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In this paper, the role of the focusing field profile on the stability of periodically focused particle
beams is investigated, paying special attention to the transport within the new regions of stability
found recently for vacuum-phase advances well abovd BOPakter and F. B. Rizzato, Phys. Rev.

Lett. 87, 044801(2001)]. In particular, a solenoidal focusing field profile that goes from a smooth
sinusoidal-like function to a sharp-edged step-funcion as a continuous parameter is varied is
considered. It is shown that the new regions are always present, but may be very sensitive to
changes in the focusing field profile. Specifically, as the focusing field becomes more localized, the
new regions become narrower, occur at higher vacuum phase advances, and present a larger number
of nonlinear resonances and chaos in the beam envelope phase space. Although in all the cases
analyzed here it was found that there is a relatively thick layer of regular trajectories isolating the
matched solution from the chaotic region, self-consistent simulations show that envelope
phase-space chaos may affect beam dynamics, leading to some small emittance gr@ed3 ©
American Institute of Physics[DOI: 10.1063/1.1619139

I. INTRODUCTION new regions of stability that lead to much tighter beam con-

finement are present for focusing fields corresponding to

The physics of intense beams in periodically focusmgvacuum-phase advances well above 3tn fact. the sce-

systems is an active area of theoretical and experimental re-" . . : . .
. ) . nario as the focusing field increases is the appearance of
search where one looks for external field configurations ca-

pable of confining high-current, low emittance ion or elec_successive regions of stability which are interrupted by gaps
tron beam&=5 The area is cruéial for the development of where either the matched solutions are unstable or simply do

several advanced particle accelerator applications such as ghot exist. Detailed analysis on the effects of beam intensity

tium production, spallation neutron source, heavy ion fusion'€vealed that, although presenting some different character-

coherent radiation sources, and nuclear waste transmufatiofStics regarding the bifurcations of the matched solutions, the
as well as applications in basic science. new regions of stability are present for both emittance-

Akey aspect of periodically focused beams is their equi-dominated and space-charge-dominated beanThe dy-
librium and stability properties. Equilibria are obtained whennamical mechanism responsible for the onset of the gaps is
the focusing forces imposed by the confining magnetic fielcahalyzed in Ref. 12.
and the self-current balance the defocusing forces due to Even though all the analysis done so far on the new
electrostatic, thermal and beam rigid rotation effects in suctiegions of stability considered a particular focusing field pro-
a way that the beam transverse radius oscillates with thélle, namely a sinusoidal-like profile, it suggests that the on-
same periodicity of the focusing field. These solutions areset of the new matched solutions may be highly dependent
called thematched solutionsUntil recently, it was believed on the oscillatory components of the field. In the sinusoidal
that only one matched solution is present for a given set o€ase, for instance, we see that the larger the amplitude of
beam and focusing parameters and that this solution becomescillation, the larger the instability gap¥** Other models
unstable as the focusing field intensity is raised above a cetnalyze different field profiles but in the abscence of
tain threshold”’~° The threshold corresponds to a vacuum-space-charg® Given that and the fact that in many experi-
phase advance of 90°. Byacuum-phase advaneee mean ments, due to engineering and design issues, the magnetic
the angle that a particle would rotate per focusing period iffield is more localized, presenting sharper edges and vanish-
the presence of the external field but in the abscence Qqhgly small values at sizable fractions of the periodic cell, an
space-charge, and is used here as a measure of the focusifghortant issue to be addressed is the precise role played by
magnetic field strength. Recently, however, it was shown thage focusing field profile on the stability of periodically fo-
cused particle beams.
dElectronic mail: pakter@if.ufrgs.br In this paper, we perform a detailed investigation of
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beam envelope stability for a more general periodic focusing ,| 1+cosb(s)

field profile, which may describe more accurately a broader ~ K2(S)= 05— |, ()
range of realistic system configurations. In particular, we

consider a high-current beam in a periodic solenoidal focuswith the phase function given by

ing field whose profile goes from a smooth sinusoidal-like 1 1

function to a sharp-edged step-funcion as a continuous para- ¢g(s)= 7.,[ tan_l[A(§+ 77/2)]+tan_ 1[A(§ 7/2)] . (4
menter is varied. It is shown that the new regions are always tan {A(1+ n)/2]+tan "[A(1-7)/2]

present, irrespective to the specific field profile. However, inypere oo=[J1k,(s)ds]*? is the vacuum phase advance in
contrast to the original regiorj of stab?lity, which is in general the smooth-beam approximation, which is proportional to the
not greatly affected by thg field profile, the new regions doyms focusing fieldN= 1+ cosé(s)dsis used to normalize
depend on the specific field shape. In particular, the newhe fynctions= mod(s+ 1/2,1)— 1/2 is periodic ins and lies
regions become narrower and occur at higher vacuum pha%epways in the range- 1/2<s<1/2, A>0 is the focusing
advances as the focusing field becomes more localized. Dyg,|q profile paramenter, and<On=<1 is the filling factor.

to the increase in the Fourier spectral content of a focusinghe function x(s) in Eq. (3) is constructed such that for
field profile with sharper edges, the envelope phase-space & A it resembles a smooth sinusoidal function of period 1
also affected presenting a Ia_rger number of nonlinear resqp, s, while for increasingA it starts developing sharper
nances and chaos. Although in all the cases analyzed here Wges, eventually turning into a discontinuous periodic step
found that there is a relatively thick layer of regular trajec-fynction of filling factor 7 for infinite A. In fact, in the limit
tories surrounding the matched solution, isolating it from they <1 the arguments of the inverse tangent functions in Eq.
chaotic region, self-consistent simulations show that envegy) gre small, allowing the approximation taifx)=x which
lope phase-space chaos may affect beam dynamics, leadifighs tog(s)=2#s and to the sinusoidal focusing field pro-

to some small emittance growth. file
The work is organized as follows: in Sec. 1l we introduce )
the model with the more general focusing field profile con-  «,(S)=0og[1+cog2ms)], %)

sidered; in Sec. Ill we analyze beam transport stability as a, . . o
function of the focusing field profile, paying special attentionstudlecj in Refs. 10 and 11. Note that in this limjtplays no

. . . role in focusing field profile. On the other hand, whan
to the new regions of stability and in Sec. IV we conclude . ; . h
the work. >1 the inverse tangent functions present an abrupt change

from — /2 to /2 as their arguments change sign, allowing
the approximation tan'(x)=(m/2)sign(x) which leads to a
discontinuous phase function with9(s<— 5/2)=—,

We consider a thin, continuous beam propagating withg(— #/2<s<5/2)=0 and 6(s> 5/2)=m, and to the step-
average axial velocity3,cé, through a periodic solenoidal function focusing field lattice with filling factot,
focusing magnetic field described by

Il. THE MODEL

0, nl2<s<1l—79l2
B(x,Y,5)=B,(5)&~ B(S)(x&+Y&), (1) “AS)=1 521, otherwise. ©

Wheres=z/S=_,8bct/Sisthe dime_nsionless goo_rdinate al(_)ng Note that for allA, the denominator in Eqi4) guarantees
the beam axisB,(s+1)=B,(s) is the periodic magnetic . e phase function completes a full cycle from —

field on the beam axis, the prime denotes derivative with j o ass goes from—1/2 to 1/2, and consequentky(s)
respect tos, c is the speed of lightn vacug andS is the is always continuous at the lattice boundaries.

periodicity length of the magnetic focusing field. In the i\ yorth pointing out that the static magnetic field in
paraxial approximation the envelope equation that dictategq. (1) must satisfy the Maxwell's equatioré-B=0 and

the env.elo'pe eyolution of a .par.tic'le bgam ‘T] the fOCUSingV><B=O. While the first equation is exactly satisfied, the
magnetic field given by Ed1) is, in its dimensionless form second one is valid only if we assume that the transverse

d?ry, K 1 beam envelope is much smaller than the typical length of
4 +KZ(S)rb_E_F§:O' (2 variation of B, along the beam axis, such the}B{"/B,

<1, whereB{"=d"B,/ds", and terms of orden=2 are
IN EQ. (2), 16(S) =T by nsiond (S€) 7 IS the normalized beam  neglected. This assumption is certainly not truase and
envelope radius anll =29°N,S/ ey 82mc is the normal-  the field profile tends to the sharp-edged step-function of Eq.
ized perveance of the beam wheteis the unnormalized (6). Therefore, although the step-function lattice is widely
emittance of the beanN,, is the number of particles per unit used to model periodic focusing fields, it is important to keep
axial length, andg, m, and yb=(1—B§)‘1’2 are, respec- in mind that real focusing channels have a smogils)
tively, the charge, mass, and relativistic factor of the beanwhich is more properly represented by a finke
particles. The focusing field is characterized by the normal-  To illustrate the focusing field profiles in E¢B), Fig. 1
ized focusing strength parametej(s+1)= «,(s) related to  showsk(s) for »=0.2, oo="70° and four different values of
the magnetic field by,(s) = q?B2(s) S¥/4y2Bim?c?. A:107%, 104, 107, and 10. Itis clear that ag\ increases, the

In order to investigate the role of the focusing field pro-focusing field becomes more localized with sharper edges,
file on beam transport, we consider a focusing field parambeing very simililar to the step-function focusing lattice for
eter of the form A=10*. Moreover, comparing the phase functiés) for
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8.0 : : : eventually disappearing permanently from the phase space,
B Y — A=10" T the matched solutions cross back the —1 line and re-
6.0 — A=J0! L cover their stability asrg is further increased. However, as
— A1 shown in Ref. 11 the matched solution is not useful for beam
X 40\ /\ — A1t / | confinement after its restabilization because beam emittance
- growth was observed in self-consistent numerical simula-
™ Y d tions for these parameter regions.
2.07 i In harmonic cases where the confining magnetic field
oscillates sinusoidally, the following series of analytic results
0.0 ; /. ; £ were obtained!*?The new regions of stability occurs when
0.0 05 L0 L5 20 the oscillatory frequency of the magnetic field matches the
s frequency with which the envelope itself oscillates. This fre-
FIG. 1. Focusing field profile,(s) for different values of the parametar ~ qUENCY matching may take place in virtue of the fact that
The other parameters arg=0.2 ando,=70°. while the magnetic field has indeed a fixed frequency, the

envelope frequency varies over a range of values determined

by all the control parameters of the system. In particular, the
the profile obtained witi =10"* with that of the sinusoidal  envelope frequency increases with the magnetic field inten-
function 6(s)=27s we found that they differ by less than sjty and has an approximate value@ Since the magnetic

0.1% for alls. field frequency is 2, one concludes that the second region
approximately lies in the parametric region determined by
IIl. BEAM STABILITY ANALYSIS 209~2, or oy~ 180°1° More precise calculations based

on normal forms of bifurcation theory were extensively de-
veloped in Refs. 12 and 11 and actually show that after a
In this section, we analyze the stability of beams propaparametric gap where no matched solution is present is
gating through the focusing field given in E), as the cleared, the second region is formed wheg actually be-
focusing field profile is varied. We pay special attention tocomes larger than 180°. In harmonic cases the size of the
the new regions of stability found in Refs. 10 and 11. Togap along thery axis is roughly given by 180°.
perform the analysis we use a Newton—Raphson method to In the general case of anharmonic confining fields, nu-
search for and verify the stability of envelope matched solumerical analysis is needed but we observe that the basic re-
tions obtained from Eq(2). The Newton—Raphson method sults still hold except perhaps for the fact that the gaps may
applied to the current envelope problem is described in detatbecome larger, as investigated in what follows.
in the Appendix. The stability is determined with the aid of To determine the role of the focusing field profile on the
the stability indexa defined asy= cosksy), whereks, is the  beam transport stability we construct a parametric space plot
wave number of small linear oscillations around the periodiof ogX A displaying the locations of the different regions of
trajectory, obtained with the Newton—Raphson method. Fostability. Recalling from Sec. IA determines the overall
stable orbits wherg;, is a real number,a|<1; if « crosses shape of the focusing field: a& is increased from small
the lower boundana=—1 it undergoes a period doubling valuesA<1, the focusing field profile continuously goes
bifurcation loosing stability, and if the orbit crosses the upperfrom a smooth sinusoidal function to a sharp-edged step-
boundarya= +1 the orbit undergoes an inverse tangent bi-function asA—<. In the plots we use a Newton—Raphson
furcation with a previous unstable fixed point. In order tomethod to numerically determine the boundarieg
gather some information on the nonlinear stability of the=o(A) where stable matched solutions emerge in the phase
matched solutions, we also make use of Poingéwts of the  space witha=+1 and lose stability withw=—1. The re-
envelope phase-space. The plots are obtained by integratisglts for the first two regions of stabilitghe original and its
the envelope equation(2) and recording the pair first neighboy obtained for»=0.5 (a) and »=0.2 (b) are
(ry,dr,/ds) every period of the external focusing field at shown in Fig. 2, where the beam intensity is chosen to be
integer values 06.%* K=5.0. The black regions correspond to stable regions; the
Generally, the bifurcation scenario for the matched soluregion below oy~100° is the original region of stability
tions as one increases the vacuum phase advance is as f0DRS and the other one is the second region of stability
lows; a detailed description is found in Refs. 10 and 11(SRS. Higher order new regions of stability were also inves-
Stable matched solutions are born in the phase space witigated and the results are qualitatively the same as for the
a=+1. For the original matched solution, this occurs ex-SRS.
actly atoy=0°, whereas for the new regions of stability it For the larger filling factor case= 0.5, Fig. Za) shows
occurs at differentry>180°. As the vacuum phase advancethat the regions of stability are not greatly affected by the
is increased, the respectivemoves towardsyr= —1. When  variations inA. Only some narrowing of the SRS is noticed
a=—1 is reached, the matched solution suffers a periods the focusing field becomes more localiziedtreasingA).
doubling bifurcation and becomes unstable. We define as Ranels(a) and (b) of Fig. 3 compare Poincarglots of the
region of stability, the range af, that goes from the onset phase space for the SRS obtained for the limiting cases
of the corresponding stable matched solution withk + 1 =10"! and A=10* of Fig. 2@). In order to compare
until it bifurcates witha=—1. As a matter of fact, before matched solutions with similar stability features, we consider

A. Envelope equation analysis
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400.0 : : : : interested in beams with the smallest possible transverse

1 @ : dimensions—one notes that as the peak magnetic field for

300.0 the SRS increases with, r}} is noticeably reduced. Figure 4
_ presentsy vs logA and shows that the decreaserjpasA

6 2000 goes from 10* to 10* is about 5 times which in fact exceeds

the increase in the peak magnetic field intengity.Second,
the SRS becomes much narrower &sis increased. The

100.0 range in vacuum phase advance for which the SRS exists
goes from 80° to 25° aA is increased. Not only this reveals
. that a more accurate field intensity tuning is necessary as the

focusing channel becomes more localized 46+ 0.2, but it
also suggests that more nonlinear resonances may appear in
the phase space because the variationwofith oy, and
hence the range of orbital frequencies in the phase space, is
larger. This is confirmed by the Poincapiots of the phase
space for the SRS shown in FiggcB-3(f), with A=10"1,
10, 10%, and 10, respectively, which correspond to the
same values oA used in Fig. 1. Again, to compare cases
with similar stability features, in all the panels the vacuum
phase advance is chosen such that the stability factor is al-
waysa=—0.58. In panelc) (A=10"1), the phase space is
completely regular with the absence of nonlinear resonances
and chaos. AsA is increased to TO[panel (d)], several
groups of nonlinear resonances emerge. However, they are
FIG. 2. Parametric space plotgx A showing the location of the first two  Still small such that neither resonance overlap nor chaos is
regions of stability for@ »=0.5 and(b) »=0.2. The beam intensity cor- noticeable. Increasing even further to 18 [panel(e)], the
responds td=5.0. nonlinear resonant islands grow considerably with more ap-
parent separatrix chaos and resonance overlap AFot(*
[panel(f)] the resonant islands are fully overlapped present-
vacuum phase advances that lead to the same stability indéxg a thick chaotic layer which seems to form an extented
a in both cases. In particular, we choose= —0.58 which  chaotic region along which the beam envelope can diffuse to
leads t00(=297.3° for A=10"1 and 0;=294.2° for A higher and higher values as the mismatched beam propa-
=10% It is seen that while for tha =10"! case the phase gates. Although in all the cases presented in Fige)-3(f)
space is completely regular, for the=10* case the increase there is always a relatively thick layer of regular trajectories
in the number of significant focusing field profile Fourier surrounding the matched solution, isolating it from any chaos
components is responsible for the onset of resonant islands that may be present, chaos in the envelope phase space may
the phase space. However, in this case the resonances atél affect beam transport, leading to beam quality loss as
small, leading to neither overlap nor chaos, and occur fasuggested in Ref. 9. This issue will be studied in more detalil
from the matched solution. This suggests that they are rein the following subsection with the aid of self-consistent
evant only for very mismatched beams. Therefore, for sucibeam simulation.
large filling factor, one may conclude that the exact shape of  Other values of the filling facton were also investigated
the focusing field is not critical for beam stability. and the overall conclusion is that=0.5 may be seen as a
On the other hand, for the smaller filling factor cage midpoint in the sense that, as shown for the SRS above, at
=0.2 shown in Fig. @), the focusing field profile plays an this value the new regions of stability are not greatly affected
important role in the beam stability and Asincreases two by the variations in the focusing field profile parameter. This
effects are clearly seen regarding the SREFirst, there is  is probably connected to the fact that exactlyzat 0.5 the
an increase in the vacuum phase advance necessary to reathusoidal A —0) and the step-functionA(—«) limits of
the SRS. Sincer, is proportional to the rms focusing field, the focusing profile present the same norii=1
this reveals that the peak magnetic field has to be raised [ cosf(s)ds=1.0, such that the peak magnetic field is the
considerably as the profile becomes more localized wittsame in both cases. Far>0.5 it was found that the new
small » not only because its average has to increase, but alsegions tend to increase in size Asis increased from O,
because the spatial region where the field is effectively apgetting closer to the ORS. In fact, one may eventually find
plied is smaller. In the case depicted in FigbR2 for in-  parameter sets for which two stable matched solutions coex-
stance, taking into account that, for the SRS increases istin the phase space. On the other hand, as shown in detail
roughly 50% as\ goes from 101 to 1¢%, the increase in the for »=0.2, when»<0.5 the new regions become narrower
peak magnetic field has to be about 3.75 times. However, iind occur at higher vacuum phase advances\as in-
one now looks at the minimum value attained by thecreased. In particular, for the thin lens regime where O,
matched beam envelope as it oscillates in the focusing—, andk,(s) tends to a series of Dirac-delta functions,
lattice—we call itr} , an important quantity since we are the onset of the new regions of stability only occuroat

log 4
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120

60

drb/ds

-60

420 L
0.

FIG. 3. Poincareplots of ther,, vs dr,/ds phase space fd¢=5.0 and(@ #=0.5, A=10"1, 67=297.3°;(b) #=0.5, A=10%, 0x=294.2°;(c) =0.2,
A=10"1, 07=297.3°;(d) =0.2, A=10', 64=357.9°;(e) »=0.2, A=1C?, 0,=418.4°;(f) »=0.2, A=10", 5,=420.2°. All the cases correspond to the
SRS with the same stability index= —0.58.

—oo, which in practice means that these regions are absenB. Self-consistent numerical beam simulation
However, as discussed in Sec. Il, this limit is not realistic due

0 th tricti : d by M n i th To further investigate beam transport stability we also
0 the restrictions imposed by Maxwell's equations on eperform self-consistent numerical simulations using the

focusing field given by Eq(1). Green’s function method with finite size macropartittes
compute the self-fields. In the simulatiohls=2500 macro-
particles are launched according to the Kapchinskij—

0-20 Vladimirskij distribution* and are transported along the fo-
cusing field profile given in Eq(3). The finite number of
0.157 i macroparticles naturally introduces envelope mismatch and
I beam distribution imprecisions which act as the seed for any
010 - possible instability to develop. As the beam propagates, we
compute the self-consistently obtained KV beam radius
0.057 B rb:(2<X2+y2>)1/2, (7)
0.00 : : : : which isv2 the rms radius, and the rms transverse emittances

e W €= 4D~ (V2 =Xy (®)

FIG. 4. The minimum oscillatory radius of stable matched solutignas a  tO determine if beam quality is preserved. |n_ E@$.and(8),
function of A for the SRS withy=0.2, K=5.0, anda= —0.58. < : > represents an average over maCfOparthleS.
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T — ditions and purposes. In any case, emittance growth is ex-
@) | pected to be smaller than the quasi-sharp-edged case exam-
12 L ined here given the relative smoothness of realistic field
§ configurations.
S0
E IV. CONCLUSIONS
”—10'8, 3 To conclude, we have performed a detailed stability
— ¢ analysis of periodically focused particle beams propagating
’ through generic focusing field profiles, which may describe
0'60 0 20' 0 40' 0 60‘ 0 860 100 more accurately a broader range of realistic system configu-
' ' ' ' ' ' rations. Special attention was given to transport within the
L4 ! ! ! ! new regions of stability found recently for vacuum-phase
' (b) advances well above 9391 In particular, we considered a
high-current beam in a periodic solenoidal focusing field
= 127 i whose profile goes from a smooth sinusoidal-like function to
<Zt a sharp-edged step-funcion as a continuous parameter is var-
ol ied. It was shown that the new regions are always present,
S irrespective to the specific field profile. However, in contrast
molg— — & L to the original region of stability, which is in general not
— &, greatly affected by the field profile, the new regions do de-
06 . . . . pend on the particular field shape. Specifically, the new re-
00 200 400 600 800  100: gions become narrower and occur at higher vacuum phase
advances as the focusing field becomes more localized. Due
20 1 to the increase in the Fourier spectral content of a focusing
| — envelope © field profile with sharper edges, the envel hase- i
o simulation profile sharper edges, the envelope phase-space is
1 i also affected presenting a larger number of nonlinear reso-
15 :
) [ nances and chaos. Although in all the cases analyzed here we
] found that there is a relatively thick layer of regular trajec-
s 1.07] - tories surrounding the matched solution, isolating it from the
] chaotic region, self-consistent simulations showed that enve-
051 B lope phase-space chaos may affect beam dynamics, leading
] to some small emittance growth.
0.0 - .
97.0 98.0 99.0 100.0 ACKNOWLEDGMENT
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FIG. 5. In panels@ and (b), rms transverse emittances and €, vs s

obtained via self-consistent numerical simulation for the same parameters &#PPENDIX: NEWTON-RAPHSON METHOD
in Figs. 3¢) and 3f), respectively. In pangk) comparison of beam radius FOR MATCHED SOLUTIONS

results obtained from the envelope equati®nand the self-consistent simu-

lations for the last 3 periods of the run presented in péojel The evolution of the envelope in the,,r{] phase space
is dictated by the normalized envelope equati@n which

can be writen in the equivalent form

In Fig. 5 we compare emittance evolution for the cases  dX
corresponding to those shown in pan@gsand(f) of Fig. 3. ds F(X.s), (A1)
One notes that while in the quasi-sinusoidal cAse10 ! of
Fig. 5@a) emittance remains leveled af ,=1, in the quasi-
sharp-edged casd =10* there is a slight growth. The
growth is probably associated with the presence of nonline
resonances seen in FigfB as suggested in Ref. 9, but is not
strong enough to destabilize the envelope dynamics. In fac
the last panel, Fig. (6), shows that the agreement between
the envelope dynamics obtained from self-consistent simuld"&y be expressed as
tions and from Eq(2) (which assumes constant emittanise X(sp+1)=®[X(sp)], (A2)

reserved throughout the focusing channel. Emittance . — e . . .
P 9 g wheres, is an initial position in the focusing lattice. In this

growth, even small as the case here, is always a tr()Ublincc’ontext a matched solutiod,, corresponds to a fixed point
factor in beam tranport. However, the disadvantage it brings f th ing that satisfi m
to beam control may be compensated by the tighter radif’ "€ Mapping that satisties

Xn=®[Xm]. (A3)

obtained in the SRS, all depending on the experimental con-

whereX=[r,,r;] is the position vector in the phase space
and F(X,s)=[r{,— k,(s)r,+K/r,+1/ir3]. To apply the
al}levvton—Raphson method to search for and verify the stabil-
ity of envelope matched solutions we consider the mapping
{unction(l) which maps the envelope phase space onto itself
every period of the focusing field. Formally, the mapping
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Let us suppose that we know a guess soluligithat is close  the right-hand side of EqA6). However a more accurate
to a matched solution such that method which was used here can be derived from the enve-
lope equation(Al). Namely, after some straightforward cal-

Xm=Xg— 0X (A4 Cllations we can show th@®=A(sy+ 1), whereA(s) is a
with X small Substituting Eq(A4) in Eq. (A3) and Taylor  matrix whose elements are continuous functionss,obb-
expanding up to linear terms i6X we obtain tained by integrating along with EGA1) the equation

SB[ X ]~ 116X =X4(So+ 1) — X4(So), (A5) dA dF

{ ol =1} o(So o(So da_dF A7)

where ds dX
_[ar(so+ 1)19r(So) arp(So+ 1)/ dr (So) using as initial conditiorA(sp)=1I. In Eq. (A7), dF/dX is

=1 ar L(so+ 1101 p(S0) 3 (So+ 1)/ a1 (S0) (A6)  the Jacobian matrix df(X,s).
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