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RESUMO

O objetivo desta tese é introduzir uma nova metodologia para a cinética bidimensional multi-

grupo de difusão de nêutrons em reatores nucleares. A metodologia apresentada usa uma

aproximação polinomial em um domı́nio homogêneo retangular com condições de contornos

não homogêneas. Como ela consiste em uma série de Taylor truncada, sua estimativa de erro

varia de acordo com o tamanho do retângulo. Os coeficientes são obtidos principalmente

pelas suas relações com o termo independente, que é determinado pela equação diferencial.

Estas relações são obtidas apenas pelas condições de contorno, e é demonstrado serem linear-

mente independentes. Um esquema numérico é feito para assegurar uma rápida convergência.

Estes procedimentos feitos para um retângulo homogêneo são feitos para construir soluções

para problemas de autovalor e dependentes do tempo de geometria ortogonal global com

parâmetros seccionalmente constantes pelo método iterativo SOR. O autovalor dominante e

sua autofunção são obtidos pelo método da potência no problema de autovalor. A solução

para casos dependentes do tempo usam o método de Euler modificado na variável tempo.

Quatro casos–teste clássicos são considerados para ilustração.

Palavras–chave: difusão de nêutrons, métodos numéricos, controle de erro.
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ABSTRACT

The objective of this thesis is to introduce a new methodology for two–dimensional multi–

group neutron diffusion kinetics in a reactor core. The presented methodology uses a polyno-

mial approximation in a rectangular homogeneous domain with non–homogeneous boundary

conditions. As it consists on a truncated Taylor series, its error estimates varies with the size

of the rectangle. The coefficients are obtained mainly by their relations with the independent

term, which is determined by the differential equation. These relations are obtained by the

boundary conditions only, and these relations are proven linear independent. A numerical

scheme is made to assure faster convergence. The procedures done for one homogeneous

rectangle are used to construct the solution of global orthogonal geometry with step–wise

constant parameters steady state and time dependent problems by the iterative SOR algo-

rithm. The dominant eigenvalue and its eigenfunction are obtained by the power method in

the eigenvalue problem. The solution for the time dependent cases uses the modified Euler

method in the time variable. Four classic test cases are considered for illustration.

Keywords: neutron diffusion, numerical methods, error control.
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1 INTRODUCTION

A solution to the neutron space diffusion kinetics model is quite difficult to obtain,

specially for irregular (non–rectangular) geometry and heterogeneous medium. This model

typically contain a stiff set of partial differential equations that consists in an initial and

boundary values problem. Due to this complexity it is usual to separate the time and space

problems with different approaches. Even separating the time and space issues, analytical

solutions are quite rare, even for simpler cases. Anyway, the community is considerably

interested in numerical methods to solve heterogeneous diffusion problems. As numerical

methods are usually subject to errors, there is always a concern about the methodology

precision. Also, many numerical methods ignore the interface conditions: the continuity of

the neutron density current and scalar flux. This thesis presents a new approach that uses a

polynomial approximation as basis to the neutron fluxes, where the interface and boundary

conditions contribute considerably more than usual codes to thermal nuclear reactor cores,

with proper error estimates.

Almost from the beginning of the applied neutron physics, numerical methods have

been used much more often than purely analytical methods to simulate neutron population

in nuclear reactor cores. This apparent tradition is almost mandatory as the geometries and

physical parameters usually are combined in a complex way to solve their models analytically.

Also, the neutron transport model, that more precisely describes the behavior of the neutron

flux through the space and time, is not simply solved, even with numerical methods and

powerful computers. That is why the neutron diffusion space kinetics approximation is

used instead, under some restrictions: to obtain approximate enough solutions with lesser

computer efforts. However, even the space kinetics is complicated to solve analytically

with most actual geometry and physical parameters configurations. It naturally leads to

numerical algorithms, that naturally have some approximations. The textbooks contain

further information about nuclear reactor physics [Duderstadt and Hamilton, 1976; Reuss,

2008].

As example, Alcouffe and Albrecht, 1970 show a generalization of the finite dif-

ferences method applied to neutron space kinetics problems. Also, Mohsen Ayyoubzadehh



2

et al., 2012 contains a modified finite elements methodology, with direct determination of

the coefficients in an iterative method. A nodal methodology is used in diffusion problems

in Barros et al., 2003. Orellana and Barros, 2002, use an analytical method for mono–

energetic neutrons in one–dimensional rectangular geometry for neutron diffusion models.

Picca and Furfaro, 2012 show a new reverse problem for neutron space kinetics with ap-

plication to accelerator–driven systems (ADS). Ganapol, 1992 uses an analytical approach

to implement one speed one–dimensional neutron diffusion in heterogeneous medium. A

Monte Carlo approach, in Camargo et al., 2013, is used to describe neutron quantities with

continuous dependence of energy. An analytical benchmark for ADS was published in Dulla

et al., 2007. A modified nodal method was used to neutron space kinetics in Grossman and

Hennart, 2007. Guessous and Akhmouch, 2002 show a higher order nodal method for the

neutron diffusion equations. Guyot et al., 2015 use a coupled three–dimensional neutron

space kinetics code with thermal–hydraulics phenomena to find a coherent neutron point

kinetics model.

A list of most usual numerical methods can be found in Han et al., 2009. Us-

ing finite elements method, a two–dimensional algorithm for neutron diffusion is described

in Hosseini and Vosoughi, 2013. Quintero-Leyva, 2010 shows a polynomial approximation

for neutron diffusion calculations. Lima et al. published new methodologies with pseudo–

harmonic functions, a new method was developed and it is presented in [Lima et al., 2009,

2004]. Galerkin–type elements were used together with the boundary element–response ma-

trix method to solve the neutron diffusion equations [Maiani and Montagnini, 2004]. In

Moghaddam et al., 2015, a two–dimensional neutron space kinetics model with a fractional

order Laplacian was solved using a modified finite volumes method. Aboanber and Hamada,

2008 and Aboanber and Nahla, 2006 contain some numerical approaches to solve the two–

and three–dimensional neutron space kinetics equations, using Taylor series and Padé ap-

proximations. Nahla et al., 2012 contains some numerical approaches to solve the neutron

diffusion equations. To accelerator–driven systems, a multi–point method is used to the

kinetics problems in Ravetto et al., 2004. A modified (element–free) Galerkin basis is used

to two–dimensional neutron diffusion equation problems in Rokrok et al., 2012. Sutton and

Aviles, 1996 present some diffusion theory methods used to obtain solutions to neutron dif-

fusion problems. Using a fractional derivatives approach, a new neutron diffusion equation
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is proposed in Vyawahare and Nataraj, 2013. Yasinsky and Henry, 1965 show some numer-

ical experiments results for time dependent neutron space kinetics. Argonne Code Center,

1977 is a numerical benchmark book that shows results for the eigenvalue problem in several

geometries and nuclear parameters combinations. Vosoughi et al., 2004 show a modified

differences equations to calculate neutron population in nuclear reactors. It is noteworthy

that, despite these papers were published through decades, most of them emphasize nu-

merical methods. As cited before, analytical approaches to neutron diffusion are not usual,

specially when dealing with two– or three–dimensional heterogeneous problems. Also, fur-

ther reading show that these methods take very few concern about the interface conditions,

using mostly or only the differential equation in their methodologies. Anyway, these papers

show that the community is concerned about computational methods for neutron physics in

nuclear reactor, in a general way.

Further, there is some concern on computational algorithms in the time variable.

The neutron point kinetics model treats the behavior of the neutron through time only, and

it is proper for algorithm testing, as it is known that not any methodology works with this

stiff problem. E. g., Mitchell, 1977 used Taylor series to obtain solutions for the neutron

point kinetics equations. Nahla and Zayed propose a method to solve the nonlinear point

kinetics equations and later used a Taylor series approach to the same purpose [Nahla and

Zayed, 2010; Nahla, 2011]. The article Dulla et al., 2008 contain a quasi–static method

applied to the neutron transport equation, together with some analytical results. There are

many other not cited published papers in years about the neutron point kinetics, but that

is not the focus. The proposed methods, together with the neutron space kinetics methods,

deal with time in a very particular and delicate way, as the time problem is stiff.

Ceolin et al. use a polynomial approximation to solve both the steady state and

time dependent one dimensional slab geometry neutron space kinetics problems [Ceolin et al.,

2014, 2015]. In this document, the author presents the generalization of this methodology

to two–dimensional neutron diffusion model of nuclear reactor cores. The objective is a new

methodology and its analysis of applicability in nuclear reactor cores for both the steady

state (eigenvalue) and time dependent problems. A low order polynomial is proposed to

solve the neutron space kinetics equations, together with the neutron diffusion classic eigen-

value problem, for multiple regions, and multiple energy groups coupled with the precursors
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concentrations for time dependent cases. The space domain is segmented, and each unknown

is expanded into a second order polynomial for both orthogonal variables. As the unknowns

are expanded in low order polynomials, the differential equation is used to determine a rela-

tion between the powers coefficients, apparently independent of segment sizes. The boundary

and interface conditions complete the system that determine the polynomial coefficients. As

the polynomials coefficients are related one another algebraically at the same segment, some

numerical simplifications are done to reduce computation time. This methodology contains

some analytical characteristic, as the complete Taylor series would converge to the analytical

solution locally. Thus, the error may be controlled either by increasing the truncation order

or restricting its validity. The last option leads to segment the domain even further, so a low

order polynomial is used to represent a curve in a smaller and smaller space. It is under-

standable that, if one considers the segment size going to zero, the solution also converges to

an analytical solution if the function is smooth enough (and it is). As usual in many numer-

ical methodologies, a local error analysis is presented, however this methodology uses the

differential equations themselves as reference to determine the methodology error. In other

words, the whole model itself is used as an error determination, as the analytical solution is

not known for the whole domain, but any solution that solves exactly the presented model is

analytical, as the neutron diffusion model has been proven to have an unique solution. This

new methodology consists in solving the space problem only. The time problem uses the

modified method of Euler, as described in Burden and Faires, 2008, that was proven stable

and proper to use in stiff problems despite requiring a very short step to obtain a precise

result. The proposed methodology is used in some test cases, for both for the eigenvalue

problem and the time dependent case.

This document is composed by 4 chapters. The present chapter which introduces the

document. Chapter 2 describes the methodology used locally and their link to form the global

solutions for the whole reactor in one time step. Then, the eigenvalue and time dependent

problems for the neutron diffusion model are presented and properly fit in the methodology

application. Chapter 3 shows some test cases for several geometries and time dependent

nuclear parameters. The last chapter 4 concludes this document with some commentaries

and future perspectives.
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2 FORMAL AND COMPUTATIONAL IMPLEMENTATION

In this chapter we are going to see the novelty of this thesis: a precise methodology

for the neutron diffusion model in thermal nuclear reactors. The two–dimensional (x, y) time

dependent neutron space kinetics and the neutron eigenvalue problem are considered to the

implementation. In the time dependent case, the analytical continuity is used to ensure the

precision in every time step. In the eigenvalue problem situation, the power method is used

to find the dominant eigenvalue and its respective eigenfunction. The domain is segmented,

and a polynomial expansion in x, y and t, when applicable, is used for all unknowns and

functions for each segment. After, the application of initial conditions (for certain time step)

reduces the effective number of unknowns, and a system for all segments (or regions) is made,

linking the solutions of a segment to the others by the interface and boundary conditions.

Some algebraic work also reduces even more the amount of coefficients to be determined.

This set of algebraic system is solved by an iterative method. Last, a not so mathematically

rigorous local error estimate is presented, mathematically speaking. Further explanations

about the power method can be found in text books [Duderstadt and Hamilton, 1976; Reuss,

2008]. Some other numerical methods used to solve the same type of problem can be found

in cited articles [Han et al., 2009; Barros et al., 2003; Maiani and Montagnini, 2004; Rokrok

et al., 2012].

2.1 Local solution, a polynomial expansion methodology (PEM)

In this section the author presents a methodology to solve a linear boundary value

problem. The methodology presented here is appropriated to rectangular homogeneous

domain with constant source term and constant coefficients and second order polynomial
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independent term on the boundary conditions, as

(
∂2ϕg

∂x2
+

∂2ϕg

∂y2

)
+Hgϕg +

G∑
g′=1

Xgg′ϕg′ = Qg , (2.1a)

AgN
∂ϕg

∂y
(x,∆y) +BgNϕg (x,∆y) =

2∑
m=0

fgNmx
m , (2.1b)

AgS
∂ϕg

∂y
(x,−∆y) +BgSϕg (x,−∆y) =

2∑
m=0

fgSmx
m , (2.1c)

AgE
∂ϕg

∂x
(∆x, y) +BgEϕg (∆x, y) =

2∑
n=0

fgEny
n , (2.1d)

AgW
∂ϕg

∂x
(−∆x, y) +BgWϕg (−∆x, y) =

2∑
n=0

fgWny
n , (2.1e)

for (x, y) ∈ V with Hg, Xgg′ , Qg, Agι, Bgι, ugι, vgι and wgι constants and ϕg = ϕg (x, y)

is the g–th unknown, for ι = N,S,E,W meaning the orientation North, South, East and

West, respectively. Consider V the rectangle with x in [−∆x,∆x] and y in [−∆y,∆y], and

g = 1, 2 . . . G unless specified. Also, Hg ̸= 0, Qg ̸= 0 and |Agι| + |Bgι| > 0. This document

presents a methodology to find a local solution to this case in particular, however it is shown

later that some cases may be reduced to multiple boundary value problems like (2.1), whose

solutions are linked somehow. To this end, at this time we focus on solving (2.1).

To solve (2.1), the author developed PEM. It consists in expanding the unknown in

a second order polynomial, as

ϕg =
2∑

m=0

2∑
n=0

φgmnx
myn , (2.2)

generating 9G constant unknowns, φgmn. To obtain these unknowns, (2.1) is recast using

the expansion (2.2). First, the boundary conditions,

(
BN∆y2 + 2AN∆y

)
φm2 + (AN +BN∆y)φm1 +BNφm0 = fNm, (2.3a)(

BS∆y2 − 2AS∆y
)
φm2 + (AS −BS∆y)φm1 +BSφm0 = fSm , (2.3b)(

BE∆x2 + 2AE∆x
)
φ2n + (AE +BE∆x)φ1n +BEφ0n = fEn , (2.3c)(

BW∆x2 − 2AW∆x
)
φ2n + (AW −BW∆x)φ1n +BWφ0n = fWn , (2.3d)
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for m,n = 0, 1, 2, and omitting the subscript g in φ–s, A–s, B–s and f–s. All m and n

from now on will be considered as m,n = 0, 1, 2 unless specified. This set is an arrange

of 12 equations made by the substitution of (2.2) into the boundary conditions. After the

substitution, the coefficients of each power of x and y are equaled. Since the approximation

is a second order one, there are three x or y coefficients to be equaled (corresponding to x0,

x1 and x2, for example). We can make some algebraic work to find expressions that relate

the unknowns with φm0 and φ0n only:

φm2 = Aφm0 + Bm , (2.4a)

φm1 = Cφm0 +Dm , (2.4b)

φ2n = Eφ0n + Fn , (2.4c)

φ1n = Gφ0n +Hn , (2.4d)

with

A =
BS (AN +BN∆y)−BN (AS −BS∆y)

(BN∆y2 + 2AN∆y) (AS −BS∆y)− (BS∆y2 − 2AS∆y) (AN +BN∆y)
, (2.5a)

Bm =
fNm (AS −BS∆y)− fSm (AN +BN∆y)

(BN∆y2 + 2AN∆y) (AS −BS∆y)− (BS∆y2 − 2AS∆y) (AN +BN∆y)
, (2.5b)

C = BN (BS∆y2 − 2AS∆y)−BS (BN∆y2 + 2AN∆y)

(BN∆y2 + 2AN∆y) (AS −BS∆y)− (BS∆y2 − 2AS∆y) (AN +BN∆y)
, (2.5c)

Dm =
fSm (BN∆y2 + 2AN∆y)− fNm (BS∆y2 − 2AS∆y)

(BN∆y2 + 2AN∆y) (AS −BS∆y)− (BS∆y2 − 2AS∆y) (AN +BN∆y)
, (2.5d)

E =
BW (AE +BE∆x)−BE (AW −BW∆x)

(BE∆x2 + 2AE∆x) (AW −BW∆x)− (BW∆x2 − 2AW∆x) (AE +BE∆x)
, (2.5e)

Fn =
fEn (AW −BW∆x)− fWn (AE +BE∆x)

(BE∆x2 + 2AE∆x) (AW −BW∆x)− (BW∆x2 − 2AW∆x) (AE +BE∆x)
, (2.5f)

G =
BE (BW∆x2 − 2AW∆x)−BW (BE∆x2 + 2AE∆x)

(BE∆x2 + 2AE∆x) (AW −BW∆x)− (BW∆x2 − 2AW∆x) (AE +BE∆x)
, (2.5g)

Hn =
fWn (BE∆x2 + 2AE∆x)− fEn (BW∆x2 − 2AW∆x)

(BE∆x2 + 2AE∆x) (AW −BW∆x)− (BW∆x2 − 2AW∆x) (AE +BE∆x)
. (2.5h)

This set of equations contains 12 equations and 9 unknowns, but four of these relations are

proven linear dependent. A demonstration of this linear dependency is shown on the next
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topic. The differential equation (2.1a) with (2.2) becomes

2
2∑

κ=0

[φg2κy
κ + φgκ2x

κ] +Hg

2∑
m=0

2∑
n=0

φgmnx
myn +

G∑
g′=1

Xgg′

2∑
m=0

2∑
n=0

φg′mnx
myn = Qg . (2.6)

Clearly, this expression determine index equations, grouping the coefficients of the same

xmyn, however, the set of φgmn would not satisfy the boundary conditions. That is why the

author chose to set only the coefficients of x0y0 as true,

2 (φg20 + φg02) +Hgφg00 +
G∑

g′=1

Xgg′φg′00 = Qg , (2.7)

and the remaining terms are the error of this methodology, as the boundaries are as precise

as a second order polynomial approximation may be. Using (2.4), we get a linear algebraic

system depending only on φg00. Some algebraic work lead to the linear system

(2Ag + 2Eg +Hg)φg00 +
G∑

g′=1

Xgg′φg′00 = Qg − 2Bg0 − 2Fg0 . (2.8)

This is a linear algebraic system, and can be solved by any standard methodology, even

Gauss’ elimination (specially when G is not a large number). After solving (2.8), we use

(2.4) to get the other φgmn.

2.2 Error estimates

The methodology described to solve (2.1) solves exactly the boundaries, but com-

mits an error in the differential equation, making this methodology’s output to differ from

the analytical solution. As usual in local error analysis, the (0, 0)–centered Taylor series

expansion of the unknown ϕg writes

ϕg =
∞∑

m=0

∞∑
n=0

Φgmnx
myn , (2.9a)
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where

Φgmn =
1

m!n!

∂m+nϕg

∂xm∂yn
(0, 0) (2.9b)

and the differential equation (2.1) writes

∞∑
m=0

∞∑
n=0

[
(m+ 1) (m+ 2)Φg(m+2)n + (n+ 1) (n+ 2)Φgm(n+2) +HgΦgmn

+
G∑

g′=1

Xgg′Φg′mn

]
xmyn = Qg . (2.10)

This equations generates the index equations from the coefficients of xmyn

(m+ 1) (m+ 2)Φg(m+2)n + (n+ 1) (n+ 2)Φgm(n+2) +HgΦgmn

+
G∑

g′=1

Xgg′Φg′mn = δ(m+n)0Qg . (2.11)

This equation is valid form,n = 0, 1, 2, . . . , and δab is the Kronecker delta. Comparing (2.11)

to (2.7), the only index equation satisfied is the one for m = n = 0, which states a relation

between φg20, φg02 and φg00. It means that, despite these second order derivatives are relating

one another correctly with the polynomial approximations, all other terms not necessarily

are. In other words, the present methodology coincides with the complete Taylor series at

only one degree of freedom. Besides that, the infinite Taylor series and the remaining index

equations are substituted by a second order polynomial and the relations (2.4), generated by

the boundary conditions. It means that taking φ00 as the starting point to build an accurate

solution, its index equation is considered in the present methodology, but others are not, so

the solution would be, rigorously, a zeroth order truncation approximation, as it considers

only one degree of freedom required to construct the complete Taylor series of ϕg.

As mentioned before, the present methodology solves exactly a boundary whose

independent function is a second order polynomial, so the error lies on the differential equa-

tion. If the differential equation is considered as reference instead of the solution itself, the

methodology error is given by the complete substitution of the polynomial approximation
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into the differential equation. Using the solution obtained by the present methodology, (2.6)

is actually a false statement. Actually, a more accurate expression would be its substitution

squared, generating a square methodology error expression,

ϵg =

[
2

2∑
κ=0

(φg2κy
κ + φgκ2x

κ) +Hg

2∑
m=0

2∑
n=0

φgmnx
myn+

G∑
g′=1

Xgg′

2∑
m=0

2∑
n=0

φg′mnx
myn −Qg

]2
, (2.12)

where ϵg = ϵg (x, y) is the so–called g–th methodology error. Note, some terms are going to

cancel themselves as expected, according to (2.8), and ϵ is simply the remaining terms. As ϵg

is a polynomial, it is expected that it is limited at its rectangular domain for x in [−∆x,∆x]

and y in [−∆y,∆y]. The absolute extremes of ϵg are the maximum error estimates expected

for this methodology. The “candidates” to absolute extremes of ϵg may be obtained by

analyzing the critical points of it:

• where its gradient is null;

• at the boundary where its derivative of the orthogonal direction of that boundary is

null; and

• at the corners.

Clearly, to determine exactly where the maximum error will occur, it is necessary to solve

(2.8) first. This is actually a low point of the present procedure, however once the solution

is found the actual error may be calculated anywhere in the rectangular domain. Also, it is

noteworthy that we may imagine a rectangle with area bigger than zero that do not contain

the point (x0, y0) where the error is extreme. It means that we can segment the domain

in order to improve accuracy, as it is known that two subsequent polynomials approximate

better a smooth function than one. To do that, it will be necessary to link the segmented

solutions somehow showed later. There are actually G methodology errors, and they are

linked one another, however it is not assured similarity in their behavior. It means that

simply fixing the error for one ϵg does not imply that the other ϵg will also reduce. Finally,

in this section it was shown that, for a solution ϕg approximated by a determined second
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order polynomial, the error of the methodology is given by (2.12), and as it is a continuous

function in all domain, its extreme values may be used to refine the rectangular domain into

smaller rectangular ones, as it is shown later in this document.

2.3 Linear dependency

As mentioned before, the set of relations (2.4) contain 12 relations of 9 unknowns.

Here, it is shown that 4 of these relations are linear combinations of others, so they lead to

the same value. We are going to hide the subscript g to make a cleaner notation at this part.

This procedure is made similarly for each g, hence produces similar conclusions for each ϕg.

For example, the unknown φ21 might be written using (2.4b) and (2.4c). If there is

linear dependency, these expressions should result the same value for φ21 no matter which

way we choose, so

Cφ20 +D2 = Eφ01 + F1 , (2.13)

and using (2.4b) and (2.4c) again and simplifying the relation as much as possible, we get

CF0 +D2 = ED0 + F1 . (2.14)

Substituting these compact constants into their expanded forms using (2.5),

[
BN

(
BS∆y2 − 2AS∆y

)
−BS

(
BN∆y2 + 2AN∆y

)] [
fE0 (AW −BW∆x)−

fW0 (AE +BE∆x)
]
+
[ (

BS∆y2 − 2AS∆y
)
(AN +BN∆y)−(

BN∆y2 + 2AN∆y
)
(AS −BS∆y)

] [
fE1 (AW −BW∆x)− fW1 (AE +BE∆x)

]
=[ (

BW∆x2 − 2AW∆x
)
(AE +BE∆x)−

(
BE∆x2 + 2AE∆x

)
(AW −BW∆x)

]
·[

fS2
(
BN∆y2 + 2AN∆y

)
− fN2

(
BS∆y2 − 2AS∆y

)]
+
[
BW (AE +BE∆x)−

BE (AW −BW∆x)
] [

fS0
(
BN∆y2 + 2AN∆y

)
− fN0

(
BS∆y2 − 2AS∆y

)]
. (2.15)

It means that unless (2.15) is true, the methodology has an inconsistency: two

different expressions for the same unknown. Fortunately, this is not the case. If we find
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(2.15) by some other (doubtless truthful) way, we confirm the linear dependency. Beginning

with the boundary conditions in their general form, for the East and South boundaries, both

evaluated at the same position (∆x,−∆y)

AE
∂ϕ

∂x
(∆x,−∆y) + BEϕ (∆x,−∆y) =

2∑
n=0

fEn (−∆y)n , (2.16a)

AS
∂ϕ

∂y
(∆x,−∆y) +BSϕ (∆x,−∆y) =

2∑
m=0

fSm (∆x)m , (2.16b)

we operate these expressions like {BS(2.16a)−BE(2.16b)} and get

BSAE
∂ϕ

∂x
(∆x,−∆y)−BEAS

∂ϕ

∂y
(∆x,−∆y) =

2∑
κ=0

[BSfEκ (−∆y)κ −BEfSκ (∆x)κ] . (2.17)

Also, we might make
{
AE

∂
∂x
(2.16b)− AS

∂
∂y
(2.16a)

}
and find

AEBS
∂ϕ

∂x
(∆x,−∆y)− ASBE

∂ϕ

∂y
(∆x,−∆y) =

1∑
κ=0

[
(κ+ 1)

(
AEfS(κ+1) (∆x)κ − ASfE(κ+1) (−∆y)κ

)]
. (2.18)

As the left hand side of (2.17) and (2.18) are the same, we combine them to find a relation

with fEn and fSm only (no φmn),

(
BS∆y2 − 2AS∆y

)
fE2 + (AS −BS∆y) fE1 +BSfE0 =(

BE∆x2 + 2AE∆x
)
fS2 + (AE +BE∆x) fS1 +BEfS0 . (2.19a)
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The same procedure is done with the other corners N–E, S–W and N–W ,

(
BN∆y2 + 2AN∆y

)
fE2 + (AN +BN∆y) fE1 +BNfE0 =(

BE∆x2 + 2AE∆x
)
fN2 + (AE +BE∆x) fN1 +BEfN0 , (2.19b)(

BS∆y2 − 2AS∆y
)
fW2 + (AS −BS∆y) fW1 +BSfW0 =(

BW∆x2 − 2AW∆x
)
fS2 + (AW −BW∆x) fS1 +BWfS0 , (2.19c)(

BN∆y2 + 2AN∆y
)
fW2 + (AN +BN∆y) fW1 +BNfW0 =(

BW∆x2 − 2AW∆x
)
fN2 + (AW −BW∆x) fN1 +BWfN0 . (2.19d)

It is important that these equations are not in any way generated by the pseudo–index

equations created from the expansion of ϕ into a polynomial. They are made with the inde-

pendent terms second order polynomial expression and linear operations, so for all purposes

they are exact. As we found these φmn independent expressions and they are verified true,

all we got to do is some algebra to find our desired confirmation of linear dependency. Re-

calling the example of the φ21 unknown, to find (2.15) we can manipulate (2.19) to eliminate

the f–s that do not appear on it. E.g. to eliminate fW2, we make the linear operation

{(BN∆y2 + 2AN∆y2) (2.19c)− (BS∆y2 − 2AS∆y) (2.19d)} and get

[ (
BN∆y2 + 2AN∆y

)
(AS −BS∆y)−

(
BS∆y2 − 2AS∆y

)
(AN +BN∆y)

]
fW1+[ (

BN∆y2 + 2AN∆y
)
BS −

(
BS∆y2 − 2AS∆y

)
BN

]
fW0 =

[ (
BN∆y2 + 2AN∆y

)
fS2−(

BS∆y2 − 2AS∆y
)
fN2

] (
BW∆x2 − 2AW∆x

)
+
[ (

BN∆y2 + 2AN∆y
)
fS1−(

BS∆y2 − 2AS∆y
)
fN1

]
(AW −BW∆x) +

[ (
BN∆y2 + 2AN∆y

)
fS0−(

BS∆y2 − 2AS∆y
)
fN0

]
BW . (2.20)

Similarly, we operate {(BN∆y2 + 2AN∆y2) (2.19a)− (BS∆y2 − 2AS∆y) (2.19b)} to elimi-
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nate fE2,

[ (
BN∆y2 + 2AN∆y

)
(AS −BS∆y)−

(
BS∆y2 − 2AS∆y

)
(AN +BN∆y)

]
fE1+[ (

BN∆y2 + 2AN∆y
)
BS −

(
BS∆y2 − 2AS∆y

)
BN

]
fE0 =

[ (
BN∆y2 + 2AN∆y

)
fS2−(

BS∆y2 − 2AS∆y
)
fN2

] (
BE∆x2 + 2AE∆x

)
+
[ (

BN∆y2 + 2AN∆y
)
fS1−(

BS∆y2 − 2AS∆y
)
fN1

]
(AE +BE∆x) +

[ (
BN∆y2 + 2AN∆y

)
fS0−(

BS∆y2 − 2AS∆y
)
fN0

]
BE . (2.21)

Finally, making {(AE +BE∆x) (2.20)− (AW −BW∆x) (2.21)} in order to find an expression

without fN1 and fS1, we find (2.15). It means that (2.15) is true. This result means that,

although there are two ways to express φ21 in terms of φ00, both lead to the same result,

so we can simply choose any of (2.4b) and (2.4c) to express this unknown. The same

procedure might be done for φ22, φ12 and φ11, providing similar results, and there are the

four extra equations that have been proven linear dependent. The present procedure was

made for generic third species boundary conditions in all directions, but it can be done for

any combination of any type of boundary conditions, generating the same output: there are

exactly four redundant equations in (2.4), as there are two different ways to calculate φ11,

φ12, φ21 and φ22 and both lead to the same result. In other words, we can safely use any

of the (2.4) relations to express the unknowns in terms of φ00. The set of these four last

equations must contain at least once the variables φ11, φ12, φ21 and φ22.

As a final remark, it is known that the flux and current continuities are assured

by the physical model itself, however it is seen in the next section an iterative solution for

sectionally homogeneous domain. This iterative scheme begins with estimates, so (2.16) is

not necessarily true. Although in the iterative solution (2.16) will be assured, the algorithm

stops with a typical stop criterion that may be reached before the actual convergence, mean-

ing that the evaluation of φmn (m,n = 1, 2) by one mean only can lead to an error. To avoid

this situation, these classic expressions (that in the convergence will be satisfied) are substi-

tuted by their average expressions. In short words, doing this “forces” the unknowns to their

actual value in the iterative method. Then, the complete set of φ00 dependent expressions
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of φmn is

φ01 = Cφ00 +D0 , (2.22a)

φ02 = Aφ00 + B0 , (2.22b)

φ10 = Gφ00 +H0 , (2.22c)

φ11 =
Cφ10 +D1 + Gφ01 +H1

2
, (2.22d)

φ12 =
Aφ10 + B1 + Gφ02 +H2

2
, (2.22e)

φ20 = Eφ00 + F0 , (2.22f)

φ21 =
Cφ20 +D2 + Eφ01 + F1

2
, (2.22g)

φ22 =
Aφ20 + B2 + Eφ02 + F2

2
. (2.22h)

This numerical trick was proven efficient, increasing precision in the test cases. This set of

equations replaces (2.16) for numerical purposes. Needless to say, the procedure made in

this part of the thesis is valid for any ϕg.

Now we are able to write an algorithm with error estimate that solves (2.1). In short

terms, we describe the {local} algorithm as

1. Identify ∆x, ∆y, ϕg, Hg, Xgg′ , Qg, Agι, Bgι and fgικ in (2.1) for g, g′ = 1, 2, . . . , G,

ι = N,S,E,W and κ = 0, 1, 2;

2. Calculate Ag, Bgκ, Cg, Dgκ, Eg, Fgκ, Gg, and Hgκ using (2.5) for g = 1, 2, . . . , G, and

κ = 0, 1, 2;

3. Calculate φg00 with (2.8) for g = 1, 2, . . . , G;

4. Calculate the remaining φgmn with (2.22) for g = 1, 2, . . . , G and m,n = 0, 1, 2;

5. Final solution ϕg and error ϵg are given by (2.2) and (2.12) for g = 1, 2, . . . , G;

2.4 Iterative global solution

So far this thesis presented a methodology to solve boundary value problems with

an homogeneous rectangular domain with heterogeneous differential equation, however the

point of this document is an algorithm that solves actual geometries for nuclear reactors.
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Figure 2.1a represents an example geometry to be solved by the presented methodology,

where the hatches indicates same Hg and Xgg′ . To this end, the complete geometry is

segmented into rectangular homogeneous domains indicated by the hatched and thick lines

(interfaces) in the interior of the domain in figure 2.1a. The local solutions are linked one

another by the interface conditions, usual in diffusive models and generally described as

lim
a→0

[ϕg (x+ a, y)− ϕg (x− a, y)] = 0 , (2.23a)

lim
a→0

[
Kg (x+ a, y)

∂ϕg

∂x
(x+ a, y)−Kg (x− a, y)

∂ϕg

∂x
(x− a, y)

]
= 0 , (2.23b)

at the vertical interfaces, and

lim
a→0

[ϕg (x, y + a)− ϕg (x, y − a)] = 0 , (2.23c)

lim
a→0

[
Kg (x, y + a)

∂ϕg

∂y
(x, y + a)−Kg (x, y − a)

∂ϕg

∂y
(x, y − a)

]
= 0 , (2.23d)

at the horizontal interfaces. Consider Kg = Kg (x, y) a piecewise constant function according

to the hatches in figure 2.1a. The solution of each segment respects a differential equation

and boundary conditions that fits (2.1) locally. As we intend to solve all regions iteratively,

we are going to arrange the equations in such a way that the matrix of coefficients of φgmn

is block–diagonally dominant. To this end, an algebraic work is made with the interface

conditions. As each interface represents two degrees of freedom in the global linear system

and we are going to use an iterative solution, each segment will consider that interface as a

fictitious boundary in its solution. As example, we are going to consider the interface between

the element 7 and 8 in figure 2.1a. We operate the interface conditions as {(2.23a)± (2.23b)}

to get

[
Kg

∂ϕg

∂x
(∆x, y)− ϕg (∆x, y)

][7]
=

[
Kg

∂ϕg

∂x
(−∆x, y)− ϕg (−∆x, y)

][8]
, (2.24a)[

Kg
∂ϕg

∂x
(∆x, y) + ϕg (∆x, y)

][7]
=

[
Kg

∂ϕg

∂x
(−∆x, y) + ϕg (−∆x, y)

][8]
, (2.24b)

where the superscript [r] represents the proper segment. Here, it is important to notice that

each region has its own Kg, ϕg and local variables x and y, and its proper orientations (e.g.
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(b) Interface conditions between regions 7 and 8.

Figure 2.1: Two–dimensional domain segmentation.

the interface between the regions 7 and 8 is located at East of 7, but at West of 8).

These equations are used in the iterative system, but not at the same time. In order

to assure convergence, (2.24a) is used as a fictitious boundary condition for region 8, and

(2.24b) for region 7. This way, we cast these fictitious boundary conditions as

Kg
∂ϕg

∂x
(∆x, y) + ϕg (∆x, y) =

2∑
n=0

fgEny
n (2.25a)

for region 7, and

Kg
∂ϕg

∂x
(−∆x, y)− ϕg (−∆x, y) =

2∑
n=0

fgWny
n (2.25b)

for region 8, where the boundary independent terms are determined by the neighbor regions.

Figure 2.1b demonstrates the interface conditions between regions 7 and 8 of our example. In
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this example, the boundary independent terms are directly determined by the evaluation of

the neighbor region’s solution. This happens because the mesh consists of regular rectangle

subdivisions. When this does not happen, the interface conditions will always generate a

function that can be approximated by a second order polynomial, resulting in (2.25) anyway

(remember we are dealing with rectangular meshing). This procedure and operations are

made for all interfaces, creating a relation that we will treat as fictitious boundary conditions

in our iterative algorithm. If the border of an element is an actual boundary, the actual

boundary condition is used. This way, all segments contain one boundary condition at all

orientations. The operations for these fictitious boundary conditions are

{(2.23d) + (2.23c)} , (2.26a)

{(2.23d)− (2.23c)} , (2.26b)

{(2.23b) + (2.23a)} , (2.26c)

{(2.23b)− (2.23a)} , (2.26d)

for North, South, East and West orientations, respectively.

Now we know how to build the local boundary conditions, the iterative algorithm

to solve all regions is presented. The author chose to use the successive over–relaxation

method (SOR), which consists in solving iteratively all regions, one at a time, updating

their local solution until a stop criterion is satisfied. Further details about this methodology

are found in Patankar, 1980, Strong, 2005 and Feingold and Varga, 1962. This iterative

method to solve linear systems converges if the coefficients matrix is diagonally dominant.

As the present algorithm solves many unknowns at a time (solve all unknowns in one region

at the same time, then solve the next region and so on), this sufficient criterion is not simply

applied. In an ad hoc attempt to make the global system pseudo diagonal dominant, the

interface conditions are algebraically operated in a way that, together with PEM (2.2), SOR

converges. Actually the linear operation made in the interface conditions that generated

(2.24) has been proven sufficient to assure convergence after several tests by the author.

In short terms, the author applied the {global} iterative algorithm to find the

solution for the whole domain described as

1. Segment the domain in R rectangular homogeneous regions (know how to find each
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segment’s neighbors).

2. Set εmax.

3. Make initial guess to φ
[r]
gmn and calculate ε← εmax + 1.

4. Store the old solution: φ
[r](old)
gmn ← φ

[r]
gmn for r = 1, 2, . . . , R, g = 1, 2, . . . , G and m,n =

0, 1, 2.

5. For r = 1, 2, . . . , R,

(a) For ι = N,S,E,W , if there is a boundary at ι, use the boundary condition, else

use (2.26) to determine the proper fictitious boundary condition with the proper

updated neighbors φ
[r]
gmn.

(b) At this point, Hg and Xgg′ are constants. If Qg is not constant, properly approx-

imate it. If the boundary independent terms are not in second order polynomial

form, approximate them∗.

(c) Use {local} to update φ
[r]
gmn.

6. Calculate the relative discrepancy: ε ← max

(∣∣∣∣∣φ[r]
gmn − φ

[r](old)
gmn

φ
[r]
gmn + φ

[r](old)
gmn

∣∣∣∣∣
)

for r = 1, 2, . . . , R,

g = 1, 2, . . . , G and m,n = 0, 1, 2.

7. If ε > εmax, repeat from step 4.

Needless to say, the (old) superscript stands for the older values of each unknown, while

an unknown without such superscript represents the updated values. The (old) superscript

is used with this meaning at the whole thesis. In the next sections, the actual diffusion

model is presented in its eigenvalue problem and time dependent forms, which formalizes

the application of this thesis.

2.5 Neutron diffusion: eigenvalue problem

One kind of problem that the present methodology is able to solve is the eigenvalue

problem in neutron multi–group diffusion model, given by a diffusion differential equation,

∗In all applications of this thesis, the author set Qg and fgικ as their zeroth and second order truncated
Taylor series, respectively.
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boundary condition, flux continuity condition and current density continuity condition:

−∇ · (Dg∇ϕg) + Σtgϕg −
G∑

g′=1

Σsg′gϕg′ =
1

k
χg

G∑
g′=1

νg′Σfg′ϕg′ , (2.27a)

valid for r ∈ V , the boundary conditions,

Agn̂ · ∇ϕg +Bgϕg = 0 , (2.27b)

valid for r ∈ ∂V , and the interface conditions: the flux continuity condition and the current

density continuity condition,

lim
a→0

[ϕg (r+ ax̂)− ϕg (r− ax̂)] = 0 (2.27c)

lim
a→0

[Dg (r+ ax̂)∇ϕg (r+ ax̂)−Dg (r− ax̂)∇ϕg (r− ax̂)] = 0 , (2.27d)

both valid for r ∈ (V − ∂V ) and g = 1, 2, . . . , G unless specified, where G is the total number

of energy groups. Here, Dg = Dg (r), Σtg = Σtg (r), Σsg′g = Σsg′g (r), νg, Σfg = Σfg (r) and

χg are the nuclear parameters g–th group diffusion coefficient, g–th group total cross section,

scattering cross section from g′–th to g–th group, average number of g–th group neutrons

emitted by fission, g–th group fission cross section and g–th group integrated fission spec-

trum. Also, Ag = Ag (r) and Bg = Bg (r) are the g–th group boundary parameters, n̂ is the

unit vector normal to the boundary’s surface and x̂ is a unit vector (usually, not mandatorily,

described as normal to an interface surface). k and ϕg = ϕg (r) are the unknowns dominant

eigenvalue and its respective eigenfunctions, called effective multiplication factor and g–th

group neutron scalar flux. r is the position vector and V is its domain. The boundary

parameters always respect |Ag|+ |Bg| > 0 in their domain.

An usual configuration for this kind of problem is shown in figure 2.1a. It is notewor-

thy that most geometries involves orthogonal boundaries and step–wise constant nuclear and

boundary parameters, like the one displayed in figure 2.1a. To solve this eigenvalue problem,

we use the power method, which consists in iteratively updating the dominant eigenvalue

and its respective eigenfunction until a stop criterion is satisfied. Further details about this

method is found in Duderstadt and Hamilton, 1976. The iterations of power method consist
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in solving

−∇ · (Dg∇ϕg) + Σtgϕg −
G∑

g′=1

Σsg′gϕg′ = sg , (2.28a)

Agn̂ · ∇ϕg +Bgϕg = 0 , (2.28b)

lim
a→0

[ϕg (r+ ax̂)− ϕg (r− ax̂)] = 0 (2.28c)

lim
a→0

[Dg (r+ ax̂)∇ϕg (r+ ax̂)−Dg (r− ax̂)∇ϕg (r− ax̂)] = 0 , (2.28d)

where sg is a fictitious source term,

sg =
1

k(old)
χg

G∑
g′=1

νg′Σfg′ϕ
(old)
g′ , (2.29)

updating both ϕg and k each iteration. (2.28) is used to update ϕg, and

k = k(old)

˚

V

G∑
g=1

νgΣfg (r)ϕg (r) d
3r

˚

V

G∑
g=1

νgΣfg (r)ϕ
(old)
g (r) d3r

(2.30)

updates k.

The author uses this {power method} algorithm for the determination of these

unknowns for a two–dimensional orthogonal geometry domain, with step–wise constant nu-

clear and boundary parameters:

1. Set εmax.

2. First guess for k and ϕg, and ε = εmax + 1.

3. Store the old solution: ϕ
(old)
g ← ϕg and k(old) ← k.

4. Calculate sg with (2.29), using ϕ
(old)
g and k(old).

5. Use {global} to solve (2.28) updating ϕg.

6. Update k with (2.30).
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7. Calculate ε with ε← max

(∣∣∣∣k − k(old)

k + k(old)

∣∣∣∣ ,
∣∣∣∣∣ϕg − ϕ

(old)
g

ϕg + ϕ
(old)
g

∣∣∣∣∣
)
.

8. If ε > εmax, repeat from step 3.

2.6 Neutron space kinetics: time dependent problem

Another kind of problem that can be solved by the present methodology is the time

dependent problem of neutron diffusion in nuclear reactor cores. This problem consists in

the time dependent multi–group neutron diffusion model

1

vg

∂ϕg

∂t
−∇ · (Dg∇ϕg) + Σtgϕg −

G∑
g′=1

Σsg′gϕg′ =

χFg (1− β)
G∑

g′=1

νg′Σfg′ϕg′ + χDg

P∑
p=1

λpCp +Sg (2.31a)

for g = 1, 2, . . . G and

∂Cp

∂t
+ λpCp = βp

G∑
g=1

νΣfgϕg (2.31b)

for p = 1, 2, . . . , P unless specified. These equations are valid for any r ∈ V and t ∈ [t0,∞).

The boundary conditions are

Agn̂ · ∇ϕg +Bgϕg = Cg , (2.31c)

valid for r ∈ ∂V and t ∈ [t0,∞), and the interface conditions are

lim
a→0

[ϕg (r+ ax̂)− ϕg (r− ax̂)] = 0 (2.31d)

lim
a→0

[Dg (r+ ax̂)∇ϕg (r+ ax̂)−Dg (r− ax̂)∇ϕg (r− ax̂)] = 0 , (2.31e)
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both valid for r ∈ (V − ∂V ) and t ∈ [t0,∞). The initial conditions are expressed as

ϕg = ϕg0 , (2.31f)

Cp = Cp0 , (2.31g)

both valid for r ∈ V and t = t0. Here, P is the total number of delayed neutron precursors

groups and V stands for the spacial domain (x, y and z in rectangular geometry). In addition

to the previously declared parameters (Dg = Dg (r, t), Σtg = Σtg (r, t), Σsg′g = Σsg′g (r, t),

νg, Σfg = Σfg (r, t), Ag = Ag (r, t), Bg = Bg (r, t)), Sg = Sg (r, t), vg, β, βp and λp are

the g–th group external source term, average g–th group neutron speed, delayed neutron

fraction, p–th group delayed neutron fraction, p–th group decay constant, respectively. χFg

and χDg are the g–th group integrated prompt and delayed fission spectra, respectively.

Cg = Cg (r, t) is the independent term of the boundary conditions. ϕg0 = ϕg0 (r) and Cp0 =

Cp0 (r) are the known fluxes and concentrations at the time t = t0. ϕg = ϕg (r, t) and

Cp = Cp (r, t) are the unknowns g–th group neutron scalar flux and p–th group delayed

neutrons precursors concentration, and t is the variable time. This boundary and initial

value problem is commonly called the multi–group neutron space kinetics model.

PEM is used to solved the neutron space kinetics model for rectangular geometry,

however it is used a numerical trick first. To treat the time dependent problem it is used the

one step average Euler method as in Burden and Faires, 2008, also called step–wise constant

approximation, which consists in approximating the time dependent data and the unknowns

as constants in a regular 2∆t time step, and it requires a very small ∆t to obtain precision.

In other words, the continuous time is displayed in a discrete form, so instead of t ∈ [t0,∞),

we have tq ∈ {t0, t1, . . . } for q = 0, 1, 2, . . . . For a time dependent function f = f (t), it is

written as its discrete form fq

f (tq) = fq ≈
f (tq +∆t) + f (tq −∆t)

2
(2.32)

for q = 1, 2, . . . . As a concluding statement, the known time dependent functions like the

nuclear parameters are fully determined, and the unknowns are going to be determined by

solving the problem. This procedure also uses the so–called analytical continuation, which
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consists in using the present step’s solution to determine the initial condition for the next

time step in an initial value problem. Time derivatives are treated as its central finite

difference form

[
df

dt

]
q

≈ f (tq +∆t)− f (tq −∆t)

2∆t
. (2.33)

Combining (2.32) with (2.33), we got the three main relations for the unknowns:

[
df

dt

]
q

≈ fq − f (tq −∆t)

∆t
, (2.34a)

f (tq +∆t) = 2fq − f (tq −∆t) , (2.34b)

f (tq +∆t) = f (tq+1 −∆t) . (2.34c)

In the sense of applying this approximation to the unknowns, we set the time tq−∆t always

as the time instant for the initial condition, so f (tq −∆t) is always known. In this sense,

we can avoid using the q subscript and write (2.34) again with f ≡ fq and f0 ≡ f (tq −∆t),

bearing in mind that f0 is updated every time step

[
df

dt

]
q

≈ f − f0
∆t

, (2.35a)

f0 ← 2f − f0 , (2.35b)

Before using the constant approximation on (2.31), the precursors deserve a special focus,

as their differential equation has derivatives in t only. Using (2.35) on (2.31b) results in

Cp =
∆t

1 + λp∆t

[
βp

G∑
g=1

νgΣfgϕg +
Cp0

∆t

]
(2.36)

Substituting each term on (2.31) as its proper approximation and using (2.36), we get a
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pseudo boundary value problem in ϕg to solve for each time step:

1

vg

ϕg − ϕg0

∆t
−∇ · (Dg∇ϕg) + Σtgϕg −

G∑
g′=1

Σsg′g
ϕg′ = χFg (1− β)

G∑
g′=1

νg′Σfg′
ϕg′+

χDg

[
P∑

p=1

λpβp∆t

1 + λp∆t

]
G∑

g′=1

νg′Σfg′ϕg′ + χDg

P∑
p=1

λpCp0

1 + λp∆t
+Sg , (2.37a)

valid for any r ∈ V ,

Agn̂ · ∇ϕg +Bgϕg = Cg , (2.37b)

valid for r ∈ ∂V , and

lim
a→0

[ϕg (r+ ax̂)− ϕg (r− ax̂)] = 0 , (2.37c)

lim
a→0

[Dg (r+ ax̂)∇ϕg (r+ ax̂)−Dg (r− ax̂)∇ϕg (r− ax̂)] = 0 , (2.37d)

both valid for r ∈ (V − ∂V ). Note, (2.37) considers the time dependent parameters and

unknowns as their constant approximation at a generic time tq, but they depend only on the

variable position, as mentioned before.

As it is known from the literature, the error for this kind of approximation is

O (4∆t2), so it might work well for smooth nuclear parameters in the time variable. Fortu-

nately, in practice the nuclear parameters vary very slowly with time, so this approximation

does not result in unacceptable error. It is noteworthy that if the {local} algorithm were

adapted to t dependent cases, with first order polynomial expansion in t like

ϕg =
1∑

ℓ=0

2∑
m=0

2∑
n=0

φgℓmnt
ℓxmyn , (2.38)

the set of linear equations to be solved each step would be similar to (2.37), so they would

produce the same results with the same error estimate. Using the initial condition the results

for the first steps are determined by (2.37). Then, the author chose to slightly modify the

constant approximation method in a way that fits the proposed methodology. Instead of
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calculating the initial conditions by (2.35b), the initial conditions for the next step are

obtained by

ϕ
[r]
g0 =

1

2∆x∆y

∆xˆ

−∆x

∆yˆ

−∆y

ϕ[r]
g (x, y) dydx− ϕ

[r](old)
g0 , (2.39a)

C
[r]
p0 =

1

2∆x∆y

∆xˆ

−∆x

∆yˆ

−∆y

C [r]
p (x, y) dydx− C

[r](old)
p0 , (2.39b)

and so on, according to (2.34). Obviously, x and y are local [r] coordinates. This modification

is made to be consistent with the methodology: the initial conditions are constants in [r].

The author used the {time dependent} algorithm for the determination of these

unknowns for a two–dimensional orthogonal geometry domain, with time dependent step–

wise constant nuclear and boundary parameters:

1. Set the time step 2∆t, initial time t0 = −∆t, q = 0 and a maximum time limit T .

2. Make q ← q + 1.

3. Set tq = tq−1 + 2∆t and approximate all parameters as (2.32).

4. Use {global} to solve (2.37).

5. Calculate Cp with (2.36).

6. Update the initial conditions with (2.39).

7. If tq < T , repeat from step 2.
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3 TEST CASES

In this chapter some two–dimensional neutron diffusion test cases are shown, con-

sidering the eigenvalue and the time dependent problem. For all cases, G = 2 (group

g = 1 is called fast group, g = 2 is called thermal group), Σsgg′
= 0 except Σs12 and

χF1 = χD1 = χ1 = 1, χF2 = χD2 = χ2 = 0. For both the power method and the iterative

SOR algorithms, εmax = 10−8. In the time dependent cases, ∆t = 10−4 s, and their initial

conditions are the solutions of the eigenvalue steady state problems. Reducing ∆t does not

significantly reduce the error in any case, and in some cases reducing it to ∆t = 10−5 or less

makes the program fail due to numerical over stack (lack of memory). All parameters with

time dependence will be specified in each case, and no external source term is considered

Sg = 0). The results are displayed as a geometric table for each given rectangular region,

as displayed in figure 3.1.

ϕ
[j]
1 /ϕmax

ϕ
[j]
2 /ϕmax

P[j]/P

Figure 3.1: Results display in a given rectangle.

In this figure, j = 1, 2, . . . , J , where J is the total number of given regions. ϕ
[j]
g is

the j–th region average neutron scalar flux (in time t, when applicable), given by

ϕ
[j]
g =

1

A[j]

¨

D[j]

ϕ[j]
g (x, y, t) dydx , (3.1)

where D[j] is the j–th local domain and A[j] is its area, P[j] is the number of neutrons
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generated by fission in the j–th region, given by

P[j] =

∆xˆ

−∆x

∆yˆ

−∆y

G∑
g=1

Σ
[j]
fg
(x, y, t)ϕ[j]

g (x, y, t) dydx , (3.2)

where E is the average energy liberated by neutron by fission. ϕmax and P are the maximum

neutron scalar flux in t and total number of neutrons generated by fission, given by

ϕmax = max
(x,y)∈V

(|ϕ1|, |ϕ2|) (3.3)

and

P =
J∑

j=1

P[j] . (3.4)

In (3.3) and (3.4), x and y are the global variables, and V is the entire geometry domain.

For the eigenvalue steady state cases, hence the initial conditions for the time dependent

cases, the fluxes and power are normalized so ϕmax = 1:

ϕg ← ϕg/ϕmax . (3.5)

Also, the results are displayed in percentages, and ϕmax and P are always written in the text

for each case, together with the values of ∆x, ∆y and t, when applicable. It is important

to note that this form of displaying results considers the rectangle regions given by the

geometry itself, so they are not necessarily equivalent to the rectangular mesh. All results

were obtained in an Intel Core i5–4500U CPU @ 1.60 GHz, 4.0 GB RAM in a Windows 8.1

64–bit operational system, using Code::Blocks v13.12 IDE to compile and run C programs

made by the author with the present methodologies and algorithms.

As a final comment before the test cases’ results, the nuclear parameters undeclared

so far are the capture and absorption cross sections Σcg = Σcg (x, y, t), Σag = Σag (x, y, t).
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Their relations with other parameters are

Σag = Σcg + Σfg , (3.6a)

Σtg = Σag +
G∑

g′=1

Σsgg′ . (3.6b)

Also, some configurations will use the geometric buckling B2 in their model. It is an approx-

imation of the behaviour of the second derivative in the z axis and, in this configuration,

will be a constant number for all regions and groups. That way, a new Σtg is written as a

modification to fit the described methodology:

Σtg ← Σtg +B2Dg . (3.7)

As β is the total delayed neutron fraction,

β =
P∑

p=1

βp . (3.8)

All parameters are described with its usual dimensions: D, ∆x and ∆y in cm; t, T and ∆t

in s, Σ in cm−1, B2 in cm−2, λ in s−1, v in cm/s, ϕ in cm−2s−1, P in cm−1s−1 and the

rest is dimensionless. In all configurations there are figures with their geometry, where n̂ are

the outgoing unit vector at the boundary. In these figures, dashed lines mean given regions,

thick lines mean interface from one material to another, circled numbers indicate a material

and similar hatches mean similar material. Tables with its nuclear parameters are displayed

in their following.



30

3.1 Configuration 1

This geometry in particular is usual in papers about two–dimensional neutron ki-

netics algorithms. Here, the mesh is homogeneous with ∆x = ∆y = 5. Reducing ∆x and

∆y does not make significant changes in the results.

3

2

1

4

n̂ · ∇ϕg = 0

n̂ · ∇ϕg = 0

ϕg = 0

ϕg = 0

0
0

10

10

30

30

50

50

70

70

90

90

110

110

130

130

150

150

170

170

Figure 3.2: Geometry and boundary conditions for configurations 1,2 and 3.

The geometry used comes from Argonne Code Center [1977] with its representation

of boundary conditions and regions shown in figure 3.2. In this case, no time dependent

cases are considered due to the lack of kinetic parameters and because the system is super–

prompt–critical, so only the results of the eigenvalue problem is shown.
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Material D1 D2 Σa1 Σa2 ν2Σf2 Σs12

1 1.5 0.4 0.01 0.08 0.135 0.02
2 1.5 0.4 0.01 0.085 0.135 0.02
3 1.5 0.4 0.01 0.13 0.135 0.02
4 2 0.3 0 0.01 0 0.04

Table 3.1: Nuclear parameters for configuration 1.
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(a) Fluxes profiles in y = 0.
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(b) Fluxes profiles in y = x.

Figure 3.3: Fluxes graphics in some axes for configuration 1.

Table 3.1 shows the nuclear parameters for the eigenvalue problem. In this configu-

ration, all Σf1 = 0 and the geometric buckling is B2 = 8× 10−5 for all regions and all energy

groups.

Figure 3.4 shows the results for the eigenvalue problem, with maximum eigenvalue

k = 1.02903, computational time 7.6 s, ϕmax = 1 and P = 346.217 with 2169 unknowns.

ϕ1 has its maximum value 1 at (x, y) = (30, 30), ϕ2 has its maximum value 0.463150 at

(x, y) = (55, 135), (135, 55). Figure 3.3 shows the graphics for the neutron fluxes in the

global axes y = 0 and y = x. The results does not vary from the ones in Argonne Code

Center [1977] more than 1%. The next configuration shows the results to a similar case, but

with kinetic parameters and time dependent cases.
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69.791
12.034
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Figure 3.4: Local average normalized neutron scalar fluxes and P[j] for configuration 1,
eigenvalue problem.
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Material D1 D2 Σa1 Σa2 ν2Σf2 Σs12 λp βp × 103

1 1.5 0.4 0.01 0.0825 0.135 0.02 0.0127 0.0317 0.285 1.5975
2 1.5 0.4 0.01 0.0875 0.135 0.02 0.115 0.311 1.41 3.0525
3 1.5 0.4 ∗ ∗ 0.135 0.02 1.4 3.87 0.96 0.195
4 2 0.3 0 0.01 0 0.04 v1 = 1× 107 v2 = 3× 105

∗: parameters substituted by (3.9).

Table 3.2: Parameters for configuration 2.

3.2 Configuration 2

This configuration has the same geometry as configuration 1 given by figure 2.1a,

however with different nuclear parameters. The geometry and nuclear parameters came from

Argonne Code Center [1977] with a slight modification, and the kinetic parameters vg, λp

and βp came from Ceolin et al. [2015], as Argonne Code Center [1977] does not contain

any kinetic parameter. The methodology used homogeneous mesh with ∆x = ∆y = 5,

and reducing their value does not change significantly any results. The eigenvalue problem

with parameters equivalent to t = 0 resulted in maximum eigenvalue k = 0.999741 and the

code solved 2169 unknowns each time step. The computational time for eigenvalue and time

dependent problems were 9.8 s and 1645.2 s, respectively. Table 3.2 shows the parameters

used in this case. Table 3.3 shows the values and positions of maximum ϕg and P for

t = 0, 1, 3, 5, 7, 8. Figure 3.7 shows the results for this problem, and figure 3.5 shows the

graphics for the neutron fluxes in the global axes y = 0 and y = x. Figures 3.8 to 3.12

show the results for t = 1, 3, 5, 7, 8 respectively. Figure 3.6 shows the behavior of P in time.

The minimum P happened at about t = 3.12 with value P = 237.987. The maximum P

happened at about t = 5.12 with value P = 643.906. In this configuration, all Σf1 = 0,

the geometric buckling is B2 = 8 × 10−5 for all regions and all energy groups, and Σag in
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material 3 are time dependent functions, given by

Σa1 =



0.01 (1 + 0.1t) , 0 ≤ t < 1

0.01 (0.9 + 0.1 (t− 1)) , 1 ≤ t < 3

0.01 (1.1− 0.1 (t− 3)) , 3 ≤ t < 5

0.01 (0.9 + 0.1 (t− 5)) , 5 ≤ t < 7

0.01 (1.1− 0.1 (t− 7)) , 7 ≤ t ≤ 8

(3.9a)

Σa2 =



0.1325 (1 + 0.1t) , 0 ≤ t < 1

0.1325 (0.9 + 0.1 (t− 1)) , 1 ≤ t < 3

0.1325 (1.1− 0.1 (t− 3)) , 3 ≤ t < 5

0.1325 (0.9 + 0.1 (t− 5)) , 5 ≤ t < 7

0.1325 (1.1− 0.1 (t− 7)) , 7 ≤ t ≤ 8

(3.9b)

Note, in table 3.2 they are marked with the symbol ∗.
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(b) Fluxes profiles in y = x.

Figure 3.5: Fluxes graphics in some axes for configuration 2, eigenvalue problem.
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ϕ1 ϕ2

t value position value position P

0 1 (30, 30) 0.294203 (55, 135) , (135, 55) 333.580
1 1.89058 (25, 30) , (30, 25) 0.500120 (60, 135) , (135, 60) 651.536
3 0.707430 (30, 30) 0.192343 (55, 135) , (135, 55) 237.167
5 1.88953 (25, 30) , (30, 25) 0.500378 (60, 135) , (135, 60) 651.512
7 0.710987 (30, 30) 0.193610 (55, 135) , (135, 55) 238.539
8 0.904799 (30, 30) 0.243703 (60, 135) , (135, 60) 307.256

Table 3.3: Maximum values and positions (x, y) of fluxes and P for several t, configuration
2.

t

P

1 2 3 4 5 6 7 80
238

441

644

Figure 3.6: P in time for configuration 2.
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Figure 3.7: Local average normalized neutron scalar fluxes and P[j] for configuration 2,
eigenvalue problem.
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Figure 3.8: Local average normalized neutron scalar fluxes andP[j] for configuration 2, t = 1.
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Figure 3.9: Local average normalized neutron scalar fluxes andP[j] for configuration 2, t = 3.
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Figure 3.10: Local average normalized neutron scalar fluxes and P[j] for configuration 2,
t = 5.
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Figure 3.11: Local average normalized neutron scalar fluxes and P[j] for configuration 2,
t = 7.
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Figure 3.12: Local average normalized neutron scalar fluxes and P[j] for configuration 2,
t = 8.
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3.3 Configuration 3

This configuration is taken from Aboanber and Nahla [2006], without the scale

changes the authors did in that paper. The methodology used homogeneous mesh with

∆x = ∆y = 4, and reducing their value does not change significantly any results. The

eigenvalue problem with parameters equivalent to t = 0 resulted in maximum eigenvalue

k = 0.998565 and the code solved 900 unknowns each time step. The computational time

for eigenvalue and time dependent problems were 1.2 s and 101.0 s, respectively.
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Figure 3.13: Geometry and boundary conditions for configuration 3.
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Material D1 D2 Σc1 Σc2 Σf1 Σf2 Σs12 νg λ β

1 1.4 0.4 0.065 ∗ 0.0035 0.1 0.01 2.1877 0.08 0.0075
2 1.4 0.4 0.065 0.05 0.0035 0.1 0.01 v1 = 1× 107

3 1.3 0.5 0.065 0.02 0.0015 0.03 0.01 v2 = 2× 105

∗: parameter substituted by (??).

Table 3.4: Parameters for configuration 3.
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(b) Fluxes profiles in y = x.

Figure 3.14: Fluxes graphics in some axes for configuration 3, eigenvalue problem.

Table 3.4 shows the parameters used in this case. Table 3.5 shows the values and

positions of maximum ϕg and P for t = 0, 0.2, 0.4, 0.6, 0.8, 1. Figure 3.16 shows the results

for the eigenvalue problem (t = 0), and figure 3.14 shows the graphics for the neutron

fluxes in the global axes y = 0 and y = x. Figures 3.17 to 3.21 show the results for

t = 0.2, 0.4, 0.6, 0.8, 1 respectively. Figure 3.15 shows the behavior of the power level in time.

The minimum P happened at about t = 0.01 with value P = 59.3792. The maximum P

happened at t = 1 with value P = 110.553. Σc2 in material 1 is a time dependent function,

given by

Note, in table 3.4 it is marked with the symbol ∗.
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ϕ1 ϕ2

t value position value position P

0 1 (32, 0) , (0, 32) 0.169643 (16, 16) 64.5200
0.2 1.57297 (32, 16) , (16, 32) 0.258811 (16, 16) 102.780
0.4 1.64054 (32, 16) , (16, 32) 0.270066 (16, 16) 107.214
0.6 1.65740 (32, 16) , (16, 32) 0.272839 (16, 16) 108.316
0.8 1.67443 (32, 16) , (16, 32) 0.275641 (16, 16) 109.429
1 1.69161 (32, 16) , (16, 32) 0.278469 (16, 16) 110.553

Table 3.5: Maximum values and positions (x, y) of fluxes and P for several t, configuration
3.

t

P

0.2 0.4 0.6 0.8 10

65

60

85

111

Figure 3.15: P in time for configuration 3.
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Figure 3.16: Local average normalized neutron scalar fluxes and P[j] for confituration 3,
eigenvalue problem.
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Figure 3.17: Local average normalized neutron scalar fluxes and P[j] for confituration 3,
t = 0.2.
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Figure 3.18: Local average normalized neutron scalar fluxes and P[j] for confituration 3,
t = 0.4.
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Figure 3.19: Local average normalized neutron scalar fluxes and P[j] for confituration 3,
t = 0.6.
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Figure 3.20: Local average normalized neutron scalar fluxes and P[j] for confituration 3,
t = 0.8.
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Figure 3.21: Local average normalized neutron scalar fluxes and P[j] for confituration 3,
t = 1.
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3.4 Configuration 4

This configuration is a known benchmark for two–dimensional time dependent neu-

tron space kinetics codes, however the author did not find the proper reference to this case

and limited himself to show the obtained results without any comparing. This case is mod-

eled until T = 60 and it had to be divided in 6 parts of 10 s each because the computer did

not had enough memory to stock the transients vector. The methodology used homogeneous

mesh with ∆x = ∆y = 5, and reducing their value does not change significantly any results.
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Figure 3.22: Geometry and boundary conditions for configuration 4.
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Material

Parameter 1 2 3 4 5

D1 1.423913 1.423913 1.425611 1.634227 1.423913
D2 0.356306 0.356306 0.350574 0.264002 0.356306
Σc1 0.0078109836 ∗ 0.0079913164 0.002660573 ∗
Σc2 0.04256905 ∗ 0.04413618 0.04936351 ∗
Σf1 0.0025910764 0.0025910764 0.0030013136 0 0.0025910764
Σf2 0.04509312 0.04509312 0.05512016 0 0.04509312
Σs12 0.0175555 0.0175555 0.01717763 0.02759693 0.0175555

νg = 2.4564332 , v1 = 1.25× 107 , v2 = 2.5× 105 , λ = 0.078408534 , β = 0.0064995

∗: parameters substituted by (3.10) and (3.11).

Table 3.6: Parameters for configuration 4.
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(b) Fluxes profiles in y = x.

Figure 3.23: Fluxes graphics in some axes for configuration 4, eigenvalue problem.

The eigenvalue problem with parameters equivalent to t = 0 resulted in maximum

eigenvalue k = 0.999042 and the code solved 1089 unknowns each time step. The computa-

tional time for eigenvalue problem was 2.7 s.

Table 3.6 shows the parameters used in this case. Table 3.7 shows the values and

positions of maximum ϕg and P for t = 0, 7.5, 10, 20, 25
1.1

, 30, 40, 47.5, 50, 60 and the 10 s

evolution computational times for t = 10, 20, 30, 40, 50, 60. Figure 3.25 shows the results

for the eigenvalue problem (t = 0), and figure 3.23 shows the graphics for the neutron

fluxes in the global axes y = 0 and y = x. Figures 3.26 to 3.34 show the results for
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t = 0, 7.5, 10, 20, 25
1.1

, 30, 40, 47.5, 50, 60 respectively. Figure 3.24 shows the behavior of the

power level in time. The minimum P happened at t = 60 with value P = 28.0782. The

maximum P happened at t = 0 with value P = 127.990.

Σag in material 2 are time dependent functions, given by

Σa1 =


1.062210× 10−2 − 2.2× 10−41.1t

25
, 0 ≤ t <

25

1.1

1.040210× 10−2 ,
25

1.1
≤ t ≤ 60

, (3.10a)

Σa2 =


8.91822× 10−2 − 1.52× 10−31.1t

25
, 0 ≤ t <

25

1.1

8.76622× 10−2 ,
25

1.1
≤ t ≤ 60

. (3.10b)

Σag in material 5 are time dependent functions, given by

Σa1 =


1.040206× 10−2 , 0 ≤ t < 7.5

1.040206× 10−2 + 3.85× 10−4 t− 7.5

40
, 7.5 ≤ t < 47.5

1.078706× 10−2 , 47.5 ≤ t ≤ 60

, (3.11a)

Σa2 =


8.76217× 10−2 , 0 ≤ t < 7.5

8.76217× 10−2 + 2.66× 10−3 t− 7.5

40
, 7.5 ≤ t < 47.5

9.032217× 10−2 , 47.5 ≤ t ≤ 60

. (3.11b)

Note, in table 3.6 in materials 2 and 5 their Σcg are marked with the symbol ∗, as their Σag

are determined by these expressions instead.
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ϕ1 ϕ2

t value position value position P c.time

0 1 (0, 0) 0.200038 (0, 0) 127.990
7.5 0.875662 (0, 0) 0.175145 (0, 0) 113.677
10.0 0.847555 (0, 0) 0.169194 (0, 0) 110.541 613.5
20.0 0.730632 (0, 0) 0.144726 (0, 0) 97.0949 814.3

25/1.1 0.698505 (0, 0) 0.138349 (0, 0) 93.2013
30.0 0.535145 (0, 0) 0.106159 (15, 0) , (0, 15) 71.8141 777.6
40.0 0.385653 (10, 0) , (0, 10) 0.0768145 (15, 0) , (0, 15) 52.2755 959.2
47.5 0.294537 (15, 0) , (0, 15) 0.0587293 (15, 0) , (0, 15) 40.1463
50.0 0.273473 (15, 0) , (0, 15) 0.0545262 (15, 0) , (0, 15) 37.2833 911.9
60.0 0.205895 (15, 0) , (0, 15) 0.0410523 (15, 0) , (0, 15) 28.0782 855.2

Table 3.7: Maximum values and positions (x, y) of fluxes and P for several t, configuration
4.
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t
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78

Figure 3.24: P in time for configuration 4.
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Figure 3.25: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 0.
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Figure 3.26: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 7.5.
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Figure 3.27: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 10.
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Figure 3.28: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 20.
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Figure 3.29: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 25
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Figure 3.30: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 30.
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Figure 3.31: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 40.
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Figure 3.32: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 47.5.
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Figure 3.33: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 50.
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Figure 3.34: Local average normalized neutron scalar fluxes and P[j] for confituration 4,
t = 60.
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4 CONCLUSION

In the present thesis, a new methodology to solve neutron diffusion problems is

presented. PEM keeps the simplicity of a numerical method like finite differences but it also

keeps an analytical character at the complete series solution, which provides, locally, the

analytical solution. The methodology error is more applicable to computer codes, as it does

not require the implementation of further terms on the polynomial. Also, it is noteworthy

that the methodology error is determined by the differential equation alone, bearing in

mind that the boundary conditions are locally satisfied. In other words, this methodology

error is as applicable as the proper approximations required in the boundary conditions and

the differential equation independent terms. The author found that using a higher order

polynomial could cause the code to easily reach an under or overflow due to the difference

of scales between the coefficients. Despite this methodology is not particular to this type

of problem, it is adapted to the nuclear reactor particularities, like the presence of many

energy groups, precursors groups and rectangular geometry. The iterative scheme that links

the local solutions does have a proper convergence indicative given by the referenced papers

at chapter 2, section 2. A proof of linear independence helps to assure the uniqueness of the

solution and the numerical operations to accelerate the convergence avoids any ambiguities

that could happen by the application of PEM. Also, in the time variable, the known modified

Euler method is used with a slight modification. The author is aware that there was no

outputs comparing whatsoever in the time dependent cases at the results chapter, however

this methodology has already been proven to be stable. It is known from the cited literature

that it has proper global error estimates. Also from the literature the expected behavior of ∆t

is affirmed: as it goes to infinity, the discrete time problem returns the steady state problem,

and as it goes to zero the solution of each time step goes to the analytical solution. As the

problem is linear, an applicable algorithm for 0 < ∆t < ∞ is expected. The author chose

this methodology for the time variable because of its stability and because the application of

PEM in the time variable (using a linear basis instead of second order polynomial) provides

the same algorithm as the Euler modified method. The methodology has been successfully

used to actual nuclear reactor benchmark problems used in the literature, however without
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any comparison of results except the configuration 1, which is the most usual for matter of

comparison in recent papers. As expected, the obtained results do not differ significantly

from the reference.

This document describes the dependence of powers of xmyn coefficients, which ex-

plicits how much the terms φ00 contribute on the determination of other φ–s. These con-

tributions are determined by the local (fictitious) boundary conditions only, so they are

independent of the differential equation. In fact, these relations may be the topic for a fu-

ture investigation of this methodology: as some coefficients represent the Laplacian of the

neutron scalar flux, how exactly the boundary conditions influence the final solution itself by

interfering with the independent term by the diffusion equation? Also, the methodology er-

ror uses the diffusion equation to its determination. In the present calculations, the solution

was obtained first, and then the error was determined, as seen on the previous pages. How-

ever, a question rises from this fact: could the error estimate be used as an input to obtain a

more precise solution? The answer to this question is being developed. Another issue to be

considered in a future time is the parameters dependence on the unknowns themselves. This

kind of problem is usual in reactor dynamics, that considers the thermo–physical changes

on the parameters, making the diffusion problem turn into a non–linear one, which is closer

to real problems.
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