
I """ SABi

u~ 1111/ll/ll/111111111 ~

N onsequential Automata Semantics for a
Concurrent Object-Based I .. anguage

MENEZES, P.B.; SERNADAS, A.; COSTA, J.F.

Preprint 21/95 October 1995

UFRG S
lNt'"'fl ~ . ~~H\ r . F pw:·oR·MATIC ~) ' · Y l .J11U •···'· ·· . l . l , , ,

BIBLIOTECA

052288 17

Nonsequential Automata Semantics
for a Concurrent Object-Based Language *

P. Blauth Menezest , A. Sernadast and J. Félix Costatt

t Departamento de Matemática, Instituto Superior Técnico

Av. Rovisco Pais, 1096 Lisboa Codex, Portugal- {blauth, acs}@math.ist.utl.pt

tt Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa
Campo Grande, 1700 Lisboa, Portugal- fgc@di .fc.u l.pt

Abstract. Nonsequential automata constitute a categoria! semantic domain based on labeled transition system with full
concurrency, where synchronization and hiding are functorial anda class of morphisms stands for reification. It is, for our
knowledge, the first model for concurrency which satisfies the diagonal compositionality requirement, i. e ., reifications
compose (vertical) and distribute over combinators (horizontal). To experiment with the proposed semantic domain, a
semantics for a concurrent, object-based language is given. 1t is a simplified and revised version of the object-oriented
specification language GNOME, introducing some special features inspired by the semantic domain such as reification and
aggregation. The diagonal compositionality is an essential property to give semantics in this context.

1 lntroduction

We construct a semantic domain with full concurrency for interacting systems which is, for our knowledge, the fust
model for concurrency satisfying the diagonal compositionality requirement, i.e., reifications compose (vertically),
reflecting the stepwise description of systems, involving severa! leveis of abstraction, and distributes through parallel
composition (horizontally), meaning that the reification of a composite system is the composition of the reification of
its parts, even in the presence of synchronization.

A nonsequential automaton (ftrst introduced in [Menezes et a/95]) is a kind o f automaton with mono ida! structure
on states and transitions, inspired by [Meseguer & Montanari 90]. Structured states are "bags" of local states like
tokens in Petri nets (as in [Reisig 85]) and structured transitions specify a concurrency relationship between
component transitions in the sense of [Bednarczyk 88] and [Mazurkiewicz 88]. The resulting category is bicomplete
where the categoria! product stands for parallel composition. Synchronization and hiding are functorial operations. A
synchronization restricts a parallel composition according to some table o f synchronizations (at labellevel). A view of
an automaton is obtained through hiding of transitions introducing an internai nondeterminism. A hidden transition
cannot be used for interaction. A reification maps transitions into transactions reflecting an implementation of an
automaton on top of another. It is defined as an automaton morphism where the target object is enriched with all
conceivable sequential and nonsequential computations. Computations are induced by an endofunctor and composition
of reification morphisms is defined using KJeisli categories. Comparing with [Menezes et al 95], in this paper we
revise the reification morphisms, introduce the synchronization and hiding for reifications (extending the approach for
automata) and generalize the categorical definition for table of synchronizations.

In [Menezes & Costa 95] and [Menezes & Costa 95b] we show that nonsequential automata are more concrete
then Petri nets (in fact, categories o f Petri nets are isomorphic to subcategories of nonsequential auto mata) extending
the approach in [Sassone et a/93], where a formal framework for classification of models for concurrency is set.

To experiment with the proposed semantic domain, a semantics for a concurrent object-based language is given.
The language named Nautilus is based on the object-oriented Ianguage GNOME [Sernadas & Ramos 94] which is a
simplifi ed and revised version o f OBLOG [SernadasC et al 92], [SernadasC et al 92b], [SernadasC et al 91]. Some
features inspired by the semantic domain (and not present on GNOME) such as reification and aggregation are
introduced. A reification implements an object over sequential or concurrent computations of another. The main
difference between interaction and aggregation is that, in the former, the relationship between objects is defined within
each object while in the later, the relationship is defined externally to the component objects. Also, the state-dependent
calling of GNOME is extended for interaction, aggregation and reification in Nautilus . For simplicity and in order to
keep the paper short, we do not deal with some feature of GNOME such as classes of objects and inheritance. The
diagonal compositionality requirement is essential to give semantics for Nautilus.

* This work was partially supported by: UFRGS - Universidade Federal do Rio Grande do Sul and CNPq - Conselho Nacional de
Desenvolvimento Científico e Tecnológico in Brazil; CEC under ESPRIT-III BRA WG 607 1 IS-CORE, WG 6 11 2 COMPASS, HCM
Scientific Network MEDICIS, JNICT (PBIC/CfTIT/1227/92) in Portugal .

mailto:fgc@di.fc.ul.pt

Nonsequential Automata Semantics for a Concurrent Object Based Language 2

2 Nonsequential Automata

A nonsequential automaton is a reflexive graph labeled on ares such that nodes, ares and labels are elements of
commutative monoids. A reflexive graph represents the shape of an automaton where nodes and ares stand for states
and transitions, respectively, with identity ares interpreted as idle transitions. A structured transition specify a
concurrency relation between component transitions. Comparing with asynchronous transition systems (first
introduced in [Bednarczyk 88]), the independence relation of a nonsequential automaton is explicit in the graphical
representation. A structured state can be viewed as a "bag" of local states where each local state can be viewed as a
resource to be consumed or produced, like a token in Petri nets.

Nonsequential automata and its morphisms constitute a category which is complete and cocomplete with products
isomorphic to coproducts. A product (or coproduct) can be viewed as a parallel composition. In what follows C:Mon
denotes the category of commutative monoids and suppose that k is in {0, 1 }. Also, for the proof or details omitted,
see [Menezes et al95] and [Menezes & Costa 95b].

2.1 Nonsequential Automaton

Definition 2.1 Nonsequential Automaton. A nonsequential automaton N = (V, T, ao, a1, t, L, lab) is such that T = (T,
11, 't), V= (V, Ell, e), L= (L, 11, 't) are C:Mon-objects of transitions, states and labels respectively, ao, a1: T --7 V are
C:Mon-morphisms called source and target respectively, t: V --7 Tis a C:Mon-morphism such that ak ot = idv and
lab: T --7 L is a C:Mon-morphism such that lab(t) = 't whenever there is v in V where t(v) = t. o

We may refer to a nonsequential automaton N = (V, T, élo, êl1, t, L, lab) by N = (G, L, lab) where G = (V, T, élo,
a1, t) is a reflexive graph internai to C:Mon (i.e., V, T are C:Mon-objects and élo, êl1, t are C:Mon-morphisms). In an
automaton, a transition labeled by 't represents a hidden transition (and therefore, can not be triggered from the
outside). Note that, ali idle transitions are hidden. The labeling procedure is not extensional in the sense that two
distinct transitions with the same label may have the same source and target states (as we will se !ater, it is essential to
give semantics for an object reification in Nautilus). In this paper we are not concemed with initial states.

A transition t such that a0 (t) =X, a1 (t) = Y is denoted by t: X --7 Y. Since a state is an element of a monoid, it may
be denoted as a formal sum n1 A1 Ell ... EI>nmAm, with the order of the terms being immaterial, where Ai is in V and ni
indicate the multiplicity of the corresponding (local) state, for i = 1 . . . m. The denotation of a transition is analogous.
We also refer to a structured transition as the parallel composition of component transitions. When no confusion is
possible, a structured transition X 11 't: XEil A --7 YE!l A where t: X --7 Y and lA: A --7 A are labeled by x and 't,
respectively, is denoted by x: XEilA --7 YEilA . For simplicity, in graphical representation, we omit the identity
transitions. States and labeled transitions are graphically represented as circles and boxes, respectively.

Example 2.2 Let ({A, B, X, Y}Eil, {t1, t2, t3, A, B, C, X, Y}®, ao, a1, t, {x, y}®, lab) be a nonsequential automaton
with ao. a1 detennined by the local ares t1: 2A -7 B, t2: X -7 Y, t3: y -7 X and lab detennined by t1 X, t2 X,

t3 y. The distributed and infinite schema in Figure 1 (left) represents the automaton. Since in this framework we
do not deal with initial states, the graphical representation makes explicit ali possible states that can be reached by ali
possible independent combination of component transitions. For instance, i f we consider the initial state Affi2X, only
the corresponding part of the schema of the automata in the figure has to be considered. In Figure 1 (right), we
illustrate a labeled Petri net which simulates the behavior of the automaton. Comparing both schema, we realize that,
while the concurrence and possible reachable markings are implicit in a net, they are explicit in an automaton.
Categories of Petri nets and categories of nonsequential automata can be unified through adjunctions. For details, see
[Menezes & Costa 95] and [Menezes & Costa 95b]. o

Figure 1. A nonsequential automaton (left) and the corresponding labeled Petri net (right)

Nonsequential Automata S emantics for a Concurrent Object Based Language 3

Definition 2.3 Nonsequential Automaton Morphism. A nonsequential automaton morphi sm h: N1 --t N2 where N1 =
<V1. T1 , oo1. 011,11 , L1, lab1) and N2 = <V2. h oo2 , 012, 12, L2, lab2) is a triple h= (hv, hT, hL) such that hv:
v1 --t v2. hT: T1 --t T2, hL: L1 --t L2 are cMon-morphisms, hV 0 0k1 = Ok2° hT, hT 0 11 = 12o hv and hL o lab1 =
lab2 ° hT. O

Nonsequential automata and their morphisms constitute the category :Af..J'I.ut

Proposition 2.4 The category ~ut i s complete and cocomplete with products isomorphic to coproducts. o

A categorical product (or coproduct) o f two auto mata N1 = (V 1, T 1. oo1, 011 , 11 , L 1, lab1), N2 = (V2, T2, oo2.
012,12, L2, lab2) is N1 X9{JiutN2 = (V1 XC9vfon V2, T1 Xc:Mon T2, 001 Xoo2. 011 Xo12, 11 X12, L1 Xc:MonL2,
lab1 X lab2) where Ok1 X Ok2, 11 X 12 and lab1 X lab2 are uniquely induced by the product construction.

2. 2 Synchronization and Hiding

Synchronization and hiding of transitions are functori al operations defined using fibration and cofibration techniques
inspired by [Winskel 87]. Both functors are induced by morphisms at the labellevel.

The synchronization operation restricts the product "erasing" ali those transitions which do not refl ect some given
table of synchronizations (suppose that i is in 1):

a) let {Ni} be a set of nonsequential automata with {L;} as the corresponding CMon-objects of labels, Tab/e be a
commutative monoid, called table of synchroni zations, determined by the tuples of labels to be synchroni zed and
sync: Table --t X L; be the synchronization morphism which maps the table in to the labels o f a given automaton;

b) let u: :Af..J'I.ut--t CMon be the obvious forgetfu l functor taki ng each automaton into its commutative monoid of
labels. The functor u is a fibration and the fi bers u-1 Table, u-1 X L; are subcategories o f :f\[_J'I.ut,

c) the fibration u and the morphism sync induce a functor sync: u-1 X L; --t u-1 Tab/e. The functor sync applied to
X Ni provides the automaton reflecting the desired synchronizations.

Traditionally, in concurrency theory, the concealment o f transitions is achieved by resorting to labeling and using
the special label 't (cf. [Winskel 87]). Such hidden transi tions cannot be used for synchronization since they are
encapsulated. The steps for hiding are the following:

a) let N be a nonsequential automaton with L 1 as its commutative monoid of labels, let h ide: L 1 --t L2 be a
morphism taking the transitions to be hidden into 1:;

b) let u: :Af..J'I.ut --t cMon be the same forgetful functor used for synchronization purpose. The functor u is a
cofibration (and therefore, a bifibration) and the fibers u-1 L 1, u-1 L2 are subcategories o f 'J{.J'I.ut,

c) the cofibration u and the morphism h ide induce a functor fr.iáe: u-1 L 1 --t u-1 L2. The functor fr.iáe applied to N
provides the automaton reflecting the desired encapsulation.

Table of Synchronizations. In what follows, we show a categoria) way to construct tables of synchronizations
for calling and sharing and the corresponding synchronization morphism. The following construction generalizes the
approaches in [Menezes et a/ 95] and [Menezes & Costa 93] for more than two systems.

The table of synchronizations for interaction is given by a colimit whose resulting diagram has a shape illustrated
in the Figure 2 (Jeft) where the central arrow has as source an object named channel and as target the table of
synchroni zations. We say that a shares x if and only if a calls x and x calls a. In what follows, we denote by a I x a
pair of synchronized transitions.

.----------------------CMon

L; Channel

'colimit / Pix Jl' q
Table

F igure 2. Table of synchroni zations

Nonsequential Automata Semantics for a Concurrent Object Based Language 4

Definition 2.5 Table of Synchronizations. Let {Ni} be a set of nonsequential auto mata with {L;} as the corresponding
commutative monoids of labels, Channel be the least commutative monoid determined by ali tu pies o f transitions to
be synchronized, L;' be the least commutative submonoid of L; containing ali transitions of Ni which call other
transitions, cal li: L;' --7 Channel be the morphisms such that, for a in L;', if a calls x1 , ... , Xn then calli(a) =
a I x1 1 .. . 1 Xn and D be the diagram represented in the Figure 2 (right) where inCj: L;' --7 L; are inclusion morphisms.
The table of synchronizations Table is given by the colimit of D. o

Example 2.6 Consider the free commutative monoids o f labels L1 = {a, b, c} ll , L2 = { x, y} ll . Suppose that a calls x,
b calls y and y calls b (i.e., b shares y). Then, Channel = {a I x, b I y} ll , Lt ' = {a, b} ll , Lz' = {y} ll and Table =
{c, x, alx, bly} 11 . o

Let D be a diagram whose colimit determines Table and Pi: L; --7 Table. Then there are retractions for Pi denoted
by PiR such that, for every b in Table, i f there is a in L; such that p(a) = b then PiR(b) = a else PiR(b) = 't.

Definition 2. 7 Synchronization Morphism. The synchronization morphism sync: Table --7 X L; is uniquely induced
by the product construction as illustrated in the Figure 3. O

r------------ cMon
Table

/ :
s~c

7t .
L; I X L;

Figure 3. Synchronization morphism

Synchronization Functor. First we show that the forgetful functor which takes each nonsequential automaton into
its commutative monoids of labels is a fibration and then we introduce the synchronization functor.

Proposition 2.8 The forgetful functor u: :7{.9/.ut--7 CMonthat takes each nonsequential automaton onto its underlying
commutative monoid of labels is a fibration. O
Proof: Let 'l((jr(CMon) be the category of reflexive graphs internai to CMon and let iá: 'l((jr(CMon) --7
2((jr(CMon), em6: CMon --7 2((jr(CMon) be functors . Then, 'J.[.9l.ut can be defined as the comma category
üf.tem6. Let f: L 1 --7 L2 be a CMon-morphism and N2 = (G2, L2, lab2) be a nonsequential automaton where G2 =
(V2, Tz, oo2, 01 2, t2) is a 'l((jr(CMon}-object. Let the object G1 together with lab1: G1 --7 em6L 1 and UG: G1 --7
G2 be the pullback of f: em6L1 --7 em6 Lz and lab2: G2 --7 em6Lz. Define N1 = (G1, L1, lab1) which is an
automaton by construction. Then u = (UG, f): N1 --7 N2 is cartesian with respect to f and N2. O

Definition 2.9 Functor sync. Consider the fibration u: :7{.9/.ut--7 CMon, the automata Ni =(V;, T;, dOi• 01i, tj, L;, labi)
and the synchroni zation morphism sync: Table --7 X L;. The synchronization o f Ni represented by 11 sync Ni is given
by the functor sync: u-1 (X Lz) --7 u-1 (Table) induced by u and sync applied to X Ni, i.e., 11 sync Ni = sync(X Ni) . o

Example 2.10 Consider the nonsequential automata Consumer and Producer (with free monoids) determined by
the labeled transitions prod: A --7 B, send: B --7 A for the Producer and rec: X --7 Y, cons: Y --7 X for the
Consume r. Suppose that we want a joint behavior sharing the transitions send and rec (a communication without
buffer such as in CSP [Hoare 85] or CCS [Milner 89]). Then, Channe/ = { send I rec } li and Table = { prod ,
cons, send I rec} 11 . The resulting automaton is illustrated in the Figure 4. Note that the transitions send, rec are

...

0
Figure 4. Synchroni zed automaton

Nonsequential Auto mata S emantics for a Concurrent Object Based Language 5

erased and send I rec is included. o

Hiding. For encapsulation purposes, we work with hiding morphisms. A hiding morphism is an injective morphism
except for those labels we want to hide (i.e., to relabel by 't). In what follows e, denotes a zero object in CMon(any
monoid with only one element) and ! denotes the unique morphism with e as source or target.

Definition 2.11 Hiding Morphism. Let L 1 be the commutative monoid of labels of the automata to be encapsulated, L
be least commutative submonoid of L1 containing ali labels to be hidden and inc: L ~ L1 be the inclusion. Let L2
together with h ide: Lt ~ L2 and q: e~ L2 be the pushout o f!: L ~ e and in c: L ~ L 1. Then, the hiding morphism
is the morphism hide. o

Proposition 2.12 The forgetfu l functor u: 9{5ll.ut ~ CMon that maps each automaton onto its underlying
commutative monoid o f labels is a cofibration.
Proof Let f: L1 ~ L2 be a CMon-morphism and N1 = (V1 , T1 , ao1, a11, 11, L1 , lab1) be an automaton. Define N2
= (V1 , T1 , ao1, a1 1, 11 , L2, f olab1)· Then u = (idv1• idr1• f): N1 ~ N2 is cocartesian with respect to f and N1. O

Definition 2.13 Functor liiáe. Consider the fibration u: 9{5ll.ut ~ CMon., the nonsequential automata N = (V, T, ao.
a1. t , L1 , lab) and the hiding morphism hide: L1 ~ L2 . The hiding of N satisfying hide denoted by N\hide is
given by the functor liiáe: u-lLt ~ u-1 L2induced by uand hide applied to N, i.e., N\hide = liiáeN. o

Example 2.14 Consider the resulting automata of the previous example. Suppose that we want to hide the
synchronized transition send I rec. Then, the hiding morphism is induced by send I rec 't and the encapsulated
automaton is as illustrated in the Figure 4 except that the transition send I rec has its label replaced by 't. o

2. 3 Reification

A reification is defined as a special automaton morphism where the target object is closed under computations, i.e., the
target (more concrete) automaton is enriched with ali the conceivable sequential and nonsequential computations that
can be split into permutations of original transitions, respecting source and target states.

The category of categories internai to CMon is denoted by Cat(CMon). We introduce the category LCat(CMon)
which can be viewed as a generalization of Iabeling on Cat(CMon). There is a forgetful functor from LCat(CMon)
into 9{5ll.ut. This functor has a left adjoint which freely generates a nonsequential automaton into a Iabeled internai
category. The composition of both functors from ~utinto LCat(CMon) leads to an endofunctor, called transitive
closure. The composition of reifications of nonsequential automata is defined using Kleisli categories (see [Asperti &
Longo 91]). In fact, the adjunction above induces a monad which defines a Kleisli category. Then we show that
reification distributes over the parallel composition and therefore, the resulting category of automata and reifications
satisfies the diagonal compositionality.

Definition 2.15 Category LCat(CMon). Consider the category Cat(CMon). The category LCat(CMon) is the
com ma category iácat(C9vfon).l. iácat{C9vfon) where iácat(C9vfon) is the identity functor in Cat(CMon). o

Therefore, a LCat{CMon}-object is triple 9{ = (Çj, L, fa8> where Çj, L are Cat(CMon}-objects and fa6 is a
Cat(CMon}-morphism .

Proposition 2.16 The category LCat(CMon) has ali (small) products and coproducts. Moreover, products and
coproducts are isomorphic.

Definition 2.17 Functor cn. Let 9{ = (Çj, L, [aS) be a LCat{CMon}-object and li= (liq, li L): 'JIÚ. ~ 'J-6 be a
LCat(CMon)-morphism. The functor cn: LCat(CMon)~ 9{5ll.utis such that:
a) the Cat{CMon}-object Çj= (V, T, ao, a1. 1, ;) is taken into the 2(.Çjrapli(CMon}-object G = (V, T', ao·, a1', 1'),

where T' is T subject to the equational rule below and ao·, 01 ', 1' are induced by ao, a1, 1 considering the monoid
T'; the Cat(CMon}-object L = <V, L, ao. a1' 1, ;) is taken in to the cMon-object L', where L I is L subject to the
same equational rule; the LCat{CMon}-object 9{= (Çj, L, faB) is taken into the 9{5ll.ut-object N = (G , L', lab)
where lab is the 2(.Çjrapli(CMon)-morphism canonically induced by the Cat(CMon)-morphism [a6;

t:A ~ B E T u: B ~ C E T t':A'~s· E T u':s· ~ c· E T

(t;u)ll(t';u')'= (tl/t');(ul/u') in T'

b) the LCat(CMon)-morphism li = (liq, liL): 'J.Ú. ~ 9.{2 with liq = (hNv. hNr). liL = (hLv. hLr) is taken into the
9{5ll.ut-morphism h = (hNv. hNr. h L r): N1 ~ N2 where hNT· and h L r are the monoid morphisms induced by
hNT and hLT• respectively. O

Nonsequential Automata Semantics for a Concurrent Object Based Language 6

The functor cn has a requirement about concurrency which is (t;u)ll(t';u ') = (t llt');(ullu') . That is, the
computation determined by two independent composed transitions t;u and t';u' is equivalent to the computation whose
steps are the independent transitions t ll t' and u ll u' .

Definition 2.18 Functor nc. Let A= (G , L, lab) be a ~ut-object and h = (hG, hL): A1 ~ A2 be a ~ut­
morphism. The functor nc: !J..{,.'ll.ut ~ .LCat(C:Mon) is such that:

a) the !R_{jrapfí(C:Mon}object G = (V, T, ao, a1, t) with V= (V, ffi, e), T = (T, 11, 't) is taken into the Cat(C:Mon}
object y= (V, TC, ag, a~, t, ;) with TC = (TC, ®, 't), ag, a~,_;_: F x TC ~ F inductively defined as follows:

t: A ~ B E T t: A ~ B E Te u: C ~ D E Te t: A ~ B E Te u: B ~ C E Te

t ® u: A ffi C ~ B ffi D E Te t;u: A ~ C E Te

subject to the following equational rules:

E T u E T

t ® u = tllu

E Te U E Te V E Te

t ® (u ® v) = (t ® u) ® v

t: A ~ B E Te u: B ~ C E Te v: C ~ D E Te

t;(u;v) = (t;u);v

the C:Mon-object L is taken into the Cat(C:Mon}object L= (1, LC, !, !, !, ;) as above; the !J..[,.'ll.ut-object A= (G, L,
lab) is taken into the .LCat(C:Mon}object .'li.= (q, .L, fafJ) where fa6 is the morphism induced by lab;

d) the !J..[,.'ll.ut-morphism h= (hv, hT, hL): A1 ~ A2 is taken into the Cat(C:Mon}morphism fi= (!ir;, fíL): .'l/..1 ~
.'l/..2 where !ir;= (hv, hTc), fíL = (!, hLc) and hTc, hLc are the monoid morphisms generated by the monoid
morphisms hT and hTL, respectively. O

Proposition 2.19 The functor nc: !J..[,.'ll.ut~ .LCat(CM.on)is left adjoint to cn: .LCat(CM.on)~ 1\[.'ll.ut.

Definition 2.20 Transitive Closure Functor. The transitive closure functor is te= cno nc: 1\[.'ll..ut~ 1\[.'ll..ut O

Example 2.21 Consider the nonsequential automaton with free monoids on states and transitions, determined by the
transitions a : A ~ B and b: B ~ C . Then, for instance, a;2b: AffiB ~ Bffi C is a transition in the transitive closure.
Note that, a;2b represents a class of transitions. In fact, from the equations we can infer that a;2b = a;(b 11 b) =
('t[B]IIa);(bllb) = ('t[B];b) ll(a;b) = b ll(a;b) = (b;'t[C]) II ('t[A];(a;b)) = (b ll't[A]);('t[C] II (a;b)) = b;a;b = ... o

Let (nc, cn, 11 , ê) be the adjunction from !J..f...'ll.utinto .LCat(C:Mon)as above. Then, T = (t~ 11, !l) is a monad on
1\[.'ll.utsuch that ll = cne nc: tc2 ~ tcwhere cn: cn~ cnand nc: nc~ ncare the identity natural transformations and
cnE nc is the horizontal composition o f natural transformations. For some given automaton N, tcN is N enriched with
its computations, 11N: N ~ tcN includes N into its computations and !lN : tc2N ~ tcN flattens computations of
computations of N into the computations of N.

In previous works we define a reification morphism <p from A into the computations of B as an !J..f...'ll.ut-morphism
<p: A ~ tcB and the composition of reifications as in K.leisli categories (each monad defines a K.leisli category). In
this work, we modify the definition , since reifications should to not preserve labeling (and thus, they are not !JI.[_.'l/..ut­
morphisms) . However, as we show below, each reification induces a ~ut-morphism. Therefore, we may define a
category whose morphisms are !J..f...'ll.ut-morphisms induced by reifications. Both categories are isomorphic.

Definition 2.22 Reification. Let T = (t~ 11, !l) where 11 = (11G, 11L), ll = (!lG, !lL) be the monad induced by the
adjunction (nc, cn, 11, ê): !J..{_.'ll.ut ~ .LCat(C:Mon). The category of nonsequential auto mata and reifications, denoted
by !Rgif!J..[,.'ll.ut, is such that (suppose the 1\[.'ll..ut-objects Nk = (Gk, Lk, labk), for k in {1 , 2, 3}):

a) !Rgif!J..{_.'ll.ut-objects are the ~ut-objects;
b) <p = <pG: N1 ~ N2 is a !J?gifg.,[.'ll.ut-morphism where <pG : G1 ~ tcG2 is a 2(yr{C:Mon}morphism and for each

~--------------------------------2(q1C:Mo~

J..lG ..._
..... tcG3

+
Figure 5. Composition of reifications is the composition in the Kleisli category forgetting about the labeling

Nonsequential Automata Semantics for a Concurrent Object Based Language 7

!i\[Jlut-object N, cp = T)G: N ---7 N is the identity morphism of N in :J?.g.ij!i\[!7wt,
c) Iet cp: N1 ---7 N2, \jl: N2 ---7 N3 be 2(eij.'Nllut-morphisms. The composition \j1 ° cp is a morphism \jiG o1(cpG: N1

---7 N3 where \jiG 0 1(Cj}G is as illustrated in the Figure 5. o
In what follows, a nonsequential automaton (G, L, lab) is viewed as a morphi sm lab: G ---7 em6 L as in the

Proposition 2.8. For simplicity, in diagrams, lab: G ---7 em6 L is abbreviated just by lab: G ---7 L.

Definition 2.23 Reification with Induced Labeling. Let T = (te, T) , J..L) where T) = (T)G . T)L). J..l = (J..LG , J..lL) be the
monad induced by the adj unction (nc, cn, T) , E). The category of nonsequential automata and rei.fications with induced
labeling, denoted by 1?..f.ij.'Nltut.L, is such that (suppose the !i\[JI.ut-objects Nk = (Gk, Lk, labk). for k in {1, 2, 3}):

a) :J?.g.ij!i\[JI.utL-objects are the .'Nllut-objects;
b) let Cj)G : G1 ---7 teG2 be a 2(yr(CMon}-morphism. Then cp = (Cj)G . Cj)L): N1 ---7 N2 is a :J?.g.if!i\[JI.utL-morphism

where Cj)L is given by the pushout illustrated in the Figure 6 (left). For each !i\[JI.ut-object N, cp = (T)G: G ---7 teG,
Cj)L: L ---7 LTJ): N ---7 N is the identity morphism of N in :J?.g.ij!i\[JI.utL where Cj)L is as above;

c) Iet cp: N1 ---7 N2. \jl : N2 ---7 N3 be 1?..f.ij.'NllutL-morphi sms. The composition \j1 o cp is a morphism (\jiG 0 1(Cj)G.
'VL 0 LCj)L): N1 ---7 N3 where \jiG 0 1(Cj)G e 'VL 0 LCj)L is as illustrated in the Figure 6 (right). O

~---2(y1CMo~

----1 ... ~ Lt

u laO, ~
----ti ~ tcL2 ._

lab2,<P

F igure 6. Reification with induced labeling

lt is easy to prove that 2(eif.'N!tut and 2(eij'J{JI.utL are isomorphic (and we identify both categories by
1?..f.if.'Nltut). Therefore, every reification morphism can be viewed as a .'Nllut-morphism. For a :J?.g.ij!i\[JI.ut-morphism
cp: A ---7 B, the corresponding 'J..[JI.ut-morphism is denoted by cp: A ---7 te B.

Since rei.fications constitute a category, the vertical compositionality is achieved. In the following proposition, we
show that, for some given reification morphisms, the morphism (uniquely) induced by the parallel composition is also
a refinement morphism and thus, the horizontal compositionality is (also) achieved.

Proposition 2.24 Let {Cj)i: N1 i ---7 teN2i} be an indexed family o f reifications. Then XiE 1 Cj)j : XiE 1 N1 i ---7 XiE 1 teN2i is a
rei.fication.
Proof" Remember that te= eno n.c. Since nc is left adjoint to cn then nc preserves colirnits and cn preserves limits.
Since products and coproducts are isomorphic in LCat(CMon), te preserves products. Following this approach, it is
easy to prove that Xj cpi is a reification morphism. o

2. 4 Synchronization and Hiding o f Reifications

The synchronization of reified automata is the synchronization of the source automata whose reification is induced by
the component reifications. Note that, in the following construction, we assume that the horizontal compositionality
requirement is satisfied. In what follows, suppose that k is in {1 , 2} and that i is in I where I is a set (for simplicity, we
ornit that i E 1). Remember that te preserves products (previous proposition) and that every synchronization morphism
has a cartesian lifting at the automata levei.

Definition 2.25 Synchronization of Reifications. Consider the Figure 7 (left). Let {Cj)i: N1 i ---7 tcN2i} be an indexed
family of reifications where Nki = (Gki· Lk;. labki). Let syncL: Table ---7 Xi L ti be a synchronization morphism and

Nonsequential Automata Semantics for a Concurrent Object Based Language 8

syncN: 11 N1 i ~ X i N1 i be its cartesian lifting. The reification o f the synchronized automaton 11 N1 i is 11 <pi: 11 N1 i ~
tc(Xi N2i) such that 11 <j>i = Xi <j)i 0 SyncN where Xj <j>i is uniquely induced by the product construction . o

The hiding o f a reification is induced by the hiding o f the source automaton.

Definition 2.26 Hiding ofa Reification. Consider the Figure 7 (right). Let <p: N1 ~ tcN2 be a reification where Nk =
(Gk, Lk, \abk) e <p = (<j>G, <j>L). Let lab: Lt ~ Lt'be a hiding morphism and fíiáeN1 = (G1 , Lt', hide o lab1) the
hidden automaton. Then, the hiding o f the reification morphism is fíüfe<p = (<j>G, <j>L \h ide). o

.--------------;J{Jl{u
11 N1 ;

syncN~ ',,
I

Xi !'J1; I 11 <!>i

Xi "'i~)
"'....:... /
~~~ 

tc(Xi N2;) 

~---------------~q1C~o~ 
hideolab1 
----1 ... ~ Lt ' 

tdab:! ~' 
-____;~ ... ~ tcL2 .. L2,q/ 

lab2,<p\hide t 

Figure 7 Synchronization and hiding of reifications 

3 Language Nautilus and its Semantics 

In this brief introduction to the language Nautilus we present between parentheses, some key words in order to help 
identifying each features in the following examples. The specification of an object in Nautilus depends on if it is a 
simple object or an object resulting of an encapsulation (view), aggregation (aggregation) or reification (over). 
In any case, a specification has two main parts: interface and body. The interface declares imported (import - only 
for the simple object) and exported (export) actions and the category (category) of some actions (birth, 
death, request). The body (body) declares the attributes (slot - only for the simple object) and the methods of 
ali actions. An action (act) may occur spontaneously, under request or both depending on i f its specification and use. 
A birth or death action may occur at most one time (and determines the birth or the death of the object). An action may 
occur if its enabling (enb) condition holds. An action with alternatives (al t) is enabled if at least one alternative is 
enabled. In this case, only one enabled alternative may occur where the choice is an internai nondeterminism . The 
evaluation of an action (or an alternative within an action) is atomic. The clauses of an action may be composed in a 
sequential (seq/end seq) or multiple (cps / end cps) ways. A multiple composition is a special composition of 
concurrent clauses generalizing the notion of a multi pie assignment where the valuation (val) clauses are evaluated 
before the results are assigned to the corresponding slots. Due to space restrictions, we introduce some details of the 
Ianguage Nautilus through examples and, at the same time, we give its semantics using nonsequential automata. 

3. 1 Simple Object 

The first example introduces a simple object in Nautilus. In what follows, for an attribute a , Oa denotes its initial 
(birth) value. For instance, the set of ali possible values of an attribute a of type boolean is {Oa, F a, Ta}. 

Example 3.1 Consider object Obj below (at this moment, do not consider the rightmost column). Note that the birth 
action Start has two alternatives . Both alternatives are always enab led, since they do not have enabling conditions. 
However, since it is a birth action, it occurs only once. Due to the enabling conditions, each action occurs once and in 
the following order: Start, Proc and Finish. 

object Obj 

export 
Start Proc Finish 

category 
birth Start 
death Finish 



Nonsequential Automata Semantics for a Concurrent Object Based Language 

body 
slot a: bool ean 
slot b: boolean 
act Start 

alt Sl 
seq 

val a << false 
val b < < a 

end seq 
alt S2 

cps 
val a < < false 
val b << true 

end cps 
act Proc 

enb a false 
cps 

val a << true 
val b << true 

end cps 
act Finish 

enb a = true and b 

end Obj 

true 

9 

tf Oa ---7 Fa 
t2: ob ---7 Fb, t3 : o b ---7 T b 

t1: Oa ---7 F a 
t3: ob ---7 T b 

4: Fa ---7 Ta 
t3: Ob ---7 T b. ts: Fb ---7 T b o r t5: T b ---7 T b 

o 
Considering that an action may be a (possible complex) composition of clauses in a sequential or multi pie ways, 

the semantics of an independent object in Nautilus is given by a reification morphism as follows: 

the target or base object reflects ali possible computations over the attributes involved and therefore, it is able to 
implement any object specified over this attributes . lt is defined as the computations of an automaton whose 
CMon-object of states is freely generated by the set of ali possible values of ali slots and the CMon-object of 
transitions is freely generated by the set of ali possible transitions between values of component attributes; 
the source object is a relabeled restriction o f the target. It is induced by a restriction fo llowed by a relabeling using 
the fibration and cofibration techniques. 

Example 3.2 Consider object Obj of the previous example. lts semantics is given by the reification morphism Obj : 
N1 ---7 tcN2 (partially) illustrated in the Figure 8 where the restriction of tc N2 that induces N1 is represented using a 
different !in e. Note that the labeling of the automata N1 is not extensional. The semantics is defined as fo llows: 

a) the CMon-object N2 has V2 = {Oa, Fa, Ta, Ob, Fb , Tb, íf }& as states and T2 = {a(A1, A2) , b(B1 , 82) , 
death(A1 EB B1)} 11 as transitions (free CMon-objects) with source and target given by a(A1, A2) : A1 ---7 A2, 
b(B1 , 82) : B1 ---7 B2 and death(A1 EBB1): A1 EB B1 ---7 íf where Ak and Bk are values of a and b , respectively. 
Consider the following labeling which h as correspondence in Obj (see the rightmost column in Obj ): 

a(Oa, Fa) ,.... t1 
b(Fb, T b) ,.... ts 

b(Ob , Fb) ,.... t2 
b(Tb, Tb) ,.... t5 

b(Ob, Tb) ,.... t3 
death(T aEBT b) ..... t7 

b) the CMon-object N1 is a relabeled restriction of tc N2. Consider the restriction restr(tcN2) where the functor 
restris induced by the morphism restrL on labels determined as below according to the clauses of each action. 
The morphism restrL h as a cartesian lifting restrN: restr( tc N2) ---7 tcN2 at the auto mata levei. 

t1;t2 ..... t1;t2 t1 I t3 ..... t1llt3 t4l t3 ...... t4 llt3 t4l ts ...... t4llts t4l t5 ...... t4 ll t5 t7 ...... t7 

The automaton N 1 is the resulting object o f the relabeling N 1 = refa6 ( re.str( tcN2)) where refa6 is induced by 
the morphism o f labels relabL determined as below according to the identifications of each exported action (if not 
exported, the identification consider is 't, the unity o f the monoid). The morphism relabL has a cocartesian lifting 
relabN : N1 ---7 restr( tcN2) at the automata levei. 

t1 ;t2 ...... Start t1 I t3 ..... Start t4l t3 ..... Proc t4l ts ...... Proc t4l t6 ...... Proc t7 ..... Finish 

Therefore, the labeled transitions of N1 are determined as follows: 

Start: OaEBOb ---7 FaEB Fb 
Proc: FaEBFb ---7 T aEBT b 

Start: OaEBOb ---7 FaEBT b 
Proc: FaEBT b ---7 T aEBT b 

Proc: FaEBOb ---7 T aEBT b 
Finish : T aEBT b ---7 íf 

c) Obj : N1 ---7 tcN2 where Obj = restrN o relabN is determined as follows (only the labels are represented): 



Nonsequential Automata Semantics for a Concurrent Object Based Language 10 

Figure 8. Semantics of an object in Nautilus as a reification morphism 

The state corresponding to the sum of initial values of ali slots is chosen as the initial one. In this example, the 
initial state is OaE90b. o 

3. 2 Reification 

An object reification is defined over previously specified object. An action may be reified into sequential or multiple 
composition o f actions of the target object. The same action may be reified according to severa! altematives, that is, a 
reification may be state dependent. Note that ali object constructions (reification, interaction, aggregation and 
encapsulation) are compositional and therefore, the target object of a reification may be the resulting object of a 
(possible complex) construction. 

Example 3.3 The object Abs tr is implemented over the object Cone r. Note that Abs tr specifies alternative 
implementations for the action New. Also, Cone r has altematives for the action A. 

object Abstr over Concr 

export 
New X 

category 
birth New 
death Finish 

body 
act New 

alt Nl 
N 

alt N2 
seq 

N 
A 
c 

end 
act X 

seq 
A 

B 

seq 

end seq 
act Finish 

F 

end Abstr 



Nonsequential Automata Semantics for a Concurrent Object Based Language 

object Concr 

export 
A B C 
N F 

catego ry 
birth N 
death F 

body 
slot state: 1 .. 4 
act N 

val state << 1 
act A 

alt A1 
enb state = 1 
val state < < 2 

alt A2 
enb state = 1 
v al state << 2 

alt A3 
enb state = 1 
v al state << 3 

act B 

enb state 2 
val state << 4 

act c 
enb state = 3 
val state << 4 

act F 
enb state = 4 

end Concr 

11 

o 
The semantics of a reification is a composition of reifications, i.e. , the reification of the source automata over the 

target composed with the reification of the target over its base automata. The semantics of a reification is as in the 
previous section: determined by a relabeled restriction of computations o f the target automata. An action of the source 
object may have more then one implementation which may be specified explicitly (altematives are explicit in the source 
object) or implicitly (actions in the target object used for reification have altematives). In both cases, there exist more 
than one transition with the same label and they have different implementations. 

Example 3.4 Consider the reification of the previous example. lts semantics is given by the reification (partially) 
illustrated in the Figure 9 (the parentheses in the transitions help to relate the altematives with its corresponding 
transition). Again the Iabeling is not extensional. Since the action F in i sh is not exported, the corresponding 
transition in the source automata is Iabeled by 't . The morphism illustrated in the Figure 9 composed with the 
reification morphism that implements Concr over its base automata is the semantics of Abstr over Concr. O 

Figure 9. Semantics of a re ification in Nautilus 



Nonsequential Automata Semantics for a Concurrent Object Based Language 12 

3. 3 Interaction, Aggregation and Encapsulation 

Interacting (call) objects can be thought as a unique object with a distributed specification. In Nautilus, a reference 
to interacting objects (such as in a reification) is through its component objects (interaction/end 
interaction) and, following the same idea, a reference to a composed action is through its component actions 
(int/end int). In an aggregation, we can specify a relationship between component actions (composed by) and 
a relabeling of the resulting actions. For interaction/aggregation, an action of the category request may occur only if it 
is enabled and it is called/aggregated. The occurrence of an action may be under request (for a request action), 
spontaneous (for an nonrequest action which is not called/aggregated) or both (for a nonrequest action which is 
called/aggregated - it may occur independently o f the other action). Actions may have input/output arguments (in, 
out) used for interaction or parameters (par) used for aggregation (where the sharing is defined by a mach). The 
arguments or parameters are declared at the interface. A view o f an object can be thought as a generic relabeling where 
an action exported in the original object may not be exported in the resulting one, i.e., it may be encapsulated. 

Example 3.5 Assume that we want to compose two objects, the Producer and the Consumer, sharing a message, 
in order to build a more complex one. The Producer is a view of the interacting objects Prod and Part_Number. 
The object Part_Number returns a random value between 1 and 2. In the following specification, note that the 
parameter Pmsg of the action Send in the object Prod is derived (der par) to the object Producer. 

object Producer_Consumer 

aggregation of 
Producer 
Consume r 

export 
Prod_Random 

category 
birth request Prod_Random 
death Finish 

body 
act Prod_Random composed by 

Prod_Random of Producer 
act Communicate composed by 

Send of Producer 
Receive of Consumer 
match 

Send.Pmsg of Producer 
Receive . Cmsg of Consumer 

act Finish composed by 
Finish of Producer 
Finish of Consumer 

end Producer_Consumer 

object Producer view of 
interaction 

Prod 
Part_Number 

end interaction 

export 
Prod_Random Finish 
Send der par Pmsg: natural 

by Send.Pmsg of Prod 

category 
birth request Prod_Random 
death Finish 

body 
act Prod_Random composed by 

int 
Produce of Prod 
Random of Part_Number 

end int 
act Send composed by 

Send of Prod 
act Finish composed by 

int 
Finish of Prod 
Close of Part_Number 

end int 

end Producer 

object Prod 

import 
Random out PN: natural 
Close of Part_Number 

export 
Produce Finish 
Send par Pmsg: natural 

category 
birth Produce 
request Send 
death request Finish 

body 
slot pr: 1. .2 
slo t num: natural 
act Produce 

call Random of Part_Number 
cps 

val num < < Random.PN 
val pr << 1 

end cps 

UFRGS 
INSTITUTO DF INFOR A ICI\ 

Bl ·LI .. E A 



Nonsequential Automata Semantics for a Concurrent Object Based Language 

act Send 
e nb pr = 1 
cps 

val Send.Pmsg << num 
val pr << 2 

end cps 
act Finish 

enb pr = 2 
call Close of Part_Number 

end Prod 

obj ec t Part_Number 

export 
Random out PN: natural 
Close 

category 
birth request Random 
death request Close 

body 
act Random 

alt 
ret Random . PN 

alt 
1 

r et Random.PN 2 
act Close 

e nd Part_Number 

object Con sumer 

export 
Consume Fini sh 
Receive par Cmsg: natural 

categor y 
birth request Receive 
death request Finish 

body 
slot cs : 1 .. 2 
s l ot inf: natural 
act Receive 

cps 
val inf << Receive .Cmsg 
val cs << 1 

end cps 
act Consume 

enb cs = 1 
va l cs = 2 

act Fini s h 
enb cs = 2 

end Consumer 

13 

o 

The semantics of an interaction, aggregation or encapsulation in Nautilus is straightforward since it is given by a 
synchronization or an encapsulation o f reification morphisms of nonsequential automata (an aggregation also defines a 
relabeling) . An action with parameters, inputs or outputs is associated to a family of transitions indexed by the 
corresponding values. 

I nteraction 
Prod and Part_Number 

Figure 10 Relationship between component automata of an interaction and an aggregation 



Nonsequential Automata Semantics for a Concurrent Object Based Language 

82 = 2pN Ef>(2prE!72nuffi2pm)Ef>(1csEi12i~2cm) 

83 = 2pN Ef>(2prE!72nuffi2pm)Ef>(2csEE>2i~2cm) 

Figure 11 Res ulting (source) automaton 

14 

Example 3.6 Consider the specification in the previous example. Its semantics is given by composing a 
synchronization (for the interaction) followed by an encapsulation (for the view) and by another synchronization (for 
the aggregation) . The relationship between component automata is (partially) illustrated in the Figure 1 O where 
interactions are represented by arrows and aggregations by "tracks" and the resulting automata is (partially) illustrated 
in the Figure 11. In the figures, a transition whose (abbreviated) label has a question mark corresponds to a request 
action. o 

4 Concluding Remarks 

Nonsequential automata constitute a categoria( semantic domain with full concurrency which is, for our knowledge, 
the first model for concurrency which satisfies the diagonal compositionality requirement, i.e., reification compose 
(vertically) and distributes through the parallel composition (horizontally). 1t is based on structured labeled transition 
systems. Synchronization of automata is categorically explained, by fibration techniques. Tables for synchronization 
are categorically defined. The hiding of transitions is also dealt with, by cofibration techniques , introducing the 
essential ingredient of internai non-deterrninism. Reification is explained using Kleisli categories. Synchronization and 
hiding are extended for reifications. 

To experiment with the proposed semantic domain, a semantics for a concurrent, object-based language is given. 
The language named Nautilus is based on the object-oriented language GNOME, which is a simplified and revised 
version of OBLOG. Some features not present on GNOME such as reification (implementation of an object over 
computations of another) and aggregation (composition of objects in arder to build a more complex one) are 
introduced. While in an interaction (also present in Nautilus) the relationship between objects is defined within the 
component objects, in an aggregation it is defined extemally. Interaction, aggregation and reification may be state 
dependent. Also, in Nautilus, it is possible to extract a view from an existing object. 

Considering that an action of an object in Nautilus may be a sequential or concurrent composition of clauses, 
executed in an atomic way, the semantics of an object in Nautilus is given by a reification morphism where the target 
automata called base is deterrnined by the computations of a freely generated automata able to simulate any object 
specified over the involved attributes and the source automata is a relabeled restriction o f the base. The semantics of a 
reification is the reification of the source automata over the target composed with the reification of the target over its 
base. The semantics of an interaction, aggregation or encapsulation is given by a synchronization or hiding of 
reifications o f nonsequential automata. In this context, the diagonal compositionality is essential. 

With respect to further works, the next step is to reintroduce in the language Nautilus some of the forgotten 
features of GNOME such as classes and inheritance. Also interesting is the clarification of the relationship of the 
nonsequential automata with logics, following the work in [Fiadeiro & Costa 94] and extending the work in [Menezes 
& Costa 95]. 



Nonsequential Automata S emantics for a Concurrent Object Based Language 15 

References 

[Asperti & Longo 91] A. Asperti & G. Longo, Categories, Types and Structures- An introduction to the Working Computer 
Science, Foundations of Computing (M. Garey, A. Meyer, Eds.), MIT Press, 1991 . 

[Bednarczyk 88] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, technical report 1/88, University of 
Sussex, 1988. 

[Costa et ai 92] J. F. Costa, A. Sernadas, C. Sernadas & H. D. Ehrich, Object interaction, Mathematical Foundations of 
Computar Science '92 (1. Havei, V. Koubek, Eds.), pp. 200-208, LNCS 629, Springer-Verlag, 1992. 

[Costa et al93] J. F. Costa, A. Sernadas & C. Sernadas, Data Encapsulation and Modularity: Tree Views of inheritance, 
Mathematical Foundation of Compute r Science '93, (A. Borzyszkowski , S. Sokolowski , Eds.), pp. 382-391, LNCS 711, 
Springe~Verlag, 1993. 

[Costa et al94] J. F. Costa, A. Sernadas & C. Sernadas, Object inheritance Beyond Subtyping, Acta lnforrnatica 31, pp. 5-
26, Springer-Verlag, 1994. 

[Ehrich & Sernadas 90] H. O. Ehrich & A. Sernadas, Aigebraic impiementation of Objects over Objects, Stepwise 
Refinernent of Distributed Systems: Models, Forrnalisms, Correctness (J . W. de Bakker, W. -P. de Roever, G. Rozenberg, 
Eds.), pp . 239-266, Springer-Verlag, 1990. 

[Fiadeiro & Costa 94] J. Fiadeiro & J. F. Costa, Mirrar, Mirrar in My Hand ... A Duaiity Between Specifications and Modeis of 
Process Behavior, accepted for publication in Mathematical Structures in Computer Science. 

[Gorrieri 90] R. Gorrieri, Refinement, Atomicity and Transactions for Process Description Language, Ph.D. thesis, Università 
di Pisa, 1990. 

[Hoare 85] C. A. R. Hoare, Communicating Sequentiai Processes, Prentice Hall , 1985. 
[Mac Lane 71] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971. 
[Mazurkiewicz 88] A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time, Branching Time and Partia! Orders in 

Logic and Models for Concurrency (J. W. de Bakker, W. -P. de Roever, G. Rozenberg, Eds.), pp. 285-363, LNCS 354, 
Springer-Verlag, 1988. 

[Menezes & Costa 93] P. 8 . Menezes & J. F. Costa, Synchronization in Petri Nets, accepted for publication in Fundamenta 
lnformaticae, Annales Societatis Mathematicae Polonae, lOS Press. 

[Menezes & Costa 95] P. 8 . Menezes & J . F. Costa, Compositionai Reification of Concurrent Systems, Journal of the 
Brazilian Compute r Society- Speciallssue on Parallel Computation, No. 1, V oi. 2, pp. 50-67, 1995. 

[Menezes & Costa 95b] P. 8 . Menezes & J. F. Costa, Systems for System impiementation, in Proceedings of the 14th 
lnternational Congress on Cybernetics, accepted for publication in the Journal of Cybernetics. 

[Menezes et ai95] P. 8. Menezes, J . F. Costa & A. Sernadas, Refinement Mapping for (Discrete Event) System Theory, to 
appear in the Proceedings of the Fifth lnternational Conference on Computar Aided System Technology, EUROCAST 
95, LNCS, Springer-Verlag. 

[Meseguer & Montanari 90] J. Meseguer & U. Montanari, Petri Nets are Monoids, lnformation and Computation 88, pp. 105-
155, Academic Press, 1990. 

[Milner 89] R. Milner, Communication and Concurrency, Prentice Hall, 1989. 
[Reisig 85] W. Reisig, Petri Nets: An lntroduction, EATCS Monographs on Theoretical Computar Science 4, Springer­

Verlag, 1985. 
[Sassone et ai 93] V. Sassone, M. Nielsen & G. Winskel, A Ciassification of Modeis for Concurrency, CONCUR 93: 4th 

lnternational Conference of Concurrency (E. Best, Ed.), pp. 82-96, LNCS 715, Springer-Verlag, 1993. 
[Sernadas & Ehrich 90] A. Sernadas & H. O. Ehrich, What is an Object, After Ali, Object-oriented Databases: Analysis, 

Design and Construction (R. Meersman, W. Kent, S. Khosla, Eds.), pp. 39-69, North-Holland, 1991 . 
[Sernadas & Ramos 94] A. Sernadas & J . Ramos, A Linguagem GNOME: Sintaxe, Semântica e Cálculo, technical report, 

Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon, 1994. 
[Sernadas et ai92] A. Sernadas, J. F. Costa & C. Sernadas, Especificação de Objetos com Diagramas: Abordagem OBLOG, 

technical report, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon, 1992. Prêmio Descartes 1992. 
[SernadasC et ai 91] C. Sernadas, P. Resende, P. Gouveia & A. Sernadas, in-the-Large Object-Oriented Design of 

information Systems, The Object-Oriented Approach in lnformation Systems (F. van Assche, 8 . Moulin, C. Rolland, Eds.), 
pp. 209-232, North-Holland, 1991 . 

[SernadasC et ai92] C. Sernadas, P. Gouveia & A. Sernadas, OBLOG: Object-Oriented, Logic-Based Conceptuai Modeling, 
technical report, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon, 1992. 

[SernadasC et ai92b] C. Sernadas, P. Gouveia, J. Gouveia & P. Resende, The Reification Dimension in Object-Oriented 
Database Design, Specification of Data Base Systems (0. Harper, M. Norrie, Eds.) , pp. 275-299, Springer-Verlag, 1992. 

[Szabo 78] M. E. Szabo, Algebra of Proofs, Studies in Logic and the Foundations of Mathematics, vol. 88 , North-Holland, 
1978. 

[Winskel 87] G. Winskel, Petri Nets, Aigebras, Morphisms and Compositionality, lnformation and Computation 72, pp . 197-
238, Academic Press, 1987. 


