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Abstract. In this work we study the effects of three different strategies to associate memories in a
neural network composed by both excitatory and inhibitory spiking neurons, which are randomly
connected through recurrent excitatory and inhibitory synapses. The system is intended to store a
number of memories, associated to spatial external inputs. The strategies consist in the presentation
of the input patterns through trials in: i) ordered sequence; ii) random sequence; iii) clustered
sequences. In addition, an order parameter indicating the correlation between the trials’ activities is
introduced to compute associative memory capacities and the quality of memory retrieval.
Keywords: unsupervised learning; spiking neurons; homeostasis; STDP.
PACS: 87.18.Sn, 87.19.lg, 87.19.lj, 87.19.lv, 87.19.lw

INTRODUCTION

Memories, and everything that is processed by the brain, are associated with the con-
nections among neurons. It is well established that learning includes mechanisms based
on Hebb’s hypothesis [1], which consists basically on potentiating and depressing con-
nections between neurons with correlated and uncorrelated activities, respectively. The
main mechanism of synaptic modi�cation that is responsible for the emergence of asso-
ciative memory in an unsupervised way is Spike-Timing-Dependent Plasticity (STDP)
[2, 3], which is a hebbian-like rule. Addionally to the associative memory mechanism,
the cells present homeostasis, which has been studied in theoretical works [4, 5].

It is known that, with some prede�ned connections between neurons and without
synaptic plasticity [6, 7], a neural network of spiking neurons has a certain capacity to
store memories. But how these speci�c connection matrices are acquired in an unsuper-
vised way is yet unknown, and here we introduce three distinct methods to do so.

LEARNING

We have used the Izhikevich model [8] with Regular Spiking (RS) parameters for the
320 excitatory neurons and Fast Spiking (FS) for the 80 inhibitory neurons. The learning
process was based on the work by Liu and Buonomano [5], where a trial, τ , is de�ned
as the network response after a spatial input. All the synaptic modi�cations are applied
after each trial, since the time window of a trial is less than 150 ms, which could match
synaptic plasticity time scales.

As used in ref. [5], the probability of connection from an excitatory to another ex-
citatory neuron, P(exc.→ exc.), was set to 0.12. For the other connections, we used
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FIGURE 1. Order parameter,C(τ,τ ′), versus learning trials, τ . In (a) and (b), the ordered sequence and
the random sequence, respectively. The correlation in the clustered order in (c) and (d). Details of τ ′ on
the text.

P(exc.→ inh.) = 0.2 and P(inh.→ exc.) = 0.2. Each input pattern consists on a ran-
domly chosen set of 20 excitatory and 10 inhibitory neurons that �re within the �rst 10
ms of the trial. Initial synaptic weights were set toWEE = 0.04 nS,WEI = 0.008 nS and
WIE = 0.1 nS. Excitatory synapses were modi�ed according to both homeostatic and
STDP rules used in ref. [5], with the same parameter values. Short-term plasticity (STP)
was implemented as described in ref. [8], with depression in all synapses.

The analysis was done with an order parameter which correlates the spike times of
the excitatory neurons in two distinct trials. It is de�ned as

C(τ,τ ′) = γ−1
320

∑
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∑
{k, j}

exp

[
−(tτik− t

τ ′
i j )

2

100

]
, (1)

where γ = MAX(320,Sτ,Sτ ′) is the normalization for the correlation value and Sτ =
(1/320)∑320

i Sτ
i , a sum over only the 320 excitatory neurons. The sum over {k, j}

indicates that kth and jth spikes are close in time.
We used three different learning methods of spatial input presentation: i) ordered

sequence; ii) random sequence; iii) clustered sequences. In the �rst strategy, each spatial
pattern is presented in a ordered way through the trials. The second strategy consists
in presenting the patterns in a random sequence and, in the third one, each pattern is
presented successively for a de�ned number of trials, which was set to 3000 trials. The
synaptic modi�cations are applied to excitatory connections, including a homeostatic
plasticity and STDP, as described in ref. [5]. The homeostasis rule is used to increase the
synaptic weights until the network presents a desired activity and thereafter to maintain
a stable activity.

Figure 1 shows the evolution of the correlationC(τ,τ ′), where τ ′= τμ=1 in (a) and (b)
and τ ′ = τ−1 in (c). A trial τμ=1 is the last trial - before τ - that the pattern μ = 1 was
the input pattern. In Fig. 1(d), the plot is the correlation of a trial between τ and τ + 1
with the presentation of the pattern μ = 1 without synaptic plasticity from homeostasis
and STDP rules and the last trial with the presentation of pattern μ = 1 with synaptic
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plasticity. For τ < 3000, the curve is the same as in Fig. 1(c) and for τ > 3000, pattern
μ = 2 begins to be trained and the curve informs how much information about pattern
μ = 1 is being forgotten.

Full lines in graphs 1(a) and (b) correspond to τ which has as spatial input the pattern
μ = 1, indicating correlation when the same input is presented at different times. These
lines converge to C = 1, showing that the spatiotemporal response from the network is
equivalent when the same input is used. We tested the same with the other 4 patterns
and the result is equivalent. Dashed lines correspond to correlation between trials with
different input patterns and they do not converge to C = 1, indicating that different
trained inputs evoke distinct spatiotemporal responses.

The plot in Fig. 1(c) shows that, using 30 patterns, the correlation converges toC = 1
for each one of them within a learning window of 3000 trials, but, as shown in Fig. 1(d),
the network response to a learned memory vanishes as new memories begin to be stored.

CONCLUSIONS

We presented a neural network with unsupervised learning, simulated using the Izhike-
vich model and synaptic plasticity applied in trials. We de�ned three different ways of
learning through trials - ordered, random and clustered sequences - and showed that the
two �rst methods are equivalent for 5 patterns while the last method is robust for a large
number of patterns but it presents a forgetting curve, which means that the memories
are forgotten when new ones are trained. When the number of stored patterns increase
in random and ordered sequences, some inputs do not develop spatiotemporal response
(not shown). A detailed study of the network’s behavior when increasing the number of
input patterns is needed for a more accurate understanding of the problem.
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