UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTACAO

FELIPE DE MEDEIROS SCHMIDT

Instatiating the Page Object Pattern in
Desktop Applications

Monografia apresentada como requisito parcial
para a obtenc@o do grau de Bacharel em Ciéncia
da Computacao

Trabalho realizado na Technische Universitit
Berlin dentro do acordo de dupla diplomacao
UFRGS - TU Berlin.

Orientador brasileiro: Prof. Dr. Ingrid Oliveira de
Nunes

Orientador alemao: Prof. Dr. rer. nat. Thomas
Karbe

Porto Alegre
2016

CIP — CATALOGACAO NA PUBLICACAO

de Medeiros Schmidt, Felipe

Instatiating the Page Object Pattern in Desktop Applications
/ Felipe de Medeiros Schmidt. — Porto Alegre: CIC da UFRGS,
2016.

S53f.:il

Trabalho de conclusio (graduagdo) — Universidade Federal do
Rio Grande do Sul. Curso de Ciéncia da Computacao, Porto Ale-
gre, BR—Brasil, 2016. Orientador: Ingrid Oliveira de Nunes.

1. Padrao-Page-Object. 2. Aplicacdes-Desktop. 3. Teste-
Headless. 4. View-Object. 1. Oliveira de Nunes, Ingrid. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de Graduagdo: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informatica: Prof. Luis da Cunha Lamb

Coordenador do Curso de Ciéncia de Computacdo: Prof. Carlos Arthur Lang Lisbda
Bibliotecaria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

AGRADECIMENTOS

A realizacdo deste trabalho tornou-se vidvel gragcas ao apoio de pessoas queridas
que sempre estiveram ao meu lado e que serei eternamente grato. Agradeco profunda-
mente aos meus pais, meus irmaos, minha namorada, meus amigos, chefes, professores e
orientadores por todo o carinho, incentivo e aten¢do que me deram ao longo de toda mi-
nha trajetdria. A todos aqueles que cruzaram o meu caminho nesse mundo, obrigado pela
experiéncia e pelo aprendizado. Lembrarei com carinho de cada um. Gragas a vocés, meu
desejo de vencer inimeros desafios, conquistar novos objetivos € me superar se tornam

cada vez maiores.

RESUMO

Teste de software estd se tornando cada vez mais importante no desenvolvimento de soft-
ware. Aplicacdes web t€m o desafio de testar aplicagdes onde interfaces de usudrio (Uls)
sdo definidas em linguagens especificas (por exemplo, JSP e ASP), o que dificulta o seu
teste. Padrdes (por exemplo, o padrao Page Object) e tecnologias (por exemplo, Sele-
nium) fornecem suporte para lidar com esta questdo. Embora as aplicacdes web sejam
populares, aplicagdes desktop ainda tem um papel crucial na industria de software. Novas
bibliotecas e frameworks sdo baseadas em outras linguagens, como o XML, para defi-
nicdo de interface. Isso traz o problema de aplicagdes web para as aplicagdes desktop
também. Assim, este trabalho explora como instanciar o padrdo objeto Page (POP) no
contexto de aplicacdes POP. Page Objects sdo referidos como View Objects (VOs) neste
caso. Um dos principais beneficios deste método é em relacdo ao modo de teste. Ao
seguir os passos para implementar os VOs, preparamos nossos testes para executar no
modo headless. Isso significa que a aplicacdo desktop ndo necessita ser instanciado para
ser testado. Todas as operagdes sdo simuladas e feitas sem exibir a interface de usudrio,

simulando varidveis importantes da Ul para ser usado dentro de VOs.

Palavras-chave: Padrao-Page-Object. Aplicacdes-Desktop. Teste-Headless. View-Object.

ABSTRACT

Software testing is becoming increasingly important in software development. Web appli-
cations have the challenge of testing applications where user interfaces (UIs) are specified
in specific languages (e.g. JSP, ASP), which complicates its test. Patterns (e.g. Page Ob-
ject Pattern) and technologies (e.g. Selenium) provide support to deal with this issue.
Although web applications are popular, desktop applications still have a crucial role in
the software industry. New libraries and frameworks are based on other languages, such
as XML, for interface definition. It brings the web application’s problem to the desktop
applications as well. Thus, this work explores how to instantiate the Page Object Pattern
(POP) in the context of desktop applications. POs are referred to as View Objects (VOs)
in this case. One of the main benefits of this method is regarding to the test mode. When
following the steps to implement view objects, we prepare our tests to run in headless
mode. It means that our desktop application interface does not need to be instantiated
to be tested. All operations are simulated and done without displaying the UI, mocking

important variables of the Ul to be used within VOs.

Keywords: Headless-Testing, Desktop-Applications, Page-Object-Pattern, View-Object.

RESUMO ESTENDIDO

Este € um resumo estendido em portugués para a Universidade Federal do Rio
Grande do Sul. O trabalho de conclusao original, em ingl€s, foi apresentado na Technis-
che Universitit Berlin através do programa de dupla diplomagao UNIBRAL II entre as

duas universidades.

Introducao

Teste de software tem ganhado um papel cada vez mais importante no desenvolvi-
mento de software. Para facilitar esta tarefa nada fécil, diferentes abordagens sao cada vez
mais utilizadas, tais como Test-Driven Development (TDD) (Janzen and Saiedian, 2005),
Behaviour-Driven Development (BDD) (Solis and Wang, 2011), testes headless (Johan-
sen, 2010) e outras técnicas. Abordagens propostas e tecnologias desenvolvidas muitas
vezes focam em aplicagdes web e, assim, eles se tornam mais populares. Aplicacdes web
tém o desafio de testar aplicacOes onde interfaces de usudrio (Uls) sdo definidas em lin-
guagens especificas (por exemplo, JSP, ASP), o que dificulta o seu teste. Esta dificuldade
surge porque a integracdo entre ambas as linguagens tem que ser feito corretamente e
os testes s@o, entdo, mais dificeis de ser preparado. Portanto, padrdes (e.g. Padrao Page
Object) e tecnologias (e.g. Selenium) fornecem suporte para lidar com esta questao.

Embora aplicagdes web sejam mais populares, aplicacdes desktop ainda tem um
papel crucial na industria de software. Antigas bibliotecas de interfaces de usudrio, tais
como Java Swing, foram puramente baseadas em linguagens de programacao utilizadas
para implementar a aplicacdo, e isso torna mais facil a execugdo de testes automatizados.
No entanto, novas bibliotecas e frameworks sdo baseados em outras linguagens, como o
XML, para definicdo de interface. Assim, precisamos lidar com duas linguagens dife-
rentes e integrd-los. Isso traz o problema de aplicagdes web para as aplicacdes desktop
também.

Assim, este trabalho explora como instanciar o padrao Page Object (POP) citep
yu2015incremental no contexto de aplicacdes desktop. O POP modela pagina web em
objetos, que contém fungdes especificas de uma drea da pagina e agem de forma indepen-
dente. Os Page Objects (PO) sdo uma camada intermedidria entre as paginas web e os
cddigos de teste. Como resultado, propomos um método que fornece orientagdo para os

desenvolvedores para instanciar esse padrao em aplicagdes desktop. Neste caso, as POs

sdo referidos como View Objects (VOs). Um dos principais beneficios deste método é
em relacdo ao modo de teste. Ao seguir 0s passos para implementar os VOs, prepara-
mos nossos testes a serem executados no modo headless. Isso significa que a interface
da aplicagdo desktop ndo precisa ser instanciada para ser testada. Todas as operacdes sao
simuladas e feitas sem exibir a interface do usudrio, simulando varidveis importantes da
interface do usudrio para ser usado dentro dos VOs.

Este trabalho comeca dando uma base em conceitos relevantes que sao necessarios
para compreender este trabalho (Capitulo 2), tais como técnicas de teste e explicacdes so-
bre as tecnologias adotadas. Depois disso, 0 método para a instanciacdo do POP ¢é dada
com um exemplo (Capitulo 3). A parte de avaliagdo € realizada para uma aplicacio evo-
luida do exemplo anterior e como aplicar este método neste caso especifico (Capitulo 4).
Um capitulo discussdo € dirigida para abordar algumas idéias e considerag¢des (Capitulo

5). Para terminar, o Capitulo 6 apresenta conclusdes finais.

Revisao da Literatura

Hoje em dia, erros de software podem ser responsdveis pelos custos de tempo
e dinheiro. Embora nio seja possivel remover todos os erros de uma aplicacdo, exis-
tem formas de testes que permitam reduzir consideravelmente a quantidade de erros e os
erros mais graves. Visando a melhoria da qualidade e poupar dinheiro (e também, indi-
retamente, economizando tempo), TDD (Janzen and Saiedian, 2005) e BDD (Solis and
Wang, 2011) sdo técnicas de testes adequados para prever e identificar erros - na fase
de desenvolvimento - que pode acontecer quando se executa a aplicacdo desenvolvida.
Concentrando-se em bons resultados de testes desenvolvidos, hd um padrao proposto por
Bill Wake chamada 3A Padrio'. O principal objetivo deste padrio é estruturar os testes
adequadamente, de uma forma podemos identificar aspectos importantes que precisamos
para testar o aplicativo. Basicamente, os testes devem Arrange, Act e Assert. Segundo
ele, arrange significa criar objetos que serdo testadas. Act € usar esses objetos e dar-lhes
ordens. Fazendo asserts podemos garantir algumas circunstancias sobre o objeto. Assim,
com o uso do padrdo 3A, casos de teste consistentes pode ser escrito.

Técnicas como BDD, quando usadas para testar uma aplicacao desenvolvida, po-
dem ter extrema relevancia para se encontrar possiveis erros e ser extremamente poderoso.

Com BDD aplica-se a maneira de escrever testes primeiro, mas concentra-se em testes que

'Ver http://xp123.com/articles/3a-arrange-act-assert/

descrevem o comportamento. Dado que a abordagem BDD ainda ndo € clara e diferentes
autores tém distintas opinides sobre a sua defini¢do. Principais caracteristicas do BDD
foram identificados por Solis and Wang (2011, p. 02): linguagem Ubiqua, processo de
decomposicao iterativo, Descri¢do de historias de usudrio e templates de cendrios, testes
de aceitacdo automatizada com regras de mapeamento.

A palavra headless significa simplesmente que alguma coisa (por exemplo, apli-
cacdo, browser, operacdo) funciona sem uma interface grafica do usudrio. O termo teste
headless estd associado com o desafio de testar uma interface de usudrio sem exibi-la. A
idéia principal do teste headless de uma aplicagdo € que os testes podem ser mais consis-
tentes. Isso significa que, os testes nao verificam se um determinado botio foi realmente
clicado, mas qual € o significado real e a¢do desse clique. Por conseguinte, a economia de
tempo € uma vantagem, porque a interface nao é mostrada, e nés ndo precisamos esperar
por cliques ou sele¢des eventos e suas respostas.

Visto que a comunicacdo entre a interface de usudrio e a aplicacdo em si € bas-
tante direta, isso torna os testes mais acoplados e dependentes da interface de usudrio.
Sendo esse problema mais complexo de se resolver, padroes podem facilitar essa tarefa.
O padrao Page Object (POP) (Leotta et al., 2013) é um padrdo de design que tem sido am-
plamente utilizado e o termo foi dissipado por Selenium. Este padrdo foi projetado para
criar testes automatizados para navegadores web. Ele pode ser melhor aplicado quando
um aplicativo tem muitas paginas ou muitos estados. A idéia desse padrao é que pagina
da web € modelada em objetos, que podem ser partes especificas da pagina da web que
podem agir independentemente. Isto significa que todas as fungdes que podem ser exe-
cutadas dentro de um objecto sdo encapsulados para algo, chamado Page Object. Desta
forma, todas as alteracdes necessdrias na pagina da web (UI) ndo afetard as classes de

teste, mas apenas o objeto da pagina referida no essa funcionalidade (Figura 2.1).

Testando Aplicacoes Desktop com View Objects

Pode-se separar o método para a criacdo do VOs em quatro etapas, a fim de alcan-

car o nosso resultado desejado, os quais sio descritos como se segue.

Desenvolver a Aplicacdo Desktop A interface do usudrio e a ldgica da aplicagdo deve
ser dividido em diferentes médulos. Esta separacdo € importante a ser feito por

causa do passo em relacdo a implementacdo dos objetos de exibicao, quando nos

preocupamos com o mock (simulagcdo) dos elementos da l6gica da aplicacdo e os

elementos da interface grafica para executar os testes headless.

Escolher os View Objects A escolha dos VOs precisa ser observado, tendo em conside-
racdo o modo como os elementos da View interagem uns com os outros. Assim,
o expert deve navegar através da(s) janela(s) da aplicagdo e considerar quais VOs
podem ser criados para encapsular funcionalidades especificas da aplicagdo.

Implementar os View Objects A selecdo de varidveis e operagdes da aplicacio relevan-
tes sdo usados como um mock para implementar as classes VOs. Nés nos preo-
cupamos com os elementos significativos da interface e da parte légica, ou seja,
elementos que t€m um papel importante na interacdo com o usudrio. Por exemplo,
em relacdo aos elementos GUI, o utilizador pode escrever nos campos de texto e
clicar em botdes numa determinada janela, de modo que o VO deve conter uma
varidvel com relacdo aos campos de texto e outras para os botdes. Em relagdo a
parte da logica, se temos um banco de dados, devemos fazer o mesmo, a criagdo de
varidveis em relacdo a isso também. Além disso, € preciso considerar que sio as
possiveis operacdes naquela janela, por exemplo, Se em uma determinada janela, o
usudrio é capaz de selecionar uma entrada na tabela, clicar em um botdo, escrever
em um campo de texto e assim por diante. Em seguida, os métodos associados a
estas operagdes vio lidar com as varidveis mockadas criadas antes. E por isso que
o primeiro passo € crucial (em relacdo ao desenvolvimento adequado da aplicacdo).

Testar O objetivo € usar os métodos criados dentro dos VOs a fim de testar a nossa

aplicacdo. Assim, os testes sdo escritos instanciando os VOs e usando-os.

Avaliacao e Discussao

O Source code 3.3.1 é um exemplo de um View Object implementado para testar
uma aplica¢cdo dada como exemplo.

Com o desenvolvimento do HTML4, o HTMLS5 (que nao é padrao até o momento)
foi lancado e suporta muitas outras features que ndo eram suportadas antes, tais como
midia e JavaScript. Assim, dudio, video e graficos vectoriais (2D e 3D interactivo) sao
agora integrados para esta tecnologia e capazes de ser reproduzidos e armazenados na

aplicacao.

Portanto, podemos notar que, com HTMLS, as caracteristicas de desenho de pa-
ginas web se tornou muito mais parecida com recursos para criar interfaces de usudrio
desktop, mas ainda precisa ser considerado qual € a intenc@o do contetido que é mostrado
sobre a aplicacdo, porque VOs lida com janelas e POs com pédginas da web, ou seja, se o
conteddo seria melhor apresentado em uma janela ou sobre navegadores da Web, tendo
em conta as necessidades de cada um.

Também € importante destacar que as pidginas web sdo muitas vezes paginas com-
pletas. Entdo, depois de interagir com uma pédgina, temos uma completamente nova.
Por outro lado, interfaces de usudrio podem normalmente serem separadas em diferen-
tes partes, tais como sliced windows, tabbed panes e outros elementos. Assim, as agdes
do usudrio podem alterar uma ou mais dessas partes e deixar os outros sem quaisquer
alteracdes. Com o desenvolvimento das paginas web, elas estdo se tornando mais moder-
nas neste aspecto de ter as mesmas caracteristicas que interfaces de usudrio standalones.
Sendo assim, os VOs podem ser uteis para eles também.

Um papel importante com o uso de VOs para testar a nossa aplicagdo é que po-
demos alcancgar naturalmente teste headless.Isto € possivel porque nés mockamos as va-
ridveis da interface do usudrio e implementamos as mesmas operagdes da interface do
usudrio, simulando essas operagdes. Em seguida, cada operagdo € feita mais rapidamente
e faz a interface do usudrio ndo precisar ser instanciada. Outra vantagem € em relacio aos
testes: se € preciso modificar a implementacao da interface do usudrio, os testes permane-
cerdo os mesmos, porque o VOs encapsulam os métodos de interface do usudrio. Assim,
apenas o VO deve ser modificado. Temos importantes vantagens ao usar VOs para testar
aplicacdes desktop, como a organizagdo do codigo fonte, bem-estrutura e os testes sdo de
facil manutencao.

Um dos pontos negativos do uso de VO é que, por exemplo, uma classe de im-
plementacdo poderia tornar-se uma enorme quantidade de if e elses para cobrir todos os
botdes (ver Source Code 3.3.1¢). Assim, a complexidade do cédigo-fonte pode aumentar

e a organiza¢do pode ser um problema.

Conclusao

Sendo software testando uma 4rea que estd se tornando crucial no campo de de-
senvolvimento de software, a automacao de testes a fim de economizar tempo € essencial.

Diferentes abordagens e ferramentas foram propostas para aplicacdes web. O POP veio

para facilitar a parte de testes da aplicacdo, porque a aplicacdo é geralmente definida em
linguagens especificas, o que complica o teste. Por esta razdo, VOs s@o propostos como
uma instancia do POP. A principal diferenca entre os dois métodos é basicamente que
um visa navegadores da web (POs) e outro em aplicacdes standalone (VOs). Com o de-
senvolvimento da tecnologia HTML, as pdginas da web sdo cada vez mais idénticas a
aplicacdes standalone. Sem a utilizacao destes métodos, a arquitetura da aplicacdo seria
altamente acoplada, aumentando a complexidade da aplicacdo, devido a ligacdo direta
entre as classes de teste e a interface de usudrio. Assim, estes padrdes ajudam a reduzir a
complexidade da aplicacdo, criando uma outra camada que € responsavel por encapsular
os detalhes dos componentes da UIL. Com a utilizacdo de VOs também temos a vantagem
de conseguir testes em modo headless. Isto € possivel por causa do uso de métodos e
varidveis mockadas que simulam operagdes de Ul. Assim, a interface do usudrio nio é
exibida e todas as operacdes ocorrem sem instancid-la. Desenvolvendo a aplicagcdo, nds
precisamos estruturar e organizar os modulos, a fim de abstrair alguns conceitos da aplica-
cdo. Pudemos perceber que o importante no desenvolvimento da aplicacdo € a separagao
da l6gica da aplicacdo e interface do usudrio. Assim, podemos manipular e aplicar cor-
retamente o VOs. Uma limitacdo do método pode ser a alta complexidade de uma classe
VO implementada dependendo do nimero de botdes que podemos interagir.

Sendo o BDD uma técnica eficaz quando combinado com VOs, quatro caracteristi-
cas principais ajudam a construir casos de testes consistentes, sendo eles: uma linguagem
ubiqua (os termos devem ser usados globalmente no projeto), processo de decomposi¢cao
iterativa para levantamento de requisitos, descri¢do de texto simples com modelos historia
do usudrio e do cendrio (como um padrdo para a criacio das caracteristicas de arquivo) e,
finalmente, testes de aceitacdo automatizados com regras de mapeamento (ou seja, cend-
rios sendo executado automaticamente e sendo mapeados para testar o c6digo). Assim, no
BDD, os testes sdo escritos em primeiro lugar, e que tém a descri¢do do comportamento
do sistema, como um objetivo a ser alcancgado.

N6s pudemos ver dois tipos diferentes de aplicacdo e nds trabalhamos em suas
peculiaridades. Se € uma aplicagdo complexa, a delegacdo de suas agdes para VOs meno-
res tém de ser consideradas na modelagem e implementagdo do VOs. Portanto, por VOs
poderem ser aplicados para aplicacdes desktop, poderiamos, entdo, identificid-los como
uma instancia para o POP.

Para um trabalho futuro, pensa-se em uma implementacao de um plugin a fim de

automatizar esse método para aplicagcdes desktop.

public class InsertDataWindow {

private String txtName = "txtName";

private String txtLastName = "txtLastName";
private String txtWeight = "txtWeight";
private String txtHeight = "txtHeight";

private static String BTN_ADD_AND_CONFIRM =
"BTN_ADD_AND_CONFIRM";
private static String BTN_SHOW_TABLE = "BTN_SHOW_TABLE";

a: Action elements

private ObservablelList<Person> personDataToRetrieve;
private TablePersonActionController tpc;
private Person personToAdd;

b: Logic elements

private void printText (String element, String text) {
element = "";
element = text;
}
private void click (String element) {
if (element == BTN_ADD_AND_CONFIRM) {
tpc.addNewPerson (personToAdd) ;
}
else if (element == BTN_SHOW_TABLE) {
personDataToRetrieve = tpc.getPersonDatal();

}

public InsertDataWindow fillInInfo (Person person) {
printText (txtName, person.getFirstName());
printText (txtLastName, person.getLastName());

printText (txtHeight, String.valueOf (person.getHeight()))
printText (txtWeight, String.valueOf (person.getWeight()))

personToAdd = person;
return this;
}
public TableResultsWindow AddPerson () {
click (BTN_ADD_AND_CONFIRM) ;
return new TableResultsWindow (tpc);
}
public TableResultsWindow showTableResults () {
click (BTN_SHOW_TABLE) ;
return new TableResultsWindow (personDataToRetrieve);

c: Methods implementation

trw = idw.showTableResults () ;

d: Small Test Example
Listing 0.1: InsertDataWindow view object implementation

Figura2.1
Figura2.2
Figura 2.3

Figura 3.1
Figura 3.2
Figura 3.3

Figura4.1
Figura 4.2
Figura 4.3
Figura4.4

LISTA DE FIGURAS

[lustration of the Page Object Pattern modulescoooeveeeevieeenniieeenne. 26
[lustration of the Technische Universitidt Berlin Website Login Area........... 26
[lustration of the modules of a Web Application for automated testing....... 27
[lustration of the visualization of the Main Window viewccoceeeueee. 31
[lustration of the visualization of the Table Window view........c....ccccceeneee. 32
lustration of the visualization of the Edit Window viewc.ccccceeneennee. 33
[lustration of the visualization evolved BMI applicationcccccceeeeneee. 41
[llustration of the visualization evolved BMI application adding a person...41

[llustration of the visualization evolved BMI application editing a person...42
Ilustration of the visualization evolved BMI application saving a person ...42

LISTA DE SOURCE CODES

2.1 POP Example: Login Method of TUB WebSiteccccveeviieniiieeniieeiieeiee e 26
2.2 POP Example: Test for Login Method of TUB website.........cccccceevieiniiennieenneennne. 26
3.1 Writing Scenarios: InsertPerson featurecoocveevieerciieenieeniie e 35
3.2 Step Definitions Class Implementation............cceeeeeiiieeiiiiiieeiiiiee e e 37
3.3 Console response after running the feature............ccocveeviiiiiiiiniiiinieeneeeeeee 38
4.1 PersonInfoWindow Implementationceecuveeriieriieeriieeiie e eeeee e 45

4.2 TableWindow Implementation............ccueeeeriieeeriiieeeniiieeeeiieeeesree e e rieee e e 46

LISTA DE ABREVIATURAS E SIGLAS

Ul User Interface

GUI Graphical User Interface

TDD Test-Driven Development

ATDD Acceptance Test-Driven Development
BDD Behavior-Driven Development

IDE Integrated Development Environment
POP Page Object Pattern

PO Page Object

VO View Object

RIA Rich Internet Application

BMI Body Mass Index

SUMARIO

1 INTRODUCTION..... 17
2 BACKGROUND ..19
2.1 Software Testing.... . .19
2.1.1 Test-Driven Developmentcocveviiiiiiiiiiniiiiiiniieeeceee e 19
2.1.2 Behaviour-Driven Developmentccooviiiiiiiiiiiiiiiiiieeeeeieeeee e 21
2.1.3 Headless TEStINGcoocueeiiiiiiiiiiieeeie ettt ettt et e s e e 24
2.2 Page Object Pattern .25
2.3 Adopted Technologies...... . . . w27
2.3.1 JAVAFX ..t e et e e et a e e e etaaeeens 28
2.3.2 CUCUIMDET ..ccccuiiiiie ettt ettt ettt e et e e ettt e e e st ee e e taeeeesstaeesenssaeeeansaaeesnnseeesansseeeanns 29
3 TESTING DESKTOP APPLICATIONS WITH VIEW OBJECTScccceeueeuenae 30
3.1 Method Overview.. 30
3.2 Running Example . .31
3.3 Method Steps w32
4 EVALUATION .40
4.1 The Evolved BMI Calculator Appllcatlon .40
4.2 Develop Desktop Application 42
5 DISCUSSION. 49
5.1 Web Page vs. Desktop View49
5.2 Advantages of Using POP to Test Desktop Applications... .50
5.3 Limitations of View Objects .50
6 CONCLUSION S1
REFERENCIAS 53

17

1 INTRODUCTION

Software testing is becoming increasingly important in software development. To
make this difficult task easier, there are plenty of different approaches that are increasin-
gly being used, such as Test-Driven Development (TDD) (Janzen and Saiedian, 2005),
Behaviour-Driven Development (BDD) (Solis and Wang, 2011), headless testing (Johan-
sen, 2010) and other techniques. Proposed approaches and developed technologies often
focus on web applications, as they are more popular. Web applications have the challenge
of testing applications where user interfaces (Uls) are specified in specific languages (e.g.
JSP, ASP), which complicates its test. This difficulty appears because the integration
between both languages has to be done properly and the tests are then harder to be pre-
pared. Therefore, patterns (e.g. Page Object Pattern) and technologies (e.g. Selenium)
provide support to deal with this issue.

Although web applications are popular, desktop applications still have a crucial
role in the software industry. Former user interfaces libraries, such as Java Swing, were
purely based on programming languages used to implement the application, and this made
easier the execution of automated tests. However, new libraries and frameworks are based
on other languages, such as XML, for interface definition. Thus, we need to handle with
two different languages and integrate them. It brings the web application’s problem to the
desktop applications as well.

Thus, this work explores how to instantiate the Page Object Pattern (POP) (Yu
et al., 2015) in the context of desktop applications. The POP models the web page ap-
plication into objects, which contain specific functions of an area of the page and act
independently. The page objects (POs) are a middle layer between the web pages and
the test codes. As a result we propose a method that provides guidance for developers to
instantiate this pattern in desktop applications. In this case, POs are referred to as view ob-
jects (VOs). One of the main benefits of this method is regarding to the test mode. When
following the steps to implement view objects, we prepare our tests to run in headless
mode. It means that our desktop application interface does not need to be instantiated
to be tested. All operations are simulated and done without displaying the UI, mocking
important variables of the Ul to be used within VOs.

This work starts by giving a background on relevant concepts that are required
to understand this work (Chapter 2), such as testing techniques and explanations about

the adopted technologies. After that, the method for instantiation of the POP is given

18

with an example (Chapter 3). The evaluation part regards to an evolved application of
the previous example and how to apply this method in this specific case (Chapter 4). A
discussion chapter is directed to approach some ideas and considerations (Chapter 5). To

finish, the Chapter 6 presents final conclusions.

19

2 BACKGROUND

With the purpose of achieving the best understanding of the view objects, we need
to review paradigms and approaches. Environments for developing user interfaces appli-
cations are introduced, as well as some concepts regarding to the Model-View-Controller

concept to build applications, headless testing and page object pattern.

2.1 Software Testing

Nowadays, software errors might be responsible for time and money costs. Although
it is not possible to remove all errors of an application, there are ways of testing that ena-
ble to reduce considerably the amount of errors and the most severe errors. Aiming at
quality enhancement and money saving (and also, indirectly, time saving), TDD (Janzen
and Saiedian, 2005) and BDD (Solis and Wang, 2011) are adequate testing techniques to
predict and identify errors — at the development phase — that might happen when running
the application developed.

Focusing on good results of tests developed, there is a pattern proposed by Bill
Wake called 3A Pattern'. The main goal of this pattern is to structure the tests properly,
in a way we can identify important aspects we need to test the application. Basically, the
tests should Arrange, Act and Assert. According to him, arrange means setting up the
objects that will be tested. Act is use these objects and give them commands. By making
asserts we ensure some circumstances about the object. So with the use of the 3A Pattern,
consistent test cases can be written.

With the intention to explain BDD, there are main concepts that should be explai-

ned before, such as TDD and ATDD, to be able to understand this approach.

2.1.1 Test-Driven Development

TDD is drawing the attention from many researchers and developers, being broa-
dly used. The central characteristic is the matter that TDD uses short iterations to create

a software with simple initial design (Janzen and Saiedian, 2005, p. O1).
Hammond and Umphress (2012, p. 01) define:

I'See http://xp123.com/articles/3a-arrange-act-assert/

20

“Test Driven Development (TDD), also referred to as test-first coding or Test
Driven Design, is a practice where a programmer is instructed to write produc-
tion code only after writing a failing automated test case. This approach offers
a completely opposite view of the traditional test-last approach commonly used
in software development, where production code is written according to design
specifications, and, typically, only after much of the production code is written
does one write test code to exercise it.”

Kent Beck is considered the creator of this technique. In one of his books, he
provides more details about the practice of TDD and claims that the cycle process is

composed of five steps (Beck, 2003, p. 92):

o Write a new test case that initially does not pass.

Run all test cases and see the new test case fail.

Make a change on the code to make it pass.

Run again the tests and see all of them pass.

Refactor the code to remove duplication.

Although the original TDD makes the developers to focus on what is significant to
a small test pass at a low-level (development-level) — by repeating the steps of writing new
test cases that fails, passing them and then refactoring — there are also relevant questions
related to the application-level, which is at a higher-level in comparison with TDD. In this
approach of running application-level tests, a technique similar to TDD is introduced and
called Acceptance Test-Driven Development (ATDD).

Therefore, Hammond and Umphress (2012, p. 04) claim that higher-level tests are
useful to set a context — ensuring that the code is providing the user’s desired functionality
— and this technique is being used by software engineers. From another perspective, in
the ATDD approach, users are responsible for writing tests before the beginning of the
implementation phase. Beck (Beck, 2003) also notes that the time between a test (that
was written by a customer) and a feedback (when the test finally passed) can be very
long. So it is better to apply TDD instead (Beck, 2003, p. 185). So the ATDD approach
is based on acceptance tests, which allow developers to focus on a specific goal of a
customer from each user story.

TDD and ATDD are correlated, but different in their matter. On the one hand,
TDD approach is a developer side mechanism, in which test cases are written to perform
specified functions and customers might not be able to understand them. On the other
hand, ATDD is a mechanism that involves developers, customers and testers, in which

they certify that the requirements are well-defined and customers are able to read them.

21

The combination of both approaches results in a technique called Behavior-Driven
Development (BDD), and in the next section it is discussed how it should be constructed

in practice.

2.1.2 Behaviour-Driven Development

As mentioned before, the merge of TDD and ATDD generated BDD. North et al.
(2006) was the first person who made the BDD approach known. The reason for the
creation of a new name for the BDD approach is, according to (Hammond and Umphress,
2012, p. 03): “The initial reason for the name shift from Test-Driven Development to
Behaviour-Driven Development was to alleviate the confusion of TDD as a testing method
versus TDD as a design method.”

BDD applies the way of writing tests first, but it focuses on tests that describe
behaviour — and not like TDD and ATDD, in which the tests are focused on the unit
implementation.

Given that the BDD approach is still not clear and different authors have distinct
opinions about its definition, the descriptions and definitions of BDD are not determined.
Six main characteristics of BDD were identified by Solis and Wang (2011, p. 02), but

here we limit ourselves to introduce solely the most relevant to our work.

Ubiquitous Language One of the essences of BDD is the concept of ubiquitous lan-
guage, which its structure comes from a domain model and its knowledge is carried
in a dynamic form (Evans, 2004, p. 25). The communication between domain ex-
perts and developers is crucial in a process of software development. Due to the gap
between both areas, domain experts are not used with some specific and technical
terms, in which developers work with and are familiarized. Thus, a miscommunica-
tion usually takes place, because the experts are not able to express what they want
(assuming the experts know what they want), as well as the developers are not able
to understand what the domain experts want.

In order to avoid some linguistic flaws in this process of communication, an accurate
translation is required. Therefore, an ubiquitous language helps both parties to
speak an universal and "common"language. It is important to highlight as noted in

Solis and Wang (2011, p. 02) essay:

“Creating a ubiquitous language for a project is crucial since it should
be used throughout the development lifecycle. A dictionary is specified

22

at the beginning of the project. Most vocabulary of the ubiquitous lan-
guage should come from the analysis phase. However, new words can
be inserted at anytime of the development phases. Creating the ubiqui-
tous language needs to involve anyone (domain experts and developers)
who will use the language. In the design and implementation phases,
developers will use the language to name classes and methods.”

In short, the terms in a document, for example, should appear in conversations face
to face, in the diagrams and in the code. That is the main point that characterizes an

ubiquitous language.

Iterative Decomposition Process At the phase of requirements gathering, customers and
developers need to communicate with each other, in a way that customers must es-
tablish what they want to be developed. However, a starting point for this commu-
nication is not always simple to find and it is also difficult to clarify what should be
done.

According to Solis and Wang (2011, p. 03):

“Therefore in BDD the analysis starts with identification of the expected
behaviours of a system, which are more concrete and easy to identify.
The system’s behaviours will be derived from the business outcomes it
intends to produce. Business outcomes are then drilled down to fea-
ture sets. A feature set splits a business outcome into a set of abstract
features, which indicate what should be done to achieve the business
outcome. Feature sets are derived from discussions between customers
and developers on business outcomes.”

Additionally, they claim that business outcomes are the starting point of BDD pro-
cess, so the developers must know which set of features should be developed first
and, for that, the customers have to specify the priority of the feature. To represent
those features, user stories are created to describe the new capability of the system
from the perspective of the customer.

For Beck and Fowler (2001, p. 43), features and user stories are synonyms, as stated
in their book: “A user story is a chunk of functionality (some people use the word
feature) that is of value to the customer.” Each user story might contain different
scenarios, which express how the system should behave in a specific context when
a circumstance takes place. Some issues should be delineated by user stories, e.g.
the role of the user in an user story, the user desired feature and the benefit for the
user if the system provides the feature (Solis and Wang, 2011, p. 03). In the next
description we provide further details, where the matter is the description of user
stories and scenarios. Applying iteratively this process of decomposition outlined

above, we can reach an enough initial analysis.

23

Plain Text Description with User Story and Scenario Templates When writing user sto-
ries and scenarios in BDD, it is really useful to have some pre-defined "texts"that
have a pattern to be the starting point of the description, which are called templates.

Details about user stories are stated by Beck and Fowler (2001, p. 44):

e Stories must be understandable to the customer,

o A user story is nothing more than an agreement that the customer and develo-

pers will talk together about a feature;
e FEach story must provide something of value to the customer;
e Stories need to be of a size that you can build a few of them in each iteration;
e Stories should be independent of each other;

e Each story must be testable.

Taking into account these guidelines to write good user stories (and scenarios), the
templates are written using an ubiquitous language, which developers can unders-
tand how the system should behave and what it should support in order to imple-
ment it, and users can check if they really need the feature by seeing the benefit
they might get from it. Thus, the user stories are created based on the following

templates (Solis and Wang, 2011, p. 03):

[StoryTitle] (One line describing the story)
As a [Role]
I want a [Feature]

So that I can get [Benefit]

As mentioned at the template above, the story title describes the story that is done
by someone or something (role). The feature is described as a functionality or an
activity that will be performed, and with that some benefit is obtained. For scena-

rios, the template is as the following (Solis and Wang, 2011, p. 03):

Scenario 1: [Scenario Title]
Given[Context]

And [Some more contexts]....
When[Event]
Then[Outcome]

24

And [Some more outcomes]....

Scenario2: [Scenario Title]

Scenarios are specified to understand how the selected feature should behave, when
the feature is performed in a specific context and an event occurs. The context de-
limits the scope of the operations and sets up preconditions, while the event is the
behavior we are focused on. As a result of this scenario, the outcome should des-
cribe how the system will act and verify if the right thing happened in the When
clause.

It is relevant to notice that everything in the brackets are mapped to tests later on, in
which the methods, for example, are named as what is written there. It means that
when we write tests, the name of the methods are linked with the clauses Given,
When, Then.

The And clause can be used in any of the three clauses. It serves as an abbreviation

not to repeat the others, and it is nested to the last one.

Automated Acceptance Testing with Mapping Rules the automated acceptance testing
from ATDD is also a characteristic contained in BDD (Solis and Wang, 2011, p.
03). This step is basically related to the mapping from scenarios to test code, that
is basically one of the features of BDD, as claimed (Solis and Wang, 2011, p. 04):
"The classes implementing the scenarios will read the plain text scenario specifica-
tions and execute them. In other words, BDD allows having executable plain text
scenarios."Thus, when running scenarios, the acceptance criteria is automatically

analysed by BDD.

2.1.3 Headless Testing

The word headless simply means that something (e.g. application, browser, ope-
ration) works without a graphical user interface (GUI). The term headless testing is asso-
ciated with the challenge to test a GUI without displaying it. The main idea of testing an
application headless is that tests might be more consistent. It means, the tests do not check
wether a certain button was actually clicked, but what is the real meaning and action of
this click. Consequently, the time saving is an advantage, because the GUI is not shown,

and we do not need to wait for clicks or selections events and their responses.

25

There is a technology that enable us to create automated tests for web browsers and
run it headless, called Selenium?. It is important to highlight that the focus of Selenium
is not to run tests headless, being this mode just one of the features. The concept of
this technology was used as a basis to this work in order to automate tests for standalone
applications. This technology was also a pioneer for the creation of a pattern called Page

Object?, which is going to be discussed in the next section.

2.2 Page Object Pattern

Fatterns are usually generic and expert solutions that solve problems, which com-
monly appears in a context. So it tends to be reused many times under similar circumstan-
ces. Thus, patterns for test automation are really useful to solve particular complications,
because it means that these patterns were experienced by many people and they succe-
eded. It is important to highlight that patterns are not ready method solutions that can
be used and applied to all situations in a stepwise way, but they must be instantiated for
each problem in order to solve them. The usage of patterns depends on the scope we are
concerned. The Design Patterns can be described as generic solutions for a software ar-
chitecture or design, because they instruct how the automated tests should be constructed,
in a way that they will be easy to maintain, effective and efficient. So there is a design
pattern called Page Object Pattern (Leotta et al., 2013). POP is a design pattern that has
been generally used and the term was widespread by Selenium. This pattern was designed
to create automated tests for web browsers. It can be better applied when an application
has many pages or many states. The idea of this pattern is that the web page application
1s modelled into objects, which can be specific parts of the web page that might act in-
dependently. It means that all the functions that can be performed within an object are
encapsulated to something, called Page Object. In this way, every change required at the
web page (UI) will not affect the test classes, but just the page object referred in that
functionality.

Yu et al. (2015, p. 01) claims that:

“Page objects introduce a middle layer between web pages and test code so
that the web page elements are abstracted by the page objects and the test code
only contains testing logic code. In this way, a tester can write test cases based
on page objects, without concerning about the actual representation of the web
application.”

2See http://www.seleniumhg.org/
3See http://docs.seleniumhg.org/docs/06_test_design_considerations.jsp/

Figura 2.2: Illustration of the Technische Universitit Berlin Website Login Area.

Ihr Login

Figura 2.1: Illustration of the Page Object Pattern modules

Web Page

(e.g. html)

Benutzername

Passwort

|
|
; Page Object
|
|
1—?—} HomePage
|
|
|
|
|
) | . Page Ohject
! ; L
| LoginPage
|
|
|

»

Test Class

» | HomePage Object

Methods

LoginPage Object
Methods

Einloggen

26

For a better understanding of his statement, Figure 2.1 shows how the Page Ob-

jects works. So with this picture we can see the separation between the test code and

the navigation code (page objects). As an example, we take as example the Technische

Universitit Berlin website login area, as shows Figure 2.2.

presented in Source Code 2.1:

Source Code 2.1: POP Example: Login Method of TUB website

For the LoginPage Class, we would have a login method such as the source code

def login (username,
find(:1id,
find(:id,

find(’ .einloggen-btn’) .click

end

password)

"user’) .set (username)

"password’) .set (password)

exemplified in Source Code 2.2:

Source Code 2.2: POP Example: Test for Login Method of TUB website

And as an example of a test, which calls the login method within a test class is

27

login_page.login(’ felipe’, ’'pwl23456")

Selenium Webdriver enables this search by elements of the GUI, facilitating the
creation of the PO classes.

We may mention advantages regarding to the usage of the POP, starting from
the application modules communication. Supposing we have structured our application
modules as shown Figure 2.3 (not POP-like), we can notice that the application would
have only two modules: one responsible for the whole application, and another one for
the tests. This situation might bring future problems regarding to the tests written. Being
the GUI directly tested by the tests, it may be hard to maintain the tests, because they
are related precisely to the design conditions of the Ul (e.g. position of the elements).
Directly testing the GUI, the complexity of the application increases, because the tests
become hard to understand and not easy to read. So the source code should be usually
analysed in order to check the compliance of the tests. These fragilities described above

might be solved with the use of the POP.

Figura 2.3: Illustration of the modules of a Web Application for automated testing

Web Page

< Test Class
(e.g. html)

Now taking into consideration disadvantages of the use of POP, we have to con-
sider that the experts have an important role while modelling and implementing the page

objects. It means that they must have enough knowledge to do the tasks properly.

2.3 Adopted Technologies

Our method is generic enough to be used with different technologies to imple-
ment user interface or to support automated testing. However, in order to illustrate our

approach, we selected a set of widely used technologies.

28

2.3.1 JavaFX

When we think about creating a graphical user interface, JavaFX comes up as an
useful tool for this objective. JavaFX* was announced in May 2007 for the first time at Ja-
vaOne conference. JavaFX is a software platform developed by Oracle based on Java for
creation and delivery of rich internet applications (RIAs) that can run on many different
devices, using in their first versions a JavaFX Script language. Furthermore, JavaFX has
support on desktop computers with operational systems like Microsoft Windows, Mac OS
and Linux, for web browsers and mobile devices. Since there are many other technologies
created for the development of user interfaces — e.g. Java Swing and Java 3D — JavaFX
came to replace them. The version 8.0 was the one used in our work and this version
is part of the Java JDK/JRE 8. So in this version, there is no longer a specific scripting
language (JavaFX Script) to develop RIAs.

Being a technology that helps on the development of RIAs on the client-side, Ja-
vaFX provides many interface resources such as multimedia (sound, video), graphics and
animations. When developing an application using this technology, it enables to improve
the visual aspect of the application and can be used in different platforms. JavaFX can
also be integrated to already created resources in Java, so it means that the reuse of already
implemented applications is also possible. Moreover, it might be integrated to a variety
of Java Frameworks (e.g. NetBeans, Eclipse) to enable the maintenance, suitability and
improvement of visual resources.

A given interface should be clear enough to enable the user to achieve its goals.
Furthermore, the usability performance could be measured by its effectiveness (e.g. if a
set of intended tasks is able to be achieved, so it means the software is effective), effi-
ciency (e.g. resources as time, memory or money were used in large scales to achieve
the goals) and satisfaction (e.g. if the users find the product acceptable). The standard
ISO 9241-11 provides the definition for usability, which states Bevan (1995, p. 01): “The
extent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use.”

“See http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

29

2.3.2 Cucumber

Cucumber Tool® is a framework that allows to write and execute BDD tests. It
enables the creation of automated tests for the functional validation in a plain text. This
text is written in a language that Cucumber understands: the Gherkin®. Basically, the user
describes the behavior of the system by creating a feature file, where the user stories and
the scenarios are written, based on templates. In the scenarios, different test situations
are described. Cucumber is not able to understand itself what to do when it finds the
keywords Given, When and Then, for example, so then Gherkin language helps on it.
Another keywords such as Scenario, And, But, Background, Examples, Scenario Outline
are also identified by Gherkin language.

Since Cucumber is also a tool for test automation, the Step Definitions Class is
required to guide Cucumber how to act and in which sequence. The step definitions are
represented as a class that basically maps the clauses in the feature file to methods in the
step definitions class file. Then the clauses can be implemented properly to perform the
actions required. It is important to notice that Cucumber uses regular expressions to make
this mapping of the steps.

The key advantage of Cucumber is that the description of the features (in the sce-
nario file) can be written and understood by someone who is not involved directly to the

technical part of the project (e.g. the user).

3See https://cucumber.io/
6See https://cucumber.io/docs/reference

30

3 TESTING DESKTOP APPLICATIONS WITH VIEW OBJECTS

This chapter focuses on describing the main contribution of this work: the view
objects (VO), which can be seen as an instantiation for the page object pattern, but for
desktop applications. We detail how VOs must be developed as a method, and a running

example exemplifies how it works.

3.1 Method Overview

We can separate the method for the creation of the VOs into four steps in order to

achieve our desired result, which are described as follows.

Develop the Desktop Application The user interface and the application logic must be
divided into different modules. This separation is important to be done because of
the step regarding to the implementation of the view objects, when we care about
the mock of the elements of the application logic and the GUI elements to run the

headless tests.

Choose View Objects The choice of the view objects needs to be observed, taking into
consideration how the elements of the view interact to each other. So the expert
should navigate through the application window(s) and consider which view objects

can be created to encapsulate specific functionalities of the application.

Implement View Objects The selection of relevant variables and operations of the ap-
plication are used as a mock to implement the view object classes. We care about
the significant elements of the GUI and of the logical part, i.e. elements which have
an important role on the interaction with the user. For example, in relation to the
GUI elements, the user can write on text fields and click at buttons in a certain win-
dow, so the view object must contain a variable with relation to the text fields and
to the buttons. In relation to the logic part, if we have a database, we must do the
same, creating variables regarding to that as well. Furthermore, we need to consider
which are the possible operations at that window, e.g. if at a certain window, the
user is able to select an entry on the table, click at a button, write on a text field and
so on. Then, methods associated with these operations will handle with the mocked
variables created before. That is why the first step is crucial (regarding to the proper

development of the application).

31

Test The purpose is to use the methods within the view objects created in order to test our

application. So the tests are written instantiating the view objects and using them.

In the next section, we show a running example applying these steps described

above in order to show how it works in practice.

3.2 Running Example

A simple desktop application was developed in JavaFX using Eclipse IDE and it is
used to illustrate our method throughout this chapter. The source code of the application
is in Github!. The application calculates the Body Mass Index (BMI) of a person. So the
user informs name, last name, weight, height and she can add a new entry to the table
(Figure 3.1). If all information required is valid, another window displaying the updated
table opens. The BMI is automatically calculated and it is assigned with such entry. The
user can also just click at a button that displays the results (Figure 3.2). The possibility of

editing an specific entry is also possible and a new window opens for this edition (Figure
3.3).

Figura 3.1: Illustration of the visualization of the Main Window view

0 BMI Calculator = ‘:'

Edit Help

Add and Confirm

I'See https://github.com/fmschmidt/BMI_Application

32

Figura 3.2: Illustration of the visualization of the Table Window view

Schmidt N 70.0 24.221453

de Medeiros 24.221453

de Medeiros Schmidt 70.0 24221453 2015-11-27

Schmidt Felipe 0.0 24,221453 2015-11-27

3.3 Method Steps

The overview of the method given above is applied to give an idea how it works

in a stepwise way.

1. Develop the Desktop Aplication
For this step, we have already done in the previous section of the running example.
It is important to highlight that the most important thing to consider is about the
separation of the application logic and the user interface. Thus, we keep indepen-
dent modules communicating with each other (See Figure 2.1 of the POP modules).

Now it is important to know how to choose the view objects concerned.

2. Choose View Objects
The first thing we should consider is related to the navigation through the applica-
tion. So this choice is based on the way the content is displayed to the user.
In order to explore every VO class of this application, the following steps are taken
for the example: the user clicks at "Show Table"and a new window appears with

the results table. Then, clicks "Edit"over an entry, and a new window opens with

33

Figura 3.3: Illustration of the visualization of the Edit Window view

0 Table Results - O

Mame Last Nams

Felipe Schmidt

First Name he Medeiros

Felipe de Medeiro

de Medeiros Schmidt Last Name schmidt

Schmidt Felipe

Height 1.7

Weight

the details of the entry. After considering this navigation flow, we explored every
possibility of view windows on this application. In other words, the possible user
interactions to the application, that resulted into different windows, were identified.
Therefore, we consider that, for this kind of application, each window corresponds
to one VO. So the windows are transformed into VO classes. Being VOs an instance
of POP, the nomenclature "Window"is appended at the end of each VO class name
to explicitly identify them.
3. Implement View Objects
Basically three important considerations for the proper implementation of VO clas-

ses are considered:

e choice of relevant action elements of the Ul Create variables and use them

such as mocked variables;

e choice of logical elements of the considered window, non-UI elements, such

as database related or controller methods;

e implementation of the operations.

34

The rough idea is that the variables represent the UI actions (such as button click,
writing to text field) and the logic part for instantiation. Thus, the pattern hides
these variables from the user. Methods represent user actions (e.g. fill in name).
Then, method codes map user actions to Ul actions.

For the first bullet point, it is associated with relevant action elements of the Ul. To
choose the correct elements of the UI, first we have to analyse the source code of the
desktop application (regarding to the fxml file, see Github? for the BMI application
source code). In JavaFX, these visual elements of the UI (that we refer to as action
elements) have an @FXML annotation that are synchronized with the fxml file.
From this Ul class, we must extract the important elements, e.g. if the user may act
on text fields, these text fields must be mocked. So then we have variables for these
text fields (Source Code 3.3.1a). The same is for any kind of element (e.g. labels,
text fields, buttons), which might be operated by an user.

For the second bullet point, we have some variables which are used for the instanti-
ation of our database and for logical operations in our application, such as add new
person, delete person and edit person. So these variables are declared because we
will use it to retrieve data and operate (Source Code 3.3.1b).

After knowing all relevant variables, we are able to care about the operations that
can be done in a given window (third bullet point). For the main window of the
application example above (Figure 3.1), we are able to click at buttons and write on
text fields. So we implement methods which can be executed at this given window,
such as add new person, fill in text fields and show table results (Source Code
3.3.1c). It is relevant to notice that the methods implemented in a specific VO class
must be related to the responsibility of the concerned application window view.
So it cannot contain methods which are not related to the window (e.g. the main
window cannot contain "editPerson"method, because the main window does not
have this operation).

After it is done, we have successfully implemented the VO InsertDataWindow
class, which corresponds to the main window of the running example (Figure 3.1).
The same procedure must be done for the other windows as well, to achieve com-

plete tests.

4. Test
As POP suggests and it was explained previously, the VO methods should contain

2See https://github.com/fmschmidt/BMI_Application

35

the user actions such as click and write, because inside the future tests should be
written in a way that we know what to do (e.g. show the table) and not how to do
(e.g. click on "Show Table"). In other words, we are not interested if the mouse
went to a given position and clicked at a button labelled "Show Table". We are
interested if the action of showing the table was actually done. As an example of
how a test like this look like, we present Source Code 3.3.1d.

Our VOs came to ease up the test process, enabling headless testing and not leaving
the Ul brittle for changes. Additionally, our tests become more readable and unders-
tandable, also taking into consideration that our test classes will not test directly the
UL, but the view objects, which encapsulate GUI elements. Using our VOs and
combining with BDD technique, we can test our application by writing scenarios
using an ubiquitous language (to understand how our system should behave), and

then making a translation by implementing the step definitions class.

Writing Scenarios According to Chapter 2.1.2, we have some concepts and tem-
plates that facilitate us to write the feature files in plain text. The following
examples will show how the features would be written to be then translated to

test code.

Source Code 3.1: Writing Scenarios: InsertPerson feature

Feature: User inserts a new data to the table

As an User
I want to insert person data to the table

So that I can save the development recording their data

Scenario: the person information is wvalid
Given I have log entries:
firstName	lastName	height	weight
Felipe	Schmidt	170	70
Felipe	de Medeiros	170	70
De Medeiros	Schmidt	170	70
Schmidt	Felipe	170	70
When I enter a person information:			
firstName	lastName	height	weight
test	test	180	80

36

Then I see a result table:
firstName	lastName	height	weight
Felipe	Schmidt	170	70
Felipe	de Medeiros	170	70
De Medeiros	Schmidt	170	70
Schmidt	Felipe	170	70
test	test	180	80

Scenario: the person information is invalid
Given I have log entries:
firstName	lastName	height	weight
Felipe	Schmidt	170	70
Felipe	de Medeiros	170	70
De Medeiros	Schmidt	170	70
Schmidt	Felipe	170	70
When I enter a person information:			
firstName	lastName	height	weight
		180	80
Then I see a result table:			
firstName	lastName	height	weight
Felipe	Schmidt	170	70
Felipe	de Medeiros	170	70
De Medeiros	Schmidt	170	70
Schmidt	Felipe	170	70

So based on the steps of the Chapter 2.1.2 specified, we could write the sce-
narios following the guidelines. Now, the next step is regarding to the Step
Definitions class implementation.

Step Definitions Class Implementation This class is responsible for taking each
line from the feature files and map to methods in test code, using a Gherkin
language to recognize the keywords like Given, When and Then. To show
how it would work, Source Code 3.2 represents this translation.

Within this class is where we are going to use the view objects we have previ-
ously created. The readability of the tests are more intuitive in a way we can

understand what it should do and what is actually doing.

37
We may notice that each line of the keywords are taken in particular and con-

verted to methods. These methods have an important role to execute what we

called the 3A Pattern: Arrange, Act, Assert.

Source Code 3.2: Step Definitions Class Implementation

public class StepDefinitions {

private InsertDataWindow idw;
private TableResultsWindow trw;
private EditPersonWindow epw;
private Person personDataToAdd;

private ObservablelList<Person> personDatalist;

@Given (""I have log entries:S$")
public void I_have_log_entries (List<Person>
personList) {
personDatalList =
FXCollections.observablelList (personList);
idw = new InsertDataWindow () ;

trw = new TableResultsWindow () ;

@When ("I enter a person information:$")
public void I_enter_a_person_information(List<Person>
newEntryList) {
personDataToAdd = new
Person (newEntryList.get (0) .getFirstName (),
newEntryList.get (0) .getLastName (),
newEntryList.get (0) .getWeight (),

newEntryList.get (0) .getHeight ());

idw = idw.fillInInfo (personDataToAdd) ;

trw = idw.AddPerson{() ;

@Then (""I see a result table:S$")

38

public void I_see_a_result_table(List<Person>
newEntryList) {
trw =

trw.updatedTable () .assertTableCount (newEntryList.size());

As a result, when we execute the Cucumber feature, we have the lines that appears

in the console, which are shown in Source Code 3.3.

Source Code 3.3: Console response after running the feature

2 Scenarios (2 passed)

6 Steps (6 passed)

Thus, the features could be mapped and translated to methods regarding to the view
objects. We may notice that the tests are more clear, being the readability also

better.

39

public class InsertDataWindow {

private String txtName = "txtName";

private String txtLastName = "txtLastName";
private String txtWeight = "txtWeight";
private String txtHeight = "txtHeight";

private static String BTN_ADD_AND_CONFIRM =
"BTN_ADD_AND_CONFIRM";
private static String BTN_SHOW_TABLE = "BTN_SHOW_TABLE";

a: Action elements

private ObservablelList<Person> personDataToRetrieve;
private TablePersonActionController tpc;
private Person personToAdd;

b: Logic elements

private void printText (String element, String text) {
element = "";
element = text;
}
private void click (String element) {
if (element == BTN_ADD_AND_CONFIRM) {
tpc.addNewPerson (personToAdd) ;
}
else if (element == BTN_SHOW_TABLE) {
personDataToRetrieve = tpc.getPersonDatal();

}

public InsertDataWindow fillInInfo (Person person) {

printText (txtName, person.getFirstName());

printText (txtLastName, person.getLastName());

printText (txtHeight, String.valueOf (person.getHeight()));
printText (txtWeight, String.valueOf (person.getWeight ()));

personToAdd = person;
return this;
}
public TableResultsWindow AddPerson () {
click (BTN_ADD_AND_CONFIRM) ;
return new TableResultsWindow (tpc);
}
public TableResultsWindow showTableResults () {
click (BTN_SHOW_TABLE) ;
return new TableResultsWindow (personDataToRetrieve);

c: Methods implementation

trw = idw.showTableResults () ;

d: Small Test Example
Listing 3.3.1: InsertDataWindow view object implementation

40

4 EVALUATION

In the previous chapter, we introduced our method to instantiate the Page Object
Pattern in a desktop application, illustrating it with a simple version of the BMI calculator
application. In this application, windows (views) are not split into parts and, therefore, one
virtual object is used to test each view. In this chapter, we show a preliminary evaluation
of our approach by using it in a more complex scenario. The source code of the BMI

application can be checked in Github'.

4.1 The Evolved BMI Calculator Application

The Evolved BMI Calculator Application consists of a single window (view) with
two-sides: the left-hand side contains text fields and buttons to fill out. The right-hand
side contains the table with entries (Figure 4.1). The user can simply act on text fields,
writing a person information and add it to the table. The information added then appears
instantly to the table if valid (Figure 4.2). When clicking at a person entry to edit, the
person information goes to the text fields to be edited (Figure 4.3). If everything was
successfully modified and the save button is pressed, the entry is updated on the table
(Figure 4.4).

This is the navigation flow of the application. We can notice that this application
works with a single view with smaller views that act together in order to give back a global
result. It happens usually in web pages, e.g. when we have a static menu bar and we press

any tab. The content changes, but the menu remains the same.

I'See https://github.com/fmschmidt/BMI_Application

de Medei

Sehmidt

Figura 4.1: Illustration of the visualization evolved BMI application

41

Schmidt

de Medeiros

24.221453
24.221453

Schmidt

Felipe

Figura 4.2: Illustration of the visualization evolved BMI application adding a person

Felipe

Felipe

de Medei
Sehmidt

test

2015-1
2015-1
2015-1
2015-11-2

Schmidt
de Medeiros

Schmidt

42

Figura 4.3: Illustration of the visualization evolved BMI application editing a person

. elipe Schmidt 1.7 70.0 24.221453 2015-11-27
Felipe de Medeiros 1.7 70, 2015-11-27
de Medeiros Schmidt 1.7 24201453 2015-11-27
Sehmidt elipe 24221453 2015-11
test tes B 80.0 2460136 ., 03-23
T

Kg

20.0

de Met hmidt 700

Sehmidt

test

4.2 Develop Desktop Application

The overview of the method given in a previous chapter is applied and it flows in

the same way as the running example given previously.

1. Develop the Desktop Application
For the development of the application we assume the previous section. It is impor-
tant to highlight that the logic application and the UI are separated. Thus, we can

manipulate them adequately to achieve our desired result.

43

2. Choose View Objects
For the choice of our VO classes, we must consider the navigation flow of the ap-
plication and how the window interact itself. We noticed two different sides that
communicates to each other to exchange information. After knowing this action,
we consider we have a larger window that has two small windows that commu-
nicates with each other. So basically the large window is a class that delegates its
responsibilities to the small ones and receives the view updated. The small windows
act (as an interaction) with each other and these results are combined and given back
to the great one. Thus, we have three VO classes to implement: PersonInfoWindow
(left-side), TableWindow (right-side) and the OverviewApplicationWindow (whole
window).

3. Implement View Objects
For this step we should reconsider the three important points described at the pre-
vious chapter of the running example: choice of action elements of the UI, logical
elements and implementation of the operations.
For each VO class, we followed these steps to implement them. The smaller ones
were explained at the previous chapter and they have nothing new (Source Code 4.1
and 4.2 are not complete). We show how the great VO looks like, because it is a
new concept. The great VO use the methods from the smaller ones. So its variables
are the instances of the small VO classes (Source Code 4.2.1a).
As long as the OverviewApplicationWindow delegates its responsibilities to the
small ones, it does not have any operation like click at a button. The small ones
does that. It contains specific methods regarding to the real functionalities of the
window, such as fill out text fields, delete person and edit person (Figure 4.2.1b).

4. Test
In this VO classes implementation we are using JUnit as another possibility to test

our application (Source Code 4.2.1).

44

public class OverviewApplicationWindow {
private OverviewActionController overviewController;
private TableWindow tableWindow;
private PersonInfoWindow personInfoWindow;
private Observablelist<Person> personDataToRetrieve;

a: Greater VO Variables

public OverviewApplicationWindow f£illInInfoAndAdd (Person
person) {
tableWindow

personInfoWindow.fillInInfo (person);
tableWindow = tableWindow.assertTableCount (5);

return new OverviewApplicationWindow (personInfoWindow,
tableWindow) ;

public OverviewApplicationWindow deletePerson (int index) {
tableWindow = tableWindow.removePerson (index) ;
tableWindow = tableWindow.assertTableCount (3);

return new OverviewApplicationWindow (personInfoWindow,
tableWindow) ;

public OverviewApplicationWindow editPerson (int index) {
personInfoWindow = tableWindow.editPerson (index) ;

return new OverviewApplicationWindow (personInfoWindow,
tableWindow) ;

public OverviewApplicationWindow editPersonDetails (Person
oldPersonSelected, Person newPerson) {

tableWindow =
tableWindow.editPersonDetails (oldPersonSelected,

newPerson) ;

tableWindow = tableWindow.assertTableCount (4);

return new OverviewApplicationWindow (personInfoWindow,
tableWindow) ;

b: Greater VO Methods

Listing 4.2.1: OverviewApplicationWindow view object implementation.

Source Code 4.1: PersonInfoWindow Implementation

45

public class PersonInfoWindow {

private String txtName = "txtName";

private String txtLastName = "txtLastName";

private String txtWeight = "txtWeight";

private String txtHeight = "txtHeight";

private static String BTN_INSERT = "BTN_INSERT";
private ObservablelList<Person> personDataToRetrieve;
private OverviewActionController overviewController;
private Person personToAdd;

private TableWindow tw;

private Person personToEditSent;

public PersonInfoWindow () {

overviewController = new OverviewActionController();

//PageObject corresponds to: driver.navigate () .to(url);
personDataToRetrieve = overviewController.getPersonData () ;
personToAdd = new Person();

public PersonInfoWindow (Person personToEdit) {
personToEditSent = personToEdit;

setPersonInfoWindow (personToEditSent) ;

public TableWindow fillInInfo (Person person) {
printText (txtName, person.getFirstName());
//printText ("title", post.getTitle());
printText (txtLastName, person.getLastName());
//printText ("text", post.getText ());
printText (txtHeight, String.valueOf (person.getHeight()));
printText (txtWeight, String.valueOf (person.getWeight ()));

personToAdd = person;

click (BTN_INSERT) ; //click ("addPostBtn") ;

setPersonInfoWindow (person); //sets the window;

return new TableWindow (overviewController) ;

public void printText (String element, String text) {

element = ""; //textBox.clear () ;

element = text; //textBox.sendKeys (text) ;

}

public void click (String element) {

if (element == BTN_INSERT) {

overviewController.addNewPerson (personToAdd) ;

}

else if(element == BTN_SAVE_CHANGES) {}

46

Source Code 4.2: TableWindow Implementation

public class TableWindow {

private
private
private
private
private
private
private
private
private

private

ObservablelList<Person> personDataToRetrieve;

String BTN_DELETE = "BTN_DELETE";
String BTN_EDIT = "BTN_EDIT";
static String BTN_SAVE_CHANGES = "BTN_SAVE_CHANGES";

OverviewActionController overviewController;
int personIndex;

Person personToEdit;

Person oldPerson;

Person personToBeEdited;

PersonInfoWindow piw;

public TableWindow removePerson (int index) {

select (index) ;

click (BTN_DELETE) ;

return this;

47

}

public PersonInfoWindow editPerson (int index) {
select (index) ;

click (BTN_EDIT) ;

setOldPerson (personToEdit) ;

return new PersonInfoWindow (personToEdit);
}
public TableWindow editPersonDetails (Person
oldPersonSelected, Person newPerson) {
oldPerson = oldPersonSelected;

personToBeEdited = newPerson;

click (BTN_SAVE_CHANGES) ;

return new TableWindow (overviewController);

private void select (int index) {
personlndex = index;
}
public void click (String element) {
if (element == BTN_DELETE) {
overviewController.deletePersonFromTheTable (

overviewController.getPersonData (), personlndex);

}

if (element == BTN_EDIT) {
//a new dialog to edit a person opens
personToEdit =
overviewController.getPersonData () .get (personIndex) ;
overviewController.editPersonFromTheTable (personToEdit,
overviewController.getPersonData());
}
if (element == BTN_SAVE_CHANGES) {

if (!'overviewController.checkExistingPerson (

overviewController.getPersonData(),
personToBeEdited.getFirstName () .toString (),
personToBeEdited.getLastName () .toString())) {
overviewController.editPersonFromTheTable (oldPerson,
personDataToRetrieve) ;
overviewController.saveEditedPerson (oldPerson,
personToBeEdited,

overviewController.getPersonData());

48

49

5 DISCUSSION

In this chapter, we discuss important points related to the context of usage of POs

and VOs as well as the advantages and limitations of using it.

5.1 Web Page vs. Desktop View

Being Page Object a pattern directed to web pages and View Object for standa-
lone applications, there are natural distinctions between them. Some years ago, when
web pages and standalone applications were completely different, there were much more
differences between both. With the development of the languages for web page creati-
ons, those differences are getting smaller, i.e. web pages and standalone applications are
being much more similar. From HTMLI1 until HTMLA4, building web pages were mainly
for designing texts, images and graphics, but it did not support user interactions, because
each user interaction loaded a new page. Many people use web browsers for reading, e.g.
blogs, forums and news, and the use of a scroll bar is relevant in this case, noticing that
blank spaces at the web page are used to separate the content itself. Now comparing the
fact of reading on a standalone application, a scroll bar could not be a good idea, because
the views are usually desktop windows, and the use of blank spaces are limited to show
the content at one window. Thus, the content displayed at a standalone interface tends to
be more objective and specific. Therefore, we can notice two main differences between
standalone interfaces and web pages: the type of content, and the way this content is
shown. Another point to notice is that both contents are presented differently: for web
pages, the use of a web browser 1s necessary (as well as internet connection) to access the
content, in contrast to standalone applications that, as the name suggests, stand by itself.

With the development of the HTMLA4, the HTMLS (that is not standard yet) was
released and it supports many other features that were not supported before, such as media
and JavaScript. So audio, video and vector graphics (2D and 3D interactive) are now
integrated to this technology and able to be played and stored in the application.

Therefore we can notice that with HTMLS, the features to design web pages be-
came much more similar to features to design desktop user interfaces, but still need to be
considered what is the intention of the content that is showed on the application, because

VOs deals with windows, and POs with web pages, i.e. if the content would be better

50

presented in a window or over web browsers, bearing in mind the requirements of each
one.

It is also important to highlight that web pages are often complete pages. So after
acting with a page, we get a completely new one. On another hand, standalone GUIs may
normally be separated into different parts, such as sliced windows, tabbed panes and other
elements. Thus, the user actions might change one or more of these parts and leave others
without any changes. And with the development of the web pages, they are becoming
more modern on this aspect of having the same features as standalone GUIs. Then, the

VOs can be useful for them also.

5.2 Advantages of Using POP to Test Desktop Applications

An important role with the use of VOs to test our application is that we achieve
naturally headless testing. This is possible because we mock the variables of the UI and
we implement the same operations of the UI, simulating these operations. Then, every
operation is done faster and the UI does not need to be instantiated. Another advantage is
regarding to the tests: if we need to modify the UI implementation, the tests will remain
the same, because the VOs encapsulate the Ul methods. Thus, just the VOs must be
modified. We have important advantages when using VOs to test desktop applications

such as organization of the source codes, well-structure and the tests are easily maintained.

5.3 Limitations of View Objects

One of the bad points of using VO is that, for example, an implementation class
could become a huge amount of if and elses to cover all buttons (see Source Code 3.3.1c).
Then, the complexity of the source code may increase and the organization might be a

problem.

51

6 CONCLUSION

Being software testing an area that is becoming crucial in software development
field, the test automation in order to save time are essential. Different approaches and to-
ols were proposed for web applications. The POP came up to facilitate the testing part of
the application, because the application is usually defined in specific languages that com-
plicates the test. For this reason, VOs are proposed as an instance of the POP. The main
difference between both methods is basically that one aims at web browsers (POs) and the
other at standalone applications (VOs). With the development of the HTML technology,
the web pages are becoming more identical to standalone applications. Without the usage
of these methods, the architecture of the application would be highly coupled, increa-
sing the complexity of the application, because of the direct connection between the test
classes and the GUI. So these patterns help to reduce the complexity of the application,
creating another layer that is responsible for encapsulating the details of the components
of the UI. With the use of VOs we also have the advantage of achieving headless testing.
This is possible because of the use of mocked variables and methods that simulates opera-
tions of the UI. Thus, the Ul is not displayed and all operations occur without instantiating
it. Developing the application, we needed to structure and organize the modules in order
to abstract some concepts of the application. We could notice that the important thing on
the development of the application is the separation of the application logic and the UI.
Thus, we can manipulate and implement properly the VOs. A limitation of the method
can be complexity of a VO class implemented: the complexity can be high, depending on
the number of buttons that we can act with.

Because BDD might be a powerful technique when combined with VOs, it was
described in detail in order to give a better idea of this technique. Four main characteris-
tics of BDD bring consistent test cases, being them: an ubiquitous language (the terms
should be globally used in the project), iterative decomposition process for requirements
gathering, plain text description with user story and scenario templates (as a standard for
creation of the file features), and finally automated acceptance testing with mapping rules
(i.e. scenarios being run automatically and being mapped to test code). So in BDD, the
tests are written first, and they have the behaviour description of the system as a goal to
be achieved. The Cucumber Tool is used with the help of Gherkin language to make the

translation from a plain text (scenarios) to test code.

52

We could see two different types of application and we worked on their peculiari-
ties. If it is a complex application, delegation of their actions to smaller VOs have to be
considered when modelling and implementing the VOs. Therefore, as long as VOs can
be applied for desktop applications, we could then identify an instance for the POP.

For a future work, an implementation of a plugin is intended to be developed in

order to automate this method for desktop applications.

53

REFERENCIAS

Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

Kent Beck and Martin Fowler. Planning extreme programming. Addison-Wesley Profes-

sional, 2001.

Nigel Bevan. Human-computer interaction standards. Advances in Human Factors Ergo-

nomics, 20:885-885, 1995.

Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-

Wesley Professional, 2004.

Susan Hammond and David Umphress. Test driven development: the state of the practice.
In Proceedings of the 50th Annual Southeast Regional Conference, pages 158—163.
ACM, 2012.

David Janzen and Hossein Saiedian. Test-driven development: Concepts, taxonomy, and

future direction. Computer, (9):43-50, 2005.

Christian Johansen. Test-driven JavaScript development. Addison-Wesley Professional,

2010.

Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Cristiano Spadaro. Improving test sui-
tes maintainability with the page object pattern: An industrial case study. In Software
Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth Internatio-
nal Conference on, pages 108—113. IEEE, 2013.

Dan North et al. Introducing bdd. Better Software, March, 2006.

Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour driven
development. In Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on, pages 383—-387. IEEE, 2011.

Bing Yu, Lei Ma, and Cheng Zhang. Incremental web application testing using page
object. In Hot Topics in Web Systems and Technologies (HotWeb), 2015 Third IEEE
Workshop on, pages 1-6. IEEE, 2015.

	Agradecimentos
	Resumo
	Abstract
	Resumo Estendido
	Lista de Figuras
	Lista de Source Codes
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introduction
	2 Background
	2.1 Software Testing
	2.1.1 Test-Driven Development
	2.1.2 Behaviour-Driven Development
	2.1.3 Headless Testing

	2.2 Page Object Pattern
	2.3 Adopted Technologies
	2.3.1 JavaFX
	2.3.2 Cucumber

	3 Testing Desktop Applications with View Objects
	3.1 Method Overview
	3.2 Running Example
	3.3 Method Steps

	4 Evaluation
	4.1 The Evolved BMI Calculator Application
	4.2 Develop Desktop Application

	5 Discussion
	5.1 Web Page vs. Desktop View
	5.2 Advantages of Using POP to Test Desktop Applications
	5.3 Limitations of View Objects

	6 Conclusion
	Referências

