
Estudo da lixiviação de cádmio e cromo da erva mate para a água no preparo do chimarrão utilizando espectrometria de absorção atômica de alta resolução com fonte contínua e forno de grafite

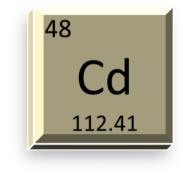
Aluna: Débora Nunes Bazanella Orientadora: Prof^a Dr^a Maria Goreti R. Vale Instituto de Química Universidade Federal do Rio Grande do Sul

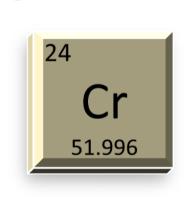
Desenvolvimento da população e aumento da contaminação do solo

Elementos potencialmente tóxicos

Cromo (III): essencial na nutrição humana; em excesso, debilita a tolerância à glicose, aumenta os níveis de colesterol e de triglicerídeos no sangue. Cromo (VI): classificado como cancerígeno.

Cádmio: um dos elementos de maior toxicidade nos processos biológicos dos seres humanos, animais e plantas.


OBJETIVO

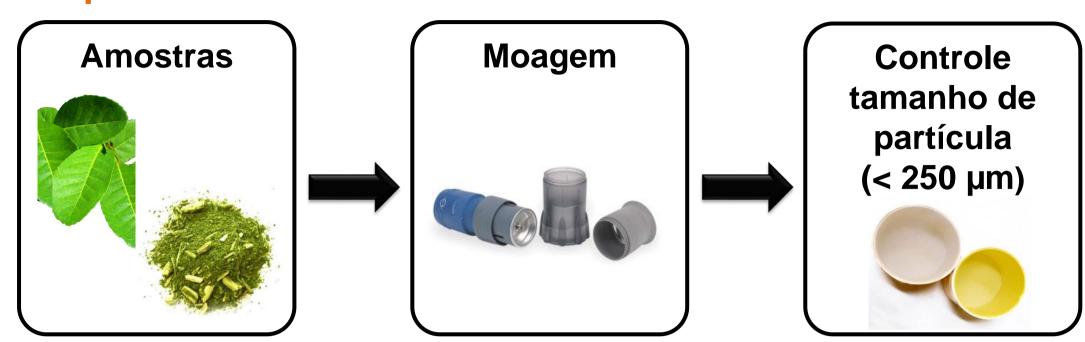

Verificar a lixiviação dos metais cádmio e cromo da erva mate para a água quente no preparo do chimarrão utilizando espectrometria de absorção atômica de alta resolução com fonte contínua e forno de grafite (HR-CS GF AAS) com a determinação dos elementos de forma sequencial.

EXPERIMENTAL

Espectrômetro de absorção atômica ContrAA 700, Analytik Jena Determinação sequencial

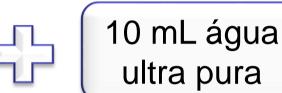
λ: 228,802 nm 357,869 nm

Programa de aquecimento


Plataforma e forno de grafite

Etapa	Temperatura (°C)	Rampa (°C s ⁻¹)	Patamar (s)				
Secagem 1	90	5	5 20				
Secagem 2	110	5	10				
Pirólise	450	100	30				
Atomização*	1500	3000 5					
Resfriamento e troca de comprimento de onda							
Pirólise 1500		1000	1				
Atomização**	2500	3000	5				
Limpeza	2550	1000 7					

^{*}Atomização do Cd


**Atomização do Cr

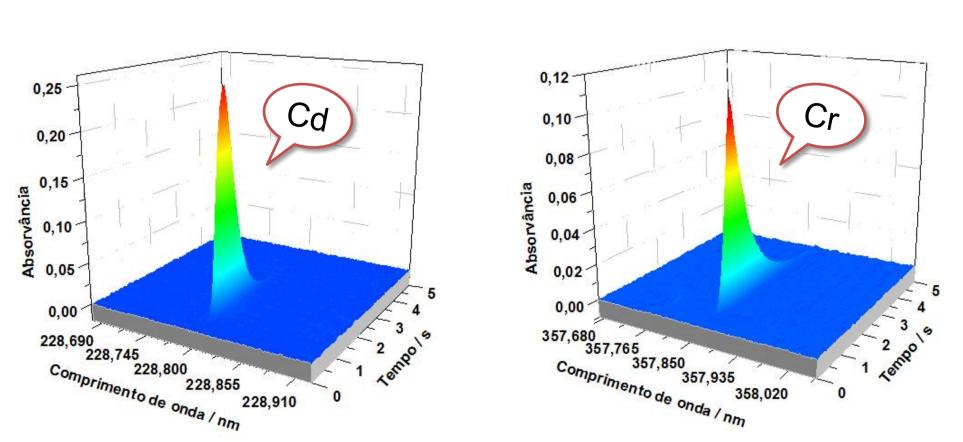
Preparo de amostra

Preparo das infusões

250 mg de erva mate

- ➤ Mantido sob aquecimento (60 70 °C)
- > Quatro tempos: 10, 30, 60 e 120 minutos
- > Triplicata

RESULTADOS


Determinação de Cd e Cr por análise direta de sólidos

Concentração	Folha 1	Folha 2	Erva	Erva	Erva
(µg g ⁻¹ ± sd)			mate 1	mate 2	mate 3
Cd	0.5 ± 0.03	$2,1 \pm 0,20$	0.9 ± 0.08	0.6 ± 0.03	0.6 ± 0.04
Cr	0.6 ± 0.06	2,2 ± 0,20	0.8 ± 0.07	$2,4 \pm 0,30$	0.7 ± 0.05

Lixiviação de Cd e Cr para a água do chimarrão (µg g⁻¹ ± sd)

Amostra	Elemento	10 minutos	30 minutos	60 minutos	120 minutos
Folha 1	Cd	0,08 ± 0,01	0,09 ± 0,01	0,10 ± 0,01	0,10 ± 0,01
	Cr	0.04 ± 0.01	0.03 ± 0.01	0,04 ± 0,01	0.03 ± 0.01
Folha 2	Cd	$0,42 \pm 0,03$	$0,40 \pm 0,04$	$0,40 \pm 0,01$	$0,43 \pm 0,02$
	Cr	$1,30 \pm 0,07$	1,30 ± 0,06	1,20 ± 0,05	$1,30 \pm 0,05$
Erva mate 1	Cd	$0,12 \pm 0,01$	$0,13 \pm 0,01$	$0,13 \pm 0,01$	$0,14 \pm 0,01$
	Cr	$0,24 \pm 0,01$	$0,24 \pm 0,01$	$0,24 \pm 0,02$	$0,24 \pm 0,01$
Erva mate 2	Cd	$0,12 \pm 0,01$	0,12 ± 0,01	0,12 ± 0,01	$0,13 \pm 0,01$
	Cr	$0,36 \pm 0,03$	$0,37 \pm 0,02$	0.35 ± 0.01	$0,36 \pm 0,02$
Erva mate 3	Cd	0.08 ± 0.01	$0,13 \pm 0,01$	$0,13 \pm 0,01$	$0,15 \pm 0,02$
	Cr	$0,21 \pm 0,02$	$0,29 \pm 0,02$	$0,28 \pm 0,01$	0.31 ± 0.01

*RSD < 10%

- Espectros de cádmio e cromo para a amostra Folha 2.

CONCLUSÕES

Os resultados indicam que a lixiviação de cádmio para a água do chimarrão foi entre 13 e 25% e de cromo entre 5 e 58%. Apenas para uma das amostras o maior tempo de contato com a água favoreceu uma maior lixiviação dos metais (Erva mate 3). Não existe legislação vigente sobre níveis máximos permitidos de cádmio e cromo em água de chimarrão ou em erva mate.

Agradecimentos: CNPq, CAPES e INCT- CIEnAm