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“Of all the intellectual hurdles which the human mind has confronted and has
overcome in the last fifteen hundred years the one which seems to me to have

been the most amazing in character and the most stupendous in the scope of its
consequences is the one relating to the problem of motion.”

— SIR HERBERT BUTTERFIELD



ABSTRACT

The size of datasets became the major problem in data analysis today. As urban sens-
ing becomes popular, datasets of spatial and temporal nature become ubiquitous, leading
to several concerns regarding storage and management. It also creates a shift of paradigm
in data analysis, as datasets that once represented a single series of measurements ordered
in time are now composed of hundreds of series with ever increasing sampling rates.
Also, as urban data usually presents inherent geographic disposition, most analysis tasks
requires the support of proper spatial views. It becomes another problem, once that dis-
playing technologies do not advance at the same of pace that sensing technologies do, and
consequently, there is usually more data than visual space to represent it. After conducting
exhaustive research on temporal data analysis and visualization, we improved a compact
visual representation of time series to support the exploration of large spatio-temporal
datasets. Our proposal exploits the compactness of such representation to allow the use of
a map to represent the spatial properties of the data in a coordinate scheme while present-
ing, in a comprehensible manner, hundreds of series simultaneously, with full temporal
context. We argue that such solution can effectively support many exploratory tasks in an
intuitive manner. To support this claim, we show how the idea was conceived, and im-
proved along the development of two design studies from different application domains,
and validated by the implementation of prototypes used in the exploratory analysis of
several datasets with 3 different data structures.

Keywords: Time Series, Bike Sharing, Running, Spatio-Temporal Data, Urban Data,
Visualization, Exploratory Data Analysis.



RESUMO

Pilhas Ordenadas de Series Temporais para a Exploração de Conjuntos de Dados
Espaço-Temporais

O tamanho dos conjuntos de dados se tornou um grande problema atualmente. À me-
dida que o sensoriamento urbano ganha popularidade, os conjuntos de dados de natureza
espacial e temporal se tornam ubíquos, e levantam uma série de questões relacionadas ao
armazenamento e gerenciamento destes. Isso também cria uma mudança no paradigma
de análise, uma vez que os conjuntos de dados que antes representavam uma única série
de medições ordenadas no tempo, agora são compostos por centenas dessas séries, com
uma taxa de amostragem que está aumentando constantemente. Além disso, uma vez
que os dados urbanos normalmente apresentam disposição geográfica inerente, a maioria
das das tarefas requerem o suporte de representações espaciais apropriadas. Este se torna
outro problema, visto que as tecnologias de exibição de imagens não avançam na mesma
velocidade das tecnologias de sensoriamento, de modo que consequentemente acaba-se
tendo mais dados do que espaço visual para representa-los. Após conduzir uma pesquisa
exaustiva a respeito de análise de dados temporais e visualização, nós melhoramos uma
visualização compacta de series temporais para auxiliar a exploração de grandes conjuntos
de dados espaçotemporais. Nossa proposta aproveita a compacticidade de tal represen-
tação para permitir o uso de um mapa para representar os atributos espaciais dos dados, de
modo coordenado, enquanto representação, de forma compreensível, centenas de series
simultaneamente, com total contexto temporal. Nós apresentamos nossa proposta como
sendo capaz de auxiliar várias tarefas de caráter exploratório de forma intuitiva. Para de-
fender essa afirmação, nós mostramos como essa ideia foi desenvolvida e melhorada ao
longo do desenvolvimento de dois estudos de design visual em diferentes domínios de
aplicação, e validamos com a implementação de protótipos que foram usados na análise
exploratória de vários conjuntos de dados com 3 representações diferentes.

Palavras-chave: Series Temporais, Compartilhamento de Bicicletas, Corridas de Rua,
Dados Espaço-Temporais, Dados Urbanos, Visualização, Analise Exploratória de Dados.
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1 INTRODUCTION

Appearing constantly in every field of science and engineering as well as implicitly
in many nontechnical activities of ordinary people, time series are the most ubiquitous
kind of data available nowadays. We usually associate the notion of time series with the
most basic and explicit instance of such data like temperature measurements through the
day, however such data is far more available than most people realize, as it lies implicit in
almost every dataset. The reason is that time itself is a variable that can be assigned as a
key attribute to most data entities, thus turning a wide range of dataset into potential time
series, and the study of such model of data is of great importance.

Recently, the accelerated advance of sensing technologies, cities are becoming a major
source of data. These urban datasets reflect city dynamics and usually can tell a lot about
how people live. The problem is that the ever increasing sampling rates at which data
is conceived and the fact that it usually has many attributes associated turn the analysis
almost unfeasible without heavy computation. With such massive amount of information,
the trend is to learn from the dataset as whole instead of analyzing individual elements.
The actual challenge in data analysis is dealing with the high amount of data, relate dif-
ferent elements and available variables, and discover useful information that is implicit.
The Data Mining field provide a wide range of tools to analyze data when the objective is
known in advance, however when this is not the case a proper information visualization
technique is a better solution. Actually, Andrienko and Andrienko [7] point that the first
step in the general paradigm for using computational tools (see diagram in figure 1.1) is
to look at the data, so we can understand what computational tools could be useful. The
purpose of data visualization is to provide a first overview of the dataset so that the ana-
lyst can notice behaviors and patterns, spot outliers, make better choices of computational
models, improve those models, and estimate initial parameters.

Figure 1.1: [Steps in computational paradigm] The steps in the computational paradigm.
(from [7])

Now, through the perspective of data visualization, the problem is that display tech-
nologies do not keep up with sensing ones. As a result, there is much more data to analyse
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than visual space available to represent it. In addition, the increasing complexity of the
datasets also leads to incresing visual requirements. For instance, urban data usually has
spatio-temporal properties, which requires representation in both spatial and temporal
frames.

Through the duration of this thesis, we worked with the visual analysis of spatio-
temporal datasets and used different techniques to support many exploratory tasks. More
importantly, we adopted a known technique for the representation of a set of hundreds
series and adapted it to the exploration of systems of spatio-temporal series. We present
some original designs created around this idea to explore many real datasets, using three
different data structures from two application domains. We argue in favor of this approach
as a solution that make feasible the analysis of groups of hundreds of spatio-temporal
series with usual settings of display resources, and present the results of two case studies
to prove our point.

This report is divided in two main parts: I Background and II Original Work. In part I,
we provide context with the exposition of three topics of major importance to our works,
in three chapters: 3 Time Series, 4 Time Series Visualization and 5 Design Aspects for
Exploratory Analysis. The first one (Chapter 3) is further divided in two sections about
how the series can be represented and how to compare different series. Those are topics
of major importance. Comparison is an ubiquitous task in data analysis, but since time
series are complex high dimensional data types, their comparison is non-trivial and has a
strong dependence on how they are represented as means of data structure. The second
chapter then reviews aspects of time series regarding their visual representation, while the
last covers aspects in the design of exploratory analysis solutions.

In part II we present the main works related to our design view of compressed time
series together with the rationale supporting our choice. Then we introduce the two orig-
inal works we developed as design studies in two chapters: the Visualization of Running
Races and the Visualization of the Dynamics of Bike-sharing Systems. Each chapter is
further divided in 4 sections: 1 Related Works, to review the state of the art on the subject;
2 Data, to present the dataset acquisition and processing stages; 3 Method, to introduce
our design solution and 4 Results, presenting the outcomes of our analysis using our pro-
totypes and real datasets as use cases. Finally, we conclude with some final considerations
in part 9. Also, we added one Appendix section that presents an original work on Atrial
Fibrillation, in which our role was secondary, but still related to time series analysis and
visualization.
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Part I

Background
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2 TERMINOLOGY

Our work is related to topics that share a large list of concepts. Different works tend
to use the same word for different concepts and also different words for the same concept,
so, to avoid confusion due to conflicting terminology along our exposition to follow, we
present now a list of terms frequently used in our context along with the meaning they
convey in our rationale. This list is based in the terminology used in Adrienko’s book on
exploratory analysis of spatio-temporal data [8].

Data: Data are records sharing the same structure. Each record contains measurements
about the results of some observation or its context. The context is usually related to
independent variables (mainly time and space in this work).

Structure: The ordering of the data records, with each position having its meaning. A
position is also called a component of the data. A value domain is the set of all values that
can appear in a data component.

Components of Data: A data component that corresponds to the observed property
of the phenomenon is a charactetistic component or attribute. Their values are called
characteristics.

Components given context about the observation are referential components or refer-
rer. In our work, space and time are the referrers of major importance (specially the last).
The value of one or more referrers, that fully characterizes the context of a observation is
a reference.

Dataset: A set of data. It characterizes a phenomenon and through the data analysis of
a dataset, an analyst gains knowledge about the former. The content registered in a data
record is a value, with the ones that reflect the results of the observation is a characteristic
while those that tell the context are references.

Multidimensional Data: The dimensionality of a dataset is related to the number of
data components. Usually, specially in spatio-temporal analysis, only the number of re-
ferrers is considered, attributes are not taken as dimensions of a dataset. This constraint
is normally dropped in scenarios where space is not part of the referrers set.

Independent and Dependent Variables: Since the context for observations may be
chosen arbitrarily, and do not depend on other aspects, referrers are independent variables.
The attributes are dependent ones, as the context determines the characteristics observed.

Data Function: A function defining a correspondence between references (values of
referrers) and characteristics (values of attributes).

f(x1, x2, ..., xM) = (y1, y2, ..., yN) (2.1)
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with M as the number of referrers in the dataset, N the number attributes, x1, x2, ..., xM

the refferers (independent variables) and y1, y2, ..., yN the attributes.

Behavior: The resulting configuration of characteristics that arise from a data function
applied to a set of references, considering the relations between those references as well.
It is related to how the characteristics change in response to changes in the references.
For example, the behavior over a period is the sequence of characteristics corresponding
to the ordered time instants in the given period. With space as referrer, the behavior is a
distribution of the characteristics over an area.

Pattern: A construct that present the essential features of a given behavior in a simpler
fashion, without the specification of every reference and corresponding characteristics. It
can be described in natural language, formally or visually. Examples are increasing trends
of a numeric attribute over time, and concentration of the same characteristic in a small
area.

Task: Tasks are questions about data to be answered considering its referrers and at-
tributes. They are composed of two parts: the target, that is what information we want to
obtain, and the constraints, that represent the conditions the information needs to conform
to.

Tasks concerned about individual references and characteristics, are named elemen-
tary. The elementary level of analysis is the search of answers for elementary tasks.
Opposed to elementary tasks, synoptic tasks consider sets of references and the corre-
sponding behavior of the attributes. In a synoptic task, the set of references is considered
a whole entity. Synoptic level of analysis is the primary objective in exploratory data
analysis.

Comparison Task: The identification of relations between elements, that can be refer-
ences, characteristics, sets of references, or behaviors. Comparison is probably the most
frequent task in exploratory analysis. Some example of comparison tasks are differen-
tiation (if two elements are equal or not), ordering and distance (when it difference can
be measured). There is also comparison of sets (can include, overlap or not overlap each
other), and of behaviors (can be similar, dissimilar, or even opposite).
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3 TIME SERIES AS BIG DATA

Analysis of temporal data used to have a single time series as its dataset: a group
of data records ordered by the time of observation. But now, sensing technologies have
been creating an ever increasing amount of series with increasing sampling rates as well,
forcing a paradigm shift in the analysis. Time series became the data records of the
datasets under analysis. This shift has major implications, mainly because time series are
essentially high-dimensional; not in the sense of dimensionality given previously in the
terminology we adopted, but with respect to the number of values in a series: the num-
ber of samples, defining the series size. While the comparison of canonical data types
like categorical and ordinal variables, is normally straightforward, comparing different
time series is not a simple task. An analyst must choose a proper function that measures
the dissimilarity between series while conveying the right semantics for the context do-
main. Another issue is the computational complexity of the comparison function since the
dataset can contain hundreds to thousands of series, each with so many samples, resorting
to a complex comparison may become a problem.

We put together in this chapter a quick overview of methods, from the domains of data
mining and machine learning, which are concerned with the management of time series
to support data analysis tasks like querying and classification. While our original works,
presented in the second part of this document, do not apply machine learning solutions,
the topics presented here gives a view into the complexity of the analysis of multiple time
series and are also relevant to conception of visualization designs and tools.

We first present a review of representation methods, as the structure used may have
implication in the comparison procedure, then the different dissimilarity measures are
reviewed with the semantics they convey for analysis tasks.

3.1 Representation

Works on representation focus in the definition of data structures to represent time
series. The proposed solutions are always concerned about reducing storage requirements
and improving the effectiveness and efficiency of querying and classifying the series.
Keogh and Kasetty [46] claim that "in the last decade there has been an explosion of
interest in mining time series data" and "literally hundreds of papers have introduced
new algorithms to index, classify, cluster and segment time series". Wang [75] reinforces
this belief. Both works overview previously proposed solutions and present exhaustive
comparative experimental analysis for dozens techniques with many datasets. The review
we present is primarily based on their works.

Wang [75] formally defines a time series as a sequence of pairs
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Figure 3.1: Series with different sampling rates and sizes.

T = [(p1, t1), (p2, t2), ..., (pi, ti), ..., (pn, tn)] (3.1)

where pi is a data point in a d-dimensional data space, and ti is the time stamp at
whitch pi ocurred. If the sampling rate of the series are the same, then ti can be omitted,
simplifying the representation. Such structure is named raw representation. Usually, with
real datasets, the sampling rates can vary between different series, it can also be variable
in the same series (ti − ti−1 6= ti+1 − ti), and their lengths n (number of samples, or size)
may differ as well (see figure 3.1).

Table 3.1: Representation methods (from [75])

The table 3.1 shows a classification of some major representation methods in a hierar-
chy. Since a representation solution is always a simplification of the raw representation,
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there is usually error between both representations. The methods are divided into two
classes: adaptive methods adapt locally to the content of each series attempting to min-
imize the reconstruction error, and non adaptive methods that handle the whole dataset
equally.

3.1.1 Non Adaptive Methods

Piecewise Aggregate Approximation (PAA) divides a series into segments of equal
lengths and stores for each segment the average of the values of the data points that
fall within it. Other techniques represent the series as a combination of basis functions
(Wavelets, Discrete Fourier Transformation, Discrete Cosine Transformation, and Cheby-
shev Polynomials), storing a reduced set of coefficients. The more coefficients used, the
lesser the reconstruction error, however, it increases the storage requirement.

3.1.2 Adaptive Methods

Adaptive Piecewise Constant Approximation (APCA) divides a series into segments,
but differ from (PAA) as the length of the segments vary to reduce the reconstruction er-
ror. Piecewise Polynomials techniques aproximate the series by fitting polynomial curves
and using the curves parameters as representation. Symbolic techniques represent each
section of a time series as a symbol instead of a set of numeric values. Symbolic Aggre-
gate Approximation, for instance, first transform the series into Piecewise Aggregation
Approximation and then convert each segment to a letter.

According to [75], a characteristic that is very desirable in representation method is
the one of allowing the calculation of lower bounds, that allows one to create a distance
measure that when applied to compare series reduced using such representation is guar-
anteed to have a value lesser than or equal to the true distance (dissimilarity, difference)
given if using the raw representation (no compression, reduction). The practical outcome
of such property is that indexing, querying, comparing the series can be done using the
reduced representations with the guarantee of no false-negatives. The methods that allow
lower bounding are marked with * in the table.

3.2 Comparison

As with any data type, time series cannot be compared when represented using dif-
ferent structures. Comparison is the next step following representation, being the other
motivation besides the reduced storage. It is a fundamental exploratory task and the base
of more complex ones like querying and classification.

Figure 3.2 depicts five different issues that must be carefully addressed when compar-
ing different series. Noise is a common issue in signal processing and analysis. Removing
noise from a series makes it easier to understand its shape and properties. The problem of
reducing noise is usually solved by converting the raw series using a proper representation
technique. Series with similar shapes can have different amplitudes of values. In different
contexts, such series can be considered similar or different. The same is valid for ampli-
tude shifting, when they have the same amplitude of values, but centered around different
averages. Both the case of different amplitudes and amplitude shifting can be ignored by
applying normalization, i.e. scaling each series to the range of 0 to 1. Again, different
scenarios may consider series with such discrepancies to be different or not. Time scaling
is a complex problem. In some applications, like voice recognition, two series are similar
if they have the same shape, even with distorted along the time axis; two people can say
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(a) Noise (b) Different Amplitudes

(c) Amplitude Shifting (d) Time Scaling

Figure 3.2: Comparison problems

the same word, but at different speeds. It also important in the identification of patterns.
For instance, in the figure, both series have the same sinusoidal behavior, but at different
frequencies. In an effective pattern querying framework, if the red series were given as
input, the system should return the blue one as matching the query.

The measures are divided in two major groups: lock-step measures and elastic mea-
sures. The table 3.2 presents the hierarchy of the major dissimilarity measures. The term
dissimilarity is usually used instead of similarity since a value of 0 means that the series
are equal, and increases together with the difference between the subjects. Figure 3.3
exemplify the rationale behind some of the class of measures.

Table 3.2: Different measures (from [75])
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3.2.1 Lock-step Measures

Lock-step measures compare samples of the same index in both series one by one;
thus the series need to have the same length, and samples with the same index must be
coherent (correspond to the same time). The Euclidian Distance is the most used lock-
step measure [75], but other forms of the Lp-norms are also used. Its set of advantages
includes being intuitive to understand, easy to implement, parameter-free and having lin-
ear computational complexity. The drawback is that since the mapping between samples
in the comparison is fixed, such measures are sensitive to noise, to misalignment in the
time axis and to local time shifts.

(a) Lock-step (b) Elastic

(c) Edit (d) Threshold

Figure 3.3: Time series are used to represent the shape of a image by means of the vari-
ation of its curvature. Different dissimilarity measures are used to compare the shape of
the figures. (from [75])

3.2.2 Elastic Measures

Elastic measures differ from lock-step ones by not being rigid (as the name implies)
in the mapping between the samples of the series. These measures are concerned with
the problem of global and local temporal shifting, allowing the series to "stretch" or
"compress" (related to time) to achieve a better match. The dynamic time warping al-
lows 1-to-many mapping between samples, thus not restricting the series to have equal
lengths. The major drawback is its quadratic computational complexity, but "many lower
bounding measures have already been devised to speed up searches using DTW and it has
been shown that the amortized cost for computing DTW on large datasets is linear" [75].
Like DTW, edit distances allows 1-to-many mapping, but also opens the possibility of not
matching some points.
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4 TIME SERIES VISUALIZATION

We present a study of information visualization solutions regarding time-related data,
ranging from general techniques proven to be applicable in several use cases to very
domain-specific tools, including the most accepted taxonomies and works that represent
the state of the art in the subject. We start by introducing a taxonomy regarding time and
data models, and how they are represented visually.

Working with time-oriented datasets makes room for several temporal questions, some
examples of common analysis tasks are:

• When was something greatest/least?

• Is there any pattern?

• Are two or more series similar?

• Do any of the series match a pattern?

• Simples and faster access to the series.

• Does data element exist at time t (or period p)?

• When does a data element exist?

• How long does a data element exist?

• How often does a data element occur?

• How fast are data elements changing?

• In what order do data elements appear?

• Do data elements exist together?

These questions, the way they will be solved, and their answers, vary according to
the time model used and the type of data tied to the time elements. In this chapter we
present the taxonomy suggested in [4, 5] to guide the creation of effective time-oriented
data visualizations by understanding the inherent issues of each class. The classification
is based on three criteria: time, data and representation. Time and data criteria are related
to the dataset itself, representation, however, depends of the tasks one would want to
perform and is also known as visualization aspects.
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4.1 Time

The time criteria corresponds to the model used to represent time in the dataset, what
are the properties of the time axis. A study on different representations of time can be
found in [39] but for practical purpose the categorization used to classify time was the
one in [30]. Time criteria is divided in scale, scope, arrangement, viewpoint, granularity
and primitives.

4.1.1 Scale (ordinal, discrete and continuous)

Scale can be seen as the level of detail of the time axis. Ordinal scale is the level of less
detail, where the only relation about two elements is relative order, i.e., we know which
happens before or after but cannot determine how long is the time span between them.
Such relation is a qualitative temporal relation, with no quantitative information. Discrete
time present time values that can be mapped to integer values so that temporal distance
between elements can now be evaluated, however there is no information of events that
might have happened between two consecutive points. Continuous scale extends the dis-
crete case by mapping time values to real numbers thus between any two point in time, a
third one exists. Figure 4.1 show events occurring in the different time scales.

(a) (b) (c)

Figure 4.1: (a) Ordinal scale. (b) Discrete scale. (c) Continuous scale. Diagram from [5]

4.1.2 Scope (point and interval)

Scope defines the temporal extent of the basic time primitives. Point-based primitives
are analogous to a Euclidian point in space, that has area equals to zero, having no dura-
tion, as representing a date by a single instant at that day. Interval primitives have inherent
duration , i.e., representing the date as the whole time span of the day from 00:00:00 to
23:59:59.

4.1.3 Arrangement (linear and cyclic)

Arrangement relates to the shape of the time domain. The linear arrangement is the
ordinary perception of time as flow infinitely from past to future in a linear fashion. The
cyclic arrangement on the other hand is a set of time values that recur, this way, a given
time value precedes and succeeds another one at the same time, i.e., the seasons of the
year, winter comes after summer but also before as the pattern repeats itself. Figure 4.2
illustrate the different arrangements.

4.1.4 Viewpoint (ordered, branching and multi-perspective)

As the name implies, viewpoint is concerned with the different views of the time axis,
how many views exist. Ordered viewpoint is the ordinary variant: the events happens
one after the other in the time axis. This type of view can be totally ordered or partially
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(a) (b)

Figure 4.2: (a) Linear arrangement. (b) Cyclic arrangement. Diagram from [5]

ordered, in the first one there is no overlapping of events, as for the partially ordered case,
one event can start before the last one ends. Branching viewpoints present subdivisions in
the time axis to model multiple simultaneous alternative scenarios. This variant is mod-
eled as a directed graph where edges direction dictates the order of the time flow. In [30]
a variant of branching time is suggested, called multiple perspectives, that differs from
the original one in the sense that in branching viewpoint only one of the multiple alter-
native scenarios will actually happen, multiple perspectives on the other hand represents
the time axis in multiple views, useful for example to structure eyewitness reports. Both
multiple perspectives and branching time introduce the need to incorporate probability
in the visualization once that some branches can be more likely to happen than others.
Figure 4.3 shows a diagram of each structure.

Figure 4.3: (a) Linear time. (b) Cyclic time. (c) Branching time. Diagram from [4]

4.1.5 Granularity (multiple, single and none)

The granularity is the level of abstractions for the time values available. A calendar is
the best example of multiple granularity: a day is the lowest abstraction level (a chronon)
, days are clustered in a week, weeks are clustered in months, and months in years. The
levels of abstraction higher than the chronon level are the granules. Mappings between
granularities can be regular, i.e., 1 minute always map to 60 seconds, or irregular, i.e., not
every month maps to 30 days. In a representation with single granularity there is only
the chronons level, and when there is no abstraction the granularity is none. Granularity
is useful to map the underlying time domain to more meaningful time values, especially
when dealing with cyclic time like the Gregorian Calendar. Figure 4.4 exemplify the
multiple granularity of a calendar.

4.1.6 Temporal primitives (point, interval and span)

One property of the time model is the type of primitive that represent the time axis.
There are two options: use time points, that mark exact time instants, or time intervals,
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Figure 4.4: Three levels of granularity in the Gregorian Calendar. Diagram from [5]

which delimit a range of the time axis. A time point can be represented by a single values,
a interval on the other hand requires two time points, one for when it starts and the other
for when it ends, or a time point and a duration of how long it lasts. The time primitive
used is of major importance in the visualization and analysis as the possible temporal
relations change with the representation. Figure 4.5 shows the different temporal relations
as described in [39]. Time points and time intervals are considered anchored primitives
since they have defined begin and/or end in the time axis, but a third type of primitive
exists: a span. A time span is a unanchored time primitive that has only a duration, like a
interval without the start or end point.

Figure 4.5: (a) Possible temporal relations between two time points. (b) Temporal rela-
tions between time intervals. Diagram from [4]

4.1.7 Determinacy

The last aspect of the time model is the determinacy. It address the level of certainty
about the given time value. Uncertainty might come from inexact knowledge, like impre-
cise time events or future plans ("one or two days ago", "maybe it will take two weeks"),
and from change in the granularity level ("I’ll call you tomorrow", tomorrow is a single
time value in the granularity of days, but when changing the granularity level to hours,
there will be a range of 24 time values where the call can happen).

The variants of each aspect of the time model are not clearly defined in the dataset
thus must be wisely chosen in order to create an insightful visualization. To understand
the general trend of the dataset a linear time model is usually better, as for identifying
seasonal events and variations cyclic time is more effective.

4.2 Data

The data criterion addresses what type of data is tied to the time axis, to the time
primitives. The properties are: scale, frame of reference, kind of data, and number of
variables.
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4.2.1 Scale (quantitative and qualitative)

The data scale defines the nature of the data domain. The variants are quantitative data
and qualitative data. Quantitative data is associated to a metric, that can be discrete or con-
tinuous, so different values can be compared numerically. On the other hand, qualitative
data has no metric, so difference between values cannot be measured.

4.2.2 Frame of reference (abstract and spatial)

Another important aspect of a data element is the existence of a spatial relation. A
spatial frame of reference implies that the data is tied to some spatial location, when no
such attachment exists the data is said to be abstract. The type of frame of reference is a
very important property to design a proper visualization, once that spatial data already has
some clues for the visualization layout, as for abstract data, there is no such information
and an effective layout must be found.

4.2.3 Kind of data (states and events)

Data can express two different situations: a state and a event. Event data highlight
changes in a scenario and state data defines a span with no changes between events. An
data entry like "the plane landed" is of the event kind, a similar entry of state kind would
be "the plane is on the ground". The two variants are just different ways of representing a
data element, but is important to make clear which one of them is used in the visualization.

4.2.4 Number of variables (univariate and multivariate)

The last property is the number of values associated to each time element. Each time
element can be connected to a single value (univariate) or multiple data elements (multi-
variate). A wide range of time-series visualization and methods focus on the univariate
case, but multivariated series are becoming a lot more frequent and make room for dif-
ficult tasks and problems like comparison and correlation of the different variables and
finding different visual mappings to support visualization of the multiple variables.

Figure 4.6 summarizes the different properties of a data element.

Figure 4.6: Summary of the different data properties. Diagram from [5]
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4.3 Representation

In [5] the Representation aspect is named Visualization Aspects. It is our final ob-
jective: to represent a dataset with the characteristics addressed in the previous sections
in such way that it can be visually analyzed. Aigner et. al. starts with the characteriza-
tion of the problem as a set of three basic questions that will be subject of the next three
subsections.

4.3.1 What is presented

The "what" question refers to the dataset. It is concerned with what kind of data are
we interested in represent and how we model the time flow to which this dataset is tied to.
The variants for each of the previous characteristics presented previously in the taxonomy
of both time and data aspects must be known. For data they are: scale, frame of reference,
kind and number of variables; and for time: scale, scope, arrangement and viewpoint.

4.3.2 Why is it presented

The common thought is to expect that there is a representation that will fit well when
applied to any time-oriented dataset. The "why" question is probably the major cause that
leads this assumption to be false. This question is concerned with the tasks that one will
wish to accomplish when analyzing the dataset. The tasks are usually represented as a
series of questions that an user will try to answer when interacting with the visualization.
The expected tasks are closely related to the application domain, and that is why time-
oriented visualizations are usually very domain specific. Task models are common in the
field of human-computer interaction [23, 65]. In [53] McEachren presented a description
of tasks specific to time-oriented domains, we list some of them bellow.

• Temporal location

Looking for the occurrence of a given data element along the time axis. Starting
from a data element, the user looks for one or more time points or intervals, i.e.,
"When did the value was 0?"

• Time interval

Evaluate how long is the time span of a given data element. Starting from a data
element the user look for the length of an time interval, i.e., "How long this event
last?".

• Temporal pattern

Identify occurrences of a data element or set of data elements in the time axis or in
a given time interval. Starting from a given pattern of data elements, the user looks
for a measure of how often such pattern appear along the time axis, i.e., "How often
does the rate changes like this?".

• Rate of change

Evaluate how fast a data element is changing related to the associated time element.
Starting from a data element, find the magnitude of change over time, i.e., "How
much is the cost increasing?".

• Sequence
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Identify the order of occurrence of two data elements in the time axis. Starting from
a data element, identify its temporal order regarding a second one, i.e., "How was
born first of the two?".

• Synchronization
See if there are data elements tied to the same time point or interval. Starting from
a set of data elements look for time elements tied to more than one data element
from the set, i.e., "Which of them work at the same time?".

In these examples the more evident distinction is between identification tasks and lo-
calization tasks. Identification regards the case where we look for data values, localization
on the other hand is searching for time elements (when something happens is time). In
[7] Andrienko presents a taxonomy for visualization tasks, such taxonomy is shown in
figure 4.7.

Figure 4.7: Tasks taxonomy. Diagram from [5]

The taxonomy is based in two notions: the references, which is the domain where
the data has been collected (time in our scope), and the characteristics, which are the
collected data itself. The first level divide the tasks in elementary and synoptic tasks. The
elementary class include the tasks that deal with data elements in the individual level,
it can be a single value or a structure of data, but must be a single data element, data
is considered separately and not as whole. The synoptic tasks class is the opposite, it
addresses tasks that handle sets of data elements, involving a general view and considering
the set as whole.

In a second degree, elementary tasks are further subdivided in lookup, comparison and
relation seeking tasks. A lookup task try to find a event, it can be direct, when searching
data elements, or inverse, when searching for time elements. Relation seeking, as the
name implies, intend to find relationships between different elements. Comparison tasks
can be seen as relation seeking too, but when the relation one is looking for is not known
a priori, so we want to analyze each of the properties of both elements. Comparison tasks
can also be direct or inverse.

The synoptic class subdivides in descriptive and connectional tasks. Descriptive tasks
try to evaluate the properties of the set, that can be assembled of references (time ele-
ments) or characteristics (data elements), and further differentiate in the same categories
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of elementary tasks: lookup, comparison and relation seeking. The connectional tasks,
however, create links between two or more sets of elements based on the relational be-
havior of a set of underlying variables. The class of connectional tasks subdivides in
homogeneous and heterogeneous tasks depending if the related variables are from the
same set of reference or no, repectively.

4.3.3 How is it presented

This last question is about our final objective: how to visually represent a time-
oriented dataset. Now it should be already clear the dependence between the answer
to this question and the previous ones about data and time models, and user tasks. There
is already a large number of visualization of time-oriented data, each representing a dif-
ferent answer to the "how" question. In the next chapter we will present some of the most
interesting and recent solutions to the visualization of time-series. For the time being,
we keep following the taxonomy from Aigner et. al. [5] by focusing on two base crite-
ria to classify presentation methods: the mapping of time and the dimensionality of the
presentation space.

Time mapping
To be visually represented, time itself must also be mapped, like every abstract data,

to spatial entities, and its relevant attributes to visual attributes of the chosen entity. The
common choices in this mapping is geometric entities and its colors, but the natural human
perception of time can also be exploited by mapping the dataset time axis to physical time,
to the dynamics of the presentation. We now have two options: mapping time to space
or mapping time to time itself. The first one results in a single representation where time
and data must share the same space, the second one, on the other hand, leaves more room
to the spatial mapping of the data, however, the representation will evolve, changing over
time, and time elements will be mapped to each stage of the final animation. The first
approach is named static and the second as dynamic. It is important to note that the
availability of interaction in the visualization has no influence in this classification, static
representations can have interaction support and dynamic ones can provide no interaction
at all.

Figure 4.8: Bar graphs are one of the most common way of visually representing time-
oriented data by assigning the time axis to horizontal dimension of the display space.
Cyclic graphs represent the time axis as a spiral and are usually used to represent cycic
time. Diagram from [5]

To the visual mapping of time the most common approach is assign one of the display
dimensions to represent the time axis resulting in the widely known line charts, bar charts
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and alike. This representation is very intuitive and practical but when trying to fit a large
amount of data, or when the display area is small, this approach is not satisfactory. In [42]
Javed et. al. compare 3 types of such representation of time-series regarding perception
and spatial needs, also introducing a novel one called braided graphs (see Figure 4.9).
Another common method to represent time in space is using both display dimensions to
define a time spiral. Time spiral is the usual choice to visualize cyclic time. Figure 4.8
shows both representations of time in space. Different and less usual mapping schemes
include angle, line width, brightness, containment, connections and legend, examples are
shown in figure 4.10.

Figure 4.9: Different types of line graphs compared in by Javed et. al. in [42]. d) Braid
graph, a new graph proposed by Javed et. al. that changes the order that the graphs are
drawn to reduce the overlapping of series. Image from [42]

As said before, sometimes screen space is not enough to represent both data and time,
it is quite frequent to happen when dealing with geographic referenced information, multi-
variated data and graphs networks, so an alternative is representing time with the physical
time, creating an dynamic presentation, to leave more space for the data elements map-
ping. Dynamic presentations can be seen as animations or slide shows depending on the
number of frames shown per second. The dynamic approach may seen to be the better
choice as it represent time in the way we are used to understand, however there are issues
that must be noted. One example is that one might expect to be a one-to-one mapping be-
tween time elements and a frame of the representation in such way that time is represented
authentically, but that is not what usually happens as time elements may be aggregated
in a single frame due to a high amount of time elements, or additional frames (and time
elements) may be created for interpolation when there is few real time elements in the
dataset. Another issue is that the speed of the representation must be chosen carefully to
avoid false impression of the dynamics. Animations that are too fast will be difficult for
the user to keep up with, losing important information, and the ones that are too long may
become boring to follow, so it is important to provide means to control the time flow. Also
using a large dataset, like multivareted ones may result in an overflow of information that
the user cannot follow.

Dimensionality of the presentation space
The presentation space can be 2D or 3D. 2D representation make use of the dimen-

sions of the display and restrict the mapping options to 2D shapes. The 3D case adds
a new axis to encode information, enabling the use of 3D geometry for visual mapping,
but require a projection stage to map the 3D geometry to 2D space, once that the display
devices have only two dimensions. 3D representations exploit the human visual system in
its natural capacity to perceive our three dimensional world, however, there is no consen-
sus on if adding a new dimension adds to the visualization, due to issues, like distortion
by perspective projection and occlusion, introduced by 3D representations. On the other
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Figure 4.10: Different ways of mapping time to space. Diagram from [5]

hand, the 3D approach can be useful in some cases, like when working with spatial data
that already provides spatial information for layout and would benefit from one more.
Multivariated and large datasets that easily create cluttering in 2D space also would ben-
efit from an extra dimension, given that some mandatory interaction means and visual
cues are provided. In [25], Elmqvist et. al. present a study on techniques to handle 3D
occlusion. Figure 4.11 shows a diagram of the answers to the three important questions
in the creation of visual representations.
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Figure 4.11: Different ways of mapping time to space. Diagram from [5]
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5 DESIGN ASPECTS FOR EXPLORATORY ANALYSIS

When the temporal data is augmented with spatial attributes, a different set of tasks ap-
pear as the result of the spatio-temporal entanglement. In their book, Andrienko and An-
drienko [9] present a systematic overview of the exploratory analysis of spatio-temporal
data. Their work is our major reference on the subject, and we present now some of the
concepts presented, on which our design procedures were based.

One key notion, is the definition of the functional view of data structures. The book [9]
introduces the concept of a dataset as a function that express a correspondence between
referential and characteristic components (referrers and attributes) , the same way that a
mathematical function maps values from one input domain to an output one. Figure 5.1
shows this functional view of the dataset as a data function, as they call it.

Figure 5.1: Functional view of a dataset. Data as function of correspondence between
elements in the references set and elements in the characteristics set. (from [8])

R is the set of all references (combination of values of the dataset referrers, a tuple
with a value for each independent variable, i.e. GPS coordinates and time stamp) while C
is a set of characteristics (values of attributes, dependent variables, i.e. density, precipita-
tion). Function f is the correspondence between each element of the reference set f and
a specific element in the characteristic set C. The diagram was designed to convey three
properties of the data function:

• each reference set element corresponds to a single characteristic set element;

• characteristics corresponding to different reference elements can coincide;

• some combination of characteristics may not appear in the dataset, i.e. there is no
references combination that corresponds to them.
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5.1 Tasks

The functional view of the data is used to identify the types of tasks usually involved
in the exploratory analysis. The typology proposed by Andrienko [8] is designed around
the ideas expressed by Bertin in his work on semiology of graphics [16], distinguishing
tasks by their level of data analysis ("reading level" in [16]) but adding the division of data
components between referrers and attributes. For completeness, we show a table (Table
5.1) that depicts Bertin’s [16] reading level view of tasks. In this view, tasks type are
defined as the combinations of 3 reading levels in space and time domains.

Table 5.1: Bertin’s view of tasks according to reading levels (from [8])

Andrienko [8], define tasks as questions composed of two parts: the target and the
constraints. The target is the information we want to obtain, while the constraints are the
conditions this information needs to fulfill. The two parts can be seen as unknown and
known information, in this order. So the objective is finding the unknown information that
correspond to the specified one. Recalling the dataset functional formulation, a task can
be expressed by finding the elements (or elements) in the reference or characteristic sets,
that correspond to a given element (or elements) in the other set. Following this rationale,
they differentiate elementary tasks from higher level ones.

Elementary tasks address individual references or characteristics, they are not con-
cerned about reference set or characteristic sets as a whole, but in their elements. Tasks
that look for insight from sets of characteristics and references, viewing them as whole are
named Synoptic or General. This type of tasks focus on behaviors and patterns, instead
of data elements. Both elementary and synoptic tasks can also be of the Lookup class or
the Comparison class.

Lookup tasks aim at finding values of data components that correspond to given values
of other components according to the data function. These can be Direct, when references
are specified and the target are the correspondent characteristics, or Inverse when we look
for references related to given characteristics. Comparison tasks try to determine what
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are the relations between characteristics, or between references. Comparison can also be
direct, when comparing characteristics, or inverse, i.e. comparison of references.

Table 5.2: Examples of tasks by types.

The typology of tasks presented in [8] is a generalization to represent tasks in ex-
ploratory analysis in any domain. We will follow the one given another work from An-
ndrienko et al. [10] that specializes the one introduced so far to the case of exploratory
analysis of spatio-temporal datasets. Figure 5.2 summarizes the typology we adopted
from [10]. In this typology, a task type is defined as a combination of a search level,
a search target, and a cognitive operation. The cognitive operations are identification
(lookup in the general typology presented in [8]) and comparison (the same in [8]). Search
level is related to the plurality of the reference and characteristic sets, being elementary
or general (Synoptic). The differentiation comes from the two search targets:

1. when→ where + what. Time is given while the other data components (space and
other attributes) need to be discovered and described.

2. where + what→ time. Time needs to be discovered while the other data components
are used as constraints.

5.2 Tools

Both works follow the typology of tasks with a typology of exploratory tools to sup-
port them. In the general analysis from [8], the tools that support exploratory analysis,
are classified as follows:

• Visualization Tools: In this category represent data in visual form with graphs,
plots, diagrams, maps and others. Data elements are translated to graphic features
like display positions, shapes, sizes and colors. Solutions put together techniques
from the field of information visualization and human perception.
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Figure 5.2: Task typology for spatio-temporal data analysis. (from [10])

• Display manipulation: This class represents techniques to support the interactive
modification of the visualizations, enhancing the displayed result to make it easier
to perceive features of the data analyzed. The visual result is modified through the
manipulation of the function that convert data into visual properties, the visual en-
coding function. Examples of display manipulation tools are: ordering, eliminating
excessive detail, classification, zooming, and changing the parameters of encoding
functions. Examples of display manipulation tools are:

– ordering, reordering and arrangements to change the position of the displayed
elements, with the purpose of providing a clearer overall view of the distri-
bution of the characteristics of a dataset and of relations between different
attributes.

– generalization to get rid of irrelevant detail and noise to reveal the main fea-
tures of a behavior.

– classification is a type of generalization that visually groups references with
similar characteristics in sets that are then regarded as being identical.

– zooming to reduce the number of data components represented in the display
so that the remaining ones can be displayed with higher expressiveness.

• Data manipulation: tools to derivate new references and characteristics from the
initial ones. The two major purposes of these tools are to simplify the data, making
it easier to analyze; or to improve the dataset by adding different aspects of the
original data components.Examples of operations for data manipulation are:

– smoothing to reduce noise.

– interpolation to eliminate discontinuities.

– aggregation and integration to reduce the amount of data under analysis.

– interpolation and extrapolation to introduce additional references and esti-
mate their corresponding characteristics.
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– normalization to standardise values, thus achieving compatibility between dif-
ferent attributes.

Querying: Tools to automate the search for answers to questions specified by the
analyst. Common uses are searching for references that correspond to given char-
acteristics or finding the characteristics of specified references. The techniques in
this class are usually concerned with providing precise answers quickly enough so
that queries can be performed dynamically.

Computation: This class includes computational techniques from the field of data-
mining and machine learning. While data manipulation tools transform data into a
more suitable form for further analysis, computational tools are usually focused in
extracting essential data features.
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Part II

Original Work
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The problem we are interested is the one of representing many time series (with spatial
properties) at the same time, for visual inspection. In the previous part, we covered some
topics related to the analysis of time series, to create an understanding of why the visual-
ization of multiple time series at once is important. In Chapter 3 we presented aspects of
working with time series nowadays in the data mining domain. The problem then was to
represent large amounts of temporal data (databases of thousands of series) in such way
that it can be managed properly, through means of representation and comparison meth-
ods. We gave an overview of the major options for both tasks. Then, Chapter 4 brought a
review of aspects concerning the visual representation of temporal data from the domain
of information visualization. Beginning with the properties of the temporal attribute itself,
then to those of the data attached to it and finally to how to represent them visually. The
last chapter (Chapter 5), ended the first part with important aspects related to the design
of exploratory solutions. In that section, we reviewed the classes of tasks that analysts
perform during exploration of datasets, and the tools that compose exploratory systems to
support performing them.

In this second part we introduce the solutions we designed to support the exploration
of spatio-temporal data, considering that in our context of data analysis, datasets consist
of systems of time series.
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6 VISUALIZING GROUPS OF TIME SERIES WITH SPA-
TIAL PROPERTIES

There are two common approaches to visualizing temporal data that has spatial prop-
erties. The first one is the space-time cube design. In this method, the data is visualized
in a 3-dimensional setting where the two horizontal dimensions represents the spatial co-
ordinates while the vertical one is used for temporal representation (some examples are
shown in figure 6.1). The second consists of combining multiple views, usually a rep-
resentation of the dataset from the temporal aspect coordinated to a map that show the
spatial features; each view allowing for navigation in temporal and spatial domains re-
spectively. We have opted for this coordinate views approach as 3-dimensional settings
are known in the field of information visualization for requiring more complex interaction
from the analyst [4], and also because such visualizations can also be used in coordinate
settings, thus benefiting from improvements in this scheme.

Figure 6.1: [Space-time cube applications] Some applications using the space-time cube
design to visualize simulation data (left), trajectories (top-right) and history of points-of-
interest (bottom-right). (from [84])

In figure 6.2 we show an example of a system with coordinate views (taken from
[10]), to explore a dataset of unemployment rates in the provinces of Italy over a period
of 14 years. The bottom component represents the temporal components of the dataset,
plotting a line graph for each time series as the unemployment rates of each municipality.
The use of this kind of component is frequent in spatio-temporal visualizations to support
navigation in the time axis and the inspection of the different time series, as shown in
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the example where selecting a province in the map highlights the respective series below.
But as the number of series increases the visualization becomes cluttered, losing informa-
tive power as one cannot tell series apart from one another, nor identify patterns or spot
discrepancies.

Figure 6.2: [Spatio-temporal coordinate views] An interactive time-series graph dynami-
cally linked to a map. (from [10])

Many works have addressed the representation of multiple time series altogether, like
CloudLines [49], Horizon Graphs [69], Braided graphs [42], TimeWheel and MultiComb
presented in [73] (see figure 6.3). CloudLines [49] describes a technique to visualize
multiple time-series, where values are represented by the width of a line. Applying this
approach to datasets composed of a few dozen series becomes confusing due to the visu-
alization area required to represent the line thickness. Horizon Graphs [69] reduces the
spatial requirement by stacking sections of the area graphs, but it still cannot represent
sets of hundreds of series. Braided graphs [42] succeeds at visualizing multiple series in a
single frame through sectioning, ordering, and color labels. However, the scheme quickly
leads to confusion when the number of series increases. While these solutions can effec-
tively represent many series in a single view, the spatial requirement is still too much for
actual datasets that can easily have hundreds to thousands of series. Sets of only a few
dozen series can visualized with Horizon Graphs or CloudLines, while such amount is
already too much for presentation as Braided Graphs and TimeWheels.
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Figure 6.3: [Multi-series visualization techniques] Visualization techniques to represent
many series in a single view: (top-left) CloudLines [49], (top-right) Braided graphs [42],
(bottom-left) Horizon Graphs [69] and (bottom-right) TimeWheel [73].

Many works like Sequence Surveyor from Albers et al. [6], LiveRac from Mclach-
lan et al. [56] and Hao et al. [40] represent time series as horizontal stripes, in which
varying color represents the change in value through time according, to a color scale, as
in a heatmap [32]. Exploiting this representation, Kincaid and Lam [48] compressed the
stripes to horizontal lines of even 1-pixel thick to visualize groups of hundreds of series
(see figure 6.4).

Figure 6.4: [Compressed view of multiple series] (Left) Sequence Surveyor [6] uses color
to map values of time series represented as a horizontal stripes. (Right) Line Graph Ex-
plorer [48] further compress each series into a single line to show hundreds of series in
the same view.

We saw this compressed view as an interesting asset in the design of coordinate views
for spatio-temporal datasets and applied it in two case studies, from different application
domains, to validate our point. We made a series of adaptations to the general design to
conform to series with geographic coordinates represented by three different data struc-
tures with distinct semantics. The first case study supports the analysis of datasets of
raw series with measurements about hundreds of runners as they compete against each
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other in a running race. We show the adjustment of the compressed view to a scenario
of irregularity, where series have a high and varying amount of samples. Also, we used
animation to represent the temporal dimension with the real physical time, allowing us
to use the visual space to map distance, creating an intuitive visual representation of the
race. The second case study explores the dynamics of systems of bike sharing in a city.
We modified the compressed view to two data structures aggregated to frame the series
into common regular representation; the first with measures of level of resources (bikes)
at different locations (stations) in the system, and the second with events (trips) containing
spatial properties, i.e. origin, destination, direction and distance. Figure 6.5 shows a quick
overview of our adapted views. In the next sections, we present each work separately.
Both studies resulted in the implementation of prototypes to validate the applicability of
the proposed designs to the analysis of several real datasets.
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Figure 6.5: [Compressed series for spatio-temporal data] Our adaptations of the com-
pressed representation to different datasets. From top to bottom visualization of: the
progress of runners in running races, the balance of bikes among the stations in a bike-
sharing system, and the trips between the stations.
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7 RUNNING RACES

HR monitors were introduced in the 70s to help athletes record heart-rate activity dur-
ing competition which could be used in a subsequent analysis to improve performance.
Such devices comprise a Heart Rate (HR) monitor (incorporated into a wrist receiver)
and a chest strap transmitter. Data recorded can be as complex as the time-series con-
taining heartbeat during the entire exercise, as well as other information such as speed,
geolocation, etc. The affordability of such devices has made them popular recently. In
addition, activity recorded from monitors can be uploaded to computers, where they can
be inspected or shared with others (e.g. a persons physician).

Drawn by the novelty and popularity of the data, we wondered how visualization could
help people to understand better their performance when exercising. The focus of current
visualization tools, at the time, was on the visualization of a single activity, often lacking
the ability to compare multiple activities. However, inspecting multiple activities at the
same time can be very useful to compare the effort of different runners in a given activity,
or to compare the effort of a single person against others in a shared activity, so we chose
to address this problem in this first work. The analysis of such dataset is challenging
since it contains the multivariate time-series data generated by HR monitors for multiple
runners.

In collaboration with an expert in exercise physiology, we formulated questions to be
answered about the running race, guiding the conception of the visualization designs. To
validate our designs, we implemented an interactive tool, created use cases with real data
from different running races, and assessed how helpful each design was in answering the
questions posed by the expert.

7.1 Related Works

There are several studies that correlate fitness levels with well-being [18, 17, 21]. The
Physical Activity Guidelines Report [41] presents proofs of the importance of physical
fitness. In [21] consistent evidence is given about the direct association of myocardial
infarction to physical inactivity and that people with low fitness levels have a higher risk
of developing cardiovascular diseases. Running helps improve physical fitness, and there
are studies [38, 15] that correlate heart health to the time one takes to run a given dis-
tance. Running data, therefore, can provide important indicators of overall fitness. For
this analysis, the heartbeat of each individual can be normalized as a percentage of the
individual’s maximum heart rate (MHR), and different effort levels can be identified using
this information. In 7.1, from [14], four main HR zones are identified, each with different
characteristics. Training programs often rely on defining how long or how far a runner
should stay in each HR zone. Exercising at HR zone 4 for a long period can be dangerous,
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and there is a great concern about mortality and cardiac diseases [47, 55, 79]. Related to
this is the study on human limits [57, 43] and strategies in different aspects like hydration
[13] and energy consumption [72].

HR#Zone Effort#Index Effort#Level Pace Fuel#Source
1 60$75% Easy Slow Primarily4Fats
2 75$85% Moderate Moderate Carbs4and4Fats
3 85$95$% Difficult Fast Primarily4Carbs
4 95$100% Very4Hard Sprint All4Carbs

Figure 7.1: Heart Rate Training Zones. Effort index given as percentage of the maxi-
mum heart rate. (from [14])

There is already a wide variety of tools to manage fitness data. However, whether
their purpose is the management of the exercise records of a single casual runner or the
analysis of data of several professional elite athletes by the perspective of a fitness trainer,
those systems do not support the analysis of several exercises altogether. While some give
statistical summaries of the dataset and support the overplotting of a few line graphs, most
only allows the analysis of a single exercise at a time. In figure 7.2 we show some popular
systems to explore data from running exercises. Training Peak’s WKO+ tool support the
management of the exercises of many runners. It provides several charts to summarize
their individual data and allows the plotting of different variables as line graphs in the
same reference frame. However, this view is usually cluttered due to the number of line
graphs that overlap. Also, there is no support for the comparison of exercises of different
runners, even though the tool manages data of groups of them. RubyTrack puts together
the exercises of a runner into a intuitive training profile, it also shows many variables in
the same view with lines or bars, and provides a view of the course as well, but again, the
user cannot view a set of exercises at the same time. Garmin Connect provides similar
functionalities of those of RubyTrack with the addition of an animated view of the exercise
progression in the map. However, it also suffers from the same limitations.

Figure 7.2: Running Data Analysis Tools. Some popular tools for analysis of running
data (from left to right: Training Peaks WKO+, RubyTrack and Garmin Connect). De-
signed as activity managers, these tools provide statistics about the collection of activities
of a user, and can visualize each activity in detail separately, but there is little support to
the visual analysis of many activities at once.



46

7.2 Materials and Method

7.2.1 Data

The Garmin Connect website [35] stores a massive amount of public training data,
uploaded by users, that can be filtered according to date, total distance, location, etc. Each
activity has a time-ordered sequence of trackpoints exported in the Garmin’s Training
Center XML format (TCX). Trackpoints are samples of a time series, each with a time
instant as key property plus several other variables. The number of variables available
depends on the model of the HR monitor. We constrained this range to HR, speed, altitude,
latitude, and longitude. Different monitors and other accessories can store other data (e.g.
cadence and calories), but their low availability could significantly reduce the size of our
datasets. Figure 7.3 shows an example of the content of a TCX file with a diagram of it’s
structure as a list of trackpoints.

Figure 7.3: TCX file Structure of a TCX file. Each file represents an activity as a ordered
set of trackpoints. Each trackpoint stores the value of a number of variables for a given
unique timestamp.

We implemented a web crawler to add a level of automatization in our data acquisition
stage. The process of fetching public exercises from Garmin Connect website is shown
in figure 7.4. The website provides a system to query exercises using a set of parameters
to filter the results returned by the engine. To fetch the files of runners that took part in a
given race, we zoom the map view to the place where the race happened and restrict the
time window for filtering to the beginning of the event. We also filtered by total distance,
to remove runners that did not finish the race. Once Garmin’s engine return the activities
that passed the filtering (listed in area highlighted in green in the figure), we activate the
crawler (bookmark in red) to go through the pages of results downloading each TCX file
(in the download bar list in orange). We applied this process to gather data from two
short races and two longer races. For the longer ones, we got data from the event in 2
consecutive years for comparison, resulting in 6 datasets, each with data of one event in
one year. Each dataset is comprised of a set of TCX files, with each file having the data of
a single runner in the same race. We used datasets of sizes ranging from 60 to 483 runners.
The number of trackpoints of each runner in a dataset depends on the monitor sampling
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rate, and the distance of the race. In the smallest dataset, the number of trackpoints per
runner was between 200 and 1000 with an average of 89 trackpoints per minute (1.48 Hz).
For the largest dataset, in both distance and number of runners, it ranged from 3000 to
7000 with an average of 218 trackpoints per minute (3.6 Hz).

Figure 7.4: TCX Crawler Using a web crawler to acquire tcx files. After filtering public
activities by place, time, and other properties in Garmin Connect, we active the crawler
script to automatically download the activities returned.

Another information available in each TCX file was the maximum heart rate (MHR),
which is a data informed by the runner. The MHR is used as a standardization to clas-
sify the intensity level of the activity, which is used to stablish a relation between health
and fitness condition [41]. For running exercises this standardization is expressed as a
percent of a person’s aerobic capacity (VO2max), or as a percent of a person’s measured
or estimated MHR. Another approach is to use the VO2 reserve and HR reserve instead
of VO2max and MHR respectively. The reserve is the difference between the maximum
value of the variable (VO2max and MHR) and the measured value when the person is at
resting state. As we do not have VO2 data available nor the measurements at resting state,
we use the HR value normalized as percentage of the runner MHR. The MHR is provided
by the user to Garmin’s system, but even though the runner may have entered a poor esti-
mation of the MHR value, our analysis focus on the variation of intensity along the race,
so a biased MHR makes little difference. Also, the provided MHR is only used if in fact it
is higher than the maximum value found in the current exercise. The advantage of using
a trusty MHR estimate is to be able to evaluate how effort demanding such exercise was
to the runner.

7.2.2 Desiderata

The conception of the visualization designs was driven towards helping answering
questions about a street race using public data from several participants. The questions
are usually asked by someone organizing a race or by a physiological specialist. Those
have been selected based on the experience of one of the authors, who is a physiological
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researcher, that usually searches for the answers without a visualization tool. Below, we
enumerate such questions:

1. Is there a predominant effort level in the race? Where does the effort level changes?

2. Which parts of the race require more effort?

3. Are there any common patterns among runners during the race? Can we identify
the source of such patterns?

4. Can we identify the running strategies for a given race?

5. Are there people running at dangerous effort levels?

6. How can we compare races?

7.2.3 Design

Once our goals were defined, we created distinct visualization designs, which are
described first individually, and later by their common functionalities.

7.2.3.1 Visualization Design 1: Line Graph Heatmap

The building blocks of the visualization designs are the activities trackpoints. Track-
points are samples of the athlete’s state collected by the monitor device at regular intervals.
Common to the visualization designs is the rendering of consecutive trackpoints using a
solid circle (particle). Each trackpoint is rendered only if the current visualization time
is within the range of the trackpoint. After rendered, each trackpoint fades according to
user parameters.

The first visualization displays multiple time series (runners) similar to a conventional
line graph with a set of improvements. The vertical axis represents the effort level, while
the horizontal axis represents the distance from the start line, see Figure 7.5. The color
of the trackpoint represents the HR value of the trackpoint in relation to the MHR and is
mapped to a color gradient (black, red, orange, and yellow). The color mapping scheme is
designed to relate HR to the respective effort zones. HR training corresponds to the use of
HR data to customize a given workout to improve runner’s performance [20, 31, 14]. The
cardiovascular system reflects the body stress at any given moment, and by keeping track
of the HR one can estimate the effort at any given time. Differences in HR measurements,
when compared to rest state, can provide immediate feedback on how tired the body is.
Those differences indicate how hard the body is working, and how adapted it is to a given
workload.

The intensity of the exercise is closely related to the actual HR reading (as a percentage
of the MHR) [14]. Based on the HR it is possible to identify the effort level, energy source,
and performance-related fitness that will benefit from the activity. Notice from 7.1 that
the range of the different effort zones is not the same. We used layers with the same
thickness to lay emphasis on the variation in the zones of higher effort, which is the focus
of most of the questions presented before. In other words, the changes in the low effort
zone (black layer) become smoother while the change of the visualization in the high
effort zone (yellow layer) is more noticeable.

The color of each trackpoint is linearly interpolated to a given color-scale based on
the layer it belongs. Each layer keeps track of how many runners are inside its effort zone
at any given time. This is visually represented by filling a part of the layer area, bottom to
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Figure 7.5: Line Graph Heatmap Consecutive frames of the line graph heatmap show-
ing how the number of runners in each effort zone is represented. In the four vertical
layers, from yellow to black, we display the different effort levels. From left to right we
display the HR for 4 runners (illustrated as points 1 to 4) as function of distance. We used
horizontal strips in each effort layer with varying height to encode the number of runners
in a given time at that effort level. Such design allows to verify how many runners are in
a given effort zone, and how the runners relate to the others.

top, proportional to the percentage of runners inside it, with a faded version of the layer
color (see 7.5). This allows to keep track of a runner and see if his condition is similar
to others. Furthermore, we can see the distribution of effort at different times during the
race (Q1). One problem of the line graph heatmap is information overlap. To highlight the
actual state of each runner we add a border to the current trackpoint. To reduce the clutter
that comes from the overlap with past trackpoints, an adjustable decay factor provides a
tradeoff between history length and readability that can be modified during visualization.

7.2.3.2 Visualization Design 2: Linear Heatmap

The second visualization component in this solution is our adaptation of the com-
pressed view as discussed before. In this application, it represents each runner’s activity
as a horizontal line with colors to indicate the effort level and horizontal space to represent
distance covered. The prior design, the line graphs heatmap, is useful to see the overall
effort level at different times, but not at different places along the course. If the decay was
reduced until the trails become the whole line graphs, such comparison would be possible,
however, the overlap of lines would still persist and complicate such task. The purpose of
this new design is to provide a way to compare the effort and speed of the runners, while
avoiding data overlap. The trackpoints are positioned from left to right according to the
distance covered and rendered when the animation time surpass the trackpoint key time.
The result is a set of horizontal lines starting as dots in the left and increasing in length to
the right as the runners get closer to the goal, as figure 7.6 exemplifies.

We also used a different colormap to represent the speed in the trackpoints. The
datasets usually contain outliers (measurement errors in the monitor device) in the speed
values way above the average speed. In this case, normalizing the values based on the
minimum and maximum would bias the result, bringing almost every trackpoint to the
same small portion of the color range. To solve this issue, we use a blue-white-red col-
ormap, where white is the average speed in the whole dataset, red trackpoints that are N
times the standard deviation above the average speed, and blue the ones that are N times
the standard deviation below it, with N being a parameter that can be modified in real
time. Without the overlapping of runners, we can now identify the predominant effort
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Figure 7.6: Linear series scheme. Series represented as horizontal lines. Length repre-
sents the position of the runner at the time.

Figure 7.7: Linear Heatmap for the heart rate, measured as percentage of maximum
heart rate, (top) and speed (bottom). (Average speed = 10 Km/h; Std Dev = 1.4 Km/h; N
= 3)

level in the race, as well as in a given part of the course (now in distance, not in time as
in the line graph heatmap) (Q1); find the section of the course that demands more effort
(Q2); identify common patterns of effort variation among the runners and look for an ex-
planation to them in the slope and speed variation (Q3); and use the linear heatmap with
the speed color mapping to see the running strategy of the race, i.e. how runners change
their speed during the race (Q4) (see Figure 7.7).

7.2.3.3 Visualization Design 3: Augmented Track View

The third component view focuses on the geo-spatial data of the dataset. The main
purpose is to view and annotate the race course to understand the patterns and events
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found in the other views. This design is basically a sketch of the race course with the
trackpoints representing the runner’s state along the competition (see Figure 7.8). The
trackpoint position (in the visualization) is based on the trackpoint latitude and longitude
to form the shape of the race course. This course sketch is created using the geo-spatial
data from a single chosen runner, which is usually very similar among runners. Inclination
and even altitude itself have great influence in the runners performance and are usually
the main cause for the variation in effort patterns shown in the other visualizations. To
represent altitude we encode it using shadows. We draw the full course three times, with
different offsets in some direction to simulate shadowing. The offset is proportional to the
trackpoint altitude at that geo-spatial location. The three layered layouts with the altitude-
based offsetting makes the course looks like a surface extruded from the plane and under
a directional light source. A problem that may arise from the directional offset is that only
the top layer will be visible when the course direction is too close to the light direction.
To overcome this, the altitude is also mapped to the course width as an additional hint,
making the higher sections of the course wider, as it would be if a bird eye view of a 3D
representation of the course was used (figure 7.8). Finally, the runners trackpoints are
rendered, on top of the extruded course, with the same motion trail animation of the line
graph heatmap.

Course 
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direction
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modulated 
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Figure 7.8: Extruded course with proportional altitude: In cases where regions of the
course match the offset direction, shadows are occluded by the top layer itself, hiding the
slope information. We create a second representation of the altitude by making the course
width relative to the altitude at each point, and higher altitude sections become wider.

7.2.3.4 Correlated Features among Visualization Designs

We used common features among the visualization designs. The goal was to correlate
information between designs in such a way that a pattern that is only visible in one design
can be exposed in another, as shown below.

Filters can be applied in the linear and line graphs heatmaps to reduce the visual over-
load to reveal interesting patterns. By choosing a distance interval the user can customize
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the visualization to show, in that range, only the trackpoints whose data is between a
defined span of values. The range and parameters of each filter can be defined at any
moment during the visualization and, since the filtering is computed at runtime, the result
is immediately visible. Filters can be dragged along the horizontal axis and overlapped to
create more complex filtering schemes. The filters are important to identify behaviors, for
example, athletes pushing their HR close to their MHR (see figure 7.9). From this we can
identify regions of the course where the behavior begins and ends. Based on that, we can
re-define the course to avoid stressing too much the majority of the athletes or an athlete
can prepare an activity strategy based on past experiences.

Distance markers are used to correlate patterns found in the different views. They are
tools for annotation along the race course, for example, to insert a description label for a
section of the race, or to mark a point where there is a an increase in effort level. Figure
teaser.pdf shows an example where distance markers are used to correlate events in the
linear heatmap effort view to the location in the track view, thus allowing to investigate
causes of some of the patterns found in the linear heatmap (Q3).

Figure 7.9: Filter to remove trackpoints with effort rate below 90% of MHR.

The visualization designs focus on visualizing the dataset as a whole (all runners),
however, there are situations in which it is interesting to follow a particular runner or
make a more detailed comparison between the performances of two runners. The runner
tracker is a tool to provide an instant summary of a runner’s state during the race. The
main informations that can be visualized are the MHR and the variation of effort rate,
speed, and altitude. The properties charts keep a small history of the last values of the
variable and inform its extreme values, also, the area chart baseline is defined by the
runner’s mean value during the race, so the chart appears upside down when the value
is below the average. In the altitude chart the base line is always 0, representing the sea
level. We opt to show altitude itself, since this way, inclination also becomes evident
in the altitude area graph. Runner trackers can be used in all the three views (figure 7.10
shows a runner tracker in the course view) and always point to the last rendered trackpoint
of the runner in the animation.
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Figure 7.10: Runner trackers Tracker following a runner in the course view, displaying
runner id, name of the activity TCX file, MHR, among other info.

7.3 Results

The building blocks of all three visualization designs are the activities trackpoints.
Trackpoints are samples of the athletes state collected by the monitor device at regular
intervals, containing the current values of HR, speed, altitude, longitude, and latitude.
Common to the visualization designs is the rendering of consecutive trackpoints using a
solid circle (particle). Each trackpoint is rendered only if the current visualization time
is already past the trackpoint’s, thus creating an animation of how the runners’ states
changes over time. Figure 7.11 shows one of the proposed design, the Linear Heatmap.
The main purpose of this view is to visualize the dataset while avoiding overlap. Each
activity (runner) becomes a horizontal line, made of particles positioned from left to right
according to how far the runner was from the initial position when the respective track-
point was registered. The particle color can represent the runner effort,as a percentage of
his estimate maximum heart rate (MHR), or its speed related to the average speed of all
runners in the race.

In figure 7.12, the Linear Heatmap is used with the other two visualization designs
to analyze the same race. The Line Graph view connect the consecutive particles of the
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Figure 7.11: Linear Heatmap. Linear Heatmap for the heart rate, measured as percentage
of maximum heart rate, (left) and speed (right). (Average speed = 10 km/h; Std Dev = 1.4
km/h; N = 3)

same runner creating a line for each runner, that fades with time. The particle horizontal
position represents the distance, as in the Linear Heatmap, however, now both the color
and the vertical position represent the actual effort level. Indeed, the purpose of this
design is to locate runners in the effort zones, which are of major importance for training.
The last design, the Course View, uses fading particles, that are positioned according to
their trackpoints latitude and longitude values, to show the runners progresses on top of
the race’s course. The figure also shows a filtering of particles based on their HR and
speed values. By combining both filters we visualize only those particles in which the
effort was too high when moving slowly, which can mean a steep ascent in the course or
a fatigued runner.

Figure 7.12: Adidas Summer Run in Sao Paulo. Top row: one alignment of increase
in effort marked in the linear heatmap; the same position is marked in the line graph
heatmap, the thickness of the stripes of the effort zones shows that the majority of run-
ners is above 85the track view turns out to be the beginning of a ramp. Bottom row:
combination of filters to find trackpoints that indicate a possible risk state.

We downloaded training data from GarminConnect of three different races: 10 km
(also called 10K), 15K, and 42K. To allow the comparison of a race in different years,
we obtained data for the 15K and 42K from two consecutive years. We presented an
analysis of those races as use cases to validate our set of visualization. In figure 7.13
we visualize the course with the profiles of HR and speed variation of the São Silvestre
race, a 15K race that takes place every year in São Paulo, Brazil, on December 31st. We
downloaded two datasets of this race (2010 and 2011). Since the race course changed
in 2011, it is possible to verify different patterns when comparing the visualization for
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the years of 2010 and 2011. The distance markers in this figure are used to correlate
changes in the effort and speed in the linear heatmap to the respective spots in the course
view. In comparison to the 10K race (figure 7.12), we observe that high effort readings
decrease, since runners have to sustain effort for a longer period, and therefore run at a
lower intensity level. This use case illustrates the ability to compare different races.

Figure 7.13: Sao Silvestre Race in Sao Paulo. Augmented track view and linear
heatmaps used to compare the datasets from 2010 (top) and 2011 (bottom). Distance
markers are used to point alignment patterns in the linear heatmaps, showing that differ-
ent courses create very different profiles of effort and speed.

Figure 7.14: NY Marathon 2010 and 2011. Augmented track view and linear heatmaps
used to compare the datasets from 2010 (top) and 2011 (bottom). With no change of
course, the profiles remain the same.

Back to the desiderata, we summarize below how our designs helped answering these
questions:

Q1: The predominant effort level of a race tells how hard the runners are performing.
Effort levels change during the race, and its is important to identify where and why such
changes occur. Using the line graph heatmap, we keep track of the number of runners in
each effort zone at any time, independent of their location in the track. This information
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Figure 7.15: NY Marathon Pace Groups Reducing the trail length in the Line Graph
Heatmap reveal the subdivision of runners in the three pace groups.

is conveyed in a stripe with its thickness proportional to this number. Alternatively, the
linear heatmap allows to observe changes in effort level throughout race length by looking
at the color changes along the horizontal axis. The case studies we used allowed us
to observe such patterns in races of different distances and also verify the difference in
overall effort between races of different lengths. For example, comparing the 10K race
against the marathons we observe that runners tend to sustain higher effort levels in the
shorter race.

Q2: The most effort demanding part of a race can be identified in the linear effort
heatmap as the vertical section where the particles have the brightest overall color. The
use cases revealed that they are usually sections of long or strong increase in altitude, or
the race final dash, where competition increases toward a better classification.

Q3: With the linear heatmap we can observe the overall behavior as noisy vertical
stripes created by strong changes in color. The distance where such changes occur can be
marked also in the race track and appears in both the effort and speed linear heatmaps, so
we can verify if a increase in effort is caused by increase in running speed or the start of
an uphill section of the track.

Q4: The speed linear heatmap shows the running strategy of the race. It shows align-
ments in color change, like the linear effort heatmap, representing increases and decreases
in the overall speed and helps identifying parts of the track with high and low overall
speed.

Q5: Identify people running at risky levels is a major concern. It can help in the
choice of safer race tracks and running strategies, as well as in the creation of different
pace groups. With filters in the linear heatmap, we could see people running slow but at
high effort level and identify the section where such behavior begins. Further analysis
of the same section in the speed heatmap and track view tells if such speed is below the
predominant value for the section and if the cause is an increase in elevation. Speed below
the local average, especially in sections of constant altitude is a indicator of fatigue.

Q6: Each of the three designs is useful to compare different races. The line graph
heatmap shows the overall effort variation in time, the linear heatmap shows the effort and
speed outcomes, and the track view display the race topography. This allows to compare
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different races, but also to find differences in different instances of the same race. In the
case studies we compared races in consecutive years. As the course of the São Silvestre
race changed from 2010 to 2011, the effort and speed profiles are very different, while in
the the New York marathons were basically the same .

Although we focused on running activities and the analysis of different athletes on a
single race, our approach has potential to be extended to different activities and dataset
types as well. Comparing different groups of athletes and analysing the history of activi-
ties of a single person are examples of different datasets that were suggested. Also, other
variables already available by the monitors, cadence and calories for instance, can enhance
the analysis. The same can be done for data that can be derived, like fatigue, energetic
efficiency, and estimates on the risk of joint damage due to step impact along different
sections of the course. Finally, information like age, weight, height, and VO2max that are
usually available when working with groups of runners under the supervision of a coach
and subject to physiology labs are example of data that can be analysed.
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8 BIKE-SHARING

In the last chapter we used the representation of stack of compressed series to gain
insight about running races by putting together series of measurements of hundreds of
competing runners. In the case study we in this chapter, we made a set of modificiations
to this stack design to conform to a different instance of spatio-temporal data. Now, the
datasets will represent the circulation of resources in a system over time, as means of
exchanges of resources between nodes in a graph and changes of resource availability in
each node. In our case study, such system is represented by public bike-sharing programs.

Public bike-sharing systems are increasing in popularity in the last years with many
instances already running in biggest cities around the world. The concept is a vehicle shar-
ing system with stations located at several spots around the city with a number of bikes
available. Commuters who subscribe to the program can take a bike out of any station,
ride it for a limited amount of time and then return it to any station. In a one-way sharing
system, there is no need to return the vehicle to the same origin station. In 2013, Larsen
[50] reported an exponential growth in the last 13 years on the amount of bike-sharing re-
sources worldwide, with more than 675 bike-sharing systems distributed over more than
500 cities in 49 countries. All bike-sharing programs in the United States, as of May of
2013, are listed in a subsequent work [51], along with plans of increasing service cov-
erage for existing systems and deployment of new ones, including New York’s Citi Bike
program. The popularity of such system is explained by its sustainability properties of re-
quiring less space, causing less pollution and being cheaper than traditional transportation
modes. According to [51], membership in Citi Bike costs close to $100 per year, which
is still less than the monthly subway pass. Also, users in DC found annual membership
saved them close to $800 in transportation costs, being far cheaper than the cost estimate
for the average person to own a car and drive it 10,000 miles a year with depreciation
and gasoline expenditures included. Bike-systems are a solution to improve city life by
reducing the workload of public transportation network, thus reducing the problems of
traffic and pollution while providing a more reasonable alternative for commuters and a
healthier lifestyle.

Different from bus and subway systems, where commuter circulation is dependent of
the system timetable, bike sharing systems have no imposed regularity in the circulation
as the users can ride the bikes at any time and through any path. One problem that rises
from this usage scheme is that the operational staff has little control on the distribution
of resources (bikes) as commuters are constantly moving them around. This control is
of importance to ensure that the stations do not get full or empty so that users can get a
bike from any station and also leave a bike in any station, whenever they want. Station
rebalancing is used to avoid stations to become either full or empty. Trucks are used to
move bikes from different locations, which raises questions on how to choose the best
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route that minimize expenses such as gas consumption and time. In addition, trucks are
subject to traffic conditions, and some popular stations might need to be rebalanced more
often than others.

Citi Bike was deployed in New York City in May 2013 and is the largest bike shar-
ing system in the United States, officially serving 6,000 bikes through 330 stations with
a total of more than 11,000 docks [54]. Stations are distributed over the north part of
Brooklyn and in Manhattan from Battery Park to the south end of the Central Park. The
program has now more than 100,000 users and an average number of 36,000 trips per
day (with good weather). During the early months of operation, the system faced several
complaints of malfunction of both software and equipment [29]. Users also complained
about the unreliability of the software that reports the status of the stations (available at
http://www.citibikenyc.com/stations) and the BBSS problem put the system in "perpetual
race against its riders" [28]. Different from some programs where rebalancing efforts is
done during night time, when the usage frequency is minimal (or there is no service at
all), Citi Bike rebalancing operations are performed during daytime in order to handle
the intense commuting behavior expect from cities like New York. Trucks take on aver-
age 45 minutes to load or unload bikes, and for some stations, by the time the truck is
leaving, the station is already with bad balance. Such problems are expected from the
adjustment period shortly after deployment of a bike-sharing instance. We believe profil-
ing data from this initial stage can be useful to understand how the population adhere to
this new transportation mode, knowledge that can be applied when deploying other bike-
sharing instances. Also, as the program popularity increases, the usage data becomes a
strong indicator of circulation habits in a city, which can help to better understand city life
dynamics, improve the solutions for stations rebalancing by applying instance-specific in-
formation, plan upgrades in the infrastructure and even help commuters to make better use
of the program. In this work, we focus in the problem of exploring bike-sharing usage
data to understand its underlying dynamics.

8.1 Related Works

There are several works with a focus in bike sharing, and they are particularly focused
in understanding its behavior. Based on observation or simulation some works present
modifications to optimize two main points: availability and flow. Other works present
analytic tools to the system oversee which in turns can optimize the system. We catego-
rize previous works according to three categories as follow. Our work fit in the Visual
Analytics category.

Balancing Bike-Sharing Systems This section present computational approaches
concerning optimal routes to visit unbalanced stations performing rebalancing operations.
The work of Rainer-Harbach et al. [68] focus on the redistribution of bicycles to avoid
rental stations to run entirely empty or full. They propose a neighborhood search which
generate candidate routes for vehicles to visit unbalanced stations and derive the oper-
ations (bike load or unload) to be performed on the way. Tests performed on instances
based on real data are used to evaluate the best among three approaches to define the op-
erations performed on each visit. Gunther et al. [67] introduces MF-CG, a new method
based on maximum-flow on graphs, to calculate optimal loading instructions for given
routes in the balancing bike sharing systems (BBSS) problem. Urli et al. [74] address
the problem of instance generation for benchmarking proposed approaches to the opti-
mization problem of BBSS. They describe a process to generate such BBSS problems
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input instances based on data from Citibike NYC bike sharing system. Schuijbroek et
al. [71] propose a cluster-first route-second heuristic to solve both the problem of deter-
mining service level requirements at each station and finding a near-optimal vehicle route
to rebalance the inventory. Results are provided using real-world data from both Hub-
way and Capital Bikeshare (Boston and Washington bike sharing systems, respectively).
Guenther et al. [36] focus on the forecasting of future bicycle migration trends. Using
historical information about individual trips they introduce and compare the performance
of two predictive models (mean-field analysis and multiple linear regression) to improve
the arrival forecast for a small group of docking station in the London Barclays Cycle
Hire system. The work of Papazek et al. [64] introduces a method which applies a hybrid
heuristic to find efficient vehicle routes to the BBSS problem. They provide computa-
tional results, with benchmark instances derived from data from the real-world bike share
scenario in Vienna, showing their hybrid solution scales better than previous approaches.

Visual Analytics This section present works that apply visualization and analytics
tools to allow a researcher or system oversee to have insights about the bike sharing dy-
namics. In [59], O’Brien created an online map tool that show stats about a wide range
of bike-share systems worldwide along with weather conditions. The World Map in [62]
provides a map of the bike-sharing services around the world. Different from [59], this
one shows only the program status as operational, in planning or under construction, and
deactivated. O’Brien uses in [60] the map introduced before [59] to layout the geogra-
phies of the systems of several cities around the world. In [58] trip data from Citi Bike is
used to estimate the flow of bike traffic in the streets of New York using OpenStreetMap
[2] and the Routino router [3] to find the routes between the stations (see figure 8.1). Flow
intensity are represented by the thickness of the lines in the map. We also use trip data to
estimate the flow intensity in the streets; however, we use the Google Directions Service
[1], code flow as colors and add a number of interaction capabilities aimed to support
exploration.

In [77], Wellington partition area covered by the Citi Bike program according to prox-
imity to the nearest station creating a Voronoi diagram in which cell color’s map differ-
ent properties of trips beginning or ending there. Results show the distribution of trip
duration, age, gender and user type (casual or annual subscriber). In [78], he use the
same approach of [77] but to map number about the most used bike in the system to the
date. Ferzoco [27] visualize the Citi Bike’s dataset of trips to show how New Yorkers
and Tourists circulates among the system in two-day period (see figure 8.1). Kaufman
[45] presents the direct correlation between the number of delays in the subway system
and the number of Citi Bike trips. And in [44], makes an analysis of the popularity of
the Citi Bike stations between genders. The results point women preferred the Brook-
lyn residential neighborhoods while men were overwhelmingly represented in bustling
midtown Manhattan. The author claims women typically attribute reduced cycling num-
bers to safety among car traffic, which explains why there is lower female participation
in the use of stations distributed across some of the most congested parts of Manhattan
and Brooklyn. Another work of O’Brien in [61] take a global view of bike-sharing, using
data from 38 systems in different continents. A classification of the systems is proposed
based on the geographical footprint and day-of-week variations in occupancy rates. The
works of Beecham et al. [11] and [12] use visual analytics to look into cycling behav-
iors in The London Cycle Hire Scheme (LCHS). Using data from the system’s customer
database and a complete set of journeys records commuters are classified according to
how they use the system, and a tool is introduced with coordinated views to support the
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query of journeys. Chiraphadhanakul et al. [22] is interested in the impact of vehicle shar-
ing schemes into public transportation. Their model of the public transportation system
is defined as a network, and them the vehicle sharing system is added by augmenting
the original network with nodes representing available sharing options. The proposal is
evaluated with Boston’s transit network as a use case, with data from the Massachusetts
Bay Transportation Authority that includes subway, bus, commuter rail and boat, and the
Hubway bike sharing system. Another contribution goes towards the devising of vehicle
sharing systems based on the identification of optimal location for sharing stations and
minimization of routes’ travel times over the integrated network. Zaltz et al. [83] employ
visualization, descriptive statistics and spatial and network analysis tools with trips data
to explore bike sharing system usage in five different cities. The goal is to find similarities
between the different systems, detect communities in the derived network to identify local
pockets of use, and gain insight above and beyond proximity/popularity correlations.

The work of Wood et al.[81] makes intense use of visualization to gain insight of the
dynamics of London’s Bicycle Hire Scheme (see figure 8.1). They present three different
views: one based on edges over London’s map to show bike trips while fully preserving
spatial context, and two other views, based on a restructuring scheme to avoid clutter-
ing with minimal loss of spatial context, to show trips and station balance state. In a
more recent work Wood et al. [80] uses the design study on bike-sharing to reason on a
multi-channel approach for data visualization design. Ferreira et al. [26] also work with
commuting data to better understand city life dynamics, but using taxi trips. Wang et al.
[76] fit trajectories given by taxi GPS to the road network in order to derive traffic infor-
mation and visualize how traffic jams propagate in the city. The work of Guo et al. [37]
also present a design with coordinated views to explore spatiotemporal datasets with a
reorderable matrix representation of time series connected to a map. In our work, we add
to this design a novel partial reordering scheme to assist the identification of interesting
elements.

Prediction, Planning and Impact Analysis The following works present statistical
tools to allow system dynamics insights with minimal use of visualizations and are con-
cerned about the impact of the vehicle sharing schemes in the city life. The work of
Froehlich et al. [33] presents an analysis using data from Bicing (Barcelona’s Shared Bi-
cycling Program) to gain an understanding of human behavior and city dynamics, like
ours; however, they use pure analytics tools to analyse 1.5 months of data. We make ex-
tensive use of visualization and interaction to support the exploration of a 10 month long
dataset. Another work of Froehlich et al. [34] extends [33] with a comparison of exper-
imental results from four predictive models of near-term station usage. Furthermore, a
analysis of the impact of factors such as time of day and station activity in the prediction
capabilities of the algorithms is presented, showing how simple predictive models can be
employed to predict station status changes with an average error of only two bicycles and
can classify station state (full, empty, or in-between) with a accuracy of 80% up to two
hours into the future. Borgnat et at. [19] presents a study relying on statistical modeling
and data mining to model the evolution of the dynamics of movement within the VÃ c©lo’v
BBS system and understand the flow of bikes in the city of Lyon. They use both station
balances and bike trips data. Dill et al. [24] used GPS data, from a sample of 164 adults in
Portland riding their bicycles, to address a number of questions about bicycling behavior
with a focus on travel time and route choices, like: How often, why, when, and where
do cyclists ride? How does this vary based upon rider characteristics? How do cyclistsâ
routes differ from the shortest network distance? What factors influence cyclistsâ route
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(a) (b)

(c)

Figure 8.1: [Visualization bike-sharing trips] (a) O’Brien [58] represented the estimated
flow of trips in the streets of New York using the origins and destinations of the trips from
Citi Bike Program and ideal routes suggested by Routino [3] with OpenStreetMap [2]. (b)
Ferzoco [27] animated two days of trips in New York’s Citi Bike Program, to compare the
behavior of New Yorkers and Tourists.(c) Wood et al.[81] designed a system to explore a
dataset of trips taken in the London’s Bicycle Hire Scheme
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Property Value
Timestamp 2014-07-22T13:30:05.196Z

Number 72
Address W 52 St & 11 Ave
Latitude 40767272

Longitude -73993928
Bikes 0

Free Slots 35

Table 8.1: Station State Data Sample

Property Value
Duration (seconds) 1547

Start Time 2013-07-01 00:00:02
Stop Time 2013-07-01 00:25:49

Start Station Number 388
End Station Number 459

Bike ID 19816
User Type Annual Subscriber

User Gender 2 (female)
User Year of Birth 1980

Table 8.2: Trip Data Sample

choice decisions? How do personal attributes influence these decisions? What is the dif-
ference in travel time between bicycling and driving? Different from their work, the trip
dataset we use does not have information about the exact route taken in each trip, only
the origin and destination stations. Ogilvie et al. [63] focus on bike sharing system users
in London. Using user registration data, they examine inequalities in uptake and usage
levels by explanatory variables including gender, small-area income-deprivation and lo-
cal cycling prevalence. In the work of Lathia et al.[52] an extensive analysis is presented
by comparing data collected before and after a change of policy in the London Barclays
Cycle Hire scheme. The new policy allows the casual use of the system, so anyone in pos-
session of a debit or credit card could gain access, as opposed to the previous one when
users were required to apply for a key to make use of the resources. The work shows
how this change relates to a variety of effects observed around the city. [82] model the
impact of the bicycle sharing system in London on the health of its users, using stochas-
tic simulation. Results show the program has positive health impacts overall, but with
clearer benefits for men than for women and for older users rather than for the younger
ones. [66] present an extensive study of relevant information about more than 50 schemes
in Europe with the objective of increasing the opportunities for bike sharing to be used
as an instrument to foster clean and sustainable transport mainly in urban areas. It also
includes guidance and recommendations for planning, implementation and optimisation,
along with studies by different countries.
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8.2 Materials and Method

8.2.1 Data

The actual state of all active stations in the Citi Bike system can be queried anytime
by fetching the JSON feed1. The file provides the actual balance of every station of the
system and is updated every time the balance of a station changes. The feed consists
of a list of state entries, one for each station in the system. Each entry has the station
id, name (its address), amount of bikes available, amount of free parking slots, latitude,
longitude, and time stamp defining the moment of last change (see Table 8.1). We have
been tracking changes in the first JSON feed, at an interval of 30 seconds, since June of
2013 and storing them in a Postgres database, giving us a total of more than ten million
updates about the state of 330 stations over more than 240 days. Trip data is also provided
at Cibi Bike website, but in files with tables of monthly history of trips (see Table 8.2).

The event-based nature of the state changes (an event being a commuter parking bike
or taking one of the station), creates a time series of irregular sampling interval. We define
SN as the time series representing the usage activity for one station in a given day where
there were N events, with SB

n being the amount of available bikes, SF
n the amount of free

slots and SC
n = SB

n +SF
n the capacity of the station after event n, tn being the time stamp

of the event n with tn − tn+1 not constant. Furthermore, we define SO
n = SB

n − SB
n−1

as the operation performed at event n, the number of bike arrivals SBa
n = SO

n if SO
n > 0

(SBa
n = 0 otherwise), the number of bike taken out SBo

n = abs(SO
n ) if SO

n < 0 (SBo
n = 0

otherwise), and the station balance SL
n = SB

n /S
C
n .

To be able to better work with the time series of daily activities, we apply piecewise
aggregate approximation to resample the series into regular intervals of 15 minutes (15
minutes showed to be a satisfactory aggregation interval for the given 24hrs length of
the series and the stations’ rate of usage). We divide the time span of the series into
intervals of 15 minutes, and exploit the fact that for any time stamp t between tn and tn+1,
the station state is the same as the one registered at tn, to fill the 15 minutes resampling
intervals that may happen to have not a single sample Sn. I.e., given a resampling interval
Rm = [tm, tm+1] with tm+1 − tm = 15 minutes, we define the set of samples in Rm as
RS

m = {Sn|tm ≤ tn < tm+1}, however if RS
m = ∅, than RS

m becomes RS
m = {Sn|n <

tm, n + 1 > tm+1}. The resampled series R is created by aggregating the samples RS
m in

the intervals Rm using the arithmetic mean of each variable separately. I.e., for available
bikes, RB

m =
∑

SB/|RS
m| with S ∈ RS

m. For the resampled series R, we also include
the bike arrival frequency RFba

m =
∑

SBa/(tm+1 − tm), bike take out frequency RFbo
m =∑

SBo/(tm+1 − tm) and usage frequency RF
m = RFba

m +RFbo
m .

Trip data is also aggregated but we chose a larger interval of 1 hour instead of 15
minutes due to visualization constraints that we address in the next subsection. For a
given 1-hour we aggregate every trip that began and/or ended in the mean time, and then
derive a whole new set of relevant measures: balance, capacity, in/out difference, number
of cyclic trips, number os incoming trips, number of outgoing trips, outage state (empty,
full or no outage), number of incoming origins, number of outgoing destinations, number
of trips, trips duration and trips distance. Balance and capacity are the same from the
dataset of stations’ states, but as the average of the 4 15 minutes intervals, that correspond
to the given 1 hour span. Trips related to a station fall in one of three categories: outgoing,
incoming or cyclic. Outgoing trips leave the respective station to any other one, while
incoming stations arrive in this station coming from any other. We call trip cyclic when

1http://citibikenyc.com/stations/json
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the bike is returned to the same station from which it was taken. For each 1 hour interval
in series we store the amount of each kind of trip separately, the three kinds summed up,
and also the difference between incoming and outgoing stations. We also keep track of
outages based on threshold applyed in the average balance. If the average balance is above
0.9 it is said that the station is in full outage state for that 1 hour span, and empty outage
if its balance is bellow 0.1. Number of incomming origins is the the amount of different
stations from which there are trips comming from, while outgoing destinations are the
stations where the bikes are going to. The trips distance are not given in the original
dataset, but we use the distance of the shortest path between the origin-destination pair
of stations for incoming and outgoing trips, as given by Google Directions when asked
for cycling routes. In the case of cyclic trips, we estimate the distance by multipling the
duration by the average cycling speed of 2.7 m/s.

8.2.2 Desiderata

With previous works and the set of problems recurrent in bike-sharing systems in
mind, we devised a list of tasks that a proper analysis tool should support by means of
visualization and interaction. The resulting desiderata is presented below as requirements
to be met by the visualization method to be presented next.

R1 Identify stations that eventually become bottlenecks in the system, frequently
getting empty or full of bikes. This information can help designing changes to
improve the resilience of the system, providing better service for commuters.

R2 Verify the influence of city life changes and events in the behavior of bike-
sharers. As the bike sharing program’s popularity increases, its dynamics becomes
a relevant cue about changes in the city life routine, such that alterations in both
domains can be synced and correlated.

R3 Understand how the distribution of stations roles, into source/provider and
sink/receiver, changes through the day. This division of roles is recurrent in bike-
sharing systems, being usually a good indicator of commercial and residential ar-
eas, and aspect of major importance when designing balancing solutions in BBSS
problems.

R4 Compare the dynamics of the system at different periods since its deployment.
As Citi Bike was deployed only recently, the city is still adapting to it and vice-
versa. Looking into how the usage dynamics changed over its first year may give
rise to valuable insight on what to expect when the system expands to cover new ar-
eas and for the following years to come. Also, it can show how the cycling behavior
changes through the different seasons as the weather changes drastically.

8.2.3 Design

We propose a visualization scheme with interactive capabilities to explore data from
bike-sharing systems. Our scheme is composed of the compressed view of time series,
now as a timeline matrix, and a map. The matrix purpose is to allow navigation in a long
temporal domain while present the series of every station at once. This coordinate view is
further enhanced with a range of interactive options and specialized to operate with both
series of state changes in the stations and commuting trips.
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Figure 8.2: [Station’s Linear Representation] Left: The representation of the stations’
states into color-mapped rows. Middle: using the single day timeline to view data of
one station at that day (top), and also of 30 stations stacked and compressed (bottom).
Right: using the 10 months timeline to view data of one station (top), and also of 30
stations stacked and compressed (bottom). The vertical white stripes in the 10 months
representations are gaps of missing data for part of June, beginning of July and part of
September.

8.2.4 Timeline Matrix View

Our dataset provides a time series of state footprint for every station on each day of a
span going from the ending of June 2013 to the ending of March 2014, resulting in more
than 270 time series per station summing up to more than 8,000 series. Exploiting the
typical cyclostationary nature of the bike sharing balance footprint data [19] we visualize
the series after an aggregation by days of the week, thus visualizing the expected behavior
for a typical week in a given span of days. Aggregation into days of the week is performed
over the series outputted after the resampling scheme defined previously in Section 8.2.1.
We use 13 different calendar intervals for this aggregation to create 13 datasets of typical
week behavior, one for each of the following periods: June 2013, July 2013, August
2013, September 2013, October 2013, November 2013, December 2013, January 2014, ,
February 2014, March 2014, Summer 2013, Fall 2013 and Winter 2013.

To visualize the series of every station without overlap, we use the compressed color
coded linear representation (see figure 8.2). Each row in the matrix represents the series
of states of one station through the timeline. Cells in the same column, map using its fill
color the value of the chosen property for each station in the same time interval. We use
the same matrix representation to view the dataset in two different temporal resolution: a
24 hours long timeline, with samples of data aggregated over a 15 minutes period (middle
of figure 8.2), and a 10 months long one, with samples of aggregated for each day (right
of figure 8.2).

Figure 8.3 gives an overview of the components that create the coordinate matrix view.
The timeline matrix (C), in figure 8.3, takes the middle portion of the layout as it is the
major interaction and informative workhorse of the design. The time period viewed can be
selected in the panel (A). Options are: the average series for the different days of the week,
weekdays altogether (aggregating from Mondays to Fridays) and weekends (aggregating
Saturdays and Sundays), for any month or season; or the series registered during a specific
day of the year. The displayed variable, ordering scheme, color ramp and extreme values
can be changed anytime in the panel (B). The displayed variable can be any of those from
the list of variables derived as explained in Section 8.2.1: Balance, Bikes Available, Free
slots, Frequency, Station capacity, Bikes arrival, Bikes arrival frequency, Bikes takeout
and Bikes takeout frequency. Station capacity is not always constant as expected. The
sum of Bikes available and Free slots does not always lead to the same value at different
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Figure 8.3: [System overview] Our coordinated view supports the exploration of stationsâ
data for each day of the week, during different periods in the year, or for any particular
day in the dataset (A). Each station is presented as a row in the timeline matrix (C) and
in the map (E) as a circle. In the matrix, a cell color codes the value of one of a set of
selectable variables at each 15 minutes interval in a day-long timeline. In the map, the
circles shows the stations’ location with the area being proportional to the total capacity
(maximum number of bikes it can store). Rows (stations) in the matrix can be ordered by
any of the displayable variables, reduced by different operators (B). The actual order is
reflected in ranking lists of Top and Last 10 stations (D), and in the map as each circle’s
color. This example shows the average frequency of use (number of commuters leaving
or taking a bike from the station per minute) of the system on Mondays. The matrix color
variation profile shows the recurrent behavior on working days, where frequency peaks
around 9 am and 6 pm. Ordering the stations by maximum frequency put 11 Av & 59 St
Station at the top with a frequency of at least 7.4 usages per minute. Selecting Central
Park South & 6 Avenue station bring up its row in the matrix and present information
about it and the surrounding stations (F).
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Figure 8.4: [Partial Reordering] Left: In the initial ordering, the reduce operator (arith-
metic average in this example) is applied over the whole range of values of each row (the
resulting value is mapped as the color of the square at the right side of the row). Middle:
Decreasing the brush extent (b) decreases the domain of the reduce operator, thus chang-
ing the ordering. Now the stations are ranked by their reduced value during the chosen
time period (morning). Right: Stations reordered by their average balance now during
working hours. Stations 4 and 2 had more bikes than free slots, while 1 was usually evenly
balanced, and 3 had a lack of bikes.

timestamps, so, keeping track of its value through time may show unexpected changes that
can indicate some problem in a station. Ordering options correspond to the same variables
available for color coding in the cells, reduced using one of four reduction operators
(maximum, minimum, mean and range), and time-invariant properties of the stations (Id,
Name, Latitude and Longitude). The map (E) shows each station as a circle whose color
is associated to the index of the row of the respective station in the matrix, while the area
encodes the capacity of the stations. Pointing one station in the map, highlights its row in
the matrix (zoomed in a lens-like fashion), its entry in the ranking lists (if listed in one of
them) and shows more info about it in the panel (F). Also, a circular region can be defined
in the map to select a group of stations and list then.

When working with the 10-months timeline, each cell represent an aggregation over
a longer time period: a whole day. For such long interval a simple average is not very
informative so we aggregate the data for each day by six different reduce operators in this
case: average, minimum, maximum, range, time of minimum value and time of maximum
value. They are the same as the ones available as options to the ordering scheme, with the
extras of time of minimum and maximum values. These operators tell the time of the day
during which these extreme values were first registered.

8.2.5 Partial Reordering

The rows of the timeline matrix are ordered by their content. Figure 8.2.5 illustrate
the ordering scheme. In the left, the rows are ordered according to the average value of
the full length of their series. Shorter parts of the timeline can be used to reorder the rows.
In the middle part of figure 8.2.5, the rows are ordered using the data from the first 1/3
while on the right the second 1/3 of data is used. This range is defined by the horizontal
extent of a brush on top of the matrix. Simultaneously, the brush’s vertical extent select
the stations that should be shown in the map, so we can inspect only a relevant range of
the ranking. From this set of visible stations, we keep a ranking panel with a list of the
top 10 stations and other with the last 10 ones. The timeline matrix brush can also be
animated as a sliding window, reordering the matrix at each step, to show how the rank of
stations changes over time. The ranking history of each station is shown over the matrix
as a line graph, anytime the station is selected (figure 8.5).
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Figure 8.5: [Rank History] The history of ranking positions expected on Mondays for the
Broadway and West 37 Street Station (red dot in the map) when ranked by the maximum
balance. The ranking history is shown as a line graph with the positions of the station’s
line in the matrix as it changes when a moving window of 15 minutes from the beginning
of the day up to 6 pm. It goes from one of the stations with the lowest balance at 9 am to
the fullest one at 6 pm.
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8.2.6 Trips Representation

Trips are a richer content to explore, there is a new set of derived variables and there
is also the set of trips from which their values came. Now we use the cells of the timeline
matrix to preview this set of trips, thus showing how the commuting behavior in each
station changes through the day. The set of variables derived from the trips are not rep-
resented explicitly in a visual way, but used to rank the rows. In figure 8.6 we show a
simplified example of these previews in a part of the timeline for two stations in period
between 9 and 12 am. We chose a 1 hour aggregation interval for the trips, instead of the
original 15 minutes one used for the stations’ states, to create cells with more room for
the visual representation of the trips. In each cell, we draw each trip as a semi-transparent
line conecting the row station with it origin or destination as it would look in the map
in the top-left, with incoming trips as red lines and outgoing as blue ones. Those colors
are to relate with the intuition of the balance representation when exploring the stations’
states: blue lines leave the selected station, deacreasing its balance towards darker blue in
the balance color scale, while red lines are the oposite case. Cyclic trips are a special case.
They are semi-transparent station-centered gray circles that cover the area that a bike, in
a straight line at an average speed of 2.7 m/s, could have reached given its duration. It is a
rough estimative. Also, outage state of the station is given by the cell border color, again
red meaning a full outage while blue an empty one. We want the timeline to give a rough
view of how many trips have came and gone to each station at each hour, with its spread,
so that we can identify an interesting span and select it to have a detailed view of its trips
in the map. There we change to a representation using curves, with blue ones drawn in
clockwise order to represent outgoing trips, while red anti-clockwise as incoming bikes.
Instead of plain colors, the gradients are used to help identify which station is the selected
one in the timeline matrix: the one in lighter color extreme (cyan or yellow).

8.2.7 Trips Matrix View

To have an overview of all trips in a given time range we use a matrix representation
similar to Guo [37]. Each row in the matrix represents an outgoing station and each
column describes an incoming station. Cells colors are mapped to a variable related to
the trip between two stations, aggregated at the selected time. We provide an interface
to select the current variable displaying for additional studies. The possible values are:
number of trips, trips duration in seconds, the balance difference and station capacity
difference. The quantity and duration of trips can be used to identify preferred stations
among users. Balance difference is calculated to measure the state of the stations where
the trip took place. To do this, we take the difference of balance from the incoming
station and the outgoing station. A balance difference will have values in the range [-1,1].
A value of 1 indicates that the incoming station is full and the outgoing station is empty
(critical case). In the other hand, a value of -1 shows the opposite; a full station at the
origin and empty station at the destination (ideal case). A value near zero means the two
stations involved in the trip have the same balance value. The capacity difference will help
us distinguish trips that occurred from bigger stations to smaller ones, the opposite and
trips between stations with equivalent capacity. Figure 8.8 gives an overview of the main
trips matrix view components. On the top, the hour slider can be used to filter the hour
of day to reveal patterns between trips. The flow matrix takes most of space in the layout
as it is the major interaction and informative source of the design. The period shown can
be selected in the panel. Options are: aggregated trips for the different days of the week,



71

Figure 8.6: [Trips Representation] The diagram shows the representation of trip data in
the coordinate scheme of matrix and map. (Top-left) In this simple example, two stations
are selected in the timeline matrix in a 1-hour period. Incoming trips are given by red lines
while outgoing ones by blue. Each cyclic trip is represented by a semi-transparent circle,
with reach as hint of how far a biker could have gone according to the trip’s duration.
Each trip is also represented in the respective cell of the timeline matrix. The red border
in the top cell at 11 am, indicates that the Broadway and W 41 St station spent most of this
1 hour period in a full outage. (Bottom-right) An example with real data. We improve the
map representation of the trips by using curves instead of lines, to avoid confusion due
to overlap. Trips leaving from the selected station are always drawn in clockwise sense
ending in darker blue at the destination, while incoming trips follow anti-clockwise, with
dark red in the departing station. The map shows every trip arriving/leaving to/from the
top station in the matrix section that took place between 8 am and 6 pm.



72

(a) Highest 30% values (b) Lowest 30% values (c) Values between 40% - 60%

Figure 8.7: [Trips Matrix auto selection] Automatic selection by value percentage. Trips
matrix aggregated over weekdays for September 2013. Displayed variable: balance dif-
ference.

weekdays altogether and weekends, for any month or season; or flows registered during a
particular day of the year. To find patterns in the users trips, we implemented a row and
column reordering depending on a station variable. The options for row/column ordering
are: station trips, capacity, latitude, longitude, number of trips, trips duration, balance.
The displayed variable, rows and columns ordering, and the color range can be changed
anytime using the panel.

For further exploration, we propose two interactive scheme over the trips matrix view:
manual selection and auto selection. The manual selection allows users to navigate over
the trips matrix and select relevant patterns. The vertical and horizontal brush extent select
the stations that serve as start or end points, respectively. To conserve geospatial context
along with the trips matrix view, we use a map that shows each station as a circle whose
color is associated with their role in the selected trips. Outgoing stations are identified by
the blue color, ingoing stations with red color and stations that serve as source and sink
are marked with purple color.

To highlight specific values over the trips matrix and examinate its geographic context
we introduce the auto selection by parameter scheme. Auto selection is useful for making
comparisons between trips matrices based on a percentage of the values range. For exam-
ple, an auto selection with range 70-100% for the balance difference variable highlights
the highest 30% of the range [-1,1] (figure 8.7) , being all the values between 0.4 and 1.

8.3 Results

In this section we describe several analysis we performed over the Citi Bike data. We
show a high-level calendar overview analysis, moving to in-depth exploration of specific
days and the expectation for days of the week in different periods (months/seasons), to
the query of stations and circulation pattern of bike-sharers in NYC.

8.3.1 10 Months Overview

The Calendar View summarizes the whole state-footprint dataset to support an overview
analysis as the initial stage of the exploration pipeline. By combining any of derived vari-
ables extracted from the station state feeds with a choice of how to reduce it for each
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Figure 8.8: [Trips Matrix View] Map View. Stations colored by their role in the selected
trips. Blue color highlights outgoing stations and red was used for incoming stations.
Trips matrix view ordered by station balance. The displayed variable is the station bal-
ance difference. Trips with highest 20% values are selected. Periods analyzed: October
2013 (first row), November 2013 (second row), December 2013 (third row), January 2014
(fourth row) and February 2014 (last row).

day, it gives different perspectives about how the use of the Citi Bike program developed
along the 10 months of data gathered. Figure 8.9 show a set of 9 visual profiles. (a)
The color scales used were chosen according to the nature of the variable displayed. (b)
and (c) perspectives are based on the balance of the stations, however, the first shows the
maximum balance at each day while the other shows the average. In (b) most stations
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(a) 10-months Timescale Detail

(b) Maximum Bal-
ance

(c) Average Balance

(d) Max Bikes Avail-
able

(e) Max Arrival Fre-
quency

(f) Average Capacity (g) Range of Capacity

(h) Time of Max Ar-
rival Frequency

(i) Time of Max Fre-
quency

(j) Time of Minimum
Capacity

Figure 8.9: [Calendar View Perspectives] Evolution of the system usage over 10 months
given by different variables. (a) The scale on the top is a zoomed view of the 10-months
timescale in the top of each of the 9 profiles. (b) The daily maximum balance showed
to be high at the early months (stations usually got close to full at some time everyday)
and decreased with the weather temperature. (c) On Fall there was a increase in the
number of stations that spent most of the day almost full. (d) An overall decrease in the
maximum amount of bikes available can be see during February for every station. (e)
Some days show a peak in the maximum number of bikes arrival, specially at the end
of January. (f) The capacity profile shows a number of periods where the capacity of
the stations changed, which is unexpected behavior, as in August and the end January.
(g) Profiling the daily range of capacity highlight days of odd behavior (high oscillation
of capacity among the several stations) as orange columns, like the thick one (meaning
several consecutive days) at the end of January, and several thin ones August. (h) Using
a purple/orange color scale to map time of the day, this profile shows how the maximum
arrival frequency began to occur earlier as the temperature decreased. (i) The profile
of time of maximum frequency show the same overall pattern as (h) however it also
highlight some days where there was a global maximum frequency at late ours (thin purple
columns). (j) By visualizing the time of the day when the stations reached minimum
capacity, three patterns show up: during July and August the noisy pattern indicates a
unbiased distribution of minimum capacity occurrence over the hours; between the end
of August and middle November there is a strong bias toward early hours (orange); from
the middle of November to the end the bias towards early hours remains, but now weaker
than before.
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happen to be close to full at some time on a daily basis, especially at early months. This
pattern changes as winter approaches and the system use decreases (trend present in most
frequency related perspectives like (e)). (c) shows an overall predominance of a good bal-
ance (lighter colors) among the stations on early months. This pattern begins to change
slightly with the arrival of Fall, with some stations taking more darker reds and blues.
The difference between the two profiles exemplifies the flexibility provided by been able
to choose different daily reducing operators for the viewed quantity.

In (d), we track the daily maximum of bikes at each station. There is a pattern of
lighter color on February meaning that there were less bikes stopped at the docks, which
could mean bikes were removed from the system by the program operational staff, or
more bikes were circulating through the city. By looking at different profiles we see the
first explanation is more likely: (e) show a decrease of the average amount of arrivals
during the same period. Viewing the daily maximum of bike arrivals at the stations in
(d) reveal a period of strong outlying behavior at the end of January. The column-long
increase of displayed value can also be spotted in a few of the other perspectives ((e),
(f) and (g)), even if less evident. The strong regularity of this anomaly, as it happens at
almost every station at the same time, make operational activity or issues to be the most-
likely cause. (h) perspective is also based in the arrival frequency like (e) but instead of
viewing the maximum value we color code the time of the day when the maximum value
was registered. The purpose of this perspective is to see which stations are destinations
by morning (orange) and which ones are more popular at night (purple). (i) also display
time of maximum but with total frequency (arrivals and take outs together, instead of
first alone). With it, we can find out which stations are more used during early and late
hours, with no distinction between roles (if the station is usually an origin or destination
at the time). Both perspectives show a trend of stations becoming more popular at early
hours during winter (increase of orange color during this period), but only the second
one brings up the system-wide anomaly that happened at the ending of February (a dark
purple column). (f), (g) and (j) are based on the stations’ capacities. The capacity of the
stations are supposed to be time-invariant, but these views show a different scenario. In
(f) we can see when the average capacity of any given station changed, and also periods
when such anomaly happened with high regularity in a system-wide fashion (e.g., at the
end of February). Showing the time of minimum capacity of the stations in (j) reveal
an intriguing pattern of predominance of late hours until the end of August. There is a
sudden and strong change to early hours, changing again in the middle of November, with
a single-day-wide purple column followed by a noisier pattern until the end of March.
In (g), we use the range of the daily capacities to make easier to spot these capacity
anomalies (darker columns).

8.3.2 Detailed Exploration by Period and Date

In the overview analysis with the Calendar View, we identified smooth changes along
the 10-month timeline and also a series of anomalies in the different perspectives of the
state footprint dataset. Resorting to the 24-hours timeline view, we can narrow the analy-
sis down to a period of greater interest or to the very day in which an unexpected behavior
was spotted.

Figure 8.10 present the weekdays and weekends profiles of frequency with monthly
resolution. Comparing the 2 rows we see a clear difference between the system use during
work days and weekends. Frequency on weekdays has two peaks, one around 9 am when
commuters go to work, and a second one at 6 pm when they go back home. There is
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June July August September October November December January February

Figure 8.10: [Frequency by month] Profiles of frequency during weekdays (top row) and
weekends (bottom) grouped by each of 9 months (March 2014 not shown). An increase
in the system usage can be seem as the profiles get darker from June to October and them
lighter during Winter months. Also, some profiles show deviations from the expectation:
October weekends present a peak of use around 8 pm (more on figure 8.11), the 9 am
peak on weekdays of January is more evident than the 8 pm one , and the weekends of
February has two short peaks around 11 am and 3 pm.

usage in between, higher then early mornings and late nights, but lower than the rush
hours. During weekends, there is a single wider, lower, and smoother peak that begins
later than weekdays, at 10 am, and also ending later at 9 pm. Since the same color scale
and extreme values was shared between the profiles, we can point that Fall had the most-
intense activity (overall darker colors) with a strong decrease during Winter, due to harsh
weather. We can now see the contrast increasing from June to October and decreasing
again to February. Also, we see the duration of the weekend’s peak during Winter was
shorter than the other months, going from 11 am to 6 pm, probably in response to the
shorter days and longer nights. The last observation is the sharp frequency peak between
9 and 10 pm that is only seen in the profile of weekends during Fall. There is an anomaly
at 9 pm of weekends during October. Other anomalies can be spotted as well, like the
stronger frequency peak around 9 am of January’s weekdays, and the pattern of a series
of short usage spikes on weekends of February.

To further inspect these outliers we drill down specific days of the week in a period
(e.g.: Thursdays of July) or to a day in the calendar (e.g.: 4th July). Figure 8.11 compares
the frequency of Saturdays and Sundays in October, revealing that the anomaly comes
from the first. By looking into the profiles of each different Saturday of October, we
found out that it only happened at 26th October. With such regularity and intensity, it is
very unlikely that it was caused by commuters’ activity.

Figure 8.12 exemplifies the use of the partial reordering of rows to mine temporal
patterns. On the top, the brush is used to order the rows by the average balance the sta-
tions during the mornings of weekdays, on the right, and weekends, on the left. Resulting
patterns are clearly different, as is the use of the system in the two periods of the week.
On weekdays, we can see how the top stations begin full in the morning, get empty over
working hours and then full again at night, with the bottom ones following the very op-
posite behavior. However, for weekends, no such pattern is visible, as the bikers have a
more unpredictable behavior, riding more for leisure than for their working routines. In
the lower left, we view the use frequency on weekdays and order the rows by the same
property in the interval between 8 and 10 AM (first rush hour). The lower right view uses
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October Saturdays October Sundays 26th October (Saturday)

Figure 8.11: [Outlying Frequency Peak on October] An unusual peak of frequency around
8 pm shows up on Saturdays of October, but not on Sundays. Further exploration reveals
such behavior occurred only in the last Saturday of the month, October 26. The same
peak can be noticed on the profile of October (figure 8.10).

the same ordering as the left one, frequency around 9 AM, but now showing the balance
of the stations. The outcome is that such ordering also divide the station in the two role
groups: working hours destinations on top and origins in the bottom.

8.3.3 Querying Stations

An important design requirement is to be able to identify the stations the become bot-
tlenecks of the system, i.e. usually get full or empty. We complied to the requirement by
adding interactive functions to the matrix representation, more specifically the brushing
for partial reordering and the stations’ ranking lists. Also, with the extensive number of
combinations of the set of displayable and ordering variables and the available reduce
operator, we can find not only the bottleneck stations, but also those fitting a large number
of different criteria. This search can be done for any time interval in both the 10-month
overview and 24-hours timelines, and, for the last one, at any specific day in calendar or
day of the week of different months and seasons. In the figure 8.13 we show the results
of 6 queries of stations by different criteria. In (a) and (b) the brush is defined between
9 am and 5 pm to order the stations by mean balance in that period of the day, and then,
by dragging the brush area vertically we highlight in the map the stations according to
their balance levels. In (a) the vertical range of the brush is limited to the top rows of
the matrix, revealing in the map the stations that were usually full at that time of Summer
Wednesdays. (b) shows the ones that were empty, by selecting the bottommost rows. In
the maps, there is a clear division between full and empty stations in the lower and up-
per halves of the area covered by the program respectively. (c) the rows are ordered by
range of balance level throughout the whole day, and by selecting last bottommost rows
we found those that remained at an almost constant balance level. An interesting task is
to find out where are the majority of bikes of the program at a given interval. (d) shows
the answer by displaying the number of bikes available in the stations and ordering the
rows by the average value, this way, limiting the selection to the top rows, show those
with many bikes docked in the map. We can easily view the stations of higher capacity
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24-hours Timescale Detail

Weekdays balance Weekends balance

Displaying frequency Displaying balance

Figure 8.12: [Partial ordering and stations roles] The scale on the top is a zoomed view of
the 24-hours timescale in the top of each of the four profiles below. Top: By ordering the
stations lines in the matrix considering only balance reading from the first 1/3 of the day
exposes the pattern of alternating roles (Left), switching first around 8 am and again at 6
pm. The same operation, however, shows no distinguishable visual pattern for weekends
(Right), resulting in a noisy image, showing low regularity in the system usage, no clear
definition of roles for the stations, and a more even distribution of balance throughout the
system on those days. Bottom: Ranking the stations by Bikes arrival frequency around
9 am highlights the opposite behavior, as stations with low frequency of bikes arrival
around 9 am have a high rate of arrivals at 6 pm. Showing how commuters travel to a
set of stations by the morning and return to the stations in the complementary set at night
(Left). Changing the visualized variable to balance, while still using the same ranking
(bikes arrivals around 9 am), naturally groups the stations by their roles as sinks and
sources (Right).
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(a) Highest Average Balance (b) Lowest Average Balance (c) Lowest Balance Variation

(d) Highest Amount of Bikes Avail-
able

(e) Highest Capacity (f) Highest Capacity Variation

Figure 8.13: [Finding stations by behavior] By ordering the rows of the matrix by different
variables and reduce operators while using the brush to select the time period and the
stations to highlight in the map, the 330 stations can be queried by their historic data.
(a) and (b) show the most full and empty stations, on average, during working hours of
Wednesdays during Summer. In the map, the division between most full stations bellow
midtown and empty ones to the north is clear. (c) shows the stations with lowest variation
of balance throughout the day. (d) Stations with the highest number of bikes during
working hours. (e) and (f) show the capacity of the stations in the matrix, however, the
first show the data aggregated for typical Wednesdays during Fall and select the biggest
ones, the last visualizes the capacity on 01/28/2014. Data from this day shows an unusual
change in capacity for a set of stations around 9 AM. Applying the brush to this interval
and ordering by range of capacity points out the most affected stations.
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Figure 8.14: [Stations’ Roles] We ordered the stations by their average balance at diferent
hours in an usual weekday during Fall of 2013. As a result we can see clearly how the
stations change of roles (as providers and receivers) in a day. In the early morning, most
stations at the sides of Manhattan are almost full (red dots). This distribution changes as
time goes by and is almost the opposite at 2 pm. Later, it comes back to the initial setting
at 10 pm.

as shown in (e). As the capacities should remain constant for each station, the expected
pattern is the smooth vertical gradient shown in (e), where we are visualizing the average
capacity for Wednesdays during Fall. Visualizing the capacity profile for a single day
sometimes reveal some discontinuities. (f) shows a special occurrence of such anomaly
in the capacity profile on 28th January, when there is an alignment of capacity change for
some stations right before 9 AM and then right after again. Selecting such interval and or-
dering the rows by capacity range we group on the top the stations when the discontinuity
was sharper.

8.3.4 Circulation Dynamics

With partial reordering, we can track the migration of bikes in the map through the
day. We already saw the pattern of roles swapping between stations at 9 am and 8 pm
during weekdays, now in figure 8.14 we add spatial context by creating a timelapse of the
rank of balance in the map. Red dots point full stations while the blue ones are empty,
thus there are more bikes in the red regions. The day begins with most bikes in riversides
regions of Manhattan. At 9 am there are few red spots. Since its the rush hour there are
few bike parked, bikers are commuting to work. At early afternoon, we have the opposite
scene of 6 am, a concentration of full stations in the middle, with the sides and Brooklyn
in blue. Later it reverses again and late night is much like early mornings, with slightly
higher concentration at Williamsburg and East Village.

Another interesting perspective is given in figure 8.15, where the subject is the overall
usage distribution (weekdays during Fall of 2013). The begins with little activity except
for stations nerby Penn Station (actually, those stations never really stop). Frequency
spreads in Manhattan towards Financial District and Midtown at 9 am, decrasing again
only late in the night. Also, all the stations along the Broadway showed to be popular
destinations. There is some increase in Brooklyn’s downtown area also, but never as
intense as in Manhattan.

As shown before, there is a great difference in the stations usage during weekdays
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Figure 8.15: [Frequency Cycle on Weekdays] A timelapse of the frequency in typical
weekdays. The stations around Penn Station are the first to show movement (6 am).
Frequency increases throughout Manhattan as time goes by in a similar pattern as the one
with balance in figure 8.14

and weekends. During weekends there is no clear subdivision of the city into constrasting
regions. However, an evident pattern is the increase of cyclic trips. In figure 8.16 we
inspect the trips from Sundays during the Summer of 2014, and rank the stations by
the average amount of cyclic trips between 09 am and midnight, showing that they are
more frequent around leisure spots like Central, Battery, and Brooklyn Bridge Parks,
the High Line and also Williamsburg. Also, another difference between weekdays and
weekends can be seem by comparing the spread of outages as in 8.17. While it is more
frequent during weekdays in the north most stations in Manhattan, East Village and a
region of Brooklyn, at the weekends they become unusual in the last two, but a problem
in Williamsburg.

In figure 8.18 we use trip matrix view to query trips with lowest balance difference.
We think this information is useful for users of the bike-sharing system as lowest balance
difference values expose trips with the ideal case (full outage at the origin and empty
outage at the destination). Having a full outage in the origin station, users could take a
bike without disruption and eventually leave it in an empty station (empty outage). March
2014 was used for this test, showing us that during the evening, trips from the middle
region to the north or south are the safest to avoid outages.

The movement of users during weekdays and weekends reveal different patterns. In
figure 8.19, trips matrix for September 2013 are compared while displaying balance dif-
ference sampled at three day intervals for weekdays and weekend. We can see that during
workdays more outages happen between the afternoon interval. The number of trips with
full and empty outages at night is higher during weekdays than weekends, reflecting the
behavior of people going back home or shopping around after working hours. The number
of problematic trips is higher on weekends than over weekdays in the mornings, probably
because the number of entertainment trips during Saturdays and Sundays.

Managers are also interested to know where they should increase the capacity of a
station to aid the rebalancing problem. To meet this requirement, we opted for August
2014 as a sample to analyze the capacity difference between stations. In figure 8.20, the
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Figure 8.16: [Cyclic trips on Sundays] Stations ranked by the average number of cyclics
trips on Sundays in the Summer of 2014. Cyclic trips seems to be normally distributed
around 4 pm, in the interval between 09 am and 0 am. The Central Park station shows the
highest number of cyclic trips per hour.

Figure 8.17: [Outages] Ranking the stations by the number of outages (both empty and
full types) in weekdays and weekends. During weekdays we can spot three areas with
higher concentration of stations constantly suffering from outages: Midtown and East
Village in Manhattan, and between Fort Greene Park and the Pratt Institute in Brooklyn.
In the weekends, there are more outages around Midtown and they also become more
frequent in Williamsburg.
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(a) Lowest 20% in the afternoon (b) Highest 20% in the afternoon

Figure 8.18: [Trips Matrix - Balance difference]. High and low selection for weekdays
of March 2014, matrix ordered by station balance. As a result, we can see station’s roles
inverted. High balance difference (yellow selection) identifies trips between stations with
outages. Lowest balance difference shows trips without problems.

(a) Morning (b) Afternoon (c) Night

Figure 8.19: [Trips Matrix - September weekdays] Comparison of trips balance difference
at three day intervals of September 2013. Aggregated by weekdays. Yellow color is
mapped to highest values (outages in both stations of the trip). Red shows stations with
similar balance and black identifies trips with lowest balance difference.

trips matrix uses a diverging color scale, mapping high capacity difference values to red
colors and low values to blue colors. To analyze the geographical behavior of incoming
and outgoing stations we chose to do a selection of trips with the highest 10% capacity
difference. This selection reports trips from smaller stations to bigger ones, generally
located in the bottom left corner of the trips matrix. The visualization allows us to detect
outliers with the measurement of capacity. Stations with incorrect capacity value are: E
33 St & 1 Ave, W 43 St & 6 Ave, W 13 St & 5 Ave and W 49 St & 5 Ave. We attribute
this to an incorrect measure due to a system failure.

The perspectives drawn with the 10-months timeline (figure 8.9) showed its potential
to trace the trends of how the behavior of the commuters change as the program matures
(design requirement R4) and the city goes under climate changes. The same trends can
be found by navigating through the different periods available in the 24-hours view while
also showing the cyclical patterns of the weeks (figure 8.10). A straightforward analysis
that followed was the comparison between the different days of the week, between the
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(a) Highest 30% values

Figure 8.20: [Trips Matrix - Capacity difference] Time period: August 2014 aggregated
by weekdays. Trips selection by highest 10% capacity difference. A highest capacity
difference represents trips from smaller stations to bigger ones. We can see these kind of
trips were usually from the south region to the north region of New York.

same days of the week in different periods, and between weekdays and weekend usage.
Anomalies turned out to be easily identified, as specific days and hours that present clear
discordance from the expectation. These anomalies are perceived as a harsh change of
color that show up for many stations in the matrix at a curiously well-defined time period.
One example was detailed in figure 8.11. Facing the strong regularity of these anomalies
and the fact that we could neither find any spatial correlation between the affected stations
(proximity), nor some special event in the city at the given period of time we believe those
outliers are related to operational activities in the program or malfunctioning issues in the
stations’ state tracking and feeding systems. The last option is even more likely regarding
those cases when the number of stations affected is too high, so it is unlikely that the
operational staff could be able to operate in so many places with such coordination.

Another analysis depicted the identification of those stations that fit a given criteria,
like being empty or full (design requirement R1). We did show how the reordering of the
matrix timeline by different variables can intuitively help spotting in the map those that
exhibit the behavior we are looking for. We presented the distribution of the most full and
empty stations during work hours in the map (figures 8.13(a) and (b)); identifyied those
stations that show almost no balance change in usual days (figure 8.13(c)); showed the
stations that keep the highest amount of bikes in such hours (figure 8.13(d)) and found
unexpected variations in the capacity of the stations (comparing figures figures 8.13(e)
and (d))). Apart from the search of patterns and stations, the reordering brush was also
essential to create timelapses that show the progression of the ranks in the time. Figures
8.14 and 8.15 showed how the bikes move between the different regions (related to the
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classification by roles R3), and also the evolving rate of use of a typical working day.
In figure 8.17, by ranking stations by the frequency of outages in both weekdays and
weekends we saw the changes of popularity between regions of Manhattan, Brooklyn and
Williamsburg.

The seasonal trend was clearly present in the results, with great decrease in the rate of
commuting during cold months (even though it was still surprisingly high given the harsh
weather). We could find no explanation for the anomalies identifyied by relating them to
unusual events in the city (design requirement R2), resting in the assumption that those
where caused by operational issues of the Citi Bike program. However, the several results
presented validate the hypothesis that data from bike-sharing can be used to provide many
cues of the city life style, and that the method we proposed is fit for its purpose.

Operating a bike-sharing system deployed in a big city is a challenging task due to
the intense commuting dynamics and its complexity. In such scenario, the number of
outages increases, rebalancing requires more effort as the system is usually larger (more
stations and bikes) and the rebalancing fleet is subject to traffic jams specially when the
system provides 24-hour service and rebalance must be done on the fly. Expecting that
a deeper and clearer understanding of the system dynamics may help in the operational
efforts to provide a better service, we introduced a visualization design to support the
exploration of a dataset with a long history of stations’ usage footprint and user trips of a
bike-sharing system. Data can be visualized as it was registered at each specific day, and
also aggregated over different time periods to represent the expectation back then. Using
New York City’s Citi Bike program as a case study, our designs lead to a substantial
variety of insights, presented and discussed to validate the applicability of the proposed
solution. Our results showed the changes in the activity of the bikers over a 10-months
period from different perspectives. These changes are related to both the adoption of the
bike-sharing as a new transportation mode in NYC and the weather influence over cycling.
A number of anomalies were spotted in the different overview perspectives, and further
exploration revealed the respective days, hours and stations with abnormal trace. Those
events shared a steep and synchronized change in the trace values of several stations at
once, and due to this odd regularity are expected to be reflections of operational activity
or system malfunction.
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9 FINAL CONSIDERATIONS

In the work on running races, the designs we created proved to be of use in the com-
parison of different races, allowing, for instance, to assess the physical condition of the
studied population. We expect such designs to be useful for elaborating new running
strategies, or to help organizers to better plan running events by understanding how the
race course affects the runners. The analysis of related datasets, like similar groups of
runners on the same and different races, can allow the comparison between those groups,
establishing training goals for groups of lesser performance, for example. Also, the use of
more variables and the analysis of other exercise modes, like cycling, are also examples of
interesting topics for further research. This work lead to a collaboration with a researcher
in physiology at IPA - Centro Universitário Metodista, Professor Maristela Padilha, and
a publication at the Brazilian Symposium on Computer Graphics and Image Processing -
SIBGRAPI. Also, we began another work in the same domain in collaboration with Pro-
fessor Gustavo Nonato at USP São Carlos. This work focused in the analysis of history
of exercises of a single runner, and also the comparison of different runners by their his-
tories of exercises. It was interrupted with the beginning of a period of internship with the
visualization group at the Polytechnique Institute of the New York University.

In the domain of the bike-sharing systems, our prototype lead us to a substantial num-
ber of insights regarding the usage of the Citi Bike program in 10-months, proving the ap-
plicability of the scheme of ranked mapping of time series in the context of bike-sharing
systems. This work resulted from a collaboration with the visualization group of Profes-
sor Claudio Silva at NYU-Poly and was recently submitted to the IEEE Transactions on
Visualization and Computer Graphics - TVCG.

We brought the view of time series represented visually compressed to the context of
exploratory visual analysis of spatio-temporal data, as a component of coordinate views
to give full temporal context of several series at once in a compact fashion. By applying
the general idea of viewing the set of series as a ordered stack of thin lines to the two
major works developed in this thesis, we showed how such representation can be used
with different facets of spatio-temporal data. We believe the results presented in both
works serve as evidence to support our claim on the urge for views of sets of time series
in the exploration of spatio-temporal datasets, and the value of the ordered stacks of series
as a useful component to support such analysis.
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APPENDIX A ATRIAL FIBRILLATION

This work was the final result of a collaboration that begun with the visit of profes-
sor Fernando Schlindwein to our Computer Graphics and Interaction group during 2013.
Prof. Schlindwein and his student Joao Salinet have been working in the Bioengineer-
ing Research Group of the University of Leicester, in the UK, with methods to analyse
electrocardiograms’ data. Knowing bout the expertise of our group in the field of GPU
computing, prof. Schlindwein came to us looking for a collaboration in one of their
works. The collaboration resulted in a paper titled Visualizing intracardiac atrial fibril-
lation electrograms using spectral analysis, which was published in the Computing in
Science & Engineering journal. In this section, we summarise the outcome of this collab-
oration.

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it is associated
with increased risk of stroke, heart failure, and mortality [70]. Prof. Schlindwein and
Salinet developed a method that uses spectral analysis techniques to aid the identification
of sources of atrial fibrillation. They expected that the use GPU computing and visual-
ization would be an affordable approach to reduce the time to process and analyse the
electrocardiogram data, thus leading to improvements in the treatment of the medical
condition.

A.1 Related Works

Measuring and modeling the genesis and propagation of the electrical activity in the
heart in quantitative terms is a very important area of research that will help understand
and treat heart arrhythmias. Atrial fibrillation (AF) is a heart rhythm disturbance char-
acterized by uncoordinated and rapid electrical atrial activation which takes over from
normal sinus rhythm, with consequent deterioration of the mechanical ability of the atria
to pump blood effectively. The ventricles will beat irregularly and rapidly during AF
when conduction is intact. On the ECG, the wave of depolarization that spreads through-
out the atria, called P waves, are replaced by rapid, small amplitude oscillations which
vary in amplitude, shape, and timing between QRS complexes (Fuster et al.[? ]), which
corresponds to the three graphical deflections (Q, R and S waves) seen on a typical elec-
trocardiogram. AF is a heart rhythm disturbance characterized by uncoordinated and
rapid electrical atrial activation that takes over, with consequent deterioration of the me-
chanical ability of the atria to pump blood effectively. This malfunction can cause serious
problems like stroke. It is the most common cardiac arrhythmia encountered in clinical
practice with a prevalence of 1-2% of the general population [? ]. The symptoms of
AF include palpitations, tiredness, shortness of breath, dizziness and chest pain. As the
mechanical pumping ability of the atria is compromised, the resulting pooling of blood



88

(a) Sensing (b) Electrocardiogram Visualization

Figure A.1: Electrocardiogram and Ablation. (a) The ablation catheter and the EnSite
3000 balloon array are first used to map the inner surface of the hearts chamber using the
ablation catheter as a probe and the balloon as reference. Then the array collects atrial
electrograms (potentials) at 1,200 Hz. (b) The system can display the potentials as a color
map. (figure from [70])

in the atria increases the long-term risk of stroke fivefold [? ]. AF is a public health
problem with approximately 3,700/year per patient being spent in Europe [? ]. The cost
of a catheter-based ablation procedure is about 12,500. Any advances in the understand-
ing of this condition, especially advances that might lead to more effective treatment are,
therefore, of great importance.

In 1913 Mines [? ], studied the vulnerability of an excitable circle of cells in the
heart. It follows from that original idea that if the concept of reentry is to be applied to
atrial fibrillation, there would be a preferred range of dominant frequencies associated
with the circuits. If reentry circuits are formed, knowing the velocity of propagation of
the electrical activation (typically slower than 20 cms−1), the size of the atrium (up to
6 cm) and, most importantly, the duration of the refractory period (about 200-240 ms
in normal cardiac cells, but reduced down to about 80-85 ms in AF [? ] then the DF
range associated with AF would be between 4.2 Hz and 12.5 Hz. In recent years, a
noncontact multielectrode array catheter has been developed to assist with the mapping
of intracardiac electrical signals in complex arrhythmia cases. This innovation allows
the 3D reconstruction of the hearts chambers, and projection of the recorded electrical
activity onto its geometry as a simultaneous high density of electrograms. Figure A.1
shows a schematic of this process and a 3D representation of the reconstructed surface.
Instead of using the sampled electrocardiogram signals, Salinet and Schlindwein apply
spectral analysis on them to extract the dominant frequencies (DF). These DFs are then
mapped on the 3D surface as colors, and used as indicators of regions that can be causing
AF. Figure A.2 shows the initial electrocardiogram signals mapped in the 3D surface.
They are divided into consecutive time windows, and goes through spectral analysis, to
evaluate the DF at each point in the surface.
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Figure A.2: Spectral analysis of the dominant frequency (DF). The data collected by
the EnSite 3000 system allows manipulation of the atrium on the screen and displays next
to it the torsos orientation. For each of the 2,048 points of the 3D surface, we obtain
the atrial electrograms DF for each segment along time and then color code the surface
according to the DFs frequency. (figure from [70])

A.2 Results

Figure A.3: 3D DF mapping and highest DF identification.(a) The left atriums 3D rep-
resentation, including the mapping of the DFs. The DFs (represented in a color scale) will
help doctors visualize the behavior of the atriums electrical activation in the frequency do-
main in real time. (b) The system can also automatically identify the region corresponding
to the highest DF area. (figure from [70])
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We implemented a prototype to extract the DFs and visualize how they change over
time. Figure A.3 shows the mapping of the DFs of a single time window to the atrium
surface, with the colormap used. By repeating the process for each consecutive time
window, we create an animation that shows the movement of regions with different DF
over the surface (see figure A.4).

Figure A.4: Consecutive DF maps. Consecutive DF maps using 92 percent of overlap-
ping between windows. Using more overlapping creates more frames and a smoother
animation that helps to understand how the different DF zones evolve over the surface
along time. (figure from [70])

The treatment of AF is the ablation (burning) of a point in the atrium surface. With
the visual representation of the regions of DFs in the atrium surface, doctors reason on the
best point to ablate, that will hopefully fix condition. Figure A.5 shows a visualization of
the DFs before and after an ablation is performed. We implemented the spectral analysis
stage using a single CPU core, 4 CPU cores, and a GPU, and compared the processing
times (see figure A.6). The comparison shows that using the processing power of modern
GPUs, it is feasible to implement a pipeline in which data acquisition, computation and
visualization can be done in real-time. The 3D representations used, can be displayed
with the same equipment and manipulated in exactly the same way as they are by cardiol-
ogists who perform the catheterization, and ablation procedures, but now with immediate
feedback about the ablation impact.
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(a) Before Ablation (b) After Ablation

Figure A.5: 3D DF mapping before and after ablation. 3D DF mapping of the left
atrium of a patient with persistent atrial fibrillation(AF). (a) The baseline DF map. (b)
The DF immediately after the standard pulmonary veins isolation (PVI) procedure. This
figure demonstrates a general reduction of the size of the DF areas, a reduction of the DF
values, and a reduction in the complexity of the DF areas after the PVI procedure. (figure
from [70])

Figure A.6: Comparison of processing times. Comparison of processing times between
single CPU core, multiple CPU cores and the GPU. (figure from [70])
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