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Index statistical properties of sparse random graphs
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Using the replica method, we develop an analytical approach to compute the characteristic function for the
probability PN (K,λ) that a large N × N adjacency matrix of sparse random graphs has K eigenvalues below
a threshold λ. The method allows to determine, in principle, all moments of PN (K,λ), from which the typical
sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors,
we show that the index variance scales linearly with N � 1 for |λ| > 0, with a model-dependent prefactor that can
be exactly calculated. Explicit results are discussed for Erdös-Rényi and regular random graphs, both exhibiting
a prefactor with a nonmonotonic behavior as a function of λ. These results contrast with rotationally invariant
random matrices, where the index variance scales only as ln N , with an universal prefactor that is independent
of λ. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support
the Gaussian nature of the index fluctuations.

DOI: 10.1103/PhysRevE.92.042153 PACS number(s): 02.50.−r, 89.75.Hc, 02.10.Yn

I. INTRODUCTION

Since the pioneering work of Wigner in the statistics of
nuclear energy levels [1], random matrix theory has established
itself as a research field on its own, with many important
applications in physics and beyond [2]. Valuable information
on the behavior of different systems may be extracted from the
eigenvalue statistics of related random matrix models. In this
respect, meaningful statistical observables are the eigenvalue
distribution, the distribution of extreme eigenvalues, and the
nearest-level spacing distribution, to name just a few [2].

Another prominent observable is the index KN (λ) of a
N × N random matrix, defined here as the total number
of eigenvalues below a threshold λ. The random variable
KN (λ) is of fundamental importance in the characterization
of disordered systems described by a potential energy surface
H(x1, . . . ,xN ) in the N -dimensional configurational space [3].
The eigenvalues of the symmetric Hessian matrix M, formed
by the second derivatives Mij = ∂2H/∂xi∂xj , encode all
information regarding the stability properties. The number of
positive (negative) eigenvalues counts the number of stable
(unstable) directions around a certain configuration, while the
magnitude of an eigenvalue quantifies the surface curvature
along the corresponding direction. In particular, the minima
(maxima) of the potential energy are stationary points in which
all Hessian eigenvalues are positive (negative). The index is
a valuable tool to probe the energy landscape of systems as
diverse as liquids [4,5], spin-glasses [6–8], synchronization
models [9], and biomolecules [3].

The simplest model for the Hessian of a disordered
system consists in neglecting its dependency with respect to
the configurations and assuming that the elements Mij are
independently drawn from a Gaussian distribution. In this
case, the Hessian belongs to the GOE ensemble of random
matrices [2] and the index statistics has been studied originally
in Ref. [7], using a fermionic version of the replica method.
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The authors have obtained the large-N behavior of the index
distribution PN (K,λ),

PN (K,λ) ∼ exp

{
− π2

2 ln N
[K − Nm(λ)]2

}
, (1)

where m(λ) = ∫ λ

0 dλ′ρ(λ′) follows from the Wigner semicircle
law [2] for the eigenvalue distribution ρ(λ). Equation (1)
implies that, for N � 1, the index variance scales logarith-
mically with N and the typical fluctuations on a scale of width
O(

√
ln N ) around the average index have a Gaussian form.

Recently, a significant amount of work has been devoted to
study the index distribution of rotationally invariant ensembles,
including Gaussian [10–12], Wishart [13], and Cauchy random
matrices [14]. These models share the property that the joint
probability distribution of eigenvalues is analytically known,
which allows to employ the Coulomb gas technique, pioneered
by Dyson [15], to compute not only the typical index distribu-
tion, but also its large deviation regime, which characterizes
atypical large fluctuations [10–14]. For all these ensembles,
Eq. (1) is recovered in the regime of small fluctuations, with
a variance that grows as σ 2 ln N for large N . The prefactor
σ 2 is given by σ 2 = 1/π2 for both Gaussian [7,10–12] and
Wishart [13] random matrices, independently of λ, while
σ 2 = 2/π2 for Cauchy random matrices [14]. This logarithmic
behavior of the variance apparently reflects the repulsion
between neighboring levels [16], which imposes a constraint
on the total number of eigenvalues that fit in a finite region of
the spectrum.

Despite the success of the Coulomb gas approach, the ana-
lytical form of the joint probability distribution of eigenvalues
is not known for various interesting random matrix models.
Perhaps the most representative example in this sense is the
adjacency matrix of sparse random graphs [17,18], in which
the average total number of nonzero entries scales only linearly
with N . Although the eigenvalue distribution of random
graphs has been computed using different techniques [19], the
statistical properties of the index have not been addressed so
far. Several random graph models typically contain localized
eigenvectors at finite sectors of the spectrum [20–23], usually
corresponding to extreme eigenvalues, where the nearest-level
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spacing distribution follows a Poisson law [23,24]. In these
regions, neighboring eigenvalues are free to be arbitrarily
close to each other, which should heavily influence the index
fluctuations. Models in which the state variables are placed
on the nodes of random graphs have found an enormous
number of applications, including spin-glasses, satisfiability
problems, error-correcting codes, and complex networks (see
Refs. [25,26] and references therein), and alternative tools to
study their index fluctuations would be more than welcome.

In this paper we derive an analytical expression for the
characteristic function of the index distribution describing the
adjacency matrix of a broad class of random graphs, defined
in terms of an arbitrary degree distribution. In principle,
such analytical result allows us to calculate the leading
contribution in the large-N limit of all moments of PN (K,λ),
yet we concentrate here on the first and second moments.
Specifically, we show that the index variance of random
graphs scales generally as σ 2(λ)N , with a prefactor σ 2(λ) that
depends on the threshold λ and on the particular structure
of the random graph model at hand. For random regular
graphs with uniform edges, in which all eigenvectors are
delocalized [27–29], we show that σ 2(λ) = 0 for any λ. On
the other hand, for random graph models with localized
eigenvectors [22–24,30,31], the prefactor σ 2(λ) exhibits a
maximum for a certain λ, while it vanishes for |λ| → 0. These
results indicate that the linear scaling of the variance is a
consequence of the uncorrelated nature of the eigenvalues in
the localized regions of the spectrum. Since σ 2(0) = 0 for
random graphs with an arbitrary degree distribution, the linear
scaling breaks down for λ = 0 and the logarithmic scaling
reemerges as the large-N leading contribution for the index
variance, which is supported by numerical diagonalization
results. The model-dependent character of σ 2(λ) contrasts with
the highly universal prefactor found in rotationally invariant
ensembles, though the typical index fluctuations of random
graphs remain Gaussian distributed, as supported by numerical
diagonalization results.

In Sec. II, we lay the groundwork for the replica compu-
tation of the characteristic function. The random graph model
is introduced in Sec. III, the replica approach is developed in
Sec. IV, and the final analytical result for the characteristic
function is presented in Sec. V. We discuss explicit results for
the average and the variance of the index in Sec. VI, and in
Sec. VII, some final remarks are presented.

II. THE GENERAL SETTING

In this section we show how to recast the problem of
computing the index distribution of a random matrix in terms
of a calculation reminiscent from the statistical mechanics of
disordered systems. Let us consider a N × N real symmetric
matrix A with eigenvalues λ1, . . . ,λN . The density of eigen-
values between λ′ and λ′ + dλ′ reads

ρN (λ′) =
N∑

α=1

δ(λ′ − λα). (2)

The index is defined here as the total number of eigenvalues
smaller than a threshold λ,

KN (λ) =
∫ λ

−∞
dλ′ρN (λ′) =

N∑
α=1

	(λ − λα), (3)

where 	(. . . ) is the Heaviside step function. The object KN (λ)
is also regarded as the integrated density of states or the
cumulative distribution function. At this point we introduce
the generating function,

ZN (z) =
(−i

2π

) N
2

∫
dφ exp

[
i

2
φT · (A − Iz)φ

]
, (4)

with φ = (φ1, . . . ,φN ) and z = λ − iε, where ε > 0 is a
regularizer that ensures the convergence of the above Gaus-
sian integral and I denotes the identity matrix. The vector
components φ1, . . . ,φN are real-valued. By using an identity
that relates the Heaviside function with the complex logarithm,
Eq. (3) can be written in terms of ZN (z) as follows:

KN (λ) = 1

πi
lim

ε→0+
[lnZN (z∗) − lnZN (z)]. (5)

Equation (5) holds for a single matrix A with an arbitrary
dimension N .

An ensemble of random matrices is defined by a large set of
instances of A drawn independently from a distribution p(A).
In this paper, we are interested in computing the averaged
index distribution,

PN (K,λ) = 〈δ[K − KN (λ)]〉, (6)

where 〈. . . 〉 denotes the ensemble average with p(A). Using an
integral representation of the Dirac δ and substituting Eq. (5)
in Eq. (6), we obtain

PN (K,λ) =
∫

dμ

2π
e−iμKGN (μ,λ), (7)

where the characteristic function

GN (μ,λ) = lim
ε→0+

〈[ZN (z)]−
μ

π [ZN (z∗)]
μ

π 〉 (8)

contains the whole information about the statistical properties
of the index. The moments of the index distribution are
determined from

〈Kn〉 = (−i)n
∂nGN (μ,λ)

∂μn

∣∣∣∣
μ=0

, n ∈ N. (9)

The aim here is to compute the leading contribution toGN (μ,λ)
for N → ∞. According to Eq. (8), GN (μ,λ) is calculated from
the ensemble average of a function that contains real powers of
the generating function, which is an unfeasible computation.
In order to proceed further, we invoke the main strategy of the
replica method and rewrite Eq. (8) as follows:

GN (μ,λ) = lim
ε→0+

lim
n±→± μ

π

〈[ZN (z)]n−[ZN (z∗)]n+〉. (10)

The idea is to treat initially n− and n+ as integers, which
allows to compute the ensemble average. Once this average
is calculated and the limit N → ∞ is taken, we make an
analytical continuation of n± to the real values ±μ

π
.
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III. RANDOM GRAPHS WITH AN ARBITRARY
DEGREE DISTRIBUTION

We study the index distribution of N × N symmetric
adjacency matrices with the following entries:

Aij = cij Jij , (11)

where cij = cji and Jij = Jji . The variables cij ∈ {0,1}
encode the topology of the underlying random graph: we
set cij = 1 if there is an edge between nodes i and j , and
zero otherwise. The real variable Jij denotes the weight or
the strength of the undirected coupling between the adjacent
nodes i and j .

Both types of random variables are drawn independently
from probability distributions. At this stage, there is no need to
specify the distribution P (J ) of the entries Jij and the model
definitions are kept as general as possible. However, we do
need to specify the distribution of {cij }, which is given by [32]

p({ci<j }) = 1

CN

∏
i<j

[
c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0

]

×
[

N∏
i=1

δki ,
∑N

j=1 cij

]
, cii = 0, (12)

where the product
∏

i<j runs over all distinct pairs of nodes
and CN is the normalization factor.

In this model, the topology of the corresponding graph
is solely determined by the degree ki({ci<j }) = ∑N

j=1 cij of
each node i, defined as the total number of edges attached to
i. According to Eq. (12), any two nodes are connected with
probability c/N , in which c is the average degree, while the
term involving the Kronecker δ ensures that the number of
edges attached to a certain node i is constrained to an integer
ki . For N → ∞, averaged quantities with respect to p({ci<j })
should depend only upon the degree distribution,

pk = lim
N→∞

1

N

N∑
i=1

δk,ki
. (13)

Equation (12) comprises a large class of random graph
models with distinct degree distributions, provided they fulfill
c = ∑∞

k=0 pkk. Although the ensemble average in the replica
approach is performed with the distribution of Eq. (12) and the
final expression for GN (μ,λ) is presented in its full generality,
we discuss in Sec. VI explicit results for regular and Erdös-
Rényi (ER) random graphs, where the degree distributions are
given, respectively, by pk = δk,c [18] and pk = e−cck

k! [17].

IV. THE REPLICA APPROACH

According to Eq. (10), the characteristic function is ob-
tained by calculating the moments of the generating function.
Substituting Eq. (4) in Eq. (10), we can rewrite

GN (μ,λ) = lim
ε→0+

lim
n±→± μ

π

(−i

2π

) Nn−
2

(
i

2π

) Nn+
2

Dn±(z), (14)

in which we have defined the function

Dn± (z) =
∫ (

N∏
i=1

dφidψ iHz(φi ,ψ i)

)
F({φi ,ψ i}), (15)

with

Hz(φ,ψ) = exp

(
− iz

2
φ2 + iz∗

2
ψ2

)
,

F({φi ,ψ i}) =
〈

exp

⎛
⎝i

∑
i<j

cij Jij

(
φi .φj − ψ i .ψ j

)⎞⎠〉
.

The objects φi = (φ1
i , . . . ,φ

n−
i ) and ψ i = (ψ1

i , . . . ,ψ
n+
i ) are

the replicated vectors at node i. The ensemble average 〈. . . 〉
includes the average over the distribution of {cij }, defined
in Eq. (12), and the average over the weights {Jij }, whose
distribution P (J ) is arbitrary. In this section we evaluate the
leading term of N−1 lnDn± (z) for N → ∞ by means of the
saddle-point method.

Using an integral representation for the Kronecker δ in
Eq. (12), the average over the topological disorder is explicitly
calculated and the function F reads

F({φi ,ψ i}) = e− Nc
2

CN

∫ 2π

0

(
N∏

i=1

dxi

2π
eikixi

)

× exp

⎛
⎝ c

2N

N∑
ij=1

e−i(xi+xj )A(φi ,ψ i ; φj ,ψ j )

⎞
⎠,

(16)

where

A(φ,ψ ; φ′,ψ ′) = 〈exp [iJ (φ.φ′ − ψ .ψ ′)]〉J , (17)

and 〈. . . 〉J stands for the average over J . We have retained only
the leading contribution of O(N ) in the exponent of Eq. (16).
To proceed further, the order-parameter

ρ(φ,ψ) = 1

N

N∑
i=1

e−ixi δ(φ − φi)δ(ψ − ψ i) (18)

is introduced in Eq. (16) by means of a functional δ, yielding
the expression

F({φi ,ψ i})

= e− Nc
2

CN

∫
DρDρ̂ exp

(
iN

∫
dφ dψ ρ(φ,ψ)ρ̂(φ,ψ)

)

× exp

(
cN

2

∫
dφ dψ ρ(φ,ψ)r(φ,ψ)

)

×
∫ (

N∏
i=1

dxi

2π
eikixi

)
exp

(
−i

N∑
i=1

e−ixi ρ̂(φi ,ψ i)

)
,

(19)

with

r(φ,ψ) =
∫

dφ′dψ ′A(φ,ψ ; φ′,ψ ′)ρ(φ′,ψ ′). (20)
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The conjugated order parameter ρ̂(φ,ψ) has been rescaled
according to ρ̂(φ,ψ) → Nρ̂(φ,ψ) and the functional mea-
sure in the above integral may be written as DρDρ̂ =∏

φ,ψ
N
2π

dρ(φ,ψ)dρ̂(φ,ψ), where the product runs over all
possible values of φ and ψ . By substituting the large-N leading
contribution to CN in Eq. (19),

CN = exp

[
N

(
c ln c − c −

∞∑
k=0

pk ln k!

)
+ O(1)

]
, (21)

and then inserting the resulting expression into Eq. (15), we
arrive at the integral form

Dn±(z) =
∫

DρDρ̂ exp (NS[ρ,ρ̂]), (22)

where the action reads

S[ρ,ρ̂] = c

2
− c ln c + i

∫
dφ dψ ρ̂(φ,ψ)ρ(φ,ψ)

+ c

2

∫
dφ dψ ρ(φ,ψ)r(φ,ψ)

+
∞∑

k=0

pk ln

{∫
dφ dψ Hz(φ,ψ)[−iρ̂(φ,ψ)]k

}
.

(23)

The integral in Eq. (22) can be suitably evaluated through
the saddle-point method. In the limit N → ∞, the function
Dn± (z) is given by

Dn± (z) ∼ exp (NS[ρ,ρ̂]), (24)

where the order-parameters ρ(φ,ψ) and ρ̂(φ,ψ) fulfill the
saddle-point equations

ρ̂(φ,ψ) = i c r(φ,ψ), (25)

ρ(φ,ψ) =
∞∑

k=0

kpk

c

Hz(φ,ψ)[r(φ,ψ)]k−1∫
dφ′dψ ′Hz(φ

′,ψ ′)[r(φ′,ψ ′)]k
. (26)

Equations (25) and (26) are obtained by extremizing the action
S[ρ,ρ̂] with respect to ρ and ρ̂, respectively. Inserting Eqs. (25)
and (26) back into Eq. (23) and noting from Eq. (26) that∫

dφ dψ ρ(φ,ψ)r(φ,ψ) = 1,

we derive the compact expression

S[ρ,ρ̂] =
∞∑

k=0

pk ln

{ ∫
dφ dψ Hz(φ,ψ)[r(φ,ψ)]k

}
. (27)

The last step consists in performing the limit n± → ±μ

π
in the

above equation. In order to make progress in this task, we need
to make an assumption regarding the structure of ρ(φ,ψ) in
the replica space.

V. THE CHARACTERISTIC FUNCTION OF THE INDEX
DISTRIBUTION

We follow previous works [30,33] and, with a modest
amount of foresight, we assume that ρ(φ,ψ) has the following

Gaussian form:

ρ(φ,ψ) = 1

U (n±)

∫
du dv Wn±(u,v)

(
i

2πu

) n−
2

×
(

i

2πv

) n+
2

exp

(
− i

2u
φ2 − i

2v
ψ2

)
, (28)

where Wn± (u,v) is the normalized joint distribution of the
complex variances u and v, with Im u > 0 and Im v > 0. The
latter conditions ensure the convergence of the integrals in
Eq. (28). Since ρ(φ,ψ) is not normalized for arbitrary n± [see
Eq. (26)], the factor U (n±) has been consistently included in
Eq. (28). The above replica symmetric (RS) form of ρ(φ,ψ)
remains invariant under rotations of the vectors φ and ψ as well
as under permutations of the vector components. A rigorous
approach [34] for the eigenvalue distribution of sparse random
graphs has confirmed the exactness of the results obtained via
the RS assumption.

By inserting Eq. (28) in Eq. (26) and then taking the limit
n± → ±μ

π
, one derives the following equations for Wμ(u,v)

and U (μ):

Wμ(u,v) = [U (μ)]2
∞∑

k=0

kpk

c

Qμ(u,v|k − 1)(v/u)
μ

2π∫
du dv Qμ(u,v|k)(v/u)

μ

2π

,

[U (μ)]−2 =
∞∑

k=0

kpk

c

∫
du dv Qμ(u,v|k − 1)(v/u)

μ

2π∫
du dv Qμ(u,v|k)(v/u)

μ

2π

, (29)

where

Qμ(u,v|k) =
∫ (

k∏
r=1

dur dvr dJr Wμ(ur,vr ) P (Jr )

)

× δ

[
u − 1(

z − ∑k
r=1 J 2

r ur

)]

× δ

[
v + 1(

z∗ + ∑k
r=1 J 2

r vr

)]
(30)

is the conditional distribution of u and v for a given degree
k. Finally, we substitute Eq. (28) in Eq. (27) and perform the
limit n± → ±μ

π
, from which the expression for the large N

behavior of GN (μ,λ) is derived:

GN (μ,λ) = lim
ε→0+

exp

{
−Nc

2
ln[U (μ)]2 + N

∞∑
k=0

pk

× ln

[∫
du dv Qμ(u,v|k)

(
− v

u

) μ

2π

]}
. (31)

In principle, Eq. (31) determines completely the large-N
behavior of the characteristic function for the index distribution
of random graphs with arbitrary degree and edge distributions,
as long as a solution for Wμ(u,v) is extracted from the intricate
self-consistent Eq. (29).

For λ = 0, one can show that Wμ(u,v) = δ(u − v)Rμ(u)
solves Eq. (29), provided the normalized distribution Rμ(u)
fulfills a certain equation, whose particular form is not relevant
in this case. Thus, the characteristic function at λ = 0 simply
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reads

GN (μ,0) = exp

(
iμN

2

)
, (32)

which yields the δ peak PN (K,0) = δ[K − N/2] for the index
distribution, after substituting Eq. (32) in Eq. (7). This result
reveals that, in order to access the index fluctuations in this
case, one needs to compute the next-order contribution to
GN (μ,0) for large N . The same situation arises in the replica
approach for the GOE ensemble [7]. We present in the next
section explicit results for the mean and the variance of the
index for specific random graph models in the regime |λ| > 0.

VI. THE STATISTICAL PROPERTIES OF THE INDEX

It is straightforward to check from Eqs. (9) and (31) that the
moments 〈Kn〉 scale as 〈Kn〉 ∝ Nn for large N . In particular,
the mean and the variance read

〈K〉 = Nm(λ), 〈K2〉 − 〈K〉2 = Nσ 2(λ), (33)

where the prefactors m(λ) and σ 2(λ) depend on the spe-
cific graph ensemble via the distributions pk and P (J ).
Equation (33) differs strikingly from rotationally invariant
ensembles of random matrices [7,10,11,13,14], where the
variance of the typical index fluctuations is of O(ln N ) and
the prefactor is independent of λ [7,10,11,13]. From Eq. (32)
we conclude that σ 2(0) = 0, which suggests that the index
variance of random graphs with an arbitrary degree distribution
exhibits the logarithmic scaling 〈K2〉 − 〈K〉2 ∝ ln N for large
N at this particular λ. This is confirmed below for the case
of ER random graphs by means of numerical diagonalization
results.

For |λ| > 0, the intensive quantities m(λ) and σ 2(λ) are
obtained directly from Eqs. (9) and (31), i.e., from the
coefficients of the expansion of GN (μ,λ) around μ = 0. In
general, m(λ) and σ 2(λ) are given in terms of averages
with the distribution W0(u,v) = limμ→0 Wμ(u,v), whose self-
consistent equation is derived by performing the limit μ → 0
in Eq. (29),

W0(u,v) =
∞∑

k=0

kpk

c
Q0(u,v|k − 1). (34)

The object W0(u,v) may be interpreted as the averaged joint
distribution of the diagonal resolvent elements at the two
different points z and −z∗ of the complex plane. The resolvent
elements at z and −z∗ are both calculated on the same cavity
graph [22,35], defined as the graph in which an arbitrary node
and all its edges are deleted.

Equation (34) has a simpler form when compared to
Eq. (29) and numerical solutions for W0(u,v) can be
obtained using the population dynamics algorithm [30],
where the distribution W0(u,v) is parametrized by a large
set {ui,vi}i=1,...,M containing M pairs of stochastic random
variables. These are updated iteratively according to their joint
distribution W0(u,v), governed by Eq. (34), until W0(u,v)
attains a stationary profile. The limit ε → 0+ in Eq. (31) is
handled numerically by calculating W0(u,v) for small but
finite values of ε. We refer the reader to references [19,22,30]
for further details regarding the population dynamics
algorithm in the context of random matrices and some

technical points involved in the limit ε → 0+. Since the
eigenvalue distribution ρN (λ) is symmetric around λ = 0,
m(λ) and σ 2(λ) obey the relations m(−λ) = 1 − m(λ) and
σ 2(λ) = σ 2(−λ). Hence, the results for m(λ) and σ 2(λ)
discussed below are limited to the sector λ � 0.

A. Erdös-Rényi random graphs

For ER random graphs the quantities m(λ) and σ 2(λ) read

m(λ) = lim
ε→0+

[ ∫
du dv du′ dv′ W0(u,v)

×W0(u′,v′)1(u,v; u′,v′)
]
, (35)

σ 2(λ) = lim
ε→0+

[ ∫
du dv du′ dv′ W0(u,v)

×W0(u′,v′)2(u,v; u′,v′)
]
, (36)

where

1(u,v; u′,v′) = ic

4π
〈FJ (u,v; u′,v′)〉J − i

2π
ln

(
− v

u

)
,

2(u,v; u′,v′) = c

8π2
〈[FJ (u,v; u′,v′)]2〉J + 1

4π2
ln

(
− v

u

)

× ln

(
− v′

u′

)
− 1

4π2

[
ln

(
− v

u

)]2

,

with

FJ (u,v; u′,v′) = ln

(
1 − J 2uu′

1 − J 2vv′

)
. (37)

The distribution W0(u,v) is calculated numerically from
Eq. (34) using the population dynamics algorithm with the
degree distribution pk = e−cck

k! of ER random graphs [17].

 0.6

 0.8
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FIG. 1. (Color online) Numerical results for the averaged inten-
sive index m(λ) of Erdös-Rényi random graphs with the distribution
of edges P (J ) = δ(J − 1), obtained using the population dynamics
algorithm (solid lines) with M = 106 random variables and ε =
10−3. Numerical diagonalization results (symbols), calculated from
an ensemble of 100 matrices of size N = 3200, are shown as a
comparison.
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FIG. 2. (Color online) Numerical results for the prefactor σ 2(λ)
of the index variance of Erdös-Rényi random graphs with the
distribution of edges P (J ) = δ(J − 1), obtained using the population
dynamics algorithm with M = 106 random variables and ε = 10−3.

In Figs. 1 and 2, we present numerical results for m(λ) and
σ 2(λ) in the case of ER random graphs with P (J ) = δ(J − 1).
The discontinuous behavior of m(λ) for small average degree c

reflects the presence of δ peaks in the eigenvalue distribution,
due to the proximity of the percolation transition [36]. In fact,
all connected components of ER random graphs are finite trees
and the spectrum is purely discrete for c < 1, while the heights
of these peaks decrease exponentially with increasing c [36].
The calculation of the integrated density of states presented
here allows us to determine, for N → ∞, not only the location
of the most important δ peaks in the spectrum, but also their
relative weights, given by the size of the discontinuities of
m(λ). The exactness of our results for m(λ) is confirmed by
the comparison with numerical diagonalization data, as shown
in Fig. 1.

The results for the prefactor σ 2(λ) of ER random graphs
are shown in Fig. 2. For the smaller values of c, the index
fluctuations are generally stronger and σ 2(λ) exhibits an
irregular behavior, both features related to strong sample-
to-sample fluctuations of the graph structure close to the
percolation critical point. The prominent feature of Fig. 2 is
that σ 2(λ) shows a nonmonotonic behavior, with a maximum
for a certain intermediate value of λ and a vanishing behavior
at λ = 0, which signals the breakdown of the linear scaling
〈K2〉 − 〈K〉2 ∝ N . This is confirmed by the numerical diago-
nalization results of Fig. 3, where 〈K2〉 − 〈K〉2 is calculated as
a function of N for c = 3. The results of Fig. 3(a), for different
values of λ > 0, display a linear behavior for increasing N ,
with slopes in full accordance with the theoretical values for
σ 2(λ), as indicated on the caption. On the other hand, Fig. 3(b)
shows that the index variance scales as 〈K2〉 − 〈K〉2 ∝ ln N

for λ = 0, similarly to the behavior of rotationally invariant
ensembles [7,10,11,13,14].

B. Random regular graphs

In the case of random regular graphs, the degree distribution
is simply pk = δk,c [18], where c > 2 is an integer. First, let us
consider the situation in which the values of the edges are fixed,
i.e., their distribution reads P (J ′) = δ(J ′ − J ), with J ∈ R. In

 0
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(b)
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N
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102 103 104

ln N

λ=0

FIG. 3. (Color online) Numerical diagonalization results for the
index variance of Erdös-Rényi random graphs with c = 3 as a
function of the number of nodes N . Each data point is calculated from
an ensemble with S independent realizations of the adjacency matrix
A, where S has been chosen according to S = 3.2×105

N
. The solid lines

represent the best fits of the numerical data. (a) Index variance for
λ > 0. The solid lines represent the linear fit 〈K2〉 − 〈K〉2 = a + bN ,
with the values of the slope b indicated next to each straight line.
The theoretical values for σ 2(λ), calculated through the numerical
solution of Eq. (36), are given by σ 2(0.5) = 0.015, σ 2(3.0) = 0.0085
and σ 2(3.5) = 0.0040. (b) Index variance for λ = 0. The solid line
represents the logarithmic fit 〈K2〉 − 〈K〉2 = a + b ln N , with the
slope b = 0.47(6).

this case, Eq. (29) has the following solution for arbitrary μ:

Wμ(u,v) =
(

− g v

g∗u

) μ

2π

δ(u − g)δ(v + g∗), (38)

where g is a root of the algebraic equation

(c − 1)J 2g2 − zg + 1 = 0. (39)

The quantity g represents the diagonal elements of the
resolvent on the cavity graph [22,35]. Substituting Eq. (38)
in Eq. (31) and using the above quadratic equation, we get

GN (μ,λ) = lim
ε→0+

exp [iμNm(z)], (40)

where

m(z) = 1

π
Im[ln (z − cJ 2g)] − c

2π
Im[ln (1 − J 2g2)]. (41)
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Equation (40) is the large-N behavior of GN (μ,λ) for random
regular graphs in the absence of edge fluctuations. By choosing
the proper roots of Eq. (39) in the different sectors of the
spectrum [37], we can perform the limit limε→0+ m(z) and
derive the following analytical result for λ � 0:

m(λ) = 1 + 1

π
tan−1

[−c

√
λ2

b − λ2

λ(c − 2)

]

− c

2π
tan−1

[ λ

√
λ2

b − λ2

λ2 − 2c(c − 1)J 2

]
, (42)

with |λb| = 2|J |√c − 1 denoting the band edge of the continu-
ous spectrum of random regular graphs [38,39]. Equation (42)
coincides with the average integrated density of states in the
bulk of a Cayley tree [40] and it converges to the result for
the GOE ensemble when c � 1 [7], as long as we rescale J

according to J → J/
√

c. The substitution of Eq. (40) in Eq. (7)
yields a δ peakPN (K,λ) = δ[K − Nm(λ)], which implies that
σ 2(λ) = 0. This suggests that the index variance exhibits the
logarithmic scaling 〈K2〉 − 〈K〉2 ∝ ln N for arbitrary λ. The
latter property is consistent with the absence of localized states
and the corresponding repulsion between nearest eigenvalues,
which is common to the whole spectrum of random regular
graphs with uniform edges [27–29].

The above results are clearly due to our trivial choice
for P (J ). The spectrum of random regular graphs contains
localized states in the presence of edge disorder [30,31] and
one can expect that σ 2(λ) exhibits a nontrivial behavior as long
as P (J ) has a finite variance. The functions m(λ) and σ 2(λ) for
random regular graphs with an arbitrary distribution P (J ) read

m(λ) = i

2π
lim

ε→0+

[
c

2
K1(z) − L1(z)

]
,

σ 2(λ) = 1

4π2
lim

ε→0+

{
c

2
K2(z) − c

2
[K1(z)]2

+ [L1(z)]2 − L2(z)

}
, (43)

where Kn(z) and Ln(z) are calculated from

Kn(z) =
∫

du dv du′ dv′Q0(u,v|c − 1)Q0(u′,v′|c − 1)

×〈[FJ (u,v; u′,v′)]n〉J ,

Ln(z) =
∫

du dv Q0(u,v|c)

[
ln

(
− v

u

)]n

. (44)

Figure 4 shows population dynamics results for m(λ)
and σ 2(λ) in the case of a Gaussian distribution P (J ) =
(2π )−

1
2 exp (−J 2/2). The function m(λ) does not display

any noticeable discontinuity, as observed previously for ER
random graphs, due to the absence of disconnected clusters
in the case of large random regular graphs [18]. In addition,
we note that σ 2(λ) has qualitatively the same nonmonotonic
behavior as in ER random graphs, exhibiting a maximum
for a certain λ and approaching zero as λ → 0. Numerical

diagonalization results for large matrices A, also shown in
Fig. 4, confirm the correctness of our theoretical approach.

C. The index distribution

In this subsection, we inspect the full index distribution
of random graphs using numerical diagonalization, instead
of undertaking the more difficult task of calculating the
characteristic function from the numerical solution of Eqs. (29)
and (31). We restrict ourselves to λ > 0, where the index
variance scales linearly with N � 1.

In Fig. 5 we show results for the distribution pN (k,λ) of
the intensive index kN (λ) = KN (λ)/N in the case of ER and
random regular graphs with c = 5, obtained from numerical
diagonalization for λ = 1. For each value of N , the results
are compared with a Gaussian distribution (solid lines) with
mean and variance taken from the data, which confirms the
Gaussian character of the typical index fluctuations for both
random graph models when N is large but finite.

Overall, our results suggest that, for N � 1 and |λ| > 0, the
intensive index of ER and random regular graphs is distributed

 0.6

 0.8

 1

 0  2  4  6
λ

m(λ)

c=3
c=5
c=7

(a)

 0
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σ2(λ)
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(b)

FIG. 4. (Color online) Numerical results for the averaged inten-
sive index m(λ) and the prefactor σ 2(λ) of the index variance
of random regular graphs with edges drawn from the Gaussian
distribution P (J ) = (2π )−

1
2 exp (−J 2/2), obtained using the pop-

ulation dynamics algorithm (solid lines) with M = 5 × 105 random
variables and ε = 10−3. Numerical diagonalization results (symbols),
calculated from an ensemble of 100 matrices of size N = 4000, are
shown as a comparison.
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FIG. 5. (Color online) Numerical diagonalization results (sym-
bols) for the distribution of the intensive index of random graphs with
c = 5 and λ = 1. The histograms were generated from 105 indepen-
dent samples for the intensive index of the adjacency matrix A. The
solid lines are Gaussian distributions with mean and variance taken
from the data. (a) Erdös-Rényi random graphs with the distribution
of the edges P (J ) = δ(J − 1). (b) Regular random graphs with the
distribution of the edges P (J ) = (2π )−

1
2 exp (−J 2/2).

according to

pN (k,λ) =
√

N

2πσ 2(λ)
exp

{
− N

2σ 2(λ)
[k − m(λ)]2

}
, (45)

with nonuniversal parameters σ 2(λ) and m(λ) that depend on
the underlying random graph model as well as on the particular
value of the threshold λ. The function pN (k,λ) converges
to pN (k,λ) = δ[k − m(λ)] for N → ∞, but the rate of
convergence is slower when compared to rotationally invariant
ensembles [7,10,11,13,14], due to the logarithmic scaling of
the index variance with respect to N in the latter case. On the
other hand, the Gaussian nature of the index fluctuations for
N � 1 seems to be an ubiquitous feature of random matrix
models.

VII. FINAL REMARKS

We have presented an analytical expression for the
characteristic function of the index distribution describing
a broad class of random graph models, which comprises

graphs with arbitrary degree and edge distributions. Ideally,
this general result gives access to all moments of the index
distribution in the limit N → ∞. We have shown that the index
variance of typical fluctuations is generally of O(N ), with
a prefactor σ 2(λ) that depends on the random graph model
under study as well as on the threshold λ that defines the index
through Eq. (3). In particular, σ 2(λ) follows an intriguing
nonmonotonic behavior for random graphs with localized
eigenstates: it exhibits a maximum at a certain |λ| > 0 and a
vanishing behavior at λ = 0. Numerical diagonalization data
confirm the theoretical results and support the Gaussian form
of the typical index distribution for the random graphs consid-
ered here [see Eq. (45)], completing the picture about the index
statistics.

Our results differ with those of rotationally invariant
ensembles, where the index variance is of O(ln N ), with
a prefactor that is independent of λ and has an universal
character. We argue that this difference in the scaling forms
arises due to the presence of localized states in the spectrum of
some random graphs. In the localized sectors, the eigenvalues
do not repel each other and behave as uncorrelated random
variables, such that the total number of eigenvalues contained
in finite regions within the localized phase suffers from
stronger finite-size fluctuations as compared to regions within
the extended phase, where level-repulsion tends to equalize the
space between neighboring eigenvalues. On the other hand,
the Gaussian nature of typical index fluctuations seems to be
a robust feature of random matrix models.

On the methodological side, the replica approach as devised
here departs from the representation of the characteristic
function in terms of real Gaussian integrals, instead of the
fermionic Gaussian integrals adopted in Ref. [7]. In the situ-
ations where σ 2(λ) = 0, the logarithmic scaling of the index
variance is obtained in our setting from the next-to-leading
order terms, for large N , in the saddle-point integral of Eq. (22).
These contributions come from O(1/

√
N ) fluctuations of the

order parameter and they are handled following the ideas
of reference [37]. Indeed, we have precisely recovered the
analytical results for the GOE ensemble [7] employing this
strategy [41], and the same approach can be used to calculate
the prefactors in situations where the variance of random
graphs is of O(ln N ).

Our work opens several perspectives in the study of the
typical index fluctuations. First, it would be worth having ap-
proximate schemes or numerical methods to solve Eq. (29) and
obtain the distribution Wμ(u,v), which would allow to fully
determine the characteristic function for random graphs. Due
to the versatile character of the replica method, the study of the
averaged integrated density of states of the Anderson model
on regular graphs [42] and its sample to sample fluctuations is
just around the corner. It would be also interesting to inspect
the robustness of the Gaussian form of the index fluctuations
in random matrix ensembles with strong inherent fluctuations,
such as Levy random matrices [43] and scale-free random
networks [44]. The index statistics of both random matrix
models can be treated using the replica approach as developed
here. In fact, scale-free random graphs, crucial in modeling
many real-world networks appearing in nature [26], can be
studied directly from our work by choosing the degree distri-
bution as pk ∼ k−γ (2 < γ � 3), which yields random graphs
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with strong sample to sample degree fluctuations. Finally, we
point out that the different scaling behaviors of the index
variance should have important consequences to the relaxation
properties and search algorithms on complex energy surfaces.
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