
3.2. GÊNESE DE EDP'S APÓS SPLIT NAS EQUAÇÕES ORIGINAIS

Na seção 2.5 expusemos de forma sucinta o que seria uma Gênese de EDP's, comentando no final que faríamos uso deste método ao tentar solucionar nosso problema utilizando alguma condição matemática que parte das equações deverá respeitar. Com este objetivo vamos agora fazer uma análise da estrutura das Equações de Navier-Stokes bem como das Equações de Helmholtz. Organizando convenientemente as equações em notação vetorial, obtemos para as Equações de Navier-Stokes

$$\frac{\partial V}{\partial t} - \boldsymbol{u} \nabla^2 V = -V \cdot \nabla V - \frac{1}{r} \nabla p$$
(3.7)

e para as Equações de Helmholtz

$$\frac{\partial \boldsymbol{w}}{\partial t} - \boldsymbol{u} \nabla^2 \boldsymbol{w} = -\boldsymbol{V} \nabla \boldsymbol{w} - \boldsymbol{w} \cdot \nabla \boldsymbol{V}$$
(3.8)

o que poderia ser sintetizado no seguinte formato genérico para ambas

$$\frac{\partial F}{\partial t} - \boldsymbol{u} \,\nabla^2 F = N \tag{3.9}$$

onde *N* representa a *parte não-linear* de cada equação, e a função vetorial \underline{F} corresponde ao *vetor velocidade* em Navier-Stokes e ao *vetor vorticidade* em Helmholtz. O operador referente à *parte linear* passaremos a chamar *A*, de modo que

$$A = \frac{\partial(\bullet)}{\partial t} - \boldsymbol{u} \,\nabla^2(\bullet)$$

A propriedade matemática que nos permite realizar um *split* entre as partes *linear* e a *não-linear* de ambas equações vetoriais é o fato de que *a parte linear pertence ao espaço nulo do operador divergente*, pois

$$\nabla \cdot \left(\frac{\partial \underline{F}}{\partial t} - \boldsymbol{u} \, \nabla^2 \underline{F} \right) = 0$$

conseqüentemente também $\nabla .(N) = 0$, mostrando que N resulta da aplicação do operador rotacional sobre um campo vetorial \underline{r} , ou seja

$$N = \nabla \times \underline{r} \tag{3.10}$$

O *split* resultará, tanto para as equações de Navier-Stokes quanto para as de Helmholtz, num sistema na forma

$$\begin{cases} A[\tilde{F}] = Q\\ N = Q \end{cases}$$
(3.11)

onde Q é, por enquanto, uma fonte incógnita. A partir deste ponto passamos à resolução da parte linear do *split*, o que será facilitado pela obtenção de um operador diferencial que nos permita mapear soluções simples desta equação em novas soluções mais abrangentes da mesma equação. Este operador, que chamaremos de operador B, é um operador diferencial linear que ao ser aplicado sobre qualquer função vetorial F_k a transformará em outra função vetorial F_{k+1} igualmente pertencente ao espaço de soluções de A[F] = Q. Em suma, o operador B acrescenta ao nosso sistema a equação auxiliar

$$A\left[B\left[\tilde{F}\right]\right] = Q \tag{3.12}$$

e sua estrutura terá a forma

$$B = a \frac{\partial(\bullet)}{\partial x} + b \frac{\partial(\bullet)}{\partial y} + c \frac{\partial(\bullet)}{\partial z} + g \frac{\partial(\bullet)}{\partial t} + hI$$
(3.13)

onde *a*, *b*, *c*, *g* e *h* são funções lineares em *x*, *y*, *z* e *t*, sendo *I* o operador identidade. A seguir aplicamos o operador *B* em (3.12) para obtermos suas funções *a*, *b*, *c*, *g* e *h* a partir de equações diferenciais aplicadas aos coeficientes das derivadas de F, como será mostrado a seguir.

3.2.1. OBTENDO O FORMATO DO OPERADOR $B \in DA$ FONTE Q

A equação linear do sistema (3.11) é dada por A[f]=Q, sendo Q um campo vetorial arbitrário que obedece à equação da continuidade. Isolando a derivada temporal na equação, esta fica na forma

$$\frac{\partial f}{\partial t} = -\boldsymbol{u} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right) + Q$$
(3.14)

Substituindo a expressão correspondente em B[f] elimina-se a derivada no tempo antes de a substituirmos na equação auxiliar A[B[f]]=Q.

Uma forma equivalente à imposição simultânea das restrições A[f]=Q e A[B[f]]=Qconsiste na condição de comutatividade dos operadores A e B. Isso implica que o operador Bopere Simetrias de Lie admitidas por A[f]=Q, isto é, transforme soluções exatas desta equação em novas soluções exatas da mesma. Além disso, ao expandir mos A[B[f]]=Q vemos que as derivadas de f(x,y,z,t) no tempo se anulam. Ao anularmos individualmente cada um desses coeficientes, mantemos f arbitrária. Como pode ser visto no Apêndice III, uma vez aplicada a lista de substituições sobre as restrições A[f]-Q=0 e A[B[f]]-Q=0, todas as equações auxiliares decorrentes da anulação dos coeficientes das derivadas de f resultam identicamente satisfeitas, surgindo apenas a seguinte restrição diferencial para a função fonte

$$(A_{0000} + A_{0001}t + B_{000}y)\frac{\partial Q}{\partial x} + (B_{0000} + B_{000}t + B_{000}x + B_{003}z)\frac{\partial Q}{\partial y} + (C_{002} + B_{003}y)\frac{\partial Q}{\partial z} + (\frac{A_{0001}x + B_{0001}y}{2u} - 1)Q = 0$$

$$(3.15)$$

que equivale à equação de ponto fixo B[Q]=Q. Resolvendo essa equação fazendo uso do método das características obtemos para Q dois argumentos $\mu 1$ e $\mu 2$. Para termos uma notação conveniente renomeamos as constantes restantes assim: $A_{0000}=A_0$, $A_{0001}=A_1$, $B_{000}=B_0$, $B_{0001}=B_1$, $B_{003}=B_2$, $B_{0000}=B_3$ e $C_{002}=C_0$, ficando os dois argumento obtidos expressos por

$$\begin{cases} \mathbf{m}_{1} = A_{0}y + A_{1}ty - \left(\frac{\left(x^{2} + y^{2}\right)B_{0}}{2}\right) - B_{3}x - B_{1}tx - B_{2}xz \\ \mathbf{m}_{2} = \left(A_{0} + A_{1}t - B_{0}y\right)z - \left(C_{0} - B_{2}y\right)x \end{cases}$$
(3.16)

Em resumo, a equação de ponto fixo do operador B foi resolvida em parte utilizando o método das características, produzindo uma função Q na seguinte forma:

$$Q = g \left(A_0 y + A_1 t y - \left(\frac{\left(x^2 + y^2\right) B_0}{2} \right) - B_3 x - B_1 t x - B_2 x z, \left(A_0 + A_1 t - B_0 y\right) z - \left(C_0 - B_2 y\right) x \right) \right)$$

$$= \left(2 \left[-k_{42} - \frac{A_1 x y + \frac{B_1 y^2}{2}}{2u} \right] u \left(-C_0 + B_2 y \right) A_1 \left(A_1 x + B_1 y\right) \right)$$

$$= \left((3.17) \right)$$

Como a estrutura da fonte resulta a mesma da função incógnita, a forma da solução da fonte Q serve para toda f que satisfaça o *split*. Dessa forma ela pode ser usada para expressar a parte solenoidal do campo de velocidades, bem como para o campo de vorticidade. O formato aqui obtido será posteriormente utilizado para obter o campo de pressão, visto que a definição particular de função corrente aplicada em (3.3) será utilizada apenas para a plotagem. A seguir obteremos um formato para esta definição particular de função corrente, utilizando para o campo de velocidades uma forma genérica de (3.17).

3.2.2. FUNÇÃO CORRENTE OBTIDA DO CAMPO DE VELOCIDADES

O formato obtido em (3.17) possui constantes e funções arbitrárias suficientes para que possamos impor as condições restritivas do escoamento. Porém sua manipulação por programas de solução simbólica é mais conveniente em uma forma genérica como

$$V_N = g_N(\boldsymbol{a}_N, \boldsymbol{b}_N) e^{h(x, y, z, t)}$$
(3.18)

onde o índice *N* é utilizado para ressaltar que cada componente do vetor velocidade depende de uma função $g(\alpha,\beta)$ distinta daquela das outras componentes. A função h(x,y,z,t), no entanto, é a mesma para as três componentes cartesianas da velocidade. Isto decorre do fato de que o formato do campo de velocidades é igualmente válido para o campo de vorticidade. Se tentarmos obter o campo de vorticidade aplicando o rotacional sobre o campo de velocidades, concluiremos que se a função h(x,y,z,t) for diferente para cada uma das componentes da velocidade teríamos para a vorticidade um formato com várias parcelas, que para a componente em *x* seria

$$\mathbf{w}_{1} = \frac{\partial g_{3}}{\partial y}e^{h_{3}} + e^{h_{3}}\frac{\partial h_{3}}{\partial y}g_{3} - \left(\frac{\partial g_{2}}{\partial z}e^{h_{2}} + e^{h_{2}}\frac{\partial h_{2}}{\partial y}g_{2}\right)$$
(3.19)

o que não corresponderia ao formato genérico obtido anteriormente. Já se a exponencial de h(x,y,z,t) for idêntica para todas componentes da velocidade, estas teriam a forma

$$V_N = g_N(\boldsymbol{a}_N, \boldsymbol{b}_N)e^h \tag{3.20}$$

e o formato da componente em x da vorticidade seria dado por

$$\mathbf{W}_{1} = \left(\frac{\partial g_{3}}{\partial y} + g_{3}\frac{\partial h}{\partial y} - \frac{\partial g_{2}}{\partial z} - g_{2}\frac{\partial h}{\partial z}\right)e^{h}$$
(3.21)

onde o somatório entre parênteses pode ser considerado como uma nova função i_N (g_{N+1} ,, $g_{N+2,i}g'_{N+1,i}g'_{N+2,i}h'$), correspondendo portanto ao formato genérico prescrito anteriormente.

A seguir recorremos à nossa função corrente tridimensional e fazemos com que suas isolinhas coincidam com as tangentes locais do vetor velocidade impondo que sua derivada material seja nula

$$\frac{D\mathbf{y}}{Dt} = \frac{\partial \mathbf{y}}{\partial t} + V_1 \frac{\partial \mathbf{y}}{\partial x} + V_2 \frac{\partial \mathbf{y}}{\partial y} + V_3 \frac{\partial \mathbf{y}}{\partial z} = 0$$
(3.22)

$$V_1 = \frac{\partial x}{\partial t} V_2 = \frac{\partial y}{\partial t} \qquad V_3 = \frac{\partial z}{\partial t}$$
(3.23)

A expressão (3.22) define uma hipersuperfície sobre a qual as variações da função corrente no espaço e no tempo se compensam mutuamente, mantendo constante seu valor. Para que a função corrente possa ser uma função arbitrária de dois argumentos $h(x,y,z,t) \in q(x,y,z,t)$ devemos zerar os coeficientes de suas derivadas na equação (3.22). Resolvendo o sistema resultante chegaremos a uma relação entre os dois argumentos da função corrente. Para isso, inicialmente substituímos as componentes da velocidade por um modelo baseado nas equações (3.18), bem como a função corrente por y(h, q), aplicando a regra da cadeia às suas derivadas para chegarmos à seguinte expressão

$$\frac{D\mathbf{y}(\mathbf{h},\mathbf{q})}{Dt} = \frac{\partial \mathbf{h}(x, y, z, t)}{\partial t} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial \mathbf{h}} + \frac{\partial \mathbf{q}(x, y, z, t)}{\partial t} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial \mathbf{q}} + \left(g_1(\mathbf{a}_1, \mathbf{b}_1)h(x, y, z, t)\right) \left(\frac{\partial \mathbf{h}(x, y, z, t)}{\partial x} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial \mathbf{h}} + \frac{\partial \mathbf{q}(x, y, z, t)}{\partial x} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial q}\right) + \left(g_2(\mathbf{a}_2, \mathbf{b}_2)h\right)(x, y, z, t) \left(\frac{\partial \mathbf{h}(x, y, z, t)}{\partial y} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial h} + \frac{\partial \mathbf{q}(x, y, z, t)}{\partial y} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial q}\right) + \left(g_3(\mathbf{a}_3, \mathbf{b}_3)h(x, y, z, t)\right) \left(\frac{\partial \mathbf{h}(x, y, z, t)}{\partial z} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial h} + \frac{\partial \mathbf{q}(x, y, z, t)}{\partial z} \frac{\partial \mathbf{y}(\mathbf{h},\mathbf{q})}{\partial q}\right) = 0$$
(3.24)

O sistema a ser resolvido inclui duas equações adicionais. A primeira delas é a equação da continuidade para escoamentos incompressíveis, que implica a nulidade do divergente do vetor velocidade

$$\nabla \bullet \underline{V} = \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z} = 0$$
(3.25)

onde

e a segunda é a condição de independência entre os argumentos da função corrente

$$\nabla \boldsymbol{h} \cdot \nabla \boldsymbol{q} = \frac{\partial \boldsymbol{h}}{\partial x} \frac{\partial \boldsymbol{q}}{\partial x} + \frac{\partial \boldsymbol{h}}{\partial y} \frac{\partial \boldsymbol{q}}{\partial y} + \frac{\partial \boldsymbol{h}}{\partial z} \frac{\partial \boldsymbol{q}}{\partial z} = 0$$
(3.26)

pois, se os argumentos h e q fossem dependentes, de forma que q = f(h), teríamos na verdade uma função corrente dependente de apenas um argumento.

Anulando individualmente os coeficientes das derivadas da função corrente em (3.24) obtemos um sistema auxiliar. Nesse ponto isolamos uma das componentes da velocidade nas equações dos coeficientes, por exemplo V₁, para obtermos expressões das outras duas componentes em função desta:

$$\begin{cases} V_{2} = \left(\frac{\partial \mathbf{h}}{\partial t}\frac{\partial \mathbf{q}}{\partial z} - \frac{\partial \mathbf{h}}{\partial z}\frac{\partial \mathbf{q}}{\partial t}\right) + \left(\frac{\partial \mathbf{h}}{\partial x}\frac{\partial \mathbf{q}}{\partial z} - \frac{\partial \mathbf{h}}{\partial z}\frac{\partial \mathbf{q}}{\partial x}\right)V_{1} / \left(\frac{\partial \mathbf{h}}{\partial y}\frac{\partial \mathbf{q}}{\partial z}\right) - \left(\frac{\partial \mathbf{h}}{\partial z}\frac{\partial \mathbf{q}}{\partial y}\right) \\ V_{3} = \left(\frac{\partial \mathbf{h}}{\partial t}\frac{\partial \mathbf{q}}{\partial y} - \frac{\partial \mathbf{h}}{\partial y}\frac{\partial \mathbf{q}}{\partial t}\right) + \left(\frac{\partial \mathbf{h}}{\partial x}\frac{\partial \mathbf{q}}{\partial y} - \frac{\partial \mathbf{h}}{\partial y}\frac{\partial \mathbf{q}}{\partial x}\right)V_{1} / \left(\frac{\partial \mathbf{h}}{\partial y}\frac{\partial \mathbf{q}}{\partial z}\right) - \left(\frac{\partial \mathbf{h}}{\partial z}\frac{\partial \mathbf{q}}{\partial y}\right) \end{cases}$$
(3.27)

A seguir substituímos as definições (3.27) em (3.25), anulando os coeficientes das derivadas de g_1 , g_2 e g_3 para mantê-las arbitrárias. Simplificando o sistema resultante obtemos as seguintes relações entre as derivadas de **h** e **q**:

$$\begin{cases} \frac{\partial \boldsymbol{q}}{\partial y} = \frac{\partial \boldsymbol{h}}{\partial y} \frac{\partial \boldsymbol{q}}{\partial x} / \frac{\partial \boldsymbol{h}}{\partial x} \\ \frac{\partial \boldsymbol{q}}{\partial z} = \frac{\partial \boldsymbol{h}}{\partial z} \frac{\partial \boldsymbol{q}}{\partial x} / \frac{\partial \boldsymbol{h}}{\partial x} \end{cases}$$
(3.28)

Se isolarmos a derivada temporal de q em (3.26) e substituirmos a expressão resultante juntamente com as relações (3.28) em (3.25), esta última resulta automaticamente satisfeita, restando apenas as restrições (3.28) para limitar o formato dos argumentos da função corrente. Vale aqui notar que as únicas restrições aos argumentos da função corrente dependem apenas das componentes da velocidade serem da forma dada em (3.18) e não obrigatoriamente como em (3.17), portanto, na dedução a seguir não vincularemos V ao formato obtido para Q.

3.2.3. DEFININDO OS ARGUMENTOS DA FUNÇÃO CORRENTE

Como as únicas restrições ao formato dos argumentos de y são as relações (3.28), poderíamos arbitrar o formato de um deles e facilmente obter o do outro. O passo seguinte seria aplicar as condições de contorno. Caso possamos juntar estes dois passos poderíamos arbitrar formatos para h ou q que funcionassem como coordenadas ortogonais num espaço com eixos h, q e y(h,q). Pensando puramente na forma mais conveniente para aplicar as condições de contorno, o ideal seria que h e q expressassem coordenadas que:

a) reproduzam para valores constantes de y as hipersuperfícies paralelas ao corpo submerso como em um escoamento potencial;

 b) reflitam a forma de propagação das perturbações desde o contorno até além da camada limite, e na esteira gerada pelo corpo submerso.

Estes objetivos podem ser atingidos se arbitrarmos um dos argumentos, por exemplo h, na seguinte forma

$$h(x, y, z) = R_T(x, y, z)(1 - f_C(x, y, z))$$
(3.29)

onde $f_C(x,y,z)$, que chamaremos de *função de contorno*, serve para descrever a posição do ponto em relação ao contorno do corpo submerso. Especificamos $f_C(x,y,z)$ de tal forma que quando ela for unitária estaremos na região que h = 0 e, portanto, sobre a isosuperfície da função corrente y = 0 localizada exatamente no contorno do corpo. Quando h for maior que a unidade estaremos fora do corpo. A função R_T é uma *referência transversal ao contorno do corpo*, ou à linha ou plano de simetria do mesmo no resto do escoamento. Para uma esfera, com centro na origem e escoamento principal na direção X, no seu entorno teríamos $R_T = \sqrt{x^2 + y^2 + z^2} - R_0$, que é a distância do ponto à superfície, já no resto do escoamento $R_T = \sqrt{y^2 + z^2}$, representando a distância do ponto ao eixo X. Quando aplicamos (3.29) às relações (3.28), chegamos facilmente uma solução em linha de comando para o formato de q, que ficaria

$$q(x, y, z, t) = g l(R_T(x, y, z), (1 - f_C(x, y, z)), t)$$
(3.30)

Dessa forma, **h** possui uma função $f_C(x,y,z)$ que nos permitirá trocar de geometria do corpo submerso conforme necessário, assim como **q** passa a ser uma função arbitrária dependente do tempo e capaz de refletir outros fatores pertinentes à difusão das perturbações turbulentas.

3.2.4. CONSIDERAÇÕES SOBRE PERTURBAÇÕES E SUA PROPAGAÇÃO

Como estipulamos anteriormente, os argumentos da função corrente devem ter formato tal que permitam expressar as perturbações causadoras da turbulência, bem como sua propagação para o corpo do escoamento. A partir do momento em que eliminamos a dependência de h no tempo, transferimos para q a necessidade de expressar as perturbações do escoamento. Para tanto vamos considerar que a rugosidade da superfície do corpo submerso possa ser expressa como uma senóide.

Vejamos então como uma perturbação senoidal se propagaria utilizando outro conceito de matemática aplicada. Quando falamos em obter uma *solução formal* para uma equação diferencial que pode ser expressa como

$$\frac{\partial f}{\partial t} = A f \tag{3.31}$$

onde $f(r_1,...,r_n,t)$ é uma função das variáveis espaciais e do tempo e A é um operador diferencial, estamos dizendo que existe para ela uma solução na forma

$$f = \left[e^{tA}\right] f_0 \tag{3.32}$$

onde f_0 representa a expressão para a função em t=0, representando o estado inicial do sistema. Para transformarmos essa expressão em uma solução explícita, expandimos a exponencial do operador diferencial em série de Taylor:

$$e^{tA} = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}$$
(3.33)

Seja nosso operador A tal que transforme (3.31) numa equação advectivo-difusiva, por simplicidade considerada unidimensional, como

$$\frac{\partial f}{\partial t} = f \frac{\partial f}{\partial x} + \mathbf{u} \frac{\partial^2 f}{\partial x^2}$$
(3.34)

e nossa função incógnita f uma perturbação senoidal da velocidade na forma dV = e sen(fx), os primeiros termos da série da solução explícita seriam

$$SF_{pert.} = (\boldsymbol{e} sen(\boldsymbol{f}x)) + \boldsymbol{u}(\boldsymbol{e}\boldsymbol{f}^2 sen(\boldsymbol{f}x) + \boldsymbol{e}\boldsymbol{f} sen(\boldsymbol{f}x)\cos(\boldsymbol{f}x)) + \dots$$
(3.35)

O primeiro termo simplesmente reproduz a perturbação, mas o segundo termo mostra claramente o efeito das parcelas advectiva e difusiva da equação sobre ela. A primeira parcela do segundo termo representa a difusão da perturbação, cuja influência depende explicitamente da relação u/f^2 . Como a ordem de grandeza da viscosidade para líquidos é de 10^{-6} [m²/s], as maiores freqüências, cujos comprimentos de onda f sejam menores que 10^{-3} m, serão amplificadas por esse termo para grande parte dos escoamentos incompressíveis. Já a segunda parcela desse termo representa a advecção da perturbação, porém seu efeito é o de gerar uma nova perturbação com número de onda igual ao *dobro* daquele da perturbação original. É fácil reconhecer que

$$\mathbf{ef}sen(\mathbf{f}x)\cos(\mathbf{f}x) = \frac{\mathbf{ef}sen(2\mathbf{f}x)}{2}$$

ou seja, a nova perturbação com freqüência dobrada tem a amplitude multiplicada por f/2. Caso esse fator seja maior que um haverá amplificação do novo harmônico da perturbação. Um detalhe importante está no fato de que, como a viscosidade não se altera, a relação u/f^2 faz com que cada parcela advectiva do termo subseqüente da série amplifique geometricamente o harmônico gerado pelo termo anterior. Quando algum método *lineariza* algum termo da equação, não só está aproximando a solução, mas também eliminando os harmônicos que são gerados por ele. Isso se dá porque a solução formal de uma EDP linear só é capaz de amplificar ou amortecer a perturbação com comprimento de onda original, sem ser capaz de produzir novas perturbações com maior número de onda.

Pensando na coerência física da solução, podemos assumir que os termos que gerarem perturbações com comprimentos de onda menores que a escala molecular do fluido não serão realistas, devendo a série ser truncada antes deles. Cabe, portanto, observar que *só devemos aplicar análise de ordem de grandeza para desprezarmos termos da solução obtida, nunca para desprezarmos termos da equação original*. Estes argumentos nos permitem concluir que, quando simulamos escoamentos sobre contornos e corpos submersos, se desprezarmos a influência de alguns termos por sua pequena ordem de grandeza estaremos eliminando a geração, propagação e

amplificação de perturbações de alta freqüência até o corpo do escoamento. Análises clássicas baseadas nas Equações Médias de Reynolds (EMR) [Schlichting, 1979, pg. 450] tendem a cometer esse equívoco, eliminando termos quadráticos das perturbações ao mesmo tempo em que reconhecem a observação experimental de perturbações de alta freqüência, que demonstramos serem geradas e amplificadas por estes mesmos termos.

A conseqüência imediata dessas tentativas de simplificação das Equações Médias de Navier-Stokes, por inadvertidamente terem eliminado alguns dos mecanismos responsáveis pela geração de perturbações, fez com que se buscasse a origem da instabilidade nas perturbações a montante do corpo submerso ou mesmo no escoamento livre [Schlichting, 1979, pg. 400]. A influência dessas perturbações é importante e não deve ser desprezada, porém a inexistência delas não deveria impedir a eventual transição do regime de laminar para turbulento no interior da camada limite. Poderemos simular tal escoamento a partir de um estado inicial de repouso, desde que os mecanismos físicos de geração de turbulência estejam presentes na formulação utilizada.

Tão importante quanto isso é perceber que as condições de contorno clássicas são igualmente inadequadas por não serem capazes de refletir mecanismos oriundos de escalas próximas da molecular. As médias espaciais e temporais, representadas por condições de contorno de segunda espécie, servem como aproximação válida apenas para fenômenos macroscópicos, restritos em sua abrangência pela hipótese do contínuo e excluindo, portanto, alguns dos mecanismos geradores de turbulência. Não deixaria de ser fisicamente incoerente considerar que uma camada de partículas de fluido estivesse solidária ao contorno, respeitando assim as condições clássicas, pois não há justificativa plausível para que a segunda camada deslize sobre a primeira: ou ambas deslizam ou ambas são solidárias ao contorno sólido. Na segunda hipótese não haveria escoamento algum, portanto, resta-nos admitir que fisicamente não pode haver uma condição de travamento, mas uma condição de deslizamento parcial, descrita por uma condição de contorno de terceira espécie.

Resumindo as considerações anteriores, estamos afirmando que as condições de contorno clássicas não são fisicamente coerentes com fenômenos observados em microescala. Elas devem ser consideradas como médias temporais e espaciais das verdadeiras condições de contorno, e sua validade diminui à medida que estudamos fenômenos que se manifestem em escalas próximas da molecular. Como a turbulência envolve fenômenos que ocorrem nessas escalas, somos levados naturalmente a aplicar uma definição adequada da função corrente junto aos contornos. Para tanto traduziremos a rugosidade como um somatório de componentes senoidais, as quais darão

origem a uma série de perturbações proporcionais às flutuações das componentes da velocidade sobre o corpo submerso.

3.2.5. CONDIÇÕES RESTRITIVAS PARA ESCOAMENTOS TURBULENTOS

Como é sabido, condições de contorno de primeira espécie impõem o valor da variável como função das coordenadas espaciais, as de segunda espécie fazem constante o valor das derivadas da função, já as de terceira espécie expressam essas mesmas derivadas de forma proporcional à própria variável. Pelos argumentos expostos anteriormente fica claro que os dois primeiros tipos de condição de contorno não são capazes de reproduzir a função sobre o contorno sem transformá-la numa média espacial, temporal, ou mesmo de fazê-la dependente das características físico-químicas do fluido ao invés de apenas da geometria do contorno. Sendo assim, seria adequado utilizarmos uma condição de terceira espécie que poderia ser traduzida de forma mais ampla como uma restrição diferencial sobre a função.

Uma restrição diferencial não precisa necessariamente estar associada somente ao contorno, mas pode refletir também a forma pela qual os fenômenos gerados no contorno se propagam para o resto do domínio. Vista assim, uma restrição diferencial passa a ser a forma pela qual um fenômeno físico se manifesta em relação a uma variável do escoamento, podendo ela ser um dos eixos, o tempo ou mesmo uma variável auxiliar como h ou q. Sendo assim, uma condição de terceira espécie da derivada da função corrente em relação a uma variável do escoamento, por exemplo x, teria a forma geral

$$\frac{\partial \mathbf{y}(x, y, z, t)}{\partial x} = f_1(x, y, z, t) \mathbf{y}$$
(3.36)

onde f_1 é uma função que dependente de todos os argumentos para que y não seja obrigatoriamente linear em x. A integração de (3.36) gera uma função corrente na forma

$$\mathbf{y}(x, y, z, t) = g_1(y, z, t) \cdot e^{\int f_1(x, y, z, t) dx}$$
(3.37)

a qual podemos restringir estabelecendo condições assintóticas para grandes distâncias (no infinito), sobre o contorno, no instante inicial e, possivelmente, após o escoamento estar plenamente desenvolvido. Observando (3.37) podemos ver que a função g_1 depende de todos os

argumentos da função corrente menos aquele para o qual foi imposta a restrição diferencial. Como a forma que estamos procurando deve ser suficientemente abrangente para abarcar os fenômenos presentes no escoamento, podemos dizer que tanto a função g_1 quanto o argumento da exponencial devem ser um somatório de diversos termos relacionados às formas de propagação e amortecimento da perturbação nas direções espaciais e no tempo.

Se aplicarmos inicialmente uma restrição diferencial em h na forma de (3.36), veremos que no instante inicial a perturbação deve se anular. Como já arbitramos que a perturbação será senoidal, estaremos restringindo a forma da função $g_1(q)$ a um seno cujo argumento seja nulo no instante t=0. Por simplicidade faremos que ele seja uma função multiplicada por t, ou então que q tenha um formato tal como

$$\boldsymbol{q} = c_1 t. g_2(R_T(x, y, z), (1 - f_C(x, y, z)))$$
(3.38)

Já sobre o contorno a exponencial deve ter valor unitário para que h = 0, logo uma forma que satisfaça essas condições resultaria numa função corrente como

$$\mathbf{y} = U_{\infty} e^{(f_2(\mathbf{h}, \mathbf{q}) \cdot \mathbf{h})} sen(g_3(\mathbf{q}))$$
(3.39)

onde a função f_2 do argumento da exponencial é a forma genérica da integral de f_1 vista em (3.37), sendo válida para a região do domínio a partir do corpo submerso e a jusante dele. Para a região a montante do corpo submerso, considerando que esta é uma região não-perturbada, a função corrente se iguala a U_{∞} . h, que é a forma usual de expressar a função corrente em duas dimensões.

Procurando refletir através de restrições diferenciais o amortecimento da perturbação, tanto na direção do escoamento como transversalmente a ela, acrescentaríamos outros termos ao argumento da exponencial. Este mesmo formato de função corrente pode ser obtido através de uma análise física do comportamento em microescala do fluido junto ao contorno do corpo submerso. Baseando este comportamento num somatório de perturbações decorrentes de cada ponto da superfície do corpo. A influência de todas as fontes puntuais pode ser obtida através de uma convolução como a descrita mais detalhadamente no Apêndice V deste trabalho.

Uma forma resultante para a função corrente seria a seguinte

$$\mathbf{y} = U_{\infty}\mathbf{h} + g_1(\dots)\operatorname{sen}(g_3(\mathbf{q}))e^{\left(-e^{-C_3R_L} - e^{C_1\left(R_L - C_4\right)} - \frac{\mathbf{h}^2}{\ln\left(1 + e^{C_2(\mathbf{q})}\right)}\right)}$$
(3.40)

onde R_L é uma *referência longitudinal* à direção do escoamento obtida da mesma forma que R_T , e os coeficientes C_1 a C_4 podem ser constantes ou ter dependência nas dimensões do corpo submerso ou nas componentes da velocidade do escoamento livre U_{∞} . A função g_1 , por sua vez, representa as contribuições das outras variáveis que não estejam incluídas na perturbação senoidal. Como as condições restritivas aplicadas ainda permitem que q continue sendo uma função arbitrária, tentamos inicialmente utilizar a seguinte forma polinomial simplificada para q

$$\boldsymbol{q} = \frac{U_{\infty}}{\sqrt{\boldsymbol{u}} R_{P}} t \left[-\left(c_{0} + R_{T}(1 - f_{C})\right) + \frac{\left(c_{0} + R_{T}(1 - f_{C})\right)^{2}}{2} - \dots \right]$$
(3.41)

onde c_0 é uma constante arbitrária e a fração logo à esquerda é um fator de proporcionalidade multiplicado pelo tempo. Esse fator leva em consideração as características físicas que devem influenciar a perturbação, a qual aumenta com a velocidade e é inversamente proporcional à distância do ponto à superfície do corpo, além de ser amortecida pela viscosidade do líquido. Foram feitos testes com a série entre colchetes truncando-a nos termos de primeiro, segundo e terceiro graus. Os resultados das três tentativas não apresentaram diferença perceptível, mostrando que a série converge muito rapidamente. Sendo assim, utilizamos apenas o primeiro termo para obter as plotagens da função corrente nos resultados mostrados logo adiante.

A seguir podemos ver um corte da curva de amplitude da perturbação no plano XY.

Figura 3.3 - amplitude da perturbação para U_8 de 0,5 m/s (contínua) e 1 m/s (tracejada).

A curva contínua, a mais baixa e curta da Figura 3.3, reflete uma velocidade média de escoamento inferior à da curva tracejada com amplitude levemente maior, cujo amortecimento mais lento e esteira mais longa são qualitativamente condizentes com um escoamento mais rápido. Esta última mostra claramente o formato de sigmóide resultante da convolução deduzida no Apêndice V.

Para a plotagem a função corrente é multiplicada por uma função f_V , que visa anular seu valor sobre o corpo submerso usando o fato de sua viscosidade poder ser considerada muito superior à do fluido. Isso mantém a representação física e visualmente coerente, evitando a ocorrência de valores negativos para a função corrente no interior do corpo submerso. Sua influência sobre uma constante unitária ao longo do eixo *X* pode ser vista na figura a seguir.

Figura 3.4 - efeito da função de viscosidade f_V sobre uma constante ao longo do eixo X.

Para um escoamento de água, utilizando uma esfera com raio unitário, foram obtidos gráficos da função corrente num corte sobre o plano *XY*. As isolinhas resultantes da interseção do plano de corte com as hipersuperfícies de y mostram claramente os vórtices se desprendendo da superfície da esfera.

Figura 3.5 – escoamento em torno de esfera com Re = 100.

Figura 3.6 - escoamento em torno de esfera com Re = 100.000.

Figura 3.7 - escoamento em torno de esfera com *Re*=1.000.000.

Características qualitativas da esteira tais como o aumento do ângulo de abrangência da esteira em torno do corpo, bem como seu alongamento à medida que *Re* aumenta podem ser observados. Em animações de escoamentos com Re=100, de onde foi obtido o quadro da Figura 3.5, é possível observar a alternância de vórtices característica de uma esteira de Von Kárman, mostrando que o modelo tem boas perspectivas para analisar escoamentos com amplos limites para valores de velocidade média. A distribuição mais homogênea de vórtices de menor dimensão, reflexo dos efeitos do termo de *vortex stretching* da equação de Helmholtz, pode ser claramente percebida na simulação para *Re*=1.000.000 da Figura 3.7, mostrando a efetiva passagem do escoamento de laminar para turbulento.

Tendo em vista que as simulações para uma esfera se mostraram coerentes, fizemos a seguir uma série de simulações para uma barra de seção retangular de lado igual a 2 m imersa em água. Cortes para simulações com números de Reynolds 100.000 e 1.000.000 podem ser vistos a seguir.

Figura 3.8 – escoamento em torno de barra de seção quadrada com Re = 100.000.

Figura 3.9 – escoamento em torno de barra de seção quadrada com Re =1.000.000.

As Figuras 3.8 e 3.9 mostram claramente a geração de turbulência e o descolamento da camada limite nas bordas superior e inferior do perfil. Também pode ser visto o refinamento dos vórtices com o aumento da velocidade. Levando em conta a zona de baixa pressão próxima à face posterior (a jusante) do perfil retangular, um aumento local da intensidade da perturbação em relação ao observado na esfera já era esperado ali.

Devemos aqui ressaltar que a descrição analítica de um perfil retangular não pode ser feita nos mesmos moldes usados para descrever a esfera. Sendo assim, algumas definições de referências longitudinais, transversais e medidas de distância do ponto ao contorno foram adaptadas no algoritmo do Apêndice VI. Para que este algoritmo fosse utilizável para ambas geometrias há linhas com definições específicas indicadas por comentários como "...#para a esfera", de modo que possam ser habilitadas as do caso em uso e desabilitadas as da outra geometria antes de rodar a simulação.

5. CONCLUSÕES

Mostramos ao longo deste trabalho que perturbações geradoras de turbulência podem ser obtidas por uma interpretação fisicamente realista dos fenômenos que ocorrem na interface entre o corpo submerso e o fluido. Ao associarmos esta interpretação à aplicação do método de mapeamentos aqui exposto sobre as Equações de Navier-Stokes e de Helmholtz, obtivemos simulações qualitativamente realistas de escoamentos viscosos incompressíveis.

A simplicidade dos algoritmos de simulação vistos nos Apêndices III, IV e VI permitiu que estas fossem realizadas num computador de custo mediano exigindo períodos de tempo muito pequenos se comparados ao exigido para simulações numéricas. O computador utilizado possui um processador AMD Opteron 165 de núcleo duplo e freqüência de 1,8 GHz, bem como 2 GB de memória DDR-400, resultando em tempos de processamento para as simulações variando entre 25 segundos e 5 minutos. Hardware equivalente a este é financeiramente acessível e atualmente disponível também em computadores portáteis. Não só a portabilidade do hardware necessário à aplicação do método, mas o tempo necessário para realizar as simulações também é compatível com a proposta de tomada de decisões em tempo real, características esta desejáveis à resolução de problemas ditos de engenharia.

A adequação dos coeficientes e funções arbitrárias através de comparação com dados experimentais é um dos passos seguintes na direção de obter resultados quantitativamente válidos. De forma especial, o ajuste da função que representa a perturbação deve ser feito levando em consideração as freqüências observadas experimentalmente. Estes aperfeiçoamentos vão levar o método aqui aplicado em direção a uma representação mais fiel da perturbação produzida pelo corpo submerso sobre o escoamento, sem que para isso seja necessário sacrificar sua rapidez e praticidade de uso.

REFERÊNCIAS:

Ávila, G.,1990. "Variáveis complexas e aplicações", Livros Técnicos e Científicos Editora.

Beck, D., 2005. "Soluções Exatas para a Equação de Helmholtz Bidimensional em Regime Transiente", Dissertação de Mestrado – PROMEC - UFRGS.

Bluman, G.; Kumei, S., 1989. "Symmetries and differential equations", Springer Verlag, NY.

Churchill, R.V., 1975. "Variáveis complexas e suas aplicações, McGraw-Hill Brasil.

Dettman, J.W., 1965. "Applied Complex Variables", MacMillan.

Dattoli, G.; Gianessi, M., Quattromini, M., Torre, A., 1998. "Exponential operators, operational rules and evolutional problems", **Il Nuovo Cimento**, V.113B, N.6, pp 699-710.

Delaney, R., 1983. - "Time-marching analysis of steady transonic flow in turbomachinery cascades using the Hopscotch method" - Journal of Engineering for Power, v. 105, pp 272-279.

Elshabka, A.M.; Chung, T.J., 1999. "Numerical Solution of Three-dimensional Stream Function Vector Components of Vorticity Transport Equations". Comput. Methods Appl. Mech. Engrg., v. 170, pp 131-153.

Figueiredo, D.G., 1963. "Teoria Clássica do Potencial". Editora Universidade de Brasília.

Freire, A.; Menut, P.; Su, J., 2002. "Turbulência", ABCM.

Geuzaine, P., "Large eddy simulations (LES) on unstructured meshes", <u>http://www.cetic.be/imprimer.php3?id_article=338</u>

Greenspan, D.; Casuli, V., 1988. "Numerical analysis for applied mathematics, science and engineering" - Addison-Wesley Publishing Co., Redwood City.

Ibragimov, N., 1995. "Lie Group Analysis of partial differential equations".- CRC Press, Boca Raton.

Landau, L.D.; Lifshitz, E.M., 1987. "Fluid mechanics, 2^a edição (vol. 6)", Pergamon – NY.

Nehari, Z., 1952. "Conformal Mapping (1^a edição)", McGraw-Hill - NY.

Panton, R.L., 1996. "Incompressible Flow", John Wiley & Sons - NY.

Papanastasiou, T.C.; Georgiou, G.C.; Alexandriou, A.N., 1999. "Viscous Flow", CRC press – NY.

Schlichting, H., 1979. "Boundary Layer Theory", McGraw-Hill – NY, 5^a edição em inglês.

Spiegel, M.R., 1964. "Theory and problems of complex variables, with an introduction to Conformal Mapping and its applications". Schaum's outline series. McGraw-Hill - NY.

Toms B.A., 1949. "Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers", **Proc. of the 1st International Congress on Rheology**, Vol. II, 135, North-Holland, Amsterdam.

White, F.M., 1991. "Viscous Fluid Flow", McGraw-Hill - NY, 2ª edição.

Zabadal, J.R.; Ferreira, V., 1990. 'Flow fluid simulation in tube banks'', IX Congreso Nacional de Ingenieria Mecanica - Santiago, Chile.

Zwillinger, D., 1992. "Handbook of Differential equations", Academic Press - Boston.

APÊNDICE I. DESCRIÇÃO ANALÍTICA DE ESCOAMENTOS VISCOSOS

Alguns modelos se justificam enquanto formos obrigados a admitir nosso total ou parcial desconhecimento do real funcionamento de certo fenômeno, no presente caso a turbulência. Por outro lado, a proposta desta tese envolve questionar as possíveis origens da dificuldade que os equacionamentos têm em expressar certos fenômenos ou circunstâncias em particular. Outro propósito desta explanação é aproximar o ponto de vista em microescala da forma intuitiva pela qual a engenharia mecânica ainda se permite tratar alguns fenômenos físicos. Uma visão mais realista dos fenômenos físicos aplicada às formulações existentes e suas condições restritivas pode servir tanto para confirmá-las quanto para indicar suas possíveis deficiências. Os questionamentos feitos a seguir não visam elaborar nenhuma nova teoria, mas apenas indicar em quais pontos específicos uma atualização baseada em pesquisas recentes poderá nos ajudar a aproximar um pouco mais da realidade as atuais formulações em uso.

1. FENÔMENOS DOS ESCOAMENTOS VISCOSOS INCOMPRESSÍVEIS

Os fenômenos típicos de um escoamento turbulento em fluido incompressível podem ser divididos intuitivamente nas seguintes manifestações físicas:

1) advecção de quantidade de movimento;

2) difusão de quantidade de movimento;

3) fontes de instabilidades (variações súbitas de quantidade de movimento) no corpo e fronteiras do escoamento.

A subdivisão acima se baseia no costume de atribuir a agrupamentos de termos das Equações de Navier-Stokes diferentes partes das manifestações físicas presentes no escoamento. Além disso, para escoamentos turbulentos de fluidos viscosos incompressíveis, fazemos usualmente as seguintes simplificações nas equações, originalmente aplicadas por Stokes em 1845 [White, 1991, pg. 67]:

a) o fluido é um meio contínuo;

b) o fluido é newtoniano: há uma relação *linear* entre tensão aplicada sobre ele e a deformação resultante, e quando não há tensão sobre o fluido, a lei de deformação se reduz à condição de pressão estática;

c) as propriedades do fluido são isotrópicas: são uniformes em todo o domínio, em particular sua viscosidade cinemática;

d) as forças de campo se resumem exclusivamente à ação da gravidade.

Além disso, também é usual impor mais uma condição simplificativa quando estudamos exclusivamente a turbulência:

e) o escoamento é adiabático,

caso contrário, em situações onde a troca de calor ou as tensões de cisalhamento forem grandes junto ao contorno, a ocorrência de mudança de fase por aumento de temperatura e/ou diminuição local da pressão no fluido não pode ser desprezada [White, 1991, pg. 69].

Essas hipóteses simplificam bastante as Equações de Navier-Stokes, sendo ainda uma razoável aproximação para situações reais em grande parte do escoamento.

A maior parte dos equacionamentos e hipóteses simplificativas ainda hoje aplicados aos escoamentos viscosos foram elaboradas na segunda metade do século XIX. Diversos fenômenos em microescala e em escala molecular foram amplamente estudados durante o século XX e continuam o sendo atualmente, aprofundando nossa compreensão dos escoamentos viscosos e conduzindo de forma natural aos questionamentos feitos aqui.

1.1. HIPÓTESE DE MEIO CONTÍNUO

A hipótese de meio contínuo nada mais é que a aplicação de uma média espacial às propriedades físicas do fluido em estudo. Ela é a base das deduções em uso corrente e implica em que as propriedades físicas somente possuem descontinuidades nas interfaces, nunca em pontos isolados ou que possam assumir valores infinitos. Segundo ela, as propriedades do fluido assumem em cada ponto do espaço um valor determinado, definido como uma média feita entre grande número de moléculas a uma pequena distância desse ponto, distância essa ainda grande se comparada à distância intermolecular. A este conjunto de moléculas se denomina *partícula de fluido*. Sendo assim, a velocidade de uma partícula é considerada igual à média das velocidades das moléculas nela contidas [Papanastasiou et al., 1999, pg. 74]. Pode-se dizer que, pela integração, as leis do contínuo incluem como casos especiais as leis válidas para massas pontuais [Panton, 1996, pg. 03].

A aplicação de qualquer tipo de média implica em perda de informação em escala inferior àquela que *supõe-se* não influenciar mais o fenômeno estudado [Panton, 1996, pg. 751]. O problema aqui consiste em determinar se escalas menores que o livre caminho médio (para gases) ou que alguns diâmetros moleculares (para líquidos) realmente não tem influência na *geração de turbulência*.

Quando pensamos no comprimento dissipativo de Kolmogorov l_d (tipicamente entre 0,1 mm e 1 mm), que nos dá a dimensão abaixo da qual uma flutuação turbulenta não consegue

superar o efeito amortecedor da viscosidade, podemos imaginar que é justamente em dimensões inferiores a esta que os fenômenos viscosos exercem sua maior influência [Freire et al., 2002]. Qualquer fenômeno que afete os efeitos viscosos próximo à parede irá também influir na turbulência do escoamento. Se negligenciarmos erroneamente a menor escala em que o fenômeno se manifesta, sua provável origem será igualmente posta de lado, o que pode resultar em incoerência física do modelo utilizado. Nesse ponto os modelos de sub-malha utilizados em SGE são coerentes ao estabelecer faixas de maior influência deste ou daquele fenômeno, mesmo que sem total exatidão.

1.2. COMPORTAMENTO NEWTONIANO E VISCOSIDADE DO FLUIDO

Se tomarmos um volume infinitesimal de um fluido newtoniano, diz-se que haverá proporcionalidade entre tensão cisalhante e deformação resultante sobre ele. Isto implica necessariamente em pureza química, ou seja, total ausência de partículas estranha ou com comportamento não-newtoniano no fluido. Pode-se dizer que a existência de um fluido perfeitamente newtoniano é uma hipótese válida para estudos teóricos, mas uma condição real (fluido com impurezas) fará com que dados experimentais, justamente aqueles que utilizamos como *benchmarks*, não gerem exatamente o mesmo comportamento. A existência de impurezas pode significar a origem de pequenas instabilidades nas fronteiras do escoamento (onde essas partículas costumam se acumular), as quais podem perfeitamente causar turbulência. Considerar estatisticamente no equacionamento que, junto aos contornos dos corpos submersos, pode ocorrer comportamento não-newtoniano, poderia inserir uma perturbação que faça com que a solução resultante seja mais fiel fisicamente.

A linearidade entre tensão e deformação, ou seja, a dependência da componente viscosa do tensor das deformações em relação apenas às primeiras derivadas das componentes da velocidade em relação aos deslocamentos, implica em que os gradientes das componentes da velocidade sejam muito pequenos [Landau e Lifshitz, 1987, pg.44].

Se olharmos para um contorno real que apresente certa rugosidade e pequenas imperfeições, como por exemplo sobre uma chapa de aço usinada, observaremos algo como o que pode ser visto na Figura 1. As maiores imperfeições desta amostra tem em torno de 0,01mm (picos em laranja e vermelho), algo como 10% da escala de Kolmogorov. Este valor é no entanto muito maior do que o tamanho típico de uma molécula de um líquido, fazendo com que mesmo uma partícula de um fluido dito contínuo, que esteja escoando transversalmente às ranhuras da chapa, tenha gradientes de velocidade que não podem ser considerados pequenos.

Figura 1 - ampliação da rugosidade de uma placa de alumínio típica.

Haverá porções de fluido estagnado bem como regiões de recirculação no interior destas ranhuras. Isto faria com que, exatamente onde os efeitos da viscosidade são mais sentidos, a hipótese de comportamento newtoniano não esteja correta, devendo ser incluídas as dependências em derivadas de maior ordem das componentes da velocidade no cálculo do seu coeficiente quando a rugosidade da superfície for de ordem maior que certa porcentagem da escala de Kolmogorov.

Nas últimas duas décadas tem se acentuado o estudo do comportamento de fluidos viscoelásticos, em especial aqueles presentes em processos industriais onde as variações de viscosidade em função da temperatura podem influenciar variáveis importantes para seu processo de obtenção. Entre os fluidos mais estudados estão uma infinidade de polímeros dos quais nossa indústria faz cada vez mais uso. Embora este estudo não objetive abordar fluidos não-newtonianos, a existência de contaminantes no fluido em estudo é um fator inerentemente real, mesmo em circunstâncias experimentais de laboratório. Já em 1949, o efeito de pequenas quantidades de alguns polímeros solúveis em água foi observado por B.A. Toms [Toms, 1949], mostrando que concentrações entre 5 e 100 ppm de algumas dessas substâncias podem afetar de forma importante o comportamento da camada limite de um fluido newtoniano como a água. É interessante lembrar que entre os elementos que possuem este comportamento estão tintas, glicerina, óleos, graxas, sangue e argila em suspensão (lama), todos comumente encontrados em nossas estações de tratamento de água, nos rios que abastecem instalações industriais, bem como interagindo com mecanismos sujeitos a turbulência como hélices de propulsão e rotores de bombas centrífugas. O efeito citado acima diz respeito ao amortecimento das componentes

turbulentas de alta freqüência, diminuindo o gradiente de velocidade e as tensões cisalhantes junto à parede, reduzindo desta forma o arrasto do corpo submerso [Panton, 1996, pgs. 137 a 140]. Em situações reais, nas quais certa contaminação do fluido deve ser considerada, a ocorrência de instabilidades devidas a estes efeitos tipicamente não-newtonianos junto à parede poderia ser considerada ao se analisar as condições de contorno impostas ao problema em estudo.

1.3. ISOTROPIA DO FLUIDO E DE SEUS VÓRTICES

Isotropia para um fluido implica que seu comportamento físico é independente da direção de interesse, fazendo com que suas propriedades físicas também o sejam e possam ser representadas por quantidades escalares ao invés de vetoriais. É sabido que, ao contrário dos fluidos em que ocorrem, os pequenos vórtices não são completamente isotrópicos, além de serem gerados aos pares e de forma intermitente. Evidências experimentais mostram que apenas os grandes vórtices podem ser considerados isotrópicos [Panton, 1996, pg. 771], comportamento este que certamente não tem relação com as propriedades do fluido, mas com a geometria dos contornos próximos de onde são gerados [White, 1991, pgs. 399 e 402], ou com a ocorrência de alguma instabilidade causada por impurezas ou outros fenômenos não usualmente considerados no equacionamento. Costuma-se chamar o efeito delas de viscosidade turbulenta, indicando que há um aumento da dissipação de energia nas regiões onde ocorre turbulência. Todos esses indícios levam à conclusão que, embora o fluido possa ser isotrópico seu comportamento em regime turbulento não o é, devendo ser levada em conta a influência das fronteiras e contornos do meio onde está escoando. Tais influências nos conduzem normalmente às condições iniciais e de contorno, porém veremos mais adiante que as condições clássicas também envolvem certa perda de informação por representarem uma média espacial ou temporal do comportamento do fluido. Novamente somos remetidos às condições restritivas do problema como sendo possivelmente simplificadas em excesso para um estudo em que pequenas instabilidades podem gerar efeitos importantes ao se propagarem para o corpo do escoamento.

1.4. ESCOAMENTO ADIABÁTICO E MUDANÇA DE FASE

A imposição de que o escoamento seja adiabático tem por finalidade evitar que sejamos obrigados a considerar duas ocorrências problemáticas para a formulação analítica:

a) variações na densidade do fluido com sua posição e ao longo do tempo;

b) a ocorrência de mudança de fase.

A primeira possibilidade simplesmente faria com que não pudéssemos retirar de dentro das derivadas a densidade do fluido, pois ela se alteraria tanto com a posição quanto com o tempo. Isso exigiria a introdução de um modelo para a densidade dependente da temperatura local a cada instante, obrigando o uso da equação de transporte de energia acoplada ao sistema já existente.

Uma possível mudança de fase de pequenas porções do fluido, além de poder ser causada pela elevação da temperatura até o ponto de ebulição do líquido, pode também se dever a um gradiente de pressão que leve uma porção do fluido à sua pressão local de vapor, causando sobre o sistema de equações a ser resolvido efeito semelhante ao da primeira possibilidade. A influência da pressão na densidade do fluido causando instabilidades é mais comumente lembrada como cavitação, fenômeno indesejável seja em escoamentos em sistemas fechados (rotores de bombas) ou abertos (hélices e outros propulsores), cuja situação é típica de problemas de engenharia.

Temos na mudança de fase, qualquer que seja sua causa, outra possível origem de instabilidade que normalmente negligenciamos e pode afetar sensivelmente o comportamento do escoamento junto a um contorno.

2. CONDIÇÕES RESTRITIVAS

O que chamamos aqui de condições restritivas são aquelas condições impostas por fatores que determinam limites para o comportamento do fluido em duas circunstâncias:

a) no instante inicial de tempo a partir do qual nos interessa prever o comportamento do escoamento, chamada de *condição inicial*;

b) nas fronteiras e contornos de corpos imersos no fluido, chamadas de *condições de contorno*.

Sua aplicação tem por finalidade particularizar a solução para o escoamento que estamos estudando, restringindo-a para a geometria e para o *estado inicial do escoamento* em todo o domínio ou apenas em determinada região dele. Vale aqui comentar novamente que as soluções analíticas que buscamos nesta tese são igualmente particulares, portanto devem ser capazes de satisfazer estas mesmas condições restritivas em uma ou mais regiões do domínio. A obtenção de uma solução analítica para todo o domínio será expressa por um conjunto de soluções particulares adaptadas às condições restritivas de cada uma das regiões nas quais o subdividirmos.

Examinemos alguns detalhes da implementação de cada uma das condições restritivas individualmente.

2.1. CONDIÇÃO INICIAL

Costuma-se utilizar como condição inicial para as equações de Helmholtz uma distribuição de vorticidade formulada de modo a reproduzir o comportamento aproximado de um campo real de escoamento já em regime turbulento. Para as equações de Navier-Stokes essa distribuição seria das componentes da velocidade do fluido.

A quase totalidade dos métodos de simulação de escoamentos depende de condições iniciais que indiquem a passagem do escoamento de laminar para turbulento, não sendo capazes de fazer esta transição diretamente. Como é sabido que esta transição não ocorre espontaneamente nas formulações classicamente usadas, pode-se pensar na possibilidade de estar ausente nelas algum mecanismo responsável por esse fenômeno. Como os balanços que originaram as equações não são questionáveis, as hipóteses de ocorrência estatística de perturbações causadas por contaminantes e irregularidades nos contornos do domínio são complementos quase óbvios ao sistema original. Mesmo em um escoamento macroscopicamente laminar, este tipo de perturbação poderia ser considerado como turbulência em microescala, podendo sua introdução gerar a desejada transição.

2.2. CONDIÇÕES DE CONTORNO

Quando pensamos nas condições de contorno clássicas de não-deslizamento e nãopenetração não levamos em conta a real geometria das superfícies em microescala. A superfície real de uma placa plana *macroscopicamente lisa* também possui certa rugosidade, a qual pode ser definida como uma distribuição em torno de uma cota média com variação muito pequena entre seus valores máximo e mínimo. Se fizermos uma média espacial ao longo de uma região que possa ser considerada pequena macroscopicamente, chegaremos ao valor da cota normalmente considerada para todos os pontos ao longo dela.

Ao desconsiderarmos as pequenas variações de cota da superfície, estamos igualmente desconsiderando pequenas variações de velocidade do fluido junto a ela, cuja existência já havia sido constatada experimentalmente por Klebanoff em 1955 [White, 1991, pgs. 399-401]. A média espacial das componentes da velocidade junto à superfície também seria nula ou muito

próxima a isso, mas ao tirarmos esta média negligenciamos o que poderíamos chamar de *ruído* associado às flutuações das componentes da velocidade junto à superfície do corpo submerso.

Se pensarmos nas linhas de corrente próximas a uma superfície usinada como a da Figura 3.1, sendo o escoamento transversal aos sulcos, haverá uma oscilação transversal de pequena amplitude gerada pela rugosidade cuja freqüência é proporcional à velocidade do escoamento. Essa oscilação, ou ruído como a chamamos anteriormente, é resultado da recirculação nas reentrâncias, bem como de pequenas componentes transversais nos bordos das cristas. Ao tirarmos uma média espacial o resultado equivaleria às condições de não-deslizamento e não-penetração, mas o fenômeno físico que se desenvolve na escala da rugosidade reflete a formação de pequenos vórtices e flutuações das derivadas das componentes da velocidade. A pequena magnitude desses fenômenos nos faz pensar que a dissipação viscosa têm plena capacidade de atenuá-los, mas é possível mostrar que sua propagação é capaz de gerar as instabilidades que podem causar a transição entre o regime laminar e o turbulento em macroescala.

APÊNDICE II. TENTATIVAS INICIAIS DE RESOLUÇÃO

No início do Capítulo 3 apenas enumeramos de forma sucinta algumas das tentativas iniciais de resolução, mostrando apenas algumas figuras ilustrativas do tipo de isolinhas produzidas por elas em um corte ao longo do escoamento. Naquele ponto não nos aprofundamos mais sobre o motivo do insucesso dessas tentativas por achar que isso desviaria o foco do trabalho, sendo essa discussão mais apropriada a um apêndice como este. A seguir expomos brevemente os principais motivos pelos quais as gêneses iniciais não produziram os resultados esperados, bem como algumas conclusões que podem ser tiradas da sua comparação com as tentativas bem sucedidas.

As conclusões obtidas na seção 2.3.1 mostraram que as soluções das Equações de Helmholtz são capazes de abarcar componentes flutuantes causadas por turbulência. A partir delas passamos a examinar possíveis formatos de soluções tridimensionais para elas, iniciando pela extensão de uma solução bidimensional, a variável auxiliar (3.2), a qual não se mostrou capaz de reproduzir os fenômenos físicos da turbulência.

A imposição de apenas um argumento linear só é capaz de gerar isolinhas abertas. Já utilizando mais de um argumento linear podemos, em teoria, produzir as isolinhas fechadas que desejamos para reproduzir os vórtices. Uma característica do método que fez com que esses argumentos lineares não produzissem os efeitos desejado está no fato de impormos que a função dos mesmos seja arbitrária, forçando que as derivadas deles anulassem termo a termo da equação resultante. Derivadas segundas naturalmente seriam nulas, e derivadas primeiras resultam em somas de coeficientes das variáveis independentes. Esse fato, que a princípio facilitaria a resolução, tem como efeito colateral forçar que os coeficientes de cada variável independente sejam iguais, por exemplo, num argumento polinomial como o seguinte

$$f(c_0 + c_1 x + c_2 y + c_3 z + c_4 t)$$

 c_1 , c_2 e c_3 devem ser iguais para satisfazer as Equações de Helmholtz. Até esse ponto pode parecer que apenas chegamos à conclusão que um argumento com igual peso nas variáveis geométricas deve ser utilizado, o que poderia ser associado a um tipo de isotropia. A conseqüência seguinte está no fato de que ambos os argumentos, no caso uma gênese com dois argumentos lineares, acabarem sendo linearmente dependentes, pois a relação entre c_1 , c_0 e c_7 também deve ser a mesma para ambos os argumentos. Nossas tentativas envolveram de 2 a 4 argumentos polinomiais lineares, resultando sempre na dependência linear entre eles, o que equivaleria a dizer que são apenas múltiplos de um único argumento.

Da mesma forma quando experimentamos um argumento polinomial quadrático na forma

$$f(c_0 + c_1x + c_2y + c_3z + c_4xy + c_5xz + c_6yz + c_7x^2 + c_8y^2 + c_9z^2 + c_{10}t)$$

obtivemos $c_4 = c_5 = c_6$ e $c_7 = c_8 = c_9$, mantendo a mesma relação entre c_1 , c_0 , c_4 , c_7 e c_{10} para todos. O resultado produz novamente apenas um argumento, porém desta vez quadrático. Infelizmente a aplicação desse argumento resulta na restrição $c_4 = 2c_7$, o que não parece problemático até se perceber que isto transforma o argumento numa série de potências de (x+y+z), ou seja, novamente uma função linear nas variáveis espaciais. As tentativas com argumentos polinomiais de terceiro grau tiveram o mesmo resultado, ou seja

$$f(x, y, z, t) = g\left(h(t) + \sum_{k=1}^{n} c_{k}(x+y+z)^{k}\right)$$

onde n é o grau do polinômio inicialmente proposto. Estes resultados fizeram com que a partir deste momento encerrássemos as tentativas de gênese da função corrente baseadas em argumentos polinomiais. O passo seguinte foi estudar as características das equações, como pode ser visto a partir da seção 3.2.

APÊNDICE III. ALGORITMO PARA OBTENÇÃO DO FORMATO DO OPERADOR *B* E DA FONTE *Q* DA PARTE LINEAR DO SPLIT DAS EQUAÇÕES DE NAVIER-STOKES E DE HELMHOLTZ (MAPLE)

```
>restart:
```

```
>with(PDEtools):
```

```
>with(DEtools):
```

```
>with(LinearAlgebra):
```

Uma vez feito o split sobre o sistema original, o problema auxiliar puramente difusivo pode ser resolvido utilizando transformações de Bäcklund, em particular, através do emprego de um operador diferencial linear B que mapeará soluções em novas soluções. A equação auxiliar linear é dada por A[f]=Q, sendo Q um campo vetorial arbitrário que obedece à equação da continuidade.

>A:=f->diff(f,t)-nu*(diff(f,x2)+diff(f,y2)+diff(f,z2));

$$A := f \to \left(\frac{d}{dt}f\right) - v\left(\left(\frac{d^2}{dx^2}f\right) + \left(\frac{d^2}{dy^2}f\right) + \left(\frac{d^2}{dz^2}f\right)\right)$$

Utilizaremos esta forma particular para o operador B:

>B0:=f->a(x,y,z,t)*diff(f,x)+b(x,y,z,t)*diff(f,y)+c(x,y,z,t)* diff(f,z)+g(t)*diff(f,t)+h(x,y,z,t)*f;

$$B0 \coloneqq f \rightarrow a(x, y, z, t) \left(\frac{d}{dx}f\right) + b(x, y, z, t) \left(\frac{d}{dy}f\right) + c(x, y, z, t) \left(\frac{d}{dz}f\right) + g(t) \left(\frac{d}{dt}f\right) + h(x, y, z, t)f$$

A lista de substituições decorrentes da resolução das equações auxiliares que derivam da condição de comutatividade entre os operadores *A* e *B* são enumeradas a seguir:

```
>a(x,y,z,t):=a0(y,z,t):#1
>b(x,y,z,t):=b0(x,z,t):#2
>c(x,y,z,t):=c0(x,y,t):#3
>q(t):=0:#4
>a1(x,y,z,t):=subs(a0(y,z,t)=a00(z,t)+y*a01(z,t),a(x,y,z,t)):#6
> b1(x,y,z,t) := subs (b0(x,z,t) = b00(z,t) + x*b01(z,t), b(x,y,z,t)) : #6
>a2(x,y,z,t):=subs(a01(z,t)=-b01(z,t),a1(x,y,z,t)):#6
>c1(x,y,z,t):=subs(c0(x,y,t)=c00(y,t)+x*c01(y,t),c(x,y,z,t)):#7
>a3(x,y,z,t):=subs(a00(z,t)=a000(t)+z*a001(t),a2(x,y,z,t)):#7
>b2(x,y,z,t):=subs(b01(z,t)=b000+z*b001(t),b1(x,y,z,t)):#7,12
>a4(x,y,z,t):=subs(b01(z,t)=b000+z*b001(t),a3(x,y,z,t)):#12
>c2(x,y,z,t):=subs(c01(y,t)=a001+y*c001(t),c1(x,y,z,t)):#8,14
>a001(t)=0*t:#9 e #10
>b001(t)=0*t:#9 e #10
> c001(t)=0*t:#10
>a5(x,y,z,t):=simplify(subs(a001(t)=0,b001(t)=0,a4(x,y,z,t))):
>b3(x,y,z,t):=subs(b001(t)=0,b2(x,y,z,t)):
>c3(x,y,z,t):=subs(c001(t)=0,a001=0,c2(x,y,z,t)):
> c4(x,y,z,t) := subs(c00(y,t)=c002+y*c003(t),c3(x,y,z,t)):#10,16
>b4(x,y,z,t):=subs(b00(z,t)=b002(t)+z*b003,b3(x,y,z,t)):#10,14
```

. . .

Uma vez substituídas as expressões que definem os coeficientes do operador B, este assume a forma

>B:=f->a6(x,y,z,t)*diff(f,x)+b5(x,y,z,t)*diff(f,y)+c5(x,y,z,t)*diff(f,z)+g(t)*diff(f,t)+ hiii(x,y,z,t)*f; $B := f \rightarrow a6(x, y, z, t) \left(\frac{d}{dx}f\right) + b5(x, y, z, t) \left(\frac{d}{dy}f\right) + c5(x, y, z, t) \left(\frac{d}{dz}f\right) + g(t) \left(\frac{d}{dt}f\right) + hiii(x, y, z, t)f$

> B(f(x,y,z,t));
(a0000 + a0001 t - y b000)
$$\left(\frac{\partial}{\partial x}f(x,y,z,t)\right)$$

+ (b0000 + b0001 t + z b003 + x b000) $\left(\frac{\partial}{\partial y}f(x,y,z,t)\right)$
+ (c002 - y b003) $\left(\frac{\partial}{\partial z}f(x,y,z,t)\right)$ + $\left(\frac{a0001 x}{2 v} + \frac{y b0001}{2 v}\right)f(x,y,z,t)$

Voltando à seqüência de passos, vejamos qual o raciocínio que levou a eles: >>utilizando a equação difusiva (linear) oriunda da aplicação do split não-homogêneo sobre as equações originais A[f]=Q, equivalente a A[f]-Q=0>ea:=A(f(x,y,z,t))-Q(x,y,z,t);

$$ea \coloneqq \left(\frac{\partial}{\partial t}f(x, y, z, t)\right) - \nu\left(\left(\frac{\partial^2}{\partial x^2}f(x, y, z, t)\right) + \left(\frac{\partial^2}{\partial y^2}f(x, y, z, t)\right) + \left(\frac{\partial^2}{\partial z^2}f(x, y, z, t)\right)\right)$$
$$- Q(x, y, z, t)$$

isolamos a derivada temporal na equação difusiva, resultando >ft:=rhs(isolate(ea,diff(f(x,y,z,t),t)));

$$ft \coloneqq \mathsf{v}\left(\left(\frac{\partial^2}{\partial x^2}f(x, y, z, t)\right) + \left(\frac{\partial^2}{\partial y^2}f(x, y, z, t)\right) + \left(\frac{\partial^2}{\partial z^2}f(x, y, z, t)\right)\right) + \mathsf{Q}(x, y, z, t)$$

Substituindo a expressão correspondente em B[f], elimina-se a derivada no tempo, obtendo >bf:=expand(subs(diff(f(x,y,z,t),t)=ft,B(f(x,y,z,t))));

$$\begin{split} bf &\coloneqq \left(\frac{\partial}{\partial x}f(x, y, z, t)\right)a0000 + \left(\frac{\partial}{\partial x}f(x, y, z, t)\right)a0001\ t - \left(\frac{\partial}{\partial x}f(x, y, z, t)\right)y\ b000\\ &+ \left(\frac{\partial}{\partial y}f(x, y, z, t)\right)b0000 + \left(\frac{\partial}{\partial y}f(x, y, z, t)\right)b0001\ t + \left(\frac{\partial}{\partial y}f(x, y, z, t)\right)z\ b003\\ &+ \left(\frac{\partial}{\partial y}f(x, y, z, t)\right)x\ b000 + \left(\frac{\partial}{\partial z}f(x, y, z, t)\right)c002\ - \left(\frac{\partial}{\partial z}f(x, y, z, t)\right)y\ b003\\ &+ \frac{1}{2}\frac{f(x, y, z, t)\ a0001\ x}{v} + \frac{1}{2}\frac{f(x, y, z, t)\ y\ b0001}{v} \end{split}$$

Uma forma equivalente à imposição simultânea das restrições A[f]=Q e A[B[f]]=Q consiste na condição de comutatividade dos operadores A e B, pois dizer que o operador B transforma soluções em novas soluções é o mesmo que dizer que ele opera uma Simetria de Lie, o que implica na comutatividade entre ele e o operador A.

> e0:=A(bf)-Q(x,y,z,t):

...mas, apesar do operador A fazer nova derivação no tempo, ao expandirmos e1 vemos que as derivadas de f(x,y,z,t) em t somem

O uso de mnemônicos gera outra forma de reagrupar a expressão obtida nos coeficientes de f e suas derivadas, bem como de Q e suas derivadas:

Ao zerarmos individualmente cada um desses coeficientes, mantemos f arbitrária e determinamos a forma do operador B. As equações produzidas ao igualarmos cada coeficiente a zero geram restrições às dependências das funções a, b, c, g e h em relação às variáveis x, y, z e t. A seguir vemos quais seriam elas e a partir de que coeficiente ela se originou. Os nomes dos coeficientes são expressos da seguinte forma: cfy2= coef. da derivada segunda de f em relação a y, e assim por diante. Os números vistos à direita (#n) correspondem às substituições da primeira página.

Uma vez aplicada a lista de substituições sobre as restrições A[f]-Q=0 e A[B[f]]-Q=0, todas as equações auxiliares decorrentes da anulação dos coeficientes das derivadas de *f* resultam identicamente satisfeitas, surgindo apenas a seguinte restrição diferencial para a função fonte (o que resta de *e1* após as substituições):

>e1;

$$a0001 t \left(\frac{\partial}{\partial x}Q(x, y, z, t)\right) - Q(x, y, z, t) + \frac{1}{2}\frac{a0001 x Q(x, y, z, t)}{v} + \frac{1}{2}\frac{y b0001 Q(x, y, z, t)}{v} + a0000 \left(\frac{\partial}{\partial x}Q(x, y, z, t)\right) + b0000 \left(\frac{\partial}{\partial y}Q(x, y, z, t)\right) + c002 \left(\frac{\partial}{\partial z}Q(x, y, z, t)\right) - y b000 \left(\frac{\partial}{\partial x}Q(x, y, z, t)\right) + b0001 t \left(\frac{\partial}{\partial y}Q(x, y, z, t)\right) + z b003 \left(\frac{\partial}{\partial y}Q(x, y, z, t)\right) + x b000 \left(\frac{\partial}{\partial y}Q(x, y, z, t)\right) - y b003 \left(\frac{\partial}{\partial z}Q(x, y, z, t)\right)$$

Essa restrição equivale a B[Q]=Q, pois quando subtraímos e1 de B[Q] resta apenas a função fonte Q.

> BQ:= (B(Q(x,y,z,t)));
BQ:= (a0000 + a0001 t - y b000)
$$\left(\frac{\partial}{\partial x}Q(x,y,z,t)\right)$$

+ (b0000 + b0001 t + z b003 + x b000) $\left(\frac{\partial}{\partial y}Q(x,y,z,t)\right)$
+ (c002 - y b003) $\left(\frac{\partial}{\partial z}Q(x,y,z,t)\right)$ + $\left(\frac{a0001 x}{2 v} + \frac{y b0001}{2 v}\right)Q(x,y,z,t)$

>eqBQ:=simplify(BQ-e1);#se e1 for B[Q]-Q=0, BQ-e1 = B[Q]-B[Q]+Q = Q

$$eqBQ \coloneqq Q(x, y, z, t)$$

Essa equação pode ser resolvida através do método das características:

>k1:=coeff(e3,qX): >k2:=coeff(e3,qY): >k3:=coeff(e3,qZ): >k0:=coeff(e3,q):

Resolvendo a equação relativa aos incrementos dx e dy:

> cXY:=int(k1,y)-int(k2,x);
cXY:= a0000 y + a0001 t y -
$$\frac{y^2 b000}{2}$$
 - b0000 x - b0001 t x - z b003 x - $\frac{x^2 b000}{2}$

Resolvendo a equação relativa aos incrementos dx e dz: > cXZ:=int(k1,z)-int(k3,x);

$$cXZ := (a0000 + a0001 t - y b000) z - (c002 - y b003) x$$

Assim, a solução da equação que considera a presença das derivadas em x, y e z consiste em uma função arbitrária dos argumentos *cXY* e *cXZ*. Replicando os argumentos *cXY* e *cXZ* em novas variáveis mul *e mu2* e renomeando as constantes restantes para simplificar a notação, temos >mu1:=subs(a0000=A0,a0001=A1,b000=B0,b0001=B1,b003=B2,b0000=B3,

c002=C0,cXY);

$$\mu 1 \coloneqq A0 \, y + A1 \, t \, y - \frac{y^2 \, B0}{2} - B3 \, x - B1 \, t \, x - z \, B2 \, x - \frac{x^2 \, B0}{2}$$

>mu2:=subs(a0000=A0,a0001=A1,b000=B0,b0001=B1,b003=B2,b0000=B3, c002=C0,cXZ); u2:=(A0+A1t-yB0)z-(C0-yB2)x

Em resumo, o problema de autofunção B[Q]=Q é resolvido em parte utilizando o método das características e utilizando linhas de comando no Maple. A forma final da função Q é apresentada a seguir:

>B:=f->c1*diff(f,x)+c2*diff(f,y)+c3*diff(f,z)+c4*f; $B := f \rightarrow cI\left(\frac{d}{dx}f\right) + c2\left(\frac{d}{dy}f\right) + c3\left(\frac{d}{dz}f\right) + c4f$ >c1:=a0+a1*t-b0*y; #argumento c1=aB1 c1 := a0 + a1 t - b0 y >c2:=b3+b1*t+b2*z+b0*x; #argumento c2=bB1 c2 := b3 + b1 t + b2 z + b0 x

> c3:=c0-b2*y;#argumento c3=cB1 $c3 \coloneqq c0-b2y$

> c4:=1/2/nu*(a1*x+b1*y);#argumento c4=h3 $c4 := \frac{al x+bl y}{2y}$

Resolvendo a equação relativa aos incrementos dx e dz: > e31:=k31+int(c3,x)-int(c1,z);

$$e31 \coloneqq k31 + (c0 - b2 \ y) \ x - (a0 + a1 \ t - b0 \ y) \ z$$

>t:=rhs(isolate(e31,t));

$$t := \frac{-\frac{-k31 - (c0 - b2y)x}{z} - a0 + b0y}{a1}$$
Resolvendo a equação relativa aos incrementos f e dz: > e34:=k34+int(c3,f)-int(c4,z);

$$e34 := k34 + (c0 - b2y)f - \frac{(a1x + b1y)z}{2y}$$

> z:=rhs(isolate(e34,z)); $z \coloneqq -\frac{2(-k34 - (c0 - b2y)f)v}{alx + bly}$

Resolvendo a equação relativa aos incrementos *f e* dy: > e42:=k42+int(c4,y)-int(c2,f);

$$e42 \coloneqq k42 + \frac{aI xy + \frac{bI y^2}{2}}{2v} - b3f + \frac{1}{2} \frac{bI \ln((-c0 + b2 y) f - k34) k3I x}{v(-c0 + b2 y)}$$

$$+ \frac{1}{2} \frac{bI^2 \ln((-c0 + b2 y) f - k34) k3I y}{aI v(-c0 + b2 y)} + \frac{1}{2} \frac{bI \ln((-c0 + b2 y) f - k34) x^2 c0}{v(-c0 + b2 y)}$$

$$+ \frac{1}{2} \frac{bI^2 \ln((-c0 + b2 y) f - k34) x c0 y}{aI v(-c0 + b2 y)} - \frac{1}{2} \frac{bI \ln((-c0 + b2 y) f - k34) x^2 b2 y}{v(-c0 + b2 y)}$$

$$- \frac{1}{2} \frac{bI^2 \ln((-c0 + b2 y) f - k34) x b2 y^2}{aI v(-c0 + b2 y)} + \frac{bI a0 f}{aI} - \frac{bI b0 yf}{aI} - \frac{2 b2 v k34 f}{aI x + bI y}$$

$$- \frac{b2 v f^2 c0}{aI x + bI y} + \frac{b2^2 v f^2 y}{aI x + bI y} - b0 xf$$

> f0:=(rhs(isolate(e42,f)));

$$f0 \coloneqq -2\left(-k42 - \frac{al xy + \frac{bl y^2}{2}}{2v}\right) \vee (-c0 + b2 y) al (al x + bl y)$$

>Q:=g(mu1,mu2)*exp(f0);

$$Q := g \left(a0 \ y + a1 \ t \ y - \frac{y^2 \ b0}{2} - b3 \ x - b1 \ t \ x - z \ b2 \ x - \frac{x^2 \ b0}{2}, (a0 + a1 \ t - y \ b0) \ z - (c0 - y \ b2) \ x \right) \mathbf{e}^{\left(-2 \left(-k42 - \frac{a1 \ x \ y}{2 \ v} - \frac{y^2 \ b1}{4 \ v} \right) (-c0 + y \ b2) \ v \ a1 \ (a1 \ x + y \ b1)} \right)}$$

Como Q é solução de um problema de autofunção B[Q]=Q, sua forma também é aplicável à solução de toda f que satisfaça o *split*, podendo ser usada para a porção solenoidal do campo de velocidades V, bem como para o campo de vorticidade ?.

APÊNDICE IV. ALGORITMO PARA GÊNESE DA FUNÇÃO CORRENTE A PARTIR DO CAMPO DE VELOCIDADES (MAPLE)

```
>restart:
>with(DEtools):
>with(PDEtools):
```

Definindo as componentes da velocidade e da função corrente:

>v1(al1,be1):=f1(al1,be1)*h(x,y,z,t):#u(x,y,z,t)
>v2(al2,be2):=f2(al2,be2)*h(x,y,z,t):#v(x,y,z,t)
>v3(al3,be3):=f3(al3,be3)*h(x,y,z,t):#w(x,y,z,t)
>#psi(eta,theta):=f0(eta,theta):

Define as derivadas da função corrente em relação às variáveis espaciais *x*, *y*, *z* e em relação ao tempo:

```
>dfx:=f-diff(f,x)+diff(eta(x,y,z,t),x)*diff(f,eta)+
    diff(theta(x,y,z,t),x)*diff(f,theta)+diff(al1(x,y,z,t),x)*di
    ff(f,al1)+diff(be1(x,y,z,t),x)*diff(f,be1)+diff(al2(x,y,z,t)
    ,x)*diff(f,al2)+diff(be2(x,y,z,t),x)*diff(f,be2)+diff(al3(x,
    y,z,t),x)*diff(f,al3)+diff(be3(x,y,z,t),x)*diff(f,be3);
```

$$dfx \coloneqq f \to \left(\frac{d}{dx}f\right) + \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \left(\frac{d}{d\eta}f\right) + \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right) \left(\frac{d}{d\theta}f\right) \\ + \left(\frac{\partial}{\partial x}\operatorname{all}(x, y, z, t)\right) \left(\frac{d}{dal1}f\right) + \left(\frac{\partial}{\partial x}\operatorname{bel}(x, y, z, t)\right) \left(\frac{d}{dbel}f\right) \\ + \left(\frac{\partial}{\partial x}\operatorname{all}(x, y, z, t)\right) \left(\frac{d}{dal2}f\right) + \left(\frac{\partial}{\partial x}\operatorname{bel}(x, y, z, t)\right) \left(\frac{d}{dbe2}f\right) \\ + \left(\frac{\partial}{\partial x}\operatorname{all}(x, y, z, t)\right) \left(\frac{d}{dal3}f\right) + \left(\frac{\partial}{\partial x}\operatorname{bel}(x, y, z, t)\right) \left(\frac{d}{dbe3}f\right)$$

>dfy:=f->diff(f,y)+diff(eta(x,y,z,t),y)*diff(f,eta)+ diff(theta(x,y,z,t),y)*diff(f,theta)+diff(al1(x,y,z,t),y)*di ff(f,al1)+diff(be1(x,y,z,t),y)*diff(f,be1)+diff(al2(x,y,z,t) ,y)*diff(f,al2)+diff(be2(x,y,z,t),y)*diff(f,be2)+diff(al3(x, y,z,t),y)*diff(f,al3)+diff(be3(x,y,z,t),y)*diff(f,be3):

>dfz:=f->diff(f,z)+diff(eta(x,y,z,t),z)*diff(f,eta)+ diff(theta(x,y,z,t),z)*diff(f,theta)+diff(al1(x,y,z,t),z)*di ff(f,al1)+diff(be1(x,y,z,t),z)*diff(f,be1)+diff(al2(x,y,z,t) ,z)*diff(f,al2)+diff(be2(x,y,z,t),z)*diff(f,be2)+diff(al3(x, y,z,t),z)*diff(f,al3)+diff(be3(x,y,z,t),z)*diff(f,be3):

```
>dft:=f->diff(f,t)+diff(eta(x,y,z,t),t)*diff(f,eta)+
diff(theta(x,y,z,t),t)*diff(f,theta)+diff(al1(x,y,z,t),t)*di
ff(f,al1)+diff(be1(x,y,z,t),t)*diff(f,be1)+diff(al2(x,y,z,t)
,t)*diff(f,al2)+diff(be2(x,y,z,t),t)*diff(f,be2)+diff(al3(x,
y,z,t),t)*diff(f,al3)+diff(be3(x,y,z,t),t)*diff(f,be3):
```

Montando a equação das isosuperfícies da função corrente

> Iso:=expand(dft(psi(eta,theta))+v1(al1,be1)*
 dfx(psi(eta,theta))+v2(al2,be2)*dfy(psi(eta,theta))+
 v3(al3,be3)*dfz(psi(eta,theta)));

$$Iso \coloneqq \left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial \eta}\psi(\eta, \theta)\right) + \left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial \theta}\psi(\eta, \theta)\right) \\ + f1(al1, be1) h(x, y, z, t) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial \eta}\psi(\eta, \theta)\right) \\ + f1(al1, be1) h(x, y, z, t) \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial \theta}\psi(\eta, \theta)\right) \\ + f2(al2, be2) h(x, y, z, t) \left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial \theta}\psi(\eta, \theta)\right) \\ + f2(al2, be2) h(x, y, z, t) \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial \theta}\psi(\eta, \theta)\right) \\ + f3(al3, be3) h(x, y, z, t) \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial \theta}\psi(\eta, \theta)\right) \\ + f3(al3, be3) h(x, y, z, t) \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial \theta}\psi(\eta, \theta)\right)$$

Separa os coeficientes das derivadas da função corrente em relação a ? e ?
> cPsiE:=coeff(Iso,diff(psi(eta,theta),eta));

$$cPsiE \coloneqq \left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) + f1(al1, be1) h(x, y, z, t) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) + f2(al2, be2) h(x, y, z, t) \left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right) + f3(al3, be3) h(x, y, z, t) \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)$$

>cPsiT:=coeff(Iso,diff(psi(eta,theta),theta));

$$cPsiT \coloneqq \left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right) + fl(all, bel)h(x, y, z, t)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right) + fl(all, bel)h(x, y, z, t)\left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right) + fl(all, bel)h(x, y, z, t)\left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)$$

Isola V3=f3(al3,be3)*h em cPsiE
>F3Ha:=simplify(rhs(isolate(cPsiE,(f3(al3,be3))))*h(x,y,z,t));

$$F3Ha := -\left(\left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) + f1(all, bel)h(x, y, z, t)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) + f2(al2, bel)h(x, y, z, t)\left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right)\right) / \frac{\partial}{\partial z}\eta(x, y, z, t)$$

Isola V3=f3(al3,be3)*h em cPsiT

>F3Hb:=simplify(rhs(isolate(cPsiT,(f3(al3,be3))))*h(x,y,z,t)):

Iguala as anteriores para eliminar V3=h*f3... > eqF3H:=simplify(F3Ha-F3Hb);

$$eqF3H:= -\left(\left(\frac{\partial}{\partial z} \Theta(x, y, z, t)\right) \left(\frac{\partial}{\partial t} \eta(x, y, z, t)\right) \\ + \left(\frac{\partial}{\partial z} \Theta(x, y, z, t)\right) fl(al1, be1) h(x, y, z, t) \left(\frac{\partial}{\partial x} \eta(x, y, z, t)\right) \\ + \left(\frac{\partial}{\partial z} \Theta(x, y, z, t)\right) f2(al2, be2) h(x, y, z, t) \left(\frac{\partial}{\partial y} \eta(x, y, z, t)\right) \\ - \left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial t} \Theta(x, y, z, t)\right) \\ - \left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right) fl(al1, be1) h(x, y, z, t) \left(\frac{\partial}{\partial x} \Theta(x, y, z, t)\right) \\ - \left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right) f2(al2, be2) h(x, y, z, t) \left(\frac{\partial}{\partial y} \Theta(x, y, z, t)\right) \\ - \left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right) f2(al2, be2) h(x, y, z, t) \left(\frac{\partial}{\partial y} \Theta(x, y, z, t)\right)\right) / \left(\left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right)\right)$$

A seguir isolamos h*f2(al2,be2)=V2 em eqF3H e obtemos V2=g2(V1(h*f1))> F2Ha:=simplify(rhs(isolate(eqF3H,(f2(al2,be2))))*h(x,y,z,t)): > V2:=F2Ha;

$$V2 \coloneqq -\left(\left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) + \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)fl(all, bel)h(x, y, z, t)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) - \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right) + \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)fl(all, bel)h(x, y, z, t)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)\right) \right) \right) \right)$$

...e substituímos em F3Ha para achar V3=g3(V1(h*f1))> eqF3H:=simplify(subs(f2(al2,be2)=V2/h(x,y,z,t),F3Ha));

$$eqF3H \coloneqq \left(\left(\frac{\partial}{\partial t} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) + f1(al1, be1) h(x, y, z, t) \left(\frac{\partial}{\partial x} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \right)$$

$$-\left(\frac{\partial}{\partial y}\eta(x,y,z,t)\right)\left(\frac{\partial}{\partial t}\theta(x,y,z,t)\right)$$
$$-\left(\frac{\partial}{\partial y}\eta(x,y,z,t)\right)f1(al1,be1)h(x,y,z,t)\left(\frac{\partial}{\partial x}\theta(x,y,z,t)\right)\right) \Big/ \left(\left(\frac{\partial}{\partial z}\theta(x,y,z,t)\right)\left(\frac{\partial}{\partial y}\eta(x,y,z,t)\right) - \left(\frac{\partial}{\partial z}\eta(x,y,z,t)\right)\left(\frac{\partial}{\partial y}\theta(x,y,z,t)\right)\right)$$

>V3:=simplify(eqF3H);#obtém H*f3(H*f1)=v3 de eqF3H

$$V3 \coloneqq \left(\left(\frac{\partial}{\partial t} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \\ + fl(all, bel) h(x, y, z, t) \left(\frac{\partial}{\partial x} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \\ - \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial t} \theta(x, y, z, t) \right) \\ - \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) fl(all, bel) h(x, y, z, t) \left(\frac{\partial}{\partial x} \theta(x, y, z, t) \right) \right) \Big/ \left(\left(\frac{\partial}{\partial z} \theta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) - \left(\frac{\partial}{\partial z} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \right) \right)$$

Agora calcula o divergente de V (continuidade para fluido incompressível) para zerar os coeficientes das derivadas de fl e mantê-la arbitrária:

$$cfIaIi \coloneqq \left(\frac{\partial}{\partial x}\operatorname{all}(x, y, z, t)\right) \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right) - \left(\frac{\partial}{\partial x}\operatorname{all}(x, y, z, t)\right) \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right) - \left(\frac{\partial}{\partial y}\operatorname{all}(x, y, z, t)\right) \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) + \left(\frac{\partial}{\partial y}\operatorname{all}(x, y, z, t)\right) \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right) + \left(\frac{\partial}{\partial z}\operatorname{all}(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right) - \left(\frac{\partial}{\partial z}\operatorname{all}(x, y, z, t)\right) \left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)$$

>cflbl:=simplify(coeff(divVi,FlB1)):

$$> cflbli:=numer(simplify(cflbl/Cl/h(x, y, z, t)));$$

$$cflbli:=\left(\frac{\partial}{\partial x}bel(x, y, z, t)\right)\left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right)$$

$$-\left(\frac{\partial}{\partial x}bel(x, y, z, t)\right)\left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right)$$

$$-\left(\frac{\partial}{\partial y}bel(x, y, z, t)\right)\left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right)$$

$$+\left(\frac{\partial}{\partial z}bel(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right)$$

$$+\left(\frac{\partial}{\partial z}bel(x, y, z, t)\right)\left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right)$$

$$-\left(\frac{\partial}{\partial z}bel(x, y, z, t)\right)\left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)$$

Isola a derivada de ? em rel. a z em 2 coeficientes e iguala ambas para eliminá-la
> thetaZ1:=rhs(isolate(cflali,diff(theta(x,y,z,t),z)));

$$thetaZI \coloneqq \left(\left(\frac{\partial}{\partial x} \operatorname{all}(x, y, z, t) \right) \left(\frac{\partial}{\partial z} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \right)$$
$$- \left(\frac{\partial}{\partial y} \operatorname{all}(x, y, z, t) \right) \left(\frac{\partial}{\partial z} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \theta(x, y, z, t) \right) \left(\frac{\partial}{\partial z} \operatorname{all}(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \right)$$
$$+ \left(\frac{\partial}{\partial z} \operatorname{all}(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \theta(x, y, z, t) \right) \right) / \left(\left(\frac{\partial}{\partial x} \operatorname{all}(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) - \left(\frac{\partial}{\partial y} \operatorname{all}(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \eta(x, y, z, t) \right) \right)$$

>thetaZ2:=rhs(isolate(cf1b1i,diff(theta(x,y,z,t),z)));

$$thetaZ2 \coloneqq \left(\left(\frac{\partial}{\partial x} bel(x, y, z, t) \right) \left(\frac{\partial}{\partial z} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \right) \\ - \left(\frac{\partial}{\partial y} bel(x, y, z, t) \right) \left(\frac{\partial}{\partial z} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \theta(x, y, z, t) \right) \\ - \left(\frac{\partial}{\partial z} bel(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t) \right) \\ + \left(\frac{\partial}{\partial z} bel(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \theta(x, y, z, t) \right) \right) / \left(\\ \left(\frac{\partial}{\partial x} bel(x, y, z, t) \right) \left(\frac{\partial}{\partial y} \eta(x, y, z, t) \right) - \left(\frac{\partial}{\partial y} bel(x, y, z, t) \right) \left(\frac{\partial}{\partial x} \eta(x, y, z, t) \right) \right)$$

> thetaZ12:=(thetaZ1-thetaZ2):

Isola na expressão resultante a derivada de ? em relação a y

thetaY:=
$$\frac{\left(\frac{\partial}{\partial y}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)}{\frac{\partial}{\partial x}\eta(x, y, z, t)}$$

> thetaZ:=simplify(subs(diff(theta(x,y,z,t),y)=thetaY,thetaZ2));

thetaZ:=
$$\frac{\left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)}{\frac{\partial}{\partial x}\eta(x, y, z, t)}$$

Verifica o que sobrou da expressão do divergente após substituir as expressões das derivadas de ? > cfl:=simplify(coeff(divVi,F1)):

cfli := 0

Renomeia as derivadas de ? para isolar suas definições

$$resto3 \coloneqq \left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right) \left(\frac{\partial^2}{\partial z}\frac{\partial}{\partial x}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)^2 \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)^2 \left(\frac{\partial^2}{\partial z}\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \\ - \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right) \\ + \left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)^2 \left(\frac{\partial}{\partial t}\eta(x, y, z, t)\right) \left(\frac{\partial^2}{\partial x^2}\eta(x, y, z, t)\right)$$

$$-\left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right)\left(\frac{\partial^{2}}{\partial z \partial x}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right)^{3}$$

$$+\left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)\left(\frac{\partial^{2}}{\partial z \partial x}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right)^{2}$$

$$+\left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right)^{2}\left(\frac{\partial^{2}}{\partial x^{2}}\theta(x, y, z, t)\right)$$

$$-\left(\frac{\partial}{\partial z}\eta(x, y, z, t)\right)\left(\frac{\partial}{\partial t}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial x}\eta(x, y, z, t)\right)$$

$$\begin{split} \text{Impõe a independência dos dois argumentos } ? e ? \text{fazendo } grad(?).grad(?)=0 \\ > \text{eaux1}:= \text{diff}(\text{eta}(x, y, z, t), x) * \text{diff}(\text{theta}(x, y, z, t), x) + \\ & \text{diff}(\text{eta}(x, y, z, t), y) * \text{diff}(\text{theta}(x, y, z, t), y) + \text{diff}(\text{eta}(x, y, z, t), y) + \\ & \text{diff}(\text{eta}(x, y, z, t), y) * \text{diff}(\text{theta}(x, y, z, t), y) + \text{diff}(\text{eta}(x, y, z, t), y) + \\ & \text{diff}(\text{theta}(x, y, z, t), z) + \text{diff}(\text{eta}(x, y, z, t), z) + \\ & \text{diff}(\text{theta}(x, y, z, t), z) + \text{diff}(\text{eta}(x, y, z, t), z) + \\ & \text{diff}(\text{theta}(x, y, z, t), z) + \left(\frac{\partial}{\partial x} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t)\right) \\ & + \left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial z} \theta(x, y, z, t)\right) + \left(\frac{\partial}{\partial t} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial t} \theta(x, y, z, t)\right) \end{split}$$

Isolando d?/dt nessa equação auxiliar, obtém-se
> thetaT:=rhs(isolate(eaux1,diff(theta(x,y,z,t),t)));

$$thetaT := \left(-\left(\frac{\partial}{\partial x} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial x} \theta(x, y, z, t)\right) - \left(\frac{\partial}{\partial y} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial y} \theta(x, y, z, t)\right) - \left(\frac{\partial}{\partial z} \eta(x, y, z, t)\right) \left(\frac{\partial}{\partial z} \theta(x, y, z, t)\right) \right) / \frac{\partial}{\partial t} \eta(x, y, z, t)$$

Substituindo a expressão obtida nos termos independentes oriundos da equação da continuidade, resulta uma única equação diferencial parcial que relaciona os argumentos da função corrente > eaux2:=numer(simplify(subs(diff(theta(x,y,z,t),t)=thetaT, resto3))):

Entretanto, essa equação resulta identicamente satisfeita quando as expressões para d?/dy e d?/dz são substituídas nas parcelas correspondentes, bem como nas derivadas de ordem superior:

eaux3 := 0

Assim, restam apenas duas restrições que relacionam os argumentos ? e ?, de modo que um dos argumentos pode ser arbitrado e o restante calculado. Escolhendo ? = y(1 - fc(x,y,z)), sendo que a

expressão fc(x,y,z)=1, ou seja ?=0, descreve localmente a superfície do corpo submerso, obtémse a respectiva coordenada ? resolvendo a equação

> eay:=diff(theta(x,y,z,t),y)-expand(subs({eta(x,y,z,t)=y*(1-
fc(x,y,z))},thetaY));
eay:=
$$\left(\frac{\partial}{\partial y}\theta(x,y,z,t)\right) + \frac{\frac{\partial}{\partial x}\theta(x,y,z,t)}{y\left(\frac{\partial}{\partial x}fc(x,y,z)\right)} - \frac{\left(\frac{\partial}{\partial x}\theta(x,y,z,t)\right)fc(x,y,z)}{y\left(\frac{\partial}{\partial x}fc(x,y,z)\right)}$$

$$-\frac{\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial y}fc(x, y, z)\right)}{\frac{\partial}{\partial x}fc(x, y, z)}$$

> eaz:=diff(theta(x,y,z,t),z)-expand(subs({eta(x,y,z,t)=y*(1fc(x,y,z))},thetaZ));

$$eaz \coloneqq \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) - \frac{\left(\frac{\partial}{\partial x}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial z}fc(x, y, z)\right)}{\frac{\partial}{\partial x}fc(x, y, z)}$$

Isolando d?/dx em ambas as expressões e igualando os resultados obtidos, é produzida uma única equação diferencial para o argumento ?:

> bx1:=rhs(isolate(eay,diff(theta(x,y,z,t),x)));

$$bxI:=-\frac{\frac{\partial}{\partial y}\theta(x,y,z,t)}{\frac{1}{y\left(\frac{\partial}{\partial x}fc(x,y,z)\right)}-\frac{fc(x,y,z)}{y\left(\frac{\partial}{\partial x}fc(x,y,z)\right)}-\frac{\frac{\partial}{\partial y}fc(x,y,z)}{\frac{\partial}{\partial x}fc(x,y,z)}$$

> bx2:=rhs(isolate(eaz,diff(theta(x,y,z,t),x)));

$$bx2:=\frac{\left(\frac{\partial}{\partial z}\theta(x,y,z,t)\right)\left(\frac{\partial}{\partial x}fc(x,y,z)\right)}{\frac{\partial}{\partial z}fc(x,y,z)}$$

> eal0:=numer(simplify(bx2-bx1));

$$ea10 := -\left(\frac{\partial}{\partial x}fc(x, y, z)\right)\left(\left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right) - \left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)fc(x, y, z)\right)$$

$$-\left(\frac{\partial}{\partial z}\theta(x, y, z, t)\right)\left(\frac{\partial}{\partial y}fc(x, y, z)\right)y + \left(\frac{\partial}{\partial y}\theta(x, y, z, t)\right)y\left(\frac{\partial}{\partial z}fc(x, y, z)\right)\right)$$

Essa equação pode ser resolvida diretamente em linha de comando fornecendo a forma de ?: >pdsolve(eal0,theta(x,y,z,t),build);

$$\theta(x, y, z, t) = F1(x, -y \operatorname{fc}(x, y, z) + y, t)$$

APÊNDICE V. CONVOLUÇÃO DE FONTES PUNTUAIS DE PERTURBAÇÃO

Uma das possíveis formas de se obter a influência de uma superfície sobre o corpo de um escoamento é somar a contribuição individual de cada ponto da mesma. Dessa forma podemos mais facilmente avaliar qual seria o efeito de apenas um ponto para posteriormente somá-lo aos de todos os outros que compõem a superfície do corpo submerso. Essa operação pode ser realizada através da convolução de soluções relativas a fontes puntuais distribuídas ao longo do corpo submerso com a fonte original do problema, estabelecendo uma função peso, ou função de ponderação, através da qual sua amplitude possa ser individualizada ponto a ponto.

Para realizarmos essa operação, primeiro vamos determinar o formato da fonte puntual. Essa fonte costuma ser representada por um delta de Dirac, mas pode igualmente ser representada por qualquer função contínua de área unitária que se anule na vizinhança de um ponto central. Levando em conta que estamos representando o amortecimento de uma perturbação, vamos utilizar uma função gaussiana com as características previamente citadas. Essa fonte terá seu formato dado por um produto de funções d(x) d(y) d(z), as quais geram um pico gaussiano num ponto no espaço como se pode ver na figura a seguir

Figura 1 - pico gaussiano puntual.

Cada delta tem a forma

$$\boldsymbol{d}(x) = \lim_{\boldsymbol{s} \to 0} \frac{e^{-\frac{x^2}{4\boldsymbol{s}}}}{\sqrt{4\boldsymbol{p}\boldsymbol{s}}}$$

correspondendo a um pico gaussiano numa das variáveis espaciais.

A envoltória da esteira gerada por um corpo submerso (C.S.) é a região influenciada pelo somatório de perturbações gerado pelo mesmo no corpo do escoamento. Ela é definida por uma função dependente apenas da forma do C.S., cujo argumento sim depende do tempo e fatores

externos como a velocidade do escoamento incidente. Sendo assim, podemos obter a forma dessa função solucionando para a perturbação a parte linear do split (3.11) em regime estacionário, logo a aproximação para a função de Green correspondente deve satisfazer à equação

$$\nabla^2 G^* = \frac{e^{-\frac{(x^2 + y^2 + z^2)}{4s}}}{\sqrt{4ps}}$$

Essa função G^* é uma aproximação da função de Green que descreve o escoamento em torno de um corpo de dimensões diminuta mas não puntuais.

Para fazermos uma análise qualitativa da envoltória iniciaremos resolvendo o problema bidimensional. A seguir obteremos uma superfície tridimensional composta pela seqüência de curvas contínuas que são soluções nos cortes bidimensionais sucessivos na direção do escoamento principal. Como nossa fonte não é nula o escoamento deve ser viscoso, já que ela deveria ser nula para que ele fosse potencial. A solução bidimensional desse problema é facilmente obtida empregando variáveis complexas, sendo sua forma análoga àquela das próprias aproximações gaussianas utilizadas para a delta de Dirac. Desta forma, ao construirmos um C.S. pela justaposição de obstáculos de dimensões diminutas, o campo de velocidades do escoamento resulta num somatório das contribuições de cada função distribuídas ao longo do contorno do mesmo. Por exemplo, para uma placa plana semi-infinita, cujo eixo longitudinal coincida com a direção X, e considerando x=0 como seu bordo de ataque, a função fonte do problema original seria dada por

$$Q = h(x)$$

portanto o campo de velocidade é obtido pela convolução

$$\int_0^x h(x-V) G^*(V) \partial V$$

resultando numa envoltória em formato de sigmóide. Este formato permanece válido para quaisquer geometrias quando o problema é expresso em coordenadas curvilíneas, definidas de tal forma que o C.S. se reduz a uma placa plana nesse sistema de coordenadas.

APENDICE VI: ALGORITMO DE SIMULAÇÃO EM TORNO DE UMA ESFERA OU DE UM PERFIL DE SEÇÃO QUADRADA (MAPLE)

```
>restart:
>with(plots):
>with(SumTools):
```

Para que eta represente as linhas de fluxo em torno do objeto ela tem que ser composta por um fator que seja zero sobre o objeto e menor que zero em seu interior. Além disso, devemos multiplicá-lo por uma função de proporcionalidade (positiva) para que represente o aumento das isosuperfícies de velocidade à medida que se afasta em direção ao infinito. A Função de contorno Fc é igual a 1 sobre o contorno, ou seja, se R0^2=x^2+y^2+z^2 para uma esfera temos que $r^2 / x^2 + y^2 + z^2 = (1 = f^2)$

Para isso inicialmente definimos o raio do ponto em relação à origem $> Rp:=sqrt(x^2+y^2+z^2):$

...agora uma Distância do eixo de Simetria, na qual compenso o fato da esfera estar sobre a origem

Para uma velocidade que aumente linearmente com a Distância do contorno Dc > Dc:=(Rp)-R0:#para a esfera

> #Dc:=Ymj:#para o quadrado

A seguir definimos as Funções de Conexão (FCmj) para montante-jusante e sobre o corpo submerso (FCcs)

```
>FCmj:=exp(-1/ln(1+eps+exp(Cc*Ff))):#vale 0 em Dc e 1 no resto>>
            bom a montante e jusante
>FCcs:=exp(-1/ln(1+eps+exp(-Cc*Ff))):#vale 1 em Dc e 0 no
            resto>> bom sobre o contorno
```

...resultando uma função de distância do contorno/eixo de simetria

```
> Fdcsim:=(subs(Cc=1000,Ff=Dsim0,FCmj)+subs(Cc=1000,Ff=Dc,FCcs)):
```

Para substituir a coordenada Y sobre o contorno só isola ela na equação da esfera: > $Ys:=sqrt(y^2)/y:$ #só o SINAL de Y

```
> Yc: = sqrt(R0^{2}-x^{2}-z^{2}):
```

Agora fazendo o mesmo para o quadrado:

>Ymj:=sqrt(y²+z²)*Ys:#para a esfera >#Ymj:=(sqrt(y²)-sqrt((R0*Fc)²))*Ys:#para o quadrado Introduzindo outro conceito de distância do ponto no plano transformado: > Dp:=Dc:#para a esfera

 $> #Dp:=sqrt(Dc^2+(x-R0)^2):#para o quadrado$

Definindo o argumento eta :

>etaXY:=Ymj*(1-Fc):#igual à definição inicial

Da mesma forma que isolei Y na equação do contorno, fazemos com X:

```
>Xc:=sqrt(R0^2-y^2-z^2):
>Xs:=sqrt(x^2)/x:#só o SINAL de X
>Xmj:=sqrt(x^2+z^2)*Xs:#
>Xd:=x:
```

Definindo o argumento *Theta*:

```
>tt:=(U0/sqrt(nu)*(t/(Rp^2))):#tt muda a forma da esteira, prop-
>tam. vórtices
>thetaXY:=Xmj:#*((Yd-1)/(Yd+eps)):
```

Alguns fatores proporcionais à velocidade do escoamento usados nos coeficientes

```
>Fu0:=sqrt(U0/10):#fator de velocidade
```

>Fu02:=sqrt(U0^3/10):#fator de velocidade 2

>FRe:=log10(Rei):#potência do número de Reynolds

...e separando os expoentes do coeficiente da perturbação para ficar mais compreensível: > pert2:=((a5XY)*exp(ex1+ex2+ex3)*sin(2*argXY)):

```
..expoente <u>ex1</u> determina o início da região perturbada
> ex1:=-exp(-a3XY*thetaXY):#thetaXY no lugar de Xd
```

```
..expoente ex2 dá a extensão da esteira de vórtices
> cx2:=cxi2*FRe:# ...em torno de 12 para Re=10^6
> cxi2:=2:
```

>ex2:=-exp(a1*(thetaXY-cx2*R0)):#thetaXY no lugar de Xd

..expoente ex3 dá a abertura transversal da esteira (envoltória)

```
> cx3:=cxi3*sqrt(U0):
> cxi3:=2*FRe:
> ex3:=-Ymj^2/ln(1+exp(a2*cx3*thetaXY)):#Ymj no lugar de etaXY
> psi:=U0*etaXY*(1+pert2/(Dp*Ymj)):#esfera & quad-C
```

```
Fazendo apenas o argumento da perturbação uma série truncada no termo linear (ou quadrático)
> #argXY:=(Ymj*tt+thetaXY*tt+(Ymj*thetaXY+Ymj^2+thetaXY^2)*tt^2):
    #trunca no termo quadratico
> argXY:=(Ymj*tt+thetaXY*tt):#só o termo linear
```

```
...e acrescentando a influência da velocidade na propagação
> C0:=1/Fu0:#100:#constante adicionada a theta0 para que a
        perturbação avance no espaço
> g:=subs(z=0,psi):
> eps:=1/(10^3):
> Fv:=(subs(Cc=1000,Ff=Dc,FCmj)):#função viscosidade>> anula psi
        dentro da esfera
> #Fv:=1-Fc:#função viscosidade>> anula psi dentro do quadrado
> g0:=g*Fv:#subs(subs(Cc=100,Ff=(x-R0-eps),FCmj)=a8,psi)
```

```
Define o raio da esfera ou metade do lado do quadrado: > R0 : =1 :
```

```
Agora separamos as componentes por direção u0, v0 (, w0):
> nu:=10^(-6):#m2/s
> U0:=sqrt(u0^2+v0^2+w0^2):
```

```
.. e acertamos as componentes da velocidade para um Número de Reynolds específico:
> ReF:=1*10^3:#N° de Reynolds final a ser atingido
> Rei:=(2*R0)*U0/nu:#N° de Reynolds instantâneo para cálculo do
        etaXY
> tf:=80:
> Ure:=(ReF*nu)/(2*R0):#Ure= velocidade final para aquele
        Reynolds pretendido
```

```
Para uma aceleração de Re=0 até ReF só com velocidade no eixo X (u0):
```

```
> CmUD:=Ure/(tf+(tf^2)/10):#coeficiente para escoamento
unidirecional em aceleração
> #u0:=CmUD*(t+(t^2)/10):#
```

```
...ou mantendo constante na velocidade desejada desde o começo
> u0:=Ure:#
> v0:=0:w0:=0:#zero para escoamento na direção X
> z:=0:#...pois estamos num corte no plano XY
> FR0:=(1/(2*R0)):
```

```
Coeficientes e suas influências na amplitude e alcance da perturbação
```

```
>a1:=1:#Fu0^2:#>>fator de amplitude da perturbação: bom entre
0.1 e 1.0
>a2:=0.2:#0.1:#*sqrt(U0/10):#>>amortecimento Longitudinal da
propagação
>a3XY:=FRe:#antes 5 ou 5*R0#>>dá o ponto a partir do qual COMEÇA
a perturbação
>a5XY:=(1+eps):
```

Usar esse plot para achar um quadro específico

E, por fim, a animação

```
> animate3d(g0,x=-(2*R0)..(10*R0),y=-(4*R0)..(4*R0),t=51..101,
    frames=51,contours=50,axes=boxed,style=patchcontour,
    grid=[80,80],orientation=[-90,0]);#retângulo
```