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Abstract.
We address the critical properties of the isotropic-nematic phase transition in stripe forming

systems. We focus on isotropic models in which a short range attractive interaction competes
with a long range repulsive interaction decaying as a power-law, paying particular attention to
the cases in which this interaction is of dipolar or Coulomb types. Using Langevin dynamics
simulations we show that these models belong to different universality classes. The numerical
algorithms developed for each case are presented and discussed in detail. The obtained results
are in agreement with recent theoretical predictions [1], according to which the orientational
transition belongs to the Kosterlitz-Thouless universality class for dipolar systems, while it is
of the second-order type for Coulomb systems.

1. Introduction

Competing interactions usually lead to heterogeneities in the local order parameter in the
form of completely disordered patterns as present, e.g. in spin glasses [2], or formation of patterns
or domains as observed in many systems like magnetic thin films [3], diblock copolymers [4], and
quasi two dimensional electronic quantum liquids [5]. The identification and characterisation of
ordered phases in these systems is not straightforward because of the spatially heterogeneous
nature of the order parameter (see Figure 1 for an experimental example). Broken translation
and rotation symmetry in space are usually associated with phase transitions. Early theoretical
descriptions of phase transitions in these systems exploited an analogy with liquid crystals,
systems of more or less rigid rod-like molecules which can order in a large variety of phases with
broken translation or rotation symmetry. Like in liquid crystals, where orientation of the axes
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of the molecules are described by a vector called “director”, in pattern forming systems like
ultrathin magnetic films a director can be associated to the direction of interfaces or domain
walls and are useful to identify orientational order of the patterns (see Figure 2).

Figure 1. Stripe domains of magnetization
in ultrathin magnetic films of 2.6 ± 0.6 AL
thick fcc Fe on Cu(100), as imaged by scanning
electron microscopy with polarisation analysis
(SEMPA). This image’s horizontal dimension
is � 24 μm. Inset: Fourier power spectrum.
Adapted from [6].

Figure 2. Schematic representation of a
striped pattern with local orientation of in-
terfaces characterised by the director vector.

In a pioneering work in the seventies S. A. Brazovskii showed that some antiferromagnets
with nearly isotropic competing interactions acting at different scales suffer an instability leading
to anisotropic low temperature phases with modulation of the local order parameter in the form
of charge or spin density waves [7]. The instability occurs at a characteristic non zero wave
vector k0 leading precisely to modulated structures in the charge density or magnetization.
This kind of instability was realised to be of much more general applicability and soon after
Brazovskii’s work J. Swift and P. C. Hohenberg proposed a similar mechanism to explain the
convective instability manifested by the appearance of rolls in the Rayleigh-Bénard convection
[8]. Motivated by the recent discovery of high temperature superconductivity, V. J. Emery and
S. A. Kivelson introduced in the early nineties a model with competition between a kinetic term
and the long-range Coulomb interaction between electrons which leads also to phase separation
in the charge density and the appearance of modulated order in the form of stripes[9]. In the
following years experiments on high Tc superconductors, doped Mott insulators and quantum
Hall systems established the presence of anisotropies in transport properties, and new states
of matter at ultra low temperatures, the so called “electronic liquid crystals”, were proposed
to explain the observations [10, 11, 12]. Since then, the presence of stripe, nematic or hexatic
order in the charge and/or spin degrees of freedom of quasi two dimensional strongly correlated
electronic systems has been firmly established as part of the phenomenology around high Tc

superconductivity, although its relevance to the appearance of superconducting properties is
still a matter of debate [13, 14].

Despite the large amount of experimental and theoretical work done on different systems
showing modulated order, still there are many properties of the phase diagrams and phase
transitions which are not known. In particular, the characterisation of the nature of different
phases and the critical properties have been shown to be subtle. Experiments able to probe
the critical properties of phase transitions in these systems have still to be designed and
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executed, while theoretical approaches suffer from some well known but severe limitations in
their predictability. First of all, the nearly two dimensional nature of the systems makes the
precise characterisation of their critical properties a subtle task. It is known that two dimensions
is near the lower critical dimension of many systems and the fluctuation effects are rather strong
[15], making predictions from naive mean field approximations or simulations of moderately
small system sizes unreliable. Furthermore, the very nature of the nematic phases, phases
with orientational but not translational order, leads to an order parameter which measures
anisotropies in nearest-neighbour correlation functions, i.e. the order parameter is a two-point
function in space, and then simple mean field theories are unable to capture the presence of a
nematic phase.

Another important issue that hinders the full description of phase diagrams is the fact that
the relevant scales can vary many orders of magnitude by tuning an external parameter and that
is true even far from critical points. In general the modulation length of stripes or orientationally
ordered states depends on external parameters like temperature and magnetic fields, but mainly
on the relative strength of the competing interactions. In this way, the modulation length can
range from a few interatomic or lattice spacings up to hundreds or thousands of them. Examples
of systems in which the relevant physics corresponds to one or the other extreme can be found
[16]. Clearly, the critical properties in both cases can be very different, anisotropies induced
by the lattice structure are relevant when the modulation length is of the order of the lattice
spacing, but probably not relevant for modulations spanning thousands of lattice spacings. This
multiscale phenomenology strongly complicates the modelling and simulation of stripe forming
systems.

Here we address the critical properties of stripe forming systems with isotropic long-range
competing interactions with variable range [1]. We give special attention to the high temperature
phase transition between an isotropic and nematic phases, and the relevance of the range of the
interaction to the nature of this rotational symmetry breaking transition. In the next section
we motivate our general mesoscopic approach to the two pertinent stripe forming systems, with
Coulomb or dipolar interactions, discussing general issues about the nematic phases in these
systems. We also review a recently developed elastic theory that accounts for the correct effect
of long-range interactions, predicting distinct behaviour for the two cases. Later we present
the technical details involved in performing Langevin simulations of these models. We finish
presenting preliminary results confirming these predictions, and discussing future directions.

2. Coarse-grained model and elastic theory

The long wavelength limit, in which the modulation spans thousands of electrons or spins,
is particularly relevant in two well known physical systems: ultrathin magnetic films [6, 17, 18]
and two dimensional electronic liquids [10, 19, 20, 21]. In the first case, stripes or orientated
patterns emerge from the competition between the short range exchange interaction and the
long-range dipolar interaction. In the second case, the nature of the competition is more subtle
coming from the competition between the kinetic (quantum dynamics) term and the long-range
Coulomb interaction. In this limit, both cases can be modelled by an effective coarse-grained
Hamiltonian in two dimensions of the form:

H[φ(�x)] =
1

2

∫
d2x

(
�∇φ(�x)

)2
+

1

2

∫
d2x

∫
d2x′ φ(�x)J(�x− �x′)φ(�x′) +

1

2β

∫
d2x V (φ(�x)) (1)

where β = 1/kBT and V (φ) = − r
2φ

2 + 1
12φ

4 is a local potential. The first term can be seen
as the continuous limit of a nearest-neighbour interaction while the second, competing term,
has the form J(�x) = J/xα, which allows to analyse in a unified way short range (large α) and
long-range (small α) interactions. Physically relevant examples are the Coulomb interaction
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(α = 1) and the dipolar interaction between out of plane magnetic moments (α = 3). Note that
this effective Hamiltonian has strictly isotropic interactions and the anisotropic phases, like the
nematic one, can only emerge from the spontaneous breaking of the rotational symmetry in real
space. In fact, working with a similar Hamiltonian, D. G. Barci and D. A. Stariolo [22] showed

that the rotational symmetry of the characteristic wave vector �k0 present at relatively high
temperatures is spontaneously broken at a critical temperature Tc leading to a isotropic-nematic
phase transition. Nematic order in this case means that the stripes possess an orientational order

〈Q〉 ∼ 1

−1.5 −1 −0.5  0  0.5  1  1.5 −0.6−0.4−0.2  0  0.2  0.4  0.6 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

S(k)

kx ky

S(k)

〈Q〉 ∼ 0.8

−1.5 −1 −0.5  0  0.5  1  1.5
kx −0.6−0.4−0.2  0  0.2  0.4  0.6

ky

 0

 50

 100

 150

 200

 250

S(k)

〈Q〉 ∼ 0.1

−1.5 −1 −0.5  0  0.5  1  1.5 −1.5 −1 −0.5  0  0.5  1  1.5 0

 2

 4

 6

 8

 10

 12

S(k)

kx ky

S(k)

Figure 3. Results from Langevin simulations of the dipolar model at three temperatures,
increasing from left to right. The stripe width span three lattice sites. Here are shown
some representative configurations with sizes 1922 (3842 middle) with some topological defects
highlighted, structure factors and mean orientational order parameter values corresponding to
smectic, nematic and isotropic phases, respectively. Taken from [23].

but there is no periodicity under spatial translations. The nature of the nematic-isotropic phase
transition was predicted to be of the Kosterlitz-Thouless type based on physically motivated
arguments [24] and Langevin simulations on the dipolar case [23] gave support on this finding,
in spite of some limitations due to numerical lattice induced anisotropies. Some results from
this Langevin simulations, shown in Figure 3, are particularly relevant to illustrate the nematic
order and its associated order parameter and angle fluctuations in the structure factor.

The recent introduction of a new elastic theory allowed us to identify the degrees of freedom
at the relevant (wavelength) scale and to make precise analytical predictions on the nature of
phase transitions in stripe forming systems in two dimensions, for arbitrary values of the range
of the competing interaction 1/rα [1]. Allowing for the phase of the modulation to fluctuate in a
way that the local order parameter is given by φ(�x) =

∑
n φn cos(nk0x+ nk0u(�x)), the effective

Hamiltonian for the deformation field u(�x) has the following form:

Hp =
1

2

∫
d2k

(2π)2
(γxk

2
x + γyk

4
y + γnlk

α−2ky
4)û(�k)û(−�k). (2)
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The first two contributions of this effective Hamiltonian correspond to the well known local
elastic response of the stripe pattern [25], while the last contribution is related with the residual
interaction between the stripes due to the presence of a long range repulsive interaction of
the form 1/rα [1]. It is possible to verify that for repulsive interactions sufficiently long-
ranged (α < 2), the non-local contribution in the effective Hamiltonian (2) dominates over
the transversal local contribution. This is an unexplored regime in the literature, since
previous works always assumed that even in the presence of long-range interactions the effective
Hamiltonian possess only local contributions.

Nevertheless, a careful analysis of the positional fluctuations at a Gaussian level reveals that
〈u2〉 diverges linearly with the linear dimension of the system for σ ≥ 2 and with a power σ

2
for σ < 2. This means that, independently of the range of the interaction, positional order is
unstable.

On the other hand, it was proven that at scales much larger than the modulation length the
effective orientational Hamiltonian in terms of the normalised local average of the director field
�n(�x) is given by:

Ho =
γ1
2

∫
d2x (∂μ�n(�x))

2 +
γ

2

∫
d2x

∫
d2x′Ω(|�x− �x′|)

(
�n(�x) · �n(�x′)
|�x− �x′|σ+2

− (σ + 2)(
�n(�x) · (�x− �x′)�n(�x′) · (�x− �x′)

|�x− �x′|σ+4

)
, (3)

where γ1 and γ represent the local and the non-local stiffnesses, respectively, and Ω(x) represents
a short distance cut-off function. This Hamiltonian has been previously studied by Maier
et.al. [26] for the case σ = 1. As pointed out by their results, the anisotropic term of the
non-local dipolar interaction is irrelevant for the critical properties in two dimensions. This
simplifies greatly the study to be made, since it makes it possible to replace the original non-
local interaction by a ferromagnetic one decaying with the same power-law of that in the original
orientational Hamiltonian without changing the critical properties of the model.

With this considerations in mind, it is straightforward to conclude that in systems with
sufficiently long-ranged interactions (σ < 2) the non-local attractive interaction rules over the
local contribution, stabilising a long-range orientational order at low temperatures. On the other
hand, when σ ≥ 2, the short ranged square gradient interaction dominates over the non-local
contribution, resulting in the known Kosterlitz-Thouless (KT) transition scenario of the classical
XY model [25].

For the new interesting case with σ < 2, the critical properties have been worked out by
non-perturbative renormalization group techniques, and can be summarised as:

(i) in the critical region the correlation length diverges exponentially at Tc from both sides, as
a reminiscent of the KT transition behaviour:

ξo ∝ exp

(
b√|Tc − T |

)
, (4)

(ii) For T < Tc in the critical region, the average order parameter behaves as M ∝
ξo(T )

−(2−α)/2, showing the existence of long-range order when α < 2.

(iii) The orientational susceptibility diverges as χo ∝ ξo(T )
α in the critical region.

In the following section we present some of the main difficulties in exploring these and other
features of two dimensional rotational symmetry breaking systems in numerical simulations.
After a brief review of previous results about the nematic phase in the dipolar case, we present
our method and recent results confirming the above scenario.
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3. Simulations

In order to explore further this rich phenomenology in the complementary perspective of
statistical physics simulations, it is important to have the proper tools for the phenomenon of
interest. A traditional approach is to perform Monte Carlo simulations of the corresponding
Ising model: H = −δ

∑
<i,j> sisj +

∑
(i,j) sisj/r

α
ij [27, 28]. Even though this methodology is

very useful to explore many interesting and general thermodynamic [29] and dynamical [30, 31]
phenomena present in these stripe forming systems, their ”microscopic” approach is affected
by strong lattice effects. This lattice anisotropy is the result of the sharp (Ising) domain walls
between each stripe in combination with the relative small stripe width (typically from 2 to
4 spins per stripe). In this conditions the system is dominated by the square lattice discrete
symmetry, such that at high temperatures the disordered stripes form what is commonly called
a tetragonal liquid [32]. The strong lattice induced anisotropy present in such simulations
naturally prevent the study of rotational symmetry breaking phenomena of a priori isotropic
models.

Instead, we take as starting point the same mesoscopic coarse-grained model (1), that can be
seen as the effective, long wavelength limit of the corresponding Ising models. Simulations
of field theory models such as these have been made extensively in the past, with Monte
Carlo [33, 34], Langevin dynamics [35], or a combination of the two [36]. We have built on
the methodology developed for the study of phase-ordering kinetics [37, 38, 39] and general
dynamical critical phenomena [40]. Besides the many interesting dynamic features of the out-
of-equilibrium dynamics of the stripe forming systems - a comprehensive review can be found in
[41] - the same machinery can be applied to study their thermodynamic equilibrium properties.

Early studies of the nematic phase from Langevin simulations of the dipolar model revealed
important large-scale features of a nematic phase, like anisotropic domains (shorter in the
direction parallel to the stripes) and angle fluctuations (see the structure factor in Figure 3).
On the other hand we observed long-range correlations in the nematic order instead of the
expected quasi-long range order: fourfold lattice anisotropies, though softened because of the
continuous nature of the order parameter field, were induced mainly by the short stripe width,
of only three lattice sites per stripe. The effect of the four-fold anisotropy was to disrupt the
orientational Goldstone excitation and changing the associated KT transition into a second-order
phase transition [42, 43]. As it will become evident below, wider stripes are much less susceptible
to such anisotropies at moderate temperatures. We now proceed to present the technical details
of the Langevin simulations developed for this work.

3.1. Method

We performed Langevin simulations of the Hamiltonian (1). The relaxational (overdamped)
Langevin dynamics of the density φ(�x) is defined by:

∂φ(�x)

∂t
= −δH[φ]

δφ(�x)
+ η(�x, t), (5)

which for the Hamiltonian in (1) reads:

∂φ

∂t
(�x, t) = ∇2φ− 1

δ

∫
d2x′

1

|�x− �x′|αφ(�x
′, t) + rφ(�x, t)− uφ(�x, t)3 + η(�x, t) (6)

where δ and u are fixed parameters, r = (Tc − T ) and η(�x) represents a Gaussian white noise
with correlations 〈η(�x, t)η(�x′, t′)〉 = 2Tδ(�x− �x′)δ(t− t′), where T is the effective temperature of
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the heat bath. In the Fourier space, this equation reads:

∂φ

∂t
(�k, t) = −Aα(k)φ(�k, t)− u

[
φ3

]
F
(�k, t) + η(�k, t) (7)

where
[
φ3

]
F (�k, t) stands for the Fourier transform of φ3(�x, t), and Aα(k) encompasses both the

short k2 and long-range Jα(k) interactions. We worked with two forms of this kernel, the first

A3(k) = a2(k − k0)
2 − r (8)

corresponds to the functional form of a dipolar interaction, basically from the linear
dependence[44] in k. The second form is

A1(k) = a2(k
2 + 2k30/k − 3k20)− r, (9)

corresponding to the Coulomb model 1/k. The parameters are such that both models have the
same value of Aα(k) and curvature close to the minimum k0. To ensure this, we have set a2 = 1
for the dipolar and a2 = 1/3 for the Coulomb model. In both cases Tc = 1 and k0 = 1.

The general solution of equation (7) is:

φ(t+ dt,�k) = φ(t,�k) e−Aα(k) dt +

∫ t+dt

t

[
−u

[
φ3

]
F
(�k, t′) + η(�k, t′)

]
e−Aα(k) (t+dt−t′)dt′ (10)

The general assumption towards the numerical integration of this equation is to consider the
nonlinear part to be nearly constant during the time-step, between t and t + dt. The same
cannot be assumed for the noise. By the central limit theorem, this integral is another Gaussian
white noise with zero mean and variance such that, the general solution can be written as:

φ(t+ dt,�k) � φ(t,�k) e−Aα(k) dt − u

[
1− e−Aα(k) dt

Aα(k)

] [
φ3

]
F
(�k, t) +

√
1− e−2Aα(k) dt

2Aα(k)
μ(�k) (11)

where μ(�k) is the same Gaussian white noise integrated in time: 〈μ(�x)μ(�x′)〉 = 2Tδ(�x − �x′).
Since we are dealing with a system with many degrees of freedom, we always seek for simple
methods of order one to minimize the computational cost.

3.2. Dipolar case

The Euler scheme can be obtained expanding to first order in dt so that:

φ(t+ dt,�k) � φ(t,�k) [1−Aα(k) dt]− dt u
[
φ3

]
F
(�k, t) +

√
dt μ(�k) (12)

where it was taken into account the same approximation to the variance of the noise. The
stability of this method is very poor [45]. A typical treatment to enhance the stability is to
implement it as a semi-implicit scheme, where the laplacian term from (8) is computed in t+dt:

(1 + dt k2)φ(t+ dt,�k) = φ(t,�k) [1 + r dt− dt 2k − dt] +
[
−dt u φ3(�x, t) +

√
dt μ(�x)

]
F
(�k, t) (13)

where we have taken k0 = a2 = 1 as mentioned before, and have explicitly written the Fourier
transform of the white noise. This is very close to the final implementation, we only have to
address the spatial discretization. In the adimensional form where k/k0 → k [41], the periodicity
of the stripes are set by the lattice constant dx of the 2D square grid with linear size L = MN ,
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so that �k = (kx, ky) with ki = 2πni/(dxL), ni = −L/2, . . . , L/2 and dx = π/M . Within this
scheme, the stripe length span M lattice sites and the linear system size is such that contains
N stripes. Then, full lattice update is accomplished in the Fourier space, with the aid of fast
Fourier libraries [46] through:

φ(t+ dt,�k) =
1 + r dt− dt 2k − dt

1 + dt k2
φ(t,�k) +

1

1 + dt k2

⎡
⎣−dt u φ3(�x, t) +

√
2Tdt

dx2
μ̃

⎤
⎦
F

(�k, t) (14)

where μ̃ is a Gaussian white noise with zero mean and unitary variance (in the discretization
process Dirac deltas turn into Kronecker deltas: δ(�x− �x′) → δ�x,�x′/dx2). Note that this scheme
can be written in the form:

φ(t+ dt,�k) = L(k)φ(t,�k) + I(k)ψ(t,�k) (15)

where the real coeficients can be calculated at the start of the program L(k) ≡ (1+r dt−dt 2k−
dt)/(1 + dt k2), I(k) ≡ 1/(1 + dt k2) and ψ(t,�k) ≡

[
−dt u φ3(�x, t) +

√
2Tdt/dx2 μ̃

]
F
. This way

the computational performance is dominated by the two forward FFT, L2 updates and then one
backward FFT. The main advantages of updating in the Fourier space are the decoupling of the
equations (memory speedup) as well as the use of an isotropic form for the laplacian, minimizing
one possible source of undesired lattice effects.

3.3. Coulomb case

One can readily see that, in the Coulomb case where the fluctuation spectrum (9) has

one term inversely proportional to k, we would have φ(t + dt,�k) ∝ φ(t,�k)/k and there
would be an instability close to k ∼ 0 that cannot be attenuated by any implicit term in
an Euler scheme. Instead, we take advantage of the general solution given by (10) where

φ(t + dt,�k) ∝ φ(t,�k) exp(−1/k) and this instability can be exponentially attenuated. In order
to write the equation (11) in a simple form as in equation (15), we can see that we have know
two different coefficients for the non-linear part:

I1(k) ≡
[
1− e−A1(k) dt

A1(k)

]
and I2(k) ≡

√
1− e−2A1(k) dt

2A1(k)
(16)

for the contributions of the φ3 and the μ terms, respectively. We can notice that both
this terms are similar for small dt, especially if we write them in power series: I1(k) �
dt−A1(k)dt

2/2+A2
1(k)dt

3/6+ . . ., and I2(k) � dt1/2 −A1(k)dt
3/2/2+A2

1(k)dt
5/2/4.8+ . . ., so

that up to second order in dt we can assume I2(k) � I1(k)/
√
dt. Using this approximation for

the coefficient of the thermal noise we have the same update form as in equation (15), with:

L(k) ≡ e−A1(k) dt (17)

I(k) ≡ 1− e−A1(k) dt

A1(k)
(18)

ψ(t,�k) ≡
⎡
⎣−dt u φ3(�x, t) +

√
2T

dt dx2
μ̃

⎤
⎦
F

(19)
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3.4. Simulation results

With suitable stable schemes for the integration of the equations, the next step it to ensure
an suitable space discretization to explore the properties of the nematic phases. By exploring
the temperature range with cooling protocols with small system size, we could estimate the
liquid-nematic phase transition. After an estimation of the equilibration and correlation times
from high temperature quench experiments, we could safely guarantee that below T � 0.59
(T � 0.44) the configurations find themselves in the low temperature phase (with orientational
order) for all system sizes for the dipolar (Coulomb) model. Within this low temperature phase
but still in the neighbourhood of the phase transition, we have measured the structure factor
for various thermal histories and different stripe widths M , related to space discretization by
dx = π/M , from M = 3 up to M = 15. We have obtained an isotropic average structure factor
for M > 7, meaning the stripes don’t have a preferred direction in the nematic phase, so that
lattice anisotropies are irrelevant. A conservative choice along this work was M = 11 in order
to assure smooth domain walls.

Since above the aforementioned temperatures the configurations are in the stripe-liquid phase,
where both positional and orientational correlation lengths are finite, we have concentrated our
efforts on equilibrium simulations inside the nematic phase, with T = 0.57 (T = 0.43) for the
dipolar (Coulomb) model, for system sizes ranging from (12× 11)2 up to (66× 11)2.

Figure 4. Orientational susceptibility in linear-log scale plot of the Coulomb (right) and
dipolar (left) models as function of the linear size of the systems (normalized by half of the
modulation length N=L/11). The full lines are fits to logarithmic function A + B logN , with:
A = −355(18) and B = 170(6) (χ2/Ndof = 1.0) in the dipolar case; A = −362(10) and
B = 173(4) (χ2/Ndof = 2.3) in the Coulomb case. In both cases the number of degrees of
freedom is Ndof = 3. The horizontal line is only a guide to the eyes.

In order to quantify the orientational order, through the local director field �n(�x) =
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�∇φ(�x)/|�∇φ(�x)| we have measured the nematic tensor:

Qαβ =
∑
�x

(
na(�x)na(�x)− 1

2
δαβ

)
(20)

where α, β = 1, 2 are the Cartesian components. The orientational order parameter is given

by Q =
√
Q 2

11 +Q2
12. We have measured this quantity and its corresponding susceptibility χ

using between 5 and 25 thermal histories, resulting approximately in an overall 2 × 106/N2

(3× 106/N2) independent measurements for the dipolar (Coulomb) model - recalling that N is
the number of stripes that can fit in the linear size of the system, both related by N = L/11, so
the number of samples lies roughly between 700 and 20000.

Our results are shown in Figures 4 and 5. We can readily see from Figure 4 that below
the transition temperature the susceptibility of the corresponding order parameter presents a
limited growth up to a plateau for the Coulomb case. This is what is expected in a second
order phase transition. On the other hand, with dipolar interactions we observe a monotonic
(probably logarithmic) increase of the susceptibility with the system size, without any sign of
attenuation. This is in accordance with a Kosterlitz-Thouless phase, where the susceptibility
should diverge in the thermodynamic limit for all T ≤ TKT . Even though we show logarithmic
fits along the points in Figure 4, the small number of points don’t allow to clearly distinguish
this functionality from power-laws, algebraic fits are equally good [1] specially for the Coulomb
case.

Of course, this is an analysis for a single low temperature and it presents a limited power if
compared to more traditional finite-size scaling analysis. Indeed, we cannot conclude that the
dipolar χ will not saturate at larger N ’s, but the different trend observed in both systems for
equivalent parameter values is a strong indication that the theoretical results are indeed correct.
In Figure 5 the value of the orientational order parameter as function of the linear size for both
models are similar in behaviour, showing how subtle the characterization of both models can
be.

Figure 5. Orientational order parameter dependence on the normalized linear size of the
systems for the Coulomb (blue) and dipolar (red) models, for temperatures above (filled) and
below Tc (open symbols). These temperatures correspond to T = 0.60 (T = 0.45) and T = 0.57
(T = 0.43) for the dipolar (Coulomb) model. Horizontal lines are guides to the eyes, while the
others are fits to A/N - with A ∼ 3, a characteristic dependence on linear size of order parameter
in the disordered phase.
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4. Conclusions and perspectives

We found special difficulty equilibrating large systems at low temperatures, due to the high
degree of degeneracy and frustration of these models - notorious to present slow and arrested
dynamics [41, 47, 48]. A first step towards a speed up in computational time would be to
implement an extended ensemble Langevin dynamics, like parallel tempering for example. To
further explore the properties of the nematic phases, it is important to measure the nematic
correlation functions, as done in previous work [23]. In this sense, it is important to notice that
the current estimation of the local director field makes use of a second order finite-difference
scheme to calculate the gradient. This makes the director field susceptible to local fluctuations,
and working with higher order stencils doesn’t make significant improvement. As such, the
correlations fall off substantially in the short scales, making the quantification of long-range
properties difficult to analyse. The approach taken previously was to smooth out fluctuation
by filters. In order not to damage the local orientational information of the configuration,
there are specially designed filters that conserve the directional properties of the stripes [49].
Another interesting approach is to estimate the director field with the aid of the gradient-square
tensor in Fourier space [50]. Finally, we emphasize the positive general features of the Langevin
simulation technique to study such pattern forming systems where isotropy is guaranteed by
careful designed conditions (see Figure 6).

Figure 6. A typical (42× 11)2 configuration of the isotropic phase for the dipolar model, close
to the phase transition at T = 0.60.

We have presented results confirming the effect of the range of the competing isotropic
interactions at the nature of the purely orientational low-temperature stripe phase, the nematic
phase. In the dipolar interaction case orientational order parameter susceptibility seems to
be divergent in the low temperature phase, characteristic of a critical phase as in the KT
transition of XY model. Conversely, in the Coulomb interaction case we observed a saturation
of this susceptibility, intrinsic to the broken symmetry phases of second order phase transitions.
The similar behaviour for both cases close to the phase transition is in accordance with the
reminiscent KT behaviour in equation (4). We expect to further explore the finite size properties
of this distinctive behaviour in future extended simulations.
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