
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

HUGO DA SILVA CORRÊA PINTO

Designing Autonomous Agents for
Computer Games with Extended Behavior

Networks: An Investigation of Agent
Performance, Character Modeling and
Action Selection in Unreal Tournament

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Science in Computer Science.

Prof. Dr. Luis Otavio Alvares
Advisor

Porto Alegre, June 2005.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra da Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Flávio Rech Wagner
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Pinto, Hugo da Silva Correa

Designing Autonomous Agents for Computer Games with
Extended Behavior Networks: An Investigation of Agent
Performance, Character Modeling and Action Selection in Unreal
Tournament. / Hugo da Silva Corrêa Pinto – Porto Alegre:
Programa de Pós-Graduação em Computação, 2005.

78 f.:il.

Dissertation (Master) – Universidade Federal do Rio Grande do
Sul. Programa de Pós-Graduação em Computação. Porto Alegre,
BR – RS, 2005. Orientador: Luis Otavio Alvares.

1.Behavior Network 2.Computer Games 3.Character Modeling.
I. Alvares, Luis Otavio II. Título.

ACKNOWLEDGEMENTS

Luis Otavio Alvares was a mentor in academic life, a friend in tough times and a
guide into a different culture. His support in all these fronts had a great impact in this
work.

The comments of Ana Bazzan and Paulo Engel during “Semana Academica” helped
shape the thesis in its early stages.

The anonymous reviewers of SBGames 2004, ENIA 2005 and IVA 2005 made
relevant suggestions, mostly incorporated in this work.

 Professor Klaus Dorer’s e-mail discussions and sharing of C++ code accelerated my
understanding and Java implementation of extended behavior networks.

Without the patches of Joe Manojlovich and Jessica Bayliss, Gamebots use would
have been much tougher.

My parent’s support was absolutely crucial in the years of development of this work.

Cassio Pennachin’s and Vetta Labs’s flexibility in the last months of this thesis were
also fundamental.

The Bonneti family has welcomed me warmly at my arrival at Porto Alegre, helping
to make my adaptation easy.

The logistic support of Fernando Machado, Marco Aurelio Wehrmeister, Jorge
Jesus, Aurelio Dias and Oscar Calcin made my academic life much easier.

I thank my II-UFRGS colleagues for the academic discussions, tips on department
procedures and other unwritten relevant knowledge, specially João Valiati and Sandro
Camargo.

The support staff, particularly Luis Otavio Soares, Paulo Jesus and Ângela Silva, has
made a good job these years, making administrative mumbo-jumbo almost invisible to
the alumni. They have my sincere respect and gratitude.

Profs. Soraia Musse, Luciana Nedel and Paulo Engel made suggestions and remarks
during my defense that were mostly incorporated in this final version.

I thank my wife Liliane for the logistic, emotional an intellectual support. Her
patience and day-to-day management during critical weeks was remarkable.

Last, but not least, I thank Newton Vieira for his support during my undergraduate
years and his encouragement for pursuing graduate studies.

This work was made financial support of Conselho Nacional de Desenvolvimento
Científico e Tecnológico – CNPq.

4

I Have Come Into Being

by the Process of my Coming Into Being

the Process of Coming Into Being is Established

5

TABLE OF CONTENTS

LIST OF ABREVIATIONS AND ACRONYMS……………………………………..7

LIST OF FIGURES…………………………………………………………………….8

LIST OF TABLES……………………………………………………………………..9

ABSTRACT…………………………………………………………………………..11

RESUMO……………………………………………………………………………...12

1 INTRODUCTION .. 13

2 BACKGROUND ... 17

2.1 Extended Behavior Networks... 17
2.1.1 Structure ... 18
2.1.2 Action Selection Algorithm.. 20
2.1.3 Example.. 22
2.2 Unreal Tournament and Gamebots ... 26

3 AGENT ARCHITECTURE AND DESIGN... 29

3.1 Behavior Network.. 30
3.2 Sensors .. 35
3.3 Behaviors Modules .. 39
3.4 Integration.. 41

4 EXPERIMENTS .. 43

4.1 Action Selection Quality.. 43
4.1.1 Overall Behavior... 44
4.1.2 Chaining of Actions.. 44
4.1.3 Reactivity and Persistence .. 45
4.1.4 Resolution of conflicts.. 45
4.1.5 Preference for actions that contribute to several goals 45
4.1.6 Proper combination of concurrent actions.. 45

6

4.2 Agent Performance.. 46
4.2.1 First Experiment: The Behavior Network Agent Compared to a Totally Different
Agent Built Around Finite-State Machines. ... 46
4.2.2 Second Experiment: The Behavior Network Agent Compared to a Plain
Reactive Agent that Uses the Same Sensory-Motor Apparatus 47
4.3 Character Design ... 48
4.3.1 The Veteran .. 49
4.3.2 The Novice ... 50
4.3.3 The Coward .. 51
4.3.4 The Samurai.. 51
4.3.5 The Berserker ... 52

5 DISCUSSION ... 53

5.1 Agent Performance and Action Selection Quality.. 53
5.2 Personality Design and Global Parameter Setting ... 54
5.3 Comparison with Other Approaches to Personality Design............................ 55
5.4 Other architectures for computer game agents .. 56
5.5 Extensions... 57
5.5.1 Other Game Modes... 57
5.5.2 Learning and Adaptation .. 58
5.5.3 Deeper personality.. 59

6 CONCLUSION.. 60

REFERENCES... 62

APPENDIX A GAMEBOTS MESSAGES... ...66
APPENDIX B CONTRIBUIÇÕES…………...……………………………………..77

LIST OF ABBREVIATIONS AND ACRONYMS

EBN Extended Behavior Network

ASM Action Selection Mechanism

LIST OF FIGURES

Figure 1.1: Game Genres, AI Roles and Research Problems... 14
Figure 2.1: Specification of a simple behavior network... 18
Figure 2.2: Simple Behavior Network Diagram... 19
Figure 2.3: Activation Spreading Formulae 21
Figure 2.4: Example Behavior Network... 23
Figure 2.5: Initial state propositions and control parameters of example behavior
network ... 23
Figure 2.6: Example Goal Importances. ... 23
Figure 2.7: First step of activation spreading. .. 24
Figure 2.8: Second step of activation spreading... 25
Figure 2.9: Third activation spreading step. ... 26
Figure 2.10: An Unreal Tournament GOTY Screenshot.. 27
Figure 3.1: Goal EnemyHurt and its satisfying modules. .. 31
Figure 3.2: Behavior Network for goal EnemyHurt... 32
Figure 3.3: Behavior Network for goal EnemyHurt and Not IAmBeingShot. 33
Figure 3.4: Behavior Network with health-related modules added................................ 34
Figure 3.5: Complete Behavior Network ... 35
Figure 3.6: Agent internal state and propositions just before receiving Gamebots
messages. .. 36
Figure 3.7: Internal state and propositions after receiving Gamebots messages SFL e
PLR... 36
Figure 3.8: Sensor SensorEnemyInSight reads in the internal state of the agent............ 37
Figure 3.9: Sensor SensorEnemyInSight updates the internal state and the behavior
network propositions. ... 37
Figure 3.10: Sensor SensorEnemyNear reading internal state data................................ 38
Figure 3.11: Sensor SensorEnemyNear updating proposition EnemyNear value. 38
Figure 3.12: Truth-value formula of SensorEnemyNear. ... 39
Figure 3.13: Sequence diagram of behavior GoToEnemy.. ... 40
Figure 3.14: Integration of the Behavior Network Agent with the Gamebots package
and Unreal Tournament server. .. 42
Figure 4.1: Behavior network used in the investigation of action selection quality. 44
Figure 4.2: Veteran Behavior Network and Global Parameters.. 50
Figure 4.3: Coward Behavior Network .. 51

LIST OF TABLES

Table 4.1: Results of Death Match between CMU_JBOt and EBN_Bot....................... 46
Table 4.2: Death Match of EBN_Bot and the Reactive Agent....................................... 48

11

ABSTRACT

This work investigates the application of extended behavior networks to the
computer game domain. We use as our test bed the game Unreal Tournament.

Extended Behavior Networks (EBNs) are a class of action selection architectures
capable of selecting a good set of actions for complex agents situated in continuous and
dynamic environments. They have been successfully applied to the Robocup, but never
before used in computer games.

PHISH-Nets, a behavior network model capable of selecting just single actions, was
applied to character modeling with promising results. Although extended behavior
networks are applicable to a larger domain, they had not been used to character
modeling before.

We present how to design an agent with extended behavior networks, fuzzy sensors
and finite-state machine based behaviors.

We investigate the quality of the action selection mechanism and its correctness in a
series of experiments.

The performance is assessed comparing the scores of an agent using an extended
behavior network against a plain reactive agent with identical sensory-motor apparatus
and against a totally different agent built around finite-state machines.

We investigate how EBNs fare on agent personality modeling via the design and
analysis of five stereotypes in Unreal Tournament. We discuss three ways to build
character personas and situate our work within other approaches.

We conclude that extended behavior networks are a good action selection
architecture for the computer game domain and an interesting mechanism to build
agents with simple personalities.

Keywords: behavior networks, computer games, character modeling, autonomous
agents, planning, action selection, personality, Unreal Tournament.

Construção de Agentes Autônomos para Jogos de Computador com
Redes de Comportamentos Estendidas: Uma investigação de seleção de

ações, performance de agentes e modelagem de personagens no jogo
Unreal Tournament.

RESUMO

Este trabalho investiga a aplicação de rede de comportamentos estendidas ao
domínio de jogos de computador.

Redes de comportamentos estendidas (RCE) são uma classe de arquiteturas para
seleção de ações capazes de selecionar bons conjuntos de ações para agentes complexos
situados em ambientes contínuos e dinâmicos. Foram aplicadas com sucesso na
Robocup, mas nunca foram aplicadas a jogos.

PHISH-Nets, um modelo de redes de comportamentos capaz de selecionar apenas
uma ação por vez, foi aplicado à modelagem de personagens, com bons resultados.
Apesar de RCEs serem aplicáveis a um conjunto de domínios maior, nunca foram
usadas para modelagem de personagens.

Apresenta-se como projetar um agente controlado por uma rede de comportamentos
para o domínio do Unreal Tournament e como integrar a rede de comportamentos a
sensores nebulosos e comportamentos baseados em máquinas de estado-finito
aumentadas.

Investiga-se a qualidade da seleção de ações e a correção do mecanismo em uma
série de experimentos.

A performance é medida através da comparação das pontuações de um agente
baseado em redes de comportamentos com outros dois agentes. Um dos agentes foi
implementado por outro grupo e usava sensores, efetores e comportamentos diferentes.
O outro agente era idêntico ao agente baseado em RCEs, exceto pelo mecanismo de
controle empregado.

A modelagem de personalidade é investigada através do projeto e análise de cinco
estereótipos: Samurai, Veterano, Berserker, Novato e Covarde. Apresenta-se três
maneiras de construir personalidades e situa-se este trabalho dentro de outras
abordagems de projeto de personalidades.

Conclui-se que a rede de comportamentos estendida é um bom mecanismo de
seleção de ações para o domínio de jogos de computador e um mecanismo interessante
para a construção de agentes com personalidades simples.

Palavras-Chave: redes de comportamentos, jogos de computador, modelagem de
personagens, agentes autônomos, seleção de ações, personalidade, Unreal Tournament.

1 INTRODUCTION

In the design of a game robot one of the key concerns is how it selects its actions so
as to exhibit a goal-oriented behavior. When the robot has many possibly conflicting
goals this task gets more complicated. If the robot is also in a fast changing environment
and has to consider many factors at each instant we have a hard problem to tackle.
Search-based approaches turn impractical due to the large search space and traditional
planning is made much harder as the environment may have changed when the agent
finishes planning.

Behavior Networks (MAES, 1989) were proposed as an action selection mechanism
to select good actions in complex and dynamic environments. They favor actions that
contribute to more than one goal and those that are part of an ongoing plan. They
gracefully treat conflicts among the goals and are fast, robust and reactive.

Extended Behavior Networks (DORER,1999-a) are an extension for continuous
domains capable of selecting actions concurrently and specifying situation-dependent
goals. They were applied to the Robocup1 with very good results and to the game
Unreal Tournament (PINTO et al., 2005-a)2, again with encouraging findings.

Good action selection is important, but how the agent selects its actions and how it
affects its personality is also a concern in a computer game. Wouldn’t it be interesting if
while building an agent towards proper goal-oriented behavior we could take into
consideration personality traits? Behavior Networks enable one to do just that. Rhodes
(1996) has applied a behavior network model, PHISH-NET, to the design of character
personalities and Pinto (2005-b) has applied extended behavior networks to the design
of stereotypes.

Unreal Tournament is a modern 3D action game. In this game genre we have the
agent situated in a 3D continuous virtual environment, interacting in many ways with
several entities in real-time. The scenarios an agent may face are varied and complex.
The agent has many weapons available, each with certain properties and several items to
use. It moves over different landscapes and interacts with several other agents, both
opponents and teammates. The action repertory is large (run, walk, turn, crawl, shoot,
change weapons, jump, strafe, pickup item and use item among others) and an agent

1 See (DORER, 1999) and (DORER, 2004). The Magma-Freiburg team, built using
extended behavior networks, was the vice-champion of Robocup-1999.
2 We must clarify that extended behavior networks were used in the game Unreal
Tournament in our research, not by the developers of the game. The game Unreal
Tournament makes no use of Extended Behavior Networks as far as we know.

14

may carry out more than one action simultaneously, such as shooting while jumping.
Also, the agent has many possibly conflicting goals, such as fighting and keeping its
safety.

We see that this domain provides a challenging scenario for an action selection
mechanism. An agent has to deal with continuous measures, the combination of actions
grows exponentially and planning has to deal with fast changes in its conditions.

In fact, modern computer games in general, and 3D action games in particular, offer
an interesting research domain for artificial intelligence. Laird (2000) goes so far as to
regard computer games as the contemporary “AI killer application”.

 Figure 1.1 shows game genres and the AI problems they pose.

Figure 1.1: Game Genres, AI Roles and Research Problems. Reproduced from (LAIRD,
2000).

We see that these games provide domains to investigate difficult AI problems, such
as reasoning with limited resources and spatial reasoning, for a very low price. The
extensive testing of the games and their huge user base turn computer games into an
interesting test bed for AI techniques and theories.

A word of caution is due: As Nareyek (2004) points out, many of the built-in AI
interfaces for these games do not provide the necessary flexibility to do some kinds of
research. Nonetheless there are many investigations possible with the current games and
interfaces, such as the present work.

From an engineer’s point of view these games have become an important application
in itself. The computer game industry has beaten the movies industry in the USA,
regarding revenue, for 2 consecutive years (ESA, 2005). The governments of Australia,
Brazil and South Korea have special programs supporting the research and development
of computer games (ABRAGAMES, 2004). Added to this hype is the opportunity -
many problems posed by computer games resemble the problems faced in robotics and
other artificial intelligence fields a decade ago. It is time to not only design new
solutions, but to see if old solutions apply to these new but similar problems and adapt
them to these new domains.

15

Nareyek (2004) points that most games made use of few AI paradigms and
techniques well established in academia, with a predominance of finite-state machines,
A* and scripting. One reason is that only recently game developers have enough
processing power for sophisticated techniques, as graphics cards carry most of the
graphic processing load, freeing up memory for AI. The other is that if graphics were
the main competitive aspect of a game back in the 90’s, nowadays AI has become one
of the great divides. Good graphics are assumed as certain, while good AI still amazes a
player.

In the last few years, interest in the application of sophisticated AI to games has
increased, with a boom in game AI literature from 2002 on, as evidenced by (RABIN,
2002), (BUCKLAND, 2002), (RABIN, 2003) and (CHAMPANDARD, 2004). Games
such as Black and White

3 not only employed adaptive AI but also based a great deal of
its marketing on the intelligence of its game creatures.

The similarity of robotics and the action game domain has been explored in
(CHAMPANDARD, 2004) and (YISKIS, 2003). The first presents a framework
(FEAR, 2005) and an overview of techniques for building reactive agents with learning
capabilities in the game Quake II. The later describes how to apply the subsumption
architecture (BROOKS, 1986) on games, focusing on its integration with character
animation.

Now we clearly see the contribution of the present work to the game AI engineering
community – extended behavior networks are a well-tested, well-understood, simple
and successful technique from robotics that can be applied with good results in the game
domain4.

In this thesis we investigate the design of agents with personality for the game
Unreal Tournament. We evaluate the quality of the action selection and the performance
of the agents in the game, and investigate ways to endow them with different
personalities using three different approaches.

From a purely scientific stance, our investigation of extended behavior networks in
the game domain adds to the understanding of various issues: How extended behavior
networks fare in the computer game domain? Are EBNs generally a good action
selection mechanism for complex and dynamic environments with continuous
properties? Do the properties observed in the Robocup domain show up in other
scenarios? How to evaluate the behavior and performance of a complex agent? How to
integrate sensors, behaviors and decision making into a complete agent? How to build a
behavior-network based agent?

These questions will be addressed in the following chapters, particularly chapter 5.

Chapter two gives a detailed exposition of the extended behavior network model and
the game Unreal Tournament.

In chapter three we see in detail the architecture of the agent used in most
experiments. We show the rationale behind our design decisions, how we built the

3 EIDOS Interactive.
4 As shown by (PINTO and ALVARES, 2005a) and (PINTO and ALVARES, 2005b)
and the rest of this thesis.

16

behavior network, the agent’s sensors and the behavior modules, how the sensory-motor
apparatus is integrated to the network and how our agent is coupled to the game.

Chapter four presents the experiments carried out to assess action selection quality,
agent performance and personality modeling.

In the fifth chapter we discuss the results of the experiments and contextualize them
with a body of related work, when relevant. Also, we point extensions to our work and
discuss the applicability and scope of this thesis.

Chapter six presents our conclusions and future work.

17

2 BACKGROUND

This chapter presents the fundamental background for the rest of this work.

The first section presents the extended behavior network architecture in detail, its
structure and action selection algorithm.

The game Unreal Tournament and the add-on we used to build our agent are
presented and discussed in the second section.

2.1 Extended Behavior Networks

Behavior Networks are a class of action selection architectures for selecting good
enough actions5 in dynamic and complex environments. They combine properties of
traditional planners (chaining of actions based on preconditions and effects) and
connectionist systems (activation spreading). They are defined by a static structure and
an action selection algorithm.

The structure of a behavior network is composed of a set of behavior modules, a set
of goals, a set of links that join modules to goals and other modules and a set of control
parameters. A behavior module resembles a STRIPS6 operator, having lists with both
the expected effects of its action execution and preconditions for it becoming active.
The links are made based on the effects of the modules and the conditions of modules
and goals.

 Action selection is based in the mutual excitation and inhibition among the network
nodes, via activation spreading.

Behavior Networks have been constantly evolving since their first appearance
(MAES, 1989), as shown by (TYRRELL, 1993), (RHODES, 1996), (GOETZ, 1997),
(DORER, 1999-a) and (NEBEL and BABOVICH, 2003). They have been applied to
animal simulation (TYRRELL, 1993), interactive storytelling (RHODES, 1996) and the
Robocup (MÜLLER, 2001).

5 Maes (1989) defined a good enough action selection policy as one that has the
following characteristics: favors actions that contribute to the agent’s goals (specially
several goals at once), favors actions that contribute to ongoing plans, exploit
opportunities, is fast, is robust and avoids conflicts among objectives.
6 See (NILSSON, 1971).

18

Maes’ (1989) behavior network was capable of selecting just one action at each
cycle and its conditions and effects were boolean-valued. Tyrrell (1993) discovered
many problems in the activation spreading of this model, which were addressed in
subsequent architectures. The PHISH-Net of Rhodes (1996) and the Extended Behavior
Network of Dorer (2004) are the current state-of-art of behavior network architecture
(PINTO, 2004).

The PHISH-Net was made focusing on the control of characters in interactive
storytelling environments. Its distinguishing features are its use of variables and its
mechanisms to treat action failures, loops and impossible-to-satisfy modules. Like
Maes’ model, PHISH nets also have boolean-valued conditions and effects and select
only one action at each cycle.

The Extended Behavior Network was designed with the goal of controlling agents in
the Robocup (DORER, 2004). It uses real-valued propositions for effects and
conditions, allows the specification of situation-dependent goals and selects actions
concurrently. This last feature is what makes extended behavior networks suit to our
domain of concern and what precludes other models of immediate applicability.
Concurrent action selection is a must for most contemporary computer games.

2.1.1 Structure

An extended behavior network (EBN) is defined by a set of behavior modules (M), a
set of goals (G), a set of sensors (S), a set of resources (R) and a set of control
parameters (C). Figure 2.1 shows the specification of part of a behavior network used in
our experiments and figure 2.2 the network built from this specification.

 Module

 precondition EnemyInSight

 action ShootEnemy

 effects EnemyHurt 0.6 LowAmmo 0.1

 using Hands 2 Head 1 endModule

 Resource

 name Legs

 amount 2 endResource

 Resource

 name Head

 amount 1 endResource

 Resource

 name Hands

 amount 2 endResource

Goal

condition EnemyHurt

strength 0.8

context endGoal

Goal

condition Not LowAmmo

strength 0.6

context LowAmmo endGoal

Parameters

name ActivationInfluence value 1.0

name InhibitionInfluence value 0.9

name Inertia value 0.5

name GlobalThreshold value 0.6

 name ThresholdDecay value 0.1

 endParameters

Figure 2.1: Specification of a simple behavior network.

A goal i is defined by a proposition that must be met (Gi), a strength value (Sti) and
a disjunction of propositions that provide the context for that goal, called the relevance
condition (Li). The strength provides the static, context-independent importance of the
goal and the relevance condition the dynamic, context-dependent one.

19

The use of two kinds of conditions in the goals enables us to express goals that
become more or less important depending on the situation the agent is in.

Maintenance goals are those that preserve some state of the agent, and become ever
more important as the current state diverges from the goal. The trivial condition for a
maintenance goal is the negation of the goal condition. Goal Not LowAmmo in figures
2.1 and 2.2 is an example. The importance of not being low in ammunition increases as
the agent’s ammo drops.

Achievement goals represent the increasing motivation to reach a certain state,
becoming more relevant the more the current state approaches the goal. The trivial
condition for this kind of goal is the condition of the goal itself.

A context independent goal is modeled leaving it without relevance conditions. Goal
EnemyHurt in figure 2.1 is an example of such a goal. Note that a goal without
relevance conditions amounts to a goal that is always relevant, i.e., its relevance is
always maximal.

Figure 2.2: Simple Behavior Network Diagram. The goals are represented by round
cornered rectangles, the behaviors by sharp cornered rectangles and the resource nodes
by octagons. Straight lines represent predecessor links, dashed lines conflict links and
pointed lines resource links. The directions of the arrows indicate the activation flow,
for predecessor and conflict links. In resource links they indicate the module’s
dependence on the resource.

Each behavior module is specified by a conditions list, an action, an effects list and a
resources list. The first list is a conjunction of real valued propositions that represent the
needed conditions for the module to execute. The effects list is a conjunction of
propositions (each possibly negated) whose values are the values that we expect them to
have after the module’s action execution. The resources list is made of pairs (resource,
amount), each indicating the expected amount of a resource an agent uses to perform the
action. Let us examine behavior ShootEnemy in figure 2.1. We see that the precondition

20

is that there is an enemy in sight {EnemyInSight}. The expected effects are that the
enemy will become hurt with 60% chance (or, conversely, that EnemyHurt verity will
be 0.6) and that the agent will be with low ammo with 10% chance {EnemyHurt 0.6,
LowAmmo 0.1}. It needs both hands and its head to perform the behavior {Hands 2,
Head 1}.

Goals and modules are linked with two kinds of links. Predecessor links go from a
module or goal B to a module A, for each proposition in the condition list of B that is in
the effects list of A such that the proposition has the same sign (true + and false -) in
both ends of the link. The link from goal EnemyHurt to module ShootEnemy in figure
2.1 is an example. Conflict links go from a module or goal B to a module A, for each
proposition in the condition list of B that is in the effects list of A such that the
proposition has opposite signs at either end of the link. In figure 2.1, the link from Not

LowAmmo to ShootEnemy is a conflict link. Conflict links take energy away from their
targets and predecessor links input energy to their targets. This way a module or goal
tries to inhibit modules whose execution would undo some of its conditions and
attempts to bring into execution modules whose actions would satisfy any of its
conditions.

 Each resource is represented by a resource node and defined by a function f(s) that
specifies the expected amount of the resource available in each situation s. In addition to
f(s), each node has a variable bound that keeps track of the amount of bound resources
and a resource activation threshold (]θθ ..0

Re
∈

s
, where θ is the global activation

threshold. In figure 2.1 we see that the expected used amount of each resource is
constant for all situations. This is not surprising as our agent has the same number of
body parts available in any situation (the game does not account for limb loss or similar
gruesome events).

The modules are linked to the resource nodes through resource links. For each
resource type in the resources list of a module there is a link from the module to the
corresponding resource node.

The control parameters are used to fine tune the network and have values in the
range [0, 1]. The activation influence parameter γ controls the activation from
predecessor links. Inhibition influence, δ, the negative activation from conflict links.
The inertia β, the global threshold θ and the threshold decay θ∆ have their
straightforward meanings. Their function will become clearer in the next subsection.
These parameters enable us to influence the degree of persistence of the agent (the
higher the inertia the greater the persistence) and how reactive it is (the greater the
global threshold the longer the sequence of actions considered when selecting a module
for execution), among other properties. Default parameters that work well under various
circumstances for the Robocup domain are shown in (DORER, 1999-c).

2.1.2 Action Selection Algorithm

The modules to be executed at each cycle are selected in the following way:

1) The activation a of each module is calculated.

21

2) The executability e of each module is calculated using some triangular norm
operation7 over its condition list.

3) The execution-value h(a,e) is calculated by multiplying a and e. Note that this
value combines the utility of executing a behavior (activation) and the probability of
executing it successfully (executability). This way even modules with conditions not
much satisfied may execute if they have high activation.

4) For each resource used by a module, starting by the last non-available resource,
the module checks if it has exceeded the resource threshold and if there is enough of
that resource for its execution. If so, it binds the resource.

5) If a module has bound all of its needed resources it executes and resets the
resources thresholds to the value of the global threshold.

6) Each module unbinds the resources it used.

The thresholds of the resources linearly decay over time, ensuring that eventually a
behavior will be able to bind its needed resources and that the most active behavior gets
priority.

The formulae of Figure 2.3 detail the activation spreading process.

Figure 2.3: Activation Spreading Formulae (DORER, 1999-b).

Formula (1) shows the activation that goes from a goal i to a module k through a
predecessor link at instant t. Function f8

 is a triangular norm that combines the strength

(l gi
) and the dynamic relevance of a goal (r

t

gi
). The term ex j

 is the value of the effect

proposition that is the target of a link.

Formula (2) shows the activation that goes from a goal i to a module k through a
conflict link at an instant t.

7 A mapping T: [] [] []1,01,01,0 →× is a triangular norm (t-norm) if and only if it is
symmetric, associative, non-decreasing in each argument and T (k,1) = k for all k in
[0,1]. In (DORER, 2004) and (PINTO, 2005a) the t-norm used was multiplication.
8 In (DORER, 2004) and (PINTO, 2005a) the t-norm used was multiplication too.

22

Formula (3) shows the activation spreading from a module succ to a module k at an

instant t through a predecessor link. p
succ

is the proposition of the successor module and

asucc
the activation of the successor module. ()sp

succ
,τ is the value of p

succ
in situation

s. We see that the activation spreading increases as the proposition at the start of a
predecessor link becomes less satisfied. Thus, we can see unsatisfied conditions as
increasingly demanding sub-goals of the network. Function σ9, shown below, is used to
make the behavior modules strong attractors with a high probability. This reduces
unnecessary behavior switches, as small changes in the percepts will be less likely to
disrupt an ongoing behavior. Goetz (1997) shows that using formula (7) we do not have
to normalize the total network activation, as was needed in Maes (1989).

 (7)

Formula (4) describes the activation spread from a module through a conflict

link.aconf
and p

conf
stand for the activation and proposition of the module that is the

source of the conflict link, respectively.

Formula (6) shows that the activation of a module k at an instant t is its activation in
the previous time step t-1 weighted by the inertia constant β plus the sum of the
activations retained of each goal i.

Formula (5) shows that a module retains just the activation of greatest absolute value
from each goal. It amounts to keeping only the strongest path from a module to each
goal, if we pay attention to the whole network.

2.1.3 Example

In this subsection we provide a step-by-step exposition of activation flow and action
selection. We make a simplification to allow the reader to easily follow the values in the
activation flux: instead of using the transfer function (7) when transmitting activation
between modules we pass the activation unmodified, that is, we use the identity
function.

Suppose we have the network of figure 2.4 with initial state and parameters as
shown in figure 2.5.

9 The use of this function in the activation spreading of behavior networks was first
proposed by Goetz (1997). The details of the motivation for its use, based on dynamic
systems theory and an analogy with Hopfield networks, is beyond the scope of our
work. The interested reader is referred to (GOETZ, 1997), which offers a detailed and
didactic explanation.

23

Figure 2.4: Example Behavior Network. Resource nodes are omitted for clarity.

Figure 2.5: Initial state propositions and control parameters of example behavior
network

These values lead to the goal importances shown in figure 2.6.

Figure 2.6: Example Goal Importances. The values in the right-hand side of the
equations of Not LowAmmo and Not IAmBeingShot correspond the dynamic and static
importances of each goal, respectivelly.

24

In figure 2.7 we see the first step of activation spreading.

Figure 2.7: First step of activation spreading. The numbers in parenthesis indicate the
formula used to calculate the activation value. Brackets indicate that more than one
value is possible.

AEnemyHurt, ANotLowAmmo and ANotIAmBeingShot keep the activations
relative to goals EnemyHurt, Not LowAmmo and Not IAmBeingShot, respectively. Note
that Explore receives activation from both GoToEnemy and ShootEnemy. The first value
in AEnemyHurt is from ShootEnemy, the second comes from GoToEnemy. The
parenthesis at the right of a value illustrates the value used to achieve that value. Note
that 1.0*0.9*0.8, in AEnemyHurt of behavior FinalizeWithHammer, corresponds to (1),
the formula governing activation spreading from goals to modules. In behavior
GoToEnemy, at its AEnemyHurt field, we see that the product in its parenthesis
illustrate the values used with formula (3) to calculate the activation received from
module FinalizeWithHammer.

We can see examples of other formulae in use. In behavior ShootEnemy we see that
the execution-value is obtained multiplying its executability and activation.

Examining the execution-values we see that no module is allowed to bind a resource
at this step, as no execution-value has exceeded a resource threshold. Thus we proceed
to the next spreading step, illustrated in figure 2.8

25

Figure 2.8: Second step of activation spreading. Bold is used to highlight the fact that
the activation values used received by a module are those of the source module’s
previous step.

We see that now ShootEnemy has exceeded the thresholds of the Head and Hands
resources, so it binds them. The activation received by a module is that of the source
module’s previous step. Examples are GoToEnemy, that receives activation from
FinalizeWithHammer and Dodge(in fact it receives zero activation from Dodge at this
step), and Explore, that receives activation from ShootEnemy and GoToEnemy. Note
that activations relative to different goals are always kept separate, at all modules, at all
steps.

At this step only ShootEnemy binds, resets the thresholds of the resources it uses and
executes. Figure 2.9 illustrates the next step.

26

Figure 2.9: Third activation spreading step.

At this step behavior GoToEnemy surpassed the threshold of the Legs resource, so it
binds them. ShootEnemy was able to bind and execute again, and once more it resets the
thresholds of the resources it used. Now both GoToEnemy and ShootEnemy will be
executing concurrently as they are not dependent on the same resources.

Explore is not receiving activation from the modules it is linked to as EnemyInSight
has verity 1.0. Remember that we spread activation through a predecessor link as much
as the source condition is not satisfied. As EnemyInSight is totally satisfied no energy is
spread through the predecessor links.

Thus we came to the end of our exposition of extended behavior networks. In the
third chapter we show how the network’s propositions get their values, how the
behaviors of the network are built, and how sensors, behaviors and the network are
combined into an agent for Unreal Tournament. The next section presents a detailed
overview of Unreal Tournament.

2.2 Unreal Tournament and Gamebots

Unreal Tournament is a top-selling 3D real-time action game. In the game mode we
used, Death Match, the agent is an armed warrior who must kill all other warriors in an
arena. The agent has many weapons available, each with certain properties (beat, pierce
or explode) and several items to use. It moves over different landscapes and interacts
with several other agents. The action repertory is large (run, walk, turn, crawl, shoot,
change weapons, jump, strafe, pickup item and use item among others) and an agent
may carry out more than one action simultaneously, such as dodging while shooting.
The scenarios are 3 dimensional continuous spaces and the action happens in real-time,
so the agent has to decide quickly what to do at each time step.

27

As the game properties determine in a large extent what kinds of agents we may
design and how we design and implement them, an exposition of some game details is
due.

Under normal game rules, a player starts with a health of 100 and dies when its
health reaches zero or it falls into a pit. With special items (health vials) it may reach a
health value of 200. A player is able to replenish its health by picking up medical kits
(“medboxes” and “medkits”) and health vials.

When a player dies it automatically is “resurrected” in another spot of the game
level. Its score is diminished by one and the killer’s score is augmented by the same
amount. If the player kills himself, for instance, by walking into a pit, his score is
decreased by one. The winner in a DeathMatch game is the player who first achieves a
certain number of killings (a killing is called a frag in the game).

A player may pickup several items of armor (thigh pads, breastplate) that add up to
its armor score (default max is 200). The higher this score, the more damage is absorbed
from shots and explosions. Though the armors have names which make one associate
them with body parts, the game does not take this into account – a thigh pad incredibly
protects one from a head shot! As the player receives shots its armor score is lowered
and its armor becomes less effective in absorbing damage.

Figure 2.10: An Unreal Tournament GOTY Screenshot (UNREALTOURNAMENT,
2005). At the upper right corner we see that the player has 150 units of armor and 100
units of health. In the bottom of the screen we see that its ammo for weapon number 0
(Sniper Rifle) is 46 units.

The player may walk or run. In addition to walking forward or backward a player
may walk sideways (like a crab). Also, he may combine these moving modes with
crawling – i.e. crawling sideways. The player is able to jump, either on spot or while
moving.

28

The weapons inflict basically 4 types of damage: concussion, piercing, explosion
and splash. The later two affect a player if it is within a certain radius of the place of
impact of the shot. There is specific ammunition for each weapon type, and the
maximum ammunition for each weapon is different.

The agent is able to look and shoot in all directions.

The game uses a client-server architecture. The players and bots send messages
requesting sensory information or the execution of an action to a central server. The
server processes the messages, synchronizes, handles events and informs the players the
current game state.

We used a package that provides a clear set of messages for interacting with the
game using sockets, simplifying the low-level aspects of agent design and
programming. This package is called Gamebots (KAMINKA et al, 2002).

An agent receives both synchronous and asynchronous messages through Gamebots.
Each synchronous message received is in fact a batch of messages of same timestamp,
representing general information about the player and the game, such as game score,
player health, player position, player rotation, whether the player is walking or running,
etc.

Asynchronous messages report non-periodic events in the game, such as the picking
up of a certain item, being shot or falling into a hole.

The complete set of messages of the package is included in Appendix A. It has
minor differences from the documentation provided in (PLANETUNREAL, 2005) as
we discovered minor errors in the description of the message formats and corrected
them in the appendix.

Figure 2.11: Another Unreal Tournament GOTY Screenshot
(UNREALTOURNAMENT, 2005). At the upper right corner we see that the player has
150 units of armor and 100 units of health. In the bottom of the screen we see that its
ammo for weapon number 2 (Double Enforcer) is 199 units.

29

3 AGENT ARCHITECTURE AND DESIGN

Extended Behavior Networks were designed as a control mechanism for situated
agents. From an engineering perspective this means that the abstractions used by the
agent’s “cognitive” system, such as propositions and representations of entities, are
made relative to the tasks the agent performs, the environment he is embedded in and its
goals.

The environment of the agent is defined not only by the game features and game
rules but also by the primitive sensory-motor messages available to the agent for
interacting with the game. Thus, when designing sensors, goals and behavior modules
we take into account the Gamebots package messages and commands. The game mode
used and the levels into which the agent interacts also provide additional constraints and
needs upon the agent’s design.

When we design an agent for a game we need to tackle at least three issues: How it
will perceive its environment, how it will decide what to do at each time step and what
basic behaviors will be available to it.

Each of these factors restricts and influences each other. An agent is able to make
decisions based on its knowledge and perception of the environment. Conversely, the
perception of the agent is influenced by its goals and beliefs, its interests in the moment
and the actions it is carrying out, i.e., they are deeply tied to its cognitive apparatus and
activity.

 The behaviors of the agent must be appropriate to the decision mechanism
employed so as to be properly selected and coordinated. We say that a behavior is
appropriate to an action selection mechanism (ASM) when it can be easily modeled
according to the expected ASM conventions and its granularity is properly dealt with at
the level of the ASM.

How behaviors are executed is affected by perception and action selection. For
instance, “attack weakest enemy” will be influenced by our perception of who among
the enemies is the weakest. The “decidedness” to carry out an action is an example of
influence from the action selection mechanism - strong volition to open a door usually
leads to greater speed and force in its opening10.

10 Dorer (2004) describes variations of the behavior network model used in this work
that parameterize the execution-values and use these values to influence the amount of

30

The real-valued propositions of the extended behavior network model may be
realized by means of fuzzy sensors. Fuzzy sensors have been successfully applied to
various domains in which we have continuous properties and arbitrary categories. For a
game they are specially suited to establish the verities of propositions such as “enemy is
near” and “enemy is strong”.

Behavior network modules are also called “competences”11. This gives us a hint of
the granularity we should use when designing modules for a behavior network. We want
to make behaviors such as “Go To Enemy”, “Shoot Enemy” and “Dodge Shot”, which
resemble us of an ability or competence of the agent. Consider behavior “Shoot
Enemy”. The subtasks involved, such as “get current position of enemy K”, “estimate
position of K at shoot time” and “shoot at position X, Y, Z” should not be visible to the
behavior network. Instead of considering each of these small steps in the decision
making process, we make each behavior a finite-state machine in which the states
correspond to the behavior’s low-level subtasks. Each behavior module is also
responsible to monitor its own states, restarting and finishing when necessary.

We must note that our methodology for designing behaviors is not rigid and that
what should be a complete module or just a state in the finite-state machine of a more
complex module has a blurred boundary.

3.1 Behavior Network

In this section we present a behavior network that was the basis of the agents built in
our experiments. We present the network as we have built it, step by step, showing the
rationale behind each choice.

As mentioned earlier, our agent was designed to play in DeathMatch mode. This
means that its basic concerns are killing as many enemies as possible and avoiding
death. It must be able to detect, chase and shoot enemies, to avoid being shot, and to
replenish its health.

We start by defining the agent’s goals. From the game rules, we see that it has to kill
enemies and stay alive. To kill an enemy it has to hurt him until he dies and to stay alive
the agent has to maintain its health and restore it when it is depleted. To fulfill the need
to kill enemies we give the agent the goal of hurting enemies (EnemyHurt). For its self -
preservation we add the goals of avoiding being shot (Not IAmBeingShot) and having a
high health (HaveHighHealth).

Now we must design the behaviors that will achieve these goals. To hurt an enemy
our agent must attack it. A sensible candidate would be behavior “AttackEnemy” with
precondition EnemyInSight and effect EnemyHurt. The problem with such a general
behavior is that if we attack with a shooting weapon, we have to specify the additional
effect of ammo decrease. If we attack with a contact weapon (Impact Hammer or
Chainsaw) we need to be near to the enemy and behavior execution will have no effect
upon the ammunition. Thus, we create two attacking behaviors instead of just one:
FinalizeWithHammer and ShootEnemy. Figure 3.1 shows these behaviors linked to goal

resources spent in behavior execution. In chapter 5 we discuss our reason for not using
this variation.
11 See (MAES,1989) for an example.

31

EnemyHurt. Note that they use exactly the same resources, which makes them mutually
exclusive (unless we use this network with a four armed, two headed agent).

Figure 3.1: Goal EnemyHurt and its satisfying modules.

Now we need modules that make true EnemyNear and EnemyInSight. As the only
sensing ability of the agent is vision, for it to tell if an enemy is near it must first have
perceived an enemy in sight. We have three ways to make EnemyInSight true: stand still
and wait for an enemy to appear in front of us, stay were we are and look for an enemy
around us or actively explore the level to find an enemy. These three possibilities are
reflected in behaviors Stand, StandLookout and Explore, respectively. To stand in place
there are no preconditions, but we wish to explore or look out for an enemy only if there
are no enemies in sight. If we are shot we must stop exploring and find what is shooting
us, so we add the precondition Not IAmBeingShot to behavior Explore. A module that
has EnemyNear as an effect is what is left to complete the paths to the goal. A trivial
solution is module GoToEnemy that has as precondition EnemyInSight and as effects
EnemyNear and IAmBeingShot. We add IAmBeingShot as an effect because going
towards an enemy makes it likely to be shot. Figure 3.2 shows the network built so far,
with only goal EnemyHurt included.

32

Figure 3.2: Behavior Network for goal EnemyHurt.

Now let us make modules to satisfy goal Not IAmBeingShot. The most basic way to
avoid being shot, besides not fighting at all, is dodging the bullets. We create behavior
Dodge with precondition IAmBeingShot and effects Not IAmBeingShot. The agent needs
to use only its legs to dodge. The network now is as shown in figure 3.3.

33

Figure 3.3: Behavior Network for goal EnemyHurt and Not IAmBeingShot.

Now lets see how to achieve goal HaveHighHealth. Health vials and medical kits, in
Unreal Tournament, have fixed locations. With the game options we used in our tests,
these kits, if taken, disappear for some time and then “magically” re-appear at the same
location. Thus, health items have fixed locations within a level, enabling us to store
their locations and just go to a known medical item whenever we need one. A module
“Get Known Medical Kit” with precondition “Know Medical Kit Location” and effect
HaveHighHealth would be our first solution. The problem with this module is that it is
specified at a too high level of abstraction: getting a known medical kit a hundred steps
afar is treated in the same module as getting a health vial in the immediate vicinity.
Also, this module will have to contain checks to see if there is a way to get a medical kit
(i.e. if it is reachable) as well as deciding which of the known kits to get. May this
module be made simpler by exploiting environmental or sensory information?

Examining the Gamebots messages and protocol we see that the robot receives as
primitive information about an item in sight its position, its location and whether it is
reachable, i.e., if there is a straight path to the item. If we exploit this information we
can then make three modules instead: GetReachableMedKit, GoToMedKitInSight and
GoToKnownMedKit. The first has as precondition there being a reachable medical kit
and as an effect HaveHighHealth. The second may make a medical kit in sight a
reachable medical kit. The last can make MedKitInSight true by going to a known
medical kit location. We see that the precondition of GoToKnownMedKit may be

34

satisfied by either StandLookout or Explore, as both tend to lead to a known medical kit
location. Figure 3.4 shows these modules incorporated in the network.

Figure 3.4: Behavior Network with health-related modules (white background) added.

Our network seems ready, but we haven’t mentioned a particularity of Unreal
Tournament that makes additional modules needed. Whenever we tell the game to shoot
a certain agent or position (command SHOOT) it will keep shooting until we tell it to
stop (command STOPSHOOT). We could well treat this inside a module, but as the
need to stop shooting in fact is embedded in the aim of not wasting ammo, we create a
goal for it, Not LowAmmo. Stopping to shot may be an independent, complete
competence module, StopShoot, with preconditions Not EnemyInSight and effect Not

LowAmmo. Figure 3.5 shows our complete network. We added the context condition
LowAmmo to goal Not LowAmmo as we want the agent to “worry” about being with low
ammunition the more it is actually with low ammo.

35

Figure 3.5: Complete Behavior Network

Having our network ready we are left with three questions: How will the network
propositions be verified? How will each of the behavior actions be carried out? How
will it all function together? In the next subsection we address the first question and
provide a through overview of the agent’s sensing mechanism.

3.2 Sensors

Before venturing into the exposition and discussion of our network’s sensors lets us
clarify of what kind of sensors we are talking about. In the beginning of this chapter we
have pointed that agent perception is influenced by its internal state, its beliefs and its
current activity. We also remember that primitive sensory information is defined by the
messages of the Gamebots package. This information includes robot position, robot
velocity, robot rotation, robot ammo, robot health, enemies in sight and items seen. The
behavior network operates upon propositions, whose value attribution comprises a form
of high-level perception. It is this high-level perception that is done by the sensors
discussed in this section. Our sensors act upon the Gamebots messages and the
knowledge of the agent to create the necessary information for action selection and
behavior execution.

Each condition of the behavior network has a sensor associated to it. Each sensor has
a membership function P and an internal state function I. Function P takes the current
perceived state of the agent and returns a fuzzy proposition, corresponding to the
condition, with value between [0..1]. Function I updates the internal state of the agent.
Note that this functioning implies that the order in which the sensors are activated

36

matters – the internal state of the agent may be altered by each sensing. Figures 3.6 to
3.9 illustrate in a high-level how sensor SensorEnemyInSight operates.

Figure 3.6: Agent internal state and propositions just before receiving Gamebots
messages.

Figure 3.7: Internal state and propositions after receiving Gamebots messages SFL e
PLR. Fields in bold signal what was changed by these messages.

37

Figure 3.8: Sensor SensorEnemyInSight reads in the internal state of the agent. Both
functions l and P receive the same input. The data in bold shows what is actually used
by this sensor.

Figure 3.9: Sensor SensorEnemyInSight updates the internal state and the behavior
network propositions. Function l sets the enemy target to Id20 and P sets the verity of
EnemyInSight. In bold is what the sensor has changed.

The cautious reader may now be asking himself why we keep only true propositions.
Two reasons: simplicity and storage saving. The operator we use for negating a
proposition p is N(p) = 1- p. (8), so we can always make a straightforward conversion
between the value of a proposition and its negation.

To finish our exposition of sensors, let us proceed to examining how sensor
SensorEnemyNear operates, as it provides a good example of the importance of sensor

38

ordering. As Figure 3.10 and Figure 3.11 show, SensorEnemyNear gets the target set by
SensorEnemyInSight, the robot’s own position and the target position and sets the verity
of proposition EnemyNear. This sensor alters the propositions but leaves the internal
state untouched. Note that it is crucial that SensorEnemyInSight operates first, because
the assessment of nearness is done relative to the target set by this sensor. Figure 3.12
shows how P establishes the truth-value of EnemyNear.

Figure 3.10: Sensor SensorEnemyNear reading internal state data.

Figure 3.11: Sensor SensorEnemyNear updating proposition EnemyNear value.

39

Figure 3.12: Truth-value formula of SensorEnemyNear. ONE_THRESHOLD is the
distance less than which we consider the enemy surely near. ZERO_TRESHOLD is the
distance such that for distances grater than it the enemy is surely not near.

Having seen the subtleties of agent sensing and how the network’s propositions get
their values, we are ready to examine the behavior modules.

3.3 Behaviors Modules

From chapter 2, we recapitulate that a behavior module is made up of a list of
conditions, a list of effects and an action. We have seen how the conditions are set in the
previous section, so now we are ready to see how behavior actions are constructed.

The actions of the behavior modules are built around augmented finite-state
machines. When selected for execution each behavior action has a certain amount of
time to execute. The module is responsible for monitoring its own action execution and
start, resume and interrupt each state as necessary.

A behavior action may issue one or more primitive commands to the game when
executing. All behaviors have access to the internal state of the agent.

Figure 3.13 shows the sequence diagram of behavior GoToEnemy.

We see that the behavior is fairly complex, even though the high-level action is
simple. The agent has to discover a path to the enemy, deal with obstacles that may
appear in its way and give up whenever it concludes that the target enemy is
unreachable.

Let us follow some paths in the diagram to illustrate how the behavior relates to the
perception and internal state of the agent and how the behavior action relates to the
primitive actions of the Gamebots package.

40

Figure 3.13: Sequence diagram of behavior GoToEnemy. Null(X), IsReachable(X),
Reached(X) and Empty(x) are predicates. Stuck and Bumped are boolean flags. Target,
TimeElapsed, PathPoints and PathPoint are variables. TIME_TO_AVOID,
TIME_WAIT_FOR_PATH and TIME_RESTART are constants used for the behavior
self-monitoring. States START, FINISHED and GIVE UP are terminal states.
FINISHED is successful reaching of the target, GIVE UP is a desistence.

Let us start at state START. The variable target is the one set by sensor
SensorEnemyInSight, as described in the previous section. If there is no target set
(Null(target)), the agent does nothing. If the target is not immediately reachable the
module requests a path to it and enters WAIT FOR PATH. Upon receiving the path to
the target the agent starts moving (MOVING THROUGH PATH).

In state WAIT FOR PATH the module sends a GetPath command to the game and
waits for the corresponding path message (PTH). If the time of wait (timeElapsed) goes
beyond the maximum allowed (TIME_WAIT_FOR_PATH) the agent gives up going to
that target (state GIVE UP).

But what are these paths all about? Unreal Tournament levels are covered by graphs
that span most of the level area. Each node of the graph is a possible destination and is
called a navigation point (NavPoint). A navigation point may be the place of an item, a
weapon or just a point where the agent may move. We are able to give specific 3D
coordinates for the agent to move, but more often we provide just a NavPoint id. The
game provides the facility to get a path to any point, using the GetPath command. The
response to this command provides a list of NavPoints to the target if there is a path to it
or Null is there is no path.

41

Let us continue following the diagram from MOVING THROUGH PATH. When
the agent has no more points in its path it goes to state FINISH and ends the behavior
successfully. If there is a point to go it enters state GOING TO PATH POINT. If it
encounters an obstacle while going to the desired NavPoint, it goes to state AVOID
OBSTACLE. If after a certain time the agent has not managed to avoid the obstacle it
goes to state JITTERING. In this state the agent tries some random action just to get
away from where it is. It is a primitive heuristic to deal with occasions when the agent is
stuck. A better implementation would make an internal map of the level and perform
some reasoning on the possible stuck cases (crates that leave a space too narrow for the
agent to go through, holes, jumpable obstacles, etc). After jittering the agent always
gives up (state GIVE UP). We decided to take this course of action because we consider
that whenever the agent has failed to avoid an obstacle there has probably been too
much time since we started moving towards the target, and it is better to restart from
state START.

The cautious reader by now may be wondering: How does the behavior actually
executes? Does it go from state from state until reaching a terminal node? Can it be
interrupted in the middle of a state?

Remember from the beginning of this section that we said that each behavior kept
track of its own state and was responsible for making the state transitions, interruptions,
etc. All modules have a single method available to the agent, called perform. This
method receives as parameter the internal state of the agent. So, we see that the agent
never interrupts a behavior, only the module itself may do it.

 The case of interruption common to all behaviors is when it is in a non-terminal
state and too much time has elapse since it was last executed. In this case it is re-set and
starts from state START. Each call of the execute method make at most one state
transition. This was made to allow a great deal of flexibility on how behaviors would be
executed, scheduled, etc.

Now that we have seem how the network, the sensors and behaviors were
constructed it is time to put it all together. The next section describes how our agent is
integrated into the game.

3.4 Integration

In this section, in addition to showing how the agent is integrated into the game, we
provide some final remarks on how the behavior network, the behavior modules and the
sensors are combined. Figure 3.14 illustrates the communication between the agent,
Gamebots and Unreal Tournament server.

42

Figure 3.14: Integration of the Behavior Network Agent with the Gamebots package
and Unreal Tournament server.

Unreal Tournament server sends game messages to Gamebots. In turn Gamebots
sends its own messages to our agent. The agent’s sensors process these messages and
update the values of the conditions of the behavior network and the internal state of the
agent. Action selection takes place and the appropriate actions are carried out by
sending commands to Gamebots that in turn send low-level Unreal Tournament
commands to the server.

Well, but when specifically action selection happens? From chapter two we
remember that messages in Gamebots can be synchronous or asynchronous.
Synchronous messages come in batches at short intervals, usually each 50 milliseconds
(we may configure the game to make synchronous updates less or more often).
Whenever we receive an asynchronous message we treat it as if it had arrived at the
time of the most recent synchronous batch, i.e., we update the network propositions
only at the ending of a synchronous batch processing. This has no significant impact on
performance as even the biggest possible delay in the agent’s response due to this
modification is not noticeable to a human.

Action selection takes place right after sensor updating. The selected behaviors are
activated via calls to their execute methods. We see that the agent performs a full action
selection cycle many times each second, leading to a fast response to changes and
events in the environment.

43

4 EXPERIMENTS

In this section we describe the experiments to assess action selection quality, to
measure agent performance and to bring forth character personality in the domain of
Unreal Tournament.

In the first section, by means of analysis of the actions selected at each turn and of
direct observation of the agent behavior in the game, we verify if the extended behavior
network exhibit the properties of a good enough action selection mechanism: chaining
of actions, good balance between reactivity and persistence, proper resolution of
conflicts and preference for actions to contribute to more than one goal. Also, we verify
one additional property essential to our domain: proper combination of concurrent
actions.

The second section presents two experiments designed to asses the performance of
an agent using extended behavior networks in this domain. In the first experiment we
used a totally different agent, built by another group, to play against our extended
behavior network agent. In the second experiment we used a robot identical to ours
except for the action selection mechanism employed. The first experiment prevented
bias on our part on the opponent’s design. The second enabled us to verify if the action
selection mechanism employed did make a great difference in the overall performance
of our agent.

In the third section we show how to design stereotypes using extended behavior
networks and how to tune the network so as to achieve different personality traits. This
section also presents an investigation of the effects of different parameter settings in the
overall behavior of the agent.

4.1 Action Selection Quality

Our first series of experiments were designed to asses the quality of action selection,
using the behavior network of figure 4.1. We give a high-level description of the
perceived state of the agent, the actions it executed and the values of the control
parameters of the network during the experiment. The default configuration for the
network was: γ (ActivationInfluence) = 1.0, δ (InhibitionInfluence) = 0.9, β (Inertia) =
0.5, θ (Global threshold) = 0.6. These parameters worked well in most cases. In a few
experiments we tried extreme values for some parameters, specially the inertia β and the
global threshold θ .

44

Each of the discussions below was based in log analysis and direct observation of
agent behavior (Unreal Tournament allows one to log as “spectator” and just watch the
game without interfering).

Figure 4.1: Behavior network used in the investigation of action selection quality.

4.1.1 Overall Behavior

The agent exhibited an intelligent behavior. It started exploring the level and kept
wandering until it found an enemy (Explore). Upon finding and enemy it started
shooting (ShootEnemy). If not being shot back it usually approached the enemy
(GoToEnemy). Upon reaching the enemy it switched weapons and used the more
powerful weapon Impact Hammer (FinalizeWithHammer). After the enemy died, it
stopped shooting (StopShoot) and started wandering again. When shot repeatedly it kept
shooting and after a while stopped going to the enemy and started dodging subsequent
shots. If the enemy stopped shooting it would go towards it again. When the agent was
hurt in combat, if it knew the location of a medical kit (GoToKnownMedkit had a high
truth value), it would go to it and restore its health after a while.

4.1.2 Chaining of Actions

Three common action sequences were observed. The sequence {StopShooting and
Explore, GoToEnemy and ShootEnemy, FinalizeWithHammer} was the usual attack
sequence of the agent and {GoToKnownMedkit, GoToMedkitInSight,
GetReachableMedkit} the one that was carried out when it had no enemies in sight and
was not with high health. The long sequence {Explore, GoToEnemy and ShootEnemy,

45

FinalizeWithHammer, StopShooting and GoToKnownMedKit, GoToMedkitInSight,

GetReachableMedKit}, that is basically the two previous ones one after the other, was
the most common overall behavior of the agent. We see that the agent makes
reasonably long consistent chains of actions even though the agent makes no formal
planning.

4.1.3 Reactivity and Persistence

We can see the sequence of actions {Explore, GoToEnemy, FinalizeWithHammer}
as a plan to fulfill the goal EnemyHurt. If while going to the enemy the agent was shot,
it stopped behavior GoToEnemy, executed BehaviorDodge and, having evaded the shot,
resumed GoToEnemy. We see that the agent reacted to an event in the environment and
then got back to our perceived “plan”. It exhibited a good compromise between
reactivity and persistence. For large values of β, the inertia, the agent took some time to
dodge after perceiving a shot and only dodged when a sequence of shots happened.

4.1.4 Resolution of conflicts

Let us take a look at figure 4.1 again. We see that goal EnemyHurt tries to make
behavior ShootEnemy execute and goal Not LowAmmo tries to prevent ShootEnemy
from executing. The goal Not LowAmmo has little influence until the agent starts to be
with very low ammunition. When this happens, the conflicting influence of Not

LowAmmo makes the agent switch to the hammer weapon (FinalizeWithHammer),
because it does not need ammunition. It is an unusual though sensible approach to
ammunition saving that emerged by the interaction of the goals (note that the
“designed” way to save ammo is using behavior StopShooting).

Another case of conflict resolution happens at behavior GoToEnemy. To better
fulfill EnemyHurt the agent has to get near, but to satisfy Not IAmBeingShot it better
not. In 4.1.1 and 4.1.3 we saw that the network deals with this conflict well, dodging
when appropriate and resuming the going to the enemy after avoiding the shot.

4.1.5 Preference for actions that contribute to several goals

The network always preferred StandLookout and Explore to Stand when they had
equal executability, even when we used larger expected values for the EnemyInSight

effect of Stand. The reason is simple: both StandLookout and Explore contribute to
EnemyHurt and HaveHighHealth, while Stand just contributes to EnemyHurt (In fact it
contributes to ShootEnemy that in turn contributes to EnemyHurt). The modules that
contribute to more goals are able to accumulate more activation, being selected more
often.

4.1.6 Proper combination of concurrent actions

We see that the agent makes good use of its resources and combines the actions
properly. It shoots while dodging a bullet or running towards the enemy, it stops
shooting while exploring or getting a medical kit and even continues to shoot while
getting a medical kit. All combinations of actions are reasonable and the good action
combinations we could conceive were observed, as the previous analysis attests.

46

4.2 Agent Performance

To asses the performance of an agent built around extended behavior networks we
designed two experiments. In the first we tested our agent (EBN_Bot) against a totally
different agent built by another group. This provided us with a baseline comparison and
prevented the possibility of ourselves cheating on the robot opponent. The second
experiment used a robot that had identical sensors and behaviors but a different action
selection algorithm. This second experiment was made to detect with more precision the
contribution of the extended behavior network to the agent’s performance. If we got a
better result than a robot that used a different sensory-motor apparatus, it could be due
to the apparatus, not the action selection mechanism.

4.2.1 First Experiment: The Behavior Network Agent Compared to a Totally
Different Agent Built Around Finite-State Machines.

In our first experiment we used Carnagie Mellon’s CMU_JBot, a Java agent based
on finite-state machines that comes with the Javabots package (JAVABOTS, 2005). Our
robot used the network presented in the previous section.

 We made a series of 10 games of 1 minute. For each game we recorded the number
of times the agent hit the opponent, the number of times the agent was hit, the number
of times the agent was killed and the number of times the agent killed he opponent. The
total score was got by giving 0.1 to each time the agent hit the opponent and 1 to each
time the agent killed the opponent. Table 1 summarizes our results. The rightmost
column presents the difference between the score of the agent using the extended
behavior network (EBN_Bot) and the score of CMU_JBot.

Table 4.1: Results of Death Match between CMU_JBOt and EBN_Bot

Experiment

EBNBot Hit EBNBot
Kill

CMU JBot
Hit

CMU JBot
Kill

Difference

1 0.7 0 0.2 0 0.5

2 0.1 0 0.0 0 0.1

3 0.3 1 0 0 1.3

4 0.7 0 0.1 0 0.7

5 0.9 0 0 0 0.9

6 0.4 1 0.1 0 1.3

7 0.6 0 0 0 0.6

8 0.7 1 0.0 0 1.7

9 0.9 0 0.1 0 0.8

10 0.2 1 0.2 0 1.0

Mean 0.55 0.4 0.06 0 0.8

We see that our agent scored much higher than the agent that used finite state
machines. The low number of killings, even when many hits happened, is due to the

47

absence of a chasing mechanism in both agents. The agents wandered through the
environment, shot each other and then separated, several times.

This experiment adds evidence to the suitability of behavior networks as an action
selection mechanism for Unreal Tournament agents, but a doubt remains: Is the better
performance due to our sensors and behaviors or due to the action selection mechanism
used? The next experiment sheds light on this issue.

4.2.2 Second Experiment: The Behavior Network Agent Compared to a Plain
Reactive Agent that Uses the Same Sensory-Motor Apparatus

In the second experiment we compared the EBN agent to an agent that has exactly
the same sensors and behaviors, but uses a different action selection strategy: At each
time step we disregard activation spreading for action selection and take into account
only the executability of each module. Using only the executability results in a totally
reactive agent with fuzzy sensors in which the modules that have the most satisfied pre-
conditions execute. Note that the concurrent action selection is properly carried in this
agent too.

Now that we do not have activation we are faced frequently with situations in which
two modules have the same execution-value. Let us consider for instance
FinalizeWithHammer and ShootEnemy. When we have EnemyNear = 1.0 we necessarily
will have EnemyInSight=1.0 (remember from chapter 3 that the sensor for EnemyNear
uses information created by the sensor for EnemyInSight). So, both will have identical
execution-values, creating the need to hard code some priority rules or insert additional
conditions to decide which one to launch when appropriate. We have opted for the first
approach in most cases, to differ as little as possible from the original behavior network.

Behavior Dodge has priority over GoToEnemy, behavior GoToReachableMedkit has
priority over both GoToMedkitInSight and GoToKnownMedkit, and behavior
GoToMedkitInSight has priority over behavior GoToKnownMedkit. We incorporate one
subtle but important rule: FinalizeWithHammer gets priority over ShootEnemy, because
we want the robot to hammer if the enemy is near. We changed module Explore to have
the condition Not IAmBeingShot, both in the behavior network agent and in the plain
reactive agent. This was made to separate the case when it is better to wander (Explore)
and the case when it is better to stay on lookout (StandLookout).

To overcome the low number of killings we implemented a chasing behavior
(identical) in both agents. Table 2 summarizes our results for 10 games of 30 seconds
each.

48

Table 4.2: Death Match of EBN_Bot and the Reactive Agent.

EBNBot
Hit

EBNBot Kill ReactiveBot
Hit

ReactiveBot
Kill

Difference

(EBN-Reactive)

1 0.7 0 0.9 1 -1.2

2 0.1 1 0.1 0 1.0

3 0.3 1 0.2 0 1.1

4 0.2 0 0.3 1 -1.2

5 0.9 1 0.3 0 1.6

6 0.4 1 0.1 0 1.4

7 0.0 0 0.1 0 -0.1

8 0.7 1 0.9 0 0.8

9 0.6 0 0.6 1 -1.3

10 0.2 1 0.3 0 0.9

Mean 0.44 0.6 0.34 0.3 0.3

Our robot had significantly bigger overall scores, as in the previous experiment. One
interesting point is that our robot had 100% more killings but just a little over 30% more
hits. This is due to the quality of its action chains. It stopped to heal itself when very
hurt and dodged bullets when taking many consecutive shots.

Another point that catches attention is that the mean difference in total score was
much smaller in this experiment. It is evidence that the quality of sensors and behaviors
was in great part responsible for the superior performance of our agent against
CMU_JBot.

These two experiments together show that extended behavior networks are a good
action selection mechanism for agents in action games and that indeed the high action
selection quality is responsible for a great part of the agent performance.

4.3 Character Design

We have designed five stereotypical personalities suited to the combat scenario of
Unreal Tournament: The Veteran, The Novice, The Coward, The Samurai and The
Berserker. For each, we used one or more of the following approaches: changing the
global parameters, changing the goal strengths and changing the network topology
itself. Besides illustrating personality design, this section explores in greater detail the
configurations of the parameters.

The Veteran is calm and rational, trying to maximize all its goals in the long run. He
has great self-control and persistence and wants to kill as many enemies as possible, but
never at the expense of his life.

49

The Novice aspires to be like the veteran, has similar values, but still lacks the
endurance and discipline to act properly. He is impulsive and frequently does not take
the best action for a circumstance

The Coward’s main goal is getting out of the combat alive and unhurt. He will avoid
direct confrontation and will attack only when no other good option exists, always
prioritizing maintaining and restoring its bodily integrity.

The Samurai is cold, persistent and aggressive. To die in battle is his highest honor.
Killing his opponent is his stronger goal and he will try to achieve it even at the expense
of his life. When in a fight with an enemy it won’t stop to attack another agent, nor will
be stopped by pain or danger.

The Berserker is aggressive, undisciplined and non-persistent. Once in the arena he
will attack fiercely its opponents, in a mad frenzy. He is insensitive to pain, and most
times will not stop attacking to heal itself or even to dodge bullets.

In the following subsections we describe the design of each character. We start with
the Veteran and proceed by showing the modifications made upon its design to achieve
the different personas.

4.3.1 The Veteran

The personality requirements for the veteran are very similar to the requirements for
an agent that wants to maximize its score over a series of games. This was the case of
the agent presented at the experiments of section 4.2, so we use it as a basis for the
Veteran. Figure 4.2 shows the Behavior Network and the control parameters used for
this character.

The overall behavior of the agent could be described as follows: It started exploring
the level and kept wandering until it found an enemy (Explore). Upon finding an enemy
it started shooting (ShootEnemy) and approaching the enemy (GoToEnemy). Upon
finding the enemy it switched weapons and used the more powerful weapon Impact
Hammer (FinalizeWithHammer). After the enemy died, it stopped shooting (StopShoot)
and started wandering again. When shot repeatedly it kept shooting and after a while
stopped going to the enemy and started dodging subsequent shots. If the enemy stopped
shooting it would go towards it again. When the agent was hurt in combat, if it knew the
location of a medkit (GoToKnownMedkit had a high truth value), it would go to it and
restore its health after a while. If when approaching the enemy the agent became with
very low health, if there was a reachable medical kit (MedKitReachable), the agent
would stop going to the enemy and go to the medkit while keeping shooting, unless it
was close to the enemy, in which case it attempted a killing with the hammer
(FinalizeWithHammer).

We see that this behavior matches the personality of an archetypical combat veteran:
The agent is persistent when killing, heals itself when it is safe to do so and has the
endurance to keep fighting even when being shot back, without panicking.

50

Figure 4.2: Veteran Behavior Network and Global Parameters. The predecessor link
from GoToKnownMedKit to StandLookout is suppressed for clarity.

4.3.2 The Novice

As exposed in the beginning of this section, the novice lacks endurance, is less
disciplined and more impulsive than the Veteran, but has similar goals. To achieve this
lower discipline and greater impulsiveness we investigated lowering two global
parameters, the inertia β and the global thresholdθ .

We lowered the inertia to 0.1. This way the agent would be far more reactive. The
agent, when shot, immediately attempted to dodge. Also, if while pursuing an enemy
the agent became with very low health, upon spotting a reachable medkit the agent
would immediately go to it. This resulted in poorer behavior – often the enemy was as
hurt as the agent and an attack with the hammer would deliver victory. The same could
be said of the pursuit – dodging is good, but only to prevent being extremely damaged.
As dodging is not totally guaranteed to succeed it is usually a bad tactic to be away from
the enemy and not approach it ever, specially in case of more than one enemy in the
scene.

To augment the number of mistakes of the novice, we lowered the global threshold.
This way we decreased the quality of action selection, as many modules surpassed the
threshold simultaneously, and among modules that are above the threshold no one has
priority over others. Now, often the agent shot the enemy even when it was very near
and could hammer. For the extremely low value of 0.1, the agent also often just stood
still (Stand) instead of exploring the level (Explore).

51

The best parameters we found to bring forth the character of the Novice were γ =
1.0, δ = 0.9, β = 0.1, θ = 0.25 and θ∆ = 0.l.

4.3.3 The Coward

To bring forth the Coward working on the global parameters would be of little use,
as he is as persistent as the Veteran and we have no reason to believe him to make
decisions less thoughtfully. Instead, we worked on the goal strengths. We lowered
EnemyHurt and raised HaveHighHealth. We left the global constants untouched.

The behavior of the coward could be thus described: It started exploring the level
until he found an enemy. With an enemy in sight he started shooting .When shot back, if
the enemy missed him, he would start dodging after a little while, for all subsequent
shots. If actually hit he would go get the medkit immediately if there was one reachable.
If there was none he would keep dodging and fighting until it had a low health. When it
happened he would flee combat and go restore its health, even if he had to go all the
way to a far known medkit.

We see that even though the agent is far more concerned with its health and could
not be described as brave anymore a key point of its specification is missing: its active
avoidance of engagement. To achieve this we implemented a new module for the
network: GoAwayFromEnemy. With this module added, when the Coward spotted an
enemy, he would go away from him while shooting (GoAwayFromEnemy and
ShootEnemy were executed concurrently). Figure 4.3 shows the full network of the
Coward character. Note that adding a new behavior was a simple modular operation,
dispensing adjustments.

Figure 4.3: Coward Behavior Network

4.3.4 The Samurai

To transform the Veteran into a Samurai we worked on the goals strengths. We set
EnemyHurt to 1.0, NotIAmBeignShot to 0.6, NotLowHealth to 0.5 and HaveHighHealth

52

to 0.4. With these strengths the agent will always approach the enemy instead of
dodging bullets and will not stop to get medkits if in a fight. We verified that whenever
he found an enemy it went towards it shooting and then attacked with the hammer
(FinalizeWithHammer) if the enemy had not died yet. If there was no enemy in sight the
Samurai would go after medkits to restore its health. For a gamer the Samurai displayed
the exact behavior we desired: He was never disturbed by pain (shoots) or danger (low
health) in his pursuit of an enemy and employed good tactics (shooting from afar and
hammering when near).

4.3.5 The Berserker

To bring into being the mad berserker we started from the Samurai. We lowered
even more its sensibility to pain by decreasing the importance of goal LowHealth and to
bring forth his frenzy we diminished both its inertia and its global threshold. Lowering β
made the agent very reactive and lowering θ made the agent take insane actions, such
as shooting instead of hammering at close quarters.

The overall behavior of the berserker was as intended – he would not stop to dodge
or heal while in combat and he fought madly, hammering and shooting everything that
went into his path.

53

5 DISCUSSION

In this chapter we discuss the results of the experiments of the previous chapter,
contextualize our work within a body of related work and point extensions to our work.
We point extensions to enable the agent to play in other game modes, ways to
incorporate learning capabilities and strategies for deeper personality modeling.

5.1 Agent Performance and Action Selection Quality

When compared to another robot built around finite-state machines that used
different sensors and behaviors but the same low-level commands, our robot performed
very well. This opponent being of another group prevented bias of our part on this first
test. However, the question of whether this superior performance was due only to a
better sensory-motor apparatus remained.

 We decided to make another experiment, this time with an agent with identical
sensory-motor abilities that used a different action selection algorithm. This way we
could isolate the contribution of the extended behavior network to the agent’s
performance.

Our robot had significantly better scores in this second experiment.

This better score in itself is positive evidence of the importance of the extended
behavior network for the agent’s performance, as the sensors and behaviors in both
agents were identical.

We may also regard as positive evidence the fact that our robot had a slightly higher
hit rate (30%) but a much higher killing rate (100%). This was due to proper action
selections – its sequences of actions made it die less and kill more. Searching the action
log we found out that it stopped to heal itself only when necessary and was not easily
disturbed while fighting. It engaged the enemy more often to deliver the deadly hammer
blow.

When we compared the mean of the differences of the scores of our robot in the first
and second experiments we saw that the difference was much smaller in the second one.
We regard it as evidence that indeed a good part of the better score in the first
experiment was due to better sensors and behaviors.

These two experiments, taken together, show that action selection quality plays an
important role in agent performance and are evidence of the viability of extended

54

behavior networks as an action selection mechanism for complex agents with
concurrent behaviors in complex, dynamic and continuous environments.

The experiments of section 4.1 enabled us to verify the properties of a “good
enough” action selection mechanism in the 3D action game domain, namely,
persistence, exploitation of opportunities, preference for actions that satisfy multiple
goals, proper resolution of conflicts, performing of actions in sequences to achieve goals
and sensible selection of concurrent actions. These experiments are additional evidence
of the suitability of extended behavior networks for complex and dynamic environments
in general, and for the 3D game domain in particular.

5.2 Personality Design and Global Parameter Setting

For an agent controlled by a behavior network, we illustrated three approaches to
build its personality: changing the global parameters, changing the goal strengths and
changing the network topology itself.

Changing the global parameters allowed us to control two key personality
characteristics: Thoughtfulness (through the activation thresholdθ) and persistence
(through the inertia β).

A high activation threshold θ lead to better action selection as only actions that had
a high activation could execute, that is, it required on average more activation spreading
cycles to decide what to do next and also required higher executability of the modules.
For an external observer it amounts to a thoughtful behavior, as an agent does mostly
what seems effective and proper to its goals. We saw a thoughtful behavior typical of an
experienced soldier in the Veteran and the thoughtless behavior of a madman in the
Berserker. We should be cautious with putting θ at a too high value – for some agents it
may make them too slow.

A high β leads to a persistent behavior: An agent only changes its behavior if there is
a large or long change in its sensory information. This was the case of the Veteran
taking some time to start dodging bullets. A single shot was not enough to make he
interrupt his course of action. Symmetrically, the Novice changed actions due to slight
changes in its sensors.

 The predecessor link activation constant γ, the conflict link activation constant δ
and the threshold decrease θ∆ were not used to design agent personality. Rhodes(1996)
points that δ > γ may lead to an overall behavior were the character is seen as stubborn -
once a goal was satisfied or a behavior was executing it would be too hard to make the
agent change its course of action so as to do any action that would undo the
precondition of the goal or module that was the source of the conflict link.

Changing the goal strengths was our first try when changing the global constants
could not lead to the desired behavior. This is somewhat harder because the strength of
a goal must be set in relation to the other goals of the agent – what maters is their
relative magnitude when compared to each other. Altering the goal strengths is the
default way to alter deep personality characteristics, the very motivations and values of
a character. This was the solution needed to implement both the Samurai and the
Coward.

Finally for some cases we may have to add a whole new module. Adding a module
to a behavior network is a straightforward operation – the network itself takes care of its

55

integration, with the automatic creation of predecessor and conflict links. It may be a
time consuming option due to subtleties that may arise in the actual implementation of
the module, if one does not exists yet. If we have a library of behavior modules, then
this option is also easy.

Summing all up, we could make the reverse question: how do we build agents with
different personalities from scratch? First we define the agent’s goals and their relative
importance. Next we assemble a set of modules capable of achieving these goals. Next
we tune the global parameters to achieve the subtleties of the personality. Having one
working agent, making others with radically different personalities is simple.

5.3 Comparison with Other Approaches to Personality Design

The design of agents with personality has a long tradition. Sophisticated models,
with a focus on agent personality and interaction, have been developed over the last
decade and the present. Usually they address the question “What is the best way to
design an agent with personality and emotional traits capable of carrying out
sophisticated interactions with humans and other agents?” They have shown promising
results in the domains where applied, such as embodied conversational characters
(CASSELL, 2000) and interactive drama (RAYES-ROTH, 1996).

Our work answers a different question: “Given that I have to design several complex
agents capable of having good performance (or scores) in a real-time continuous and
complex game environment in a short time span, how may I make them with different
personalities?” This precludes solutions that require long processing or very complex
design and favors solutions that produce a fast acceptable result. Sophisticated
interaction with humans are not a concern as the interactions are quite simple and do not
involve mood detection, gesture recognition or the exchange of roles.

The only previous application of behavior networks to character design that we are
aware of is (RHODES, 1996). In this work, a behavior network model called PHISH-
Nets was used to design the Big Bad Wolf and the Three Little Pigs of the famous kid’s
tale in a simple 3D environment. There was no pressure for the actions to be carried in
real time. Most experiments investigated how the agent handled action failures and its
capability to improvise. Despite its interesting results for character modeling we could
not use this model to answer our question, unless it was drastically modified, as for
complex real-time games we need to select several actions concurrently and deal with
continuous quantities.

Isla and Blumberg’s work on synthetic characters, particularly the architecture
described in (ISLA et al, 2001), seems potentially fit to address the problem we pointed.
It integrates learning capabilities and allows deeper emotional modeling, being more
sophisticated and somewhat more complicate.

Other architectures have been proposed to the modern game environment domain.
Of immediate interest is an implementation (HAWES, 2002) of the Cog-Aff
architecture (SCHEUTZ and SLOMAN, 2002) that used an anytime planner
(ZILBERSTEIN, 1996), A-UMCP. It was deployed in the Unreal Tournament domain,
though for the game mode Capture the Flag. Although the Cog-Aff architecture
explicitly takes into account agent personality into its design, it was not mentioned in
(HAWES, 2002).

56

Finally we may cite the applications of the Soar (NEWELL, 1990) architecture to
computer games (MAGERKO et al, 2004). Soar stands in a different stratum: It is a
sophisticated cognitive architecture aimed at human-level intelligence, with a
considerable learning curve. Usually the foci of these works revolved around cognitive
plausibility and depth of the agent models (LAIRD, 2000-b). Soar seems a good choice
when one’s focus is fidelity and depth, but overkill for creating agents with simple
personas.

5.4 Other architectures for computer game agents

In this section we present a brief overview of other architectures for game agents.
Comparisons of architectures and the review of the whole pool of techniques employed
in the development of game agents are outside the scope of our work.

For review of techniques we recommend (VAN WAVEREN, 2001) and (WOOD,
2004). The first illustrates in detail the building of a robot for a scenario similar to our
own, using a combination of traditional game AI techniques. The second investigates
the effects of several different technologies in the playability and perceived intelligence
of games, using a Space Invaders clone as test-bed.

So, let us get back to the overview of game agent architectures.

The Excalibur architecture (NAREYEK, 2001) is proposed as a generic architecture
for autonomous agents in complex game environments. Its distinctive feature is its
ability to incorporate resources in its planning process in a sophisticated manner. This
makes it interesting for most modern computer games, as hit points, ammunition, armor
and other game features are as important to consider in planning as plan length.

Excalibur defines its planning task as a constraint-satisfaction problem and uses
local search to guide the solution of the problem. The architecture provides a
straightforward way to interleave sensing, acting and planning. Though suit to the action
game domain, we know of no application of Excalibur to such a computer game genre.

FEAR stands for Flexible Embodied Animat aRchitecture (CHAMPANDARD,
2005). It is a framework for building learning reactive agents for games, with direct
support for the game Quake II. This game is similar to Unreal Tournament – you are a
warrior who must kill your enemies with several weapons. Agents in this framework are
based in the Animat model (WILSON, 1991).

 Champandard (2003) presents two agents built using this framework: An agent
controlled by a subsumption architecture and another one that learned how to behave
via reinforcement learning. Unfortunately, no account of the performance of the agents
was found. As in our agent, most behaviors were built around finite-state machines.
However the behaviors implemented were much more sophisticated and elaborate than
the ones we used in our experiments.

 We see that FEAR is better seen as a framework capable of supporting different
architectures. One could use an extended behavior network to control the basic
behaviors that come with the framework. The trickiest part of such an endeavor would
be adapting the sensors (or creating additional sensors) to output proposition values to
feed the behavior network.

Let us revisit Soar (NEWELL, 1990). Soar is a cognitive architecture based on
production systems. All its procedural knowledge is encoded as goals and its learning

57

mechanism is chunking. It was applied to Quake II, where an agent built a model of its
opponent and anticipated his opponent’s actions based on this model (LAIRD, 2002-c).
The authors report that the agent had a good overall performance, beating novice
players and being challenging to the average human. However no comparison with
other agents was presented.

Hundreds of rules were needed to bring about the Soar agent for Quake II. The
following seems the general procedure to build a Soar game agent: Define the interface
with the game, define new goals and operators for the Soar system and design hundreds
of production rules. The interesting feature of Soar is that a major part of these
production rules are domain-independent, making reuse of the knowledge base possible.
Soar, though far heavier than most behavior-based systems, including extended
behavior networks, is able to deal with 6-10 agents in Quake II (VAN LENT, 1999).
Thus, Soar is an interesting option to build sophisticated agents for computer games.

Van Waveren (2001) describes the implementation of a Quake III Arena robot.
Quake III Arena is yet another action game in the vein of Unreal Tournament. The robot
used fuzzy sensors for some tasks and a network that resembled a hierarchical finite-
state machine as its central decision making mechanism. This work shows how to apply
and integrate a plethora of techniques to solve common problem faced by an action
game agent.

5.5 Extensions

This section discusses some interesting extensions to the agents and behavior
networks discussed in this work. The first subsection presents extensions to the network
of chapter 3 to allow an agent to play in the game modes Capture-the-Flag and
Domination. The second subsection discusses interesting uses of learning in extended
behavior networks. In the third subsection we discuss extensions to allow deeper
personality modeling.

5.5.1 Other Game Modes

There are two other game modes in Unreal Tournament: Capture-the-Flag and
Domination.

In the capture-the-flag game, a team of agents need to take the flag of an opponent
team and bring it to its base. While doing so they must prevent the enemies from getting
their flag and carrying it to their home base.

 For this game mode we need to coordinate our agents and make them able to
communicate for a good strategy. As agent coordination and multi-agent strategy is
beyond the scope of our work we point only the modifications necessary to the behavior
network itself and its related sensors. However with just these modifications we would
be not surprised if our agents performed decently.

We would need to add goals TeamHasEnemyFlag, TeamHasOwnFlag,
EnemyFlagInHomeBase and OwnFlagInHomeBase. TeamHasEnemyFlag would have
as context its negation. The same would apply to EnemyFlagInHomeBase.

The new modules would be GoToReachableEnemyFlag, GoToEnemyFlagInSight
and CarryFlagToHomeBase.

58

Sensors for detecting an enemy flag (SensorEnemyFlagInSight,

SensorEnemyFlagReachable), for knowing if our team is with the enemy flag
(SensorTeamEnemyFlag) and if it holds its own flag (SensorTeamOwnFlag) would also
be needed, as well as a sensor to know if the flag is in the base(SensorFlagInBase).

In domination games a team of agents must reach and remain at certain map
locations for a certain time, that is, the whole group must secure a set of locations for a
given duration.

The added goal would be BeInDominationPoint, the goal of reaching and staying at
a domination point.

The new module would be GoToFreeDominationPoint, the module of going to a
non-occupied domination point. Surely, we could break it in three modules to better
explore game information, just as we did with the medical kit modules in chapter 3. The
precondition of the module would be FreeDominationPointInSight, a domination point
not occupied by a robot of the agent’s team inside the field of view.

To detect if a domination point was occupied, we disregard enemies in it – this leads
to our agent killing the enemy in the point and just seeking another point if a friendly
bot is in it. We would call this sensor SensorFreeDominationPoint.

To make domination work well the agents would have to communicate and
coordinate, even though we see that if the agents explored the entire level eventually
every agent would reach a domination point, making the team succeed.

5.5.2 Learning and Adaptation

Learning can be very useful for a behavior network agent. We could use learning to
improve the expected effects of our actions and to tune the global parameters of the
network.

The expected values of the propositions in the effects list of the modules, both in our
work and in Dorer’s (DORER, 1999-c), were guessed and intuitively tuned. As the
agent always has access to the value of these propositions before and after action
execution, we could use learning techniques to enable to agent to make better
predictions. We could use a reinforcement learning approach to correct our estimates or
use a neural network to make a prediction based on a given window of past percepts.
This would enable an agent to adapt to different opponents and environments. If the
agent’s aiming was bad or the opponent was very good on dodging bullets the
expectation of EnemyHurt after ShootEnemy would decrease with time, probably
favoring the selection of FinalizeWithHammer. A network augmented with such
learning capabilities would probably have better action selection.

The global parameters, in (MAES, 1989), (TYRRELL, 1993), (RHODES, 1996),
(GOETZ, 1997), (DORER, 1999-c) and (PINTO, 2005-a) were set by experimentation.
Dorer(1999-b) set the parameters using a brute force approach. He found the best value
for a parameter while maintaining the others fixed. As the parameters are dependent
upon one another, he repeated this procedure for each one in a round-robin fashion until
the improvement in the overall score was very low.

This setting of parameters seems amenable to a treatment with genetic algorithms,
specially if we have only performance in mind. We could use the total score of the
agent, as computed in the experiments of the previous chapter, as the fitness function.

59

Darran Singleton (2002) used a genetic algorithm to set the global parameters of a
variation if Maes (1989) behavior network. However, the modifications to the original
behavior network model were so radical that the resulting network ended up being a
quite different model. In Singleton’s network, instead of having only the global
parameters described in chapter 2, each behavior had its own threshold and each link
had its own activation influence constant. The genetic algorithm found values for all
these parameters. In this work, Singleton shows that the algorithm converged. As
generations went on, the performance of the agent got better, in an environment similar
to Tyrrell’s(1993).

5.5.3 Deeper personality

One interesting extension for an extended behavior network would be the adaptive
tuning of its global parameters so as to achieve different personality traits. Our focus
here would be not performance, but personality depth and fun.

 An easy approach is examining a given amount of the percept history of the agent
and increasing or decreasing each of the global parameters. For instance, if the agent
was safe we could increase its global threshold, so as to make it more deliberative. If the
agent was attacked constantly in the last 3 minutes we could decrease its inertia, making
it more reactive. This way, agent personality would vary smoothly at least among the
dimensions of reactivity and thoughtfulness.

 Another approach would be selecting between pre-defined sets of parameters,
where each set corresponded to a given personality or mood. This would be the case of
an agent changing from a Veteran to a Berserker. We could allow the values of the
goals to be changed too, so deep personality changes could happen – our agent could
change between all the five stereotypes discussed in the previous chapter. In fact, if
needed one could design a sophisticated emotional module and use it to tune the goal
strengths and global parameters. The “mood” and personality of the agent would be able
to change its very core values, at least for some time.

However, if such deep personality modeling is needed, one could as well seek other
models. Extended Behavior Networks are a competitive model for action selection and
performance in dynamic and complex environments. Their strength, regarding agent
personality, lies in their simplicity and flexibility. For agents with deep personalities,
other models are probably better, such as (CASSELL, 2000), (LAIRD, 1999-b) and
(RAYES-ROTH, 1996).

60

6 CONCLUSION

We have seen that the extended behavior network is a good action selection
mechanism for a complex game agent with complex goals and actions situated in a
dynamic and continuous environment.

We verified the properties of a good enough action selection mechanism in the 3D
action game domain, namely, persistence, exploitation of opportunities, preference for
actions that satisfy multiple goals, proper resolution of conflicts, performing of actions
in sequences to achieve goals and sensible selection of concurrent actions.

We have seen positive evidence that extended behavior networks are a good action
selection mechanism for continuous and dynamic environment and that good action
selection is crucial for agent performance. Our agent had better scores than an agent that
was identical to it, except for the decision mechanism. It also performed better than a
totally different agent. The smaller difference in scores in the first experiment
remembers us that for this game genre the sensory-motor apparatus is also very
important, so we have to be cautious when attributing credit to each component of an
agent.

From an agent design perspective the strong points of extended behavior networks
are its modularity and easy integration of new goals and behaviors. One may add a new
module and the network takes care of its interaction with other modules. This enables
the designer to develop one module at a time, and maintain a library of basic behaviors.

To build an agent one starts by setting goals that reflect the character values and
motivations. Next, one proceeds by assembling a set of modules capable of achieving
those goals (modules that have the goal conditions as effects). Finally, by adjusting the
goal strengths and global parameters one tunes the overall behavior of the agent.

 We have used an approach of empirical investigation and informed guessing of the
parameters to achieve good agent performance. However we believe that a genetic
algorithm could be applied at this phase.

When our focus is agent personality we may tune the network parameters,
particularly the inertia and the activation threshold, to achieve different personalities.
The limitation is that personalities built in this way are static and simple, allowing us to
achieve only stereotypes.

Our experiments in stereotype design show that for simple personas extended
behavior networks are a competitive solution, as they are simple and enable us to make
very different agents by the mere adjusting of constant values.

61

In section 5.5 we have seen ways to achieve deeper personality modeling, namely
the dynamic adjusting of global parameters and stereotype selection based on the recent
percept history.

We see that extended behavior networks are complementary to other common game
AI techniques, such as finite-state machines, reinforcement learning, neural networks
and genetic algorithms. The EBN is responsible to selecting what actions execute at
each instant, but the internals of each behavior are better grasped with other approaches.
Learning and optimization techniques may be applied to improve the basic behaviors
and the behavior network itself.

Our next steps are incorporating learning so as to enable the agent to adjust the
expected values of the action effects and investigating the use of genetic algorithms to
set the global parameters. Once we have these improvements done we intend to extend
the network to enable our agent to play in Domination and Capture-the-Flag modes.

62

REFERENCES

ABRAGAMES. Plano Diretor da Promoção da Indústria de Desenvolvimento de
Jogos Eletrônicos no Brasil. 2004.

AGRE, P.; CHAPMAN, D. Pengi: An implementation of a theory of activity. In:
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, 6., 1987.
Proceedings… [S.l]: Morgan Kaufmann, 1987. p.268-272.

BROOKS, R. A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation, New York, V. RA-2, nº1, 1986.

CASSELL, J. et al. Human Conversation as a System Framework: Designing Embodied
Conversational Agents. In: CASSELL, J. et al. (Ed.), Embodied Conversational
Agents, Cambridge, MA: MIT Press, 2000. p. 29-63.

CHAMPANDARD, A. AI Game Development. [S.l]: New Riders Publishing, 2003.

DORER, K. Extended Behavior Networks for the Magma Freiburg Team. In:
RoboCup-99 Team Descriptions for the Simulation League. [S.l]: Linkoping
University Press, 1999-a. p. 79-83.

DORER, K. Behavior Networks for Continuous Domains Using Situation-Dependent
Motivations. In: INTERNATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, 16., 1999. Proceedings… [S.l]: Morgan Kaufmann, 1999-b.

DORER, K. Motivation, HandlungsKontrolle und Zielmanagement in autonomen
Agenten. 1999-c. PHD Thesis. Albert-Ludwigs, Universität Freiburg.

DORER, K. Concurrent Behavior Selection in Extended Behavior Networks. In:
ROBOT WORLD CUP SOCCER GAMES AND CONFERENCE, 4., 2000.
Proceedings… Melbourne: 2000-a.

DORER, K. The magmaFreiburg Soccer Team. In: RoboCup, 3., 1999. RoboCup-99:
Robot Soccer World Cup III, Berlin: Springer, 2000.

DORER, K. Extended Behavior Networks for Behavior Selection in Dynamic and
Continuous Domains. In: ECAI, 2004. Proceedings… Valencia: 2004.

ESA – Entertainment Software Association. “Computer and Video Game Software
Sales Reach Record $7.3 Billion in 2004”. Available at
<http://www.theesa.com/archives/2005/02/computer_and_vi.php>. Visited on June 16,
2005.

63

FRANKLIN, S. Artificial Minds. Cambridge, Massachusetts: MIT Press, 1995.

GAMEBOTS. Available at <http://www.planetunreal.com/gamebots/docapi.html>
Visited on June 30, 2005.

GOETZ, P. Attractors in Recurrent Behavior Networks. 1997. Phd Thesis. Buffalo,
University of New York.

HAWES, Nick. An Anytime Planning Agent For Computer Game Worlds. In:
INTERNATIONAL CONFERENCE ON COMPUTERS AND GAMES, 3., 2002.
Proceedings… Edmonton: CG'02, 2002. p. 1-14.

ISLA, D., BURKE, R., BLUMBERG, B. et.al. A Layered Brain Architecture for
Synthetic Characters. In: INTERNATIONAL JOINT CONFERENCE ON
ARTIFICIAL INTELLIGENCE, 2001. Proceedings… Seattle: IJCAI, 2001. p.1051-
1058.

JAVABOTS. Available at <http://utbot.sourceforge.net/> Visited on Mar 28, 2005.

KAMINKA, G. et al. “GameBots: a flexible test bed for multiagent team research”.
Communications of the ACM. V. 45 , nº 1, 2002. p.43-45.

KLINE, C.; BLUMBERG, B. The Art and Science of Synthetic Character Design. In:
SYMPOSIUM ON AI AND CREATIVITY IN ENTERTAINMENT AND VISUAL
ART, 1999. Proceedings… Edinburgh: 1999.

LAIRD, J.; LENT, M. von. Human-level AI’s Killer Application: Interactive Computer
Games. In: AAAI FALL SYMPOSIUM, 2000. Proceedings… North Falmouth: AAAI
Press, 2000-a.

LAIRD, J. et al. Creating Human-like Synthetic Characters with Multiple Skill Levels:
A Case Study using the Soar Quakebot. In: AAAI FALL SYMPOSIUM, 2000.
Proceedings… North Falmouth: AAAI Press, 2000-b.

LAIRD, J. It Knows What You're Going To Do: Adding Anticipation to a Quakebot. In:
INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS, 5., 2000.
Proceedings… [S.l], 2000-c.

MAES, P. How to do The Right Thing. Connection Science Journal, [S.l], V. 1, nº 3,
1989.

MAES, P. A Bottom-up Mechanism for Behavior Selection in an Artificial Creature. In:
INTERNATIONAL CONFERENCE ON SIMULATION OF ADAPTIVE
BEHAVIOR, 1., 1991. Proceedings… [S.l.]: Mit Press/Bradford Books, 1991.

MAES, P. Modeling Adaptive Autonomous Agents. In: Artificial Life I. 1994.

MAGERKO, B., LAIRD, J. et al, AI Characters and Directors for Interactive Computer
Games. In: ARTIFICIAL INTELLIGENCE CONFERENCE, 2004. Proceedings… San
Jose: AAAI Press, 2004.

MINSKY, M. The Society of the Mind. New York: A. Touchstone Book, 1986.

MÜLLER, K. Roboterfußball: Multiagentensystem CS Freiburg. 2001. Diplomarbeit.
Univ. Freiburg, Germany.

NAREYEK, A. Beyond the Plan-Length Criterion. In: NAREYEK, A. (Ed.). Local
Search for Planning and Scheduling. Berlin: Springer, 2001. p. 55-78. (Lecture notes
in Artificial Intelligence, 2148).

64

NAREYEK, A. Artificial Intelligence in Computer Games: State of the Art and Future
Directions. ACM Queue, [S.l], V. 1, N° 10, 2004.

NEBEL, B. and Y. BABOVICH. Goal-Converging Behavior Networks and Self-
Solving Planning Domains, or: How to Become a Successful Soccer Player. In:
INTERNATIONAL JOINT CONFERENCE ARTIFICIAL INTELLIGENT, 3., 2003.
Proceedings… Acapulco: 2003.

NEWELL, A. Unified Theories of Cognition. Cambridge, MA: Harvard University
Press, 1990.

NILSSON, N. J. "STRIPS: A New Approach to the application of Theorem Proving to
Problem Solving". Artificial Intelligence, [S. l], V. 5, n° 2, 1971.

PINTO, H.; ALVARES, L.O. An Extended Behavior Network for a Game Agent. In:
ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL, 5., 2005. Anais...
Brazil: 2005-a.

PINTO, H.; ALVARES, L.O. Extended Behavior Networks and Agent Personality:
Investigating the Design of character Stereotypes in the Game UnrealTournament.In:
INTERNATIONAL WORKING CONFERENCE ON INTELLIGENT VIRTUAL
AGENTS, 15., 2005. Proceedings… Greece: 2005-b.

PINTO, H. S. C. Redes de Comportamentos. 2004. 47f. Trabalho Individual
(Mestrado em Ciência da Computação) – Instituto de Informática, UFRGS, Porto
Alegre.

RAYES-ROTH, B. Improvisational puppets, actors, and avatars. In: COMPUTER
GAMES CONFERENCE, 1996. Proceedings… [S.l.]: 1996.

RHODES, B. PHISH-Nets: Planning Heuristically in Situated Hybrid Networks .
1996. MSc Thesis. USA, MIT.

RHODES, B. Pronomes in Behavior Nets. [S.l]: MIT Media Lab,1995. (Technical
Report # 95-01).

SCHEUTZ, M.; SLOMAN, A. A Framework for Comparing Agent Architectures. In:
UKCI, 2002. Proceedings… Birmingham, 2002.

SINGLETON, D. An Evolvable Approach to the Maes Action Selection Mechanism.
2000. M Sc Thesis. UK, University of Sussex.

TYRRELL, T. An Evaluation of Maes Bottom-up mechanism for behavior selection.
Journal of Adaptive Behavior, [S.l], V. 2, n° 4, 1994.

TYRRELL, T. Computational Mechanisms for Action Selection. 1993. PhD Thesis.
UK, University of Edinburgh.

UNREALTOURNAMENT. Availabel at <http://www.unrealtournament.com> Visited
on June 30, 2005.

VAN LENT, M.; LAIRD, J. Developing an Artificial Intelligence Engine. In: GAME

65

DEVELOPERS CONFERENCE, 1999. Proceedings… [S.l]: 1999. p. 577-588.

YISKIS, E. A Subsumption Architecture for Character-Based Games. In: RABIN,
S. (Ed.). AI Game Programming Wisdom 2. Hingham: Charles River Media, 2003.

WILSON, S. The Animat Path to AI. In: INTERNATIONAL CONFERENCE ON
SIMULATION OF ADAPTIVE BEHAVIOR, 1991. From animals to animats:
proceedings. Cambridge: MIT, 1991. p. 15-21.

WOOD, O. E. Autonomous Characters in Virtual Environments: The technologies
involved in artificial life and their affects of perceived intelligence and playability of
computer games. 2004. M Sc. Thesis. Durham, University of Durham.

ZILBERSTEIN, S. Using Anytime Algorithms in Intelligent Systems. AI Magazine,
[S.l], V. 17, n° 3, 1996.

66

APPENDIX A GAMEBOTS MESSAGES

The text and messages below are reproduced and adapted from (GAMEBOTS, 2005)

 Messages from the server are always of the form "MSGTYPE {arg1 arg1val} {arg2
arg2val}..." (Real message of course won't have the quotes on either end. You can write
a parser based on the following assumptions (it won't choke on anything you are sent,
but may require additional parsing of some messages):

• All characters up to, but not including the first space are the message type. (All
message types are currently 3 characters long, but best not to live by that
assumption).

• Everything else in the message will be in the form of attr/val pairs enclosed by
"{}"

• The attribute name in a attr/val pair consists of every character up to, but not
including, the first space.

• The value includes all characters after the space terminating the attr up to the "}"
and may include spaces.

Thus a correct parsing of "MSG {Id Player-1} {String Attack the base!} {Location
12,23,34}" would be:
 Message type = "MSG"
 Attr1Type = "Id"
 Attr1Value = "Player-1"
 Attr2Type = "String"
 Attr2Value = "Attack the base!"
 Attr3Type = "Location"
 Attr3Value = "12,23,34"

 Commands that your client sends to the server should follow the same basic format. A
message type, followed by a space, followed by attr/val pairs enclosed in "{}". Each attr
in a attr/val pair should be space terminated.

Data types notes:

 Most measurements of rotation and location sent to your bot will be in absolute terms
using UT's measurements. For this reason, it is helpful to know a little about some
Unreal Tournament data types and measurements before you read the Network API.
 Location is described in UT units. They have no direct scale correspondence to the real

67

world, but as an idea, a character in the game has a collision cylinder (a cylinder tightly
bounding the graphical model that defines how close something has to be before it
collides with the character) 17 units in radius and 39 units tall. Location is always
passed in "x,y,z" order and format (values separated by commas.
 Rotation is also defined by three ordered values, "Pitch,Yaw,Roll". Yaw is side to side,
pitch up and down, and Roll the equivalent of doing a cartwheel. You probably won't
need Roll, so don't sweat it. A full rotation using UT's measurements is 65535. To
convert the values you are sent to radians, divide by 65535 and multiply by 2 * pi.

Sensory Messages:

 The sensory messages sent to your client from the game consist of two types,
synchronous and asynchronous. In the lists below, each message type is listed, along
with current argument types.
 Synchronous messages will come to your client in a batch at a configurable interval.
They include things like a visual update of what the bot sees and a status report of the
bot itself. At the start of a batch, the server transmits a "BEG" message marked with a
timestamp. All messages received until an "END" message with the same timestamp are
part of the synchronous batch. They are all sent at the same instant of gametime and
thus refer to a single discrete state of the game.
 Asynchronous messages on the other hand come as events happen in the game.
(Although they will never appear between a "BEG" and its associated "END"). They
represent things that may happen at any point in the game at random, less frequent
intervals such as taking damage, a message broadcast by another player, or running into
a wall. You can always be sure that event triggering an asynchronous message occurred
in game time between the synchronous batches before and after it, but there is no
guarantee that an asynchronous message refers to the same discrete state of the game
that any other message does.

Synchronous Messages:

• BEG - begin of a synchronous batch

o Time - timestamp from the game

• SLF - information about your bot's state.

o Id - a unique id, assigned by the game

o Rotation - which direction the player is facing in absolute terms

o Location - an absolute location

o Velocity - absolute velocity in UT units

o Name - players human readable name

o Team - what team the player is on. 255 is no team. 0-3 are red, blue,
green, gold in that order

o Health - how much health the bot has left. Starts at 100, ranges from 0 to
200.

68

o Weapon - weapon the player is holding. Weapon strings to look for
include: "ImpactHammer", "Enforcer", "Translocator", "GESBioRifle",
"ShockRifle", "PulseGun", "Minigun2", "UT_FlakCannon",
"UT_Eightball", "WarheadLauncher"

o CurrentAmmo - How much ammo the bot has left for current weapon

o Armor - how much armor the bot is wearing. Starts at 0, can range up to
200.

• GAM - information about the game

o PlayerScores - player score will have a list of values - one for each player
in the game. Each value will be a list with two values. The first is the id
of the player and the second that player's score. (e.g. "GAM
{PlayerScore {player1 2} {player2 5}...")

o TeamScores - like PlayerScore, but for teams. Team is identified by the
team index (same number used to describe team for PLR and SLF
messages. Not sent in normal deathmatch.

o DomPoints - like the previous two, this is a multivalued message. This
will have one item for each domination point in a Domination game.
First value will be Id of the DOM point, the second will be the index of
the team that owns the domination point.

o HaveFlag - sent in CTF games if the bot is carrying an enemy's flag.
Value is the team number of whose flag you have.

o EnemyHasFlag - sent in CTF games if the bot's team's flag has been
stolen. Value is meaningless.

• PLR - Another character (bot or human) in the game. Only reports those players
that are visible. (within field of view and not occluded).

o Id - a unique id for this player, assigned by the game

o Rotation - which direction the player is facing in absolute terms

o Location - an absolute location for the player

o Velocity - absolute velocity in UT units

o Team - what team the player is on.

o Reachable - true if the bot can run to this other player directly, false
otherwise. Possible reasons for false: pit or obstacle between the two
characters

o Weapon - what class of weapon the character is holding.

• NAV - a path node in the game. Pathnodes are invisible (at least to humans)
objects placed around a level to define paths for the built in bots to follow. They

69

provide a totally connecteed graph that spans almost all of the level. Note the
Mutator called "Path Markers" that, when added to a game makes the path nodes
visible to human players as a debugging aid.

o Id - a unique id for this pathnode, assigned by the game

o Location - an absolute location

o Reachable - true if the bot can run here directly, false otherwise

• MOV - a "mover". These can be doors, elevators, or any other chunk of
architecture that can move. They generally need to be either run into, or
activated by shooting or pressing a button. We are working on ways to provide
bots with more of the information they need to deal with movers appropriately.

o Id - a unique id for this mover, assigned by the game

o Location - an absolute location

o Reachable - true if the bot can run here mover, false otherwise

o DamageTrig - true if the mover needs to be shot to activated.

o Class - Class of the mover.

• DOM - identical attributes to NAV above except for Controller (see below). A
domination point in a domination game.

o Controller - which team controls this point

• FLG - a flag. (Only for CTF games).

o Id - a unique id for this flag, assigned by the game

o Location - an absolute location of the flag

o Holder - the identity of player/bot holding the flag (only sent if flag is
being carried).

o Team - the team whose flag this is

o Reachable - true if the bot can run here directly, false otherwise

o State - whether the flag is "Held" "Droped" or "Home"

• INV - an object on the ground that can be picked up

o Id - a unique id for this inventory item, assigned by the game.

o Location - an absolute location

o Reachable - true if the bot can run here directly, false otherwise

o Class - a string representing type of object

70

• END - end of a synchronous batch

o Time - timestamp from the game

Asynchronous Messages:

• NFO - helpful info about the game provided right after connection made to
server. Your client should wait for this message BEFORE trying to send "init"
back to the server.

o Gametype - What you are playing (BotDeathMatchPlus, BotTeamGame,
BotDomination)

o Level - name of map in play

o TimeLimit - maximum time game will last (if tied at end, goes into
sudden death overtime)

o FragLimit - number of kills needed to win game (BotDeathMatchPlus
only)

o GoalTeamScore - number of points a team needs to win game
(BotTeamGame, BotDomination)

o MaxTeams - max number of teams. valid team range will be 0 to
(MaxTeams - 1) (BotTeamGame, BotDomination)

o MaxTeamSize - Max number of players per side (BotTeamGame,
BotDomination)

• AIN - added inventory. Bot got new inventory item

o Id - a unique id for this inventory item, assigned by the game. Unique,
but based on a string describing the item type.

o Class - a string representing type of object

• VMS - recieved message from global chat channel

o String - a human readable message sent by another player in the game on
the global channel

• VMT - recieved message from global chat channel

o String - a human readable message sent by a team mate in the game on
the private team channel

• VMG - recieved tokenized message from another player. If you want to use
these, enter the game as a player and use the voice menu (by default press the
key "V" while playing). Send the messages you want to use to use and have a
client log the incoming messages to figure out Types and Ids.

o Sender - unique id of player who sent message

71

o Type - type of message (e.g. Command, Taunt, etc...)

o Id - message id. specifies which message is being sent

• ZCF - foot changed zones. Feet of bot changed from one artificial area in the
game to another (can tell you when entered water or lava or some such)

o Id - unique id of zone entered

• ZCH - head changed zones. Its ok if feet are under water, but having your head
under can mean trouble...

o Id - unique id of zone entered

• ZCB - bot changed zones. Entire bot now in new zone

o Id - unique id of zone entered

• CWP - bot changed weapons. Possibly as a result of a command sent by you,
maybe just because it ran out of ammo in its old gun. (bots autoswitch when
empty, just like human players)

o Id - unique id of new weapon, based on the weapon's name

o Class - a string representing type of weapon

• WAL - collided with a wall. Note it is common to get a bunch of these when you
try to run through a wall (or are pushed into one by gunfire or something).

o Id - unique id of wall hit

o Normal - normal of the angle bot colided at.

o Location - absolute location of bot at time of impact

• FAL - bot just hit a ledge. If walking, will not fall. If running, you are already
falling by the time you get this.

o Fell - True if you fell. False if you stopped at edge.

o Location - absolute location of bot

• BMP - bumped another actor

o Id - unique id of actor (actors include other players and other physical
objects that can block your path.)

o Location - location of thing you rammed

• HRP - hear pickup. You head someone pick up an object from the ground

o Player - unique ID of player how picked up the object

• HRN - hear noise. Maybe another player walking or shooting, maybe a bullet

72

hitting the floor, or just a nearby lift going up or down.

o Source - unique ID of actor making the noise

• SEE - see player. A message generated by the engine periodically (on the order
of 1 or 2 times a second) when another player is visible by you. Possibly usefull
if you have the delay between synchronous updates very long. In that case, this
can prevent someone from walking by unseen. May be depricated.

o Id - a unique id for this player, assigned by the game

o Rotation - which direction the player is facing in absolute terms

o Location - an absolute location for the player

o Velocity - absolute velocity in UT units

o Team - what team the player is on.

o Reachable - true if the bot can run to this other player directly, false
otherwise. Possible reasons for false: pit or obstacle between the two
characters

o Weapon - what weapon the character is holding.

• PRJ - incoming projectile likely to hit you. May give you a chance to dodge.

o Time - estimated time till impact

o Direction - rotation value that the projectile is coming from. Best chance
to dodge is to probably head off at a rotation normal to this one (add ~
16000 to the yaw value)

• KIL - some other player died

o Id - unique ID of player

o Killer - unique ID of player that killed them if any (may have walked off
a ledge)

o DamageType - a string describing what kind of damage killed them

• DIE - this bot died

o Killer - unique ID of player that killed them if any (may have walked off
a ledge)

o DamageType - a string describing what kind of damage killed them

• DAM - took damage

o Damage - amount of damage taken

o DamageType - a string describing what kind of damage

73

• HIT - hurt another player. Hit them with a shot.

o Id - unique ID of player hit

o Damage - amount of damage done

o DamageType - a string describing what kind of damage

• PTH - a series of pathnodes in response to a getpath call from client

o Id - an id matching the one sent by client. Allows bot to match answer
with right querry.

o Multiple pathnodes: A variable number of attr items will be returned, one
for each pathnode that needs to be taken. They will be listed in the order
in which they should be travled to. Each one is of form "{0 id 3,4,5}",
with the number of the node (starting with 0) followed by a space, then a
unique id for the node (will never have a space) then a location of that
node.

• RCH - a boolean result of a checkreach call.

o Id - an id matching the one sent by client. Allows bot to match answer
with right querry.

o Reachable - true if the bot can run here directly, false otherwise

o From - exact location of bot at time of check

• FIN - no attributes. Sent when game is over.

Commands:

 Your bot takes action in the world by transmitting commands to the server. They are
formated like the server messages - a command name, followed by zero or more
arguments with values, each surrounded by "{}" and seperated by spaces. For example
the message to initialize your bot with a name of MYBOT on team 1 would look like
this (sans quotes):
"init {Team 1} {Name MYBOT}"
 Parsing at the server is case insenstive. It should not matter what case you send
commands, argument names, and their values in. Arguments may also be suplied in any
order. The above example could have passed the name before the team and the
command would have been the same. There are however some commands that have
multiple options for how to specify a desired value. A good example is the runto
command, which can take the id of an object or player, or a location in the world. You
can send either or both, but the server will only use the first one it parses (order for each
command type is listed below).
 Note that most commands have persistant effects. Movement and rotation, once
started, will continue until you reach your destination. Start shooting and you will keep
shooting. There is NO advantage to sending commands repeatedly. It is quite likely that
some kind of filter will be put in to discourage spamming the server.

74

• INIT - message you send to spawn a bot in the game world. You must send this
message before you have a character to play in the game. DO NOT SEND
UNTIL YOU RECIEVE NFO MESSAGE FROM SERVER.

o Name - Desired name. If in use already or argument not provided, one
will be provided for you.

o Team - Prefered team. If illegal or no team provided, one will be
provided for you. Normally a team game has team 0 and team 1. In
BotDeathMatchPlus, team is meaningless, but this will still set you skin
color to match what you select.

• SETWALK - set whether you are walking or running (default is run). Note that
walking only applies to RUNTO command. STRAFETO always moves at run
speed.

o Walk - Send "True" to go into walk mode - you move at about 1/3
normal speed, make less noise, and won;t fall off ledges. Send anything
else to run.

• STOP - stop all movement/rotation

• JUMP - causes bot to jump. Not very useful yet, working on this one.

• RUNTO - turn towards and move directly to your destination. May specify
destination via either Target or Location argument, will be parsed in that order.
(i.e. if Target provided, Location will be ignored). If you select an impossible
place to head to, you will start off directly towards it until you hit a wall, fall off
a cliff, or otherwise discover the offending obstacle.

o Target - the unique id of a player/object/nav point/whatever. The object
must be visible to you when the command is recieved or your bot will do
nothing. Note that something that was just visible may not be when the
command is recieved, therefore it is recomended you supply a Location
instead of a Target.

o Location - Location you want to go to. May be provided as space or
comma delimeted. ("40 50 45" or "40,50,45"). May also be provided as
three seperate arguement value pairs, one each for X Y and Z ("{X 40}
{Y 50} {Z 45}").

• STRAFE - like RUNTO, but you move towards a destination while facing
another point/object.

o Location - Location you want to go to. May be provided as space or
comma delimeted. ("40 50 45" or "40,50,45"). May also be provided as
three seperate arguement value pairs, one each for X Y and Z ("{X 40}
{Y 50} {Z 45}").

o Target - the unique id of a player/object/nav point/whatever that you
want to face while moving. Must be visible to you currently.

75

o Focus - a location value of where to face while moving. Follows same
rules as location for what to send. Used only if no Target.

• TURNTO - specify a point, rotation value or object to turn towards.

o Target - the unique id of a player/object/nav point/whatever that you
want to face. Must be visible.

o Rotation - Rotation you want to spin to. May be provided as space or
comma delimeted. ("0 50000 0" or "0,50000,0") and should be in
absolute terms and in UT units (2pi = 65535 units). May also be
provided as three seperate arguement value pairs, one each for Pitch Yaw
and Roll ("{Pitch 0} {Yaw 50000} {Roll 0}"). Used only if no target
provided.

o Location - Location you want to face. Normal rules for location. Only
used if no Target or Rotation.

• ROTATE - turn a specified amount.

o Amount - amount in UT units to rotate. May be negative to rotate counter
clockwise.

o Axis - if provided as Vertical, rotation will be done to Pitch. Any other
value, or not provided, and rotation will be to Yaw.

• SHOOT - start firing your weapon

o Location - Location you want to shoot at. Normal rules for a location
specification.

o Target - the unique id of your target. If you specify a target, and it is
visible to you, the server will provide aim correction and target leading
for you. If not you just shoot at the location specified. Note you still must
provide location.

o Alt - If you send True to this you will alt fire instead of normal fire. For
normal fire you don't need to send this argument at all.

• CHANGEWEAPON - start firing your weapon

o Id - Unique Id of weapon to switch to. If you just send "Best" as Id, the
server will pick your best weapon that still has ammo for you. Obtain
Unique Id's from AIN events.

• STOPSHOOT - stop firing your weapon

• CHECKREACH - check to see if you can move directly to a destination without
hitting an obstruction, falling in a pit, etc...

o Target - the unique id of a player/object/nav point/whatever. Must be
visible.

76

o Location - Location you want to go to. Normal location rules. Only used
if no Target is sent.

o Id - message id made up by you and echoed in response so you can
match up response with query

o From - exact location of bot at time of check

• GETPATH - get a path to a specified location. An ordered list of path nodes will
be returned to you.

o Location - Location you want to go to. Normal location rules.

o Id - message id made up by you and echoed in response so you can
match up response with query

• MESSAGE - send a message to the world or just your team. This will likely
have some restrictions placed on it soon.

o String - string to send.

o Global - If True it is sent to everyone. Otherwise (or if not specified), just
your team.

• PING - if for some reason 10 updates a second or whatever your default is isn't
frequent enough connection detection for your tastes, use PING. Server will
return "PONG".

77

APPENDIX B CONTRIBUIÇÕES

No projeto de um agente de um jogo uma das preocupações centrais é como fazer a
seleção de ações de modo que o agente exiba um comportamento orientado aos
objetivos.

 Se o agente tiver muitos objetivos, alguns deles conflitantes, nossa tarefa se torna
mais complicada. Se, além de ter muitos objetivos, o agente tiver que considerar muitos
fatores ao mesmo tempo e estiver em um ambiente dinâmico, nós teremos um problema
difícil de ser tratado.

 Abordagens baseadas em busca se tornam impraticáveis devido ao tamanho do
espaço de busca e planejamento tradicional se torna muito mais difícil,dado que o
ambiente pode ter mudado quando nosso plano estiver concluído.

Redes de comportamentos (MAES, 1989) foram propostas como um mecanismo de
seleção de ações para selecionar ações boas o suficiente em ambientes dinâmicos e
complexos. Elas favorecem ações que contribuem para mais de um objetivo e ações que
façam parte de uma seqüência em execução. As redes de comportamentos são rápidas,
robustas e reativas.

As redes de comportamentos estendidas (DORER, 1999a) são uma extensão para
ambientes contínuos capaz de selecionar ações de maneira concorrente e especificar
objetivos dependentes de contexto. Foram aplicadas com sucesso na Robocup12. Nosso
trabalho foi a primeira aplicação deste modelo em jogos de computador (PINTO, 2005-
a).

PHISH-Nets (RHODES, 1996), um modelo de redes de comportamentos capaz de
selecionar apenas uma ação por vez, foi aplicado à modelagem de personagens, com
bons resultados. Apesar das redes de comportamentos estendidas serem aplicáveis a um
conjunto de domínios maior, nunca foram usadas para modelagem de personagens antes
de nosso trabalho (PINTO, 2005-b).

Unreal Tournament é um jogo de ação tridimensional. Neste jogo, no modo Death
Match, o agente é um guerreiro que deve eliminar os oponente em uma arena. O agente
interage com várias entidades em tempo real, aliados e inimigos, em diferentes cenários.
Existem várias armas e itens disponíveis. O repertório de ações é grande (pular, andar,

12 See (DORER, 1999) and (DORER, 2004). The Magma-Freiburg team, built using
extended behavior networks, was the vice-champion of Robocup-1999.

78

correr, virar, agachar, atirar, pegar item,etc) e o agente pode executar mais de uma ação
ao mesmo tempo, como atirar enquanto pula.O agente tem objetivos conflitantes - lutar
e manter sua integridade física, por exemplo.

Jogos de computador se tornaram uma aplicação importante, ultrapassando o
faturamento da indústria de cinema nos EUA por 2 anos consecutivos (ESA, 2005). Os
governos da Austrália, Coréia do Sul e Brasil têm programas especiais de apoio à
pesquisa e desenvolvimento de jogos (ABRAGAMES, 2004). O avanço da capacidade
das placas gráficas dos PCs e consoles liberou poder de processamento para os jogos,
que passaram a ter na inteligência artificial um de seus principais fatores competitivos
(NAREYEK, 2004).

Isso levou a um aumento do interesse na aplicação de técnicas avançadas de
inteligência artificial em jogos de computador. A pesquisa em IA pra jogos teve um
aumento súbito, como mostram (VAN WAVEREN, 2001), (RABIN, 2002),
(BUCKLAND, 2002), (RABIN, 2003), (CHAMPANDARD, 2004) e (WOOD, 2004).
Estes trabalhos buscaram não só desenvolver novas técnicas, mas também aplicar e
adaptar técnicas conhecidas ao domínio dos jogos.

Uma de nossas contribuições se insere neste último caso: aplicamos uma técnica de
sucesso no domínio de futebol de robôs ao domínio dos jogos.

Esta contribuição pode ser dividida em três partes:

1) Esboçamos uma metodologia de projeto de agentes baseada em redes de
comportamentos e sensores nebulosos (Cap. 3 deste trabalho).

2) Demonstramos a aplicabilidade e a adequação das redes de comportamentos
estendidas aos jogos de computador. Verificamos a qualidade da seleção de açõe através
da observação do agente ao longo de vários jogos e da análise dos registros das ações
selecioandas. Sua performance foi analisada medindo seu placar e o placar de outros
dois agentes. Um agente era totalmente diferente e baseado em máquinas de estado
finito. O outro tinha comportamentos e sensores idênticos, mas era plenamente reativo.
Ver (PINTO e ALVARES, 2005-a) e os capítulos 4 e 5 da dissertação para maiores
detalhes.

3) Delineamos uma metodologia do projeto de estereótipos e a ilustramos com cinco
casos (PINTO e ALVARES, 2005-b). Comparamos com outras abordagens e
delimitamos sua aplicabilidade. Concluímos que é no projeto de personalidades simples
para agentes complexos que as redes de comportamento se destacam.

As contribuições teóricas são mais modestas, mas importantes. Os resultados dos
experimentos para averiguação da aplicabilidade contribuem para validar as redes de
comportamento como um mecanismo de seleção de ações adequado para agentes
situados em ambientes complexos, contínuos e dinâmicos em geral.

Como contribuições secundárias cabe citar a comparação com outras abordagens
para projeto de personagens, o esboço de redes para permitir que o agente jogue em
outros modos de jogo e as sugestões para incorporação de aprendizado à rede de
comportamentos estendida.

