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In this paper, the role of the focusing field profile on the stability of periodically focused particle
beams is investigated, paying special attention to the transport within the new regions of stability
found recently for vacuum-phase advances well above 90°@R. Pakter and F. B. Rizzato, Phys. Rev.
Lett. 87, 044801~2001!#. In particular, a solenoidal focusing field profile that goes from a smooth
sinusoidal-like function to a sharp-edged step-funcion as a continuous parameter is varied is
considered. It is shown that the new regions are always present, but may be very sensitive to
changes in the focusing field profile. Specifically, as the focusing field becomes more localized, the
new regions become narrower, occur at higher vacuum phase advances, and present a larger number
of nonlinear resonances and chaos in the beam envelope phase space. Although in all the cases
analyzed here it was found that there is a relatively thick layer of regular trajectories isolating the
matched solution from the chaotic region, self-consistent simulations show that envelope
phase-space chaos may affect beam dynamics, leading to some small emittance growth. ©2003
American Institute of Physics.@DOI: 10.1063/1.1619139#

I. INTRODUCTION

The physics of intense beams in periodically focusing
systems is an active area of theoretical and experimental re-
search where one looks for external field configurations ca-
pable of confining high-current, low emittance ion or elec-
tron beams.1–5 The area is crucial for the development of
several advanced particle accelerator applications such as tri-
tium production, spallation neutron source, heavy ion fusion,
coherent radiation sources, and nuclear waste transmutation,6

as well as applications in basic science.
A key aspect of periodically focused beams is their equi-

librium and stability properties. Equilibria are obtained when
the focusing forces imposed by the confining magnetic field
and the self-current balance the defocusing forces due to
electrostatic, thermal and beam rigid rotation effects in such
a way that the beam transverse radius oscillates with the
same periodicity of the focusing field. These solutions are
called thematched solutions. Until recently, it was believed
that only one matched solution is present for a given set of
beam and focusing parameters and that this solution becomes
unstable as the focusing field intensity is raised above a cer-
tain threshold.2,7–9 The threshold corresponds to a vacuum-
phase advance of 90°. Byvacuum-phase advancewe mean
the angle that a particle would rotate per focusing period in
the presence of the external field but in the abscence of
space-charge, and is used here as a measure of the focusing
magnetic field strength. Recently, however, it was shown that

new regions of stability that lead to much tighter beam con-
finement are present for focusing fields corresponding to
vacuum-phase advances well above 90°.10 In fact, the sce-
nario as the focusing field increases is the appearance of
successive regions of stability which are interrupted by gaps
where either the matched solutions are unstable or simply do
not exist. Detailed analysis on the effects of beam intensity
revealed that, although presenting some different character-
istics regarding the bifurcations of the matched solutions, the
new regions of stability are present for both emittance-
dominated and space-charge-dominated beams.11 The dy-
namical mechanism responsible for the onset of the gaps is
analyzed in Ref. 12.

Even though all the analysis done so far on the new
regions of stability considered a particular focusing field pro-
file, namely a sinusoidal-like profile, it suggests that the on-
set of the new matched solutions may be highly dependent
on the oscillatory components of the field. In the sinusoidal
case, for instance, we see that the larger the amplitude of
oscillation, the larger the instability gaps.10,11 Other models
analyze different field profiles but in the abscence of
space-charge.13 Given that and the fact that in many experi-
ments, due to engineering and design issues, the magnetic
field is more localized, presenting sharper edges and vanish-
ingly small values at sizable fractions of the periodic cell, an
important issue to be addressed is the precise role played by
the focusing field profile on the stability of periodically fo-
cused particle beams.

In this paper, we perform a detailed investigation ofa!Electronic mail: pakter@if.ufrgs.br

PHYSICS OF PLASMAS VOLUME 10, NUMBER 12 DECEMBER 2003

48111070-664X/2003/10(12)/4811/7/$20.00 © 2003 American Institute of Physics

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Wed, 04 May

2016 17:54:51



beam envelope stability for a more general periodic focusing
field profile, which may describe more accurately a broader
range of realistic system configurations. In particular, we
consider a high-current beam in a periodic solenoidal focus-
ing field whose profile goes from a smooth sinusoidal-like
function to a sharp-edged step-funcion as a continuous para-
menter is varied. It is shown that the new regions are always
present, irrespective to the specific field profile. However, in
contrast to the original region of stability, which is in general
not greatly affected by the field profile, the new regions do
depend on the specific field shape. In particular, the new
regions become narrower and occur at higher vacuum phase
advances as the focusing field becomes more localized. Due
to the increase in the Fourier spectral content of a focusing
field profile with sharper edges, the envelope phase-space is
also affected presenting a larger number of nonlinear reso-
nances and chaos. Although in all the cases analyzed here we
found that there is a relatively thick layer of regular trajec-
tories surrounding the matched solution, isolating it from the
chaotic region, self-consistent simulations show that enve-
lope phase-space chaos may affect beam dynamics, leading
to some small emittance growth.

The work is organized as follows: in Sec. II we introduce
the model with the more general focusing field profile con-
sidered; in Sec. III we analyze beam transport stability as a
function of the focusing field profile, paying special attention
to the new regions of stability and in Sec. IV we conclude
the work.

II. THE MODEL

We consider a thin, continuous beam propagating with
average axial velocitybbcêz through a periodic solenoidal
focusing magnetic field described by

B~x,y,s!5Bz~s!êz2
1
2 Bz8~s!~xêx1yêy!, ~1!

wheres5z/S5bbct/S is the dimensionless coordinate along
the beam axis,Bz(s11)5Bz(s) is the periodic magnetic
field on the beam axis, the prime denotes derivative with
respect tos, c is the speed of lightin vacuo, and S is the
periodicity length of the magnetic focusing field. In the
paraxial approximation the envelope equation that dictates
the envelope evolution of a particle beam in the focusing
magnetic field given by Eq.~1! is, in its dimensionless form

d2r b

ds2 1kz~s!r b2
K

r b
2

1

r b
3 50. ~2!

In Eq. ~2!, r b(s)5r bdimensional
/(Se)1/2 is the normalized beam

envelope radius andK52q2NbS/egb
3bb

2mc2 is the normal-
ized perveance of the beam wheree is the unnormalized
emittance of the beam,Nb is the number of particles per unit
axial length, andq, m, and gb5(12bb

2)21/2 are, respec-
tively, the charge, mass, and relativistic factor of the beam
particles. The focusing field is characterized by the normal-
ized focusing strength parameterkz(s11)5kz(s) related to
the magnetic field bykz(s)5q2Bz

2(s)S2/4gb
2bb

2m2c4.
In order to investigate the role of the focusing field pro-

file on beam transport, we consider a focusing field param-
eter of the form

kz~s!5s0
2F11cosu~s!

N G , ~3!

with the phase function given by

u~s!5pH tan21@D~ s̄1h/2!#1tan21@D~ s̄2h/2!#

tan21@D~11h!/2#1tan21@D~12h!/2#J , ~4!

wheres05@*0
1kz(s)ds#1/2 is the vacuum phase advance in

the smooth-beam approximation, which is proportional to the
rms focusing field,N511*0

1 cosu(s)ds is used to normalize
the function,s̄5mod(s11/2,1)21/2 is periodic ins and lies
always in the range21/2< s̄<1/2, D.0 is the focusing
field profile paramenter, and 0,h<1 is the filling factor.
The functionk(s) in Eq. ~3! is constructed such that for
smallD it resembles a smooth sinusoidal function of period 1
in s, while for increasingD it starts developing sharper
edges, eventually turning into a discontinuous periodic step
function of filling factorh for infinite D. In fact, in the limit
D!1 the arguments of the inverse tangent functions in Eq.
~4! are small, allowing the approximation tan21(x)5x which
leads tou(s)52p s̄ and to the sinusoidal focusing field pro-
file

kz~s!5s0
2@11cos~2ps!#, ~5!

studied in Refs. 10 and 11. Note that in this limit,h plays no
role in focusing field profile. On the other hand, whenD
@1 the inverse tangent functions present an abrupt change
from 2p/2 to p/2 as their arguments change sign, allowing
the approximation tan21(x)5(p/2)sign(x) which leads to a
discontinuous phase function withu( s̄,2h/2)52p,
u(2h/2, s̄,h/2)50 andu( s̄.h/2)5p, and to the step-
function focusing field lattice with filling factorh,

kz~s!5H 0, h/2,s,12h/2

s0
2/h, otherwise.

~6!

Note that for allD, the denominator in Eq.~4! guarantees
that the phase function completes a full cycle fromu52p
to u5p ass̄ goes from21/2 to 1/2, and consequentlykz(s)
is always continuous at the lattice boundaries.

It is worth pointing out that the static magnetic field in
Eq. ~1! must satisfy the Maxwell’s equations¹•B50 and
¹3B50. While the first equation is exactly satisfied, the
second one is valid only if we assume that the transverse
beam envelope is much smaller than the typical length of
variation of Bz along the beam axis, such thatr b

nBz
(n)/Bz

!1, whereBz
(n)[dnBz /dsn, and terms of ordern>2 are

neglected. This assumption is certainly not true asD→` and
the field profile tends to the sharp-edged step-function of Eq.
~6!. Therefore, although the step-function lattice is widely
used to model periodic focusing fields, it is important to keep
in mind that real focusing channels have a smoothkz(s)
which is more properly represented by a finiteD.

To illustrate the focusing field profiles in Eq.~3!, Fig. 1
showsk(s) for h50.2, s0570° and four different values of
D: 1021, 101, 102, and 104. It is clear that asD increases, the
focusing field becomes more localized with sharper edges,
being very simililar to the step-function focusing lattice for
D5104. Moreover, comparing the phase functionu(s) for
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the profile obtained withD51021 with that of the sinusoidal
function u(s)52p s̄ we found that they differ by less than
0.1% for alls.

III. BEAM STABILITY ANALYSIS

A. Envelope equation analysis

In this section, we analyze the stability of beams propa-
gating through the focusing field given in Eq.~3!, as the
focusing field profile is varied. We pay special attention to
the new regions of stability found in Refs. 10 and 11. To
perform the analysis we use a Newton–Raphson method to
search for and verify the stability of envelope matched solu-
tions obtained from Eq.~2!. The Newton–Raphson method
applied to the current envelope problem is described in detail
in the Appendix. The stability is determined with the aid of
the stability indexa defined asa5cos(kfix), wherekfix is the
wave number of small linear oscillations around the periodic
trajectory, obtained with the Newton–Raphson method. For
stable orbits wherekfix is a real number,uau,1; if a crosses
the lower boundarya521 it undergoes a period doubling
bifurcation loosing stability, and if the orbit crosses the upper
boundarya511 the orbit undergoes an inverse tangent bi-
furcation with a previous unstable fixed point. In order to
gather some information on the nonlinear stability of the
matched solutions, we also make use of Poincare´ plots of the
envelope phase-space. The plots are obtained by integrating
the envelope equation~2! and recording the pair
(r b ,drb /ds) every period of the external focusing field at
integer values ofs.14

Generally, the bifurcation scenario for the matched solu-
tions as one increases the vacuum phase advance is as fol-
lows; a detailed description is found in Refs. 10 and 11.
Stable matched solutions are born in the phase space with
a511. For the original matched solution, this occurs ex-
actly at s050°, whereas for the new regions of stability it
occurs at differents0.180°. As the vacuum phase advance
is increased, the respectivea moves towardsa521. When
a521 is reached, the matched solution suffers a period
doubling bifurcation and becomes unstable. We define as a
region of stability, the range ofs0 that goes from the onset
of the corresponding stable matched solution witha511
until it bifurcates witha521. As a matter of fact, before

eventually disappearing permanently from the phase space,
the matched solutions cross back thea521 line and re-
cover their stability ass0 is further increased. However, as
shown in Ref. 11 the matched solution is not useful for beam
confinement after its restabilization because beam emittance
growth was observed in self-consistent numerical simula-
tions for these parameter regions.

In harmonic cases where the confining magnetic field
oscillates sinusoidally, the following series of analytic results
were obtained.11,12The new regions of stability occurs when
the oscillatory frequency of the magnetic field matches the
frequency with which the envelope itself oscillates. This fre-
quency matching may take place in virtue of the fact that
while the magnetic field has indeed a fixed frequency, the
envelope frequency varies over a range of values determined
by all the control parameters of the system. In particular, the
envelope frequency increases with the magnetic field inten-
sity and has an approximate value 2s0 . Since the magnetic
field frequency is 2p, one concludes that the second region
approximately lies in the parametric region determined by
2s0;2p, or s0;180°.10 More precise calculations based
on normal forms of bifurcation theory were extensively de-
veloped in Refs. 12 and 11 and actually show that after a
parametric gap where no matched solution is present is
cleared, the second region is formed whens0 actually be-
comes larger than 180°. In harmonic cases the size of the
gap along thes0 axis is roughly given by 180°.

In the general case of anharmonic confining fields, nu-
merical analysis is needed but we observe that the basic re-
sults still hold except perhaps for the fact that the gaps may
become larger, as investigated in what follows.

To determine the role of the focusing field profile on the
beam transport stability we construct a parametric space plot
of s03D displaying the locations of the different regions of
stability. Recalling from Sec. I,D determines the overall
shape of the focusing field: asD is increased from small
values D!1, the focusing field profile continuously goes
from a smooth sinusoidal function to a sharp-edged step-
function asD→`. In the plots we use a Newton–Raphson
method to numerically determine the boundariess0

5s0(D) where stable matched solutions emerge in the phase
space witha511 and lose stability witha521. The re-
sults for the first two regions of stability~the original and its
first neighbor! obtained forh50.5 ~a! and h50.2 ~b! are
shown in Fig. 2, where the beam intensity is chosen to be
K55.0. The black regions correspond to stable regions; the
region belows0'100° is the original region of stability
~ORS! and the other one is the second region of stability
~SRS!. Higher order new regions of stability were also inves-
tigated and the results are qualitatively the same as for the
SRS.

For the larger filling factor caseh50.5, Fig. 2~a! shows
that the regions of stability are not greatly affected by the
variations inD. Only some narrowing of the SRS is noticed
as the focusing field becomes more localized~increasingD!.
Panels~a! and ~b! of Fig. 3 compare Poincare´ plots of the
phase space for the SRS obtained for the limiting casesD
51021 and D5104 of Fig. 2~a!. In order to compare
matched solutions with similar stability features, we consider

FIG. 1. Focusing field profilekz(s) for different values of the parameterD.
The other parameters areh50.2 ands0570°.
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vacuum phase advances that lead to the same stability index
a in both cases. In particular, we choosea520.58 which
leads tos05297.3° for D51021 and s05294.2° for D
5104. It is seen that while for theD51021 case the phase
space is completely regular, for theD5104 case the increase
in the number of significant focusing field profile Fourier
components is responsible for the onset of resonant islands in
the phase space. However, in this case the resonances are
small, leading to neither overlap nor chaos, and occur far
from the matched solution. This suggests that they are rel-
evant only for very mismatched beams. Therefore, for such
large filling factor, one may conclude that the exact shape of
the focusing field is not critical for beam stability.

On the other hand, for the smaller filling factor caseh
50.2 shown in Fig. 2~b!, the focusing field profile plays an
important role in the beam stability and asD increases two
effects are clearly seen regarding the SRS.~i! First, there is
an increase in the vacuum phase advance necessary to reach
the SRS. Sinces0 is proportional to the rms focusing field,
this reveals that the peak magnetic field has to be raised
considerably as the profile becomes more localized with
smallh not only because its average has to increase, but also
because the spatial region where the field is effectively ap-
plied is smaller. In the case depicted in Fig. 2~b!, for in-
stance, taking into account thats0 for the SRS increases
roughly 50% asD goes from 1021 to 104, the increase in the
peak magnetic field has to be about 3.75 times. However, if
one now looks at the minimum value attained by the
matched beam envelope as it oscillates in the focusing
lattice—we call it r b* , an important quantity since we are

interested in beams with the smallest possible transverse
dimensions—one notes that as the peak magnetic field for
the SRS increases withD, r b* is noticeably reduced. Figure 4
presentsr b* vs logD and shows that the decrease inr b* asD
goes from 1021 to 104 is about 5 times which in fact exceeds
the increase in the peak magnetic field intensity.~ii ! Second,
the SRS becomes much narrower asD is increased. The
range in vacuum phase advance for which the SRS exists
goes from 80° to 25° asD is increased. Not only this reveals
that a more accurate field intensity tuning is necessary as the
focusing channel becomes more localized forh50.2, but it
also suggests that more nonlinear resonances may appear in
the phase space because the variation ofa with s0 , and
hence the range of orbital frequencies in the phase space, is
larger. This is confirmed by the Poincare´ plots of the phase
space for the SRS shown in Figs. 3~c!–3~f!, with D51021,
101, 102, and 104, respectively, which correspond to the
same values ofD used in Fig. 1. Again, to compare cases
with similar stability features, in all the panels the vacuum
phase advance is chosen such that the stability factor is al-
waysa520.58. In panel~c! (D51021), the phase space is
completely regular with the absence of nonlinear resonances
and chaos. AsD is increased to 101 @panel ~d!#, several
groups of nonlinear resonances emerge. However, they are
still small such that neither resonance overlap nor chaos is
noticeable. IncreasingD even further to 102 @panel~e!#, the
nonlinear resonant islands grow considerably with more ap-
parent separatrix chaos and resonance overlap. ForD5104

@panel~f!# the resonant islands are fully overlapped present-
ing a thick chaotic layer which seems to form an extented
chaotic region along which the beam envelope can diffuse to
higher and higher values as the mismatched beam propa-
gates. Although in all the cases presented in Figs. 3~c!–3~f!
there is always a relatively thick layer of regular trajectories
surrounding the matched solution, isolating it from any chaos
that may be present, chaos in the envelope phase space may
still affect beam transport, leading to beam quality loss as
suggested in Ref. 9. This issue will be studied in more detail
in the following subsection with the aid of self-consistent
beam simulation.

Other values of the filling factorh were also investigated
and the overall conclusion is thath50.5 may be seen as a
midpoint in the sense that, as shown for the SRS above, at
this value the new regions of stability are not greatly affected
by the variations in the focusing field profile parameter. This
is probably connected to the fact that exactly ath50.5 the
sinusoidal (D→0) and the step-function (D→`) limits of
the focusing profile present the same normN51
1*0

1 cosu(s)ds51.0, such that the peak magnetic field is the
same in both cases. Forh.0.5 it was found that the new
regions tend to increase in size asD is increased from 0,
getting closer to the ORS. In fact, one may eventually find
parameter sets for which two stable matched solutions coex-
ist in the phase space. On the other hand, as shown in detail
for h50.2, whenh,0.5 the new regions become narrower
and occur at higher vacuum phase advances asD is in-
creased. In particular, for the thin lens regime whereh→0,
D→`, andkz(s) tends to a series of Dirac-delta functions,
the onset of the new regions of stability only occur ats0

FIG. 2. Parametric space plotss03D showing the location of the first two
regions of stability for~a! h50.5 and~b! h50.2. The beam intensity cor-
responds toK55.0.
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→`, which in practice means that these regions are absent.
However, as discussed in Sec. II, this limit is not realistic due
to the restrictions imposed by Maxwell’s equations on the
focusing field given by Eq.~1!.

B. Self-consistent numerical beam simulation

To further investigate beam transport stability we also
perform self-consistent numerical simulations using the
Green’s function method with finite size macroparticles15 to
compute the self-fields. In the simulationsN52500 macro-
particles are launched according to the Kapchinskij–
Vladimirskij distribution1 and are transported along the fo-
cusing field profile given in Eq.~3!. The finite number of
macroparticles naturally introduces envelope mismatch and
beam distribution imprecisions which act as the seed for any
possible instability to develop. As the beam propagates, we
compute the self-consistently obtained KV beam radius

r b5~2^x21y2&!1/2, ~7!

which is& the rms radius, and the rms transverse emittances

ez54@^z2&^z82&2^zz8&2#1/2, z5x,y ~8!

to determine if beam quality is preserved. In Eqs.~7! and~8!,
^¯& represents an average over macroparticles.

FIG. 3. Poincare´ plots of ther b vs drb /ds phase space forK55.0 and~a! h50.5, D51021, s05297.3°; ~b! h50.5, D5104, s05294.2°; ~c! h50.2,
D51021, s05297.3°; ~d! h50.2, D5101, s05357.9°; ~e! h50.2, D5102, s05418.4°; ~f! h50.2, D5104, s05420.2°. All the cases correspond to the
SRS with the same stability indexa520.58.

FIG. 4. The minimum oscillatory radius of stable matched solutionsr b* as a
function of D for the SRS withh50.2, K55.0, anda520.58.
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In Fig. 5 we compare emittance evolution for the cases
corresponding to those shown in panels~c! and~f! of Fig. 3.
One notes that while in the quasi-sinusoidal caseD51021 of
Fig. 5~a! emittance remains leveled atex,y51, in the quasi-
sharp-edged caseD5104 there is a slight growth. The
growth is probably associated with the presence of nonlinear
resonances seen in Fig. 3~f!, as suggested in Ref. 9, but is not
strong enough to destabilize the envelope dynamics. In fact,
the last panel, Fig. 5~c!, shows that the agreement between
the envelope dynamics obtained from self-consistent simula-
tions and from Eq.~2! ~which assumes constant emittance! is
preserved throughout the focusing channel. Emittance
growth, even small as the case here, is always a troubling
factor in beam tranport. However, the disadvantage it brings
to beam control may be compensated by the tighter radii
obtained in the SRS, all depending on the experimental con-

ditions and purposes. In any case, emittance growth is ex-
pected to be smaller than the quasi-sharp-edged case exam-
ined here given the relative smoothness of realistic field
configurations.

IV. CONCLUSIONS

To conclude, we have performed a detailed stability
analysis of periodically focused particle beams propagating
through generic focusing field profiles, which may describe
more accurately a broader range of realistic system configu-
rations. Special attention was given to transport within the
new regions of stability found recently for vacuum-phase
advances well above 90°.10,11 In particular, we considered a
high-current beam in a periodic solenoidal focusing field
whose profile goes from a smooth sinusoidal-like function to
a sharp-edged step-funcion as a continuous parameter is var-
ied. It was shown that the new regions are always present,
irrespective to the specific field profile. However, in contrast
to the original region of stability, which is in general not
greatly affected by the field profile, the new regions do de-
pend on the particular field shape. Specifically, the new re-
gions become narrower and occur at higher vacuum phase
advances as the focusing field becomes more localized. Due
to the increase in the Fourier spectral content of a focusing
field profile with sharper edges, the envelope phase-space is
also affected presenting a larger number of nonlinear reso-
nances and chaos. Although in all the cases analyzed here we
found that there is a relatively thick layer of regular trajec-
tories surrounding the matched solution, isolating it from the
chaotic region, self-consistent simulations showed that enve-
lope phase-space chaos may affect beam dynamics, leading
to some small emittance growth.
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APPENDIX: NEWTON–RAPHSON METHOD
FOR MATCHED SOLUTIONS

The evolution of the envelope in the@r b ,r b8# phase space
is dictated by the normalized envelope equation~2!, which
can be writen in the equivalent form

dX

ds
5F~X,s!, ~A1!

whereX[@r b ,r b8# is the position vector in the phase space
and F(X,s)5@r b8 ,2kz(s)r b1K/r b11/r b

3#. To apply the
Newton–Raphson method to search for and verify the stabil-
ity of envelope matched solutions we consider the mapping
function F which maps the envelope phase space onto itself
every period of the focusing field. Formally, the mapping
may be expressed as

X~s011!5F@X~s0!#, ~A2!

wheres0 is an initial position in the focusing lattice. In this
context a matched solutionXm corresponds to a fixed point
of the mapping that satisfies

Xm5F@Xm#. ~A3!

FIG. 5. In panels~a! and ~b!, rms transverse emittancesex and ey vs s
obtained via self-consistent numerical simulation for the same parameters as
in Figs. 3~c! and 3~f!, respectively. In panel~c! comparison of beam radius
results obtained from the envelope equation~2! and the self-consistent simu-
lations for the last 3 periods of the run presented in panel~b!.
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Let us suppose that we know a guess solutionXg that is close
to a matched solution such that

Xm5Xg2dX ~A4!

with dX small. Substituting Eq.~A4! in Eq. ~A3! and Taylor
expanding up to linear terms indX we obtain

$dF@Xg#2I %dX5Xg~s011!2Xg~s0!, ~A5!

where

dF5F ]r b~s011!/]r b~s0!]r b~s011!/]r b8~s0!

]r b8~s011!/]r b~s0!]r b8~s011!/]r b8~s0!G ~A6!

is the tangent mapping matrix andI is the 232 identity
matrix. The Newton–Raphson method consists of, given an
initial guess for the matched solutionXg and integrating the
appropriate differential equations over one period of focus-
ing field, solve fordX in Eq. ~A5! and use this result in Eq.
~A4! to obtain a new approximation to the matched solution
Xm . After iterating this process many times, the solution
may converge to a given matched solution of the system.
Once convergence is reached,dF becomes the matrix that
descrides the evolution~mapping! of infinitesimal perturba-
tions around the matched solution, and therefore has infor-
mation on the stability of the matched solution. In particular,
if uTrace@dF#u.2, its eigenvalues are real and the matched
solution is an unstable saddle point—note that the envelope
equation~A1! is conservative such that det@dF#51—on the
other hand, ifuTrace@dF#u,2 the eigenvalues are complex
on the form exp(ikfix) and exp(2ikfix) and the surrounding
orbits rotate with wave numberkfix around the stable
matched solution. The stability index is coveniently defined
asa5(1/2)Trace@dF#.

In principle, matrixdF can be evaluateddirectly by nu-
merically computing approximations to the derivatives on

the right-hand side of Eq.~A6!. However a more accurate
method which was used here can be derived from the enve-
lope equation~A1!. Namely, after some straightforward cal-
culations we can show thatdF5A(s011), whereA(s) is a
matrix whose elements are continuous functions ofs, ob-
tained by integrating along with Eq.~A1! the equation

dA

ds
5

dF

dX
•A, ~A7!

using as initial conditionA(s0)5I . In Eq. ~A7!, dF/dX is
the Jacobian matrix ofF(X,s).
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