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ABSTRACT

This work presents a study about medical-volume segmentation and a solution to
generate patient-specific meshes to use in patient-specific surgery simulations. Patient-
specific meshes are useful assets for surgery planning and to allow better visualization of
certain pathological conditions of a given patient, which are not obtainable by artistically
designed meshes. We analyzed what are the complications to obtain a patient-specific
mesh using only standard medical imagery exams. For that, we reviewed several medi-
cal volume segmentation techniques. It led us to define the problems within the existing
techniques and to develop a method that does not suffer from these problems, with the
least possible user interaction or relying on any other data other then the patient exam.
Our target for obtaining specific meshes were soft tissue organs, which are a specially
complicated case due to various issues related to the medical images and human anatomy.
This is accomplished by geometrical operations over special meshes that deform until
achieving the shape of the desired organ. Results show that our technique was able to
obtain patient-specific meshes from medical images with superior quality than algorithms
of the same class. Thanks to the simplicity of the developed approach, its also easy to
implement and to reproduce our obtained results.

Keywords: Mesh generation, volume segmentation, surgery planning, mesh deformation,
laplacian method.





RESUMO

Geração de Malhas para Pacientes Específicos

Este trabalho apresenta um estudo sobre segmentação de volumes médicos e uma so-
lução para se obter malhas poligonais de pacientes específicos para uso em simulações
de cirurgia. Malhas de pacientes específicos são importantes para planejamento de in-
tervenções cirúrgicas e permitem uma melhor visualização de condições patológicas em
um paciente, coisa não obtível em malhas geradas artisticamente. Nós analisamos quais
são os fatores complicantes para se obter estas malhas de um paciente específico usando
apenas imagens médicas obtidas em exames padrões. Para isso, nós revisamos diversos
métodos existentes para segmentação de volumes médicos. Isso nos levou a definir os
problemas com as técnicas existentes, e a desenvolver um método que não sofra destes
problemas, utilizando pouca interação humana e não tendo dependências de mais dados
que não o exame do paciente. Nosso alvo para obter malhas especificas foram órgãos de
tecido mole, que são um caso especialmente complicado da área, graças a várias questões
relacionadas às imagens médicas e à anatomia humana. Atacamos esse problema apli-
cando modificações geométricas em malhas especiais, que deformam até atingir a forma
dos órgãos que se deseja segmentar. Os resultados mostram que nossa técnica conseguiu
obter malhas específicas de pacientes a partir de volumes médicos com qualidade superior
a de outros algoritmos de mesma classe. Graças a simplicidade do método desenvolvido,
nossos resultados são facilmente implementáveis e reproduzidos.

Palavras-chave: segmentação de volumes, planejamento de cirurgia, malhas deformá-
veis, método laplaciano.
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1 INTRODUCTION

The report from the Institute of Medicine, "To err is Human" (KOHN et al., 1999),
published more than a decade ago, raises awareness to the high prevalence of medical er-
rors in modern healthcare and the impact on patient safety. Although these errors emerge
from various different causes, a significant subset resulted from invasive diagnostic and
therapeutic interventions. Among different efforts to address and improve patient safety
by minimizing procedural complications (AMERICA, 2001), surgery simulators became
essential for surgery training. Reports show that the use of general VR simulations allow
the acquisition, improvement and sustenance of complex skills without the risk of causing
any harm to a real patient. Simulation research has also shown that these competences
can transfer to real operations in a variety of specialties such as laparoscopy or endoscopy
(SEYMOUR et al., 2002).

More recently, patient-specific virtual reality simulation (PSVR) has become possible
thanks to advances especially in the field of image processing, allowing the incorporation
of patient-specific imagery (such as CT or MRI data) in these simulations (WILLAERT
et al., 2010). However, most simulation environments still use default anatomic models to
represent the patient’s organs, especially with soft tissues. This simplification is justified
by the difficulties involved in generating a triangle mesh from the medical imaging exams.
Therefore, these simulators are not suitable for surgery planning, as those require patient-
specific data.

1.1 Problem

The difficulties of obtaining patient-specific meshes emerge from the limitations of the
standard information acquisition techniques, for instance, computed tomography (CT)
or Magnetic Resonance Imaging (MRI). These techniques yield a series of 2D image
slices that, when stacked, compose a volume. The smallest fragment of information of a
medical volume is called a voxel. Voxels’ intensities vary according to the type of tissue
and acquisition modality. Generally, these are the only information available to obtain a
patient-specific model.

Obtaining patient-specific meshes from 3D image exams has been seen as a two-fold
problem: segmentation of these medical images and mesh generation. While efficient
solutions exist for the latter (LORENSEN; CLINE, 1987), medical volume segmentation
(especially when soft tissues are involved) is still a widely researched topic. There are
different reasons for volume segmentation being a difficult problem. Some organs bound-
aries may be indistinct given the similarity in intensities of the voxels. There is also the
problem that intensities inside the same organ are often inhomogeneous thanks to cysts,
blood vessels, or different stages of diseases. These problems are visible in Fig. 1.1. In-
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Figure 1.1: A CT scan of a region with soft tissues. The blue square indicates the bound-
ary region between liver and muscle. Notice that intensities belonging to the liver are
indistinguishable from those of the muscle. The red square indicates a region within the
liver, and the different inhomogeneous intensities.

Figure 1.2: Source: original image

distinct boundaries and inhomogeneous intensities prevent the target organ from being
easily captured without leakage problems (when another organ is partially selected as
part of the target) or converging too far from the expected boundary of the organ (inho-
mogeneous intensities creating a convergence parameter inside the organ). Soft tissues
also may present complex shapes, and vary greatly from one patient to another, which
increases the difficulty of obtaining a patient-specific mesh.

There are different techniques for volume segmentation (watershed, graph cuts, level-
set, among others). Each of these type of algorithms has specific properties and are prone
to different problems. More details on volume-segmentation algorithms are available in
Chapter. 2.

1.2 Thesis Objective

In this thesis, we present a unified solution for volume segmentation and mesh gen-
eration to obtain patient-specific meshes. Our technique overcomes problems of volume-
segmentation algorithms and allows us to obtain plausible meshes that are very similar to
the organ shape. We tackle the segmentation problem fitting multiple spherical meshes to
the boundary region of the target organ in a medical volume.

This approach is based on the assumption that the initial spheres and the final organ
meshes are homeomorphic. In such a way, the spheres can be placed somewhere inside
the foreground object (i.e., the target organ) and dilated (or inflated) towards the target
boundaries to eventually represent its shape.

The inflation process is iterative: vertices search for feature voxels, and are displaced
by a fraction of the distance towards that target at each iteration. A feature voxel can
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be defined by properties in the volume such as target intensity (DORNHEIM et al.,
2006), gradient magnitude (KASS; WITKIN; TERZOPOULOS, 1988), gaussian mixture
(HABAS et al., 2008), intensity distribution (KAINMÜLLER; LANGE; LAMECKER,
2007), among others. Our technique is generic and works with any combination of these.

Vertices without a correspondent boundary region, however, have their positions given
by geometric constraints that use Laplacian preservation. We also use modified geometri-
cal constraints which are easily integrated in the deformation framework to avoid artifacts,
e.g. self-intersection of the mesh, while preserving sharp features of the volume. The mul-
tiple seed-points for the deformation process allow for a better coverage of the volume,
which solves the problem of undersampled regions. The algorithm convergence can be
either defined by a number of iterations or by the average displacement of a vertex during
an iteration.

Our method is robust, finding plausible organ boundaries even when they are not
visible to the eye or state of the art computer vision. It outputs meshes with improved
overall sampling quality, enabling the extraction of irregular features in the anatomy while
avoiding self-intersection of the mesh triangles.

1.3 Thesis Organization

In Chapter 2 we review the different volume segmentation techniques, with their
strengths and weaknesses. Our technique, that overcomes these weaknesses is presented
in detail in Chapter 3. In Chapter 4 we experimentally demonstrate the quality of our
method in comparison to previous approaches and show that our technique outputs mod-
els closer to the real features of the patient’s organs. Conclusions are drawn in Chapter
5.
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2 RELATED WORK

Segmentation of medical images is a relevant topic in computer vision. Methods
generally fall in one of these four categories: manual, interactive, semi-automatic or auto-
matic. This discussion is presented on Chapter 2.1. Changing certain aspects of a method
may cause it to switch categories. So, we also provide two other classifications, regard-
ing how the problem is approached, independent of how interaction is performed: Local
feature methods, presented in Chapter 2.2, and methods based on deformable models,
presented in Chapter 2.3.

2.1 Interaction Modes for Segmentation Algorithms

Current medical image segmentation methods are in one of the following categories:
manual, interactive, semi-automatic and fully automatic.

2.1.1 Manual Segmentation

Methods in this class are often accurate but very time-consuming. They require trained
experts to draw contours by hand on the computer screen. Given that the technique relies
on human understanding of organ boundaries and structures, manual methods are prone
to wide variability within a same model. For instance, an inter-observer variability of
14-22% measured in disagreement ratio was reported (KAUS et al., 1999). For that rea-
son, when aiming for the ground-truth for medical image segmentation, the average of
various manual segmentations is used. These methods are very time consuming, being re-
ported to take two to four hours for 1500-2000 images of 512x512 pixels to be manually
segmented (STRAKA et al., 2003).

2.1.2 Fully-Automatic

These segmentation methods do not rely on any human labour. Instead, they use
statistics and training sets, among other techniques, to initialize and perform segmen-
tation (OKADA et al., 2008). This leads to repeatable results. Currently, they are not
reliable enough for clinical usage. This is due to several factors, such as large intensity
variation for a same target tissue across different patients. These may happen due to dif-
ferent acquisition methods for the medical images, or different tissues properties among
patients or even different stages of diseases. Signal to noise ratio may also vary from im-
age to image, requiring different pre-processing steps to normalize. Finally, large shape
variance of the same target tissue (which may be due to natural causes or diseases) can
also hinder the process of automatic segmentation. Usually, these techniques are applied
to cases were a high contrast between background and foreground objects is obtainable,
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such as brain and cranial segmentation, or bones in CT scan. For all these reasons, this
class of methods are not as robust as necessary on clinical usage.

2.1.3 Interactive

Interactive methods require the user to give constant input, in a interactive fashion
during the segmentation process. This can be seen as an manual method, but greatly
aided by the computer. Typical scenarios include the user creating crude strokes around
the organ as input for the algorithm to opperate. These strokes are not necessary on
every image of the volume, only on certain key slices. If a segmentation result of one
slice is not satisfactory, new strokes or parameter values can be used (or modifications
of previous segmentation results) to improve the accuracy. Usually, these methods are
time-efficient and are adopted clinically. The accuracy is generally proportional to how
much interaction is involved. Commercial products like PathFinder and IntraSense use
techniques that are interactive for segmentation. Usually, retouch stages are incorporated
so the user can correct minor imperfections in the segmentation. These stages include
expanding undersegmented regions or removing segmented areas which are not part of
the target.

2.1.4 Semi-Automatic

Methods classified as semi-automatic incorporate minimal user input, usually as ini-
tialization parameters and parameter values, and are the methods which present the best
trade-off as to produce clinically acceptable results, requiring less human labour than
Interactive methods. The method presented in this thesis can be categorized as a Semi-
Automatic technique.

2.2 Local-feature based segmentation

In this section we will present different techniques for medical image segmentation
which rely solely on local features. These are methods that generally use local infor-
mation to perform segmentation, not taking into account global information of the target
organ. Usually, they are computationally cheaper and not as difficult to implement than
deformable models.

2.2.1 Thresholding

This technique can be defined as categorizing pixels below a certain intensity value t
into one group, and the rest of the pixels in another group. The result of thresholding a
medical image can be seen on Fig. 2.1. Given that medical images generally do not have
bimodal intensities distribution, and that thresholding does not consider spatial relation-
ship between pixels, this technique is hardly used alone in segmentation, but can be useful
when applied as a pre-processing step (GOSHTASBY; TURNER, 1995).

2.2.2 Edge detection

Detecting edges is a more refined approach to segmentation than thresholding. A So-
bel operator is a discrete 3 x 3 convolution kernel which computes the gradient of the
image along x and y direction. More refined edge detectors like Canny (CANNY, 1986)
uses a double-thresholding technique that allows a better link of detected edges. Edge de-
tection can be applied to segmentation of brain structures (BOMANS et al., 1990), thanks
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Figure 2.1: Applying a Threshold filter to a CT slice. Intensities range from 0 to 255.
Notice that the method is susceptible to noise, and join different structures as one single
component. Region in red on the left image is the liver groundtruth segmentation

Figure 2.2: Source: original image

Figure 2.3: Edge detection of a CT slice. Despite identifying some organs contours,
the liver was segmented as not-closed regions, with some leakage to the muscle tissue.
Region in red on the left image is the liver groundtruth segmentation

Figure 2.4: Source: original image

to the distinct intensities and definite boundaries of the brain and the skull. However, edge
detectors are sensitive to noise, and edges extracted may be disjoint, needing further steps
to form closed and connected object regions. For that reason, filtering is often used to
smooth higher frequencies caused by noise, while preserving important features like frac-
tures in bones (HACIHALILOGLU et al., 2008). In a soft-tissue segmentation scenario,
using only edge detection is impractical, as seen in Fig. 2.3.

2.2.3 Region-based

Region-based is another subclass of local-feature algorithms. A good representative of
this class is the Watershed Algorithm (BEUCHER; LANTUÉJOUL, 1979). An intuitive
interpretation of the technique is to think about the image as a surface which is flooded by
water. The height of each pixel is given by its intensity. Markers, either user-defined or by
local minimum, are then used as seed points to flood regions, and form basins. Whenever
two basins meet, a watershed line is formed. This process is presented on Fig. 2.5.

Problems with the watershed algorithm is possible over-segmentation, since each local
minimum will form a basin regardless of the region size. To improve the robustness of
the technique, prior information can be encoded in the algorithm (GRAU et al., 2004), so
instead of using the gradient to form basins, a probability function is applied. However,
this solution does not solve problems such as noise sensitivity and difficulty to detect thin



26

Figure 2.5: Example of the watershed algorithm. Two connected shapes with two markers
inside and a red line crossing the entire image (a). A height representation of the pixels
where the red line passes (b). The two green markers are the starting point for the water
to fill the basins. Where two different flooded regions meet (orange and blue) a watershed
is formed (purple line). In (c), is the resulting segmentation of the watershed algorithm.

Figure 2.6: Source: original image

structures.

2.2.4 Graph-based

The intuition behind graph-based technique is that they create a weighted graph, where
each vertex corresponds to a pixel or region, and each edge is weighted according to
similarity between neighboring pixels or regions. A graph G = (V,E) can be partitioned
in two disjoints sets A and B by removing edges between them. Hence, graph-based
algorithms try to minimize certain cost functions, like cut.

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (2.1)

where w(u, v) is the weight of the edge between u and v. One approach to the mini-
mization is the minimum cut (WU; LEAHY, 1993), which partitions a graph into k sub-
graphs such that the maximum cut across the subgroups is minimized. This cutting criteria
however, tends to generate small sets of nodes, since the resulting value of Eq. (2.1) is pro-
portional to the size of the sub-graphs. This bias can be avoided through the normalized
cut approach (SHI; MALIK, 2000), which replaces Eq. 2.1 with a new cost function Ncut:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A, V )

assoc(B, V )
(2.2)

assoc(X, V ) =
∑

u∈X,t∈V

w(u, t) (2.3)

where assoc(X, V ) in Eq. 2.3 is the total connection from all nodes in X to all nodes
in the graph, hence the normalization aspect. Graph cuts with user interaction were used to
remove bones from abdominal CT images (BOYKOV; JOLLY, 2001), as seen on Fig. 2.7.

Performance for the graph cut method is good only for images were background and
foreground intensities are well separable. Initial classification can be automated, as in the
work by Wels et. al (WELS et al., 2008). They use probabilistic boosting trees to classify
voxels as background or foreground, in brain tumors segmentation.
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Figure 2.7: Bone segmentation in a CT image using interactive graph cut (BOYKOV;
JOLLY, 2001). Markings "O" and "B" for object and background respectively, are manu-
ally initialized. Bone regions are marked by the horizontal lines.

Figure 2.8: Source: Boykob et al (BOYKOV; JOLLY, 2001)

Another assumption for the graph-cuts technique is that the object’s shape is best
described by the shape with smallest boundary length, which is not always the case in the
context of medical images, specially soft tissue organs like the liver.

2.2.5 Classification-based

Functions based on classification may use criteria like texture and brightness sim-
ilarity, contour energy, etc. to train a classifier to identify good segmentation (REN;
MALIK, 2003). For that, human segmented images are used as positive examples, and
negative examples are generated through randomly matching human segmentation with
different images. The algorithm then groups super-pixels (which are regions generated
by a pre-processing step using the normalized graph cut approach(SHI; MALIK, 2000))
into segments.

Another form of classification functions applied in image segmentation are Neural
networks (TOULSON; BOYCE, 1991). The training set consists of manually segmented
samples. Segmentation then, is performed on each pixel. Inputs for the neural network
are the class membership probabilities of the pixels from a neighborhood around the pixel
being classified. This improves the spatial consistency of the segmentation.

Gaussian Mixtures are statistical probabilistic classification models that represent the
presence of subpopulations within an overall population through the usage of Gaussians.
A Gaussian Mixture Model (GMM) can be defined as:

g(x) =
0∑
i=1

maifi(x) (2.4)

where x is the voxel intensity, ai are normalized coefficients, and fi(x) are Gaus-
sian distributions with parameters θi = (ai, µi, σi). It is possible to automatically esti-
mate θi by the Expected Maximization technique (DEMPSTER; LAIRD; RUBIN, 1977).
The number of Gaussians can also be automatically determined by an adaptive binning
algorithm (LEOW; LI, 2004). An example of Gaussian Mixtures classification of the
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Figure 2.9: (a) CT scan from abdominal region. Red lines are sampling regions for voxel
intensities that have bone muscle and fat transitions. (b) Gaussian Mixture Models ob-
tained from the sample data from (a).

Figure 2.10: Source: Ding Feng et Al (DING et al., 2009)

abdominal region is presented on Fig. 2.9. Gaussian Mixture Models have been used
for automatic segmentation of MR brain images (GREENSPAN; RUF; GOLDBERGER,
2006) and for the removal of abdominal wall on CT volumes for 3D visualization (DING;
LEOW; VENKATESH, 2009). However, certain organs have similar intensities and may
share a certain gaussian probability, causing leakage problems in segmentation.

Classification-based segmentation algorithms require training. Parameters for training
are usually subjective and empirically defined. Since accuracy of these algorithms heavily
depend on the selected training set, and there is a large variation from one person to
another for the same target segmentation organ, a large amount of data is required to cover
possible different scenarios. These algorithms are also sometimes complex to implement.

2.3 Deformable Models based Segmentation

These methods became popular recently, because of the ability to handle shape vari-
ation of the target organ. Domain information, and training shapes may also be incorpo-
rated to help on shape variability. There are many different deformable model segmenta-
tion algorithms, and we will discuss some of the most relevant below.

2.3.1 Active Contour Models

Active Contours, also known by the popular name Snakes (KASS; WITKIN; TER-
ZOPOULOS, 1988) are curves defined within an image domain, that can move under the
influence of two types of forces: internal and external. Internal forces come from within
the curve itself, and external forces are derived from the image data. The algorithm then,
deforms the curve iteratively, searching for the configuration which minimizes the total
energy given by the sum of forces, as seen in equation 2.5.

E =

∫
Eint(s(p)) + Eext(s(p)) dp (2.5)
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Figure 2.11: Original binary image (a). The vector field generated by applying eq. 2.7
in (a) is presented in (b). In (c), the resulting convergence of the snake after various
iterations. Notice that the snake is unable to reach inside the concavity of the image.

Figure 2.12: Source: Kass et Al (KASS; WITKIN; TERZOPOULOS, 1988)

Ideally, these forces combined displace the snake towards an object boundary or other
desired feature within an image. There are various segmentation works using snakes.
Segmentation of neural tissue with snakes (CARLBOM; TERZOPOULOS; HARRIS,
1994) and tracking of objects in a plane (like cells or heart chambers) (LEYMARIE;
LEVINE, 1993) are some of the applications of the original method. Naturally, snakes are
good deformable models for edge detection, shape modeling, segmentation and motion
tracking, given the smooth curvature of the spline, which is second-order continuous. The
external forces from the snakes method (KASS; WITKIN; TERZOPOULOS, 1988) are
defined as:

Eext = −|∇I(x, y)|2 (2.6)

Notice that for that external energy formulation, the method is sensitive to the starting
configuration of the snake. It also has problems with convergence to concave parts of the
region, or distant intensities. The original paper attempts to solve those cases by defining
a different external energy function:

Eext = −|∇(Gσ(x, y) ∗ I(x, y))|2 (2.7)

where Gσ(x, y) is a two-dimensional Gaussian function with standard deviation σ,
and ∇ is the gradient operator. This spreads the reach of higher intensities and helps to
solve some of the possible noise issues. However, larger σ values will blur and distort
the original boundaries. Also, the problem of concavities remains, as seen on Fig. 2.11.
This problem was tackled and partially solved by the Gradient Vector Flow (GVF) tech-
nique (XU; PRINCE, 1998).

Starting from an edge map obtainable for example through eq. 2.6, a diffusion of the
gradient vectors (hence, gradient vector flow) is performed iteratively by solving the
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Figure 2.13: In white, the edge map of a black and white U shaped image. In green,
the vector field obtained by applying the gradient vector flow diffusion on the edge map.
Notice that gradient magnitude is bigger near the edges of the image, meaning stronger
forces close to high frequencies and small forces on homogeneous regions. The concavity
also has better force spread, allowing convergence where the original snake’s external
energy formulation would fail.

Figure 2.14: Source: Xu et Al (XU; PRINCE, 1998)

following euler equation:

g′(x) = g(x) + µ∇2g(x)− (g(x)− f(x)) ∗ |∇f(x)|2 (2.8)

where ∇2 is the Laplacian operator, f(x) is the edge map (or gradient) of the image and
|∇f(x)|2 is the magnitude of the gradient of the image, and g(x) is the current state of
the gradient vector flow diffusion. The discrete solution is obtainable, for example, by
finite differences. The result of the gradient vector flow diffusion operation is presented
on fig. 2.13.

Problems with gradient vector flow are the sensitivity to the snake initialization, and
most of all, the high computational cost to compute the iterative diffusion operation. Re-
cent works were able to reduce the computational cost considerably (HAN; XU; PRINCE,
2007), but noise sensitivity and initialization remains a problem. Segmentation using
snakes also are susceptible to self-intersections. This happens when vertices are projected
in such a way that the snake crosses itself, causing a self-intersection artifact. The T-
snake model (MCINEMEY; TERZOPOULOS, 1999) modification solve intersections by
discretizing the segmentation space into a grid, and tracking underlying grid points. If a
intersection is detected, that deformation is cancelled, and a repulsion force is exerted on
those vertices. This approach can lead to slower segmentations and unstable behaviour
on complex and detailed shapes.

2.3.2 Level Set

This function (SETHIAN, 1999) is a higher dimensional surface that represents a con-
tour. That contour is the intersection between the level set function and the x − y plane.
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Figure 2.15: A level set function 3D surface (top row) evolving as the contour (bottom
row) deforms and adapts to the image plane (SETHIAN, 1999).

Figure 2.16: Source:Sethian et Al (SETHIAN, 1999)

For a 2D contour, the level set function z = φ(x, y, t = 0) is represented as a 3D surface
(for a 3D volume, the level set function is a 4D hypersurface). The desired object con-
tour is the zero level set of the function, formally: φ(x, y, t) = 0. As in Snakes (KASS;
WITKIN; TERZOPOULOS, 1988), the contour is propelled by image forces F . Since
the level set function is a representation of the states of evolution of the contour, it can-
not be pre-computed. The solution is to compute the zero level set function iteratively
based on the force F . Since the changes on the level set function values are only near
the current object boundary, this allows for an optimization called narrow band algorithm
(SETHIAN, 1999). If the contour has only one direction of propagation, another opti-
mization possible is the fast marching algorithm (SETHIAN, 1999). An example of the
level set function is shown on fig. 2.15. The level set technique are widely used on medical
volume segmentations.

Segmentation of cardiac 2D MRI images using level set function (PLUEMPITIWIRIYAWEJ
et al., 2005) was achieved by combining stochastic region information with edge infor-
mation. Contour smoothness constraints were adjusted by minimizing overall contour
length. The level set function is computationally expensive to calculate.

2.3.3 Active Shape Model and Active Appearance Model

Both methods use statistical analysis to obtain average shapes of organs. For that, a
collection of shapes (a set of training samples) is required.

The Active Shape Model (ASM) also known as Statistical Shape Model (SSM) (COOTES
et al., 1993) represents a training shape by a 2n-dimensional vector containing coordinates
of points on the shape. These training samples form a point cloud in the eigen space. ASM
uses Principal Component Analysis (PCA) on this point cloud to identify eigenvectors that
describe that point cloud. An arbitrary shape can be represented by linear combination



32

Figure 2.17: Two cases of a mesh self-intersection in a 2D representation. In (a), a self
intersection caused by two directly connected vertices. In (b), a self-intersection caused
by multiple vertices which are not necessarily connected.

(a) (b)

Figure 2.18: Source:original image

of these eigenshapes with different coefficients. Similarly, a model can be deformed by
changing these coefficients. An initial guess can be randomly generated, and an optimiza-
tion algorithm (like genetic algorithm or a direct search in the eigen space) can be used
to find the optimal solution iteratively. Active Appearance Models (AAM) (COOTES;
EDWARDS; TAYLOR, 2001) also incorporates voxel intensity information, improving
the robustness of ASM.

Fully automated liver segmentation with a reduced number of training samples was
performed using a multi-level statistical shape model approach (OKADA et al., 2008).
This was achieved by partitioning hierarchically the model in patches, which have to be
overlapped during deformation to ensure continuity. This introduces more complexity to
the technique.

The advantage of both ASM and AAM models is that the shape can be deformed
in a more controlled way when compared to snakes or level set method. However, it
also requires a lot of training samples (to avoid bias or bad results) to build the point
distribution functions in the eigen space. There is also the problem that an eigen space
with too many eigenshapes may introduce a higher complexity in finding the optimal
combination of these for the optimal solution.

2.3.4 Problems in Deformable Model Based Segmentation

Despite deformable models being more resilient to noise and that they consider the
overall information of a target organ (in comparison to local information based methods,
which are more sensible to noisy data), there still are problems that can affect the quality
of the segmentation obtained. Deformable models are susceptible to self-intersections
that happens if a mesh is not deformed properly. Two examples of self intersection are
presented on Fig. 2.17.

There are different approaches to solve self-intersection of the mesh during segmen-
tation. One possible solution is to detect the artifacts and solve them. For instance,
proximity conditions can be used (LACHAUD; MONTANVERT, 1999) between vertices.
Small displacements are performed, and when a violation of a proximity condition is de-
tected, the model is remeshed to remove self-intersections. The method by Delingette
et. al. (DELINGETTE; MONTAGNAT, 2001) uses collision detection to check for self-
intersections and performs remeshing to remove the artifacts. In general, these approaches
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are slow, contributing to most of the computational cost of the algorithm.

2.3.5 Summary

Medical image segmentation algorithms are categorized in terms of interaction modes
in one of the following: manual, fully automatic, interactive and semi-automatic. Manual
segmentation methods rely heavily on human interaction, are accurate and time consum-
ing. They have large variability as it relies on the observer notion of anatomy. Fully
automatic segmentation methods do not use human labour, and its results are repeatable.
They rely on training sets or statistical measures, and currently are not robust enough to
be used clinically. Interactive and semi-automatic methods have the best trade-off, incor-
porating minimum user input and yielding clinically acceptable results.

In terms of category, we presented two different types of techniques: model-less and
deformable model-based. Model-less methods (like thresholding, edge-based, graph-
based and classification-based) use local information of the image. Usually they are time-
efficient and have good results for cases where tissues have very different intensities for
example, or low noise ratio with low intensity variation (like bones and air on a CT scan).
They do not perform well on cases where intensities are inhomogeneous, noisy or have
highly irregular shape and low contrast, or indefinite edges and intensity similarities are
high. Deformable Model-based segmentation, however, are defined as a contour/surface
deformation. Global information (like geometric properties) are used to ensure more ro-
bustness and coherence. Therefore, they better deal with inhomogeneous intensities or
noisy datasets. They also have higher computational complexity.

Techniques which are based on deformable models suffer from problems like self-
intersection of the mesh. This problem happens when a mesh is not properly deformed,
causing its surface to intersect with itself. Most solutions to this problems require heavy
computational steps or complex implementations.

The technique introduced in this thesis is a semi-automatic deformable model method.
It includes minimal user input, and can segment organs in the complex abdominal region
such as the liver or spleen. It does not rely on statistical shapes or training sets. It also
avoids problems like self-intersection of the mesh by simple constraints integrated in the
deformation framework. To achieve such results, we partially rely on ideas from previous
deformable models techniques (LAW et al., 2011; SORKINE et al., 2004; DING et al.,
2009). As stated, volume segmentation based on deformable models usually suffer from
problems like self-intersection of the mesh, and undersampled regions. The presented pre-
vious solutions for those problems required costly and complex operations. Our method
addresses these issues avoiding bottlenecks, allowing for significantly faster computation
in comparison with other algorithms of this kind.
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3 DEFORMABLE SPHERES SEGMENTATION FOR PA-
TIENT SPECIFIC MESHES

In this section, we explain our technique for obtaining a patient-specific mesh, which
is based on previous segmentation techniques using deformable models (ZHOU et al.,
2012; DING; LEOW; VENKATESH, 2009; DING et al., 2009). An overview of the steps
of the algorithm is observable on Fig. 3.1. Details are in the subsections 3.1-3.6 below.

3.1 Initialization Step

Medical images usually have different resolutions on each sampling direction. If we
consider the volume to be aligned with the x-y-z axis, that means that a voxel will not
have the same length on each direction. The reason for that is related to the sampling rate
on the acquiring means (CT machine, for example). While it does not interfere directly
with segmentation techniques, it is of interest for our algorithm to have isotropic voxels
(meaning that their length is the same on all directions). Since we will be using an explicit
mesh to perform segmentation, no posterior scaling will be necessary to create a shape
which actually resemble the organ of the patient. Additionally, since we use geometrical
constraints to guide the mesh deformation, having isotropic voxels would make calcula-
tions of correlation between vertices position and volume position easier. Finally, simply
stretching the convergence state may create unappealing results, while using isotropic
voxels has better chances to capture soft tissues smooth curves and irregularities.

For those reasons, the initialization step performs a regularization of the volume, to
ensure voxels size is the same in all sampled directions. To achieve that, we create a new
volume with the real dimensions of the input volume. Discretization considers the small-
est length direction of the input volume voxels. That means that a volume with number of
voxels 512x, 512y and 183z with voxel sizes 0.75mm in x, 0.75mm in y, 1.5mm in z has
real dimensions of 512 by 512 by 366 voxels considering isotropic voxels with 0.75mm
size in all directions. To generate the new isotropic volume, tri-linear interpolation is
performed to ressample the volume. After this step, the volume is shown with a volume
visualization framework, with the possibility to also visualize individually sampled slices
spatially aligned with the entire volume.

Before the algorithm starts, the user manually places seed points inside the target
organ using this visualization. The number of points is predefined according to the target
organ, as shown in Fig. 3.1b. That is the only human intervention needed.

A seed point is regarded as the center of a special spherical mesh, defined as a set of
vertices V , each of them, a member of two intersecting orthogonal contours. Thus, each
vertex vi in V is connected to exactly four vertices, resembling a quad-sphere structure, as
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Figure 3.1: The overall steps of the algorithm. A close up of one spherical mesh (a). Each
vertex of the mesh is part of two orthogonal contours. Notice the lack of poles on the
spherical mesh, to avoid concentration of vertices. In (b) we have four spheres placed in
the volume space. Each vertex searches for feature voxels in the normal direction. Pre-
sented in (c) are deformed vertices using a Laplacian preservation scheme while avoiding
self-intersection and stopping when at boundary regions of other meshes. In (d) is the
final liver mesh obtained by joining the four partial meshes.

(a) (b) (c) (d)

Figure 3.2: Source:original image

shown in Fig. 3.1a. A linear ordering of vertices is defined along each contour, making the
later avoidance of neighbor flipping easier. The side of the quadrilateral mesh, measured
by the number of vertices, defines how much detail information the mesh will be able to
sample. For instance, the total amount of vertices is given by V = side2 ∗ 6.

During the first step of the algorithm, presented on subsection 3.2, a search for feature-
voxels is performed. We defined feature-voxels as values outside an intensity window. The
intensity window was obtained by evaluating all voxels inside each spherical mesh before
the algorithm starts. The maximum and minimum intensities found within each sphere
are the response ranges for that sphere. Voxels with lower or higher intensities than those
maximun and minimum intensities are considered as our feature-voxels. We chose this
approach because it is generic and not biased to a particular type of organ.

After initialization, the mesh is deformed according to the steps describe in Algo-
rithm 1 presented below.

Algorithm 1 Multiple spheres growth algorithm
1: Spherical Meshes initialization
2: while convergence criteria not met do
3: for all Meshes m in M do
4: 3.2 Correspondence search
5: 3.3 Detect and avoid flipping
6: 3.4 Detect and avoid self-intersection
7: 3.5 Perform mesh deformation
8: end for
9: for all Mesh m in M do

10: 3.6 Inter-mesh intersection detection.
11: end for
12: end while



37

3.2 Correspondence search

The deformation of the spherical mesh is performed for each vertex vi of the mesh.
Ideally, the target position vi is at the boundary region of the desired organ. Each vertex
vi searches along a projection line P (vi) for a corresponding point v′i. This projection line
can be defined as the surface normal at vi. The point v′i is the intersection of P (vi) and a
feature voxel on the surface of the volume. If a projection P (vi) fails to intersect a feature
voxel, vi is labelled as a solitary vertex. The length of that projection line is defined as
half the width of the volume, and decreases on each iteration.

Given that the projection’s direction may greatly vary within a small region of the
mesh, an iterative local averaging of the displacements vector is performed as:

v′avgi = vi+
1

N + 1
[v′i − vi +

∑
vj∈N(vi)

(v′j − vj)] (3.1)

where vj are the vertices connected to vi that have a target correspondence v′j , and N
is the total number of these vertices. This operation leads to more uniform projections
P (vi). This operation also yields valid target positions to former solitary vertices, since it
is expected that a boundary in a organ is continuous within a direct neighborhood.

3.3 Detection and avoidance of mesh flips

Displacing vertices along their projection line may cause mesh flippings. The flipping
of a non-solitary mesh vertex vi and its non-solitary neighbors vj after mesh deformation
can be identified by:

vi − vj
||vi − vj||

·
v′i − v′j
||v′i − v′j||

≤ τ (3.2)

where τ ∈ [0, 1) is a predefined threshold. Pairs of vertices that form flipping edges
are labelled as flipping vertices. Each vertex undergoes flipping detection for all of its
non-solitary neighbors.

After checking and labelling all flipping candidates, the algorithm iterates each closed
contour. Let vi, ...vn denote a consecutive sequence of flipping vertices for a given con-
tour, bounded by two non-solitary and non-flipping vertices vi−1 and vn+1. The method
identifies the central flipping vertex vc and considers it as non-flipping. All other flipping
vertices in the sequence are labelled as solitary and have their correspondence discarded.
As illustrated in Fig.3.3, this process avoids edge flips because vertices labelled as solitary
are not projected directly, having their new positions given by a Laplacian preservation
scheme, explained in Section 3.5.

This step avoids flipping of directly connected vertices, and has been previously used
in volume segmentation (LAW et al., 2011; DING et al., 2009). However, it has one
critical limitation: it does not prevent global self-intersections on the mesh. Global self-
intersections can be responsible for leaking problems: vertices pierce the mesh and find
target positions in wrong directions. After deformation, the meshes inflate incorrectly
and lose sharp features, as seen in Fig. 3.5. This problem can also cause under sampling,
due to the wrong target position that vertex may find. Our solution to that limitation is
presented next.
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Figure 3.3: Flipping detection on connected vertices: Presented in (a) is the vertex search
for a feature voxel. In (b), vertices detected as flipping (marked in dashed light blue) are
labelled as solitary and their correspondence is discarded. Iteration of mesh deformation
with Laplacian preservation guiding solitary vertices is presented in (c)

(a) 

(b) 

(c) 

Figure 3.4: Source:original image

Figure 3.5: Mesh self intersection. Internal vertices have their normal direction flipped,
causing them to be attracted to wrong target surfaces on further iterations of the algo-
rithm. The outside (a) and inside (b) view of a liver mesh. The region in red has a
self-intersection artifact. Observe that shading differences in the mesh were caused by
normal flippings.

Figure 3.6: Source:original image

3.4 Detection and avoidance of global self-intersections

A global self-intersection happens with vertices that are not directly connected to
each other (and thus, can not be marked as flipping because of each other). If vertices are
displaced after projection, the mesh surface may end up intersecting itself. An example
can be seen in Fig. 3.7.

Current solutions for that problem generally include computationally heavy operations
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(a) (b) 

Figure 3.7: (a)Two vertices not marked as flipping but have crossing projections. (b)After
deformation, projecting the vertices cause a self-intersection. Since the vertices were not
neighbors, they were not checked for flipping with each other.

Figure 3.8: Source:original image

(a) (b)

v i

Figure 3.9: (a)Same scenario of Fig. 3.7 with non-neighbor vertices in an intersecting
path. A vertex vi will search within the spherical region with radius equal to the size of
its projection line. If a vertex (or its target position is found, both this vertex and vi are
marked as mesh-intersecting. (b)All mesh-intersecting vertices have their target position
discarded, and are interpolated using geometrical constraints.

Figure 3.10: Source:original image

like remeshing or re-triangulations. But we do not wish to loose our mesh connectivity
properties, because that would imply in re-computations during the deformation step, and
also bring problems during future steps of our technique.

The approach we devised to solve the problem of global self-intersection is to test
non-solitary vertices against other close vertices within a specific spherical region. For
instance, consider vi and vk as a pair of non-neighbor vertices to be tested: we create a
bounding sphere region Svi centred at vi with radius equal to P (vi). If either vk or v′k are
inside Svi , the edge flip test (eq. 3.2) is performed. However, instead of labelling these
vertices as flipping, they are labelled as mesh-intersecting (Fig. 3.9). Vertices labelled as
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Figure 3.11: Inside of a spherical mesh deformed to fit a medical volume without (a)
and with (b) our self-intersection avoidance technique. c)Ambient occlusion mapping
of the mesh obtained in (a). Since ambient occlusion maps how much a vertex is visible,
vertices that are "inside" of the mesh (and occluded by the geometry) are in a darker color.
This shows the loss of details of the region, caused by the artifact of the intersection.
d)Ambient occlusion map of (b). Notice the smoother visibility of the vertices, meaning
that they capture the variations and details of the organ properly.

Figure 3.12: Source:original image

mesh-intersecting also have their target position discarded, but are treated in a different
manner from solitary vertices during deformation step, which will be explained in the
next section. A mesh with self intersection and with the described step to avoid the self-
intersection is presented on Fig. 3.11.

3.5 Mesh deformation

After every vertex has found its target position or been labelled as solitary or mesh-
violating, a Laplacian preservation scheme (SORKINE et al., 2004) is used to deform the
mesh. Vertices labelled as solitary have no target position. After deformation, we pre-
serve their Laplacian coordinates using an energy minimization approach, which creates
a smooth deformation while preserving previous features.

To calculate the Laplacian deformation, first we obtain all δi coordinates as the result
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of applying the discrete Laplacian operator to vi:

δi = [
∑
i,j∈N

wijvj]− vi (3.3)

where
∑

ij∈N wij = 1 and a uniform weighting factor wij = 1
N

. Since the entire mesh
can be represented as an NxN Laplacian matrix L, with elements

Li,j =


1 i = j;
wij (i, j) ∈ N ;
0 otherwise;

the ∆v vector of all δi coordinates can be computed in the matricial form as ∆v =
LV where ∆v = [δv1 , δv2 , ...δvn ]T . All vertices marked as mesh-intersecting have their
Laplacian coordinate δv set to 0 in the ∆v vector. As the mesh grows, even if vertices
have their correspondence discarded, there is no way to ensure that Laplacian preservation
will not cause intersections of the mesh. Setting δv = 0 for all mesh-intersecting vertices
centralize them as a linear combination of their non-mesh-intersecting neighbors.

All vertices which have a target-position v′i are used as position constraints. The
resulting over-determined linear system AV ′ = b has the following structure:[

LNxN
PMxN

]
V ′ =

[
∆v

Vp

]
(3.4)

where LNxN is the Laplacian matrix, PMxN is a sparse matrix with a 1 on the index
of the vertex corresponding to that positional constraint, i.e, P is a constraint matrix
where Pi,j = 1 when i == j and 0 otherwise for each non-solitary vertex vi. The ∆v

vector are the Laplacian coordinates, and Vp are the absolute coordinates of the positional
constraints.

The system is solved in the least square sense by the pseudoinverse formula V ′ =
(ATA)−1AT b. Likewise, Vp are the absolute coordinates for each non-solitary vi. The
system can be independently solved for coordinates x, y and z of V ′. The resulting effect
is the preservation of Laplacians interpolating positions for solitary vertices, and interpo-
lation yielding valid positions to mesh-intersecting vertices as shown in Fig. 3.13. Given
that the system matrix is largely sparse, the pseudo-inverse can be efficiently solved by
Cholesky decomposition. After obtaining new positions V ′l , vertices are updated by a
predefined time-step α with the following equation:

vnewi
= (1− α)vi + αv′li (3.5)

Convergence in our algorithm is defined as either a maximum number of iterations or
by checking if the average difference between vertices displacements after some iterations
is below a predefined threshold.

3.6 Inter-mesh Intersection Detection

The reason for using more than one sphere during segmentation is related to the un-
dersampling problems. During mesh deformation, using one single sphere would cause
vertices to get constrained as they approach their target surface. That means that con-
vergence would be slower, and that farther regions would have less vertices available to
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Solitary vertex

Laplacian preservation

Mesh-intersecting vertex

Interpolation

Positional constraint

Figure 3.13: Three types of deformation on the mesh: positional constraints (black vertex)
are target positions of vertices which were not marked as solitary or mesh-intersecting.
Light-blue vertices are vertices marked as flipping. Their positions are given by their for-
mer Laplacian coordinates. Green vertices are those marked as mesh-intersecting. Their
position are given by an interpolation of their neighbors.

Figure 3.14: Source:original image

sample the area. This leads to crude approximations and leaking problems, or to under-
segmentations. Increasing (or removing) vertices from the mesh would change the mesh
connectivity and require recalculation of the Laplacian matrix. It would also be more
difficult to check for flips of the mesh without the linear ordering structure of the con-
tours. Finally, increasing the number of vertices would slow down the pseudo-inverse
calculation.

For that reason, we chose to use more than one sphere. With more spheres, the number
of vertices for each sphere can also be smaller. Since each sphere can be processed inde-
pendently, the algorithm is by nature, parallel. However, to avoid oversegmentation and
to make it easier to obtain a single final mesh, it is important to also constrain intersection
between different spheres.

After all spheres have been deformed by the previously described steps, we perform
a two-phase intersection detection. First, a simple bounding sphere region of each mesh
is created. For instance, consider two meshes Mi and Mj: we check for vertices that are
in the intersection of both bounding spheres from Mi and Mj . This will yield two subset
candidates for intersection between those two spheres which we will call Ci and Cj .

After these candidates have been obtained, we test for intersection using the following
equation:

vnewi
− vnewj

||vnewi
− vnewj

||
· vi − vj
||vi − vj||

≤ τ (3.6)

where vnewi
and vnewj

are a pair of vertices from Ci and Cj but with their original
positions from before the deformation, and vnewi

and vnewj
are the same pair of vertices,

but after the deformation for this iteration. The threshold interval this time is τ ∈ [0,−1].
This interval includes only vertices that are directly expanding against vertices of the
other mesh, and allows both meshes to "slide" over each other ensuring a smoother cov-
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Figure 3.15: Checking for intersection between two deforming meshes. In (a), the bound-
ing sphere region of both meshes. Vertices within the green region will be used to check
for potential mesh intersection. In (b), an example of a pair of vertices (one from each
mesh) to be tested for causing mesh intersection. The dashed areas represent both meshes
state before deformation. In (c),the same pair of vertices, but in their position after de-
formation. Notice that the vectors direction from before and after the deformation are
opposites, which is a characteristic of inter-mesh intersection. Example of vertices set
defined as static while the two meshes evolve over time in (d).

(a)

(b) (c)

vi
vj

vj

vi

vi
vj

’

’

(d)

vi

vj

Figure 3.16: Source:original image

erage of the volume on the joining area. These vertices are then marked as static. They
will not search for new target positions, and will always be a positional constraint during
the energy minimization process. This step can be observed on Fig.3.15. As the defor-
mation step may displace them, they are always restored to the position they were first
constrained.

Since the algorithm requires to check only against vertices that are not static, and
within a small subset of vertices, convergence of intersection is relatively fast when com-
pared to remeshing and re-triangulations. The segmentation of a liver resulting of the
described algorithm is presented in Fig. 3.17.



44

Figure 3.17: A liver segmentation mesh composed of four deformed meshes. In (a), the
full liver. In (b), the same liver without one of the deformed meshes. In (c), the missing
mesh from (b).

Figure 3.18: Source:original image

3.6.1 Patient-Specific Meshes

After convergence has been achieved, the output are several meshes that represent
the patient-specific model. A segmentation mask can be obtained if desired, by simply
checking if a voxel is inside any of the meshes applying a point in polygon algorithm.
A boolean union operator can also join the meshes if the application requires so. How-
ever, since we already have the information of meshes intersection, removing the inner
structures of the meshes is easy: all vertices that were marked as static just have to be
deleted. To generate a single mesh while maintaining the overall structure of the partial
meshes, a stitching algorithm can be applied (GUÉZIEC et al., 2001). The position of
vertices created to weld the meshes can be interpolated by a step of Laplacian smoothing
optimization (NEALEN et al., 2006). Alternatively, an entire mesh can be obtained by re-
construction techniques (KAZHDAN; BOLITHO; HOPPE, 2006). This can be observed
on Fig. 3.19.

One of the downsides of using multiple seed-points (one for each mesh) is the fact
that the user has to interact with the application during initialization. However, this inter-
action is small when compared to techniques such as active contours (KASS; WITKIN;
TERZOPOULOS, 1988) or other interactive approaches. Even for large organs as the
liver, four clicks (and thus, four meshes) are enough for the entire reconstruction. More-
over, there is the possibility of using automated approaches for the seed point of the
spheres through statistical shape models (SSM) (HEIMANN; MEINZER, 2009), or by
knowledge of human embriology (KAINMÜLLER; LANGE; LAMECKER, 2007). A
statistical approach will require a good training set to avoid a wrong placement of the
seed-points.
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Figure 3.19: In (a), the result of removing vertices labelled as static. Since the structure
of all meshes are regular thanks to the contour lines, a stitching algorithm should not have
degenerated scenarios when joining meshes. In (b) , a single mesh of (a).

Figure 3.20: Source:original image
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4 EXPERIMENTS AND RESULTS

For evaluation, we tested our technique and compared against algorithms that rely
on deformable models, and use no training dataset. Graph Cut was evaluated through
its variation: GrabCut (ROTHER; KOLMOGOROV; BLAKE, 2004). The level set tech-
nique (SETHIAN, 1999) implementation was the one present in ITK-SNAP. We also com-
pared our algorithm to the Flipping-free mesh deformation (FFMD) (DING et al., 2009).
For this latter, beside the results from the original paper, we also compared with results
from our implementation of the FFMD, since the original source code is not available.

For testing, we considered a human liver segmentation scenario using medical images
acquired by CT scan. We evaluated the average symmetric distance from the segmenta-
tions performed to a ground-truth segmentation. A smaller average distance means that
the segmentation is more precise. However, distance alone is not enough to determine
the quality of a segmentation. We also evaluated volume overlap percentage, which in-
forms how much of the organ was covered in the segmentation. A high volume overlap
combined with a small average distance means that the segmentation covered the organ
properly while reducing leakage problems.

The medical images used in the test were 8 volumes of the liver with slice thickness
varying from 1mm to 3mm, obtained from the dataset provided by the MICCAI challenge
from 2007: 3D Segmentation in the Clinic: A Grand Challenge (HEIMANN et al., 2009).
The dataset consisted of various CT scans acquired in transversal direction. Most of the
livers were pathologic (with tumors, metastasis and cysts). Each of the volumes also had a
binary mask for the corresponding liver region, which was considered as the ground-truth
for our evaluations. All experiments were performed on a modest Intel Core 2 Quad 2.4
GHz with 6G memory using a single core, except by the level set, which uses more threads
(due to the ITK-SNAP implementation). Parameters for time-step and intersection test in
our algorithm were fixed as α = 0.5 and τ = 0.4. The number of spheres was defined as
4.

4.1 Results and Evaluation

In this section we evaluate our technique in comparison to the results obtained by the
previously mentioned algorithms. Before running our algorithm, volumes were smoothed
with an anisotropic filter before segmentation started to reduce some of the noise in the
dataset. We applied the same filtering before running our implementation of FFMD.

In the original paper, FFMD uses Gaussian Mixtures (HABAS et al., 2008) with Ex-
pected Maximization to create a probabilistic chance of a given voxel being within a
gaussian. Voxels with a probability below a certain threshold are considered their feature-
voxels. However, the paper gives no details on the construction of the Gaussian Models,
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Figure 4.1: Average symmetric distance in millimetres to the ground-truth. Smaller val-
ues mean that the technique is more precise. The two shades of gray on FFMD represents
the two different implementations. The lighter gray is the result obtained in our imple-
mentation. The darker shade of gray is the result from the original paper. Notice that
even in that case, the best results of our algorithm performed better than FFMD with the
probabilistic preprocessing step.

10,28 6,13 4,3

Level Set FFMD Our Algorithm

Average Symmetric Distance
in milimeters

1,69

6,13

Figure 4.2: Source:original image

Figure 4.3: Volumetric overlap percentage. Higher values mean that more of the volume
was covered. However, we also have to take into account the distance to the ground-truth
surface to ensure that over-segmentation did not happened. Results on FFMD bar have
two values: lighter gray corresponds to results reported on the paper, darker gray were
obtained with our implementation results.

91,2 89,9 81,5 72,98

Our Algorithm FFMD Graph Cut Level Set

Volume Overlap
percentage of volume covered

89,9

66,5

Figure 4.4: Source:original image

as to how background and foreground are defined, or if it uses a training dataset. So in our
implementation, we used the same intensity-based definition we use in our algorithm. For
comparisons, results both from our implementation and from original paper were used,
since the dataset is the same.

The first measurement performed was the distance between the obtained segmenta-
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Figure 4.5: The graph above shows the total time in seconds until convergence for the
evaluated techniques (smaller is better). The graph below shows the number of iterations
for each technique. Despite having to compute mesh intersection, since constrained ver-
tices are not recomputed , the technique has a fast convergence rate. The deformation step
is also independent for each sphere and can be parallelized which would also boost the
performance.
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43 23
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Figure 4.6: Source:original image

Figure 4.7: On the left, a mesh generated by FFMD algorithm (a). On the left, leaking of
the volume close to the ribs caused a bumpy pattern. In the center, a mesh of the same
liver obtained by our algorithm (b). Our method required fewer vertices and was capable
of generating a more plausible result. On the right, we generated a mesh of the spleen (c),
to show that our method works with different organs.

FFMD - 9600 VERTICES(a) OURS - 8100 VERTICES OURS - SPLEEN (b) (c)

Figure 4.8: Source:original image

tion surface and the ground-truth surface. An ideal segmentation should have an average
distance of 0, meaning both surfaces overlap. Our algorithm obtained a good result when
compared to graph cut and Level Set, greatly reducing the distance to the target surfaces.
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We also performed better than our implementation of FFMD. When compared to the re-
sults from the original FFMD paper, our technique performed worse. We are uncertain
about the reasons for this, but this outcome could be originated from their implementation
of the Gaussian Mixture Models. The results can be observed on Fig. 4.1. The improve-
ment seen in our technique is given by the placement of more than one sphere, and thanks
to the avoidance of self-intersection, which causes loss of details on sharp features and
leaking of the volume.

As previously stated, evaluating the average surface distance alone is not a good mea-
surement. So we also have to take into account the volumetric overlap. This measures
how much of the volume was covered, which allow us to check for under-segmentations.
The ideal segmentation should have a complete overlap of the volume. The volumet-
ric overlap is observable on Fig. 4.3. A comparison of livers meshes obtained from our
algorithm and FFMD, which had the second best results are presented on Fig. 4.7.

Time for each technique to achieve convergence was also measured (and is mapped on
Fig. 4.5). As expected, our algorithm has a small time until convergence, specially when
compared to slower techniques such as the Level Set method, thanks to the placement
of the multiple spheres. Given that the multiple spherical meshes are sampling different
regions of the volume, convergence is rapidly achieved. Computation of the deformation
step is also faster when multiple meshes with a smaller number of vertices are used,
instead of a single mesh with higher discretization. The number of iterations mapped on
Fig. 4.5 is also greatly reduced for the same reason.
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5 CONCLUSION

In this thesis we presented an algorithm for mesh reconstruction from patient specific
anatomy data. Our algorithm is based on the inflation of multiple deformable meshes
from inside the volume data and does not rely on any dataset for training or statistical
calculations and requires minimal interaction. The novelties in relation to previous meth-
ods are the avoidance local and global self-intersections, and the achievement of sampling
quality suitable to capture details for a number of medical applications.

Besides the easier to detect occurrences of flipping-vertex previously approached in
the literature, we combined different types of constraints in the Laplacian deformation
step for the vertices that are defined as candidates to non-flipping intersection. This al-
lowed us to avoid zself-intersections.

The use of multiple spherical meshes instead of one single mesh is responsible for an
improved sampling quality. As a result, high frequency features of the original volume
are more accurately captured by the resulting mesh without increasing the overall number
of vertices. The use of multiple spheres also leads to high parallelization, as each sphere
is independent and can be computed in parallel with the others. Since there are fewer
vertices on each sphere, the energy minimization method is as faster to compute. It also
does not require additional constraints to perform vertices displacement (which may cause
unintended intersections and leakage, and are slow to compute) or constant remeshing
(which changes mesh connectivity and also introduces complexity).

Thanks to these features, our technique allows for patient-specific meshes to be ob-
tained, with enough quality for clinical usage. These meshes can be integrated in surgery
simulators for medical training and surgery planning scenarios.

Finally, there is an increasing interest in hepatic surgery applications for the automatic
modeling of the liver functional segments, also known as Couinaud’s segments (COUIN-
AUD, 1986). We suggest further developments to consider the placement of seed-spheres
in such way that each sphere correspond to one of the 8 functional segments defined by
Couinaud. Another non-excludent possibility is using knowledge from human embry-
ology to guide automatic placement of more than one spheres depending on the target
organ.
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APPENDIX A GERAÇÃO DE MALHAS PARA
PACIENTES ESPECIFICOS

Resumo da Dissertação em Português

Simuladores de cirurgia se tornaram essenciais para treinamento de procedimentos.
Pesquisas indicam que o uso geral de simuladores permitem a aquisição, melhoria e
manutenção de habilidades complexas sem o risco de infligir danos ao paciente real
(SEYMOUR et al., 2002). Mais recentemente, o uso de simuladores voltados para pa-
cientes específicos se tornou uma possibilidade, graças aos avanços principalmente no
campo de processamento de imagens, permitindo a incorporação de imagens médicas
de um paciente específicos (obtidas via ressonância magnética ou tomografia) em técni-
cas existentes (WILLAERT et al., 2010). Porém, a maior parte dos ambientes de simu-
lação ainda utilizam modelos anatômicos genéricos para a representação dos órgãos do
paciente. Essa simplificação ainda é mais comum em órgãos de tecido mole, como os
encontrados na região abdominal, e é justificada pela dificuldade envolvida em se gerar
malhas poligonais a partir das imagens médicas. Isso é causado por limitações nos pro-
cessos de aquisição das imagens médicas. Órgãos da região abdominal são deformáveis,
exibindo formas complexas. Além disso, a intensidade luminosa desses órgãos é similar,
o que causa regiões de contato entre os órgãos a não ter bordas definidas. Portanto, esses
simuladores não são adequados para o planejamento de cirurgias.

Nessa tese, nós apresentamos uma solução unificada para a segmentação do volume
de imagens médicas, e para a geração da malha poligonal para obtermos malhas de pa-
cientes específicos. Nossa técnica supera problemas existentes em outros algoritmos de
segmentação de imagens, e nos permite obter malhas plausíveis, e altamente similares ao
órgão do paciente.

Destacamos portanto, as seguintes contribuições desta dissertação:
Nossa abordagem é robusta, encontrando limites plausíveis para o órgão, mesmo

quando estes não são visíveis. A malha resultante apresenta uma boa qualidade em
sua amostragem, permitindo a extração de formas irregulares comumente encontradas
na anatomia humana. Nossa técnica também evita artefatos como auto-intersecção da
malha triangular, problema encontrado em outros algoritmos do estado da arte.

• um algoritmo de segmentação com baixo custo computacional. Nossa técnica uti-
liza múltiplas malhas com uma topologia especial inicialmente esférica, que através
de cálculos pré-fatorados, permitem um menor custo computacional quando com-
parando a técnica a outros algoritmos da mesma classe;
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• uma técnica que gera malhas sem auto-intersecção e sem convergência para mín-
imos locais. Através de heurísticas geométricas, evitamos que as malhas se in-
terseccionem ao longo da deformação. Alem disso, através do uso de buscas em
distâncias e limitadores na deformação, garantimos que a convergência das mal-
has não seja apenas local, o que contribui para uma melhor amostragem do órgão
desejado ;

• obtermos uma malha para o órgão do paciente. Como utilizamos malhas geométri-
cas para a segmentação, ao término da técnica, pode-se optar por utilizar as malhas
obtidas no processo da deformação. Nossa abordagem é robusta, encontrando lim-
ites plausíveis para o órgão, mesmo quando estes não são visíveis. A malha resul-
tante apresenta uma boa qualidade em sua amostragem, permitindo a extração de
formas irregulares comumente encontradas na anatomia humana;

Para obter as contribuições citadas, foi necessário realizar um estudo sobre segmen-
tação de uma coleção de imagens médicas, denominada também volumes médicos, que
será brevemente apresentada na próxima sessão.

A.1 Segmentação de Volumes

Métodos para segmentação de volumes médicos podem ser classificados nas seguintes
categorias: manuais, semiautomáticos e automáticos.

A.1.1 Segmentação manual

Métodos nessa classe são precisos mas consomem tempo para execução. É necessário
que pessoas treinadas desenhem contornos manualmente. Por depender do entendimento
humano dos limites do órgão, estes métodos estão mais suscetíveis a variabilidade de
uma segmentação entre variados observadores (KAUS et al., 1999). O "valor verdade"
portanto, é obtido através da média entre várias segmentações efetuadas manualmente.
Avalia-se que o tempo para uma segmentação de um volume de 1500 imagens por um
profissional treinado leve de duas a quatro horas (STRAKA et al., 2003).

A.1.2 Segmentação Automática

Métodos nessa categoria não dependem de interação humana. Para alcançar essa inde-
pendência, são necessários conjuntos de segmentações modelo para cálculos estatísticos
e algoritmos de treinamento. Isso cria uma dependência que impede sua aplicação em
casos clínicos, visto que a qualidade do resultado é fortemente atrelado a qualidade das
amostras para o treinamento do método.

A.1.3 Segmentação Semiautomática

Métodos classificados como semiautomáticos incorporam interação mínima por parte
do usuário, geralmente na forma de parâmetros de inicialização. Por requisitarem baixa
interação e não depender de usuários especificamente treinados, são considerados os mais
propícios para uso clínico. Nessa tese, apresentaremos uma abordagem pertencente a esse
grupo de técnicas, na próxima sessão.
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Figure A.1: Passos para a segmentação e obtenção da malha de um fígado

(a) (b) (c) (d)

Figure A.2: Source:original image

A.2 Segmentação e Obtenção de Malhas para Pacientes Específicos

O método proposto utiliza uma inicialização por parte do usuário: o volume é exibido,
e o usuário deve clicar um número de vezes em posições distintas dentro do órgão que ele
deseja obter a malha. Esse número varia de acordo com o tamanho do órgão. Nos casos
de testes realizados com o fígado, definimos como sendo quatro cliques.

A posição dos cliques é dada como o valor de inicialização para uma malha esférica
especial. No caso de quatro cliques, quatro malhas esféricas serão utilizadas. Essas mal-
has esféricas irão crescer, com seus vértices sendo projetados na direção das normais.
Para evitar auto-intersecção, limitações geométricas como interpolação e preservação
dos laplacianos são utilizadas (ZHOU et al., 2012; DING; LEOW; VENKATESH, 2009;
DING et al., 2009). A medida que as malhas se aproximam uma das outras, utilizamos
a mesma abordagem de verificação de intersecção para limitar as buscas entre esses vér-
tices de duas malhas diferentes. Essa abordagem evita o vazamento da malha para fora
do órgão em regiões com contornos irregulares.

Esse processo é realizado interativamente, com passos de projeção, de checagem de
intersecção, e deformação com preservação laplaciana. A sequencia desses passos é apre-
sentada na Figura A.1. A cada interação, a malha é atualizada com uma interpolação entre
seu estado atual e as novas posições encontradas. O critério de parada é definido ou como
um número máximo de interações ou pela média das diferenças entre as posições antes
da deformação e após a deformação ser inferior a um determinado valor de distância.

Após a convergência, é possível se gerar uma mascara de segmentação a partir dos
vóxels, que são o equivalente a um pixel em um caso de volume. A partir dessa mascara,
um algoritmo de triangulação pode ser utilizado para se obter uma malha única (KAZH-
DAN; BOLITHO; HOPPE, 2006), ou uma abordagem diferente pode ser utilizada: visto
que as esferas usadas na segmentação já são malhas, um algoritmo de costura pode ser
aplicado para fundi-las (GUÉZIEC et al., 2001).

A.3 Avaliação e Resultados

Para avaliação, comparamos nossa técnica com outros três métodos de segmentação
de volumes médicos que não utilizam aprendizagem de maquina ou dependam de treina-
mento (ROTHER; KOLMOGOROV; BLAKE, 2004; SETHIAN, 1999; DING et al., 2009).
Para o cenário de teste, optamos pela obtenção de malhas do fígado, por ser um órgão que
apresenta grande similaridade de intensidades com os órgãos que estão ao seu redor. Alem
disso, o fígado pode apresentar grande variabilidade de formato, por ser um órgão defor-
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mável. Como métricas para a avaliação, comparamos os resultados de mascaras binárias
obtidas pelos algoritmos testados contra um resultado-verdade, obtido no banco de dados
disponibilizados por uma competição anterior de segmentação de fígados (HEIMANN
et al., 2009). O conjunto de dados consiste em oito volumes diferentes de tomografia,
acompanhados das respectivas segmentações do fígado de cada volume, por meio de um
volume binário exibindo somente a região considerada como pertencente ao fígado do
indivíduo.

Como métricas para a avaliação, consideramos:

• a distância entre a superfície da segmentação e sua equivalente na segmentação
verdadeira. Quanto menor a média dessas distâncias e sua variação, mais exata a
segmentação.

• a diferença volumétrica das segmentações. Esse valor indica quanto do volume
foi devidamente coberto pelo algoritmo. A combinação de dados da proximidade
entre as superfícies e cobertura volumétrica é um bom indicador da qualidade da
segmentação realizada (HEIMANN et al., 2009).

• tempo até convergência. Avaliamos o custo computacional dos algoritmos testados
para saber o tempo necessário para se obter uma segmentação.

Os resultados obtidos neste trabalho mostraram uma maior precisão na segmentação
obtida comparado aos outros algoritmos testados, graças a eliminação de auto-intersecções
e diminuição do vazamento da segmentação para outros órgãos. Além disso, tivemos uma
grande diminuição de custo computacional, quando comparado aos outros métodos de
segmentação. Nossa implementação utiliza somente um núcleo do processador, havendo
a possibilidade de paralelização para um desempenho ainda melhor.

A.4 Conclusão

Nesse trabalho, nós apresentamos um algoritmo para a obtenção de malhas a partir de
dados da anatomia de um paciente específico. Nosso algoritmo se baseia em múltiplas
malhas esféricas deformáveis, sem a dependência de dados para treinamento ou cálculos
probabilísticos. O método necessita de interação mínima, e evita auto-intersecções locais
e globais.

Graças ao uso de múltiplas malhas esféricas, a segmentação obtida possui uma boa
amostragem, evitando uma convergência local, e possibilitando uma melhor cobertura do
volume e uma maior proximidade dos limites reais do órgão quando comparado a outros
métodos concorrentes. Também obtivemos um melhor desempenho, com um tempo para
convergência inferior aos métodos concorrentes.

Como trabalhos futuros, sugerimos estudar como inicializar as malhas automatica-
mente dentro do órgão de interesse. Dessa maneira, o método passa a ser completamente
automático e independente da supervisão do usuário para iniciar a técnica. Acredita-
mos que o conhecimento de distâncias antropométricas combinado com embriologia e a
padronização da posição do paciente no ambiente de aquisição das imagens podem apre-
sentar informações úteis para a solução desse problema.




