny — N2, y: N2 — N3 be Ketf?\[ﬂlut—morphisms. The composition Yo is a morphism WG g Pa: N1
— N3 where Y ox Qg is as illustrated in the Figure 5. Q
In what follows, a nonsequential automaton (G, L, lab) is viewed as a morphism lab: G — embL as in the
Proposition 2.8. For simplicity, in diagrams, lab: G — embL is abbreviated just by lab: G — L.

Definition 2.23 Reification with Induced Labeling. Let T = (tc, M|, L) where ] = (MG, NL), L = (LG, LLL) be the
monad induced by the adjunction (7, cn, 1, €). The category of nonsequential automata and reifications with induced
labeling, denoted by Reif?\[ﬂut[ﬁ is such that (suppose the AAut-objects Nk = (G, Lk, labg), for kin {1, 2, 3}):

a) Reif NAut -objects are the NAut-objects;

b) let @a: G1 — tcG2 be a RGr(CMon)-morphism. Then @ = (@a, @L): N1 — Nz is a Reif NAut-morphism
where @ is given by the pushout illustrated in the Figure 6 (left). For each \NAut-object N, @ = (Ng: G — G,
@L: L = Lp): N — Nis the identity morphism of N in Reif NAut, where QL is as above;

c) let @: N1 — No, y: N2 — N3 be i’(eif?\[ﬂlutL—morphisms. The composition Y © @ is a morphism (WG °x PG,

YyLeoL@L): Ny — Ng where WG ox PG e YLOLPL is as illustrated in the Figure 6 (right). Qa
RGr(CMon) —
Gy —2 . 1,
PG
labq L
G| —p Ly tcGo
DL VG L\ RIACN
<PG¢ VG kPG v
tclabp p.o.
Gy ——— P 0L e L5 tc2Gg
| laba, ¢ % Ha p.o.
Y tclabg
L tcGg ———— P> trlg m— L3 0
|ab3‘\v0(p

Figure 6. Reification with induced labeling

It is easy to prove that ﬂ(eif?\[ﬂut and ﬂ(ez_'fﬂ\[ﬂutL are isomorphic (and we identify both categories by
ﬂ(elfﬁ\[ﬂut). Therefore, every reification morphism can be viewed as a A/Aut-morphism. For a Relfﬂ\[ﬂ[ut-morphism
©: A — B, the corresponding NAut-morphism is denoted by @: A — tcB.

Since reifications constitute a category, the vertical compositionality is achieved. In the following proposition, we
show that, for some given reification morphisms, the morphism (uniquely) induced by the parallel composition is also
a refinement morphism and thus, the horizontal compositionality is (also) achieved.

Proposition 2.24 Let {@j: N{; — £cNg;} be an indexed family of reifications. Then Xjc| @: Xjc| N1; = Xje| tcNgjis a
reification.

Proof: Remember that tc= cne nc. Since ncis left adjoint to ¢ then 7ic preserves colimits and c7 preserves limits.
Since products and coproducts are isomorphic in LCat(CMon), tc preserves products. Following this approach, it is
easy to prove that X; ; is a reification morphism. Q

2.4 Synchronization and Hiding of Reifications

The synchronization of reified automata is the synchronization of the source automata whose reification is induced by
the component reifications. Note that, in the following construction, we assume that the horizontal compositionality
requirement is satisfied. In what follows, suppose that K is in {1, 2} and that i is in | where | is a set (for simplicity, we
omit that i € |). Remember that ¢c preserves products (previous proposition) and that every synchronization morphism
has a cartesian lifting at the automata level.

Definition 2.25 Synchronization of Reifications. Consider the Figure 7 (left). Let {Qj: N1; = £cNg2;} be an indexed
family of reifications where Ni; = (G;, Lk; labk;). Let sync: Table — XjL¢; be a synchronization morphism and
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syncn: | Nq; — XNy be its cartesian lifting. The reification of the synchronized automaton | N1;is | @j: | Ny; —
tc(Xi Ngj) such that | @j = Xj@josyncy where X; @j is uniquely induced by the product construction. Q

The hiding of a reification is induced by the hiding of the source automaton.

Definition 2.26 Hiding of a Reification. Consider the Figure 7 (right). Let @: N1 — #cN2 be a reification where Nk =
(G, Lk, labk) e @ = (@g, @L). Let lab: L1 — L1"be a hiding morphism and AideN{ = (G1, L1’ hideclab4) the

hidden automaton. Then, the hiding of the reification morphism is Aide® = (Qg, @L\hide). Q
NAut—
I'N4;
synen \\ RGr(CMon) —
N\ hideclab
| i '
. o )
G X (Pl_é_ Y trlabp p.o.
T K Gy ———P tClp mmmeelp L
tcNpy, < 1 (xiNy) | labp, phide
Figure 7 Synchronization and hiding of reifications
3 Language Nautilus and its Semantics

In this brief introduction to the language Nautilus we present between parentheses, some key words in order to help
identifying each features in the following examples. The specification of an object in Nautilus depends on if it is a
simple object or an object resulting of an encapsulation (view), aggregation (aggregation) or reification (over).
In any case, a specification has two main parts: interface and body. The interface declares imported (import - only
for the simple object) and exported (export) actions and the category (category) of some actions (birth,
death, request). The body (body) declares the attributes (slot - only for the simple object) and the methods of
all actions. An action (act) may occur spontaneously, under request or both depending on if its specification and use.
A birth or death action may occur at most one time (and determines the birth or the death of the object). An action may
occur if its enabling (enb) condition holds. An action with alternatives (alt) is enabled if at least one alternative is
enabled. In this case, only one enabled alternative may occur where the choice is an internal nondeterminism. The
evaluation of an action (or an alternative within an action) is atomic. The clauses of an action may be composed in a
sequential (seq/end seq) or multiple (cps/end cps) ways. A multiple composition is a special composition of
concurrent clauses generalizing the notion of a multiple assignment where the valuation (val) clauses are evaluated
before the results are assigned to the corresponding slots. Due to space restrictions, we introduce some details of the
language Nautilus through examples and, at the same time, we give its semantics using nonsequential automata.

3.1 Simple Object

The first example introduces a simple object in Nautilus. In what follows, for an attribute a, &5 denotes its initial
(birth) value. For instance, the set of all possible values of an attribute a of type boolean is {©3, Fa, Ta}.

Example 3.1 Consider object Obj below (at this moment, do not consider the rightmost column). Note that the birth
action Start has two alternatives. Both alternatives are always enabled, since they do not have enabling conditions.
However, since it is a birth action, it occurs only once. Due to the enabling conditions, each action occurs once and in
the following order: Start, Proc and Finish.

object 0Obj

export
Start Proc Finish

category
birth Start
death Finish
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body
slot a: boolean
slot b: boolean
act Start
alt si
seq
val a << false t1: @3 > Fa
val b << a t: ®p — Fp, t3: @ > Tp
end seq
alt s2
cps
val a << false t1: @3 > Fa
val b << true t3: ©p > Tp
end cps
act Proc
enb a = false
cps
val a << true t44: Fa—>Ta
val b << true t3: @p > Tp, t5: Fp > Tports: Tp = Tp
end cps
act Finish
enb a = true and b = true t7: Ta®Tp > ¢
end Obj
Q
Considering that an action may be a (possible complex) composition of clauses in a sequential or multiple ways,
the semantics of an independent object in Nautilus is given by a reification morphism as follows:

¢ the target or base object reflects all possible computations over the attributes involved and therefore, it is able to
implement any object specified over this attributes. It is defined as the computations of an automaton whose
CMon-object of states is freely generated by the set of all possible values of all slots and the C?Mon-object of
transitions is freely generated by the set of all possible transitions between values of component attributes;

« the source object is a relabeled restriction of the target. It is induced by a restriction followed by a relabeling using
the fibration and cofibration techniques.

Example 3.2 Consider object Ob3j of the previous example. Its semantics is given by the reification morphism Obj:
N4 — tcNo (partially) illustrated in the Figure 8 where the restriction of #cNo that induces N1 is represented using a
different line. Note that the labeling of the automata N1 is not extensional. The semantics is defined as follows:

a) the CMon-object N2 has Vo = {@3a, Fa, Ta, @b, Fb, Tp, T}9 as states and T2 = {a(A1, A2), b(B1, B2),
death(A1®B1)}! as transitions (free CMon-objects) with source and target given by a(A1, A2): A1 — Ao,
b(B1, B2): Bf — B2 and death(A1®B1): A1®B1 — ¥ where Ak and By are values of a and b, respectively.
Consider the following labeling which has correspondence in Obj (see the rightmost column in Ob3j):

a(@a, Fa) = 4 b(p, Fp) ~ t2 b(p, Tp) — t3 a(Fa, Ta) - ta
b(Fp, Tp) = 15 b(Tp, Tb) = 16 death(Ta®Tp) = t7

b) the CMon-object N1 is a relabeled restriction of tcNa2. Consider the restriction restr(tcNo) where the functor
restris induced by the morphism restr| on labels determined as below according to the clauses of each action.
The morphism restr|_has a cartesian lifting restry: restr(tcN2) — tcNp at the automata level.

tite = tiste tilta o tlits  tolts = tallts  talts = talts  talte ~ tllts t7 - t7
The automaton N1 is the resulting object of the relabeling Nq = relab(restr(tcN2)) where relab is induced by
the morphism of labels relab) determined as below according to the identifications of each exported action (if not
exported, the identification consider is T, the unity of the monoid). The morphism relab_has a cocartesian lifting
relabn: N1 — restr(tcNo) at the automata level.

tist, —» Start  ty|ts — Start t4lt3 » Proc tslts » Proc ts4lts » Proc t; — Finish
Therefore, the labeled transitions of N1 are determined as follows:

Start: @08 — Fa®Fp Start: ©,09p — Fa®Tp Proc: Fa®@p — Ta®Tp

Proc: Fa®Fp — Ta®Tp Proc: Fa®Tp — Ta@Tp Finish: Ta®Tp —» ¢

c) Obj: Ny — #cN2 where Obj = restry orelaby is determined as follows (only the labels are represented):
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N2 (9,00
t3
t
e — Fa®Tp t6
N
t [P [
Finish D
t7

Figure 8. Semantics of an object in Nautilus as a reification morphism
Start - ty;t,  Start —» tillt3 Proc — t4llt3 Proc — t4llts Proc — t4lltg  Finish - t;

The state corresponding to the sum of initial values of all slots is chosen as the initial one. In this example, the
initial state is @3DDp. Q

3.2 Reification

An object reification is defined over previously specified object. An action may be reified into sequential or multiple
composition of actions of the target object. The same action may be reified according to several alternatives, that is, a
reification may be state dependent. Note that all object constructions (reification, interaction, aggregation and
encapsulation) are compositional and therefore, the target object of a reification may be the resulting object of a
(possible complex) construction.

Example 3.3 The object Abstr is implemented over the object Concr. Note that Abstr specifies alternative
implementations for the action New. Also, Concr has alternatives for the action A.

object Abstr over Concr alt N2
export sed
New X N
A
category c
birth New end seq
death Finish act X
body seq
act New A
alt N1 B
N end seq
act Finish
F
end Abstr
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object Concr alt A2
export enb state =1
ABC val state << 2
N F alt A3
enb state = 1
categoxy val state << 3
birth N SCE B
death F enb state = 2
body val state << 4
slot state: 1..4 act €
act N enb state = 3
val state << 1 val state << 4
act A act F
alt Al enb state = 4
enb state =1 end Goner

val state << 2
a

The semantics of a reification is a composition of reifications, i.e., the reification of the source automata over the
target composed with the reification of the target over its base automata. The semantics of a reification is as in the
previous section: determined by a relabeled restriction of computations of the target automata. An action of the source
object may have more then one implementation which may be specified explicitly (alternatives are explicit in the source
object) or implicitly (actions in the target object used for reification have alternatives). In both cases, there exist more
than one transition with the same label and they have different implementations.

Example 3.4 Consider the reification of the previous example. Its semantics is given by the reification (partially)
illustrated in the Figure 9 (the parentheses in the transitions help to relate the alternatives with its corresponding
transition). Again the labeling is not extensional. Since the action Finish is not exported, the corresponding
transition in the source automata is labeled by T. The morphism illustrated in the Figure 9 composed with the
reification morphism that implements Concr over its base automata is the semantics of Abstr over Concr. Qo

tc Concr

Abstr
—/M
New

(N1)

New
(N2)
x |71 x - Y A;B
\ / smmen) (A1SED (A2;B)
B C
T
F

Figure 9. Semantics of a reification in Nautilus
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3.3 Interaction, Aggregation and Encapsulation

Interacting (call) objects can be thought as a unique object with a distributed specification. In Nautilus, a reference
to interacting objects (such as in a reification) is through its component objects (interaction/end
interaction) and, following the same idea, a reference to a composed action is through its component actions
(int/end int).In an aggregation, we can specify a relationship between component actions (composed by) and
arelabeling of the resulting actions. For interaction/aggregation, an action of the category request may occur only if it
is enabled and it is called/aggregated. The occurrence of an action may be under request (for a request action),
spontaneous (for an nonrequest action which is not called/aggregated) or both (for a nonrequest action which is
called/aggregated - it may occur independently of the other action). Actions may have input/output arguments (in,
out) used for interaction or parameters (par) used for aggregation (where the sharing is defined by a mach). The
arguments or parameters are declared at the interface. A view of an object can be thought as a generic relabeling where
an action exported in the original object may not be exported in the resulting one, i.e., it may be encapsulated.

Example 3.5 Assume that we want to compose two objects, the Producer and the Consumer, sharing a message,
in order to build a more complex one. The Producer is a view of the interacting objects Prod and Part_Number.
The object Part_Number returns a random value between 1 and 2. In the following specification, note that the
parameter Pmsg of the action Send in the object Prod is derived (der par) to the object Producer.

object Producer_Consumer body
aggregation of acF Prod_Random composed by
Producer int
c Produce of Prod
onsumer
Random of Part_Number
sxpart end int
Prod_Random act Send composed by
category Send of Prod
birth request Prod_Random act Finish composed by
death Finish i) o

Finish of Prod
Close of Part_Number
end int

body
act Prod_Random composed by
Prod_Random of Producer
act Communicate composed by end Producer
Send of Producer
Receive of Consumer
match
Send.Pmsg of Producer
Receive.Cmsg of Consumer

object Prod

import
Random out PN: natural

act Finish composed by Close of Part_Number
Finish of Producer export
Finish of Consumer Produce Finish
end Producer_Consumer Send par Pmsg: natural
category

birth Produce

object Producer view of
request Send

interaction L.
Bad death request Finish
Part_Number body

end interaction glot pr: L2

slot num: natural
export

act Produce
call Random of Part_Number
cps
val num << Random.PN
val pr << 1
end cps

Prod_Random Finish
Send der par Pmsg: natural
by Send.Pmsg of Prod

category
birth request Prod_Random
death Finish

UFRGS
INSTITUTO DF INFORMATICA
BIBLIOTECA
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act Send object Consumer
enb pr = 1 export
cps Consume Finish

val Send.Pmsg << num
val pr << 2

Receive par Cmsg: natural

end cps category
act Finish birth request Receive
enb pr = 2 death request Finish
call Close of Part_Number body
end Prod slot eg: 1..2
slot inf: natural
act Receive
object Part_Number cps
export val inf << Receive.Cmsg
Random out PN: natural val cs << 1
Close end cps
category act Consume

enb cs =1
val cs = 2
act Finish

birth request Random
death request Close

body enb cs = 2
act Random
end Consumer
alt
ret Random.PN = 1
alt

]
[\S}

ret Random.PN
act Close

end Part_Number
a

The semantics of an interaction, aggregation or encapsulation in Nautilus is straightforward since it is given by a
synchronization or an encapsulation of reification morphisms of nonsequential automata (an aggregation also defines a
relabeling). An action with parameters, inputs or outputs is associated to a family of transitions indexed by the
corresponding values.

Interaction
Prod and Part_Number Dp DD ®Dpm Consumer { @O i@Dcm
Cm Cm
SpN Prd Prd ?Rec ?Rec
PN PN
—P-nlt
@ @ ?Snd ?Snd & Cons Cons
Pm
?2Cl0S pr——a ?Clos _.\ 2pr®1 nu®1 Pm 2pr®2nu@2Pm 2(;5@1 |f®1 Cm 2cs®2|f®20m
@ ?Fin & 2Fin [—& —% 2Fin [—& 1 7Fin

Figure 10 Relationship between component automata of an interaction and an aggregation
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?Prd_Ran ?Prd_Ran

T (Comm) T (Comm)

Q= @PN@(@pr@enu®0Pm)® (@cs@@ifQQCm)

Al = 1pN@(1 pr@1 nu@@Pm)@ (BcsDBiDB cm)

A2 = 1pN ®(2pr@1 nu®1pm)® (1cs@1if®1cm)

A3 =1pN @(Qpr@1 nu®1 Pm)@(ch@1 if®1cm)
T (Cons) T (Cons)

B1 = 2PN®(1pr@Qnu®@Pm)®(@cs@gif@@Cm)

@ @ B2 = 2pN®(2pr®2nuD2pm)® (10sD2if®20m)

B3 = 2PN@(2pr@2nu@2Pm)@ (20s®2if®2¢cm)

Figure 11 Resulting (source) automaton

Example 3.6 Consider the specification in the previous example. Its semantics is given by composing a
synchronization (for the interaction) followed by an encapsulation (for the view) and by another synchronization (for
the aggregation). The relationship between component automata is (partially) illustrated in the Figure 10 where
interactions are represented by arrows and aggregations by "tracks" and the resulting automata is (partially) illustrated

in the Figure 11. In the figures, a transition whose (abbreviated) label has a question mark corresponds to a request
action. Q

4 Concluding Remarks

Nonsequential automata constitute a categorial semantic domain with full concurrency which is, for our knowledge,
the first model for concurrency which satisfies the diagonal compositionality requirement, i.e., reification compose
(vertically) and distributes through the parallel composition (horizontally). It is based on structured labeled transition
systems. Synchronization of automata is categorically explained, by fibration techniques. Tables for synchronization
are categorically defined. The hiding of transitions is also dealt with, by cofibration techniques, introducing the
essential ingredient of internal non-determinism. Reification is explained using Kleisli categories. Synchronization and
hiding are extended for reifications.

To experiment with the proposed semantic domain, a semantics for a concurrent, object-based language is given.
The language named Nautilus is based on the object-oriented language GNOME, which is a simplified and revised
version of OBLOG. Some features not present on GNOME such as reification (implementation of an object over
computations of another) and aggregation (composition of objects in order to build a more complex one) are
introduced. While in an interaction (also present in Nautilus) the relationship between objects is defined within the
component objects, in an aggregation it is defined externally. Interaction, aggregation and reification may be state
dependent. Also, in Nautilus, it is possible to extract a view from an existing object.

Considering that an action of an object in Nautilus may be a sequential or concurrent composition of clauses,
executed in an atomic way, the semantics of an object in Nautilus is given by a reification morphism where the target
automata called base is determined by the computations of a freely generated automata able to simulate any object
specified over the involved attributes and the source automata is a relabeled restriction of the base. The semantics of a
reification is the reification of the source automata over the target composed with the reification of the target over its
base. The semantics of an interaction, aggregation or encapsulation is given by a synchronization or hiding of
reifications of nonsequential automata. In this context, the diagonal compositionality is essential.

With respect to further works, the next step is to reintroduce in the language Nautilus some of the forgotten
features of GNOME such as classes and inheritance. Also interesting is the clarification of the relationship of the

nonsequential automata with logics, following the work in [Fiadeiro & Costa 94] and extending the work in [Menezes
& Costa 95].
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