UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA B
CURSO DE ENGENHARIA DE COMPUTACAO

MARCOS TOMAZZOLI LEIPNITZ

A Fault Injection Platform for FPGA-based
Communication Systems

Monograph presented in partial fulfillment of the
requirements for the degree of Bachelor in Computer
Engineering.

Advisor: Prof. Dr. Gabriel Luca Nazar

Porto Alegre
2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de Graduacéo: Prof. Sergio Roberto Kieling Franco

Diretor do Instituto de Informética: Prof. Luis da Cunha Lamb
Coordenador do Curso de Engenharia de Computagéo: Prof. Marcelo G6tz
Bibliotecaria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

ABSTRACT

The resilience of communication systems to soft errors is a major concern in many scenarios,
such as when facing stringent dependability constraints or when operating in radiation-harsh
environments. Field-Programmable Gate Arrays (FPGASs) are successful platforms for the
implementation of communications systems, since they provide the advantages of
reconfigurability coupled with a high throughput processing of data streams and lower
development costs. When used in radiation-harsh environments, however, FPGAs present a
distinct set of challenges that demands specialized evaluation. The large configuration
memories of SRAM-based devices are especially susceptible to radiation-induced faults,
demanding the evaluation of design’s resilience to such phenomena. Therefore, this work
proposes a fault injection platform that targets specifically FPGA-based communication
systems, in order to simulate and evaluate the effects of configuration faults on the
functionality of such systems, as well as their impact on the communication quality metrics.
The platform operates partially on the device and partially on a host computer, aiming at both
flexibility and high performance. A Reed-Solomon decoder is used as a case study to validate
the platform, showing its ability to measure metrics that are relevant for communication

systems.

Keywords: Field-Programmable Gate Array. Soft errors. Fault injection. Reliability

evaluation. Communication systems.

Uma Plataforma de Injecdo de Falhas para Sistemas de Comunicagao
Baseados em FPGA

RESUMO

A resiliéncia de sistemas de comunicacdo com relacdo a soft errors é uma grande
preocupacdo em muitos cendrios, como quando se exige alta dependabilidade ou quando
operam em ambientes com alta incidéncia de radiacdo. Field-Programmable Gate Arrays
(FPGAS) séo plataformas de sucesso para a implementacdo de sistemas de comunicacgdo, uma
vez que proporcionam as vantagens da reconfigurabilidade associada a uma alta taxa de
processamento de fluxos de dados e reduzidos custos de desenvolvimento. Quando usados em
ambientes com alta incidéncia de radiacdo, no entanto, FPGAs apresentam um conjunto
distinto de desafios que exigem avaliacdo especializada. As memorias de configuracdo de
dispositivos baseados em SRAM sdo especialmente suscetiveis a falhas induzidas por
radiacdo, exigindo a avaliacao da resiliéncia do projeto a tais fendmenos. Assim, este trabalho
propGe uma plataforma de injecdo de falhas que tem como alvo especifico os sistemas de
comunicagdo baseados em FPGA, a fim de simular e avaliar os efeitos de falhas de
configuracdo sobre a funcionalidade desses sistemas, bem como o0 seu impacto sobre as
métricas de qualidade de comunicacdo. A plataforma opera parcialmente no dispositivo e
parcialmente em um computador hospedeiro, visando compatibilizar flexibilidade e alto
desempenho. Um decodificador Reed-Solomon € utilizado como estudo de caso para validar a
plataforma, mostrando a sua capacidade para medir métricas que sdo relevantes para sistemas

de comunicagéo.

Palavras-chave: Field-Programmable Gate Array. Soft errors. Injecdo de falhas. Avaliacdo
da confiabilidade. Sistemas de comunicag&o.

LIST OF FIGURES

Figure 1.1 - Effect of an ionizing particle striking a reverse-biased p-n junction................... 11
Figure 1.2 - A SEU within a typical SRAM memory cell due to a charged particle strike 11
Figure 1.3 - A SET generated in a combinational circuit can lead t0 @ SEUccccevverviieeinnnnnne 12
Figure 1.4 - Configuration memory upset in an FPGA-based communication system............ 13
Figure 2.1 - Typical FPGA structure and design fIoWcccoovviieiiiicicccc e 16
Figure 2.2 - Upset FPGA configuration bits may change the logic and routing....................... 17
Figure 2.3 - Basic fault emulation algorithm ... 19
Figure 3.1 - Overall proposed fault injection platform............ccccocviiiiiiiiiic s 21
Figure 3.2 - Communication interface with the host computer...........ccccovveiieiieiii e 25
Figure 3.3 - System Controller INterfaCeccovoveieeie e 25
Figure 3.4 - System Controller operation flIOWChart.............cccooiiiiiiiiii e 26
Figure 3.5 - Virtex-5 FPGA row structure and its configuration framesc.ccccocervnnnnnns 28
Figure 3.6 - Segmentation of the configuration frame addresscccoccvvveiieiicii e 28
Figure 3.7 - SEU INJector iNtErfacecoeiieii it 29
Figure 3.8 - SEU Injector operation fIOWChart.............coiiiiiii 30
Figure 3.9 - A single bit flip may transform a LUT into a shift registerccccoccvvninnnnns 30
Figure 3.10 - CUT I/O Controller interface............cooiviiieieieiese e 31
Figure 3.11 - Software application OPErationcccveiiiieiiiie e 33
Figure 4.1 - Fault injection campaign time estimation............ccccccevveieiieieecie e 35
Figure 4.2 - Reed-Solomon decoder experiment for each fault injected...........cccccocceniiiinnnns 37
Figure 4.3 - Reed-Solomon decoder structure (first implementation)...........ccccoveniininnnnns 37
Figure 4.4 - Placement of the Reed-Solomon decoder modules (first implementation) 38
Figure 4.5 - BER due to injected faults (first implementation/perfect channel) 40
Figure 4.6 - FER due to injected faults (first implementation/perfect channel)...................... 40
Figure 4.7 - BER due to injected faults (first implementation/noisy channel)...............c......... 41
Figure 4.8 - FER due to injected faults (first implementation/noisy channel) 41
Figure 4.9 - Reed-Solomon decoder structure (second implementation)............ccccoeeevverinennn. 42

Figure 4.10 - Placement of the Reed-Solomon decoder modules (second implementation) ...43

Figure 4.11 - BER due to injected faults (second implementation/perfect channel)................ 44
Figure 4.12 - FER due to injected faults (second implementation/perfect channel) 45
Figure 4.13 - BER due to injected faults (second implementation/noisy channel) 45

Figure 4.14 - FER due to injected faults (second implementation/noisy channel) 46

Figure 4.15 - Critical bits and failure modes comparison (perfect channel)ccoccevvennine 47
Figure 4.16 - Critical bits and failure modes comparison (noisy channel)ccccccooevvennnne 47
Figure 4.17 - Input-sensitive faults comparison (perfect channel).........c.cccoeovvieiiviviiicinenne 48

Figure 4.18 - Input-sensitive faults comparison (noisy channel)cccocevviieiiciccicceee 48

LIST OF TABLES

Table 3.1 - Virtex-5 interconnect and block configuration frames per column type 27
Table 4.1 - Platform resource usage and device 0CCUPALIONc.cccvevverieiieseenieeie e 34
Table 4.2 - Reed-Solomon decoder evaluation (first implementation/perfect channel)........... 39
Table 4.3 - Reed-Solomon decoder evaluation (first implementation/noisy channel) 39

Table 4.4 - Reed-Solomon decoder evaluation (second implementation/perfect channel)......43

Table 4.5 - Reed-Solomon decoder evaluation (second implementation/noisy channel) 43

ASIC
AUT
BER
CLB
CMOS
COTS
CRC
CuUT
DMA
DSP
EDAC
FER
FPGA
HDL

ICAP
[0]=]
JTAG
LET
LFSR
LUT
MBU
NMR
PRNG
SBU
SEE
SEL
SER
SET
SEU
SRAM
TMR

LIST OF ABBREVIATIONS AND ACRONYMS

Application Specific Integrated Circuit
Area Under Test

Bit Error Rate

Configurable Logic Block
Complementary Metal Oxide Semiconductor
Commercial Of-The-Shelf

Cyclic Redundancy Check

Circuit Under Test

Direct Memory Access

Digital Signal Processor

Error Detection and Correction
Frame Error Rate
Field-Programmable Gate Array
Hardware Description Language
Integrated Circuit

Internal Configuration Access Port
Input/Output Block

Joint Test Action Group

Linear Energy Transfer

Linear Feedback Shift Register
Look-Up Table

Multi-Bit Upset

N-Modular Redundancy

Pseudo Random Number Generator
Single-Bit Upset

Single-Event Upset

Single-Event Latch-up

Soft Error Rate

Single-Event Transient
Single-Event Upset

Static Random Access Memory

Triple Modular Redundancy

SUMMARY

L INTRODUCTION ...ttt sttt abe bt enenne e 10
1.1 IMIOTIVALION ...ttt b e bbbttt s e s et bbb bennenre s 13
I 0T | PSPPSR 14
2 BACKGROUND ..ottt ettt e e st e e e st e e e st e e e nnteeenneeas 15
2.1 Radiation EFfeCtS ON FPGAS ...ttt 15
2.2 Fault INJection MEtNOAS..........cveiiiiicc e 17
2.3 REIATEA WOKKS ...ttt sttt nte e enneentenneenes 20
3 PROPOSED FAULT INJECTION PLATFORM.......cooieiee e 23
3L PCIE /O CONTIOIIEE ..ot ettt 23
3.2 SYSEEM CONTIOIIEE ..o e 25
K O U I VL@ @0 4 o] 1 =T oSS 31
3.4 SOTtWAre APPIICATIONocuiiiiiiiiieee bbbt 32
4 EXPERIMENTAL RESULTS ..ottt 34
4.1 Resource Occupation and Performanceccocveveieiie e 34
4.2 Platform Validation: Reed-Solomon DECOUENccccuereereiieiiere e eee e 36
4.2.1 First IMpPIemMentationccooiiiiiiiiiieie e 37
4.2.2 Second IMPIEMENTATIONcoiiiiieee s 42
4.2.3 Critical Bits and Failure Modes COMPAriSONcceeieiurerieiie e esiesee e 46
4 CONCLUSIONS ...ttt ettt ettt s et st e e e seete st e st eneste s eneerenrens 49
REFERENGESottt et e a e e st e e st e e e snaa e e snaaeennaeeen 50

APPENDIX A - GRADUATION PROJECT 1 ..ottt 54

10

1 INTRODUCTION

The continuous evolution of the fabrication technology of Complementary Metal
Oxide Semiconductor (CMOS) devices have enabled the production of more complex and
dense integrated circuits (ICs), allowing the integration of entire systems in a single chip.
Moreover, the decreasing of transistor’s feature sizes to nanoscale and the aggressive voltage
operation reduction increased the performance and reduced the power consumption of modern
computing systems (ITRS, 2010). The technology scaling, however, increased the system’s
sensitivity to transient faults triggered by environment disturbances such as electromagnetic
interference or radiation, resulting in higher soft error rates (SERs) (Dixit & Wood, 2011). A
soft error is a non-permanent error that occurs when a fault causes an incorrect change in
system states. The propagation of errors through the system circuitry can lead to failures, i.e.,
a deviation of the system intended function. Although the advance in manufacturing
technologies has greatly reduced the occurrence of soft errors caused by, for example,
temperature fluctuation or noisy power supply, the incidence of ionizing particles in radiation-
harsh environments remains a major concern, even for terrestrial applications (Dodd et al.,
2010). Therefore, when designing highly dependable systems, designers should be aware
about the selected device technology and the environment conditions.

In aerospace applications, such as communication satellites and avionics, failures
occur frequently due to the increased flow of charged particles from the cosmic radiation and
solar winds, such as protons, neutrons, alpha particles and heavy ions. Ground-based
applications also can be affected, mainly by high-energy neutrons generated by the interaction
of the cosmic radiation with the upper atmosphere. The interaction of charged particles with
sensitive regions of a semiconductor device can cause enough of a charge disturbance to
affect its operation transiently or permanently. When a high-energy particle strikes the silicon
substrate, it liberates its energy via the production of free electron-hole pairs, resulting in an
ionized track that leads to a current pulse disturbance, as illustrated in Figure 1.1. The amount
of charge collected and the consequent impact on the device operation depends on the linear
energy transfer (LET) of the ions, which depends on the mass and energy of the particle and
the material in which it is traveling (Bauman, 2005).

Single-Event Effect (SEE) is the common term used for any measurable or observable
effect on a device, component or system, due to a single charged particle strike (JEDEC,
2006). The most relevant SEEs are the Single-Event Latch-up (SEL), the Single-Event
Transient (SET), and the Single-Event Upset (SEU). SEL is a potentially destructive

11

condition caused by the creation of a parasite structure in CMOS devices, resulting in a low-
impedance path between power and ground. If the device is not destructed by the overcurrent
generated, the malfunction can be solved by a power cycle. SET is a transient voltage pulse
that can propagate through the system’s circuitry. The main consequence of SETs are SEUS,
which are characterized by the change of state (bit flip) of a memory cell, register, latch or
flip-flop, leading to functional failures or to loss of information (Monteanu & Autran, 2008).
Figure 1.2 illustrates a SEU within a typical SRAM memory cell due to a charged particle

strike. Unlike SELs, SETs and SEUs do not cause any permanent damage in the device.

Figure 1.1 — Effect of an ionizing particle striking a reverse-biased p-n junction.

n+ [lontrack e L
. - - N— -
a8 ~ 3 (b) Prompt ‘
\ — —] | ———————p
3 L _ = charge : —
+ -/ T_ t S5 | collection i (c) Diffusion
+ S+ o o oLE s > charge
H o~ = @ collection
¥ o n EEEY
¥ -+ S £
4=/ * o + ©
T + 4. T
el 5 e c
+++~- o 5 0 1 (a) Onset
M A + 7 4 ® 5 of event
S5 . - Z 3 |
* +I + 4 + - l
0 —

G
=
)

107 #9012 g 4% qp?
Time (seconds)

Source: Baumann (2005).

Figure 1.2 — A SEU within a typical SRAM memory cell due to a charged particle strike.

BL BL
WL

Charged particle

Source: the author.

12

In digital systems, sequential logic elements, such as flip-flops and latches, are used to
hold data and control signals between combinational logic blocks that perform logic
operations. When a charged particle strikes a combinational element and enough charge is
collected, a SET can be generated. If the transient signal is not attenuated or logically masked
through the combinational circuitry, it can be latched into a sequential element depending on
the sampling clock and the set-up and hold times. The result is a SEU, as exemplified in
Figure 1.3. Although the amount of charge collected in newer CMOS technologies decreased,
due to smaller junctions as transistors shrink, the trend is higher SERs. The decreasing
operation voltage and propagation delay, as well as the escalating operation frequency,
decreased the probability of fault masking due to electrical or timing characteristics.
Therefore, increased the probability of a SET to propagate through a combinational circuitry

and result in a SEU.

Figure 1.3 — A SET generated in a combinational circuit can lead to a SEU.

Charged particle

SET
Flip-Flop SEU
00— 1
% D
Q
Clock
Combinational logic —‘ll_ll_l>

Memory element

Source: the author.

The use of radiation hardened solutions, either by technology or by design, can solve
the radiation effects problem for high reliable applications or critical systems operating in
radiation-harsh environments. Nevertheless, Commercial Of-The-Shelf (COTS) devices
become widely used, due to much lower costs, higher performance, and the use of state-of-art
technologies. This trend, however, introduced the challenge of building reliable systems with
non-reliable devices, leading to the need of improving the implemented system dependability
with the inclusion of fault-tolerance mechanisms, such as hardware or information
redundancy. Moreover, the most efficient solution depends on the device technology and the

system’s design, which demands a carefully evaluation.

13

1.1 Motivation

Field-Programmable Gate Arrays (FPGAS) are reconfigurable devices widely used in
the implementation of computing systems. These devices offer many advantages over the use
of Application Specific Integrated Circuits (ASICs), such as reconfigurability coupled with a
high throughput processing of data streams and lower development time and costs. Those
characteristics make FPGAS a great option for data communication applications, due to the
possibility of in-field reprogramming to correct faulty behaviors or to add new features,
without the performance and power penalties introduced by the use of general-purpose
processors (Hauck & Dehon, 2008). When used in radiation-harsh environments, however,
FPGAs present a distinct set of challenges that demands specialized evaluation. The
technology scaling and the growing number of configuration cells in SRAM-based FPGAS
increased the configuration memory sensitivity to radiation induced SEUs. (Lesea et al., 2005;
Quinn et al., 2015).

The reliability of data communication systems depends on their capacity to deal with
the conditions of noise and interference from the physical channel that can corrupt the data
being transmitted. In order to improve this capacity, channel coding/decoding techniques are
used to provide error detection and correction, through the addition of information
redundancy (Shannon, 1948). However, the channel encoder/decoder hardware is susceptible
to faults, which may affect its correct operation and impact the system reliability, as
illustrated in Figure 1.4. Therefore, the resilience of FPGA-based communication systems
must be carefully evaluated by studying the impact of configuration faults in communication

quality metrics, so as to develop effective and low cost fault-tolerance mechanisms.

Figure 1.4 — Configuration memory upset in an FPGA-based communication system.

Information Source 3&Channel Transmitter \
Source Encoder Encoder
I .

SEU ‘r
FPGA Data i
configuration Communication |
memory System i
\

~

Information ° Source Channel Recentor
Receptor Decoder Decoder P

Source: the author.

14

1.2 Goals

The goal of this work is to provide a fault injection platform flexible and optimized for
FPGA-based communication systems, allowing emulate configuration faults on SRAM-based
FPGAs. To achieve high flexibility, the platform should operates partially on an FPGA device
and partially on a host computer, to easily generate various channel models and/or to measure
different metrics that may be relevant for any particular communication system. To achieve
high performance, the communication between the FPGA device and host computer should be
made through a high speed interface. Moreover, the fault injection/removal needs to be fast as
possible to not become the performance bottleneck of fault injection campaigns.

The purpose of the fault injection platform is evaluate the impact of configuration
faults on the communication quality metrics of communication systems, such as the bit error
rate (BER) and the frame error rate (FER), as well as validate fault-tolerance mechanisms to
improve the system resilience to such faults. This evaluation demands a considerable amount
of input vectors for each fault injected, since the statistical confidence of those metrics
depends on the amount of data transmitted. Therefore, this process can be very time

consuming, making the performance an important requirement for the proposed platform.

15

2 BACKGROUND

This section presents a discussion about the radiation effects on FPGAs, more
specifically configuration memory faults, the fault injection methods used to verify the impact
of such faults, and fault injection platforms that inspired this work.

2.1 Radiation Effects on FPGASs

FPGAs are complex reconfigurable devices that comprise a wide variety of
heterogeneous resources. The basic structure of modern FPGAs includes interconnect
resources, clock-management resources, configurable logic blocks (CLBs), input/output
blocks (I0Bs), and embedded blocks such as digital signal processors (DSPs), general-
purpose processors, high-speed 10Bs, and memories. CLBs are used to perform simple
combinational and sequential logic. These blocks are typically made of look-up tables
(LUTSs), multiplexers, flip-flops, and carry logic. Programmable interconnect resources, such
as routing switches, allow interconnecting CLBs, 10Bs and embedded blocks to implement
complex systems (Buell et al., 2007).

The logic and routing resources in an FPGA are controlled by the bits of a
configuration memory, which may be based on antifuse, flash, or SRAM technology. The
design flow of FPGA-based systems involves the creation of a bitstream to load into the
device, as illustrated in Figure 2.1. Typically, the process starts with the system design written
in a hardware description language (HDL), such as VHDL or Verilog. Next, the design is
optimized and mapped into the FPGA’s available resources through logical synthesis,
technology mapping, placement, and routing. Finally, the bitstream is generated and the
device can be programmed. FPGA vendors such as Xilinx, Altera, Lattice Semiconductor, and
Atmel provide tools to perform the design flow (Gokhale & Graham, 2005).

Like any other semiconductor device, FPGAs are susceptible to radiation effects.
Mostly, these effects depend on the technology used to store the configuration data.
Regarding the impact of SEEs on reliability and functionality, FPGAs based on SRAM
technology are a special class of devices. The major concern for SRAM-based FPGAS is
SEUs within the configuration memory. In such devices, this memory may represent more
than 80 percent of the total memory bits, increasing the probability of configuration faults.
Upset configuration bits may change the logic and routing of the implemented system, as
illustrated in Figure 2.2, leading to functional failures in an unpredictable way. In contrast, the

16

primary concern for antifuse and flash-based FPGAs is SETs and SEUs within user flip-flops
and block memories. Although the configuration memory cells of antifuse and flash-based
FPGAs present a relative immunity to SEEs, these devices has lower logic capacity and
cannot be reprogrammed an unlimited number of times, making SRAM-based FPGAs more
suitable for complex systems requiring frequent reconfiguration and adaptation (Violante,
2004; Wirthlin, 2015).

Figure 2.1 — Typical FPGA structure and design flow.

FPGA
10B 10B 10B 10B 10B 10B
10B GLB CLB GCLB GLB CLB CLB 10B
Source Code Bitstream
0101100 0B CLB BRAM BRAM BRAM CLB 10B
1110001
K . 1000110
Logical Synthesis ‘
g Yy 110110 0@ 0B CLB CLB CLB GLB CLB CLB 10B
l 0010111
1010010 I0B HHCLB D DSP CLB = 108
Technology Mapping 0110011
A
l 0B CLB CLB CLB 10B
Placement | T " | .
| 108 s {‘}f/"‘qr;f v 108 | |I0B
! Ty
Routing LUT 3 1y |
il ~) :{B_ FF
MUX %‘ ok L 7)';, u Carry Logic

Source: adapted from Buell et al. (2007) and Hauck & Dehon (2008).

The vulnerability of SRAM-based FPGAs to configuration data SEUs demands the
use of techniques to mitigate their impact on the system dependability. The correction
techniques that act directly on the configuration memory are based on scrubbing and
information redundancy. Scrubbing is the simplest technique, consisting in constant
reconfiguration at a higher rate than the predicted SEU rate. A more effective solution is
repairing the configuration memory by performing a regular read-back followed by Cyclic
Redundancy Check (CRC) calculations to detect the corrupted frames. Then, partial
reconfiguration can be used to update only these frames. This technique, however, requires
more complex circuitry to calculate and compare the CRC values, as well as additional
memory to store them. The scrubbing technique, in contrast, only requires a controller to

timing the reconfiguration process (Charmichael et al., 2000).

17

Figure 2.2 — Upset FPGA configuration bits may change the logic and routing.

SEU
101100001010 OTH4011
010111110 0010008 e 0
110100341011 11011101 ° i1101 1 ;
100 . 800 {0011 MUX
1011101 10010 191
Routing 111100110101 LUT FE
Switch
01111011 1 01111011 E—
10010001 e 10010001 =z
ioiq011| ¢ (101 fonion © [Uol—1
000001100101 01111000 (0011 000001100101 01111000 0011
101110100010 111110010 71101 101110100010 111110010 11101
111100110101 111100110101
Original Circuit Modified Circuit

Source: adapted from Wirthlin (2015).

Regarding mitigation techniques that act on the system design, which covers not just
configuration faults, but also SETs and SEUs in sequential logic and embedded blocks, the
most common solutions are Triple Modular Redundancy (TMR) and Error Detection and
Correction (EDAC). TMR is a hardware redundancy technique that consists in implementing
the circuit three times, and their outputs compared by a voter to decide the correct one.
Despite the amount of extra logic resources needed to implement this technique, it is very
effective to prevent errors until more than one module is affected. This method has
limitations, as demonstrated by Quinn et al. (2007), when the design is affected by Multi-Bit
Upsets (MBUSs), which requires a smart floorplan usage to isolates the TMR modules. The
EDAC technique is based on information redundancy, i.e., additional bits are introduced in
the data word through complex data encoding techniques. Depending on the encoding
scheme, one or more erroneous bits can be detected and corrected, impacting the circuitry
complexity and the amount of resources needed.

The best SEEs mitigation solution depends on the chosen FPGA device and the system
design, but typically combines the techniques aforementioned. More details can be found in
Lima & Reis (2006).

2.2 Fault Injection Methods

Fault injection can be defined as the deliberate introduction of faults within a desired

system, aiming at evaluating its dependability and validating fault-tolerance mechanisms.

18

This method is widely used, for example, to determine the space-readiness of spacecraft
applications during the development process, by analyzing the system’s behavior in the
presence of faults and estimating its failure rate. Then, fault-tolerance mechanisms are
introduced and the process is repeated until the desired robustness in not achieved. The fault
injection in the hardware of a give system can be performed with three main techniques:
physical fault injection, simulation-based fault injection, and emulation-based fault injection
(Clark & Pradhan, 1995; Ziade et al., 2004).

Physical fault injection is suited when a prototype of the system is already available. It
is accomplished by disturbing the hardware with environment parameters, such as radiation,
or corrupting the signal value of IC leads, circuit board connectors, and system back plane.
Heavy ion beans are commonly used, for example, to perform accelerated radiation testing to
verify the system sensitiveness to SEEs. Although signal corruption on IC pins can model
many faults that occur inside the device, effects of several internal faults cannot be
investigated with this method, since the access to internal nodes is limited.

Simulation-based fault injection, contrasting with physical fault injection, is suited
when a prototype of the system is not yet available. It is performed by using a high-level
model of the system to reproducing at software level the errors that would have been
produced by faults occurring in the hardware. The errors are reproduced altering logical
values before or during the simulation runtime. This method is very effective in allowing
early and detailed analysis, but the simulation of complex systems in software can be very
time consuming. Moreover, complex faulty behaviors in simulation models might be difficult
to replicate.

Emulation-based fault injection is an intermediate solution based on reconfigurable
devices, since modern FPGAs allow rapid prototyping of complex systems. In software-based
methods, the fault injection is performed through modifications on the HDL source code or
synthesis byproducts (e.g., netlist or configuration files), or using circuit instrumentation. In
hardware-based methods, the fault injection is performed in hardware and acts directly on the
device circuitry, by changing the data content of memories or the logical state of user flip-
flops, for example. Hardware-based methods are more popular because they consume much
less time, which is important for fault injection campaigns aiming high fault coverage.

After choosing the fault injection technique, designers need an effective methodology
to stimulate the implemented system and to verify its correctness for each fault injected.
According to Arlat et al. (1990), a fault injection methodology for a target system can be fully

characterized by the fault model adopted, the activation patterns used to stimulate the design

19

under test, the readouts values collected during the experiment, and the derived measures.
Regarding emulation-based fault injection in FPGA-based systems, which is the focus of this
work, the most common fault model adopted are single-bit or multi-bit SEUs within the
configuration memory, due to the sensitivity of SRAM-based devices to such faults. Although
emulation-based techniques do not provide a measurement of the SEU bit cross sections or a
broadly sample from all the failure modes, it offers important advantages compared to actual
ground radiation testing, such as faster fault injection times, more controllability, and lower
costs. Moreover, appropriate configuration fault injection has been validated compared to
ground radiation (Lima et al., 2001). Therefore, the emulation of SEEs is a complementary
approach to radiation testing, which allows the exploration of alternatives to improve the
resilience of computing systems in the early project stages.

As defined in Quinn & Wirthlin (2015), the basic features that a fault emulation
system for SRAM-based FPGASs needs are the ability to access the memory where the fault
will be injected, the ability to stimulate and execute the circuit under test, the ability to
determine output errors, and the ability to clear errors. Figure 2.3 illustrates a basic algorithm

for the fault emulation process.

Figure 2.3 — Basic fault emulation algorithm.

»{ Inject Fault

Y

Execute Test Vectors

Output
Error
Detected?

Record Location

Remove Fault |«

Y

Resynch Design

Source: Quinn & Wirthlin (2015).

20

Configuration memory faults in FPGAs are emulated by flipping the configuration
bits. FPGA manufacturers offer many options to access the configuration memory. The access
can be performed by a software application or tool through the serial interface provided by the
Joint Test Action Group (JTAG) boundary scan port, or through an external parallel port, such
as the SelectMAP available in FPGAs from Xilinx. Since the Virtex-11, Xilinx devices also
provide the Internal Configuration Access Port, which allows accessing the configuration
memory from within the device. The performance of the configuration method chosen
impacts the feasibility of high fault model coverage, especially for complex systems with
millions of configuration bits. Hence, the use of a dedicated hardware to interact with the
ICAP port becomes the most common fault injection method, since it allows faster fault
injection/removal times.

After each fault injected, the circuit under test must be stimulated with test vectors to
verify the effects of each injected fault in its outputs. Stimulating a given system with the
entire possible test vectors may be not feasible, which depends on the wide of its input.
Therefore, in the most cases, a subset is chosen. For input-sensitive faults, the subset size and
the sampling method affect the fault coverage and the statistic confidence of the results.
Although exists different stimulus methods to exercise all areas of the circuit, the most
common method uses quality pseudo-random number generators (PRNGs) to generate a
representative set of input vectors, which can be made by a software application running in a
host computer or by a dedicated hardware inside the FPGA. Moreover, if runtime generation
decreases the fault injection system performance, the input vectors can be generated off-line
and accessed from a memory.

To evaluate the effects of each injected fault, the circuit under test output is compared
with the output of a fault-free version of the same system (golden system). Depending on the
system complexity and the performance expected, the golden system and the outputs
comparison can be made in hardware or simulated in software. Like the test vectors, the
golden outputs also can be generated off-line and stored in a memory.

2.3 Related Works

Several works used the fault injection methodology to verify the robustness of fault
mitigation solutions for SRAM-based FPGAs, as demonstrated in Sterpone & Violante
(2005), wherein the TMR architecture robustness is analyzed. In general, the most efficient

techniques combine prevention methods, such as TMR, with correction methods, such as

21

scrubbing. This combination is evaluated, for example, in Lima et al. (2001), wherein the
scrubbing is used to eliminate the accumulation of faults that may deteriorate the efficiency of
the TMR technique.

To evaluate SEU mitigation schemes, the FLIPPER fault injection platform presented
in Alderighi et al. (2007) uses two FPGAs boards. The circuit under test (CUT) is
implemented in one board, while another board performs the fault injection and applies the
input vectors generated by a simulation software, which also generates the golden outputs. A
software application in a host computer allows configuring how the tests should be
performed. Regarding the performance, this platform allows injecting each fault in SOps.

The fault injection platform proposed in Sterphone & Violante (2007) uses a single
FPGA board by using the ICAP port available in devices from Xilinx, which allows faster
fault injection times. This platform uses a hardwired Power PC microprocessor to perform the
fault injection through the ICAP. The results are received by a host computer through a serial
cable (RS-232), which ultimately impact the system performance. It offers an average fault
injection time of 4.6ms for the entire execution and fault classification, although performing a
bit flip on the configuration memory requires around 10us, which is one of the main
advantages of using a high speed interface for fault injection. The main drawback, however, is
the use of a hardwired Power PC processor that is not available in any FPGA, especially in
the newer ones, which limits its use.

The fault injection platform presented in Nazar & Carro (2012) also uses a single
FPGA and the ICAP to emulate SEUs within the configuration memory, but it is designed
with the most common elements that comprises a FPGA (LUTSs, flip-flops, multiplexers and
memory blocks.). This approach enables its implementation in any FPGA that has the ICAP.
Regarding the performance, this platform offers fault injection and fault removal times less
than 10us. The performance will be defined, in general, by the CUT performance on the
stimulating process, or by the platform communication with the host computer, used for
receive the results obtained from the CUT for each injected fault. Since the communication is
made through a serial cable (RS-232), it is likely that in most cases this will be the
performance bottleneck of this platform.

The fault injection methodology presented in Di Carlo et al. (2014) uses partial
reconfiguration together with the Xilinx Essential Bit technology. This technology allows
identifying and extracting the essential bits of the bitstream configuration, i.e., those bits
which are essential for the system functionality. This method greatly reduces the time needed

for a fault injection campaign, because many bits of the configuration memory that do not

22

have relation with the functionality of the system (which are the majority) are ignored. In
addition, this platform does not require knowledge about the addressing of the memory
configuration frames, because it isolates the system to be evaluated in a previously defined
reconfigurable partition through the Xilinx tools. This approach, however, requires the
reconfiguration of the entire partition for each fault injected. Therefore, although this platform
uses a high speed interface for reconfiguration (ICAP), the performance advantage is obtained
only for exhaustive fault injection campaigns.

The work presented in Tarrillo et al. (2014) evaluated the neutron cross-section of N-
modular redundancy (NMR) techniques for masking the effects of SEUs in FPGA-based
systems. The fault injection is performed through an 8-bit PicoBlaze controller that controls
the ICAP port of the Xilinx Virtex-5 FPGA. The controller takes the fault injection locations
from an external memory. These locations are previously defined by neutron radiation
experiments. As a special feature, it allows evaluate the effects of faults accumulation
(multiple-independent upsets), with the system injecting faults until a functional error
manifests.

A platform for rapid prototyping of complex wireless communication systems
(MIMO-BICM) is presented in Gimmler-Dummont et al. (2012). The proposed platform is
composed by a software application running on a host computer and an accelerator on a
FPGA board. For this type of application, a high bandwidth between the software application
and the board is required. So, the connection from the host simulation chain to the FPGA is
done by an Ethernet link. The network connection on the FPGA is handled by the Xilinx
MicroBlaze soft core microcontroller. This platform, however, does not target hardware fault

injection.

23

3 PROPOSED FAULT INJECTION PLATFORM

The fault injection platform proposed in this work emulates SEUs, more specifically
single-bit upsets (SBUs) within the configuration memory of SRAM-based FPGAs. Each
fault injected remains active during the entire CUT execution time. Despite the restricted fault
model, the platform can be easily modified to allow the emulation of MBUs and to
inject/remove faults during the CUT execution. The platform structure consists of a hardware
component on an FPGA device and a software application running on a host computer. The
data communication between them is made through the PCle bus. An Ethernet link was used
in a previous version of the platform, but it was discontinued due to a lower performance.
Figure 3.1 shows the platform topology and the communication between its main

components. In the following sections, each component will be described with more details.

Figure 3.1 — Overall proposed fault injection platform.

FPGA
PC Host
/ oS \ PCle I/0O Ctrl

PCle Core

PCle Core
Driver

System Ctrl

Software

Application SEU Injector

ICAP

Source: the author.

3.1 PCle I/O Controller

The PCle 1/0O controller is responsible for the communication between the hardware

on the FPGA and the software application that runs on the host computer. The communication

24

solution adopted in this work was the Xillybus system developed by Eli Billauer (2014),
which is a flexible and easy to implement PCle solution for Xilinx or Altera FPGAsS,
composed of an IP core and a host driver. This system is designed to never induce excessive
latency, attempting to deliver data as soon as possible, in either direction. It provides several
end-to-end stream pipes for application data transport, offering a maximal data rate (full-
duplex) between 200MB/s and 800MB/s, depending on the number of PCle lanes available in
the FPGA board and the host computer.

The communication between the Xillybus core and the user logic is made through
standard FIFO memories, by checking the FIFOs empty and full signals in a round-robin
manner. The data transfers initiates when the FIFO is ready for it, depending on the stream's
direction. The interface between the Xillybus core and the PCle bus, as well as the FIFO
memories, can be generated with the Xilinx Core Generator or the Altera Mega Wizard. The
host computer driver generates device files which behave like named pipes between TCP/IP
streams. Through 1/O operations on these files, the software application can communicate
with the FPGA with one or more streams, synchronously or asynchronously. Also at driver
load, Direct Memory Access (DMA) buffers are allocated in the host’s memory, and their
address informed to the FPGA. A handshake mechanism between the FPGA and the host
driver passes data using these buffers to make up the application preemption periods with 1/0
buffering, creating the illusion of a continuous data stream.

An online tool (the IP Core Factory) is available on the system website for immediate
configuration and download of custom-tailored Xillybus IP cores per specification, such as
the number of streams, their direction, their data width, their name, their expected bandwidth,
and other parameters. The driver binary supports any Xillybus IP core configuration, i. e., the
streams and their attributes are auto-detected by the driver as it's loaded into the host's
operating system, and device files are created accordingly. In the FPGA to host direction, if a
stream is configured as asynchronous, the Xillybus IP core will fills the host’s DMA buffers
whenever possible, i.e., when the associated device file in the host is open, data is available in
the FIFO and there is free space in the DMA buffers. If a stream is configured as
synchronous, however, the Xillybus core will not fetch data from the FIFO unless the
software application request that data from the file descriptor. The host to FPGA direction
will be discussed with more details in the software application section.

For the proposed platform, the Xillybus core was configured with a synchronous 8-bit
stream and an asynchronous 32-bit stream. The 8-bit stream allows the application software to

send commands to the system controller and also for this controller to return the current state

25

of the system. A 32-bit stream allows the host computer to send the input vectors to the CUT
I/0 controller and also for this controller to return the results generated by the CUT. Figure
3.2 shows the PCle I/O controller structure for a Xilinx FPGA board, using the IP Cores
available in the Core Generator tool (Xilinx UG341, 2011; Xilinx UG175, 2012).

Figure 3.2 — Communication interface with the host computer.

(PCle Core

~

s, PCIeVO Ctrl \

/ N\ / N] Command
- FIFO 8 >
Xilinx I
) Status
o) | Endpoint Xillybus H_@:
seed’| Block Plus for “ IP Core : Input Vectors

1
: FIFO 32

PCI Express —>
(CoreGen) ! Results
] FIFO 32 |¢—F—
N S c— Y,

Source: the author.

3.2 System Controller

The System controller is responsible for starting a fault injection campaign by
receiving a start command from the software application, as well as for requesting the fault
injection/removal to the fault injector (SEU Injector) and controlling the CUT 1/O controller
through the signals start, done, timeout and reset. It also sends the fault injection campaign

status to the software application. Figure 3.3 shows the system controller interface.

Figure 3.3 — System Controller interface.

System Controller

—| clock command_fifo_rd_en [—>
From Top Level {
—>| reset status_fifo_wr_en |— (To PCle I/O Ctrl
8
—»| status_fifo_full status_fifo_data |
From PCle I/O Ctrly{ —»| command_fifo_empty reset —
8 To CUT I/O Ctrl
——»| command_fifo_data start _>} 0 '
—>| done
From CUT 1/O Ctrl {
—»| timeout

Source: the author.

26

The system controller algorithm to perform a fault injection campaign is illustrated in
Figure 3.4. After receiving the start command from the software application, the system
controller requests a fault injection and remains in wait state until the SEU injector returns the
fault injection confirmation. Next, it starts the CUT 1/O controller and remains in wait state
until the CUT 1/O controller report that the execution already finished or a time out condition
occurs. Then, it requests the fault removal to restore the correct state of the configuration
memory, followed by a reset in the CUT I/O controller. This cycle is repeated until the total

amount of faults to be injected is not reached, which is signaled by the SEU injector.

Figure 3.4 — System Controller operation flowchart.

\ 4

Send Status: Idle < Send Status: Done

n
»

A 4
Reset CUT 1/O Ctrl

No

All Faults

? .
Sl Injectded?

Fault Removed?

Yes

Start Fault Injection |« Send Status: Running

\ 4

Start Fault Removal

A

i 2
sy Send Status: Timeout

Yes Yes
;4 1/0 Ctrl CUT I/O Ctrl
Start CUT 1/0 Ctrl —> Tio uT o

Source: the author.

During the fault injection campaign process, the system controller sends some

important information to the software application. The system status can be idle (the system is

27

ready to start a fault injection campaign), done (the fault injection campaign already finished),
running (the fault injection campaign continues) or timeout (the CUT data flow stopped). The
time out condition is especially important, since the software application needs to be aware
that faults affecting clock, reset or control signals may crash the CUT and stop its data flow
with the CUT 1/O controller. The treatment for this situation will be discussed with more
details in the next sections.

The SEU injector is adapted from Nazar & Carro (2012). The Xilinx’s Virtex-5 FPGA
used in this work has the ICAP, which allows manipulating the configuration memory bits. In
this device, the configuration memory is divided into frames whose bits can be accessed
through a known addressing scheme (Xilinx UG191, 2012). The FPGA structure is divided
into rows, numbered from 0 (up to 9) in the top and bottom halves, starting from the center.
Each row is divided into the same number of columns, where a column corresponds to a basic
block in the array (CLB, DSP, block RAM, 10B, etc.). Each column is configured by a certain
number of frames, which depends on the block type. A frame can be thought as a vertical
stack of 1312 bits (41 words of 32 bits) that spans the whole height of a row. Figure 3.5
illustrates the structure of a row in the Virtex-5 FPGA and its configuration frames.

Each configuration frame has a unique 32-bit address divided into five segments, as
illustrated in Figure 3.6. The block type segment divides the configuration frames depending
on their function and how they are accessed. In this work, all the configuration frames
accessed are for interconnect and block configuration (CLB, DSP, I0B, block RAM
parameters, etc.), which means the block type segment is constant. The top/bottom segment
defines if the row address is related to the top half or to the bottom half of the FPGA. The
major address segment defines which column of the selected row will be accessed. Finally,
the minor address segment defines which frame will be accessed in the selected column.

Table 3.1 shows the number of interconnect and block configuration frames per column type.

Table 3.1 — Virtex-5 interconnect and block configuration frames per column type.

Block Number of Frames
CLB 36
DSP 28
Block RAM 30
I0OB 54
Clock Column 4

Source: Virtex-5 FPGA Configuration User Guide (2012).

28

Figure 3.5 — Virtex-5 FPGA row structure and its configuration frames.

CLB Column BRAM Column 10B Column
p— 7 ~—
4 CLE I I I | | |4 S
<
o
P X
FrarEBlts S
& |13n S
m
g 640 configuration bits
) . for 10 CLBs above
= the HCLK row
L o | 1280 (I | |
Row<...= . B ~ HCLKRow HH e
f (e 16 unused HCLK [|

configuration bits

656 |
655 4 miscellaneous HCLK f—
652 configuration bits

651
12 ECC bits |
640

Word 21

0

639 |

1|eee

Eal

-

640 configuration bits
= for 10 CLBs below /
the HCLK row]

Word 1
~y

E
A

Source: adapted from Virtex-5 FPGA Configuration User Guide (2012).

Figure 3.6 — Segmentation of the configuration frame address.

Top/
Block Bottom Row Major Minor
Unused Type Row Address Address Address
- & & " - e A
31 24 1 23 21 20| 19 15| 14 7 6 0

Source: Virtex-5 FPGA Configuration User Guide (2012).

The configuration frames address scheme allows a controlled access to each
configuration bit related to any region of the device. With this possibility, an Area Under Test
(AUT) is defined, where the CUT should be positioned with placement constraints for the
implementation tool. Through partial reconfiguration with the ICAP, the SEU injector can flip
only the bits responsible for the configuration of the AUT, which prevents the fault injection
in other components of the system that are not related with the CUT. Through the SEU

29

Injector parameters, the user can define the FPGA area where the faults will be injected and
which configuration bits will be flipped (random or exhaustive). Depending on the method
chosen, the frame address and the frame bit will be generated through a Linear Feedback Shift
Register (LFSR), operating as a PRNG, or through a counter, always respecting the AUT
limits and the frame address formation. Figure 3.7 shows the SEU injector interface.

Figure 3.7 — SEU Injector interface.

SEU Injector

Parameters)
—»| clock el injected [—>
EXHAUSTIVE 32
— VS
From System Ctrl e FAULTS_TO_INJECT | frame_address i To System Ctrl

ROW

—» fix

1 a2
1]
1]
1]
! i
internal signals ini 1 TOP_BOTTOM ; internal signals
Y —>| inject ! i frame_bit -~ 9
1
! i last_fault |—>
i i
]

Source: the author.

When a fault injection is requested, the SEU injector generates the frame address and
the bit to flip according the user parameters. Next, a read operation is performed with the
ICAP using the frame address, and the incoming words are saved in a memory (frame
memory). Then, the frame bit is flipped, followed by a write operation with the ICAP. Finally,
the injected flag is raised. If the bit flipped is the last one (based on the parameters), the
last_fault flag is raised too. When the system controller requests the fault removal, the same
frame bit in the frame memory is flipped again to restore the original value, followed by a
write operation with the ICAP using the frame address generated in the last fault injection
request. Then, the injected flag is lowered. Figure 3.8 shows the basic SEU injector algorithm.

It is important to note that each frame has 16 unused configuration bits which are
skipped when the frame bit is chosen, leaving 1296 bits to flip per frame. Moreover, as
described in Nazar & Carro (2012), flipping some very specific bit positions may lead to
multiple bit errors in other frames. In the Virtex-5 device, this situation happens with some
LUTSs that can work as shift registers. If the configuration bit that determines this behavior is
flipped, multiple bit errors will occur on the configuration bits associated with that LUT, since
those bits will be shifted, as shown in Figure 3.9. Therefore, when a critical bit is identified,

not only the frame of the flipped bit will be read, but also the following five frames (worst

30

case for the Virtex-5). When the fault removal is requested, all those frames will be written
back to ensure that the next iterations of the SEU injector operation will not be corrupted.

Figure 3.8 — SEU Injector operation flowchart.

&
<

Frame Write
(Memory To ICAP)

A

y

Yes . .
Fault Injection? Fault Removal? > Flip Frame Bit
(Memory)
Next Frame Address R Next Frame Bit > Frame Read
(LFSR) iy (LFSR) (ICAP To Memory)
y N
Last Frame Bit? Next Frame Address R Next Frame Bit
(1312) (Counter) " (Counter)

Source: the author.

Figure 3.9 — A single bit flip may transform a LUT into a shift register.

[=lele]=]~]=]~]<]

[el=]=]e]=]~]o]]

Source: Nazar & Carro (2012).

31

3.3 CUT I/O Controller

The CUT 1/0 controller is responsible for starting the CUT execution after the system
controller request. It consumes the input vectors received from the software and makes them
available for the CUT, as well as sends the CUT output to the software application. The logic
needed to accomplish this task depends of the communication system that is being evaluated,
as it converts the raw stream from the PCle 1/O controller (32 bits) to the specific width
expected by the CUT input, as well as converts the specific width of the CUT output to the
width expected by the PCle I/O controller. The user of the platform can also determine the
information that should be transmitted to the software, through the inclusion of additional
hardware in this module. Although the control logic depends on the CUT, the following
behavior must be taken as a model for proper system operation.

After the CUT execution with all the received stimuli vectors and after sending all the
results, the CUT 1/O controller needs to inform the system controller that the CUT execution
ended normally, by raising the flag done. If this task does not end after a certain time (defined
by the user), however, is very likely that a clock, reset, or control signal of the CUT was
affected by the configuration fault, interrupting the stimuli process. In that case, the CUT 1/O
controller and the software application need a way to handle the problem related with the
amount of data that the application expects to send and receive, since it performs blocking 1/0
operations. The CUT 1/O controller handles this problem consuming all the stimuli vectors
received and completing with dummy data the amount of results that the CUT output should
have generated. After this process, the flag timeout is raised to inform the system controller

that a time out occurred. Figure 3.10 shows the CUT 1/O controller interface.

Figure 3.10 — CUT 1/O Controller interface.

CUT 1/O Controller

From Top Level —{ clock input_fifo_rd_en |—>

—>| reset output_fifo_wr_en |— To PCle I/O Ctrl
From System Ctrl {) 32

—»| start output_fifo data |-

—| output_fifo_full done [—>

.) } To System Ctrl
From PCle I/O Ctrl4 —| input_fifo_empty timeout
32
—~»| input_fifo_data

Source: the author.

32

3.4 Software Application

The software application communicates with the hardware in the FPGA through the
PCle interface in order to perform some basic functions:

» Control the hardware component through sending commands (start), and receiving

the system state (idle, running, done, and timeout).

» Generate test vectors and send them for the CUT.

» Receive the results from the CUT and calculate any relevant metric for data
communication systems that allows evaluate the impact of the injected faults on
the system reliability.

The software application defines a thread for each data stream (device files), to
enhance the throughput of the host computer. Since the communication is based upon 1/0
system calls with a certain overhead, several data are grouped to be sent or received with a
single system call. Figure 3.11 shows the proposed strategy.

To establish a communication with a continuous data flow, asynchronous streams are
used to send the test vectors and to receive the results. A call to the function writing test
vectors to the stream will return immediately if the data can be stored entirely in the DMA
buffers. Then, the data can be transmitted to the FPGA at the rate requested by the CUT 1/O
controller, with no involvement of the software application. A call to the function reading the
results from the stream will return immediately if the DMA buffers have the amount of data
requested.

Synchronous streams are used to send commands and receive the system’s status. A
call to the function writing a command to the stream will not return until the data has arrived
to the command FIFO in the PCle 1/O controller. A call to the function reading the system
status from the stream will not return until the PCle 1/O controller fetch data from the status
FIFO in response to the request. The thread responsible for receiving the system’s status after
each fault injected communicates with the other threads through flags.

After writing the amount of test vectors defined for each fault injected and reading the
amount of CUT outputs expected, each thread checks the system status flags (running and
done) to proceed to the next iteration or to end the execution. Moreover, the thread that
receives the results needs to verify if the data received in the last iteration is related to a
normal CUT operation or to a time out condition, by checking another flag (timeout). If a time

out occurred, the results received are dummy data generated by the CUT 1/O controller.

33

Therefore, any metric calculated during the previous iteration should be discarded and a time

out failure registered.

Figure 3.11 — Software application operation.

PC Host

s
/ Application \

T

4 Thread A
While(..){

I
|
I
: WriteData(...);
: CheckFlags(...);

! Thread B

I

1

: While(...){

| ReadStatus(...);
: SetFlags(...);
|

' Thread C

While(...){
ReadData(...);

I
I

I

I

|

I CheckFlags(...);
|

L

\

GenerateTestVectors(...);

e e T e — -

WriteCommand(...)

MetricCalculation(...);

L

FPGA

Input Vectors Stream

Source: the author.

CUT /O Ctrl

The threads are created using the OpenMP API, which supports multi-platform shared-

memory parallel programming in C/C++. The three threads are defined using the sections

directive, which is a non-iterative work-sharing construct that allows the execution of code

sections by a team of threads. The communication (flags) between the threads (sections) is

performed through shared variables. The synchronization is made using the flush directive,

which allows a write of a variable on one thread to be guaranteed visible and valid on another

thread. This operation is necessary because the OpenMP threads can maintain a temporary

view of shared memory which is not consistent with that of other threads. The flush directive

identifies a synchronization point at which the implementation must provide a consistent view

of memory. Thread-visible variables are written back to memory at this point.

34

4 EXPERIMENTAL RESULTS

In this section, we present the results obtained with the proposed fault injection
platform. The hardware module was described in VHDL and synthesized for the Xilinx’s
Virtex-5 FPGA, with the evaluation platform XUPV5-LX110T (Xilinx UG347, 2011). The
software application was developed in C++ (305 lines of code), and the communication with
the FPGA is made through the PCle 1.0 x1 interface provided by the development platform.
In the following subsections, we describe the resources occupied by the hardware module, the
platform performance and its validation with some experiments done on a Reed-Solomon
decoder, which is a family of channel codes suitable for space applications (CCSDS, 2011).
The platform and the Reed-Solomon decoder are available in https://goo.gl/iNHdHG.

4.1 Resource Occupation and Performance

Table 4.1 shows the amount of resources used by the hardware components of the
platform, as well as the proportional use of the available resources in the device. Note that the
CUT 1/O controller is specific for each different CUT to be used by the platform. The results
for this component include only the resources needed to interact with the CUT used as a case
study in this work, more specifically the first implementation, which will be described in the
following section. Besides the CUT 1/O controller, the PCle 1/O controller is the component
that consumes the most part of the resources required, due to the FIFO memories used for the
I/0O interface and the IP Cores that compose this component. The low device occupation by
the system controller and the PCle I/O controller is an important result, since it saves

resources for the CUT.

Table 4.1 — Platform resource usage and device occupation (Virtex-5 XC5VLX110T).

Platform Required amount Device occupation

Component = =T"FF TBRAM | LUT | FF | BRAM
PCle I/OCtrl | 2509 | 3386 | 10 | 3.63% | 4.9% | 6.75%

System Citrl 514 | 164 1 0.74% | 0.24% | 0.68%
CUT 1/O Ctrl 417 | 266 1 0.60% | 0.39% | 0.68%
Total 3440 | 3816 12 4.97% | 5.53% | 8.11%

Source: the author.

35

In this work, the system controller, that includes the SEU injector and the ICAP
interface, runs at 100MHz. This operating speed allows a strict fault injection and correction
time under 10us, as described in Nazar & Carro (2012). That means, for example, that a strict
fault injection and correction campaign that covers the entire FPGA device used in this work,
which has around 25 million configuration bits, can be done in approximately 250 seconds.
Therefore, the time that the platform needs to flip a configuration bit and correcting it is not a
concern. The main concern regarding the performance is about the data throughput between
the host computer and the FPGA. A complex communication system may have millions of
configuration bits, making an exhaustive fault injection campaign impracticable if the data
throughput is not high enough. The Xillybus system for the PCle 1.0 x1 interface operates
with a bus clock of 62.5MHz and a data processing path of 32 bits (PCle’s natural word
length), which allows a theoretic data transfer rate of 250MB/s in both directions. In our
experiments, the data throughput achieved without any data processing overhead, was around
200MBY/s. In this scenario, the communication link will not be the performance bottleneck
until the data processing capabilities of the software application and the CUT exceed
200MBY/s. The CUT throughput depends on its operating speed and design, while the software
application throughput depends on the host computer capability, as well as how the stimuli
vectors are generated and which metric will be calculated using the CUT outputs received.
Figure 4.1 shows how the fault injection campaign time can be estimated.

Figure 4.1 — Fault injection campaign time estimation.

Number of faults Number of CUT stimuli
bits for each fault injected

(Mb)

Fault injection and
removal time (s)

to be injected

N,
Fault injection Te: = Ne | Teir. + s
[campaign time (s) } Jie ! l o min(Rcut,Rapp,Rcom)

CUT throughput
(Mb/s)

Communication link
throughput (Mb/s)

Host application
throughput (Mb/s)

Source: the author.

36

4.2 Platform Validation: Reed-Solomon Decoder

In order to validate the platform proposed in this work, we have performed some
experiments with a Reed-Solomon decoder. Reed-Solomon codes are cyclic linear block
codes that are computed over m-bit words. An RS(N, K) code uses blocks of N words, each
with m bits, K of which are data words. The remaining N-K words are redundant, and allow
correcting up to (N-K)/2 wrong words. A detailed description of Reed-Solomon codes and
examples can be found at Wicker & Bhargava (1994). As is typical for most channel codes,
the Reed-Solomon decoder is substantially more complex than the encoder. Therefore, this
work focuses on studying the decoder's reliability.

For the experiments, we used two different implementations of a same Reed-Solomon
decoder, more precisely an RS(255, 239) code with 8-bit words, in order to verify the design
influence on the system reliability. For both implementations, the placement of the decoder in
the AUT was made separating its main modules, which allows evaluate how each module
impacts the system reliability when their configuration bits are flipped. Initially, the encoder
was intended to be simulated in software, but due to a poor performance that becomes the
bottleneck of the systems performance (throughput around 5MB/s), it was moved to the
FPGA, more specifically inside the CUT 1/O controller, but kept outside of the AUT.

The software application was programmed to generate 40000 blocks (approximately
10 MB) for each fault injected through a Xorshift+ PRNG (Vigna, 2014), and sends them to
the encoder. Next, the encoder sends the codified words to the decoder, which sends its output
to the software application through the PCle 1/O controller. Then, the software verifies if the
words received are the same words that were transmitted and calculates the BER and FER of
the system for the defined amount of input vectors. These metrics are commonly used to
verify the communication quality of communication systems. The synchronization between
the encoder output and the decoder input was made through a FIFO memory. Figure 4.2
illustrates the basic structure for the experiments.

In this work, an exhaustive fault injection campaign was performed, i.e., all the
configuration bits of the AUT were flipped. The evaluation of the effects of configuration bit
flips was made for two cases: without the insertion of errors between the encoder and the
decoder (i.e., a perfect channel), and with the insertion of errors inside of the code capacity
(i.e., a noisy channel). The number of incorrect words considered for the second case was
defined by a PRNG.

37

Figure 4.2 — Reed-Solomon decoder experiment for each fault injected.

/ Host Application \

. v

BER/FER
Calculation

E H
1 1
E H
1 1
1 H
3 J
\0

4.2.1 First Implementation

FPGA

........................ N

CUT 1/0 Ctrl \\

Source: the author.

The first Reed-Solomon decoder implementation evaluated is based on the traditional

decoder architecture described in Clark (2002), divided into three pipeline stages. It consists

in a Reed-Solomon encoder/decoder pair that is configurable in terms of N, K and m, within

the limits specified for these codes (N <2™ - 1). Assuming an RS(N, K) code, we first receive

the data, K symbols, followed by the N-K redundant words, and start the syndromes

calculation. After that, all the remaining decoder stages are processed, including error

correction. Then, the corrected symbols are flushed out. One symbol is received and/or

flushed out per clock cycle. Figure 4.3 shows the three pipeline stages and their main

modules, while Figure 4.4 shows their placement in the AUT.

Figure 4.3 — Reed-Solomon decoder structure (first implementation).

first_stage: data_in + syndromes calculation

second_stage: all reed-solomon procedures

third_stage: flush_out data

BUF_CORRECT

DIN

SYND syndromes

(syndromes)
—

| J |locator_roots
sb_has_error: CHIEN

v_minus_1

locator.

error_val

DIN has_error

sb_syndromes-

BERL

(berlekamp)

zZm=z OO0

locator_roots

locator

_] key

sh_syndromes(partial) —,)

locator

mem_ready

DOUT—l

™~
Sy

j/
ready:

)

FORNEY

KEY

synd_ready

Source: the author.

38

Figure 4.4 — Placement of the Reed-Solomon decoder modules (first implementation).

SYND SB_MEM FORNEY BUF BERLEKAMP CHIEN KEY
i K £ 3l T

| - 4 i

| ¥ EE FEr b
i 4 LI i Fv FF

T £

|| i

! 3

-
v rnor v
=]l
-
o e e
- - -
ITI T
-
i 5

~ e
-
e

——— s
-

i : 1
4] EE W E
] ELre

I |
{ 1l !
pblock [ThStbar PBIPCK Angt THIEN

Source: the author.

Regarding the amount of basic resources needed, the decoder uses 760 registers (flip-
flops), 2535 LUTSs, and one block RAM. Moreover, this decoder implementation allows an
operating clock speed of up to 125MHz, which means we have a data throughput of up to
125MB/s. The PCle bus allows a data throughput of 200MB/s, as mentioned in the previous
section. For this implementation, the AUT consist of 1897600 configuration bits. With these
numbers, each fault injection campaign took approximately two days, with the CUT
performance being the performance bottleneck. Table 4.2 and Table 4.3 show the BER results
for a perfect channel and for a noisy channel, respectively.

With a perfect channel condition, as expected, the majority of the configuration bits do
not affect the system operation. Regarding the critical bits, a small part introduces a BER
around 0.5, meaning that the output has become random noise, decoupled from the input.
Another part causes a time out condition by affecting the clock, the reset, and control signals.
The majority of the critical bits introduce a BER that varies with the component affected and
the data blocks received. A change on a LUT configuration or the loss of a signal connection
might explain this behavior. The Buf_Correct was the most critical component in the perfect
channel scenario. The Key was the only component not affected, as it only operates when
faults are identified in the received vector.

With a noisy channel, the number of critical bits increases. Moreover, almost all of
those new critical bits introduce a variable BER. As can be seen, the Berlekamp was the most
affected component, becoming the most critical. An interesting result is related with the Key
module. In this implementation, this module is the only one to not have a signal to control the
sequence of operations through the system modules. Therefore, it was expected that a failure

in this module would not cause a time out.

39

Table 4.2 — Reed-Solomon decoder evaluation (first implementation/perfect channel).

Perfect Channel
Reed-Solomon Number of (rl?cI)EeRff:c(i) BER > 0 or Time Out (configuration failures)
Decoder Configuration
Component Bits % of failures
0, 0
% of total % of total BI(EnF; izeg_ 5 —— -
Synd 139968 99,1 0,9 2.07 33.23 64.7
Sb_Mem 139968 99.97 0.03 5.26 21.05 73.69
Forney 139968 99.44 0.56 3.58 43.28 53.14
Buf _Correct 132192 96.59 341 19.92 9.92 70.16
Berlekamp 409536 99.73 0.27 21.19 43.12 35.69
Chien 326592 99.61 0.39 243 51.57 46
Key 93312 100 0 0 0 0
Area Under Test 1897600 99.52 0.48 13.48 26.87 59.65

Source: the author.

Table 4.3 — Reed-Solomon decoder evaluation (first implementation/noisy channel).

Noisy Channel (errors inside of the code capacity)
Reed-Solomon Number of (E()E;Rff:ecc'z) BER > 0 or Time Out (configuration failures)
Decoder Configuration
Component Bits % of failures
0 0
% of total | % of total BI(En% izeg_ Sl [T -
Synd 139968 88.11 11.89 0.17 1.39 98.44
Sh_Mem 139968 96.39 3.61 0 0.08 99.92
Forney 139968 88.63 11.37 0.26 2.19 97.55
Buf _Correct 132192 92.43 7.57 10.98 8.04 80.98
Berlekamp 409536 85.61 14.39 0.06 0.14 99.8
Chien 326592 95.89 4.11 0.13 5.44 94.43
Key 93312 91.02 8.98 0 0 100
Area Under Test 1897600 93.12 6.88 1.1 211 96.79

Source: the author.

The detailed results presented in Table 4.2 and Table 4.3 does not show the BER
variation over the configuration bits flipped. For that purpose, the Figure 4.5 shows the BER
of the decoder associated with each bit flip when no channel error is introduced, while Figure
4.6 shows the FER for the same situation. Despite the large amount of configuration bits
makes it difficult to perform an accurate analysis of the graphical distribution of the BER
values for critical bits, it is evident that most of them are confined in specific regions. Except

for the Buf_Correct module, which has a big BER variation in the region were 0 < BER < 0.5,

40

the majority of the configuration bits introduces BER values in the regions were 0 < BER <
0.1, BER = 0.5, and BER =~ 1 (which denotes CUT time out). Regarding FER, most faults
either do not affect output or make every frame incorrect. Some faults, however, introduce

intermediate FER figures, which means these faults are most likely input-sensitive.

Figure 4.5 — BER due to injected faults (first implementation/perfect channel).

1 e e T
= ~ = B
a E % = E E} :
~ - | o
=~ 08 F E ! g E 2 o2]
2 @« 7 = = Q
5 ?—1
S 06 &2]
3]
()
=
(3]
£ 04
o
w
m
0.2
0

0 02 04 06 038 1 120 14 16 1.8 2
Configuration Bit (x10°)

Source: the author.

Figure 4.6 — FER due to injected faults (first implementation/perfect channel).
1

=
o0
BERLEKAMP

=
2 T
S +
S SRR . + R
S 0.6 it + S+ O
Q N iy
D eet + +
5 e e
2 04 ES5 - + + o o
byt 144 N B T HE
o + + +,
LU Tgﬂ‘ + +
L e - + +
02 fatst .
: 25 L
>;¢+ + 4§ i +)
7)) + ¥
0 #+ i ¥ t: 4

0 02 04 06 038 1 12 14 1.6 1.8 2
Configuration Bit (x10°)

Source: the author.

41

The BER variation with a noisy channel is similar to the perfect channel, as can be
seen in Figure 4.7. The most important difference is a bigger concentration of BER values in
the region were 0 < BER < 0.1 and the appearance of sensitive bits in the Key module. The
FER for the noisy channel can be seen in the Figure 4.8. The amount of faults that introduce
intermediate FER values is considerable bigger compared to the perfect channel, especially
when the Berlekamp module is affected, which indicates that the new critical bits introduced

by the noisy channel are mostly input-sensitive.

Figure 4.7 — BER due to injected faults (first implementation/noisy channel).
1

—
= 2 = .
a = % o) = 5 -~
08 F & = o = < = e "
—~ e m| o 7 o) e
S =7
I
5 0.6 = 1
2
o
£
= 04
L
o0
0.2

0 02 04 06 038 1 12 14 16 1.8 2
Configuration Bit (x10°)

Source: the author.

Figure 4.8 — FER due to injected faults (first implementation/noisy channel).

0.8

HHIHSH B M

0.6

0.4

FER (noisy channel)

0.2

0 02 04 06 038 1 12 14 16 1.8 2
Configuration Bit (x10°)

Source: the author.

42

4.2.2 Second Implementation

The second Reed-Solomon decoder implementation evaluated was taken from the
work presented by Grimm (2014), which uses state-of-art techniques to implement the
algorithms needed through optimized structures. Regarding the amount of basic resources
needed, the decoder uses 2891 registers (flip-flops) and 4894 LUTs. Moreover, this decoder
implementation allows an operating clock speed of up to 254 MHz, with one symbol being
received or flushed out per clock cycle. Despite being twice as fast as the previous Reed-
Solomon decoder evaluated, it does not use a pipelined architecture, which reduces the data
throughput. Using an RS(255,239) decoder with 8-bit words, the throughput achieved was
very similar to the previous implementation (around 125 MB/s). For this implementation, the
AUT consist of 1897600 configuration bits. Therefore, each fault injection campaign took
approximately the same time as the first implementation (around two days). Figure 4.9 shows

the internal architecture of the decoder and its main modules.

Figure 4.9 — Reed-Solomon decoder structure (second implementation).

_ Received Word riz)

Determination of Error Locator

_\ s(x) "| and Error Evaluator Polynomials
(z) Syndror.ne
,) Calculation o(x) Q(x)
Y
Cimsewshend | _Iit)
y A'gort N
ej]
Failure

Source: adapted from Grimm (2014).

The determination of the error locator and the error evaluator polynomials
(Berlekamp’s algorithm and Key equation) are performed together in one module, while the
Chien search and the Forney algorithm are performed together in another one. The result is
only three main modules, whose placement in the AUT was made as shown in Figure 4.10.
Table 4.4 and Table 4.5 show the BER results for a perfect channel and for a noisy channel,

respectively.

Figure 4.10 — Placement of the Reed-Solomon decoder modules (second implementation).

- w
L=y

BERLEKAMP/KEY

Source: the author.

CHIEN/FORNEY

il
HIE
i

Table 4.4 — Reed-Solomon decoder evaluation (second implementation/perfect channel).

Perfect Channel
Reed-Solomon Number of (r?oEEfrzc% BER > 0 or Time Out (configuration failures)
Decoder Configuration
Component Bits % of failures
% of total | % of total BER = 0.5)

(noise) Time Out Other

Synd 186624 97.07 2.93 2.49 3.90 93.61
Berlekamp/Key 775008 99.49 0.51 3.93 12.34 83.73
Chien/Forney 233280 96.83 3.17 3.08 0.40 96.52
Area Under Test 1897600 97.52 2.48 151 1.92 96.57

Source: the author.

Table 4.5 — Reed-Solomon decoder evaluation (second implementation/noisy channel).

Noisy Channel (errors inside of the code capacity)

Reed-Solomon Number of (EOES;C% BER > 0 or Time Out (configuration failures)
Decoder Configuration
Component Bits % of failures
% of total | % oftotal | BEr=g.5]

(noise) Time Out | Other

Synd 186624 90.91 9.09 0.77 1.27 97.96
Berlekamp/Key 775008 76.12 23.88 0.08 0.13 99.79
Chien/Forney 233280 89.57 10.43 0.97 1.36 97.67
Area Under Test 1897600 86.06 13.94 0.30 0.38 99.32

Source: the author.

43

With a perfect channel condition, as expected, the majority of the configuration bits do

not affect the system operation. Regarding the critical bits, the majority introduce a BER that

varies with the component affected and the data blocks received. The predominance of

intermediate BER values is considerable higher when compared with the previous

44

implementation, i.e., it is less sensible to faults that cause a noisy output or a time out
condition. This result may be related to the fact that this implementation does not use a
pipelined architecture.

With a noisy channel, the number of critical bits increases in a very similar way
compared with the previous implementation, i.e., almost all of those new critical bits
introduce a variable BER. As can be seen, the Berlekamp/Key was the most affected
component, with nearly 25% of critical bits. Therefore, the experiments suggest that the
Berlekamp’s algorithm, independent of the decoder design, is the most critical operation in
Reed-Solomon decoders.

For a more precise evaluation of the BER variation and the identification of input-
sensitive faults in the perfect channel scenario, Figure 4.11 and Figure 4.12 show the
graphical results for BER and FER, respectively. As can be seen, except for the
Berlekamp/Key module, the majority of the configuration bits introduce BER values in the
regions were 0 < BER < 0.5, with a bigger concentration in the region were 0 < BER < 0.1.
Regarding FER, most faults either do not affect output or make every frame incorrect. Except
for the Syndrome module, most of intermediate FER values are concentered in the region
were 0.5 < FER < 1, which means these faults lead to a system failure for the majority of the
input frames. Moreover, the Berlekamp/Key module has less input-sensitive critical bits than
the other modules.

Figure 4.11 — BER due to injected faults (second implementation/perfect channel).

l N — e

‘,—
a BERLEKAMP/KEY 5
= 08 [Z 5 =
-~ ~
£ = =
g =
S 0.6 F = i
5 5
q’ "
e R R +++e«.-|tm+ HHH 4+
L 04 + £, § +4++ + ++ +x++ ¥+
e iyt +uds Frrts)
o + *3 4+
L -f+# ++ ¥ HEFEE B EEE
m 3 + i i
; + rerpa
0.2 - + A
+ + + #
+
0 A 43 + +

0 0.2 04 0.6 0.8 1 12 14 1.6 1.8 2
Configuration Bit (x10°)

Source: the author.

45

Figure 4.12 — FER due to injected faults (second implementation/perfect channel).

FER (perfect channel)

0 02 04 06 038 1 12 14 16 1.8 2
Configuration Bit (x10°)

Source: the author.

The BER variation with a noisy channel is similar to the perfect channel, as can be
seen in Figure 4.13. The most important difference is a bigger concentration of BER values in
the region were 0 < BER < 0.1. The FER for the noisy channel can be seen in the Figure 4.14.
Like the previous implementation, the amount of faults that introduce intermediate FER
values with a noisy channel is considerable bigger compared to the perfect channel, especially
when the Berlekamp/Key module is affected, which indicates that the new critical bits are

mostly input-sensitive.

Figure 4.13 — BER due to injected faults (second implementation/noisy channel).

l R

z
a BERLEKAMP/KEY é
0.8 F = ' o .
5) =
- c
==}
< =
s 06 s .
3
? e sata dbl A SR Al R L bt et +<I#-~l+-;—++
S 04 |+ §t++ : y FH++ o4+t e F4 l
E : +¥ ++<’§+ 5 +-t t+ 4 +ﬁ¥+
L +E*h ¥ i ¥+ +t+ b+ + &+
@ PENPA b
0.2 F e s .
0

0 02 04 06 08 1 12 14 1.6 1.8 2
Configuration Bit (x10°)

Source: the author.

46

Figure 4.14 — FER due to injected faults (second implementation/noisy channel).
1

& & S
-) (o]

FER (noisy channel)

O
o

0.8 1 12 14 1.6 1.8 2
Configuration Bit (x10°)

Source: the author.

4.2.3 Critical Bits and Failure Modes Comparison

When evaluating the effects of configuration faults on different implementations of a
given system, its important compare no just the amount of critical bits, but also the failure
modes related. For that purpose, Figure 4.15 and Figure 4.16 show a comparison between the
implemented decoders regarding the critical bits and the failure modes (BER) for a perfect
channel and for a noisy channel, respectively.

The comparison endorses the observations made in the previous sections. As can be
seen, the second implementation is proportionally more sensitive to configuration faults that
cause a variable BER when the decoder do not need to correct the incoming data words.
However, the proportion of faults that cause time out or noisy output failures is bigger in the
first implementation. When the decoder needs correct words corrupted by a noisy channel,
I.e., more areas of the circuit are stimulated, the increasing of critical bits is proportional with
the amount of resources used by those implementations (the second implementation uses
approximately twice as much resources). Moreover, in both implementations, the vast

majority of the new critical bits introduce a variable BER.

Figure 4.15 — Critical bits and failure modes comparison (perfect channel).

Perfect Channel
50000
45000
" 40000
= 35000
o0 30000
t_a 25000
= 20000
‘= 15000
Y 10000
5000
0
First Implementation Second Implementation
(Pipelined) (Clark, 2002) (Grimm, 2014)
M BER = 0.5 (noise) 1238 711
m Time Out 2467 904
\ m Other 5476 45458

3.62 faults per LUT
2.78 faults per LUT+FF

Source: the author.

9.63 faults per LUT
6.05 faults per LUT+FF

Figure 4.16 — Critical bits and failure modes comparison (noisy channel).

Noisy Channel
300000
250000
(7]
)
3 200000
‘T 150000
-2
- 100000
o
50000
0
First Implementation Second Implementation
(Pipelined) (Clark, 2002) (Grimm, 2014)
M BER = 0.5 (noise) 1440 705
H Time Out 2756 902
m Other 126306 262903

51.48 faults per LUT
39.6 faults per LUT+FF

54.04 faults per LUT
33.97 faults per LUT+FF

47

Source: the author.

Regarding the comparison of input-sensitive faults through the FER, as can be seen in
Figure 4.17 and Figure 4.18, both implementations present a big increase of those faults with

a noisy channel. Moreover, input-sensitive faults become predominant in that scenario, with a

48

more notable change in the second implementation. In the perfect channel scenario, however,

the proportion of input-sensitive faults is bigger in the first implementation.

Figure 4.17 — Input-sensitive faults comparison (perfect channel).

Perfect Channel
50000
45000
40000
.ﬂ 35000
) 30000
‘T 25000
x 20000
O 15000
10000
0
First Implementation Second Implementation
(Pipelined) (Clark, 2002) (Grimm, 2014)
‘ m 0 < FER < 1 (input-sensitive) 3554 3227
‘WFER=1 5627 43846

1.4 input-sensitive faults per LUT 0.65 input-sensitive faults per LUT
1.07 input-sensitive faults per LUT+FF 0.41 input-sensitive faults per LUT+FF

Source: the author.

Figure 4.18 — Input-sensitive faults comparison (noisy channel).

Noisy Channel

300000
250000
£ 200000
o
‘® 150000
=
S 100000
50000
0 ; : -
First Implementation Second Implementation
(Pipelined) (Clark, 2002) (Grimm, 2014)
m 0 < FER < 1 (input-sensitive) 87863 186519
WmFER=1 42639 77991

23.95 input-sensitive faults per LUT+F

34.65 input-sensitive faults per LUT
26.66 input-sensitive faults per LUT+FF

38.11 input-sensitive faults per LUT]
F

Source: the author.

49

5 CONCLUSIONS

In this work we have presented a fault injection platform optimized for use with
FPGA-based communication systems. The main goal was to provide a tool that allows
evaluating the impact of the most critical FPGA faults (configuration memory faults) on
communication metrics, such as FER and BER. The tool allows the partitioning of tasks
between the FPGA device and a host computer, in order to maximize performance and
simplify modifying and extending the platform for different CUTs. The results obtained with
a Reed-Solomon decoder showed its ability to measure important metrics for this class of
applications.

The two different implementations of an RS(255, 239) code showed a considerable
increasing of critical bits when the decoder needs correct words corrupted by a noisy channel.
Moreover, the Berlekamp’s algorithm was the most critical operation for that scenario in both
implementations. Regarding the failure modes, the pipelined decoder based on the traditional
architecture presented by Clark (2002) presents more faults that cause a noisy output
(decoupled from the input) or a time out condition, while the Grimm’s (2014) state-of-art
implementation presents a bigger concentration of input-sensitive faults for a noisy channel
scenario. Part of those differences may be related to the fact that the previous implementation
does not use a pipelined architecture.

Main future works include extending the platform to support other FPGA families, as
well as using its fault injection results to guide the development of fault mitigation techniques

for communication systems.

50

REFERENCES

ARDEN, W.; BRILLOUET, M.; COGEZ, P.; GRAEF, M.; HUIZING, B.; MAHNKOPF, R.
More-than-Moore. International Roadmap Technology for Semiconductors (ITRS), 2010
[Online]. Available: http://www.itrs.net/ITRS%201999-
2014%20Mtgs,%20Presentations%20&%20Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf.

DIXIT, Anand; WOOD, Alan. The impact of new technology on soft error rates. In
Reliability Physics Symposium (IRPS), IEEE International, Monterey, CA, April 2011, pp.
5B.4.1-5B.4.7.

DODD, P. E.; SHANEYFELT, M. R.; SCHWANK, J. R.; FELIX, J. A. Current and future
challenges in radiation effects on CMOS electronics. Nuclear Science, IEEE Transactions
on, Vol. 57, No. 4, pp. 1747-1763, Aug 2010.

BAUMANN, Robert C. Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, pp. 305—
316, Sept. 2005.

JEDEC, Solid State Technology Association. Measurement and reporting of alpha particle
and terrestrial cosmic ray-induced soft errors in semiconductor devices. JEDEC Standard
JESD89A, Oct. 2006 [Online]. Available:
http://www.jedec.org/sites/default/files/docs/jesd89a.pdf.

MUNTEANU, D.; AUTRAN, J. L. Modeling and simulation of single-event effects in
digital devices and ICs. Nuclear Science, IEEE Transactions on, vol. 55, no. 4, pp. 1854—
1878, Aug 2008.

HAUCK, Scott; DEHONN, André. Reconfigurable computing: theory and practice off
FPGA-based computation. 1 ed., Morgan Kaufmann, US, 2008.

LESEA, A.; DRIMER, S.; FABULA, J.; CARMICHAEL, C.; ALFKE, P. The Rossetta
Experiment: Atmospheric soft error rate testing in differing technology FPGAs. IEEE
Trans. Device Mater. Rel., vol. 5, no. 3, pp. 317-328, Dec. 2005.

QUINN, Heather; ROUSSEL-DUPRE, Diane; CAFFREY, Mike; GRAHAM, Paul;
WIRTHLIN, Michael; MORGAN, Keith; SALAZAR, Aanthony; NELSON, Tony; HOWES,
Will; JOHNSON, Eric; JOHNSON, Jon; PRATT, Braian; ROLLINS, Nathan; KRONE, Jim.
The Cibola Flight Experiment. Reconfigurable Technology and Systems, ACM
Transactions on, vol. 8, no. 1, article 3, Feb. 2015.

SHANNON, C. E. A mathematical theory of communication. Bell System Technical
Journal, The, wvol. 27, no. 3, pp. 379-423, July 1948. DOI. 10.1002/j.1538-
7305.1948.tb01338.x.

BUELL, Duncan; EL-GHAZAWI, Tarek; GAJ, Kris; KINDRATENKO, Volodymyr. High-
performance reconfigurable computing. Computer, IEEE Computer Society, vol. 40, no. 3,
pp. 23-217, March 2007 [Online]. Available:
http://www.computer.org/csdl/mags/co/2007/03/r3023.pdf.

http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf
http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf
http://www.jedec.org/sites/default/files/docs/jesd89a.pdf
http://www.computer.org/csdl/mags/co/2007/03/r3023.pdf

o1

GOCKHALE, Maya B.; GRAHAM, Paul S. Reconfigurable computing: accelerating
computation with field-programmable gate arrays. 1 ed., Springer, Netherlands, 2005.

VIOLANTE, M.; STERPONE, L.; CESCHIA, M.; BORTOLATO, D.; BERNARDI, P.;
REORDA, M; S.; PACCAGNELLA, A. Simulation-based analysis of SEU effects in
SRAM-based FPGAs. IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 3354-3359, Dec. 2004.

WIRTHLIN, Michael. High-reliability FPGA-based systems: space, high-energy physics,
and beyond. IEEE Proceedings, vol. 103, no. 3, pp. 379-389, March 2015.

QUINN, Heather; MORGAN, Keith; GRAHAM, Paul; KRONE, Jim; CAFFREY, Michael,
LUNDGREEN, Kevin. Domain crossing errors: limitations on single device triple-
modular redundancy circuits in Xilinx FPGAs. Nuclear Science, IEEE Transactions on,
vol. 54, no. 6, pp. 2037-2043, Dec. 2007.

KASTENSMIDT, Fernanda Lima; REIS, Ricardo. Fault-Tolerance Techniques for SRAM-
Based FPGAs. Frontiers in Electronic Testing, 1 ed., vol. 32, Springer, US, 2006.

CLARK, J. A.; PRADHAN, D. K. Fault injection: a method for validating computer-
system dependability. Computer, IEEE Computer Society, vol. 28, no. 6, pp. 47-56, June
1995.

ZIADE, Haissam; AYOUBI, Rafic; VELAZCO, Raoul. A Survey on Fault Injection
Techniques. International Arab Journal of Information Technology, vol. 1, no. 6, pp. 171-
186, July 2004.

ARLAT, Jean; AGUERA, Martine; AMAT, Louis; CROUZET, Yves; FABRE, Jean-Charles;
LAPRIE, Jean-Claude; MARTINS, Eliane; POWELL, David. Fault injection for
dependability validation: a methodology and some applications. Software Engineering,
IEEE Transactions on, vol. 16, no. 2, pp. 166-182, Feb. 1990.

QUINN, Heather; WIRTHLIN, Michael. Validation techniques for fault emulation of
SRAM-based FPGAs. Nuclear Science, IEEE Transactions on, vol. 62, no. 4, pp. 1487—
1500, Aug. 2015.

STERPONE, L.; VIOLANTE, M. Analysis of the robustness of the TMR architecture in
SRAM-based FPGAs. Nuclear Science, IEEE Transactions on, vol. 52, no. 5, pp. 1545-
1549, Oct. 2005.

LIMA, F.; CARMICHAEL, C.; FABULA, J.; PADOVANI, R.; REIS, R. A fault injection
analysis of virtex FPGA TMR methodology. In Proc. IEEE Eur. Conf. Radiation and Its
Effect on Component and Systems, 2001, pp. 275-282.

ALDERIGHI, M.; CASINI, F.; D’ANGELO, S.; MANCINI, M.; PASTORE, S.; SECHI, G.
R. Evaluation of Single-Event upset mitigation schemes for SRAM based FPGASs using
the FLIPPER fault injection platform. In Proc. 2007 Int. Symp. Defect and Fault Tolerance
in VLSI Systems, Rome, Italy, Sept. 2007, pp. 105-113.

52

STERPONE, L.; VIOLANTE, M. A new partial reconfiguration-based fault injection
system to evaluate SEU effects in SRAM-based FPGAs. Nuclear Science, IEEE
Transactions on, vol. 54, pp. 965-970, Aug 2007.

NAZAR, G.; CARRO, L. Fast single-FPGA fault injection platform. In Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2012 IEEE International Symposium
on, pp. 152-157, Oct 2012.

DI CARLO, Stefano; PRINETTO, Paolo; ROLFO, Daniele; TROTTA, Pascal. A fault
injection methodology and infrastructure for fast Single-Event upsets emulation on
xilinx SRAM-based FPGAs. In Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2014 IEEE International Symposium on, pp. 159-164, Oct 2014.

TARRILLO, Jimmy; KASTENSMIDT, Fernanda Lima; RECH, Paolo; FROST, Christopher;
VALDERRAMA, Carlos. Neutron cross-section of n-modular redundancy technique in
SRAM-based FPGAs. Nuclear Science, IEEE Transactions on, vol. 61, no. 4, pp. 1558-
1566, Aug. 2014.

GIMMLER-DUMONT, C.; SCHLAFER, P.; WEHN, N. FPGA-based rapid prototyping
platform for MIMO-BICM design space exploration. In Reconfigurable Computing and
FPGAs (ReConFig), 2012 IEEE International Conference on, pp. 1-7, Dec. 2012.

CCSDS. TM synchronization and channel coding. Recommendation For Space Data
System Standard, Aug. 2011 [Online]. Available:
http://public.ccsds.org/publications/archive/131x0b2ecl.pdf

CARMICHAEL, C.; CAFFREY, M.; SALAZAR, A. Correcting single-event upsets
through virtex partial configuration. Xilinx Application Notes XAPP216 (v1.0), 2000.

BILLAUER, Eli. An FPGA IP core for easy DMA over PCle with windows and linux.
2014 [Online]. Available: http://xillybus.com.

XILINX, Inc. LogiCORE IP Endpoint Block Plus v1.15 for PCl Express. UG341, June
2011 [Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/pcie_blk_plus/v1l_15/pcie_b
Ik_plus_ug341.pdf.

XILINX, Inc. LogiCORE IP FIFO generator v8.4. UG175, Jan. 2012. [Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v8_4/fifo_ge
nerator_ugl75.pdf.

XILINX, Inc. Virtex-5 FPGA configuration user guide. UG191, Oct. 2012 [Online].
Available: http://www.xilinx.com/support/documentation/user_guides/ug191.pdf.

XILINX, Inc. ML505/ML506/ML507 evaluation platform user guide. UG347, May 2011
[Online]. Available: http://www.xilinx.com/support/documentation/user_guides/ug191.pdf.

XILINX, Inc. Xilinx university program XUPV5-LX110T development system. [Online].
Available: http://www.xilinx.com/univ/xupv5-Ix110t.htm.

53

VIGNA, Sebastiano. Further scramblings of Marsaglia's xorshift generators. 2014.
[Online]. Available: http://vigna.di.unimi.it/ftp/papers/xorshift.pdf.

WICKER, S. B.; BHARGAVA, V. K. Reed-Solomon Codes and Their Applications.
Piscataway, NJ: IEEE Press, 1994.

CLARKE, C. K. P. Reed-Solomon Error Correction. BBC R&D White Paper WHP 031,
July 2002 [Online]. Awvailable: http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-
files/WHP031.pdf.

GRIMM, Tomas. Desenvolvimento em linguagem de descricdo de hardware de
codificador e decodificador Reed-Solomon. Floriandpolis, SC, 2014. 142 p. Dissertacdo
(mestrado) - Universidade Federal de Santa Catarina, Centro Tecnoldgico. Programa de Pos-
Graduacgdo em Engenharia Elétrica.

http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf
http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf

54

APPENDIX A - GRADUATION PROJECT I

Uma Plataforma para Avaliacdo da Confiabilidade de Sistemas de
Comunicacao em FPGAs

Marcos T. Leipnitz*

YInstituto de Informatica — Universidade Federal do Rio Grande do Sul
Av. Bento Gongalves, 9500 — Porto Alegre, RS — Brazil

mtleipnitz@inf.ufrgs.br

Abstract. The reliability of communication systems in environments with radiation
incidence is a major concern, especially when using FPGAs (Field-Programmable
Gate Arrays) as a design platform. This paper presents a fault injection platform
for communication systems based on FPGAs, in order to simulate and evaluate the
effects of radiation-induced SEUs (Single-Event Upsets) on the functionality of
these systems. It is intended that this platform will be useful for design and
validation of effective strategies to mitigate faults. A schedule of implementation
and validation of the proposed platform, as well as some preliminary results are
presented at the end of this document.

Resumo. A confiabilidade dos sistemas de comunicacdo em ambientes com
incidéncia de radiacdo é uma grande preocupacdo, especialmente quando
utilizamos FPGAs (Field-Programmable Gate Arrays) como plataforma de
implementacdo. Este trabalho apresenta uma plataforma de injecdo de falhas em
sistemas de comunicacgdo baseados em FPGAs, com o objetivo de simular e avaliar
os efeitos de SEUs (Single-Event Upsets) induzidos por radiacdo na funcionalidade
desses sistemas. Pretende-se que esta plataforma seja atil no processo de
elaboracdo e validacdo de estratégias eficientes de mitigacdo de falhas. Um
cronograma de implementacéo e validacdo da plataforma proposta, bem como
resultados preliminares, sdo apresentados no final deste documento.

1. Introducéo

Alta confiabilidade é um requisito fundamental no projeto de sistemas de comunicacdo de
dados, presentes em uma ampla gama de aplicagdes. O esforco necessario para atender a esse
requisito, com o uso de técnicas de tolerancia a falhas, depende de diversos fatores, como a
plataforma de implementagdo ou 0 ambiente onde o sistema sera utilizado.

Os FPGAs (Field-Programmable Gate Arrays) sdo dispositivos reconfiguraveis
largamente utilizados na implementacdo de sistemas de comunicacdo de dados, pois oferecem
muitas vantagens em relacdo ao uso de circuitos integrados dedicados, tais como
reconfigurabilidade, alto desempenho e baixo custo de desenvolvimento. Em aplicagdes
aeroespaciais, como satélites de comunicagdo, falhas ocorrem com frequéncia devido ao
maior fluxo de particulas ionizantes, provenientes, principalmente, dos raios cosmicos, dos
ventos solares e do cinturdo de Van Allen.

Em ambientes com incidéncia de radiacdo ionizante, determinados eventos podem
induzir falhas em dispositivos semicondutores, especialmente naqueles que trabalham com
pequenas variacfes de corrente e com baixos niveis de tensdo, como os dispositivos CMOS
(Complementary Metal Oxide Semiconductor) presentes em sistemas VLSI (Very Large Scale

55

Integration). Single-Event Effects (SEEs) sdo eventos em que uma Unica particula ionizante
incidente (normalmente néutrons, prétons ou ions pesados) deposita energia suficiente para
causar um efeito no dispositivo. Esse efeito pode ser destrutivo, ou seja, pode danificar
fisicamente o dispositivo; ou pode ser ndo destrutivo, como a propagacdo de um transiente
que pode alterar o estado l6gico do sistema ou inverter um bit em uma célula de memoria, por
exemplo. Um SEE que gera uma mudanc,a de estado em um dispositivo, sem danifica-lo,
também é conhecido como Single-Event Upset (SEU) [Ken Label 1996].

Apesar dos fabricantes de FPGAs, como a Xilinx e a Altera, oferecerem linhas com
maior tolerancia a incidéncia de radiacdo, atraves de processos de fabricacdo diferenciados
que conferem até mesmo imunidade a SEEs potencialmente destrutivos, como o Single-Event
Latch-up (SEL), a ocorréncia de SEUs nesses dispositivos é frequentemente objeto de estudo
[A. Lesea et al. 2005]. Em especial, a memoria de configuracdo de dispositivos baseados em
SRAM (Static Random Access Memory) tem grande sensibilidade a esse tipo de evento [E.
Fuller et al. 1999], potencializada pelo uso de memdrias cada vez maiores e mais densas, em
funcdo do avanco da tecnologia de fabricacdo de semicondutores.

A memodria de configuracdo em FPGAs tem a fungdo de definir a funcionalidade do
sistema, configurando os elementos que compdem o dispositivo, como flip-flops, mul-
tiplexadores, LUTs (Lookup Tables), blocos de memdria, entre outros. Além disso, essa
memoria configura a interconexdo entre esses elementos. Logo, a ocorréncia de SEUS nesses
dispositivos pode, além de corromper os dados processados ou alterar o estado légico do
sistema, inverter um ou mais bits da memoria de configuracdo. Essas alteracGes podem
modificar a funcionalidade do sistema, gerando resultados incorretos, ou ndo ter nenhum
efeito observavel [M. Violante et al. 2004]. Portanto, é essencial caracterizar o impacto desse
tipo de falha em aplicagGes que exigem alta confiabilidade, de forma a prover mecanismos de
tolerancia a falhas eficazes e com o menor custo possivel.

O impacto de SEUs na confiabilidade de sistemas de computacdo em FPGASs baseados
em SRAM depende dos elementos utilizados na implementacdo, bem como do
posicionamento e do roteamento dos mesmos. As LUTS, que sdo utilizadas na implementacéo
de l6gica combinacional, sdo os elementos mais sensiveis a SEUs, enquanto que os elementos
de interconexao tem maior probabilidade de serem atingidos, pois ocupam a maior parte dos
bits de configuracdo. O impacto de SEUs nestes elementos é alto, pois frequentemente
induzem a curtos-circuitos que corrompem os dados do sistema [M. Ceschia et al. 2003].
Além disso, na maioria das aplicacbes, apenas uma pequena parte da memoria de
configuracdo € utilizada [A. Lesea et al. 2005]. Consequentemente, é muito importante
identificar os bits criticos dessa memdria, ou seja, aqueles bits que, se invertidos, geram uma
falha funcional no sistema, pois ajudam no dimensionamento adequado de técnicas de
mitigacdo de falhas [Sheng Wang et al. 2015].

Este trabalho propde uma plataforma de injecéo de falhas na memoria de configuracéo
de FPGAs baseados em SRAM, com recursos especificos para avaliar o impacto de SEUs na
funcionalidade de sistemas de comunicagdo de dados. O objetivo é oferecer uma plataforma
que permita avaliar e validar mecanismos de tolerancia a falhas eficientes e de baixo custo,
visando aumentar a confiabilidade desses sistemas em ambientes com incidéncia de radiacdo
ionizante.

O trabalho esté estruturado da seguinte forma: a se¢do 2 apresenta uma breve analise
de trabalhos existentes na area de injecdo de falhas em FPGAs; a secdo 3 apresenta a
plataforma proposta; a secdo 4 apresenta alguns resultados preliminares, como 0S recursos
utilizados e a area ocupada pelos componentes de hardware no FPGA,; a secdo 5 apresenta um

56

cronograma de atividades para a conclusdo do trabalho (implementacéo e validacdo) e a se¢édo
6, por fim, apresenta as consideracdes finais.

2. Trabalhos Relacionados

A injecdo de falhas é um método amplamente utilizado para avaliar a dependabilidade
de sistemas de computacdo, bem como para validar mecanismos de tolerancia a falhas [Jean
Arlat et al. 1990]. Com este método, diversas técnicas de tolerancia a falhas foram
desenvolvidas e avaliadas com o objetivo de proteger sistemas criticos da ocorréncia de SEUs
em FPGAs baseados em SRAM [F. L. Kastensmidt et al. 2006]. As técnicas mais eficientes,
em geral, combinam métodos de prevencdo, como TMR (Triple Modular Redundancy), com
métodos de correcdo, como scrubbing, que consiste em reconfigurar periodicamente o
dispositivo com uma versdo livre de falhas da memoria de configuracdo [Uros Legat et al.
2012]. Este conjunto é avaliado, por exemplo, em [F. L. Kastensmidt et al. 2001], em que o
scrubbing é utilizado para eliminar o acimulo de falhas que pode deteriorar a eficiéncia da
técnica TMR.

TMR é uma técnica de tolerdncia a falhas muito utilizada para mitigar os efeitos de
SEUs, em que usa-se trés cdpias do mesmo sistema e um votador que escolhe a saida
majoritaria, com o objetivo de evitar a propagacdo de erros nas saidas do sistema. Esta
técnica, no entanto, tem uma série de limitacdes, especialmente quando ocorrem Multi-Bit
Upsets (MBUSs), ou seja, quando um SEU modifica mais de um bit na memodria de
configuracdo [Heather Quinn et al. 2007]. O votador, por exemplo, € um ponto Unico de falha.
Além disso, essa técnica é especialmente suscetivel a falhas que afetam os elementos de
roteamento do FPGA, podendo gerar maultiplos erros nos moédulos [L. Sterpone and M.
Violante 2005]. Muitos trabalhos foram desenvolvidos visando contornar limitagdes desse
tipo e aumentar a eficiéncia de técnicas de tolerancia a falhas para FPGAs baseados em
SRAM, exemplificando como as plataformas de injecdo de falhas podem ser utilizadas para
este fim.

Com a importancia de determinar a confiabilidade dos sistemas de computacdo nos
primeiros estagios do projeto, de forma a permitir a exploracdo de alternativas para proteger
esses sistemas em ambientes com incidéncia de radiacdo ionizante, muitas plataformas de
injecdo de falhas por simulacdo foram desenvolvidas na literatura. Nessas plataformas, os
bits da memoria de configuracdo sdo invertidos por reconfiguracdo total ou parcial, interna ou
externamente, de forma a simular a ocorréncia de SEUs. Ap06s a inversao, o sistema é
executado com vetores de teste e 0s seus resultados sdo comparados com os resultados de
uma versdo livre de falhas do mesmo sistema (Golden Results). Muitos trabalhos ja
demostraram a validade deste metodo [F. L. Kastensmidt et al. 2001][M. Wirthlin et al. 2003],
que apresenta muitas vantagens em relacdo ao uso de infraestrutura especializada para a
simulacdo de SEUs (acelerador de particulas, por exemplo), como baixo custo e alta
controlabilidade. A figura 1 mostra um fluxograma béasico do método de injecdo de falhas
[Heather Quinn et al. 2008].

Em [Gabriel L. Nazar and Luigi Carro 2012] é apresentada uma plataforma baseada
em um anico FPGA, projetada com os elementos mais comuns nesses dispositivos (LUTS,
flip-flops, blocos de memoria, entre outros), o que possibilita a sua implementacdo em
qualquer FPGA que possua uma interface interna de configuracdo. O uso dessa interface € o
que permite o uso do mesmo FPGA tanto para o injetor de falhas como para o Circuit Under
Test (CUT), pois as falhas sdo injetadas em uma regido especifica do dispositivo, Area Under
Test (AUT), através de reconfiguracdo parcial, evitando que o proprio injetor seja atingido
pelas falhas injetadas, o que inutilizaria a plataforma. No que diz respeito ao desempenho,
essa plataforma permite tempos de injecdo e remocdo de falhas da ordem de 10 ps ou menos,

S7

—_— Injetar Falha

l

Executar Vetoresde Teste

Gravar Local do Erro

RemoverFalha |g

Figura 1. Funcionamento basico de um injetor de falhas.

sendo esta uma das suas principais caracteristicas. O desempenho sera ditado, em geral, pelo
desempenho do CUT no processo de estimulo, ou pela capacidade de comunicacdo da
plataforma com o computador, utilizada para enviar os resultados obtidos com cada falha
injetada. Dado que a comunicagédo é via cabo serial (RS-232), é provavel que na maioria dos
casos este seja 0 gargalo de desempenho do sistema proposto.

Em [Stefano Di Carlo et al. 2014] é apresentada uma metodologia de injecdo de falhas
que utiliza reconfiguracdo parcial em conjunto com a tecnologia Essential Bits, da Xilinx.
Esta tecnologia permite identificar e extrair os bits essenciais do bitstream de configuracao,
ou seja, aqueles bits que sdo essenciais para a funcionalidade do sistema. Esse método
diminui muito o tempo do processo de injecdo de falhas, pois todos os bits da memoria de
configuracdo que ndo tem relagdo com a funcionalidade do sistema (a grande maioria) sdo
desconsiderados. Além disso, esta plataforma ndo exige nenhum conhecimento a respeito do
enderecamento dos frames da memdria de configuracéo, pois isola o sistema a ser testado em
uma particdo reconfiguravel definida previamente com o software da Xilinx.

A plataforma de injecdo de falhas proposta neste trabalho consiste em uma versao
modificada da plataforma apresentada em [Gabriel L. Nazar and Luigi Carro 2012]. Uma das
principais modificagOes € a inclusdo de uma interface PCle para estabelecer a comunicagéo
entre o FPGA e o PC. Aproveitando a capacidade dessa interface, um software fica
responsavel por inicializar o sistema de controle no FPGA, enviar os vetores de teste, receber
os resultados e avalid-los, aumentando a flexibilidade da plataforma, pois as funcdes
oferecidas pelo software sdo parametrizaveis e podem ser facilmente estendidas. Alem disso,
0 impacto da comunicagdo do FPGA com o PC no tempo para realizar uma campanha de
injecdo de falhas é consideravelmente menor, se compararmos com a versdo original (RS-
232). Essa caracteristica é especialmente importante quando avaliamos a confiabilidade de
sistemas de comunicagdo de dados, pois esse tipo de avaliagcdo exige uma vazdo de dados
relativamente grande.

58

3. Plataforma de Injecéo de Falhas

A plataforma de injecdo de falhas proposta €& constituida por dois grandes
componentes: um de hardware e outro de software. O hardware est4 sendo implementado em
um FPGA da linha Virtex-5, da Xilinx, com a plataforma de desenvolvimento XUPV5-
LX110T [Xilinx XUPV5LX110T] disponivel no Laboratério de Sistemas Embarcados (LSE).
O software estd sendo desenvolvido para no sistema operacional Windowns 7, na linguagem
de programagdo C++. A comunicacdo entre o hardware no FPGA e o software no computador
é feita pelo barramento PCle 1.0 x1 oferecido pela plataforma de desenvolvimento, ou seja,
permite uma taxa de transferéncia, em teoria, de até 250 MB/s. A figura 2 mostra, de forma
simplificada, os componentes que constituem a plataforma. Nas subsecdes seguintes, cada um
desses componentes sera apresentado com maiores detalhes.

3.1. Controlador de E/S do PCle

O controlador de E/S do PCle é responsavel pela comunicacdo do hardware da
plataforma com o software que executa no PC, através da interface PCle disponibilizada pela
plataforma XUPV5LX110T. Como o desenvolvimento de uma solucdo PCle para
comunicacdo entre o FPGA e o PC é uma tarefa relativamente complexa e esta fora do escopo
deste trabalho (pelo menos neste momento), foram analisadas algumas opc¢bes ja
desenvolvidas em outros trabalhos.

O projeto Riffa (Reusable Integration Framework for FPGA Accelerators) [Matthew
Jacobsen et al. 2012] apresenta uma solucdo de comunicacdo PCle, mas a primeira versao,
que é a Unica que oferece suporte ao Virtex-5, tem um problema de limitagdo com a taxa de
transferéncia, que fica em torno de apenas 24 MB/s. Ja a biblioteca de comunicacdo EPEE
[Jian Gong et al. 2014] oferece uma solucdo que pode ser explorada futuramente, pois oferece
suporte apenas para Linux, assim como o Riffa.

A solucdo de comunicagdo adotada neste trabalho foi o sistema Xillybus [xillybus
2014]. Esta solucdo é composta por um IP Core disponivel para diversos modelos de FPGAs
(incluindo o Virtex-5) e um driver de dispositivo, tanto para Linux como para Windows.
Segundo o desenvolvedor, o sistema oferece uma taxa de transferéncia de até 200 MB/s (full-
duplex) para o padrdo PCle 1.0 x1, ou seja, cerca de 80% da taxa maxima. A comunicagado
pode ser feita de forma sincrona ou assincrona, com um ou mais streams, através de
operacdes de E/S em device files, que fazem a interface com o driver do dispositivo. A alta
vazdo de dados é obtida pelo uso extensivo de buffers DMA (Direct Memory Access). O uso
desta solucdo € livre de licenca, desde que utilizado exclusivamente para trabalhos
académicos ou de pesquisa.

Através da ferramenta disponibilizada pelo desenvolvedor, o Xillybus IP Core foi
configurado com dois streams: um de 8 bits, sincrono, com taxa de transferéncia de até 1
MB/s (full-duplex), e outro de 32 bits, assincrono, com taxa de transferéncia de até 195 MB/s
(full-duplex). O stream de 8 bits permite que o software envie comandos para o controlador
do sistema e também para que este controlador envie o seu estado atual para o software. Ja o
stream de 32 bits permite que o software envie 0s vetores de teste para o controlador do CUT
e também para que este controlador envie os resultados gerados pelo CUT para o software
avaliar.

A interface do Xillybus IP Core com o barramento PCle ¢é feita com um IP Core
fornecido pela Xilinx através do Core Generator, o Endpoint Block Plus for PCI Express
[Xilinx EBP PCle]. A interface com o controlador do sistema e o com o controlador de E/S do
CUT ¢ feita com o uso de memorias FIFO, que também podem ser geradas com o Core
Generator. A figura 3 mostra os detalhes do controlador de E/S do PCle.

59

FPGA

PCle VO Cirl

PCle Core

PCle Core
Driver

Multithreaded System Ctrl

Software

[SEU Injector}

Figura 2. Componentes basicos da plataforma de injecdo de falhas proposta.

3.2. Controlador do Sistema

O controlador do sistema € responsavel por solicitar a injecdo e a remocdo de falhas
junto ao injetor de falhas (SEU Injector), bem como controlar a execucdo do CUT, através
dos sinais start e done. Enquanto o CUT estiver executando, este controlador fica em estado
de espera, até que o controlador de E/S do CUT informe que a execuc¢éo ja terminou.

Nesse momento, o controlador solicita a remocédo da falha injetada para reestabelecer
o0 estado correto da memdria de configuracdo. Em seguida, um novo pedido de injecdo de
falha ¢ realizado, de forma que este ciclo € executado até que o total de falhas desejado seja
injetado.

Paralelamente ao ciclo de injecdo de falhas, o controlador do sistema monitora o
recebimento de comandos do software, que pode cancelar a campanha de injecdo de falhas ou
reinicia-la com novos parametros, por exemplo. Além disso, o controlador pode
periodicamente informar o software sobre o estado atual da campanha, como o percentual de
falhas que ja foram injetadas ou o término da execugdo.

O SEU injector € o Uunico componente que ndo sofreu nenhuma alteracdo em relagao
ao apresentado em [Gabriel L. Nazar and Luigi Carro 2012]. O Virtex-5 utilizado nos
experimentos possui a Internal Configuration Access Port (ICAP), que permite manipular os
bits da memoria de configuracdo. Nesse dispositivo, essa memoria é dividida em frames cujos
bits podem ser acessados através de um esquema de enderecamento conhecido [Xilinx ug191
2012], o que permite o acesso controlado a cada bit de configuracdo relacionado a qualquer
regido do dispositivo. A partir dessa possibilidade, ¢ definida uma Area Under Test (AUT)
onde o CUT deve ser posicionado, através da indicacdo de restricdes de posicionamento para
a ferramenta de implementacdo. O injetor de falhas, entdo, € construido de forma a inverter
apenas os bits responsaveis pela configuracdo da AUT, através de reconfiguracdo parcial pela
ICAP, 0 que impede que 0 proprio injetor ou os demais componentes de controle da

60

/— -------- POle Core \\‘ PCle 10 Ctrl "\
FIFO 8 —>
Xilinx ' Status
A Endpoint Xillybus [€— FIFO 8 e
’ g’o"fﬁfﬁﬁ?’ [LCOR _._>-_: -F/FO 32 _>lnpUt .

FIFO 32
_;/ _——— /

_

Figura 3. Detalhes do controlador de E/S do PCle.

plataforma sejam atingidos. Adicionalmente, o injetor é capaz de lidar com erros gerados
pela inversdo de um Unico bit, corrigindo-os.

3.3. Controlador de E/S do CUT

O Controlador de E/S do CUT tem a funcédo de receber os vetores de teste e disponibiliza-
los a0 CUT de forma adequada, bem como enviar os resultados da saida do CUT para o
software. Como o0s vetores de teste sdo recebidos com tamanho fixo de 32 bits, o usuario da
plataforma fica responsavel por desenvolver a légica que realiza esta tarefa, pois é altamente
dependente do CUT. Esta em estudo a implementacdo de uma Idgica que permita ao usuario
apenas informar nimero de bits da entrada e da saida do CUT, através de constantes, de forma
a simplificar o uso da plataforma.

Diferentemente da plataforma desenvolvida em [Gabriel L. Nazar and Luigi
Carro 2012], a versdo gold dos resultados do CUT, que sdo utilizados para comparacdo e
verificacdo de erros, é simulada no software, de forma que os resultados enviados pela
plataforma ndo sdo os resultados dessa comparacdo, mas tdo somente as saidas do CUT. Todo
o trabalho de comparacdo e identificacdo de erros é feita em software, o que diminui a
guantidade necessaria de recursos de hardware e flexibiliza a plataforma.

3.4. Software

O componente de software tem algumas fungdes basicas: controlar o componente
hardware, atraves do envio de comandos e do recebimento periodico do estado do sistema;
gerar uma determinada quantidade de vetores de teste para o CUT, definida pelo usuério;
receber os resultados da execucdo do CUT e calcular alguma métrica relevante para sistemas
de comunicacgéo de dados que permita avaliar o impacto das falhas injetadas no sistema, como
a taxa de erro de bit para cada falha injetada, por exemplo. O nimero de falhas a serem
injetadas, no caso da injecdo randémica, pode ser determinado via software.

Para estabelecer uma comunicacdo com um fluxo continuo de dados e alta vazdo, a
interface PCle utiliza streams assincronos para enviar os vetores de teste e receber os
resultados. Adicionalmente, define-se uma thread para cada stream de dados, de forma que a
vazao depende, na maior parte do tempo, da capacidade de processamento do computador e
do sistema implementado no FPGA. A figura 4 mostra a estratégia proposta.

61

FPGA

f PCle I/O Ctrl
SR

PCle Core

—

Figura 4. Software multithreaded e comunicacdo assincrona permitem fluxo
continuo de dados e alta vazao.

4. Resultados Preliminares

Como a implementacdo do médulo de hardware da plataforma estd em estagios
avancados, pode-se apresentar alguns resultados preliminares com relagéo ao uso de recursos
do FPGA (LUTs, Flip-Flops e BRAMS). O controlador de E/S do CUT néo foi incluido, ja
que no momento ele possui apenas roteamento de entrada e saida (a légica de controle e o
CUT deste modulo dependem do usuério). A tabela 1 mostra os resultados.

Os resultados mostram que, como era esperado neste momento, o médulo de controle
PCle é disparado o mais custoso em termos de recursos, em especial pelo uso de varias
memorias FIFO.

5. Cronograma de Atividades

As tarefas a serem realizadas no Trabalho de Graduagdo 2 estdo enumeradas a seguir. A
tabela 2 apresenta o cronograma de atividades.

1. Concluséo da implementacao do hardware.

2. Conclusdo da implementagdo do software, acrescentando fungfes Uteis relacionadas a
area de comunicagéo de dados e verificando a eficiéncia das mesmas.

3. Verificacdo da eficiéncia no uso do barramento PCle, fazendo as devidas alteracdes,
caso necessario.

4. Validagdo da plataforma utilizando um decodificador Reed-Solomon como estudo de
caso.

5. Validacédo da plataforma com um segundo estudo se caso, a ser definido.

6. Redacdo da monografia do Trabalho de Graduagéo 2.

7. Entrega e apresentacao do trabalho.

Tabela 1. Custo preliminar da plataforma em recursos do FPGA (XC5VLX110T).

Quantidade Ocupacao
LUT| FF | BRAM| LUT | FF | BRAM
PCle /O Ctri| 2509 3386| 10 3% 4% 6%
System Ctrl | 514 | 164 1 0,74% | 0,24% | 0,68%
Total 302313550 11 3,74% | 424% | 6,68%

62

Tabela 2. Cronograma de atividades para a segunda etapa do trabalho.

2015
Tarefa | Jun | Jul | Ago | Set | Out | Nov | Dez
1 X | X
2 X |:x
3 X
4 X | x
5 X | X
6 X X X X
7 X

6. Consideragdes Finais

Este artigo apresentou uma nova plataforma de injecdo de falhas em FPGAs para a
avaliagdo do impacto de SEUs, com recursos que facilitam o uso em sistemas de comunicagao
de dados. Alguns desafios que ainda permanecem, como a conclusdo da implementacao e a
validagdo do sistema, serdo tratados na segunda etapa do trabalho. E importante frisar que a
plataforma proposta neste artigo estd em um estagio inicial de teste das suas funcionalidades,
como a capacidade de comunicacdo do FPGA com o PC através do barramento PCle.
Portanto, pequenas modificacdes poderdo ocorrer, como a inclusdo de novas funcionalidades
ou a reformulacdo de outras. Mesmo que uma grande quantidade de trabalhos desse tipo
sejam encontrados na literatura, espera-se demonstrar, na sequéncia do trabalho, que o
conjunto de caracteristicas proposto pode ser um diferencial na hora de desenvolver e validar
técnicas de mitigacdo de falhas induzidas por SEUs em sistemas de comunicacdo de dados
implementados em FPGAs.

Referéncias

A. Lesea, S. Drimer, J.J. Fabula, C. Carmichael and P. Alfke (2005). The rosseta expe-
riment: atmospheric soft error rate testing in differing technology FPGAs. In IEEE Trans.,
Device and Materials Reliability, pages 317-328, no. 3, Sept. 2005.

E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, and A. Salazar (1999). Radiation
test results of the Virtex FPGA and ZBT SRAM for space based reconfigurable computing.
In MAPLD, Proceeding of the Military and Aerospace Programmable Logic Devices
International Conference, Laurel, MD, September 1999.

M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M. Sonza Reorda, and
A.Paccagnella (2004). Simulation-Based Analysis of SEU Effects in SRAM-Based FPGAs.
IEEE Trans., Nuclear Science, Vol. 51, no. 6, December 2004.

M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo, D.
Bortolato, M. Bellato, P. Zambolin, and A. Candelori (2003). Identification and
Classification of Single-Event Upsets in the Configuration Memory of SRAM-Based
FPGAs. IEEE Trans., Nuclear Science, Vol. 50, no. 6, December 2003.

Sheng Wang, Adrian Evans, Shi-Jie Wen, Rick Wong and GengSheng Chen (2015). New
insights into the impact of SEUs in FPGAs CRAMs. IEICE, Electronics Express, pages 1—
12, Vol. 12, no. 6.

63

F. L. Kastensmidt, L. Carro, and R. Reis (2006). Fault-Tolerance Techniques for SRAM-
Based FPGAs. Springer 2006, 1st ed., Dordrecht, The Netherlands.

Uros Legat, Anton Biasizzo and Frank Novak (2012). SEU Recovery Mechanism for SRAM-
Based FPGAs. IEEE Trans., Nuclear Science, Vol. 59, no. 5, October 2012.

F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis (2001). A Fault Injection Analysis of
Virtex FPGA TMR Design Methodology. IEEE, European Conference on Radiation and its
Effect on Component and Systems, pages 275-282, 2001.

Heather Quinn, Keith Morgan, Paul Graham, Jim Krone, Michael Caffrey, and Kevin
Lundgreen (2007). Domain Crossing Errors: Limitations on Single Device Triple-Modular
Redundancy Circuits in Xilinx FPGAs. IEEE Trans., Nuclear Science, Vol. 54, no. 6,
December 2007.

Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles Fabre, Jean-Claude
Laprie, Eliane Martins and David Powell (1990). Fault Injection for Dependability
Validation: A Methodology and Some Applications. IEEE Trans., Software Engineering,
Vol. 6, no. 2, February 1990.

L. Sterpone and M. Violante (2005). Analysis of the Robustness of the TMR Architecture in
SRAM-Based FPGAs. IEEE Trans., Nuclear Science, Vol. 52, no. 5, October 2005.

M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham (2003). The Reliability of
FPGA Circuit Designs in the Presence of Radiation Induced Configuration Upsets. IEEE
Proc., 11th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 133-142, 2003.

Heather Quinn, Paul Graham, Keith Morgan, Michael Caffrey, and Jim Krone (2008). A Test
Methodology for Determining Space-Readiness of Xilinx SRAM-based FPGA Designs.
IEEE, AUTOTESTCON 2008, pages 8-11, Salt Lake City, UT, September 2008.

Gabriel L. Nazar and Luigi Carro (2012). Fast Single-FPGA Fault Injection Platform. IEEE,
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2012.

Stefano Di Carlo, Paolo Prinetto, Daniele Rolfo, Pascal Trotta (2014). A Fault Injection
Methodology and Infrastructure for Fast Single-Event Upsets Emulation on Xilinx SRAM-
based FPGAs. IEEE, International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2014.

Xilinx (2015). Virtex-5 FPGA Configuration User Guide (online). Disponivel em
http://www.xilinx.com/support/documentation/ug191.pdf.

Matthew Jacobsen, Yoav Freund, Ryan Kastner (2012). RIFFA: A Reusable Integration
Framework for FPGA Accelerators. IEEE, International Symposium on Field-
Programmable Custom Computing Machines, 20th ed., 2012.

Jian Gong, Tao Wang, Jiahua Chen, Haoyang Wu, Fan Ye, Songwu Lu, Jason Cong (2014).
An Efficient and Flexible Host-FPGA PCle Communication Library. ACM/SIGDA Proc.,
international symposium on Field-programmable gate arrays, pages 255-255, New York,
NY, USA, 2014.

Kenneth A. LaBel (1996). Single-Event Effect Criticality Analysis (online). Disponivel em
http://radhome.gsfc.nasa.gov/radhome/papers/seecai.htm.

Eli Billauer (2014). An FPGA IP core for easy DMA over PCle with Windows and Linux
(online). Disponivel em http://xillybus.com.

64

Xilinx (2015). Xilinx University Program XUPV5-LX110T Development System (online).
Disponivel em http://www.xilinx.com/univ/xupv5-1x110t.htm.

Xilinx (2015). Xilinx IP Endpoint Block Plus for PCI Express (online). Disponivel em
http://www.xilinx.com/support/documentation.

