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Abstract
Researchers dealing with the task of estimating locations of individuals on continuous latent varia-
bles may rely on several statistical models described in the literature. However, weighting costs and 
benefi ts of using one specifi c model over alternative models depends on empirical information that is 
not always clearly available. Therefore, the aim of this simulation study was to compare the perfor-
mance of seven popular statistical models in providing adequate latent trait estimates in conditions 
of items diffi culties targeted at the sample mean or at the tails of the latent trait distribution. Results 
suggested an overall tendency of models to provide more accurate estimates of true latent scores when 
using items targeted at the sample mean of the latent trait distribution. Rating Scale Model, Graded 
Response Model, and Weighted Least Squares Mean- and Variance-adjusted Confi rmatory Factor 
Analysis yielded the most reliable latent trait estimates, even when applied to inadequate items for 
the sample distribution of the latent variable. These fi ndings have important implications concerning 
some popular methodological practices in Psychology and related areas.
Keywords: Psychometrics, Item Response Theory, Classical Test Theory, factor analysis, data si-
mulation, latent variable models.

Resumo
Pesquisadores interessados em estimar a localização de indivíduos em variáveis latentes contínuas 
podem se benefi ciar de diversos modelos estatísticos disponíveis na literatura. Entretanto, ponderar 
os custos e os benefícios de usar um modelo em detrimento de outros depende de informações em-
píricas que nem sempre estão diretamente disponíveis. Em virtude disso, o objetivo deste estudo foi 
comparar o desempenho de sete modelos estatísticos populares quanto a proporcionar adequadas 
estimativas de traço latente em condições de itens com difi culdades condizentes com a distribuição 
latente amostral versus apenas condizentes com as caudas dessa distribuição. Os resultados sugeriram 
uma tendência de todos os modelos de proporcionar estimativas mais precisas ao serem usados itens 
adequados para o nível de traço latente da amostra. Os modelos da Teoria de Resposta ao Item Rating 
Scale e Graded Response e a análise fatorial confi rmatória com estimação Weighted Least Squares 
Mean- and Variance-adjusted forneceram as estimativas mais fi dedignas de traço latente, mesmo 
quando os itens utilizados, de fato, correspondiam ao nível latente de poucos casos da amostra. Os 
resultados possuem importantes implicações no que diz respeito a algumas práticas metodológicas 
populares na Psicologia e em áreas próximas. 
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“Latent variable” refers to a random variable with 
no sample realizations immediately available for at least 
some cases of a database (Bollen, 2002). Latent variables 
mathematically represents real infl uences underlying ob-

served behavior, and play an important role when it comes 
to investigate whether scores on a set of indicators afford 
inferences about underlying psychological phenomena 
(Borsboom, 2008)In Psychometrics, a latent trait estimate 
(i.e., a latent score) indicates the most likely location of 
an individual on a psychological dimension, when taken 
into account the observed pattern of responses given to 
a set of valid items or tasks (Grice, 2001).. Nevertheless, 
estimating the true latent score of an individual does 
not depend only on using valid indicators, but also on a 
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statistical model that establishes a link function between 
these indicators and the latent variable in question. 

Many statistical models address the problem of latent 
variable assessment in Psychology and related areas. Follo-
wing, we discuss two general statistical models that com-
prise several of commonly used psychometric approaches. 
Namely, these general models comprise the Classical Test 
Theory (CTT), and the Latent Variable Models (LVM). 
Further, we briefl y describe a third type of methodological 
approach, known as Principal Components (CP). 

The general formulation of the Classical Test Theory 
(CTT) is:

  X = T + ε  (1)

Stated otherwise, observed score X of an individual 
i in a test (or isolated item) j equals to his or her true 
score T plus a random error ε. In this case, the true score 
T means E[X] = T, i.e., the expected raw score X for 
that individual, considering a hypothetical situation of 
infi nitely repeated independent measures (Bollen, 2002; 
Lord & Novick, 1968). Actually, there are no latent 
variables in the general model of CTT, so that the model 
consists only in a thought experiment involving repeated 
observable operations (Borsboom, 2005). However, it is 
a common practice among researchers in Psychology and 
related areas to treat raw scores (even when resulting from 
a single test administration) as if they were some sort of 
estimate of a latent variable. Indeed, some researchers 
have attempted to relate, conceptually, the observed score 
X to a latent variable θ (Bechger, Maris, Verstralen, & 
Béguin, 2003).

In contrast with CTT, Latent Variable Models (LVM) 
allow for empirically testing the hypothesis that the popula-
tion distribution of raw scores in psychometric instruments 
depends on the population distribution of “unobserved” 
variables. A common central characteristic of all LVM is 
assuming observed data as a function of a unidimensional 
or multidimensional latent structure (Borsboom, 2008). 
Although the link function in the syntactic formulation 
of models may be linear, logistic, probit or of another 
type (Bollen, 1989), several LVM can be described by 
a simple linear combination of explanatory parameters 
(Mellenbergh, 1994). In spite of exceptions (see Mel-
lenbergh, 1994), this holds true for most of usual models 
in Psychometrics, such as Factor Analysis (FA) and Item 
Response Theory (IRT). 

The FA models are widely used in Psychology (Ten 
Holt, Van Duijn, & Boomsma, 2010). Briefl y, the FA 
models consist in:

    Xij = vj + aj1Fi1 + aj2Fi2 + ... + ajmFim + εj  (2)

That is, observed score Xij of individual i on item j is 
a function of the combination of m factor loadings aj and 
factor scores F plus a random error εj, with the assumption 
that εj ~N (Gorsuch, 1983). The vj parameter represents an 

intercept, in general, set to 0 for identifi cation purposes. 
The FA of categorial data (e.g., Likert scales; for instance, 
Weighted Least Squares Mean- and Variance-adjusted 
Confirmatory Factor Analysis [WLSMV]; Muthén & 
Muthén, 1999) adds a threshold structure to the model, 
parameterizing the diffi culty of endorsement of categories 
(Ferrando & Lorenzo-Seva, 2005; Takane & de Leeuw, 
1987). So, generally stated, in FA, an item score is ex-
plained by an item intercept (and, in some cases, categories 
thresholds), the saturation or load of this item on n factors, 
and the location of individual on these n factors, besides 
random error. 

While raw scores are modeled as the dependent varia-
bles in FA models, in the context of IRT, the dependent 
variable is the conditional probability of observing a speci-
fi c score on an item, given individual and item parameters. 
A general IRT model can be defi ned as:

 P(U = u|θ) = f(θ, γ)   (3)

That is, the conditional probability of observing a score 
u on item j is a f function of a θ vector with one or more 
parameters describing the location of individuals on one or 
more continuous latent variables, and a γ vector containing 
one or more item parameters (for a more complete intro-
duction, see Reckase, 2009). Among unidimensional IRT 
models suitable for polytomous items, link function f is, 
in general, a logistic regression (ψ), and item parameters 
are aj (discrimination) and bj (diffi culty), so that:

        Pij(U = u|θi, aj, bj) = ψaj(θi - bj)      (4)

Actually, IRT models are equivalent to the FA of cat-
egorical data (Takane & de Leeuv, 1987). A minor differ-
ence between IRT and FA of categorical data derives from 
equation (4), which implies a logistic parameterization, 
whereas categorical FA analysis - such as WLSMV mod-
els, for instance - implements a probit parameterization for 
discrimination (factor loadings) and diffi culty (thresholds) 
parameters (Wirth & Edwards, 2007). Three commonly 
used unidimensional models to estimate latent scores with 
polytomous items are the Graded Response Model (GRM; 
Samejima, 1969), the Partial Credit Model (PCM; Masters, 
1982) and the Rating Scale Model (RSM; Andrich, 1978). 
Whereas PCM and RSM estimate the person θi and item 
bj parameters (constraining aj = 1), GRM estimates the 
parameters aj, bj and θi (for a more detailed explanation 
about differences between models, see Embretson & Reise, 
2000; and Wright & Masters, 1982). 

Finally, another commonly used model, but unrelated 
to CTT and to LVM, is Principal Components Model (CP; 
Hotelling, 1933), which consists in:

           Zi = wj1Xj1 + wj2Xj2 + ... + wjnXjn         (5)

Stated another way, the principal component Zi score 
for individual i consists in a linear combination of n indi-
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cators X and its respective w weights on the component. A 
principal component equals to a weighted sum of a set of 
ordinal or continuous indicators - an index useful to sum-
marize data. Factors and components are not necessarily 
equivalent, as components are constituted by the common 
variance between the indicators (which constitutes a fac-
tor), but also by their specifi c variance plus error variance 
(Gorsuch, 1997). Actually, PC model is more appropriate 
to rather investigate formative constructs (e.g., Vyas & 
Kumaranayake, 2006) than psychological phenomena un-
derlying data. Thus, like CTT, it is a model that, formally, 
does not include latent variables as an explanation for the 
data, despite being often used in this sense. 

A theoretical and practical matter is whether it makes 
difference using a particular model (from the ones pre-
sented above) for estimating the latent trait levels of 
individuals in detriment of using the other models. In this 
regard, evidence suggests using CTT raw scores can sys-
tematically overestimate or underestimate the true latent 
trait level under some conditions (Ziegler & Ziegler, 2009). 
Such biases were found in studies both in cognitive and 
psychopathology areas (Reise & Waller, 2009; Stansbury, 
Ried, & Velozo, 2006; Ziegler & Ziegler, 2009). A study 
have also shown that latent scores yielded by PC are less 
contaminated by disturbing infl uences, such as social 
desirability, than CTT scores (Saar, Aavik, & Konstabel, 
2012). Also, compared to CTT, IRT models seem to pro-
vide more accurate estimates of latent trait levels (Fraley, 
Waller, & Brennan, 2000; Weiss & Von Minden, 2011). 
Furthermore, IRT models are less prone (than CTT scores) 
toward spurious interaction effects in analysis of variance 
(Embretson, 1996a) and linear regression (Morse, Johan-
son, & Griffeth, 2012). Therefore, studies have shown 
substantial differences, in pairwise comparisons, in the 
quality of estimates provided by models.

However, to our knowledge, only one previous em-
pirical study addressed the issue of comparing latent trait 
estimates obtained via several different models. Namely, 
using real data on psychopathology, Dumenci and Achen-
bach (2008) explored the relationship between latent trait 
estimates yielded by six statistical models (i.e., CTT, PC, 
exploratory FA with Maximum Likelihood estimation 
method [EFA-ml], confi rmatory FA with Weighted Least 
Squares Mean- and Variance-adjusted estimation method 
[CFA-wlsmv], GRM and PCM models). Authors found 
similar estimates obtained by CTT, PC, EFA-ml methods 
on the one hand, and between CFA-wlsmv, GRM and 
PCM, on the other hand. Specifi cally, within each method 
group, linear relationships (R²) between estimates were 
near 1.00. By contrast, between groups, relationships were 
more of a quadratic or cubic type, with R² around .90. 
Therefore, fi ndings revealed non-negligible differences 
between these two clusters of models, suggesting some of 
them may be more appropriate than others given empiri-
cal conditions yet to be fully explored. Nevertheless, the 
use of real data prevented authors from investigating such 

conditions, as exemplifi ed by controlling the presence or 
not of items with highly dissimilar degrees of diffi culties.

In this respect, Embretson (1996b) used simulated data 
to illustrate how test equating under CTT yield divergent 
(non-linearly related) estimates for the same individuals 
when using an “easy” and a “hard” version of a test. In 
fact, the presence of items with inadequate diffi culties 
to the sample latent trait distribution may bias even the 
number of underlying dimensions identifi ed when us-
ing exploratory methods such as continuous FA and PC 
(Aryadoust, 2009; Smith, 2009). Then, it follows that 
convergence between latent trait estimates from different 
psychometric models may vary according to whether or 
not items diffi culties match the sample mean of latent trait 
distribution. Nevertheless, we know of no previous works 
that have applied statistical tests to address this empirical 
issue. Therefore, the aim of the present simulation study 
was to compare the performance of seven popular statisti-
cal models in providing adequate latent trait estimates in 
conditions of items targeted at the mean level or at the tails 
of the latent variable distribution. To do so, we evaluated 
correlations between estimated and simulated true latent 
scores, considering three simulation conditions: (a) items 
diffi culties targeted at the sample mean of latent trait dis-
tribution (Condition 1); (b) items diffi culties targeted at the 
lower tail of latent distribution (Condition 2); and (c) items 
diffi culties targeted at the upper tail of latent distribution 
(Condition 3). In addition, we investigated the infl uence of 
sample size on the quality of models estimates. We sought 
to behold a diversity of statistical models commonly used 
in Psychometrics, representing the perspectives of CTT, 
FA, IRT and PC.

Method

Procedures of Data Simulation 
Fifteen unidimensional databases were simulated, 

considering three items diffi culties distribution conditions 
(described below) × fi ve sample sizes (N = 100, N = 200, N 
= 500, N = 1000 and N = 2000). For each database, 10 items 
representing a continuous latent variable were generated. 
We specifi ed a Likert scale of fi ve points, and a discrimina-
tion (parameter a) ranging between .5 and 2.8. This allowed 
for items with a wide range of degrees of discrimination, 
according to extreme reference values   listed in the litera-
ture (Baker, 2001). The purpose of these specifi cations was 
to approximate real data, in which items tend to vary in 
terms of relationship with the latent trait. Items responses 
were generated with the Generalized Partial Credit model 
(Muraki, 1992), which admits a variability in the a and b 
parameters of the items. The simulation was performed 
using the WinGen program (Han, 2007).

For all databases, latent scores were specifi ed to have 
a normal distribution with mean = 0 and standard devia-
tion = 1. For databases of Condition 1 (items targeted at 
the sample mean of latent trait distribution), b parameters 
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were also specifi ed to have a normal distribution (mean = 
0 and standard deviation = 1). Thus, items resulted always 
located exactly in the portion of the latent continuum with 
the largest amount of cases – and, therefore, of useful 
information for estimating locations of individuals. By 
contrast, for databases of Condition 2 (items targeted at 
the lower tail of latent trait distribution) and Condition 3 
(items targeted at the upper tail of latent trait distribution) 
we created items with diffi culties matching only the tails 
of the latent trait distribution; respectively, the 20% lower 
and the 20% upper individuals of sample distribution. Spe-
cifi cally, items diffi culties fell between -3.00 and -.84 for 
Condition 2 and .84 and 3.00 for Condition 3, consistent 
with values form z score table.

Data Analysis
We measured the magnitude of correspondence 

between latent trait estimates and true (simulated) latent 
scores using Pearson correlation and determination 
coeffi cient (r²). We also tested for mean differences and 
effects of simulation condition, sample size and statistical 
model on shared variance with the true latent score using t 
test, one-way ANOVA and factorial ANOVA. Estimates of 
true latent trait locations were obtained with the following 
models:

Classical Test Theory (CTT). Raw scores were com-
puted for the 10 items of each database, assuming the 
parallelism between items (i.e., its equivalence as to the 
true scores and the error variance; Graham, 2006).

Principal Components (PC). As described previously, 
PC method (Hotelling, 1933) provides an index which 
consists on a weighted sum of (continuous or ordinal) 
indicators. Component scores were computed using SPSS 
19.0 program, regression scoring method.

Maximum Likelihood Exploratory Factor Analysis 
(EFA-ml). ML method applied to exploratory factor analy-
sis (Jöreskog, 1967) is also a way to estimate parameters 
described in equation (2). In spite of assuming normal 
and continuous distribution of data, ML is one of the most 
popularly used estimation methods for factor analysis 
(Fabrigar, Wegener, Maccallum, & Strahan, 1999). Factor 
scores derived from EFA-ml were computed using SPSS 
19.0 program, regression scoring method.

Minimum Rank Exploratory Factor Analysis (EFA-
mr). Minimum rank method (ten Berge & Kiers, 1991) is 
one of the several possibilities for estimating parameters of 
the general model of equation (2). EFA-mr was developed 
to maximize common variance explained in each extracted 
factor (ten Berge & Kiers, 1991). Factor scores estimates 
were obtained with software FACTOR 8.1 (Lorenzo-Seva 
& Ferrando, 2006), which uses a linear method developed 
by ten Berge, Krijnen, Wansbeek and Shapiro (1999).

Rating Scale Model (RSM). RSM (Andrich, 1978) 
is an IRT model for polytomous items that takes into 
account the purely ordinal nature of Likert scales. RSM 
was derived from dichotomous Rasch (1960) model, 
which is often considered the best option when the goal 

is separability between item and person parameters (Bond 
& Fox, 2007; Wright, 1997). Software used was Winsteps 
3.72.0 (Linacre, 1991), which provides Joint Maximum 
Likelihood estimation method.

Graded Response Model (GRM). GRM (Samejima, 
1969) is an IRT model suitable for polytomous items such 
as Likert scales, hence taking into account the ordinal 
nature of raw data modeled. GRM admits a variability in 
item discrimination parameters (parameter a). Analyses 
were conducted with ltm package (Rizopoulos, 2006) using 
R program. The package uses Marginal Maximum Likeli-
hood estimation method with Expectation-Maximization 
algorithm (Bock & Aitkin, 1981) to calculate model 
parameters. We computed latent scores via Expected a 
Posteriori method.

Weighted Least Squares Mean- and Variance-adjusted 
Confi rmatory Factor Analysis (CFA-wlsmv). Confi rma-
tory factor analysis with WLSMV estimation method 
(Muthén & Muthén, 1999) does not assume continuity or 
normal distribution of data, typically using policoric corre-
lation matrices. CFA-wlsmv, therefore, takes into account 
the purely ordinal nature of Likert scales of response. CFA-
-wlsmv, in general, tends to provide parametric estimates 
closely related to GRM (although in a probit scale), as it 
estimates factor loadings (item discrimination) as well as 
item thresholds or intercepts (item diffi culty; Ferrando 
& Lorenzo-Seva, 2005). Analyses were conducted with 
Mplus 6.0 software (Muthén & Muthén, 2010). Mplus uses 
Maximum a Posteriori method to calculate factor scores 
for WLSMV models.

Results

We used the seven methods described in the previ-
ous section to estimate (i.e., recover) the true latent trait 
locations on 15 simulated databases. Pearson correlation 
coeffi cients and shared variance r² measuring the relation-
ship between estimated and true latent scores in simulation 
Conditions 1, 2 and 3 are shown in Table 1. Results showed 
a small variability in determination coeffi cients (Δr²) 
along sample sizes when items had diffi culties matching 
the latent trait distribution of sample used – namely, 
Condition 1. In contrast, we observed a larger variability 
in determination coeffi cients for Condition 2 and Condi-
tion 3 (i.e., situations in which items diffi culties were not 
targeted at the sample mean of latent trait distribution).

Analysis of variance (ANOVA) showed no signifi cant 
effects for sample size on mean values   of r², F(4, 100) = 
.11, p = .98, as well as for interactions between sample 
size and statistical models, F( 24, 70) = .01, p = 1.00, and 
sample size and simulation conditions, F(8, 90) = 1.45, p 
= .19. Nevertheless, the main effect of statistical model 
type on r² was signifi cant, F(6, 84) = 49.60, p < .001, as 
well as the main effect of simulation condition, F(2, 84) = 
1015.38, p < .001, and the interaction between model and 
simulation condition, F(12, 84) = 9.28, p < .001. Hereafter, 
the three simulation conditions were evaluated separately 
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in order to better assess the effect of statistical model on r² 
values. Results showed signifi cant effects for model type in 
Condition 2, F(6, 28) = 36.85, p < .001, and Condition 3, 
F(6, 28) = 17.35, p < .001. Although Omnibus test showed 
signifi cant differences of mean r² for statistical model in 
Condition 1, F(6, 28) = 3.02, p = .02, Bonferroni post hoc 

Table 1
Models Performances in the Simulation Conditions

N

Condition 1

CTT PC EFA-ml EFA-mr RSM GRM CFA-wlsmv

R R² R R² r R² R R² R R² r R² R R²

2000 .954 .910 .957 .897 .955 .912 .957 .916 .961 .924 .962 .925 .964 .929

1000 .947 .897 .948 .899 .950 .902 .949 .901 .951 .904 .959 .920 .961 .923

500 .943 .889 .945 .893 .946 .895 .946 .895 .947 .897 .952 .906 .954 .910

200 .938 .880 .941 .885 .942 .887 .941 .885 .941 .885 .952 .906 .955 .912

100 .947 .897 .947 .897 .944 .891 .947 .897 .954 .910 .948 .899 .951 .904

ΔR²  .030 .014 .025 .031 .039 .026 .025

Mean R²   .895a   .894a   .897a   .899a   .904a   .911a   .916a

N

Condition 2

CTT PC EFA-ml EFA-mr RSM GRM CFA-wlsmv

R R² r R² r R² R R² R R² r R² R R²

2000 .737 .543 .725 .526 .732 .536 .723 .523 .841 .707 .839 .704 .839 .704

1000 .767 .588 .747 .558 .714 .510 .745 .555 .800 .640 .834 .696 .836 .699

500 .791 .626 .770 .593 .778 .605 .766 .587 .850 .722 .857 .734 .859 .738

200 .768 .590 .762 .581 .754 .569 .763 .582 .856 .733 .858 .736 .862 .743

100 .769 .591 .767 .588 .742 .551 .764 .584 .826 .682 .858 .736 .856 .733

ΔR² .048 .067 .095 .064 .093 .042 .044

Mean R² .588a .569a .554a .566a .697b .721b .723b

N

Condition 3

CTT PC EFA-ml EFA-mr RSM GRM CFA-wlsmv

R R² r R² r R² r R² r R² r R² R R²

2000 .770 .593 .758 .575 .745 .555 .758 .575 .845 .714 .850 .722 .851 .724

1000 .781 .610 .766 .587 .764 .584 .763 .582 .852 .726 .860 .740 .861 .741

500 .749 .561 .734 .539 .726 .527 .733 .537 .854 .729 .849 .721 .851 .724

200 .718 .515 .699 .487 .675 .456 .699 .489 .788 .621 .807 .651 .805 .648

100 .756 .571 .748 .560 .747 .558 .745 .555 .812 .659 .811 .658 .813 .661

ΔR² .095 .100 .128 .086 .108 .089 .093

Mean R² .570a .550a .536a .548a .690b .698b .700b

Note. CTT = Classical Test Theory (raw scores), PC = Principal Components, EFA-ml = Exploratory Factor Analysis with Maximum 
Likelihood estimation method, EFA-mr = Exploratory Factor Analysis with Minimum Rank estimation method, RSM = Rating Scale 
Model, GRM = Graded Response Model, CFA-wlsmv = Confi rmatory Factor Analysis with Weighted Least Squares Mean- and 
Variance-adjusted estimation method. ΔR² = variation in the R² coeffi cient. 
bDiffers from a with p < .001 in the pairwise comparison.

tests indicated no signifi cant differences between models 
in pairwise comparisons.

For Conditions 2 and 3, RSM, GRM and CFA-wlsmv 
methods showed a mean r² signifi cantly higher than CTT, 
PC, EFA-ml and EFA-mr. So, consistent with the study 
of Dumenci and Achenbach (2008), we identifi ed two 
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internally consistent clusters of statistical models. Indeed, 
after averaging observed r² yielded by CTT, PC, EFA-ml 
and EFA-mr on one hand, and RSM, GRM and CFA-
wlsmv on the other hand, results showed extremely-sized 
signifi cant differences between groups of statistical models 
for Condition 1, t(33) = -3.89, d = 1.32, p < .001, Condition 

2, t(33) = -14.43, d = 4.97, p < .001, and Condition 3, t(33) 
= -10.63, d = 3.62, p < .001. Therefore, overall performance 
of recovery of true latent score was better for the group 
comprising RSM, GRM and CFA-wlsmv when compared 
to the group comprising CTT, PC, EFA-ml and EFA-mr. 
This pattern is clearly depicted in Figure 1. 

Table 2 summarizes each model performance along 
simulation conditions and sample sizes. PC, EFA-ml 
and EFA-mr did not show a better performance than the 
simple sum of raw scores (CTT). By contrast, RSM, GRM 
and CFA-wlsmv showed general r² means consistently 
higher than obtained by others models. Variability in r 
and r² coeffi cients was also lower for these three models, 
indicating more stable estimates, independently of 
simulation condition.

Table 2
Overall Results

Model
Range of r 

(minimum –
maximum)

Range of r² 
(minimum – 
maximum)

Mean r² 

CTT .718 – .954 .515 – .910 .684

CP .699 – .957 .487 – .899 .671

EFA-ml .675 – .955 .456 – .912 .662

EFA-mr .699 – .957 .489 – .916 .671

RSM .788 – .961 .621 – .924 .763

GRM .807 – .962 .651 – .925 .777

CFA-wlsmv .805 – .964 .648 – .929 .779

Note. CTT = Classical Test Theory (raw scores), PC = Princi-
pal Components, EFA-ml = Exploratory Factor Analysis with 
Maximum Likelihood estimation method, EFA-mr = Exploratory 
Factor Analysis with Minimum Rank estimation method, RSM 
= Rating Scale Model, GRM = Graded Response Model, CFA-
wlsmv = Confi rmatory Factor Analysis with Weighted Least 
Squares Mean- and Variance-adjusted estimation method.

Discussion

Our fi ndings have theoretical and practical implica-
tons in respect to the task of estimating the locations of 
individuals on continuous latent variables using unidi-
mensional statistical models. First of all, results indicated 
a substantial variability in the performance of methods 
according to the presence or not of items too easy or too 
diffi cult for the sample assessed. More specifi cally, we 
observed a reduced overall performance of models in 
conditions in which items diffi culties matched the latent 
trait levels of only 20% of lower or upper individuals. In 
these conditions, we observed a greater proportion of error 
in the yielded estimates. As a result, it bears stressing the 
critical need to always use items adequately matching the 
latent trait level of the sample. Inadequate items imply low 
accuracy for latent trait estimates, dramatically increasing 
the likelihood of spurious results in analyses based on 
these estimates. 

Second, in all simulation conditions, RSM, GRM and 
CFA-wlsmv provided estimates more closer to the true 
latent scores than CTT, PC, EFA-ml and EFA-mr. These 
differences were extremely-sized in Conditions 2 and 3 
(i.e., in which items diffi culties were targeted at the tails 
of sample distribution of latent trait; d = 4.97 and 3.62, 
respectively). Thus, fi ndings suggest that RSM, GRM and 
CFA-wlsmv are less affected by a possible “mismatch” 
between items and sample distribution in their latent trait 
estimates. This pattern is consistent with fi ndings from the 
study by Dumenci and Achenbach (2008), and held even 
in the ideal Condition 1, in which items diffi culties were 
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Figure 1. Overall r² means for the statistical model groups in the simulation conditions.
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specifi ed to be randomly distributed around the sample 
mean of the latent trait distribution (d = 1.32). 

One explanation for this difference refers to the 
syntactic formulation of models. Namely, RSM, GRM and 
CFA-wlsmv estimate items diffi culties (δ or b parameters 
in RSM and GRM, and τ thresholds in CFA-wlsmv), what 
is not true for CTT, PC, EFA-ml and EFA-mr. Including 
these parameters in the model, therefore, results in a 
greater capacity to isolate variability in responses due to 
features of items from variability attributable to features 
of individuals who respond to them. Put in other words, 
RSM, GRM and CFA-wlsmv do not assume items to be 
equally diffi cult. Actually, diffi culty parameters tipically 
tend have a distribution of values between items (a 
desirable feature in psychometric instruments), so that 
it may be more appropriate to use statistical models that 
take this variability into account. Another feature is that 
RSM, GRM and CFA-wlsmv do not assume categorical 
ordered data (such as Likert scale scores) to be continuous 
measures of psychological attributes possessed by 
individuals. Consistent with previous simulation studies 
(e.g., Holgado-Tello, Chacón-Moscoso, Barbero-García, 
& Vila-Abad, 2010), taking into account the ordinal nature 
of indicators yielded a better approximation of estimates 
to the real parameter values. 

Normal theory ML estimation assumes continuity and 
normal distribution of items, unlikely features for discrete, 
ordinal indicators such as typical Likert scales with a 
small number of categories. Illustrating this point, a recent 
simulation study recommended using Robust Categorical 
Least Squares (RCLS) estimation instead of ML for 
factor analysis of items with fewer than fi ve categories 
(Rhemtulla, Brosseau-Liard, & Savalei, 2012). By contrast, 
Rhemtulla et al. (2012) also recommended using ML 
rather than RCLS if the number of categories equals to or 
exceeds fi ve, as variables tend to approach a continuous 
distribution. In light of this particularity, we must stress 
that we base our results and conclusions on data with fi ve 
categories, without claiming the patterns would remain 
the same for items with a larger number of categories. 
Future studies should address this issue by testing for the 
interaction of number of categories, statistical model  and 
simulation condition.

Nevertheless, our fi ndings counter-recommend using 
raw scores (CTT) or factor scores derived from EFA-ml, 
EFA-mr and PC to represent true persons locations on 
unidimensional psychological variables assessed with 
items with up to fi ve categories. Besides producing larger 
errors in estimates, they do not afford detecting whether 
the situation in question is ideal as Condition 1 of this 
study, or problematic as Conditions 2 and 3. Therefore, 
researchers, technicians and other professionals in the area 
of psychology and related areas should review their prac-
tice of using raw scores (e.g., sum of Likert scales scores) 
as if they were proxies to latent psychological phenomena. 

A result that is also worth mentioning is that RSM 
yielded estimates as precise as GRM and CFA-wlsmv, 

even without modeling items discriminations. In fact, 
RSM allows to estimate only the overall diffi culty δj of 
items and specifi c item thresholds “δj + τk” for Likert 
scale categories (Andrich, 1978). Thus, considering that 
GRM and CFA-wlsmv also incorporate discrimination 
parameters in the model, it would be expected a better 
recovery of true latent trait level when compared to the 
RSM. The reason for this expectancy is that including 
discrimination parameter generally implies a better fi t of 
model to the data, as it yields a variability in the slope of 
item characteristic curves (Hambleton, 1994). In contrast, 
we observed no signifi cant differences between estimates 
obtained from RSM, GRM and CFA-wlsmv models across 
the three simulation conditions, even with items specifi ed 
to have a discrimination value widely ranging from .5 to 
2.8. Although these three models yielded similar estimates, 
it is noteworthy that RSM imposes a smaller number of 
parameters on data, which points to a more parsimonious 
latent trait modeling for RSM than for GRM and CFA-
wlsmv.

Conclusions

We need to stress some limitations in our study. 
First, we used single databases for each sample size in 
all Conditions 1, 2 and 3. Future studies may address 
this shortcoming using a larger number of databases in 
order to obtain a distribution of R² for each sample size 
within simulation conditions. This may help to obtain 
more precise evidences of the level of bias in estimates of 
each model when items do not match sample distribution. 
Second, we did not address assessment situations using 
multidimensional models, so that we encourage authors 
to expand the investigation to multidimensional contexts. 
Third, we did not test the effect of estimation method 
within each statistical model. It is possible, in this sense, 
that promising estimation techniques, such as Markov 
Chain Monte Carlo, would provide more stable estimates 
along several simulation conditions for RSM, GRM and 
CFA-wlsmv – and perhaps other models. Fourth, we 
restricted our investigation to fi ve-category indicators, 
so that results do not generalize to situations in which 
instruments comprise items scored on a scale with a larger 
number of categories – new simulation studies should 
investigate whether differences between models still hold 
in this situation. Finally, researchers may be interested 
in further controlling for latent trait distribution features 
such as assimetry and kurtosis, as some techniques such 
as EFA-ml make assumptions in this regard. 

Our fi ndings provide relevant guidelines to decision 
making concerning the use of psychometric models to 
estimate latent scores. We recommend using latent scores 
estimates provided by RSM, GRM and CFA-wlsmv 
methods instead of traditional raw scores. In addition, 
we emphasize the need of researchers to base their 
methodological practices in sound empirical evidences 
concerning the performance of data analysis methods.
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