
PHYSICAL REVIEW E 93, 023206 (2016)
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The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized
relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for
the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail.
A modified characteristic charge screening length and “sound speed” are introduced, for relativistic quantum
plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived.
Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic
pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations
is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A
brief discussion of possible applications in laboratory and space plasmas is included.
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I. INTRODUCTION

Electron degeneracy in dense quantum plasmas has recently
gained increasing interest, due to its relevance in a wide range
of plasmas in astrophysics, and also in modern technological
applications. Dense quantum plasmas are found in ultraintense
laser beam-solid matter interaction experiments [1], in which
the plasmon frequency is measurably shifted due to quantum
effects [2,3]. Quantum plasmas are relevant in femtosecond
pump-probe spectroscopy connected to the collective dynam-
ics of degenerate electrons in metallic nanostructures and thin
films [4], in the physics of quantum diodes [5], nanophotonics
and nanowires [6], nanoplasmonics [7], high-gain quantum
free-electron lasers [8], quantum wells and piezomagnetic
quantum dots [9]. Degenerate plasmas may also exist in dense
astrophysical objects, e.g., in the core of giant planets [10] and
in the crust of white dwarfs, brown dwarfs, neutron stars, and
magnetars [11,12].

In a degenerate plasma, the electron number density is
extremely high and the temperature is very low. When the
de Broglie wavelength of electrons (which is the spatial
extension of the wave function due to the quantum uncertainty
principle) can be comparable to, or larger than, the average
interelectron distance d = n

−1/3
e , quantum effects become

significant and cannot be ignored. Electrons can more easily
reach the quantum regime than ions because of their smaller
mass; at room temperature electrons begin to behave quantum
mechanically at number density of about 1020 cm−3, while the
electron density for metals is normally larger than 1022 cm−3,
giving rise to electron Fermi temperature of order 104 K, to
be considered within the quantum regime. The continuous
motion of an electron in degenerate plasma around its position
exerts a pressure on the surrounding plasma; this pressure
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is referred to as the electron degeneracy pressure Pe. An
expression for the degeneracy pressure was employed by
Chandrasekhar [13,14] to estimate the critical mass limit of
white dwarfs. Recently, Shukla and Eliasson [15,16] discussed
theoretically the nonlinear aspects and collective interactions
for degenerate plasmas. Later, Haas and Kourakis [17] used
the one-dimensional version of the electron pressure equation,
expressed by Chandrasekhar [13,14], to study the evolution of
hydrodynamic Langmuir waves in fully degenerate relativistic
plasma. McKerr et al. adopted the same fluid model to
investigate the occurrence of modulated envelope structures
within a (1D) nonlinear Schrödinger (NLS) framework [18].

Interestingly, the existence of acoustic-type modes has been
proposed in white dwarf stars [19,20], where ions might
provide the inertia while the electron degeneracy pressure
may provide the restoring force. Although such modes have
been argued to exist [21], these haven’t been observed to
date [20]. The possibility for the occurrence of acoustic
waves was also suggested in relevance with extreme events
such as supernova explosions [19,22]. Various theoretical
investigations have been proposed, predicting excitations that
are yet to be detected [23–26].

The propagation of small amplitude nonlinear excitations,
in the form of electrostatic pulses, in a multidimensional (2D
or 3D) plasma geometry is known to be governed by the
Zakharov-Kuznetsov (ZK) equation [27], which is a generic
paradigm for solitary waves in dispersive media [28]. The
ZK equation can be viewed as a canonical multidimensional
extension of the Korteweg-de Vries (KdV) equation [29].
Zakharov and Kuznetsov [27] used this equation to study the
behavior of weakly nonlinear ion acoustic waves (IAWs) in
plasma comprising cold ions and hot isothermal electrons in
the presence of a uniform magnetic field. Frycz and Infeld [30]
investigated the instability of small amplitude nonlinear waves
by using the solutions of the ZK equation. Later, Allen
and Rowlands [31,32] investigated the stability profile of
solutions of the ZK equation via the k-expansion perturbation
method, based on the Floquet theorem. The small-k expansion
perturbation method [31,32] has also been employed to study
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the instability of nonlinear waves obliquely propagating in
magnetized plasmas [33–35].

In this article, we have considered a three-dimensional
(3D) fluid model for ion acoustic excitations in a degenerate
relativistic plasma immersed in an external static magnetic
field. The electron pressure is assumed to be described by a
Chandrasekhar-type equation of state [13,14]. At a first step,
we have carried out a Fourier-type linear analysis, to identify
linear modes occurring in this model. A modified ion-acoustic
wave was thus shown to exist, alongside a Langmuir-like
“optical” mode, characterized by a frequency cutoff at the
origin. Proceeding the analysis by anticipating stationary-
profile solitary structures, we have adopted a small-amplitude
nonlinear multiscale (reductive perturbation) theory, in search
of an evolution equation for the amplitude of an electrostatic
perturbation. The analysis shows that these structures may
be unstable to external perturbations, which is arguably due
to the effect of bilateral perturbations, in contrast with the
one-dimensional case [31,32].

This paper is organized in the following manner. In
Sec. II, we introduce a relativistic plasma fluid model for
low-frequency (ionic scale) electrostatic waves.

A linear analysis is carried out, and the existence and disper-
sion characteristics of linear modes are discussed in Sec. IV.
A nonlinear perturbation technique is employed in Sec. V,
where we show that the electrostatic potential is governed by
a Zakharov-Kuznetsov equation. The characteristic properties
of solitary waves occurring as exact solution of the model are
examined in Sec. VI. The stability of the localized solutions
is investigated via an adequate multiscale (small-k expansion)
methodology in Sec. VII. Finally, we discuss our results in the
concluding Sec. VIII.

II. THE MODEL

Let us consider the propagation of ion acoustic (IA)
excitations in a degenerate relativistic plasma, in the presence
of an external static magnetic field aligned to the z direction:
B = B0ẑ (where B0 denotes the magnetic field strength and
ẑ is the unit vector along z). We shall adopt the relativistic
plasma fluid model introduced in Ref. [18], extending it to a
multidimensional geometry, in the form

∂

∂t
(γini) + ∇ · (γiniui) = 0, (1)

∂

∂t
(γene) + ∇ · (γeneue) = 0, (2)

∂

∂t
(γiui) + (ui · ∇)(γiui) = −ezi

mi

∇φ + eziB0

mi

(ui × ẑ),

(3)

0 = e∇φ − eB0(ue × ẑ) − mec
2γe

Pe + ρe

(
∇+ue

c2

∂

∂t

)
Pe, (4)

∇2φ = e

ε0
(γene − γizini), (5)

where ne and ni denote the electron and ion fluid number
densities, respectively, ue and ui are the corresponding fluid
velocities, and the electron mass (me), ion mass (mi), electron

charge (e, in absolute value), ionic charge (+zie), and light
speed (c) carry their usual notation. The latter system has been
expressed in SI units.

The electron pressure Pe is given by

Pe = m4c5

24π2�3
[α(2α2 − 3)(α2 + 1)1/2 + 3 sinh−1 α], (6)

where � = h/2π is the reduced Planck constant.
Furthermore [18],

Pe + ρe = nemec
2
√

α2 + 1, (7)

where ρe is the electron fluid internal energy density. We have
defined the parameter

α = pFe

mec
= �

mec
(3π2ne)1/3. (8)

Considering the equilibrium state, we shall also define

α0 = �

mec
(3π2ne0)1/3, hence α = α0

(
ne

neo

)1/3

.

Charge neutrality condition at equilibrium imposes ne0 =
zini0.

It should be noted, for rigor, that an additional quantum
term, namely the so-called Bohm potential, in account of
quantum diffraction, could have been added to the momentum
equations. Such a contribution, however, would be comparable
to the Fermi pressure only for extremely small wavelengths
of the order of the mean interparticle distance [36], and will
therefore be omitted in this study.

III. SCALING AND DIMENSIONLESS MODEL

We shall normalize Eqs. (1)–(5), upon setting, formally
∇ → L−1

0 ∇̃ , t → T0 t̃ , ui → V0ũi , ue → V0ũe and φ → ϕ0φ̃,
where the quantities with tildes are dimensionless. Once the
transformation has been carried out, leading to the system of
Eqs. (9)–(13) below, the tilde will be omitted in the following,
for simplicity. The scaling quantities adopted above were
chosen appropriately as

L0 =
(

ε0EFe

e2z2
i nio

)1/2

, V0 = L0

T0
=

(
EFe

mi

)1/2

,

T0 = ω−1
pi =

(
ε0mi

e2z2
i nio

)1/2

, and ϕ0 = EFe

ezi

.

The electron Fermi energy EFe in the relativistic regime reads

EFe =
√

p2
Fec

2 + m2
ec

4 − mec
2.

Combining with Eqs. (1)–(8), we obtain the following set
of normalized (dimensionless) equations:

∂

∂t
(γini) + ∇ · (γiniui) = 0, (9)

∂

∂t
(γene) + ∇ · (γeneue) = 0, (10)

∂

∂t
(γiui) + (ui · ∇)(γiui) = −∇φ + �(ui × ẑ), (11)

023206-2



WEAKLY NONLINEAR ION-ACOUSTIC EXCITATIONS IN . . . PHYSICAL REVIEW E 93, 023206 (2016)

0 = ∇φ − �(ue × ẑ) − βα2
0γen

−1/3
e

α2
0n

2/3
e + 1

(
∇ + δ ue

∂

∂t

)
ne,

(12)

∇2φ = γene − γini, (13)

where we have defined the quantities

� = eziB0T0

mi

= ωci

ωpi

, β = mec
2

3eφ0
= mec

2zi

3EFe

,

and δ = V 2
0

c2
= EFe

mic2
. (14)

The above system of equations forms the basis of the
analysis that follows. All quantities are henceforth to be
considered as dimensionless, unless otherwise stated.

IV. LINEAR ANALYSIS

Let us consider small-amplitude harmonic excitations, by
assuming that all of the state variables vary as

G = G0 + G1e
i(k.r−ωt),

where G = [ni,ne,ui ,ue,φ] is the state vector. The reference
state and the corresponding (small) perturbation are expressed
as G0 = [1,1,0,0,0] and G1 = [ni1,ne1,ui1,ue1,φ1] (the no-
tation adopted here is self-explanatory). A lengthy set of
linear equations is thus obtained, in terms of the normalized
frequency ω and the wave number k (components). A tedious
but perfectly straightforward calculation leads to the dispersion
relation

ω4 − [
ω2

0(k) + �2
]
ω2 + k2

‖
k2 + F−1

�2 = 0 , (15)

where we have defined the quantity F = βα2
0

α2
0+1

. The modulus

of the wave vector is expressed in the usual way as k2 =
k2
x + k2

y + k2
z ≡ k2

‖ + k2
⊥. The function

ω2
0(k) = k2

k2 + F−1
, (16)

represents the frequency (square) of linear IAWs in an
unmagnetized plasma [to see this, set � = 0 in the latter
dispersion relation, to obtain ω = ω0(k)].

The solution of the dispersion relation Eq. (15) reads

ω2
± = 1

2

[
ω2

0(k) + �2
]

×
⎡⎣1 ±

√√√√1 − 4k2
‖

(k2 + F−1)

�2[
ω2

0(k) + �2
]2

⎤⎦. (17)

We note the existence of two modes, namely a lower (slow)
mode, ω−, and an upper (fast) mode, ω+. These represent,
respectively, an acoustic mode and a Langmuir-like mode,
the latter featuring a cutoff (gap) frequency in the infinite
wavelength limit. The two dispersion curves are depicted
in Figs. 1–3. (Clearly, the analogy with Langmuir waves is

FIG. 1. The angular frequency ω (scaled by ωpi) is depicted
versus the parallel component of the wave number k‖ (scaled by
L−1

0 ). Here, the lower curves (blue color) and the upper curve(s)
(red color) represent the lower (acoustic) and upper (Langmuir-like)
mode, ω− and ω+, respectively. We have taken ne0 = 1 × 1035 m−3,

i.e., α0 = 0.55, EFe = 73.4 KeV, �(= ωci/ωpi) = 0.25. The inset
labels refer to indicative values of k⊥ (scaled by L−1

0 ).

only structural here: this mode is sustained by the ion inertia
too, instead of the electron inertia—here neglected—which
would sustain electron plasma-Langmuir waves, properly
speaking.)

A. Parallel propagation

Let us consider the case k = k‖ (viz., k⊥ = 0). The
dispersion relation (15) reduces to

ω4 − [
ω2

0(k‖) + �2
]
ω2 + ω2

0(k‖)�2 = 0 , (18)

whose solution, say ω = ω‖, is given by

ω2
‖ = ω2

0(k‖) = k2
‖

k2
‖ + F−1

. (19)

FIG. 2. The angular frequency ω (scaled by ωpi) is depicted
versus the perpendicular component of the wave number k⊥ (scaled
by L−1

0 ). Here, the lower curves (blue color) and the upper curves (red
color) represent the lower and upper mode, ω− and ω+, respectively.
We have taken ne0 = 1 × 1035 m−3, i.e., α0 = 0.55, EFe = 73.4 KeV,
�(= ωci/ωpi) = 0.25. The inset labels refer to indicative values of
k‖ (scaled by L−1

0 ).
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FIG. 3. Three-dimensional plot of the lower (acoustic) and upper
(Langmuir-like) mode: the angular frequency ω (scaled by ωpi) is
depicted versus both parallel and perpendicular components of the
wave number (k‖ and k⊥, both scaled by L−1

0 ). We have taken ne0 =
1 × 1035 m−3, i.e., α0 = 0.55, EFe = 73.4 KeV, �(= ωci/ωpi) =
0.25.

Here, we have overlooked a trivial nonpropagating solution
ω = �. Noting the limits

lim
k‖→0,k⊥→0

ω‖ = 0, (20)

and lim
k‖→0

(
ω‖
k‖

)
=

√
F =

√
βα2

0

α2
0 + 1

, (21)

we deduce that the parallel solution is a propagating acoustic
mode and

√
F is physically to be interpreted as the phase

speed of this mode. This is essentially the true “sound speed”
in this plasma configuration, taking into account relativistic
and degeneracy effects.

B. Perpendicular propagation

Let us now consider the case k = k⊥ (i.e., k‖ = 0), in
account of propagation in the transverse direction, with respect
to the ambient magnetic field (direction). The frequency of
transverse modes, say, ω = ω⊥, is given by the dispersion
relation Eq. (15), which now reduces to

ω4
⊥ − [ω2

⊥0 + �2]ω2
⊥ = 0 . (22)

Hence, the perpendicular frequency can be obtained as

ω2
⊥ = ω2

0(k⊥) + �2, (23)

ω2
0(k⊥) = k2

⊥
k2
⊥ + F−1

. (24)

Equation (23) shows that the perpendicular mode has a
nonzero value �2 at k⊥ → 0.

The parallel and perpendicular modes are depicted in Fig. 4
versus the relevant wave number (k‖ and k⊥, respectively), for
different values of the equilibrium density ne0. We note that,
in both cases (parallel and perpendicular mode), the angular
frequency is lower in higher-density plasmas: relativistic
effects slow down ionic vibrations for higher electron densities,
as intuitively expected.

FIG. 4. The parallel mode (in blue color) and the perpendicular
mode (in red color) (angular frequency ω scaled by ωpi) are depicted
versus the relevant wave number k (here representing k‖ or k⊥,
respectively, for the lower or upper curves, scaled by L−1

0 ). Different
density ne0 values have been considered (in units of m−3). In all plots,
we have taken �(= ωci/ωpi) = 0.25.

C. The unmagnetized limit

In the vanishing magnetic field limit, i.e., upon setting � =
0, one obtains

ω2
− = 0, ω2

+ = ω2
0(k) = k2

k2 + F−1
. (25)

Equation (25) represents the linear dispersion relation of IAWs
in an unmagnetized plasma. As physically expected, the latter
dispersion relation coincides with the analogous expression
for parallel propagation, since the Lorentz force disappears in
the latter case.

D. Asymptotic behavior

For large values of k‖, the solution Eq. (17) of the dispersion
relation Eq. (15) behaves as

lim
k‖→∞

(ω2
−) = �2, lim

k‖→∞
(ω2

+) = 1 . (26)

In an analogous way, for large values of k⊥, one obtains

lim
k⊥→∞

(ω2
−) = 0, lim

k⊥→∞
(ω2

+) = �2 + 1. (27)

E. Relativistic screening mechanism

The cases considered above indicate that the functional
form ω2

0(k) is an essential characteristic of the wave dispersion.
We can rewrite ω2

0(k) as

ω2
0(k) = k2

k2 + (
λrel

sc

)−2 , (28)

where λrel
sc is the characteristic charge screening length (here

normalized by L0), in the relativistic regime:

λrel
sc = F−1/2L0 =

(
βα2

0

α2
0 + 1

)−1/2(
ε0EFe

e2z2
i nio

)1/2

. (29)

λrel
sc is analogous to the classical Debye radius λD , here

modified in account of relativistic effects. Accordingly, the
(modified) “true” sound speed in the plasma Crel

s , taking into
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ne0 (1035 m−3)

FIG. 5. The characteristic “sound speed” Crel
s (scaled by V0) is

depicted versus ne0 (in units of 1035 m−3).

account the relativistic correction, reads

Crel
s = F 1/2V0 =

(
βα2

0

α2
0 + 1

)1/2(
EFe

mi

)1/2

. (30)

In the latter two expressions, we have recovered dimensions,
for clarity. We emphasize that both the sound speed Crel

s and
the Debye-screening length λrel

sc are now variable quantities,
which depend on the equilibrium density ne0, reflecting the
relativistic nature of the model. Their parametric dependence
is depicted in Figs. 5 and 6. It is clear that Crel

s decreases with
ne0, suggesting that ion-acoustic excitations will be slower at
higher density. The inverse is observed for the screening length
λrel

sc (= Crel
s /ωpi), which takes larger values in denser plasmas.

V. NONLINEAR ANALYSIS

In order to study weak-amplitude superacoustic electro-
static excitations, we may employ the reductive perturbation
method of Taniuti and coworkers [37]. A set of stretched
coordinates are introduced as

X = ε1/2x, Y = ε1/2y, Z = ε1/2(z − λt), T = ε3/2t,

accounting for propagation along the z axis at a speed λ (which
is to be defined later by compatibility requirements). The ad
hoc (real) parameter ε is assumed to be small, i.e., ε 	 1. The
plasma state variables are expanded near their equilibrium

ne0 (1035 m−3)

FIG. 6. The characteristic charge screening length λrel
sc (scaled by

L0) is depicted versus ne0 (in units of 1035 m−3).

values as

nj = 1 + εnj1 + ε2nj2 + ...,

ujx = ε3/2ujx1 + ε2ujx2 + ...,

ujy = ε3/2ujy1 + ε2ujy2 + ..., (31)

ujz = εujz1 + ε2ujz2 + ...,

φ = εφ1 + ε2φ2 + ... ,

where the subscript j stands for either e (for electrons) or i

(for ions).
We proceed by combining the above analytical expansions

and the stretched coordinates into Eqs. (9)–(13), and then
collecting terms of the same powers of ε. At the lowest order,
we obtain

ni1 = φ1

λ2
, ne1 =

(
α2

0 + 1
)
φ1

βα2
0

,

(32)

uiz1 = φ1

λ
, uez1 = λ

(
α2

0 + 1
)
φ1

βα2
0

.

A compatibility condition is imposed, in the form

λ2 = βα2
0

α2
0 + 1

, (33)

which leads, as a consequence, to uiz1 = uez1; cf. Eq.(32).
Now, equating the coefficients of the second higher order

of ε gives rise to the following set of equations

λ
∂ni2

∂Z
− ∂uiz2

∂Z
= ∂ni1

∂T
+ ∂uix2

∂x
+ ∂uiy2

∂y
+ ∂(ni1uiz1)

∂Z
,

λ
∂ne2

∂Z
− ∂uez2

∂Z
= ∂ne1

∂T
+ ∂(ne1uez1)

∂Z
,

λ
∂uiz2

∂Z
− ∂φ2

∂Z
= ∂uiz1

∂T
+ uiz1

∂uiz1

∂Z
,

λ2 ∂ne2

∂Z
− ∂φ2

∂Z
= λ2

(
3α2

0 + 1
)

3
(
α2

0 + 1
) ne1

∂nez1

∂Z
+ δλ3uez1

∂ne1

∂Z
,

∂ne2

∂Z
− ∂ni2

∂Z
=

(
∂3φ1

∂Z∂X2
+ ∂3φ1

∂Z∂Y 2
+ ∂3φ1

∂Z3

)
+ 2δ

(
uiz1

∂uiz1

∂Z
− uez1

∂uez1

∂Z

)
. (34)

Combining these equations, we obtain a partial-differential
equation (PDE) in the form

∂φ1

∂T
+ Aφ1

∂φ1

∂Z
+ B

∂3φ1

∂Z3
+ C

(
∂3φ1

∂Z∂X2
+ ∂3φ1

∂Z∂Y 2

)
= 0,

(35)
where the (real) coefficients A,B, and C are given by the
expressions

A =
[(

1 − δβ

2

)
α2

0 + 4

3

]/[
βα2

0

(
α2

0 + 1
)]1/2

, (36)

B = 1

2

(
βα2

0

α2
0 + 1

)3/2

, (37)

and C = B(�−2 + 1). (38)

The latter PDE is recognized as the ZK equation [28].
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VI. SOLITARY WAVE ANALYSIS

To study the properties of IA solitary waves propagating in
a direction making an angle θ with the z axis, i.e., with the
external static magnetic field, say lying in the ZX plane, we
shall first rotate the coordinate axes (X,Z) by an angle θ and
making use of the following transformation of the independent
variables [31–33]

ζ = X cos θ − Z sin θ, ξ = X sin θ + Z cos θ,

η = Y and τ = T . (39)

Applying these transformations to the ZK Eq. (35), we obtain

∂φ1

∂τ
+ S1φ1

∂φ1

∂ξ
+ S2

∂3φ1

∂ξ 3
+ S3φ1

∂φ1

∂ζ
+ S4

∂3φ1

∂ζ 3

+ S5
∂3φ1

∂ξ 2∂ζ
+ S6

∂3φ1

∂ξ∂ζ 2
+ S7

∂3φ1

∂ξ∂η2
+ S8

∂3φ1

∂ζ∂η2
= 0,

(40)

where

S1 = A cos θ,S2 = B cos3 θ + C sin2 θ cos θ,

S3 = −A sin θ,δ4 = −B sin3 θ − C cos2 θ sin θ,

S5 = 2C
(
sin θ cos2 θ − 1

2 sin3 θ
) − 3B cos2 θ sin θ,

S6 = −2C
(
sin2 θ cos θ − 1

2 cos3 θ
) + 3B sin2 θ cos θ,

S7 = C cos θ,S8 = −C sin θ.

(41)

Now, we look for a steady-state solution of ZK equation in the
form

φ1 = φ0(ρ), (42)

where ρ = ξ − Mτ , and M is the Mach number normalized
by the dust acoustic speed cd . So, the ZK equation in the
steady-state form leads to

−M
∂φ0

∂ρ
+ S1φ0

∂φ0

∂ρ
+ S2

∂3φ0

∂ρ3
= 0. (43)

Using the appropriate boundary conditions, namely φ0 and
derivatives vanishing as ρ goes to infinity, Eq. (20) has the
following solution

φ0(ρ) = φm sech2
( ρ

W

)
, (44)

where φm and W are the amplitude and the width of the solitary
wave, respectively; these are given by the expressions

φm = 3M/S1 and W = 2
√

S2/M. (45)

Obviously, reality of the width W imposes S2 > 0. Fur-
thermore, the polarity of the potential pulse, i.e., the sign of
the solitary wave function is positive if S1 > 0, and negative

otherwise (S1 < 0). Accordingly, the electric field
−→
E may be

calculated, based on Eq. (44), as

−→
E = E0 sech2

(
ρ

W

)
tanh

(
ρ

W

)⎛⎝sin θ

0
cos θ

⎞⎠, (46)

ne0 (1035 m−3)

FIG. 7. The amplitude φm of the solitary wave, as given by
Eqs. (44) and (45) (scaled by ϕ0, as defined in Sec. III) is depicted
versus ne0 (in units of 1035 m−3) at different M values. Here, θ = 5◦.

in column vector notation, i.e., v = vxx̂ + vyŷ + vzẑ =
(vx,vy,vz)T . The maximum electric field reads E0 = 3

S1

√
M3

S2
.

It is clear from Eqs. (41) and (45) that the amplitude and the
width of the solitary wave depend on the electron degeneracy.
Figures 7 and 8 show that both amplitude and width of the
solitary wave decrease as the density ne0 increases.

The coefficients S1 and S2 are depicted in terms of ne0 in
Figs. 9 and 10. It is found that S1(S2) increases (decreases)
rapidly as ne0 increases.

VII. STABILITY ANALYSIS

We shall now apply the small-k expansion perturbation
method [31,32] to study the stability of obliquely propagating
IA structures. We assume that [33,34]

φ1 = φ0(ρ) + �(ρ,ζ,η,τ ), (47)

where φ0 is defined by Eq. (44) and � represents a long-
wavelength plane-wave perturbation in an oblique direction,
given by

�(ρ,ζ,η,τ ) = ψ(ρ)ei[k(lξ ρ+lζ ζ+lηη)−γ τ ] . (48)

Figure 11 represents geometrically the perturbed part � of the
obliquely propagating wave at equilibrium φ0 in X-Z plane.
As obvious in the plot, (lξ ,lζ ,lη) are directional cosines, hence
l2
ζ + l2

η + l2
ξ = 1.

ne0 (1035 m−3)

FIG. 8. The width of the solitary wave (scaled by L0) is depicted
versus ne0 (in units of 1035 m−3) for different M values. Here, θ = 5◦,
and �(= ωci

ωpi
) = 0.25.
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ne0 (1035 m−3)

FIG. 9. The coefficient S1 is depicted versus ne0 (in units of
1035 m−3). Here, θ = 5◦.

Assuming small values of k, ψ(ρ), and γ can be expanded
as

ψ(ρ) = ψ0 + kψ1 + k2ψ2 + ..., (49)

γ = kγ1 + k2γ2 + .... (50)

Substituting Eq. (47) into Eq. (40) and linearizing with respect
to ψ , the linearized ZK equation becomes

∂�

∂τ
− M

∂�

∂ρ
+ S1φ0

∂�

∂ρ
+ S1�

∂φ0

∂ρ
+ S2

∂3�

∂ρ3

+ S3φ0
∂�

∂ζ
+ S4

∂3�

∂ζ 3
+ S5

∂3�

∂ρ2∂ζ
+ S6

∂3�

∂ρ∂ζ 2

+ S7
∂3�

∂ρ∂η2
+ S8

∂3�

∂ζ∂η2
= 0. (51)

Substituting Eqs. (48)–(50) into Eq. (51) and equating the
coefficients of the same powers of k, in the zeroth-order, we
get

(−M + S1φ0)ψ0 + S2
d2ψ0

dρ2
= C̃, (52)

where C̃ is the integration constant. It is clear from Eq. (43)
that the homogeneous part of this equation has two linearly

ne0 (1035 m−3)

FIG. 10. The coefficient S2 is depicted versus ne0 (in units of
1035 m−3). Here, θ = 5◦, and �(= ωci

ωpi
) = 0.25.

FIG. 11. Geometrical direction diagram of the propagating wave
at equilibrium φ0 and the perturbation part �.

independent solutions, namely [33],

f = dφ0

dρ
, g = f

∫ ρ dρ

f 2
. (53)

Therefore, the general solution of this zeroth-order, Eq. (52),
can be written as

ψ0 = C1f + C2g − C̃f

∫ ρ g

W̃
dρ + C̃g

∫ ρ f

W̃
dρ, (54)

where C1 and C2 are the integration constants and W̃

is the Wronskian defined by W̃ = f (dg/dρ) − g(df/dρ).
Evaluating all integrals, the general solution of the zeroth-order
equation, assuming finite ψ0 as ρ → ±∞, can be finally
simplified to

ψ0 = C1f. (55)

The first-order equation, obtained from Eqs. (48)–(51) and
(55) can be expressed, after integration, as

(−M + S1φ0)ψ1 + S2
d2ψ1

dρ2

= iC1

[
β1 tanh2

(
ρ

W

)
+ β2

]
φ0 + C3, (56)

where C3 is another integration constant and β1 and β2 are
given by

β1 = 1

2
φmμ1 − 6

W 2
μ2, (57)

β2 = γ1 + Mlξ − 1

2
φmμ1 + 2

W 2
μ2, (58)

where

μ1 = (S1lξ + S3lζ ) and μ2 = (3S2lξ + S5lζ ). (59)

Similarly, the general solution of the first-order equation,
assuming finite ψ1 as ρ → ±∞, is given by

ψ1 = K1f + iC1W
2

8S2

[
(β1 + β2)ρf + 2

(
1

3
β1 + β2

)
φ0

]
,

(60)
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where K1 is an arbitrary constant. The second-order equation,
obtained from Eq. (51), is given as(

−M
d

dρ
+ S1

d

dρ
φ0 + S2

d3

dρ3

)
ψ2 = Q, (61)

where

Q = iγ2ψ0 + i
(
γ1 + Mlξ − μ1φ0

)
ψ1 + μ3

dψ0

dρ
− iμ2

d2ψ1

dρ2
,

(62)

μ3 = (
3S2l

2
ξ + 2S5lζ lξ + S6l

2
ζ + S7l

2
η

)
. (63)

The existence of the solution of Eq. (61) requires that Q

must be orthogonal to the kernel of the adjoint operator to the
operator L, which is given by

L = −M
d

dρ
+ S1

d

dρ
φ0 + S2

d3

dρ3
. (64)

Thus, we obtain the following consistency condition∫ ∞

−∞
φ0Qdρ = 0. (65)

Substituting for ψ0 and ψ1 from Eqs. (55) and (60), re-
spectively, into Eq. (65), we obtain the following dispersion
relation:

γ1 = � − Mlξ +
√

�2 − �, (66)

where

� = 2
3 (μ1φm − 2μ2/W 2), (67)

� = 16
45

(
μ2

1φ
2
m − 3μ1μ2φm/W 2 − 3μ2

2/W 4 + 12S2μ3/W 4
)
.

(68)

Hence, from Eq. (66), we notice that instability occurs if the
following condition is satisfied:

� − �2 > 0, (69)

Thus, using Eqs. (41), (45), (59), (63), (67), and (68), we ob-
tain the growth rate gr = √

� − �2 of the instability as

FIG. 12. The characteristic function Icr, given by Eq. (71), is
depicted versus the direction cosine lζ [cf. Eq (49)], for different �

values. Here, lη = 0.6, θ = 15◦, and M = 1.2.

FIG. 13. The instability growth rate gr , given by Eq. (70), is
depicted versus the direction cosine lζ [cf. Eq. (48)], for different �

values. Here, lη = 0.6, θ = 15◦, and M = 1.2.

follows:

gr = 2M√
15

(�2 + 1)1/2I
1/2
cr

(�2 + 1) cos θ − cos3 θ
. (70)

We retain the instability criterion Icr > 0, where

Icr = 1

6
l2
ζ [−2�2 − 5 + (8�2 + 5) cos 2θ ]

+ 2l2
η

[(�2 + 1) cos θ − cos3 θ ]2

2�2 + 1 − cos 2θ
. (71)

It is clear from Eq. (70) for gr that the instability growth
rate depends on � (= ωci/ωpi), which is affected by the
electron degeneracy at equilibrium (via the dependence of
ωpi on the equilibrium density), assuming that a constant
external magnetic field is considered. Figure 12 determines the
parametric region of instability, where Icr > 0, with respect to
the direction cosine (lζ ) and the magnetic field (via �). The
points where Icr = 0 represent the transition from instability to
stability. We note that the instability growth rate gr increases
rapidly as the direction cosine lζ decreases, i.e., for larger angle
values, while it is also drastically affected by variations in �

values, as shown in Fig. 13.

VIII. CONCLUSIONS

We have employed a quantum hydrodynamic model for
a magnetized relativistic degenerate plasma, in order to
investigate the propagation of linear and nonlinear electrostatic
solitary waves of electrostatic nature and to characterize their
dispersion properties.

A set of modified expressions have been presented for the
characteristic charge screening length, λrel

sc , and for the sound
speed in the plasma, Crel

s , taking into account the relativistic
corrections. The sound speed Crel

s decreases rapidly as ne0

increases. Inversely, λrel
sc increases with higher ne0, as shown

in Figs. 5 and 6.
A nonlinear perturbation technique was employed to study

nonlinear small-amplitude weakly superacoustic ion-acoustic
excitations. A ZK-type equation was derived and a family
of exact solutions was analytically obtained. These represent
solitary wave-type structures in the form of pulses, whose am-
plitude and width decrease as ne0 increases (see Figs. 7 and 8).
A (3D) instability analysis for the nonlinear supersonic pulses,
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adopting a small-k expansion methodology, has revealed that
these structures are unstable. Analytical expressions for the
instability growth rate gr have been deduced.

Our model may be useful in understanding the dynamics
of collective excitations in metallic nanostructures and thin
films [4], and also the physics of quantum diodes [5],
nanophotonics and nanowires [6], nanoplasmonics [7], high-
gain quantum free-electron lasers [8], quantum wells and
piezomagnetic quantum dots [9]. Degenerate plasmas may also
exist in dense astrophysical objects, e.g., in the core of giant
planets [10] and in the crust of white dwarfs, brown dwarfs,
neutron stars, and magnetars [11,12]. As discussed above, the
existence of electrostatic modes in such environments has been
suggested in the past [19,19–22], and yet, not surprisingly

(given the obvious intrinsic observation and diagnostics issues
involved), these haven’t been observed to date [20].
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