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ABSTRACT

In this thesis, we study the class of moving-blocks problems. A moving-blocks problem

consists of k movable blocks placed on a grid-square maze where there is an additional

movable block called the man, which is the only block that can be moved directly. In par-

ticular, each moving-blocks problem is defined by the set of moves available, by the goal

description and by what happens when the man attempts to move a block. Sokoban is the

best known and researched moving-blocks problem. We study moving-blocks problems

in theory and practice.

We investigate the computational complexity of problems of moving-blocks. Prior to

this thesis, most of the scientific literature addressed moving-blocks problems with PUSH

moves only, in most of the cases proving that these problems are PSPACE-complete. We

consider two sets of problems: PULL moves only, and PUSH and PULL moves combined.

Our reductions are from Nondeterministic Constraint Logic. We prove that many prob-

lems with PULL moves only are PSPACE-complete. In addition, we prove that the entire

set of PUSH and PULL moves is PSPACE-complete. Our contribution in this research line

is to enhance the knowledge on the complexity landscape of moving-blocks problems.

Our main objective in this thesis is to optimally solve moving-blocks problems with a

focus on Sokoban. Methods based on heuristic search and abstraction heuristics such as

pattern databases are the most effective approaches to optimally solve these problems.

We make many contributions in this research line. We introduce novel heuristic functions

using pattern databases with the idea of intermediate goal states. We propose a technique

based on pattern databases to detect deadlocks. We propose tie-breaking rules that exploit

the structure of the problem. Using these heuristic functions and tie-breaking rules we

increase the number of optimally solved instances of Sokoban and other problems com-

pared to previous methods.

Keywords: Heuristic Search. Single-Agent Search. Moving-Blocks Problem. Sokoban.

Pattern Database. Abstraction Heuristic. Computational Complexity. Nondeterministic

Constraint Logic.



Resolvendo de Problemas de Blocos-Móveis

RESUMO

Nesta tese, nós estudamos a classe de problemas de blocos-móveis. Um problema de

blocos-móveis consiste em k blocos móveis dispostos em um labirinto em grade quadran-

gular onde há um bloco móvel adicional chamado de o homem, que é o único bloco que

pode ser movido diretamente. Em particular, cada problema de blocos-móveis é definido

pelo conjunto de movimentos disponíveis, pela descrição do objetivo e pelo o que acon-

tece quando o homem tenta mover um bloco. Sokoban é o problema de blocos-móveis

mais conhecido e pesquisado.

Nós investigamos a complexidade computacional de problemas de blocos-móveis. An-

tes desta tese, a maior parte da literatura cientifica abordou problemas de blocos-móveis

apenas com movimentos de EMPURRAR, na maioria dos casos provando que esses pro-

blemas são PSPACE-complete. Nós consideramos dois conjuntos de problemas: apenas

movimentos de PUXAR, e movimentos de EMPURRAR e PUXAR combinados. Nossas

reduções usam a Lógica de Restrições Não Determinística. Nós provamos que muitos

problemas apenas com movimentos de PUXAR são PSPACE-complete. Além disso, nós

provamos que o conjunto de problemas com movimentos de EMPURRAR e PUXAR é

PSPACE-complete. A nossa contribuição nessa linha de pesquisa é aprimorar o conheci-

mento sobre o panorama da complexidade de problemas de blocos-móveis.

Nosso principal objetivo com essa tese é resolver otimamente problemas de blocos-móveis

com foco em Sokoban. Métodos baseados em busca heurística e heurísticas de abstrações

como banco de dados de padrões são as abordagens mais efetivas para resolver otima-

mente esses problemas. Nós fazemos muitas contribuições nessa linha de pesquisa. Nós

introduzimos novas funções heurísticas usando bancos de dados padrão com a ideia de

estados objetivos intermediários. Propomos uma técnica baseada em bancos de dados

padrão para detectar impasses. Propomos regras de desempate que exploram a estrutura

do problema. Usando estas funções heurísticas e regras de desempate nós aumentamos

o número de instâncias resolvidas de forma ótima de Sokoban e outros problemas em

comparação com os métodos anteriores.

Palavras-chave: Busca Heurística, Busca de Único Agente, Problema de Blocos-Móveis,

Sokoban, Banco de Dados de Padrão, Heurística de Abstração, Complexidade Computa-

cional, Lógica com Restrições Não Determinística.
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1 INTRODUCTION

A planning problem is defined by an initial description of the environment, a set

of rules that defines how to transform the environment and a desired description of the

environment. A solution to a planning problem is a sequence of actions that transforms

the initial description into the desired description. This thesis studies a particular class of

planning problems that is challenging and fun – moving-blocks problems.

Moving-Blocks Planning Problems

In a moving-blocks problem, movable blocks are placed on a grid-square maze

defined by immovable blocks. There is a distinguished block, called the man, that is the

only block that can be moved directly and is able to move other blocks. The initial state

is given by the positions of the movable blocks and the man.

Different moving-blocks problems are based on what happens when the man at-

tempts to move a block, the set of actions, and the definition of the goal state. Sokoban is

the best known and studied moving-blocks problem. In Sokoban the man can push blocks

to adjacent squares and the goal state is to achieve a defined placement of the movable

blocks.

Moving-blocks problems are both challenging theoretically and practically. In

general, problems in the class of moving-blocks are PSPACE-complete, and only artificial

constraints make them tractable. Thereby, solving moving-blocks problems is at least as

hard as solving planning in general when the set of states is finite.

Moving-blocks problems are fun. They have a simple and concise description,

and are easy to understand, but still intellectually challenging. There is a considerable

number of people interested in solving them. In addition, there is a community interested

is developing automated approaches to solve instances of moving-blocks problems.
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Objective

Our goal with this research has two aspects. The first is to improve the understand-

ing of the theoretical hardness of deciding if a problem of moving-blocks is solvable. The

second, and, in fact, our main focus, is to better solve optimally moving-blocks problems

with a focus on Sokoban.

Theoretical Approach

In this thesis, we investigate the computational complexity of deciding if a moving-

blocks problem is solvable. A large number of articles investigated the complexity of

moving-blocks problems. However, the majority of the literature addressed problems with

PUSH moves, in most of the cases proving that these problems are PSPACE-complete.

Other versions of the problem with different types of moves have been proved to be NP-

hard. The Nondeterministic Constraint Logic (NCL) is a framework developed by Hearn

and Demaine (2005) to decrease the effort of proving PSPACE-hardness results. Usually,

it is used to prove that puzzles and games are PSPACE-hard. We use this framework to

investigate the hardness of the problems in the class of moving-blocks problems.

Practical Approach

Moving-blocks problems can be formalized as state space problems. Exploration

(systematic search) is the most common approach to solve state space problems – the set

of states is systematically explored until a goal state is reached. Heuristics improve the ef-

ficiency of searches guiding the exploration to more promising regions of the state space.

Abstraction heuristic functions are responsible for an expressive progress in the areas of

heuristic search and domain-independent planning. Our aim is to increase the number of

optimally solved instances of some moving-blocks problems, in particular Sokoban. The

most effective approaches to solve these problems so far are based on heuristic search

techniques. We investigate new heuristic search techniques and new abstraction-based

heuristic functions to optimally solve these problems.
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1.2 Contributions of this Research

In this thesis, we advance the computational complexity results and the heuristic

search techniques to optimally solve the class of moving-blocks problems. Our contribu-

tions can be summarized in five items: (i) we prove that problems with PULL, and PUSH

and PULL moves are PSPACE-complete; (ii) we introduce a pattern database approach

to detect deadlocks; (iii) we propose a novel method to apply pattern databases to inter-

mediate goals; (iv) we develop domain-dependent techniques that exploit the structure of

the problem; and (v) we further improve the proposed pattern database heuristics and the

domain-dependent techniques.

1.2.1 Moving-Blocks Problems with PULL and PUSHPULL Moves are PSPACE-complete

Dor and Zwick (1999) initiated a research line studying the computational com-

plexity of the class of moving-blocks problems. Culberson (1999) proved that Sokoban

is PSPACE-complete. Demaine, Demaine and O’Rourke (2000), Demaine, Hearn and

Hoffmann (2002), Demaine et al. (2003), Demaine, Hoffmann and Holzer (2004) proved

complexity results for several moving-blocks problems with PUSH moves. Most of the

literature is focused on problems with PUSH moves. There is a single result for problems

that combine PUSH and PULL moves. Problems with PULL moves have been proved

to be NP-hard while equivalent problems with PUSH moves are known to be PSPACE-

complete.

Our contributions are that we improve the known NP-hardness results of problems

with PULL moves to PSPACE-completeness results. Therefore most of the versions with

PULL moves are as hard as the versions with PUSH moves. We also were able to show that

the whole class of problems that combines PUSH and PULL moves is PSPACE-complete.

1.2.2 Pattern Databases for Deadlock Detection

Sokoban is harder to solve when compared to other traditional state space prob-

lems, and the presence of deadlocks is one of the reasons for that. Deadlocks are states

that are reachable from the initial state but cannot reach any goal state. In recent years one

of the most effective approaches to create heuristic functions for state space problems are
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pattern databases (PDBs) (CULBERSON; SCHAEFFER, 1996). An effective heuristic

function for Sokoban must detect deadlocks, otherwise the search method could spend

great effort exploring parts of the state space that will not lead to a goal state.

Our main contribution is to propose a PDB heuristic function to Sokoban for dead-

lock detection. We also apply standard PDBs as an admissible heuristic function for

Sokoban. For this, we proposed an abstraction transformation, a method to build the PDB

efficiently and to compute the heuristic value. However, due to domain-specific charac-

teristics of Sokoban standard PDBs are ineffective as a heuristic function. We show that

a standard PDB nevertheless can effectively detect deadlocks and may be used together

with other heuristic functions to increase the number of optimally solved instances. Using

the proposed approach, we are able to detect five times more deadlocks than the standard

heuristic function of Sokoban, solving optimally two more instances, while exploring an

order of magnitude fewer nodes.

1.2.3 Pattern Databases to Intermediate Goals

The effectiveness of the search method is directly related with the heuristic func-

tion used. A straightforward application of PDBs in Sokoban results in an ineffective

heuristic function. We propose an alternative approach, by introducing the idea of an

instance decomposition to obtain an explicit intermediate goal state which allows an ef-

fective application of PDBs. Similar to the previous contribution, we proposed an efficient

method to construct the PDB and to compute the heuristic function. We also prove theo-

retical properties of the proposed heuristic. When applied on the standard set of instances

of Sokoban this approach improves heuristic values on initial states, detects considerably

more deadlocks in random states, and increases the number of optimally solved instances

compared to previous methods.

1.2.4 Using Domain-Specific Structure Information

The heuristic function, in general, is based on the computation of distances in the

state space. We propose a domain-specific tie breaking rule that gathers information from

the structure of the problem. It uses the information from the state space related to the

placement of goals to improve the effectiveness of the search method. Based on this idea
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we propose a specific tie-breaking rule to Sokoban and other problems.

1.2.5 Improved Pattern Databases Heuristic and Domain-Dependent Technique

We extend the idea of intermediate goal state to allow the use of multiple interme-

diate goal states and show that the previous proposed heuristic is no longer effective. We

solve this problem and show that the new heuristic is effective when using multiple inter-

mediate goal states. Our new method increases the number of optimally solved instances

and the number of proved optimal solutions of Sokoban.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the basic

concepts about heuristic search as well as recent research progress in designing more in-

formative heuristic functions with a focus on PDBs. It also introduces the domains studied

in this thesis. Chapter 3 presents detailed complexity results about the class of moving-

blocks problems. Chapter 4 presents theoretical and experimental results about Sokoban,

and introduces a domain-dependent solver and heuristic search techniques. Chapter 5

presents the improved pattern database heuristic and tie-breaking rule for optimally solv-

ing Sokoban with theoretical and experimental results. Chapter 6 presents concluding

remarks and future research directions.
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2 BACKGROUND

In this chapter we review the basic concepts of heuristic search, the definitions

that are used in this thesis and recent developments in designing admissible heuristic

functions. We also present Sokoban in detail and, in general, the class of moving-blocks

problems.

2.1 State Space Problem

Definition 2.1.1 (Weighted State Space Problem). A weighted state space problem is a

tuple P = (S,A, s, T, w), where:

• S is a set of states,

• A is a finite set of actions,

• s ∈ S is the initial state,

• T ⊆ S is a set of goal states, and

• w : A→ R≥0 is a cost function.

An action a ∈ A is a function a : S → S that transforms a state u into a successor

state v incurring cost w(a). The set of goal states may be given explicitly, or implicitly

by a goal condition. A solution π = (a1, ..., ak) is an ordered sequence of actions that

transforms the initial state s into some goal state. The solution cost of π is defined as∑k
i=1w(ai). A solution is optimal if it has the minimum cost among all solutions. F is

a finite set of state variables. Each variable f ∈ F has an associated domain of possible

values D(f). A complete assignment of values df ∈ D(f) to variables f defines a state.

To find an optimal solution to a state space problem corresponds to solve a single-

source shortest path problem in a graph. A state space problem P corresponds to a graph

G = (V,E, s, T ) with vertices V = S, initial vertex s, goal vertices T and edges E ⊆

V × V . There is an edge (u, v) ∈ E iff v = a(u) for some action a ∈ A. The objective is

to find a path in G from s to some goal vertex in T . The main difference between a graph

problem and a state space problem is that a graph problem assumes that the graph is given

explicitly and in a state space problem the graph is given implicitly.
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2.2 Heuristic Functions

In general, a heuristic is a rule that is effective in finding a solution to a problem,

but the solution is not guaranteed to be optimal. In the heuristic search and domain-

independent planning literature, heuristic refers to a specific class of heuristic evaluation

functions. For a state space problem, the heuristic function estimates the solution cost

from some given state to some goal state. A heuristic search algorithm uses this informa-

tion to orient the search into the direction of some goal state. The heuristic function has a

large influence on the performance of the heuristic search algorithm.

Definition 2.2.1 (Heuristic). A heuristic h is a function that maps a state u ∈ S to R≥0.

The perfect heuristic h∗ gives the exact solution cost of each state to the closest

goal state (∞ if no solution exists). A heuristic is particularly useful if it is a lower bound,

i.e., never exceeds the optimal solution cost.

Definition 2.2.2 (Admissibility). A heuristic h is admissible if h(u) ≤ h∗(u) for all

u ∈ S.

Another important property of a heuristic function is consistence.

Definition 2.2.3 (Consistence). A heuristic h is consistent if, for all states u, v ∈ S,

h(u) ≤ h(v) + w(u, v).

If h(u) ≥ h′(u) for all states u ∈ S, h dominates h′. In general, a heuristic search

algorithm with hwill have better performance than using h′, exploring fewer nodes. There

are however cases, where this does not hold (HOLTE, 2010; HOLTE et al., 2016).

2.3 Heuristic Search Algorithms

A search algorithm solves the task of single-source path in a given graph through a

trial-and-error exploration. This task can be solved by algorithms like breadth-first search,

depth-first search or Dijkstra’s algorithm. A∗ (HART; NILSSON; RAPHAEL, 1968) and

Iterative Deepening A∗ (IDA∗) (KORF, 1985) perform heuristic search to reduce the ex-

ploration effort. They use the function f(u) = g(u) + h(u) where g(u) is the distance

from the initial state s to state u ∈ S, and h(u) is the heuristic function. The f -value is

the estimated solution cost from s through u to some goal state.
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A∗ and IDA∗ with an admissible heuristic are guaranteed to return an optimal

solution if one exists. A state is a configuration of a problem and a node is a data structure

that represents a state together with f , g, h-values and a parent link. Several nodes can

represent the same state in a heuristic search algorithm. To generate a node corresponds

to create the data structure for a given state. To expand or explore a node corresponds to

generate all its successors.

2.3.1 The A∗ Algorithm

The A∗algorithm was proposed by (HART; NILSSON; RAPHAEL, 1968). Ac-

cording to Edelkamp and Schrödl (2012) the A∗ algorithm is “the most prominent heuris-

tic search algorithm”. Every node generated by A∗ is stored in memory. Thus, with

a consistent heuristic every node is explored only once. However, this benefit leads to

the main drawback of A∗: it uses linear space in the number of states, which is usually

exponential. To manage the nodes in memory is also costly.

Figure 2.1 shows the A∗ algorithm. All generated (yet to be expanded) nodes

are stored in the Open set and all expanded nodes in the Closed set. At every step the

algorithm removes the node uwith the smallest f -value from Open and stores it in Closed.

If u is a goal, then the algorithm terminates and returns the optimal solution. Otherwise,

it expands u generating all its successors managing the generated nodes according to

function Improve. Improve receives two nodes, u and its successor v. If v is in Open and

a shortest path was found, then the parent of v and its f -value are updated. In case of an

inconsistent heuristic, if v is in Closed and a shorter path to v was found v is reopened.

The algorithm removes v from Closed and inserts into Open updating its parent and f -

value. In the last case, a new node is generated with a parent and f -value.

2.3.2 The IDA∗ Algorithm

The Iterative Deepening A∗ algorithm proposed by (KORF, 1985) solves the main

drawback of A∗. IDA∗ needs linear space in the solution length. The algorithm uses the

f -value to perform a bounded exploration iteratively in a depth-first manner. IDA∗ does

not detect duplicates. Thus, it is possible to re-explore nodes. Asymptotically, IDA∗ ex-

plores the same number of nodes as A∗, given that the number of explored nodes grows
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Figure 2.1: A∗ algorithm.

Implicit Search
Input: State space problem P and heuristic function h.
Output: Optimal solution from s to t ∈ T , or ∅ if no solution exists.

Closed← ∅
Open← {s}
while Open 6= ∅ do

Select some u from Open
Insert u into Closed
if Goal(u) then return Path(u)

Succ(u)← Expand(u)
for each v in Succ(u) do

Improve(u, v)
return ∅

Improve
Input: Nodes u and v, v successor of u.
Output: Updates parent of v, f(v), Open, and Closed.]

if v in Open then
if g(u) + w(u, v) < g(v) then

parent(v)← u
f(v)← g(u) + w(u, v) + h(v)

else if v in Closed then
if g(u) + w(u, v) < g(v) then

parent(v)← u
f(v)← g(u) + w(u, v) + h(v)
Remove v from Closed
Insert v into Open

else
parent(v)← u
f(v)← g(u) + w(u, v) + h(v)
Insert v into Open

exponential with depth search – the last iteration dominates the previous ones. The op-

timality in the number of nodes explored by A∗ implies the asymptotical optimality of

IDA∗ in number of explored and stored nodes. However, in practice IDA∗ can explore

many more nodes than A∗ especially in domains where small cycles are common.

Figure 2.2 shows the IDA∗ algorithm. It performs a series of depth-first explo-

rations bounded by U ′. In the first iteration, the value of U ′ is equal to the heuristic value

in s the initial state. If h(s) = h∗(s) then the algorithm has only one iteration. During

one iteration only nodes with f -values no greater than U are explored. The value of U

is updated with the smallest f -value of a generated but not yet expanded node in the last

iteration. This update guarantees that at least one new node will be explored in the next

iteration and once a solution is found it must be optimal.
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Figure 2.2: IDA∗ algorithm.

IDA∗
Input: State space problem P and heuristic function h.
Output: Optimal solution from s to t ∈ T , or ∅ if no solution exists.

U ′ ← h(s)
Path← ∅
while Path = ∅ and U ′ 6=∞ do

U ← U ′

U ′ ←∞
Path← Iteration(s, 0, U)

return Path

Iteration
Input: Nodes u, path length g and upper bound U .
Output: Optimal solution from s to t ∈ T , or ∅ if no solution exists. Update threshold U ′.

if Goal(u) then return Path(u)

Succ(u)← Expand(u)
for each v in Succ(u) do

if g + w(u, v) + h(v) > U then
if g + w(u, v) + h(v) < U ′ then

U ′ ← g + w(u, v) + h(v)

else
Path← Iteration(v, g + w(u, v), U)
if Path 6= ∅ then return (u, Path)

return ∅

2.4 Abstraction-Based Heuristic Functions

Abstraction-based heuristic functions led to a major advancement in the heuris-

tic search and domain-independent planning in recent years. Informally, an abstraction

ignores some information or constraints of the state space obtaining a more “coarse-

grained” version of the state space. An abstraction heuristic function corresponds to the

exact distances in the abstract state space.

Definition 2.4.1 (Abstraction transformation). An abstraction transformation φ : S → S ′

maps states u in the concrete state space S to abstract states u′ in the abstract state

space S ′.

If the abstraction transformation defines an abstract state space where the distance

between all abstract states u′ and v′ is smaller or equal to the distance between states u

and v in the concrete state space – w(u′, v′) ≤ w(u, v). The distance of the abstract state

space can be used as an admissible heuristic function in the original state space. The

abstract heuristic h is defined as the distance to the closest abstract goal state.
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2.4.1 Pattern Databases

The Pattern Database (PDB) heuristic was introduced by Culberson and Schaef-

fer (1996). A PDB is defined by an abstraction transformation, also called pattern, that

projects away all information of the state outside of the abstraction. It selects a subset of

variables F ′ of the set variables F of states and considers only the information of vari-

ables in F ′. Then, two states u and v that only differ in variables outside of the abstraction

are mapped to the same abstract state. This abstraction defines abstract states u′ and the

abstract state space S ′.

A PDB stores the distances of abstract states to abstract goal states in a lookup

table. It precomputes the optimal solution cost from the set of abstract goal states for

all abstract states by reverse search. The effectiveness of the PDB depends on the chosen

abstraction. Different abstractions lead to different heuristic functions and to abstract state

spaces with different sizes – usually the abstract state space must be small enough to be

explored exhaustively.

One challenge for the use of PDBs is to choose the most informative abstraction.

Given that multiple abstractions are possible one way to combine them is take their max-

imum – since the maximum of admissible heuristic results in an admissible heuristic.

Culberson and Schaeffer (1996) applied PDBs to the Fifteen Puzzle and explored this

idea. They use two different abstractions, generating two PDBs. They take the maximum

value provided by the two PDBs and the Manhattan distance. Using the resulting heuristic

they were able to reduce the number of explored nodes by three orders of magnitude com-

pared to using only the Manhattan distance. Korf (1997), for the first time, solved random

initial states of Rubik’s Cube taking the maximum of three different PDBs. These two

achievements were made possible due to abstraction-based heuristics.

A more informative approach to combine heuristic is to add their values instead of

taking their maximum. In general, however, this does not lead to an admissible heuristic.

Given a set of PDBs defining a set of heuristic functions h1, · · · , hk it would be desired

instead of taking their maximum to add the heuristic values resulting in an admissible

heuristic. This can be accomplished by ensuring that the cost of each action a in A is

accounted in only one PDB. Then, the sum of the set of heuristic values results in an

admissible estimate.

Korf and Felner (2002), Felner, Korf and Hanan (2004) apply this idea to specific

domains. Yang et al. (2008) give the theoretical foundation for additive abstractions. Katz
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and Domshlak (2008a) introduce the notion of cost partition and show how to obtain

optimal admissible partition of PDBs in polynomial time. The cost partition approach

splits the cost of each action to the set of abstractions.

An important question is that if is better to use one large PDB or several smaller

ones. Holte et al. (2006) consider how to best use a fixed amount (m units) of memory

for storing PDBs. They examine whether using n PDBs of size m/n instead of one PDB

of size m improves search performance. They compare several PDBs of size m/n for

various values of n taking the maximum between them and for a fixed total size of m.

The experiments showed that large and small values of n are suboptimal. There is an

intermediate value of n that reduces the number of nodes generated by up to two orders

of magnitude over n = 1 (one PDB of size m).

Another approach to address the space limitation of PDBs is to use compression.

Felner et al. (2007) explore the idea of merging adjacent entries of the PDB into a single

one. This allows the use of larger abstractions for building the PDBs. Using an appropri-

ate storage method, adjacent entries are highly correlated, and most of the information is

preserved. PDBs in all previous studies have had one entry for each state in the abstract

state space. They compress cliques in the PDB, i.e., states in the abstract state space that

are reachable from each other by one edge. Thus, the PDB for these entries will differ

from one another by no more than one unit (when all actions have cost one). Using this

idea they obtained several improvements in many domains.

2.4.2 Hierarchical Search

Holte et al. (1996), Holte, Grajkowski and Tanner (2005) proposed the hierarchi-

cal heuristic search method. The main idea is to compute, on demand, only the abstract

states that will be employed to solve a given initial state. In general, PDBs are built ex-

ploring the whole abstract state space in a preprocessing phase. Building a PDB can be

time-consuming, but the time can be amortized if there are many initial states of the same

problem to be solved, i.e. if the PDB can be reused. This is not the case for moving-

blocks problems – since each instance is a different problem. Hierarchical search solves

this problem using a hierarchy of abstractions.

A hierarchical search algorithm computes the heuristic for a state s by applying

an abstraction, obtaining an abstract state s′ and an abstract state space S ′. Then, the al-

gorithm explores S ′ and the optimal solution cost of s′ is used as the heuristic value for s.
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To efficiently search on S ′, the next abstraction in the hierarchy is applied obtaining the

abstract state s′′ and an abstract state space S ′′. The number of abstractions used is unlim-

ited. This process continues until the abstract state space generated is small enough to be

enumerated exhaustively. The optimal solution cost of abstract states found in previous

searches are stored in lookup tables for efficiency. Hierarchical search outperforms PDBs

by orders of magnitude in domains where each problem has a unique initial state to be

solved.

2.4.3 Merge-and-Shrink Abstractions

Helmert, Haslum and Hoffmann (2007), Nissim, Hoffmann and Helmert (2011)

generalized the idea of abstraction-based heuristics to merge-and-shrink abstractions. The

abstract state space is built incrementally. The process starts with a set of atomic abstract

state spaces – each abstract state space is built on a single state variable. Then, two ab-

stract state spaces are merged and replaced by their synchronized product, which is greater

and probably more informative. After the merging, the resulting abstraction is shrunk –

aggregating pairs of abstract states into one – to control the exponential growth of the ab-

stract state spaces. The shrinking process continues until a desired size of the abstract state

space is achieved. The incremental process finishes when all abstractions were merged.

The framework of merge-and-shrink abstractions gives great freedom in the abstraction

design. Theoretically, it dominates most other known admissible heuristics (HELMERT;

DOMSHLAK, 2009). However, the theoretical power of merge-and-shrink abstraction

arises from the perfect decisions which abstractions to merge and abstract states to aggre-

gate. Better merge and shrink methods are an open research problem.

2.4.4 Domain and Cartesian Abstractions

Domain abstractions (HERNáDVöLGYI; HOLTE, 2000) partition each variables

domain in sets of values that are considered equal. Domain abstractions are more general

than PDBs because a domain abstraction that considers all values of a variable equal

corresponds to a PDB. This allows a more fine-grained definition of an abstraction and

perhaps a more informative heuristic. In domain abstractions, the partition is made for all

abstract states where the more general Cartesian abstraction (SEIPP; HELMERT, 2013;
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SEIPP; HELMERT, 2014) allows to partition each state individually. Thus, one abstract

state may correspond to a single concrete state while another abstract state corresponds to

half of the states from the state space.

Cartesian abstractions are built in an iterative process based on the counterexample-

guided abstraction refinement methodology. It starts from an abstraction that generates

an abstract state space with a unique abstract state where all states are mapped to a single

abstract state. The algorithm iteratively computes solutions to the abstract state space and

checks if the computed solution is also a solution for the concrete state space. If it fails,

it refines the abstract state space such that the same failure cannot occur in future itera-

tions. Space and time limit this iterative process. The resulting abstractions were shown

experimentally to be efficient admissible heuristics.

2.4.5 Implicit Abstractions

Previous abstraction heuristics such as PDBs, merge-and-shrink and domain ab-

stractions require a moderate size abstract state space that can be explored exhaustively.

Implicit abstractions, proposed by Katz and Domshlak (2008b), Katz and Domshlak

(2009), impose a different restriction on the abstract state space. Instead of size it re-

quires tractability. An implicit abstraction transforms a state space into an abstract state

space such that optimal solutions for the abstract state space can be computed in polyno-

mial time. This type of abstraction does not limit the size of the abstract state space and

proved to be effective in practice.

2.5 Landmark Heuristic Functions

A landmark is something that every solution must accomplish at some point to

achieve the goal. A fact landmark is a variable value that must be true at some point in

every solution (HOFFMANN; PORTEOUS; SEBASTIA, 2004). The values of variables

on initial and goal states are fact landmarks. An action landmark is an action that must

occur in every solution. A disjunctive set of landmarks is a set in which at least one of

the landmarks must occur in every solution. Landmarks are implicit sub-goals. They

were initially used to decompose the problem into subproblems, enabling to try to solve

each subproblem individually. Orderings between landmarks are possible, for example,
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a landmark A must be achieved before another landmark B; or a landmark A must be

achieved directly before a landmark B.

Initially, landmarks were proposed as a method to decompose problems. Re-

cently, many heuristic functions were proposed based on landmarks. Richter, Helmert

and Westphal (2008) proposed a non-admissible path dependent heuristic function that

estimates the distance to the goal state of a state by the number of landmarks yet to be

achieved. Karpas and Domshlak (2009) introduced an admissible landmark multi-path

dependent heuristic function using a cost-partition approach to guarantee admissibility.

The landmark-cut proposed by Helmert and Domshlak (2009) is the result of theoreti-

cal research on the relation between different heuristic functions. Landmark-cut is an

admissible heuristic that uses an advanced strategy to compute sets of disjunct action

landmarks. Bonet and Helmert (2010) and Pommerening and Helmert (2013) improved

the landmark-cut introducing new approaches to combine the information of landmarks

admissibly and to compute them. Landmark-cut is one the most successful heuristics in

domain-independent planning.

To decide if a fact is a fact landmark is PSPACE-complete. Thus, in general, to

decide if a fact is a fact landmark methods use a sufficient criterion in a relaxed version of

the problem. An action landmark can be efficiently detected. If a relaxed problem without

an action a in unsolvable then, a is an action landmark. There is a fundamental difference

between abstractions and landmarks: an abstraction heuristic explores distances in the

state space, whereas a landmark heuristic explores the structure of the state space.

2.6 Moving-Blocks Problems

In this section, we present the class of moving-blocks problems. We start review-

ing in detail Sokoban and related literature. Then, we present generalizations of Sokoban.

Finally, we present other examples of similar problems.

2.6.1 Sokoban

Sokoban can be solved as a state space problem. It is set on a maze grid, which is

defined by squares occupied by immovable blocks (walls) and free squares. There are k

movable blocks called stones and k goal squares. The man (Sokoban) is a movable block
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Figure 2.3: Heuristic function of Sokoban computed by a minimum cost perfect matching
in a bipartite graph with domain-dependent enhancements.

(a) Example of an instance.

Goals

Stones G2 I3 I4 I5

H2 1 ∞ ∞ ∞
D3 4 5 6 7
E3 3 4 5 6
G4 2 3 4 5

(b) Naive distances.

Goals

Stones G2 I3 I4 I5

H2 1 ∞ ∞ ∞
D3 6 5 6 7
E3 5 4 5 6
G4 2 9 10 11

(c) Backout conflicts.

that can traverse free squares and push stones to adjacent free squares. A solution of

Sokoban is a sequence of such actions that move the stones from their initial positions to

the goal squares. The most common objective is to find a solution which minimizes the

number of pushes, without accounting for the moves of the man. In this thesis, we are

interested in an admissible solver for this objective. An admissible solver always finds an

optimal solution to an instance if one exists, while a non-admissible solver can return any

feasible solution.

In Sokoban, a state is defined by the positions of the k stones and by the reachable

component of the man, i.e., the set of free squares reachable by the man without pushing

stones. A reachable component can be represented by a normalized position of the man,

e.g. the leftmost upper free square of the component. A goal state is defined implicitly as

a state in which each stone is on a different goal square. Sokoban has k! goal states since

the stones are unlabeled and can be placed on any goal square. A deadlock is a state u ∈ S

which is reachable from s but cannot reach any goal state. In general deadlocks are hard

to detect. A particular situation of deadlocks in Sokoban is caused by dead squares. A

free square is dead if a stone on it cannot be pushed to any goal square. By this definition,

a goal square is never a dead square, since if a stone is on it, the stone is already located

at a goal square and then it does not need to be pushed.

Sokoban is a simplified model of general robot motion planning that computes a

collision-free path between origin and destination points, which is a fundamental problem

in robotics and has a large range of applications (DOR; ZWICK, 1999). There is a stan-

dard set of 90 problem instances used in the literature, ordered roughly from easiest to

hardest in difficulty for a human to solve. Table 2.1 shows some search space properties

of these instances. Sokoban is a challenging problem, and one of the remaining puzzles

which humans solve better than computers. All instances of the standard set have been

solved by humans, but even the best non-admissible solvers are not able to solve all of
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them. Sokoban is PSPACE-complete (CULBERSON, 1999), and is harder to solve than

other well-known single-agent search problems like Rubik’s cube or the 24-puzzle, due

to its large branching factor, greater solution length, larger search space size, and a more

complex computation of the heuristic value (JUNGHANNS; SCHAEFFER, 2001). Real

world problem characteristics like the presence of deadlocks, states that are more com-

plex to represent and generate, and a lack of symmetry also contributes to the difficulty of

solving Sokoban. For this reason, only a few instances have been solved with admissible

techniques, and most of the Sokoban solvers are concerned only with finding a solution

using techniques without optimality guarantees.

Table 2.1: Search space properties of the standard set of instances of Sokoban.

Branching Solution Search Space Stones Free Non-dead
Factor Length Size Squares Squares

Min. 0 97 108 6 49 41
Avg. 12 260 1018 16 113 77
Max. 136 674 1031 34 181 133

2.6.1.1 Rolling Stone

Rolling Stone is one of the best-known solvers for Sokoban. It comes in an ad-

missible and a non-admissible version. Both use an IDA∗ search and multiple domain-

independent and domain-dependent enhancements. The admissible version, which we

call RS∗, uses techniques like an enhanced heuristic, move ordering, tunnel macros, trans-

position and deadlock tables. When limited to explore 20 million nodes and with a dead-

lock table of approximately 22 million entries it solves six instances. Prior to the work

in this thesis, RS∗ was the best admissible Sokoban solver (JUNGHANNS; SCHAEF-

FER, 2001). In an attempt to solve more instances, the non-admissible version, referred

to as RS, applies techniques that do not guarantee optimality such as goal cuts, pattern

searches, relevance cuts, overestimation, and rapid random restart. RS is able to solve 57

instances within the same limits.

2.6.1.2 Other Solvers

Botea, Müller and Schaeffer (2002) proposed planning on an abstraction of the

search space. Applied to Sokoban they obtain a non-admissible solver which is able

to solve ten instances from the standard set in less than three minutes and exploring
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fewer than one million nodes. Demaret, Lishout and Gribomont (2008) describes a non-

admissible solver that uses a hierarchical planning strategy along with deadlocks learning

to solve Sokoban. Using this approach, they were able to solve 54 instances from the

standard set. In this case, the stopping criterion was eight hours of running time per

instance.

The state-of-the-art non-admissible solvers have been developed by the Sokoban

community. Among the ones with the best results, JSoko is able to solve 71, YASC 79,

and Takaken 86 instances (MEGER, 2014; DAMGAARD, 2014; TAKAHASHI, 2014;

Sokoban Wiki, 2014). Since these results have not been published formally, it is not

always clear which techniques have been used to achieve them.

2.6.1.3 Heuristics for Sokoban

The best heuristic for Sokoban was proposed by Junghanns and Schaeffer (1998b).

To obtain a lower bound, it relaxes the restriction that a stone can block the path of an-

other stone. The distance of a stone to every goal square can be computed by solving an

instance with only one stone. For the example in Figure 2.3a these “naive distances” can

be seen in Figure 2.3b. Since each stone has to be assigned to a different goal square,

the smallest number of pushes needed to bring each stone to a different goal square is

a valid lower bound. This number is equal to the minimum cost of a perfect matching

in the complete bipartite graph between stones and goal squares where the weight of a

stone-goal edge is the naive distance of the stone from the goal. A minimum cost perfect

matching can be found in O(k3), where k is the number of stones (KUHN, 1955). We

call this heuristic function MM. MM is the optimal solution value of an instance where

the capacity constraints of the free squares have been relaxed, allowing several stones and

the man to have the same position.

Two enhancements of MM were proposed by Junghanns and Schaeffer (1998b).

The first takes backout conflicts into account. Backout conflicts consider the position of

the man when his movement is restricted in articulation squares by a stone. An articulation

square is a square that if removed disconnects the connected component of the instance.

Figure 2.3c shows the distances obtained when considering backout conflicts. Improved

distances are shown in bold. For example, the distance of the stone at G4 to goal I3

increases from three to nine, since when considering the position of the man, the shortest

path taking backout conflicts into account is G4-G3-F3-E3-D3-E3-F3-G3-H3-I3.

The second enhancement is linear conflicts (LC) which increases the heuristic
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value by two when a pair of adjacent stones is in the optimal path of each other: since for

adjacent stones either the horizontal or the vertical movements are blocked, some move

in the orthogonal direction must reduce the distance to some goal. Otherwise, the lower

bound can be increased by two. In Figure 2.3a a linear conflict occurs between stones at

D3 and E3.

Backout and linear conflicts preserve admissibility. When combined with MM we

obtain the enhanced MM (EMM). EMM is the heuristic function used by RS∗ (JUNG-

HANNS; SCHAEFFER, 2001).

2.6.1.4 Pattern Databases for Sokoban

Deadlock tables and pattern searches, proposed by Junghanns and Schaeffer (2001),

and other techniques that store the exact solution of subproblems (BOTEA; MÜLLER;

SCHAEFFER, 2002), can be seen as precursors of PDBs in Sokoban. Deadlock tables

exhaustively enumerate all possible configurations of a small rectangular area, and ana-

lyze, for each configuration, if the stones can be removed from the area. Configurations

for which this is not the case are considered deadlocks. RS uses areas of five by four

squares. The resulting 22 million entries are stored in a deadlock table. A deadlock table

is independent of the instance and has to be computed only once. A state is a deadlock if

a part of its configuration is found in the deadlock table. Pattern searches are computed

by sub-searches for each instance during the main search trying to identify speculatively

deadlocks and penalties to add to the heuristic value. These penalties are added in a non-

admissible way (JUNGHANNS, 1999, p. 88) and thus can lead to non-optimal solutions.

However, these approaches miss important characteristics of PDBs like an abstract

goal state and the computation of the distance of a set of abstract states to the abstract

goal state by backwards search. They are also not designed to be used as an admissible

heuristic function. For example, RS with deadlock tables and pattern searches, using as

lower bound only the value found by pattern searches, is unable to find a solution for any

of the instances of the standard set.

The seminal article of Edelkamp (2001) introduced PDBs to domain-independent

planning. One of the test beds used was Sokoban on a set of 52 automatically generated,

small instances. The author transformed Sokoban into a problem with an explicit goal

state by mapping stones one-to-one to goals. In this way, some instances may have longer

solutions or even become unsolvable. Compared to other optimal domain-independent

planners using PDBs produced significantly better results. Haslum et al. (2007) improved



32

the application of PDBs in domain-independent planning by presenting an approach to

select good abstractions automatically. Again Sokoban was used as a test bed, but with-

out mapping stones to goal squares. They were able to solve 28 of 40 instances selected

from “microban”, which is considered an easy Sokoban test set. Recently Sievers, Or-

tlieb and Helmert (2012) introduced an efficient implementation of the approach proposed

by Haslum et al. (2007) in the state-of-the-art domain-independent planner Fast Down-

ward (HELMERT, 2006a).

2.6.2 Generalizations

The class of moving-blocks problems can be obtained by changing three compo-

nents of the Sokoban problem: the goal, the type and restrictions of moves. The standard

move is to push one stone to an adjacent free square. We can change the type of the move

from push-only to pull-only, or allow to push and pull stones. We can relax the restriction

of pushing at most one stone at a time and allow the man to push up to a fixed number k

or an unlimited number (denoted by ∗) of stones at once. We can also restrict the moves

to slide versions: a pushed stone slides until it hits an obstacle, and a pulled stone slides

together with the man until the man hits an obstacle.

Two decision problems are associated with a problem. In the storage decision

problem, each stone must be at a distinct goal square in the goal configuration. In the

path decision problem, there is only one goal square, which the man must reach in the

goal configuration. Stones do not have goal squares in this version. Formally we have:

Definition 2.6.1 (Moving-blocks problem). Given a maze with a set of k stones, the man

with a type of move (push, pull or, push and pull) and restriction (1, k, ∗ and unit or slide),

and a goal configuration, is there a sequence of moves that reaches the goal configura-

tion?

Definition 2.6.2 (Storage version of a moving-blocks problem). Given a moving-blocks

problem with k stones and a set of k goal squares, is there a sequence of moves that places

each stone at a distinct goal square?

Definition 2.6.3 (Path version of a moving-blocks problem). Given a moving-blocks prob-

lem and a goal square, is there a sequence of moves that enables the man to reach the

goal square?
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The literature uses the nomenclature MOVE-N , where MOVE stands for the type

of the move and N stands for the number of stones that the man can move at once (DE-

MAINE; DEMAINE; O’ROURKE, 2000). The type of the move can be PUSH, PULL or

PUSHPULL and the number of stones moved at once 1, k or ∗. MOVEMOVE problems

have slide restriction. For example, PUSHPUSHPULLPULL is a problem with push and

pull moves restricted to slide versions. We add the suffix -S for problems with a storage

goal and the suffix -P for problems with a path goal. We omit suffix if a statement is valid

for both problem variants. PUSH-1-S corresponds to Sokoban.

Taking in account all possibilities for these three components we end up with 36

different problems. One common generalization in the literature, not studied in this thesis,

is to remove walls, leaving only movable blocks.

2.6.3 Examples

In this section, we present another problem that is part of the class moving-blocks

problems. We also present two problems that are very similar to problems in the class of

moving-blocks problems.

2.6.3.1 Pukoban

Pukoban is a moving-blocks problem similar to Sokoban. The main difference is

the set of available actions. The man can also pull stones to adjacent free squares. In

Sokoban, the state space is directed; thus deadlocks can be formed. In Pukoban, the state

space is undirected; every action is reversible. Thus, deadlocks cannot be formed.

These additional actions make the two problems different – many techniques that

are effective in Sokoban cannot be used in Pukoban. The four additional actions increase

the branching factor, making the problem harder. However, the absence of deadlocks

enable us to make other assumptions that could lead to new techniques. Pukoban corre-

sponds to the problem PUSHPULL-1-S. In Chapter 3 we prove that Pukoban is PSPACE-

complete.

There is no hard standard set of instances for Pukoban. However, since every

instance of Sokoban is also solvable under the rules of Pukoban, the xSokoban set is used

in the literature. Zubaran and Ritt (2011) proposed a solver based on A∗ for Pukoban.

It uses several domain-dependent techniques. The heuristic function used is the MM.
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The basic version of the solver using only the heuristic function and a tie breaking rule

can solve 15 instances while a similar configuration in Sokoban can solve 10. They also

propose a technique that is similar to linear conflicts. It computes penalties between two

stones in a preprocessing phase. These penalties are added to the heuristic value during

the search. The final version of their solver can increase the number of solved instances

to 20.

2.6.3.2 Atomix

Atomix is a sliding-block problem defined on a maze grid. The maze is defined

by walls, and there are k movable blocks (atoms). Different from Sokoban, the atoms are

labeled, but there are atoms with the same label. The goal is to form a molecule i.e. a

predefined pattern from the atoms. The actions available in Atomix could be understood

as a PUSHPUSHPULLPULL without a man – a PUSHPULL problem with slide moves.

Each atom can be moved up, down, right and left; it keeps on moving until it hits another

atom or wall. The state space is directed. Thus, deadlocks are possible. Holzer and

Schwoon (2004) show that Atomix is PSPACE-complete.

There is a standard set of 97 instances. Hüffner et al. (2001) developed a domain-

dependent solver for Atomix based on A∗. They investigate several heuristic search tech-

niques and were able to solve optimally 35 instances. The main difficulty in developing a

heuristic search approach to Atomix is to create an effective admissible heuristic function.

The distances of atoms to the goals depends on the interaction with other atoms. Hüffner

et al. (2001) propose a heuristic based on two ideas. They relaxed the capacity constraint

of squares, allowing atoms to pass through other atoms. Additionally, they removed the

slide constraint: atoms can stop at any desirable square. The distances of the relaxed

problem are used as a heuristic function for the original problem. The proposed heuristic

is the weakest point of the Hüffner et al. (2001) solver, and a better heuristic will likely

improve their results. There are many similarities between moving-blocks problem and

Atomix. We believe that some of our techniques could be used to improve the results in

this problem – in particular the heuristic function.

2.6.3.3 Airport Ground Traffic Planning

Airport (TRUG; HOFFMANN; NEBEL, 2004) is a real-world problem introduced

in the 4th International Planning Competition. It models the ground traffic planning of
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airplanes. Each airplane must be moved from its original location to its destination. The

problem is defined on a segment graph. There are k airplanes, m park segments and n

runway segments. Each airplane is moved by a set of complex actions. The purpose

of these actions is to model realistic safety conditions (HOFFMANN et al., 2006). In a

more abstract view, these action can be understood as push and pull actions. There is a

set of 50 instances that range from simple instances with one airplane to instances that

model realistically the Munich Airport with 15 airplanes. A state-of-the-art heuristic can

solve 38 of 50 instances optimally (HELMERT; DOMSHLAK, 2009). This problem is

PSPACE-complete (HELMERT, 2006b).
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3 MOVING-BLOCKS PROBLEMS ARE PSPACE-COMPLETE

In this chapter, we study the computational complexity of a PUSH and PUSHPULL

problems. The chapter is organized as follows. In Section 3.1 we review the literature

presenting the hardness results for moving-blocks problems. In Section 3.2 we prove

that PUSH and PUSHPULL problems are PSPACE-complete using the Nondeterministic

Constraint Logic presented in Subsection 3.1.1. In Section 3.3 we discuss the results and

we conclude in Section 3.4.

3.1 Previous Works

In this section we first introduce Nondeterministic Constraint Logic and, in Sub-

section 3.1.2, we review the previous hardness results for related moving-blocks prob-

lems.

3.1.1 Nondeterministic Constraint Logic

Nondeterministic Constraint Logic (NCL) is a framework developed by Hearn

and Demaine (2005) to decrease the effort of proving PSPACE-hardness results. NCL is

usually used to prove that puzzles and games (e.g. sliding-blocks puzzles and Rush Hour)

are PSPACE-hard. It is based on a constraint graph. A constraint graph is an oriented

graph with edge weights in {1, 2}. An edge with weight 1 is called red and an edge with

weight 2 is called blue. Each vertex has a minimum inflow constraint of 2, i.e., the sum of

the weights of inward-directed edges must be at least 2. A move on the constraint graph

is to reverse an edge orientation resulting in a valid configuration.

The framework has two base components: OR and AND vertices. Figure 3.1(a)

shows an OR vertex. It has three blue edges, A,B and C, and behaves similar to a logical

OR. A blue edge can be directed outward if and only if at least one of the other two blue

edges is directed inward. Figure 3.1(b) shows an AND vertex. It has two red edges, A

and B, and one blue edge C and behaves similar to a logical AND. The blue edge can

be directed outward if and only if both red edges are directed inward. Different from

logical OR and AND gates, in NCL there is no notion of inputs and outputs. For example,

in an AND vertex when the blue edge is directed inward, both red edges can be directed
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Figure 3.1: Basis vertices of NCL.
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(a) OR vertex.
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(b) AND vertex.

outward.

There are two basic decision problems in the NCL framework. In the Configuration–

Configuration version we have to decide if there is a sequence of moves that transforms

a given constraint graph in configuration A into a configuration B. In the Configuration–

Edge version we have to decide if there is a sequence of moves on a given constraint graph

that terminates reversing a given edge e. Hearn and Demaine (2005) prove the PSPACE-

hardness of both problems by reduction from the PSPACE-complete problem Quantified

Boolean Formulas (GAREY; JOHNSON, 1979).

In the NCL framework every constraint graph is equivalent to a planar constraint

graph. Thus, to show that a particular problem is PSPACE-hard one needs to show how

to construct OR and AND gadgets in the problem of interest and how to connect them into

an arbitrary planar constraint graph.

3.1.2 Previous Hardness Results for Moving-Blocks Problems

Dor and Zwick (1999) introduced the family of moving-blocks problems based

on Sokoban and proved that PUSH-1-S is NP-hard by giving a polynomial time reduction

from the Satisfiability Problem (SAT). They also proved that PUSHPULL-k-S for k greater

or equal to five is NP-hard by a reduction from SAT. They leave open the question if

Sokoban is PSPACE-complete or NP-complete.

Culberson (1999) solved the open problem posed by Dor and Zwick (1999). He

was able to prove that the problem PUSH-1-S or Sokoban is PSPACE-complete showing

how to construct a Sokoban problem corresponding to a linear space-bounded Turing ma-

chine. The central idea of the proof is the use of the unrecoverable configurations present

in Sokoban to build the gadgets. The unrecoverable configurations are used in the con-
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Figure 3.2: One way passage gadget used in the proof of PSPACE-hardness of Sokoban.

B
A

struction of the gadgets to restrict movements of the man. Some moves can be declared

prohibited even if the move is technically allowed, since no solution of the problem con-

tains such moves. Figure 3.2 shows one gadget used in the proof with that property. In

this gadget, the man can only pass from A to B, but not from B to A: the only possible

move of the stone to the left results in an unrecoverable configuration.

In a series of articles Demaine, Demaine and O’Rourke (2000), Demaine, Hearn

and Hoffmann (2002), Demaine et al. (2003), Demaine, Hoffmann and Holzer (2004)

proved complexity results for several moving-blocks problems considering the path de-

cision problem. Demaine, Demaine and O’Rourke (2000) proved the NP-hardness of

PUSH-1-P and PUSHPUSH-1-P , and both reductions are from SAT. Demaine, Hearn and

Hoffmann (2002) proved that PUSH-k-P with k greater or equal than two and PUSH-

∗-P are PSPACE-complete using a reduction from NCL. Demaine et al. (2003) proved

that PUSHPUSH-k-P and PUSHPUSH-∗-P are NP-hard with reductions from planar 3-

coloring and SAT, respectively. Later, they proved that PUSHPUSH-k-P is PSPACE-

complete (DEMAINE; HOFFMANN; HOLZER, 2004).

Ritt (2010) proved NP-hardness for several generalizations with PULL moves

considering the path decision problem. Using a reduction from planar 3-coloring he

proved that PULL-1-P , PULL-k-P , PULL-∗-P , PULLPULL-1-P , PULLPULL-k-P , and

PULLPULL-∗-P are NP-hard.

Table 3.1 shows the complexity of some of these problems. The results for prob-

lems PUSH-{k, ∗}-P , PULL-{k, ∗}-P , PULLPULL-{1, k, ∗}-P , and PUSHPULL-k-{P, S}

require walls. The remaining results are stronger, since they do not depend on walls, but

imply the hardness of the corresponding variant with walls (RITT, 2010).

3.2 Moving-Blocks Problems are PSPACE-complete

In this section, we prove that several moving-blocks problems with PULL and

PUSHPULL moves are PSPACE-complete by reduction from NCL.
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Table 3.1: Hardness results for moving-blocks problems. Problems hard for PSPACE are
also complete for PSPACE since all problems are in PSPACE.

Problem Storage Path

Hard for Reference Hard for Reference

PUSH-1 PSPACE Culberson (1999) NP Demaine and Hoffmann (2001)
PUSH-k with k ≥ 2 Open PSPACE Demaine, Hearn and Hoffmann (2002)
PUSH-∗ Open PSPACE Demaine, Hearn and Hoffmann (2002)
PUSHPUSH-1 NP O’Rourke et al. (1999) PSPACE Demaine, Hoffmann and Holzer (2004)
PUSHPUSH-k Open PSPACE Demaine, Hoffmann and Holzer (2004)
PUSHPUSH-∗ Open NP Demaine, Hoffmann and Holzer (2004)

PULL-1 Open NP Ritt (2010)
PULL-k Open NP Ritt (2010)
PULL-∗ Open NP Ritt (2010)
PULLPULL-1 Open NP Ritt (2010)
PULLPULL-k Open NP Ritt (2010)
PULLPULL-∗ Open NP Ritt (2010)

PUSHPULL-1 Open Open
PUSHPULL-k with k ≥ 5 NP Dor and Zwick (1999) NP Dor and Zwick (1999)
PUSHPULL-∗ Open Open
PUSHPUSHPULLPULL-1 Open Open
PUSHPUSHPULLPULL-k Open Open
PUSHPUSHPULLPULL-∗ Open Open

Figure 3.3: Blocks used to build the gadgets, in order from left to right: red stone, blue
stone, yellow stone, highlighted square and wall.

The gadgets are built using five basic blocks (Figure 3.3). Red, blue and yellow

stones are “triggers" whose motion serves to satisfy the vertex constraint. Blue and red

stones represent blue and red edges. Yellow stones are used in the interior of the gadgets

and do not correspond to elements of the NCL. Highlighted squares are used to specify

some set of squares related to the transition of the state of an edge. Dark gray blocks are

walls. Finally, the man is not shown since the gadgets below are designed such that the

man can freely move to any empty (white) square in all valid configurations.

Definition 3.2.1 (Input). An input configuration is given by a n ×m matrix where each

cell is marked free, wall, stone, goal or man.

An input configuration can be stored using three bits for each cell. Different con-

figurations resulting from moves of the man or stones can still be stored using the same

space. All problems considered in this thesis are in PSPACE. A configuration and the

total number of configurations can be represented in polynomial space. So the problem

is in PSPACE, since we can non-deterministically execute a sequence of valid moves up

to an upper bound on the number of configurations by using a counter. Containment in
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PSPACE then follows from Savitch (1970)’s theorem.

3.2.1 PULL Problems are PSPACE-complete

In this subsection, we prove that PULL-{1, k, ∗}-S and PULLPULL-{1, k, ∗}-

{P, S} are PSPACE-complete. We show how to build OR and AND gadgets, and how

to connect them into an arbitrary planar constraint graph. We demonstrate that the gad-

gets maintain the constraints required to emulate NCL. First, we give the constructions

for the PULL-1-S problem – the dual problem of Sokoban. Later, we show that the same

set of gadgets can be employed to demonstrate PSPACE-completeness of a broader set of

problems with pull-only moves.

PULL problems have a common kind of unrecoverable configuration when the

man gets trapped in the interior of the gadget. There are some moves that are reversible

in isolation, but due to interactions with other stones the man can get trapped, surrounded

by stones and walls, and be unable to reverse the move. This type of unrecoverable con-

figuration will be central to our proof in order to maintain the inflow constraint at each

gadget. When considering problems with the storage goal we construct the gadgets such

that each stone can be pulled to only one goal square. This leads to another unrecoverable

configuration, where a stone may be unable to reach its goal position. These additional

restrictions facilitate the construction of the gadgets, compared to the path versions. The

storage decision problem directly corresponds to the Configuration–Configuration deci-

sion problem of NCL. Each edge has a defined direction in the goal configuration as each

stone has a defined goal square in our construction.

We show an NCL OR vertex gadget of a PULL-1-S problem in Figure 3.4. In

the vertex gadget, stones A and B represent outward-directed edges, and the stone C

represents an inward-directed edge. A switches state being pulled two units left, B two

units right, and C two units down.

Lemma 3.2.1. The construction of Figure 3.4 satisfies the constraints of an NCL OR

vertex.

Proof. We need to show that C may switch state if and only if A or B switch state first.

If C switches state without first A orB switching state, then the gadget will be in an unre-

coverable configuration, since the man must pull C two units down and will be trapped in

the interior of the gadget. Other moves to change the state of C are possible, like pulling
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Figure 3.4: PULL OR gadget.
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Figure 3.5: PULL AND gadget.
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A one unit left and one unit up, but these moves lead to an unrecoverable configuration.

A symmetric reasoning is also valid for A and B.

Next, we construct an NCL AND vertex gadget of the PULL-1-S problem in Fig-

ure 3.5. In the gadget, stones A and B represent outward-directed red edges, and stone C

represents an inward-directed blue edge. Stone B switches state by moving two units

right, and stone A by moving two units left. Stone C switches state by moving three units

down.

Lemma 3.2.2. The construction of Figure 3.5 satisfies the constraints of an NCL AND

vertex.

Proof. We need to show that C may switch state if and only if A and B switch state

first. If C switches state without A and B changing state, then the gadget will be in an

unrecoverable configuration, since the man will be trapped, surrounded by stones B and

C, and walls. If only A changes state then we still cannot switch C. If only B switches
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Figure 3.6: PULL gadget connection.
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state, and thenC switches state, again the gadget will be in an unrecoverable configuration

and now stone A will block the path of the man. If C is outward-directed, and A or B

changes state, the gadget will be in an unrecoverable configuration. When C is inward-

directed, A and B may freely change state. There are other moves that would enable C to

change state like moving A one unit down, but these movements are non-reversible.

We showed how to construct OR and AND vertices for PULL-1-S problems. We

now show how to connect the vertices into an arbitrary planar constraint graph. The basic

idea is to connect gadgets using a tunnel. We use the tunnel of Figure 3.6 to propagate

the “signal” between two vertices that share an edge. Figure 3.6 is constructed from

partial terminal positions of stones in OR and AND gadgets. Stone B switches state by

being pulled to the highlighted square. For B to switch state the path through C must

be open. After B changes state, the path through A is open. Pulling B one unit right is

an intermediate position and does not have an effect in the gadgets. The orthogonal path

(D and E) serves only to guarantee global access to the man. Without orthogonal paths

the man could be locked in a cycle. Squares D and E could be used to store stone B

and open paths from A and C at the same time, but since this move is non-reversible it is

prohibited.

Figure 3.7 shows an example of a connection between AND gadgets through a

red edge. Stones A, B and C represent a single red edge from the NCL. To change the

state of A, first B must be pulled, but for this first C must be pulled to the right. This

propagates the “signal” between vertices. After C is moved to the right, A and C will

block their respective gadgets. At this moment, the edge is outward-directed in both

gadgets and other edges would be responsible to maintain the inflow constraint. This

intermediate state does not give more freedom to the constraint graph. At each step the

edge will be inward-directed to only one gadget.
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Figure 3.7: Connection of two AND gadgets using a red edge.
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Theorem 3.2.1. PULL-1-S is PSPACE-complete.

Proof. By reduction from the Configuration–Configuration version of NCL. Given a pla-

nar OR and AND constraint graph, we build a PULL-1-S problem as described above,

corresponding to the initial configuration of the constraint graph. We place a goal square

for each corresponding edge direction of the goal configuration of the constraint graph.

By the construction of the gadgets, the constructed problem has a solution if and only if

the original NCL problem has a solution.

Corollary 3.2.1. PULL-k-S and PULL-∗-S are PSPACE-complete.

Proof. The man has access to only one stone at a time, and there is no sequence of moves

that leaves two stones in contact. Thus, giving more strength to the man does not change

the functionality of the gadgets.

Corollary 3.2.2. PULLPULL-1-S, PULLPULL-k-S and PULLPULL-∗-S are PSPACE-

complete.

Proof. The sliding versions do not lead to new configurations, and all moves needed by

the gadget functionality can be performed by slide moves.

We now turn to the path decision problem. In the path decision problem, we do

not have goal squares for stones. Thus, we are not able to prohibit some non-reversible

moves that could break the gadgets. However, when only slide moves are allowed the

same set of gadgets can be used to prove PSPACE-completeness for path versions.



44

In the OR gadget only moves that switch the state of edges are possible, and no

moves that could lead to an invalid configuration can be performed. The same is valid for

the connection gadget. In the AND gadget, pulling stone B up or stone A down would

lead to an invalid configuration, leaving the man trapped in position D or E. Using slide

moves the man is not able to destroy the gadgets.

In the path version, the problem has one single goal square, which the man must

reach. Thus it makes sense to use the Configuration–Edge decision problem of NCL in

the reduction. We place the goal square at the initial square of the stone that corresponds

to the edge that must be reversed. With this construction, the man can reach the goal

square if and only if the stone switches state.

Theorem 3.2.2. PULLPULL-1-P is PSPACE-complete.

Proof. By reduction from Configuration–Edge version of NCL. Given a planar OR and

AND constraint graph, we build a PULLPULL-1-P problem as described above, corre-

sponding to the initial configuration of the constraint graph. We place a goal square at the

initial position of the stone that corresponds to the edge that must be reversed. The man

can reach the goal square if and only if the edge is reversed.

Corollary 3.2.3. PULLPULL-k-P and PULLPULL-∗-P are PSPACE-complete.

Proof. The man has access to only one stone at a time, and there is no sequence of moves

that leaves two stones in contact.

3.2.2 PUSHPULL Problems are PSPACE-complete

In this subsection, we prove that all PUSHPULL problems are PSPACE-complete.

We show how to construct OR and AND gadgets, and how to connect them into an arbi-

trary planar constraint graph. In PULL problems we have a single set of OR, AND and

connection gadgets used in all proofs. In PUSHPULL problems we have two sets of AND

and connection gadgets, a specific set for PUSHPULL-1 and its slide versions, and another

set for PUSHPULL-{k, ∗} and its slide versions. All proofs use the same OR gadget. We

start with a general discussion, then present the proofs for PUSHPULL-1 and PUSHPULL-

{k, ∗}.

PUSHPULL problems do not have unrecoverable configurations. Every move is

reversible: a push move can be undone through a pull move and vice versa. In PULL prob-
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Figure 3.8: PUSHPULL-1 OR gadget.
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lems, we use non-reversible moves to prohibit some moves, while in PUSHPULL prob-

lems this is not possible. The absence of unrecoverable configurations makes it harder to

construct the gadgets. Because of this, using the storage decision problem also does not

help to construct the gadgets. Every gadget that we use to prove that a PUSHPULL path

version is PSPACE-complete can also be used to prove that the equivalent storage version

is PSPACE-complete. This is done by changing the decision problem.

Another difference of the gadgets when compared to the ones of PULL problems is

that we use two or more stones for every edge. With push and pull moves the man is able

to store stones in squares that could not be used before. Therefore, we use more stones to

fill the space and guarantee that always at least one stone is blocking the main path in the

gadget. We will refer to every set of adjacent stones by the single label in one of them.

The unrecoverable configurations, when the man gets trapped in the interior of

the gadgets, were central to our proof for PULL problems. The same idea is central to

our proof for PUSHPULL problems. In the gadgets when the man makes a move and

gets trapped in the interior of the gadget he cannot change the state of any other edge.

Moreover, he cannot complete the sequence of actions that changes the state of the edge,

without first undoing the last move. Therefore, in every configuration in which the man

is able to switch the state of an edge, the global inflow constraint is satisfied.

We show an NCL OR vertex gadget for the PUSHPULL-1 problem in Figure 3.8.

The OR gadget for PUSHPULL is similar to the OR gadget for PULL. A, B and C switch

state being moved to the extreme opposite position. For A to switch state for example,

first, the labeled stone must be pulled two units left and then pushed one unit left. Next,

the second stone must be pulled one unit left and then pushed two units left.
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Lemma 3.2.3. The construction of Figure 3.8 satisfies the constraints of an NCL OR

vertex.

Proof. We need to show that C may switch state if and only if A or B switch state first.

When the man tries to switch the state of C, without first A or B switching state, the only

move allowed is to pull the first stone one unit down. This does not help since the man

would be locked in the interior of the gadget and would have to undo the move. For C to

switch state, he must first switch state of A, then C may switch state. Similarly, for B. A

symmetric reasoning is also valid for A and B. Other moves are possible, e.g. pulling B

one unit right and then one unit down. However, this does not help since the other stone

will continue blocking the path.

Next, we show an NCL AND vertex gadget for the PUSHPULL-1 problem in Fig-

ure 3.9. Stones A, B and C switch state moving to the maximum possible opposite

position. For example, for the edge A to switch state, the first stone could be pulled two

units left and then pushed one more unit left. Next, the second stone could be moved

similarly. When C is inward-directed, the red edges may freely switch state as in an NCL

AND vertex.

We use two sets of yellow stones D and E to enforce the restriction of the gadget

and to act as a buffer that makes the red edges independent. To C switch state, first red

edges A and B must be inward-directed by moving A to the left and B to the right. The

next step is to move D and E. To D change state the three stones must be placed on the

highlighted squares, but this is only possible if the stones E change state first. In this way,

an order is enforced to move the yellow edges.

Lemma 3.2.4. The construction of Figure 3.9 satisfies the constraints of an NCL AND

vertex.

Proof. We need to show that C may switch state if and only if A and B switch state.

If C switches state without first A and B switch state, then the man will be trapped in the

interior of the gadget. To C change state first D and E must change state. The only way

to open the path to switch the state of C is to placeD andE in their respective highlighted

squares. To D and E change state, A and B must switch state.

We showed how to construct AND and OR vertices for PUSHPULL-1. It remains

to show how to connect the vertices into arbitrary planar graphs. The basic idea shown

in Figure 3.10 is to connect the gadgets using tunnels with three stones that propagate
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Figure 3.9: PUSHPULL-1 AND gadget.
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Figure 3.10: PUSHPULL-1 connection.

D
A B C

E

the “signal” between gadgets. The three stones switch state moving to the highlighted

squares on the right. Three stones are necessary because two stones could be stored in the

orthogonal path, at squares D and E, but using three stones, at least one will block the

path in the tunnel.

Theorem 3.2.3. PUSHPULL-1 is PSPACE-complete.

Proof. By reduction from the Configuration–Edge version of NCL. Given a planar AND

or OR constraint graph, we build a PUSHPULL-1-P problem as described above, corre-

sponding to the initial constraint graph configuration. We place the goal square at the

initial square of the labeled stone that corresponds to the edge that must reverse. The man
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can reach the goal square if and only if the edge is reversed. Similar for a PUSHPULL-1-S

problem, by reduction from the Configuration–Configuration version of NCL, we place a

set of goal squares for each corresponding edge direction of the goal configuration of the

constraint graph.

Corollary 3.2.4. PUSHPUSHPULLPULL-1 is PSPACE-complete.

Proof. All moves necessary to the gadget functionality can be performed by slide moves,

with the exception of the connection gadget in Figure 3.10. In the gadget, the man must

use squares D or E to switch the state, and using only slide moves he cannot perform

these actions. We remove stone A and the leftmost highlighted square maintaining stones

B and C in the squares shown in the gadget. Then, the man can pull C to the right and

later push B to the right. Since the man cannot store stones on squares D and E, two

stones are sufficient to guarantee that at least one of them must be pulled, ensuring the

properties of the gadget.

The gadgets used to prove that PUSHPULL-1 is PSPACE-complete cannot be used

to prove that PUSHPULL-k and PUSHPULL-∗ are PSPACE-complete. For example, in

the connection gadget from Figure 3.10 with k = 3, the man can pull the three stones one

unit right and then push them further to the right. This would open the path to the gadget

connected at the left without enforcing that the gadget connected to the right changes state.

A similar situation occurs in the AND gadget. The blue edge can switch state without the

left red edge be inward-directed. With k = 3, we change the state of D without switching

state of A. The OR gadget can be used for k and ∗ versions since the first pull move

already locks the man inside of the gadget. Thus, we have to show how to construct the

AND and the connection gadget for the k and ∗ versions.

We show an NCL AND vertex gadget using the PUSHPULL-{k, ∗} problem in

Figure 3.11. This gadget is similar to a PULL AND gadget. In the gadget, the stones A

and B represent outward-directed red edges, and the two stones C represent an inward-

directed blue edge. Stones A, B and C switch state moving to the highlighted squares.

Note that for B to switch state independently of A the man must pull two stones at once.

Thus, this gadget cannot be used in the proof of PUSHPULL-1.

Lemma 3.2.5. The construction of Figure 3.11 satisfies the constraints of an NCL AND

vertex.

Proof. We need to show that C may switch state if and only if A and B switch state. If C

switches state without first A and B switching state, then the man will be locked in the
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Figure 3.11: PUSHPULL-{k, ∗} AND gadget.
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Figure 3.12: PUSHPULL-{k, ∗} connection.
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interior of the gadget. If only B switches state and then C switches state, the man will be

locked by A. We must first switch the state of A and B. Then, C may switch state using

the path opened, and the man may leave the interior of the gadget.

Figure 3.12 shows the connection gadget. Similar to the one used for PUSHPULL-

1 it uses the same three stones, has the same type of orthogonal path, and end connections.

The main difference is that the gadget enforces that the man uses paths from A and B to

switch state of the three yellow stones. Thus, the man must first switch the state of the

gadget connected toB to change the state of the stones. In the same way squaresD andE

could be used to store stones, but at least one stone will block the path of the tunnel.

We describe in detail how to switch the state of the connection gadget using only

slide moves. First, E must be pulled and then pushed up. Next, C and D can be pushed

to right and D pulled up and to the right. Then, C can be pushed to the right, pulled and

pushed up. Then, D can be pushed back to the left. In this point the three stones form a

column from top to bottom E,C and D. Now E can be pulled to the right and C and D
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can be pushed up. E can be pushed to the left leaving C and E in contact, then C and E

can be pulled together to the right. Finally, D can be pushed up.

Theorem 3.2.4. PUSHPULL-{k, ∗} is PSPACE-complete.

Proof. By reduction from NCL Configuration–Edge. Given a planar AND and OR con-

straint graph, we build a PUSHPULL-{k, ∗}-P problem as described above, correspond-

ing to the initial constraint graph configuration. We place a goal square at the initial

position of the labeled stone that corresponds to the edge that must reverse. The man can

reach the goal square if and only if the edge is reversed. Similar for a PUSHPULL-{k, ∗}-

S problem, by reduction from the Configuration–Configuration version of NCL, we place

a set of goal squares for each corresponding edge direction of the goal configuration of

the constraint graph.

Corollary 3.2.5. PUSHPUSHPULLPULL-{k, ∗} is PSPACE-complete.

Proof. All moves necessary to the gadget functionality can be performed by slide moves.

3.3 Discussion

We have shown that several PULL problems are PSPACE-complete. Thereby, most

of the versions with PULL moves are as hard as the PUSH versions. We were able to show

the PSPACE-completeness for the whole class of PUSHPULL problems. Table 3.2 shows

the new complexity results obtained in this work.

We were able to show that PULLPULL-∗-P is PSPACE-complete. The equivalent

PUSH version is known to be NP-hard. We also were able to show that PUSHPULL-

1-P is PSPACE-complete while PUSH-1-P and PULL-1-P are NP-hard. The gadgets

used to prove the PSPACE-hardness of PUSHPULL-1-P are more complex than those

used in more relaxed versions of the problems. This reinforces the evidence that prov-

ing PSPACE-completeness of PUSH-1-P and PULL-1-P is harder than proving the same

hardness results for k and ∗ versions.

Our results only hold for versions with walls. We chose to analyze these variants,

since they still are a large class of relevant problems, and walls allow simpler gadgets

and proofs. In problems with only movable blocks, the gadgets would need additional

components to restrict moves. Moreover, using only movable blocks would not allow us

to work with problems where the man can push or pull an unlimited number of stones.
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Table 3.2: Hardness of moving-blocks problems with results of this work shown in bold-
face. Problems hard for PSPACE are also complete for PSPACE since all problems are in
PSPACE.

Problem Storage Path

Hard for Reference Hard for Reference

PUSH-1 PSPACE Culberson (1999) NP Demaine and Hoffmann (2001)
PUSH-k with k ≥ 2 Open PSPACE Demaine, Hearn and Hoffmann (2002)
PUSH-∗ Open PSPACE Demaine, Hearn and Hoffmann (2002)
PUSHPUSH-1 NP O’Rourke et al. (1999) PSPACE Demaine, Hoffmann and Holzer (2004)
PUSHPUSH-k Open PSPACE Demaine, Hoffmann and Holzer (2004)
PUSHPUSH-∗ Open NP Demaine, Hoffmann and Holzer (2004)

PULL-1 PSPACE This work NP Ritt (2010)
PULL-k PSPACE This work NP Ritt (2010)
PULL-∗ PSPACE This work NP Ritt (2010)
PULLPULL-1 PSPACE This work PSPACE This work
PULLPULL-k PSPACE This work PSPACE This work
PULLPULL-∗ PSPACE This work PSPACE This work

PUSHPULL-1 PSPACE This work PSPACE This work
PUSHPULL-k PSPACE This work PSPACE This work
PUSHPULL-∗ PSPACE This work PSPACE This work
PUSHPUSHPULLPULL-1 PSPACE This work PSPACE This work
PUSHPUSHPULLPULL-k PSPACE This work PSPACE This work
PUSHPUSHPULLPULL-∗ PSPACE This work PSPACE This work

One could think that a simple duality from PUSH-S problem is enough to prove

PSPACE-completeness for PULL-S problems. Since in PULL-S problems every stone has

a goal square we could place every stone at a goal square and solve the dual problem with

push moves, and thus answering yes if the dual problem has a solution. In fact, PULL-

S has goal squares for stones, but not for the man. We could solve the dual problem

for every possible position of the man and answering yes if one of them has a solution.

However, this ignores that the position of the man matters. For some positions of the man,

the instance may have a solution and for others not. Thus, a simple duality is not enough

to prove PSPACE-completeness.

3.4 Conclusion and Future Work

We have shown the PSPACE-completeness of a broad class of moving-blocks

problems. In particular, we improve the known NP-hardness results of PULL problems to

PSPACE-completeness results. We also were able to show the PSPACE-completeness of

the whole class of PUSHPULL problems.

In further research the complexity of PULL-k-P , PULL-∗-P , PUSHPUSH-∗-S,
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and PUSHPUSH-∗-P remains to be studied. After that the knowledge gap in Table 3.2

would be filled. Another possibility is to extend the results presented here to versions of

the problems without walls.

Two important research questions are still open. First, the exact complexity of

PUSH-1-P and PULL-1-P . This would enhance known complexity results of several

problems. Second, is there an interesting but still tractable moving-blocks problem?



53

4 SOLVING OPTIMALLY MOVING-BLOCKS PROBLEMS WITH HEURISTIC

SEARCH

In this chapter, we propose a heuristic search approach to optimally solve Sokoban

and Pukoban. The chapter is organized as follows. In Section 4.1 we present the main

contribution of this chapter the heuristic function based on the idea of applying PDBs

to intermediate goal states. In the Subsection 4.1.5, we present a standard application

of PDBs to Sokoban. In Section 4.2, we describe a domain-dependent tie breaking rule.

Next, in the Section 4.3, we present and discuss the computational results considering

Sokoban. Section 4.4 discusses how the techniques previously presented can be used in

Pukoban and present computational results. In Section 4.5, we discuss how heuristic dis-

tances to intermediate goal states could be used in other problems. Finally, in Section 4.6

we discuss results and future work.

4.1 Heuristic Functions Based on Pattern Databases

Consider a direct application of PDBs to Sokoban. A natural abstraction is to keep

only k′ of all k stones. This is admissible, since the cost of solving a subset of stones

never exceeds the cost of solving the whole instance. We can construct a PDB which

stores the shortest distance to the nearest abstract goal state. Since in Sokoban the goal

state is defined implicitly, every placement of the k′ stones on the k goal squares is an

abstract goal state. Figure 4.1 shows the abstract goal states for a toy instance with k = 4

and k′ = 2. We call this PDB the multiple goal state PDB (MPDB).

Figure 4.1: Set of abstract goal states of a direct application of PDBs to Sokoban.

(a) (b) (c) (d) (e) (f)

It turns out that MPDBs are ineffective as heuristic function. In this chapter we

propose a different approach which introduces the idea of an intermediate goal state. We

use PDBs to find a good heuristic value for the number of pushes necessary to reach the

intermediate goal state, and EMM to estimate the number of pushes from there to a goal

state. We compare the resulting heuristic with EMM, with MPDBs, and with the solvers

RS∗ and Fast Downward using PDBs.
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We show that applying PDBs to intermediate goal states can solve optimally more

problem instances in less time. On initial states the proposed heuristic finds 62 better

results and over a set of random initial states detects four times more deadlocks when

compared to EMM. We increase the number of instances solved optimally from 10 to 20.

All of them were solved using considerably fewer explored nodes and computation time

than previous methods.

In this section, we describe how instances can be decomposed into a maze zone

and a goal zone and define an intermediate goal state, explain the construction and storage

of the PDB, introduce a new heuristic, and show how to compute it efficiently. We also

demonstrate its consistency.

4.1.1 Instance Decomposition

Intuitively, if every stone has to pass over some fixed intermediate square to reach

any of the goal squares, we can decompose an instance into two subproblems. The first is

to bring all stones to the intermediate square, and the second is to move them from there

to the goal squares. This is a relaxation of the original problem and thus cannot be used to

solve it directly, but we can solve the two subproblems separately to obtain a lower bound

on the length of an optimal solution. The main advantage of this approach for Sokoban is

that it enables us to effectively apply PDBs to the first subproblem, since this subproblem

has a single, well-defined goal state. For the second subproblem any heuristic can be used.

A sequence P of squares is a stone-path from square a to square b with man at

square m, if there exists a solution of an instance with a single stone at a, a single goal

square at b and the man initially at m such that the stone visits exactly the squares in P .

Consider a fixed square c. We call a square a a maze square, if for all goal squares

b and all positions of the man m all stone-paths from a square a to b with man at m

contain c. The set of all maze squares forms the maze zone. Note that, by definition

square c is part of the maze zone. All other non-dead and non-goal squares are called

goal zone squares and form the goal zone. Each non-dead square c of the instance defines

a different decomposition into maze and goal zones. We call c the intermediate square

of that decomposition. A given decomposition corresponds to a new abstract state space

for the maze subproblem, which is obtained by relaxing the capacity constraints of the

intermediate square: we allow to place any number of stones and the man on it at the

same time. In the corresponding intermediate abstract goal state all stones are placed at



55

Figure 4.2: A Sokoban instance (a) and three different instance decompositions (b,c,d)
defined by three different intermediate squares. The instance decomposition in (d) has the
largest possible maze zone and thus it defines the cut square.

(a) (b)

(c) (d)

the intermediate square, and the man is in the single reachable component. By definition

of an intermediate square a stone can be pushed from the maze zone to the goal zone only

by passing over the intermediate square.

We define a cut square as the intermediate square that maximizes the size of the

maze zone. The set of cut squares can be obtained by analyzing all non-dead squares c.

For each square c a reverse search from all goal squares is run. During the reverse search,

we prohibit to place a stone on c, to limit the search to the goal zone. Then, all squares

reachable from goal squares belong to the goal zone, and all other non-dead squares to

the maze zone. Among all such squares, we choose one that maximizes the size of the

maze zone, since the PDB provides better heuristic values for the maze zone.

Figure 4.2 shows an example of an instance and three different decompositions.

The instance shown in Figure 4.2a has 40 non-dead and non-goal squares. Figure 4.2b

shows a possible decomposition into 13 maze squares (including the cut square) and 27

goal zone squares. The decomposition of Figure 4.2c has 28 maze squares and 12 goal

zone squares, and the one of Figure 4.2d has 41 maze squares and an empty goal zone.
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The decomposition of Figure 4.2d leads to the largest maze zone, and the black square

at I10 is the unique cut square of this instance. Note that the decompositions concern

only pushed stones, not the movement of the man. Even when placing a stone on the

intermediate squares in Figure 4.2 the reachable component of the man still includes all

free squares.

4.1.2 Construction and Storage of the PDB

The application of PDBs to Sokoban is different from other puzzles in two aspects.

First, in Sokoban each instance has a different state space and goal state. Thus, the PDB

must be constructed for each instance, and the construction cost cannot be amortized over

the solution of multiple initial states. This is also true for applications of PDB in domain-

independent planning and there is no simple solution for this problem. For example, when

considering the domain of Sokoban Haslum et al. (2007) report that 85% of the total time

is spent building the PDB. Therefore, PDBs must be constructed efficiently and should

be effective when used to guide the search. Second, in Sokoban the stones are unlabeled,

and thus a single PDB for a fixed number of k′ stones, can be used for every subset of k′

stones.

We call the PDB constructed using the intermediate abstract goal state an inter-

mediate pattern database (IPDB). The number of stones in the abstraction determines

the size of the IPDB. An IPDB-k′ uses an abstraction of k′ stones. It is constructed by

a reverse search starting from the intermediate abstract goal state. Since we are only in-

terested in distances to the maze zone, and stones on the cut square do not restrict the

movement of the man, moving them to the goal zone can neither increase the man’s free-

dom nor reduce the distance to the intermediate abstract goal state. Thus, we only allow

movements from and to maze zone squares, without losing admissibility.

Figure 4.3a shows an instance, its decomposition and the intermediate abstract

goal state for the construction of the IPDB. Figure 4.3b shows all the abstract states stored

in the IPDB-2 that were generated by the reverse search starting from the abstract goal

state. The distance to the abstract goal state is shown in the upper right corner of each

abstract state. The position of the man is normalized to the leftmost upper free square

of its reachable component. In this instance six squares are reachable by pull moves

from the cut square. Thus, there are
(
6
2

)
= 15 possible placements of the stones, and

for each placement thirteen squares remain free. So in the worst case, the IPDB stores
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Figure 4.3: Generation of the PDB for the maze zone.

(a) Example of an instance (left), its decomposition (center), and the intermediate abstract goal state for the
IPDB (right).

(b) All states generated by the construction of the IPDB.

15 × 13 = 195 abstract states. In practice the number of abstract states is much smaller,

since the number of reachable components of the man is less than the number of free

squares, usually 1 or 2, and not every placement of stones leads to a valid abstract state.

In the example the PDB contains only 21 abstract states.

When the IPDB is built from an abstract goal state with two stones, it can be stored

in a three-dimensional array with two indices for the position of each stone and one index

for the non-normalized position of the man. This is possible because an IPDB built from

two stones has a small number of entries. This storage enables fast queries since the index

for the positions of the stones and the man can be computed in constant time. For larger

IPDBs built from more than two stones (k′ > 2), this approach cannot be used, and we

store each abstract state in a hash table. In this way, the PDB fits into memory, but the
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cost of a query is higher, queries have to determine the reachable component of the man.

4.1.3 Computation of the Heuristic Function

Figure 4.4: Computation of the proposed heuristic in the maze zone. (a) Decomposition
of the instance of Fig 2.3a. (b) Matching graph for computing the maze zone lower bound
for an IPDB-2.

(a)
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(b)

The heuristic value of a state is the sum of the heuristic value for the maze zone,

obtained by the IPDB, a heuristic value for the goal zone, and global linear conflicts

between stones adjacent to the cut square and a stone at the cut square. For the goal zone

we use a heuristic function similar to the standard heuristic function EMM of Sokoban.

To obtain a lower bound for the maze zone using an IPDB-k′, we have to partition

all k stones into parts of size k′. For any partition of the set of k stones into disjoint

subsets of k′ stones, the sum of the costs for solving each subset is an admissible heuristic

value, since the cost of solving the whole subproblem is at least the total cost of solving

each disjoint subproblem with k′ stones independently. If k′ does not divide k, we place

k mod k′ additional artificial stones on the cut square. Defining a fixed partition of the

stones for the whole search is not a promising strategy since local interactions of the

stones depend on their placement. For this reason the PDB is partitioned dynamically.

This is particularly easy in Sokoban, since we need only a single PDB. Thus, among all

possible partitions, we want to find one that maximizes the lower bound. This problem

can be solved in polynomial time by a maximum weight matching when k′ = 2, but is

NP-complete, for k′ > 2.

When the abstraction is composed by two stones we use a maximum weight

matching algorithm in order to obtain the highest heuristic value in polynomial time.

To obtain the maze heuristic value a complete graph with one vertex for each stone is

build. Each pair of stones is connected by an edge whose weight is the cost of pushing
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both stones to the cut square, obtained by querying the IPDB. If the cost of some pair

is not stored in the IPDB a deadlock is identified. If only one stone is in the maze zone

the weight of the edge corresponds to the cost of pushing this stone to the cut square. If

both stones are in the goal zone the edge weight is zero. When the number of stones is

odd we add one artificial vertex that is connected to each other vertex by an edge whose

weight corresponds to the cost of pushing the stone to the cut square. Figure 4.4 shows

the decomposition of the instance in Figure 2.3a and the corresponding graph. The value

of the maze heuristic function is the value of a maximum weight matching in this graph.

When the abstraction is composed by more than two stones, the problem of com-

puting the highest heuristic value becomes equivalent to the maximum weight exact cover,

an NP-complete problem (GAREY; JOHNSON, 1979). Since the heuristic value has to

be computed for each state generated during the search, we use a simple and fast greedy

randomized constructive procedure to approximate it. We start by querying the distance

of every subset of k′ of the k stones in the IPDB. Then we sort these distances in order

of non-increasing increments, where the increment is the difference of the value stored

in the IPDB and the sum of the distances for each stone to reach the cut square. Each

of the k stones in the state can be part of only one selected subset of k′ stones. Thus,

selecting a subset will exclude other subsets which include the same stone. We heuristi-

cally generate k + 1 partitions of the k stones as follows. The first partition is obtained

by repeatedly choosing a subset of highest increment, until all stones are covered. The re-

maining k partitions are obtained by a greedy randomized strategy. This strategy chooses

some random subset from the first m subsets, and then completes the partition greedily.

We repeat this strategy k times with m = i
(
k
k′

)
/k in iteration i = 1, . . . , k. Thus, in the

last iteration we choose randomly among all subsets. The highest heuristic value obtained

in all k + 1 partitions is used as the heuristic value. Observe that the heuristic obtained

in this way is admissible, since every partition of the stones yields a lower bound on the

shortest distance to bring the stones to the cut square. The constructive heuristic queries

all
(
k
k′

)
subsets of k′ from k stones in the IPDB. Depending on k and k′ there can be

a large number of queries, and for each one we have to find the reachable component

of the man. Thus, this approach has a large computational cost. However, it detects all

deadlocks formed by k′ stones and provides good heuristic values.

For the goal zone we use the EMM, i.e. the value of a minimum matching of the

stones and the goal squares and penalties for linear conflicts. The minimum matching

is computed on the same bipartite graph used for EMM, shown in Figure 2.3a, but the
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distances are computed in a slightly different way, as follows. All the stones in the maze

zone are treated as if they were positioned at the cut square. For each such stone, the

position of the man is defined as the original position of the stone in the maze zone.

The stones in the goal zone or at goal squares remain at their current position and use

the current position of the man. As for EMM, these distances already include backout

conflicts. Finally, the detection of linear conflicts is limited to pairs of stones in the goal

zone or at goal squares. For example, when computing the distances for the instance of

Figure 2.3a, only the position of the stone at H2 is used and the other stones in the maze

zone are placed on the cut square G3. Note how the placement of the man at the original

position of a stone influences its distance to the goals. For example, the stones originally

at squares D3 and E3 have shortest distance 3 to goal square G2, but the shortest distance

to G2 of the stone originally at square G4 is only 2. Finally, linear conflicts that include

stones at the cut square are neither penalized by the maze lower bound nor by the goal

lower bound. Such global linear conflict conflicts are penalized separately.

When passing from a state u ∈ S to a successor v ∈ Succ(u) the heuristic value

has to be updated. Most of the time only the goal or the maze heuristic value changes, so

we can avoid unnecessary computations. If a push is completely inside the maze zone,

the goal heuristic value does not change since the distances in the bipartite graph do not

change. Similarly, if a movement is done completely in the goal zone the maze heuristic

value does not need to be computed again.

EMM identifies implicit deadlocks caused by two or more stones that can be

pushed only to a single goal square. However, it does not identify a deadlock in which a

position of one stone blocks all feasible paths of another. An IPDB-k′ detects all possible

interactions of at most k′ stones and the position of the man in the maze zone. Since

it is constructed exhaustively, if some configuration of the man and stones is not stored

in the IPDB it must be a deadlock and thus can be discarded. An IPDB detects, for ex-

ample, linear and backout conflicts, and the implicit deadlocks of the EMM. Figure 4.5a

shows an example of an instance where the lower bounds of EMM, IPDB-2, IPDB-3, and

IPDB-4 are strictly increasing, and Figures 4.5b–4.5d show a sequence of instances with

deadlocks detected only IPDB-2, IPDB-3, and IPDB-4, but no weaker lower bound.
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Figure 4.5: Examples of instances with different lower bounds and deadlocks. (a) The
lower bound obtained by EMM, IPDB-2, IPDB-3, and IPDB-4 is 42, 46, 48, and 50,
respectively. The lower bound of IPDB-4 matches the optimal solution length. (b) A
deadlock detected by IPDB-2, but not EMM. (c) A deadlock detected by IPDB-3, but not
IPDB-2 or EMM. (d) A deadlock detected only by IPDB-4.

(a)
(b)

(c) (d)

4.1.4 Consistency

A heuristic h is consistent if, for all states u, u′ ∈ S, h(u) ≤ h(u′) + w(u, u′).

The A∗ algorithm using a consistent heuristic will find an optimal solution visiting each

state at most once. To show consistency of h it is sufficient to show that this relation

holds for u′ ∈ Succ(u) (PEARL, 1984). In Sokoban, w(u, u′) = 1 for all states u ∈ S,

u′ ∈ Succ(u). Therefore, to establish consistency it is sufficient to show, that for any valid

push of a stone the heuristic h decreases by at most 1 (see e.g. Edelkamp and Schrödl

(2012, p. 21)).

In this section we show that the proposed heuristic is consistent. We start by intro-

ducing some notation for Sokoban instances and define states formally, and then proceed

to show consistency of the individual and the combined heuristics. The correspondence of

state space problems and graphs allows us to use graph terminology. For example, a path

of length k is a subgraph P = (V,E) of G with vertex set V = {u0, . . . , uk} and edge

(or action) set E = {(u0, u1), . . . , (uk−1, uk)} and we refer to a path by either its vertex

or its edge set. Its cost is w(P ) = w(E) =
∑

e∈E w(e). For a pair of states u, u′ ∈ S, let

w(u, u′) = w(P ) for some path P from u to u′ of minimum cost.

Let B be a set of stones, Q be the set of free squares of an instance, and G ⊆ Q

the set of goal squares. A state u ∈ S is a pair u = (m, p), where m ∈ Q is the leftmost
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upper free square in the reachable component of the man, and p : B → Q is an injective

map from the stones to the free squares. State u = (m, p) ∈ S is a goal state if the set of

squares occupied by the stones p(B) = ∪b∈Bp(b) = G. For squares q, r ∈ Q let δ(q, r,m)

be the shortest distance of a stone-path from q to r when the man is at m. Note that this

definition already includes backout conflicts.

To a state u = (m, p) ∈ S corresponds a complete bipartite graph MM = (B
.
∪

G,E, d) between the stones and the goals, with edge set E = {{b, g} | b ∈ B, g ∈ G},

and weights d(e) = δ(p(b), g,m) for e = {b, g} ∈ E. The cost of a matching M ⊆ E in

MM is

c(M) =
∑
e∈M

d(e). (4.1)

We writeM∗ for the minimum cost perfect matching inMM . For a state u ∈ S and a cor-

responding bipartite graph MM with minimum cost perfect matching M∗, the heuristic

hMM is defined as

hMM(u) = c(M∗). (4.2)

It is well-known that the minimum matching heuristic for Sokoban is consistent

(see e.g. Edelkamp and Schrödl (2012, ch. 1.7.3)). We begin to show, by a similar argu-

ment, that this also holds for hMM which includes backout conflicts.

Theorem 4.1.1. The heuristic hMM is consistent.

Proof. Consider states u ∈ S, u′ ∈ Succ(u), with corresponding bipartite graphs MM =

(B
.
∪ G,E, d) and MM ′ = (B

.
∪ G,E, d′), matching costs c and c′ and minimum cost

perfect matchings M∗ and M ′∗. Since u′ is a successor of u only one stone has been

moved. Its distance to any goal squares decreases by at most 1, and all other distances do

not change. Thus we have c′(M) ≥ c(M)− 1 for all matchings M ⊆ E. Therefore,

hMM(u′) = c′(M ′∗) ≥ c(M ′∗)− 1 ≥ c(M∗)− 1 = hMM(u)− 1

where the last inequality follows from the minimality of M∗ in state u .

Definition 4.1.1 (Linear conflict). A triple (q, r,m) ∈ Q3 where squares q and r are

adjacent is a linear conflict if for an instance in state u = (m, p) ∈ S with only two

stones placed at q and r, and for all states u′ ∈ Succ(u), hMM(u′) ≥ hMM(u) + 1. Two
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stones b, b′ ∈ B of an arbitrary instance in state u = (m, p) ∈ S are in a linear conflict,

if (p(b), p(b′),m) is a linear conflict.

Let L(u) be the maximum number of linear conflicts in state u ∈ S such that

each stone is part of at most one linear conflict. (The value L(u) is the size of a max-

imum matching in the conflict graph over the stones, where stones in linear conflict are

connected by an edge.) The heuristic hEMM is defined as

hEMM(u) = hMM(u) + 2L(u). (4.3)

Theorem 4.1.2. The heuristic hEMM is consistent.

Proof. Consider states u ∈ S, u′ ∈ Succ(u). We have to show that hEMM(u′) ≥

hEMM(u) − 1. Since at most one stone moves, L(u′) ≥ L(u) − 1 and since hMM is

consistent, it is sufficient to show that if L decreases by 1 then hMM must increase. If

L(u′) = L(u)− 1 one linear conflict has been resolved. Then, hMM(u′) ≥ hMM(u) + 1

by definition of a linear conflict, and

hEMM(u′) = hMM(u′) + 2L(u′) = hMM(u′) + 2L(u)− 2 ≥ hMM(u) + 2L(u)− 1 =

hEMM(u)− 1.

4.1.4.1 The maze zone subproblem

Consider a decomposition of an instance into a maze zone and a goal zone, defined

by some cut square. The maze zone subproblem is to bring all stones in the maze zone

to the cut square, where the capacity constraints of the cut square have been relaxed.

Suppose we know, for all subsets of squares P ⊆ Q of size k′ and positions of the man

m the minimum cost δ(P,m) of solving this subproblem with the k′ stones placed at

squares P . (As explained above, these values are computed by an exhaustive backwards

search and stored in a PDB.) Then,

hM(u) =
∑
P∈B

δ(p(P ),m)

is an admissible heuristic for the maze zone subproblem, where B is a partition of the

set of stones in the maze zone B in state u = (p,m) ∈ S into subsets of size k′. The
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admissibility of hM follows from the decomposition into independent subproblems of

size k′ and the optimality of δ. If |B| is not a multiple of k′ we add |B| mod k′ artificial

stones and place them at the cut square.

Lemma 4.1.1. If, in each state u ∈ S a partition B that maximizes hM(u) is chosen, then

heuristic hM is consistent for the maze zone subproblem.

Proof. The proof is similar to that of Theorem (4.1.1). Consider states u = (m, p) ∈ S,

u′ = (m′, p′) ∈ Succ(u), with corresponding optimal partitions B∗ and B∗′ of the stones.

Since u′ is a successor of u only one stone has been moved. Thus, for any partition of the

stones, the distance of the part containing this stone decreases by at most 1, while all other

distances do not change. Thus we have
∑

P∈B δ(p
′(P ),m′) ≥

∑
P∈B δ(p(P ),m)− 1 for

all partitions B. Therefore,

hM(u′) =
∑
P∈B∗′

δ(p′(P ),m′) ≥
∑
P∈B∗

δ(p′(P ),m′) ≥
∑
P∈B∗

δ(p(P ),m)− 1 = hM(u)− 1,

where the last inequality follows from the optimality of B∗.

Observe that for k′ = 2 the optimal partition in Lemma (4.1.1) corresponds to a

maximum weight matching in the complete graph over the stones B, where each edge

e = {b, b′}, b, b′ ∈ B has weight δ(e,m). For k′ > 2 the problem of finding the optimal

partition is NP-complete, and we usually cannot afford to compute it. In this case hM is

not guaranteed to be consistent, which is the case for the greedy heuristic explained in

Section 4.1.3.

4.1.4.2 The goal zone subproblem

The goal zone subproblem is to bring all stones to the goal squares, after plac-

ing all stones of the maze zone at the cut square. To obtain the goal zone heuristic hG,

the problem is relaxed into an independent subproblem for each stone, where the man is

placed at the original position of the stone in the maze zone, or remains at his current po-

sition in the goal zone or at goal squares. These distances are lower bounds on the shortest

distance of each stone to the goal squares, as explained in Section 4.1.3. Therefore, for

any placement of the stones, such that all stones are either at the cut square or in the goal

zone, EMM, where linear conflicts are restricted to pairs of stones in the goal zone, is an

admissible heuristic. By an argument very similar to Theorem (4.1.2) it can be shown to

be consistent.
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4.1.4.3 Consistency of the complete heuristic

Finally, we show the consistency of the complete heuristic hD, which is the sum

of the maze zone heuristic hM and the goal zone heuristic hG with an additional penalty

for global linear conflicts.

Definition 4.1.2 (Global and local linear conflicts). For a given instance decomposition

into a maze and a goal zone, a linear conflict of two stones in state u ∈ S is called global,

if one of the stones is placed at the cut square.

It is admissible to consider global linear conflicts, because neither the heuristic of

the goal zone subproblem nor that of the maze zone subproblem accounts for them. For

the goal zone heuristic, this holds by definition, for the maze zone heuristic by relaxation

of the capacity constraints of the cut square. However, the same stone cannot be part of

a global linear conflict and a linear conflict in the goal zone. Thus, we redefine L(u)

to be the maximum number of global linear conflicts or linear conflicts in the goal zone

in state u ∈ S, such that each stone is part of at most one linear conflict. (As above,

the value L(u) is the size of a maximum matching in a corresponding conflict graph.)

Let hG(u) = hEMM(u) + 2L(u) be the heuristic value of the goal zone subproblem, as

described above. Again, by an argument similar to Theorem (4.1.2), hG with the new

definition of L can be shown to be consistent. The complete heuristic is defined by

hD(u) = hM(u) + hG(u). (4.4)

It is admissible since it has been obtained by relaxing the capacity constraints of

the cut square, which allows us to decompose the problem into two independent subprob-

lems, and the heuristics of the subproblems are admissible. Finally, from the indepen-

dence of the subproblems we also have

Theorem 4.1.3. If heuristic hM is consistent, then heuristic hD is consistent.

Proof. Consistency of hD follows since hM and hG are independent: if hM decreases

then hG cannot decrease and vice versa. Indeed, if hM decreases, either a stone in the

maze zone has been moved, and hG does not change, since the goal zone subproblem is

the same. Furthermore, the number of linear conflicts cannot decrease in this case, by

definition of linear conflicts. Conversely, if hG decreases a stone in the goal zone, on a

goal square or on the cut square has been moved. If its new position is in the goal zone

or on a goal square hM does not change, since the maze zone subproblem is the same.
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Otherwise, if its new position is in the maze zone, hM cannot decrease, since the maze

zone subproblem is either the same, or has one stone more.

4.1.5 Multiple Goal State PDB

As mentioned before, a natural approach for a PDB would be to use an abstraction

that keeps only k′ of the k stones, and stores the distances to the nearest abstract goal state.

In this case, every of the
(
k
k′

)
possible placements of k′ stones on goal squares together

with a reachable component for the man is an abstract goal state. Figure 4.1 shows an

example of the set of abstract goal states for a small instance. This is one of the main

differences between IPDBs and MPDBs: an MPDB has a usually large number of goal

states, whereas the IPDB has only one.

A reverse search from the set of abstract goal states builds the MPDB. The search

continues until the whole abstract state space is explored. Every explored abstract state is

stored in the MPDB with its distance to the closest abstract goal state. The storage is the

same as for IPDBs.

In the MPDB, we have the distance from each abstract state to its closest abstract

goal state. We can partition k stones into disjoint parts of size k′, and each part represents

an abstract state if we add the reachable component of the man. In this case, we can sum

up the distance of each abstract state and get an admissible heuristic value. Note that

several abstract states could be mapped to the same abstract goal state. The methods used

to compute the partition are the same for IPDBs and MPDBs.

The lookup in MPDBs is simpler since it stores the heuristic value for the whole

state. We query the distance of each abstract state, and the sum of the distances is the

heuristic value. However, as in IPDBs, there is a particular situation when k′ does not

divide k. Consider the case when k = 8 and k′ = 3. After the partition, we get two

parts of size three, and one part of size two. The MPDB has distances for abstract states

of size three, but not for two. This problem is not as trivial as it is for IPDBs. In this

situation we do not know where to place an artificial stone: a stone on a different goal

square may result in different distance for the abstract state. In such cases, we build a

second MPDB with abstraction of size k mod k′. The construction of the second, smaller

MPDB is usually not significant compared to the construction cost of the main MPDB.
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Figure 4.6: Example of the fill order tie breaking rule. (a) shows the initial state of the
instance and (b) the fill order priorities. Both states shown in (c) and (d) have the same f -
value with g = 59 and h = 34, however (c) has fill order of 63 and (d) has fill order of
504.

(a) (b)

(c) (d)

4.2 A Domain-Dependent Tie Breaking Rule

The A∗ algorithm often must choose one from multiple nodes with the same f -

value. Without explicit tie breaking rules the implementation of the priority queue decides

which node is explored next. A stable priority queue, for example, will explore tied nodes

in the order of their generation. We can use domain-dependent knowledge to explicitly

prioritize nodes with the same f -value. A traditional approach is to break ties in favor of

nodes with the smallest h-value. Junghanns and Schaeffer (2001) propose a tie breaking

scheme which uses inertia as a first-level tie breaker, and the heuristic value as a second-

level tie breaker. Inertia gives priority to a node which has been generated by a longer

sequence of moves of the same stone. Here, we propose a new tie breaking rule called fill

order.

Compared to other problems, Sokoban tends to generate a larger number of ties,

since there are multiple combinations of stones on goal squares and the rest of the instance

which have the same f -value. For example, in Figure 4.6 the initial node 4.6a has descen-

dants 4.6c and 4.6d with f = 93. Using the proposed heuristic function and breaking

ties by generation order explores more than 5 million nodes to solve the instance, since

several possible configurations of the stones on goal squares are explored before reaching

the goal node. Some of these configurations are deadlocks like configuration 4.6c.

But in fact the goal squares cannot be filled in an arbitrary order. Goal squaresB3,

B4 and B5, for example, have to be filled before any of the next columns of goal squares.

Thus, we define a fill order for the goal squares which respects the restrictions that result

from the placement of the goal squares in the maze.
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The order is defined algorithmically as follows. Starting from an placement of all

stones on the goal squares, we repeatedly remove a set of stones, until all stones have been

removed. In each iteration, we process all remaining stones in an arbitrary order. For each

stone we test if a reverse move can be applied to it. If a test succeeds we assign a priority

of 2i to the corresponding goal square, where i is current total number of successful tests.

Then we remove the set of all stones for which the test succeeded in the current iteration.

On termination a priority value has been assigned to each goal square. The priority values

represent a guess of the order in which the goal squares are filled in an optimal solution.

The fill order of a node is defined as the sum of the priority values of the goal squares

which are occupied by a stone. Thus, the fill order gives preference to nodes that place

the stones at the goal squares of highest priority value first. The idea of the fill order is

similar to goal macros (JUNGHANNS; SCHAEFFER, 2001) since both techniques try to

use information from the state space related to the placement of goal squares to improve

the effectiveness of the solver. The fill order, however, is admissible, since it is only used

to break ties.

Figure 4.6b shows the priorities of the goal squares of the example above. A state

with a stone at B5 has priority 256 and a state with eight stones in the other goal squares

has priority 255. In this way we get an absolute order for filling the goal squares. Using

this rule of tie breaking we solve the example instance exploring fewer than 5, 000 nodes.

4.3 Computational Results: Sokoban

In this section we provide results of computational experiments with the proposed

methods. We compare the heuristic function EMM to MPDBs and to IPDBs. To be

comparable, all three heuristics were implemented using the same basic algorithms and

data structures.

We first evaluate the effectiveness of the instance decomposition and discuss the

construction of the PDBs. Next, we compare the heuristics EMM, MPDB, and IPDB on

the initial states and randomly generated states of the standard set of instances. We also

investigate the impact of the standard tie breaking rules based on inertia, lower bound and

fill order. We compare the performance of several Sokoban solvers using the new heuris-

tics and the tie breaker to Rolling Stone with all admissible techniques. Furthermore, we

test the performance of the Fast Downward domain-independent planner with PDBs in

solving instances from the standard set. Finally, we present experiments of the use of
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MPDB as a deadlock detection technique.

All experiments were performed on a PC with an AMD Opteron CPU running at

2.39 GHz with 32 GB of RAM on the standard set of 90 instances. We use Blossom V

to compute the matchings (KOLMOGOROV, 2009). All experiments, if not otherwise

stated, have been run with a limit of 20 million explored nodes, one hour of computation

time and 32 GB of memory. In tables that report nodes, a prefix “>” means that an optimal

solution has not been found because they reached the time limit. Runs which reached the

node limit of 20 M only have an entry “>”. In those tables, the memory limit of 32 GB

was never reached in any run. The number of nodes does not include the nodes explored

when constructing the PDB, but reported times include the construction time.

4.3.1 Instance Decomposition and Construction of the PDB

Figure 4.7 shows the results of the decomposition of the 90 instances from the

standard set. For each instance the y-axis shows the percentage of squares in the maze

zone of all non-dead squares. The x-axis plots the instances in order of decreasing per-

centages. The figure shows that all instances can be decomposed into goal and non-trivial

maze zones (of size at least 3). Since the IPDB contains the exact distances from stones

in the maze zone to the cut square we can expect our method to perform better for larger

maze zones. This is the case for the standard instances: one-third has over 90% of the

squares belonging to the maze zone and on average 67% of the squares belong to the

maze zone. However, the effectiveness of the IPDB also depends on the characteristics

of the instance. Some instances may have large goal zones, but the IPDB still can be

effective if the “hard” part of the problem is in the maze zone, which is often the case in

human-designed instances.

Table 4.1 shows the average and maximum time for constructing the PDB and

the average and maximum number of entries. We have tested MPDB and IPDB with

abstractions of size two and four, and with an abstraction of variable size k′. The value

of k′ for each instance corresponds to the largest PDB that can be constructed within the

time and memory limits, that is one hour of computation time and 32 GB of memory.

The IPDB is built only in the maze zone, thus it can be built faster and has fewer

entries than the MPDB. The IPDB-2 and MPDB-2 are always built in less than a second,

and have fewer than 10, 000 entries. The IPDB-4 uses never more than 3.1 M entries, and

can be built in less than 200 seconds, while the IPDB-k′ uses at most 85 M entries. An
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Figure 4.7: Percentage of squares in the maze zone. The number of the instance in the
standard set is plotted above each data point.
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Table 4.1: Building time and memory requirements for the pattern databases.

MPDB IPDB

2 4 k′ 2 4 k′

Avg. time (s) 0 176 1,334 0 23 1,069
Max. time (s) 1 1,286 3,466 0 199 3,555
Avg. entries 3,455 2,286,486 20,978,849 1,135 323,572 19,459,034
Max. entries 9,557 15,172,945 63,192,937 4,633 3,073,969 83,425,673
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MPDB-4 uses up to 15.2 M entries and never takes more than 1, 300 seconds to build,

and the MPDB-k′ uses up to 64 M entries. The limit in constructing larger PDBs in the

variable size case was always the time for constructing the PDB. For a variable size of the

abstraction, MPDB results in an average of k′ = 5.0 and IPDB of k′ = 7.9. IPDB is able

to build databases for larger abstractions because the maze zone is smaller.

4.3.2 Heuristics Function on Initial States

Table 4.2 compares the value of the heuristics, EMM, MPDB, and IPDB on the

initial states of the instances from the standard set. Column “#” gives the number of the

instance and column “UB” the best known upper bound according to the global Sokoban

score file1. For MPDB and IPDB we show the results for fixed abstractions of two and

four stones (columns “2” and “4”) and of an abstraction of variable size (column “k′”).

The PDBs have been built as explained above. The best values found for each instance

are shown in bold.

The table shows that EMM provides good results, MPDB provides weak heuristic

values, and IPDB is able to significantly improve the values. MPDB-2 is always worse

than EMM, MPDB-4 finds only one better result, and MPDB-k′ improved EMM in nine

instances. This shows that MPDB is not effective for Sokoban. Comparing with EMM,

IPDB-2 improves the results of 31 instances, IPDB-4 of 58 instances, and IPDB-k′ of 61

instances. Moreover, IPDB-k′ provides the best results in 85 instances, and matches the

upper bound value in 15 instances, compared to 8 instances for EMM.

The weakness of the lower bound of the MPDB has the same reason as the weak-

ness of using a heuristic based on shortest distances of individual stones to goal squares

compared to a minimum matching: the MPDB estimates the shortest distance to the near-

est goals for each subset of stones, but does not require that the union of the selected

goals over all subsets exactly covers the goal squares. Thus, usually multiple stones are

assigned to the nearest goal squares, which leads to a weaker lower bound.

To estimate the behavior of the heuristics during the search we ran an experiment

with 10, 000 randomly generated states for each of the 90 instances. Each initial state was

generated by placing the stones at random non-dead squares, and the man at a random

free square. The number of stones was the same as that of the original instance. Table 4.3

shows the mean heuristic value h of EMM, MPDB, and IPDB, and the mean number

1<http://www.cs.cornell.edu/andru/xsokoban/scores.txt>

http://www.cs.cornell.edu/andru/xsokoban/scores.txt
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Table 4.2: Heuristic values on the initial states of the standard set of 90 instances.

# EMM MPDB IPDB UB

2 4 k′ 2 4 k′

1 95 91 94 97 95 97 97 97
2 129 117 119 123 131 131 131 131
3 132 116 119 123 134 134 134 134
4 355 311 316 321 355 355 355 355
5 139 121 124 129 141 141 141 143
6 106 94 96 104 106 106 110 110
7 80 68 77 83 80 80 80 88
8 220 192 196 200 220 220 220 230
9 229 206 212 215 231 231 233 237

10 510 349 372 372 510 510 510 512
11 207 174 189 194 207 213 217 241
12 206 174 182 186 206 206 206 212
13 220 165 179 184 220 224 224 238
14 231 206 212 217 231 231 233 239
15 96 86 97 106 96 100 100 122
16 162 118 126 134 166 170 170 186
17 201 197 200 213 201 203 213 213
18 106 87 93 95 106 106 106 124
19 286 254 257 263 286 286 286 302
20 446 360 392 392 446 450 450 462
21 129 89 103 107 129 137 137 147
22 308 250 264 264 308 308 308 324
23 426 383 393 393 430 432 432 448
24 518 414 434 434 518 518 518 544
25 368 261 278 278 370 378 380 386
26 165 138 155 172 167 175 185 195
27 353 295 309 309 355 359 359 363
28 286 208 223 230 290 290 290 308
29 122 107 118 122 128 130 132 164
30 359 320 357 376 385 407 419 465
31 232 176 189 193 232 236 236 250
32 113 94 108 111 115 115 115 139
33 152 119 138 143 152 152 152 174
34 154 128 145 150 154 164 164 168
35 364 316 332 332 364 368 368 378
36 507 447 461 459 507 511 517 521
37 242 187 206 206 242 242 242 284
38 73 60 72 81 73 79 79 81
39 652 535 565 565 652 658 658 672
40 310 275 285 286 312 314 316 324
41 221 166 182 188 223 227 227 237
42 208 139 152 152 208 208 208 218
43 132 116 126 132 134 138 140 146
44 167 158 162 164 169 169 173 179
45 284 224 236 243 286 290 294 300

Averages

# EMM MPDB IPDB UB

2 4 k′ 2 4 k′

46 223 191 198 203 223 227 229 247
47 199 163 173 176 199 201 203 209
48 200 150 154 154 200 200 200 200
49 104 72 96 120 104 106 106 124
50 100 83 93 92 102 102 102 370
51 118 84 93 98 118 118 118 118
52 367 319 331 331 369 377 381 421
53 186 164 167 170 186 186 186 186
54 177 160 164 166 181 181 183 187
55 120 102 110 114 120 120 120 120
56 193 170 179 182 193 193 193 203
57 217 183 195 195 217 217 217 225
58 197 178 182 182 197 197 197 199
59 218 194 202 203 218 218 218 230
60 148 127 134 135 148 148 148 152
61 245 197 211 221 249 253 257 263
62 237 196 206 208 239 241 243 245
63 427 383 391 391 429 429 429 431
64 367 341 353 354 373 379 381 385
65 203 170 181 187 203 207 209 211
66 187 158 173 173 187 193 199 325
67 377 323 338 341 385 393 395 401
68 321 283 298 302 325 333 333 341
69 219 183 199 205 219 223 223 433
70 329 281 284 288 329 329 329 333
71 294 261 279 287 294 298 298 308
72 288 196 214 225 288 292 296 296
73 437 408 414 414 441 441 441 441
74 176 164 175 186 178 182 182 212
75 263 216 228 238 263 263 263 295
76 194 156 167 167 194 194 194 204
77 360 255 308 314 360 360 360 368
78 136 124 128 128 136 136 136 136
79 166 144 152 155 168 170 172 174
80 231 213 216 218 231 231 231 231
81 167 145 155 156 167 167 167 173
82 135 117 122 124 135 135 137 143
83 194 182 184 187 194 194 194 194
84 149 135 141 142 151 153 153 155
85 305 238 252 259 305 307 307 329
86 122 97 105 115 122 124 130 134
87 221 201 209 212 221 223 225 233
88 336 246 269 269 336 342 344 390
89 353 274 302 302 353 361 363 379
90 442 244 260 260 442 446 450 460

241 200 211 215 242 244 246 262



73

Table 4.3: Average heuristic value and number of deadlocks over 10, 000 randomly gen-
erated initial states for the standard set of instances.

EMM MPDB IPDB

2 4 k′ 2 4 k′

h 163.66 136.02 143.29 145.62 164.41 165.23 165.47
DL 1,525 8,062 8,870 8,922 6,346 6,942 6,984

of detected deadlocks (“DL”) over all 90 instances. The mean values are only over the

states where none of the heuristic functions detected a deadlock to exclude artificially

high heuristic values.

As in the standard initial states, EMM presents good heuristic values, while those

of the MPDB are much lower, and IPDB is able to improve slightly over the EMM lower

bound. We can also see by the average value of IPDB-k′ that abstractions of more than

four stones yield only marginal improvements. The difference between the methods in

the capacity of detecting deadlocks is much more significant than the difference of the

heuristic values. EMM detects in average over all instances a deadlock in 15% of the

randomly generated states, MPDB in more than 80%. IPDBs detect a deadlock in about

65% of the states.

These differences come directly from the differences in the methods. The EMM

detects deadlocks caused by sets of stones for which there is an insufficient number of

goal squares. These deadlocks are also detected by the IPDB, since it applies EMM in

the goal zone, and all stones must pass over the cut square. Thus, the IPDB never detects

fewer deadlocks than EMM, and often more (see the examples in Figure 4.5). In contrast,

the MPDB is applied to the whole instance, and thus usually detects more deadlocks

than the IPDB, since it also considers interactions of the stones inside the goal zone (an

example would be any of the patterns in Figure 4.5b–4.5d occurring in the goal zone).

However, since the MPDB does not enforce a one-to-one mapping of stones to goals, it

cannot detect all deadlocks detected by EMM and IPDB.

The MPDB-k′ detects on average 89% of the randomly generated states as dead-

locks. This percentage of deadlocks seems surprisingly high, but can be explained by the

fact that the instances of Sokoban usually are built such that most of the stone placements

generate deadlocks. Therefore, during the search, a promising sequence of movements

can bring a group of stones near to the goals, but produce a deadlock in another group of

stones. This reinforces the importance of deadlock detection, because if a heuristic func-

tion fails to detect deadlocks early, a large search effort can be spent in states that never
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Table 4.4: Results for an IPDB-2 with different tie breaking rules. A dot in the table
means the instance indicated in the column was solved by the configuration indicated in
the row.

Rule Nodes Instance# Solved

1 2 3 4 6 7 17 38 43 49 51 53 73 78 80 82 83

GO 281,607,359 • • • 3
IN 281,217,035 • • • 3
LB 127,733,711 • • • • • • • • • • • • 12
FO 75,446,188 • • • • • • • • • • • • • • • 15
INLB 131,358,093 • • • • • • • • • • • 11
INFO 62,616,370 • • • • • • • • • • • • • • • 15
LBIN 125,548,205 • • • • • • • • • • • • 12
LBFO 125,374,431 • • • • • • • • • • • • 12
FOIN 95,281,106 • • • • • • • • • • • • • • 14
FOLB 134,412,436 • • • • • • • • • • • • 12
INLBFO 94,720,546 • • • • • • • • • • • • • 13
INFOLB 105,731,790 • • • • • • • • • • • • • 13
LBINFO 107,504,210 • • • • • • • • • • • • • 13
LBFOIN 107,504,214 • • • • • • • • • • • • • 13
FOINLB 116,543,217 • • • • • • • • • • • • • 13
FOLBIN 116,542,868 • • • • • • • • • • • • • 13

Totals 16 14 14 3 14 7 16 16 14 7 9 1 4 14 14 10 14

lead to solutions. In instance #48, for example, 99% of the states are classified as dead-

locks by IPDB-4 and MPDB-4, while EMM detects no deadlocks. Similar cases occur in

several instances. These results show that PDBs have a significant capacity of detecting

deadlocks.

4.3.3 Tie Breaking Rules

This section presents results for three tie breaking rules: inertia (IN), lower bound

(LB), and fill order (FO). We also test the six cases where one rule serves as a secondary

tie breaker, and another six cases where the remaining rule serves as a third-level tie

breaker, since these configurations can result in a different number of explored nodes and

solved instances. All tests use the IPDB-2 as the heuristic function.

The results are reported in Table 4.4. The first column gives the tie breaker used.

The name of the first-level rule is followed by the name of the second- and third-level rule,

if any. Any remaining ties are broken by giving preference to the earliest generated node

(generation order, GO). The second column gives the total number of explored nodes. In

this sum unsolved instances enter with 20 million nodes.

In total, 17 out of 90 instances were solved by at least one of the 16 tie breakers.
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Instances 1, 17 and 38 were solved by all of them. Rules IN and GO solve three instances,

but IN explores slightly fewer nodes. Rule LB solves 12 instances and explores signifi-

cantly fewer nodes. Finally, rule FO solves 15 instances exploring slightly more than half

of the number of nodes explored by LB. This is the best result for any simple tie breaker.

Among the rules with a second-level tie breaker the two combinations of FO and

IN obtain the best results. Rules that use LB in general present the worst results. The

best rule is INFO. This configuration improves the results obtained using only the rule

FO. Using a third-level tie breaker does not increase the number of solved instances or

decrease the number of explored nodes.

4.3.4 Solving Sokoban with Pattern Databases

In this section, we compare the state-of-the-art Rolling Stone solver with all ad-

missible techniques (RS∗) to solvers using the heuristic functions IPDB and MPDB. We

first compare all heuristic functions using the INLB tie breaking rule of Rolling Stone.

Next, we compare the heuristic functions using the tie breaking rule INFO. We also in-

vestigate to what extent PDBs with an abstraction of variable size can solve more in-

stances. Finally, we describe experiments with the Fast Downward planner using PDBs

in Sokoban. We do not report the solution length of optimally solved instances, since they

always were equal to the best upper bounds shown in Table 5.1.

Our implementation uses an A∗ search, since the memory consumption of the

PDBs is low, and we can afford to store all generated nodes. The A∗ search avoids ex-

ploring duplicated nodes, which makes the use of transposition tables unnecessary. To

provide a fair comparison with RS∗, we also report the results of an A∗ search using the

same heuristic function EMM as RS∗. This solver is called EMM in the tables below.

Table 4.5 shows the results for all instances which could be solved by one of the

solvers breaking ties by INLB. It reports for each solver the number of explored nodes

and the time to find the optimal solution. The number of explored nodes for RS∗ are

from Junghanns and Schaeffer (2001). To the best of our knowledge, no times have been

published for RS∗. Both MPDB and IPDB are built from an abstraction with two stones.

RS∗ is able to solve 6 instances. The A∗ search with the same heuristic function

and tie breaking rule solves ten instances, and explores about a factor of 5 fewer nodes.

This shows that the A∗ search can overcome domain-dependent techniques such as trans-

position and deadlock tables, and the tunnel macros used by RS∗. This is expected, since
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Table 4.5: Number of explored nodes and computation time (in seconds) for different
Sokoban solvers breaking ties by rule INLB.

# RS* EMM MPDB-2 IPDB-2

Nodes Nodes Time Nodes Time Nodes Time

1 223 160 0 319,196 14 117 0
2 620,030 161,834 25 > 2,590 184 0
3 > 1,187,486 126 > 2,540 1,525,943 115
6 10,107,620 1,354,432 146 > 2,364 403,974 31

17 10,672,805 1,471,533 71 1,744,788 83 12,914 1
38 415,485 93,423 8 8,260,380 575 35,268 3
43 > > 2,114 > 1,898 7,763,870 652
49 > 1,596,896 191 > 2,260 1,596,896 141
78 871 8,544 1 > 2,087 7,971 1
80 > 27,708 3 > 1,559 10,594 1
83 > 559 0 > 1,328 362 0

6 10 2,685 3 17,298 11 945

RS∗ was designed for reduced memory usage. The results for the MPDB show that the

direct application of PDBs to Sokoban is ineffective. It solves only three instances and in

general uses more computation time and explores more nodes than the other techniques.

The IPDB solves eleven instances, explores more than a factor of two fewer nodes than

EMM, and is about three times faster. Furthermore, the more complex computation of

the lower bound does not lead to a higher cost per node, and IPDB processes more nodes

per second than EMM. Taken together, the IPDB is more than able to amortize the cost of

constructing the PDB. Although MPDB detects many more deadlocks, its weaker lower

bound leads to a poor performance. The IPDB seems to be a good compromise between

quality of lower bound and deadlock detection.

We now turn to the analysis of the solvers when breaking ties by rule INFO. Ta-

ble 4.6 shows the number of explored nodes and the solving time for all instances that

could be solved by at least one of the solvers (RS∗, EMM, MPDB, IPDB). MPDB and

IPDB were tested with abstractions of two and four stones. The test was limited to ab-

stractions of at most four stones, since for some instances a PDB with five stones could

not be built in an hour.

The cost for computing tie breakers INLB and INFO is similar, and therefore all

solvers process about the same number of nodes per second. The performance of the

MPDB does not improve: MPDB-2 explores about the same number of nodes as for

tie breaking rule INLB, and MPDB-4 explores fewer nodes, but is more than two times

slower than MPDB-2. Both solve only three instances. EMM and IPDB perform better

when breaking ties by INFO. EMM solves three more instances, and explores significantly
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Table 4.6: Number of explored nodes and computation time (in seconds) for different
Sokoban solvers breaking ties by rule INFO.

# RS∗ EMM MPDB IPDB

2 4 2 4

Nodes Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

1 223 169 0 318,212 13 187,472 37 125 0 122 1
2 620,030 147,281 22 > 2,417 >858,240 3,600 215 0 199 3
3 > 20,839 2 > 2,306 >906,030 3,600 2,203 0 232 2
4 > 1,590 1 > 3,356 >16,920 3,600 1,053 1 879 250
5 > > 3,582 > 2,397 >301,916 3,600 > 2,677 349 8
6 10,107,620 1,334,586 132 > 2,209 >1,001,761 3,600 399,940 36 1,358 4
7 > 12,477,687 1,129 > 2,094 >842,650 3,600 12,477,687 1,271 12,477,687 1,271
9 > > 3,467 > 2,067 >263,527 3,600 > 2,331 15,686 191

17 10,672,805 1,349,943 62 1,732,569 80 1,106,769 277 12,138 1 298 3
38 415,485 361,852 31 8,228,382 539 1,921,579 1,290 144,125 11 144,094 39
43 > > 2,090 > 1,862 >1,353,230 3,600 7,292,104 758 2,669 13
51 > 2,283,280 493 > 3,350 >149,696 3,600 2,283,280 591 2,283,280 2,176
53 > 1,071 1 >9,050,495 3,600 >30,254 3,600 1,071 1 1,071 7
65 > >15,085,591 3,600 > 3,055 >93,265 3,600 >17,276,451 3,600 494 52
73 > > 3,538 > 2,961 >82,393 3,600 835 1 743 46
78 871 340 0 > 2,080 >1,812,340 3,600 287 0 286 3
79 > >12,988,110 3,600 > 3,324 >146,317 3,600 >11,926,273 3,600 4,664 31
80 > 939 1 > 1,583 >286,205 3,600 773 1 646 15
82 > > 2,606 > 2,125 >216,431 3,600 > 2,718 269 21
83 > 869 0 > 1,261 >1,360,629 3,600 524 0 454 7

6 13 24,360 3 42,681 3 62,804 15 17,599 20 4,143

fewer nodes. IPDB-2 solves 15 instances, in considerably less computation time than

EMM. IPDB-4 solves 20 instances. It reduces the number of explored nodes, and it is

about a factor of four faster than the other solvers. Computing the heuristics for PDBs

with more than two stones takes much more time. In all of the unsolved instances, both

PDBs could not explore 20 million nodes in one hour, which can be observed in the results

for MPDB-4. For the IPDB-4, however, this cost can be compensated by a much lower

number of processed nodes.

To investigate the potential of using PDBs with larger abstractions, we determined

for all instances the smallest k′ such that the optimal solution can be found within our

standard resource limits (one hour, 20M nodes). If the construction of the PDB needs

more than one hour or more than 32 GB, the instance is considered unsolvable. For the

MPDB the results from Table 4.6 do not change. No other instance could be solved

with larger abstractions. Table 4.6 shows that the IPDB-4 solves five instances more than

IPDB-2 (namely 5, 9, 65, 79, and 82). We found that two of them, instance 79 and 82, can

be solved already with an abstraction of size 3, and one more instance (62) can be solved

with an abstraction of size 5. So, larger abstraction sizes are not able to compensate the

weak lower bound of the MPDB. The improvement in the IPDB is also rather limited, and

it seems that better lower bounds and more detected deadlocks that come from interactions

of five or more stones are rare and cannot compensate for the larger cost for building the
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PDB.

Now we turn our attention to experiments that explore the performance of a state-

of-the-art domain-independent planner using PDBs. We chose the Fast Downward plan-

ner, because it contains one of the most efficient implementations of pattern databases for

domain-independent planning. In this experiment we use a time limit of four hours, and no

limit on the number of nodes, since Fast Downward processes many more nodes per sec-

ond. The planner was run with an A∗ algorithm and the PDBs from Haslum et al. (2007) as

implemented by Sievers, Ortlieb and Helmert (2012). All other parameters have been left

at their default values, which are commonly accepted as a good choice (POMMEREN-

ING; RöGER; HELMERT, 2013). For the experiment we used the domain description

from the International Planning Competition that comes with Fast Downward.

The planner could not solve any instance within the resource limits used. For all

instances, either the construction of the PDB did not terminate, or the memory did exhaust

before finding the optimal solution. This behaviour has probably two reasons. First, the

movement of the man is specified as an action of cost 0, which leads to a faster processing

of the nodes, but also considerable more nodes must be explored. For example, in instance

#1 Fast Downward explores more than 200 million nodes and reaches an f -value of 94,

three below the optimal solution length. In contrast, the most expensive operation in our

solver is the normalization of the position of the man, but this greatly reduces the number

of unique states. Second, based on heuristic value on initial states, the lower bound is

probably weak, for the same reason that the MPDB is weak in Sokoban. For example, the

heuristic values of Fast Downward for the initial states of instances #1, #2, and #3 are 88,

100, and 105, respectively, compared to 97, 131, and 134 obtained by the IPDB.

Our last experiment compares the IPDB and the Fast Downward planner on in-

stances of medium difficulty, with the same configuration as in the previous tests, and a

time limit of 30m. The Microban test set, which Haslum et al. (2007) used in their ex-

periments turned out to be too simple: all solvers were able to solve at least 150 of the

155 instances. To find instances of medium difficulty, we have screened several other test

sets and chosen Boxxle1. We have further removed 18 instances from the set which Fast

Downward could solve by blind search in 5 min to avoid floor effects, leaving us with

90 test instances. In these instances in average 65% of the non-dead non-goal squares

belong to the maze zone, similar to the xSokoban test set. The IPDB could solve 35 in-

stances, exploring in average 1.2M nodes in 65 s, and Fast Downward 14, exploring in

average 8.8M nodes in 22.8 s. IPDB-2 solves the latter 14 instances exploring in average
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6911 nodes in 0.2 s. This shows that IPDB-2 solves the puzzles much faster than Fast

Downward, and explores fewer nodes. On the instances which could not be solved the

IPDB always failed due to time constraints, while Fast Downward failed due to memory

constraints.

4.3.5 Using Pattern Databases for Deadlock Detection

MPDBs are highly effective in the task of deadlock detection – much more than

IPDBs and EMM. We believe that we could build a better heuristic function if we combine

an effective heuristic function with an effective deadlock detection technique like MPDB.

However, there is an overhead associated with the construction of the MPDB and with the

process of verifying if a state is a deadlock by looking up at the MPDB. In this subsection

we aim to investigate this trade-off.

The construction of the MDPB for deadlock detection is done as usual with the

exception that we do not store the distances of abstract states to abstract goal states. We

only store which abstract states are reachable from abstract goal state. Through the search,

we check if every abstract state is contained in the MPDB if not a deadlock is identified.

This method is computationally costly for k′ > 2. Because the process of lookup abstract

state in the MPDB is the most costly part of our method to compute the heuristic function.

We use a naive approach to combining MPDBs with another heuristic function.

For example, combining IPDB and MPDB we get IPDB + MPDB. In IPDB + MPDB,

first we check in the MPDB if the state is a deadlock. If yes the state is discarded. If not,

the state receives the value computed by the IPDB.

Table 4.7 shows the results of a heuristic that combines EMM and MPDB using

INLB as the tie-breaking rule. EMM uses INLB as tie breaking rule and corresponds to

the same solver as before. EMM + MPDB shows the results when using the EMM as the

heuristic function and the MPDB only for deadlock detection. Two sizes of abstractions

have been tested. The tests have been performed with a limit of one hour of compu-

tation time and 5 million explored nodes. EMM + MPDB-2 solves eleven instances and

EMM + MPDB-4 twelve instances. EMM + MPDB-4 explores fewer nodes than the other

approaches. Ten of the eleven instances that EMM + MPDB-2 solves, it solves faster than

the other approaches. These results show that the use MPDB for deadlock detection could

be effective even considering the overhead.

One could argue that the improvement of IPDBs in the heuristic value is marginal
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Table 4.7: Number of explored nodes and computation time (in seconds) for different
Sokoban solvers breaking ties by rule INLB using MPDBs only for deadlock detection.

# EMM EMM + MPDB

2 4

Nodes Time Nodes Time Nodes Time

1 160 0 160 0 153 3
2 161,834 25 86,840 11 68,927 222
3 1,187,486 126 950,950 98 22,268 42
6 1,354,432 146 366,955 36 1,641 7
7 >5,000,000 428 223,956 20 127,840 276

17 1,471,533 71 19,633 1 775 7
38 93,423 8 24,196 2 8,919 6
49 1,596,896 191 1,381,596 147 >900,425 3,600
51 >5,000,000 905 >5,000,000 929 223,106 3,068
78 8,544 1 8,387 1 7,646 39
80 27,708 3 10,594 2 480 109
81 >5,000,000 1,055 >5,000,000 1,196 198,935 2,365
83 559 0 362 1 305 39

10 2,959 11 2,444 12 9,783

and that the increase in the number of solved instances is due to the deadlock detection.

To assess this, we compare two heuristic EMM + MPDB-4 and IPDB-4 + MPDB-4 in

Table 4.8. Both heuristics break ties by INLB, in the experiment we use our usual limits.

The results show that the claim is wrong. IPDB-4 + MPDB-4 solves sixteen instances

while EMM + MPDB-4 solves twelve.

Table 4.9 shows our last experiment regarding the use of MPDBs to deadlock de-

tection. We want to assess if the MPDB could improve our current best results that are

obtained by IPDB-4 using INFO rule. Thus, we run two configurations, EMM + MPDB-4

and IPDB-4 + MPDB-4, both breaking ties by INFO. In the last line of the table, we pro-

vided the total number of explored nodes. EMM + MPDB-4 solves 13 instances, the same

as EMM, however exploring two orders of magnitude fewer nodes. IPDB-4 + MPDB-4

also solved the same number of instances as IPDB-4, but it solves exploring considerably

fewer nodes and uses less time in total.

We have proposed an effective approach for optimally solving Sokoban, by com-

bining the use of an effective heuristic function such as IPDBs with MPDBs. We solved

the same number of instances exploring two orders of magnitude fewer nodes and using

less time in total. We could improve these results by investigating better approaches to

combining MPDBs and IPDBs since we used a naive approach to combining them.



81

Table 4.8: Number of explored nodes and computation time (in seconds) for different
Sokoban solvers breaking ties by rule INLB using MPDBs only for deadlock detection.

EMM + MPDB-4 IPDB-4 + MPDB-4

# Nodes Time Nodes Time

1 153 3 115 7
2 68,927 222 184 14
3 22,268 42 318 12
4 >61,800 3,600 1,164 600
6 1,641 7 165 7
7 127,840 276 127,840 288

17 775 7 267 18
21 >437,991 3,600 89,098 1,796
38 8,919 6 5,280 9
43 >2,832,999 3,600 331,581 1,180
51 223,106 3,068 >212,440 3,600
78 7,646 39 197 49
79 >395,134 3,600 4,548 112
80 480 109 478 158
81 198,935 2,365 198,935 2,578
82 >500,918 3,600 253 68
83 305 39 305 69

12 24,183 16 10,565

4.4 Computational Results: Pukoban

In this section, we present results of the proposed techniques, IPDB and Fill Order,

in Pukoban. We use the same implementation, algorithms, and data structures that were

used in the experiments of Sokoban – we only consider the four additional pull moves.

If not otherwise stated, the description of the techniques provided to Sokoban is also

valid for Pukoban. In Pukoban, there are no deadlocks and the improvement of the solver

cannot come from deadlock detection. Because of that we do not perform experiments

with MPDBs.

In Subsection 4.4.1, we discuss the construction of the IPDB and the computation

heuristic function. We describe the similarities briefly and the differences in detail. Next,

in Subsection 4.4.2, we propose a variation of the Fill Order. In Subsection 4.4.3, we

present experiments related to the instance decomposition and heuristic function on initial

states. Finally, in Subsection 4.4.4, we compare different Pukoban solvers.

All experiments were performed on a PC with an AMD Opteron CPU running

at 2.39 GHz with 32 GB. The limit for each experiment was one hour of computation
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Table 4.9: Number of explored nodes and computation time (in seconds) for different
Sokoban solvers breaking ties by rule INFO using MPDBs only for deadlock detection.

EMM EMM + MPDB-4 IPDB-4 IPDB-4 + MPDB-4

# Nodes Time Nodes Time Nodes Time Nodes Time

1 169 0 125 5 122 1 122 7
2 147,281 22 66,157 190 199 3 199 14
3 20,839 2 4,988 16 232 2 232 11
4 1,590 1 1,033 293 879 250 879 500
5 > 3,582 >564,055 3,600 349 8 349 34
6 1,334,586 132 1,645 9 1,358 4 1,308 13
7 12,477,687 1,129 103,233 201 12,477,687 1,271 103,233 236
9 > 3,467 >207,166 3,600 15,686 191 15,684 325

17 1,349,943 62 776 13 298 3 297 22
38 361,852 31 133,515 61 144,094 39 98,317 70
43 > 2,090 >2,054,841 3,600 2,669 13 2,563 55
51 2,283,280 493 >373,946 3,600 2,283,280 2,176 >393,249 3,600
53 1,071 1 895 153 1,071 7 895 144
65 >15,085,591 3,600 >114,370 3,600 494 52 488 229
73 > 3,538 >169,527 3,600 743 46 743 260
78 340 0 302 58 286 3 286 49
79 >12,988,110 3,600 >374,629 3,600 4,664 31 4,639 111
80 939 1 718 180 646 15 646 159
81 >16,119,819 3,600 350 97 >183,944 3,600 350 76
82 > 2,606 >576,972 3,600 269 21 269 67
83 869 0 491 64 454 7 454 71

13 27,960 13 30,140 20 7,743 20 6,054

162,173,966 4,749,755 15,119,445 625,223

time and 32 GB of memory. We perform the experiments on the standard set of instances

xSokoban. As in the previous tables, in columns that report nodes, a prefix “>” means

that an optimal solution has not been found because the solver reached the time limit.

The number of explored nodes doesn’t include the nodes explored when constructing the

PDB, but reported times include the construction time.

4.4.1 Pattern Database and Heuristic Function

The computation of the IPDB in Pukoban is exactly the same as in Sokoban. First,

we find the instance decomposition that maximizes the size of the maze zone. Then,

having the cut square, we compute the IPDB by a reverse search starting from the inter-

mediate abstract goal state. The reverse search continues until the whole abstract state
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space is explored. The storage method is identical.

The computation of the heuristic function has two differences. First in Pukoban,

there are no linear conflicts and, second the heuristic EMM for the goal zone subproblem

is computed differently. When computing the heuristic for the goal zone subproblem, in

Sokoban, stones in the maze zone, are treated as if they were positioned at the cut square,

the same is done in Pukoban. In Sokoban, for each such stone, the position of the man

is defined as the original square of the stone in the maze zone. In Pukoban the same

approach does not produce an admissible heuristic, since the man could have pushed or

pulled the stone to the cut square. Thus, we position the man at the reachable square that

produces the minimum distance for each goal square.

4.4.2 Tie breaking Rule

The Fill Order proposed for Sokoban is used in the same manner in Pukoban.

However, in Pukoban we have more flexibility to fill the goal squares, because of the four

additional pull moves. Thus, we propose a variation of the Fill Order named Fill Order

Improved (FI). FI uses the same procedure to compute the linearization of the goal squares

used by the FO. The difference comes in the priorities assigned to each node.

In FI, the node receives a priority according to the number of stones on goal

squares that strictly obey the order. Consider an instance with four stones. If a state

has stones on goal squares with orders three, two and zero it will receive a priority two.

If a node has stones on goals with orders three, one and zero it will receive a priority one.

If a node has stones on goals with orders two, one and zero it will receive a priority zero.

FI is a strict version of FO.

4.4.3 Instance Decomposition and Heuristic Function on Initial States

Figure 4.8 shows the results of the decomposition of the 90 instances from the

standard set. For each instance, the y-axis shows the percentage of squares in the maze

zone. The x-axis plots the instances in order of decreasing percentages. In Pukoban, two

instances have maze zone with size one, and four with size two. The remaining instances

have non-trivial maze zones. The mean size of the maze zone now is 46%. There are no

dead squares in Pukoban. Thus, the number of free squares increases. These additional
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Figure 4.8: Percentage of squares in the maze zone. The number of the instance in the
standard set is plotted above each data point.
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Table 4.10: Mean heuristic values on the initial states of the standard set of 90 instances.
Pukoban versus Sokoban.

EMM IPDB-2 IPDB-4 HF

Pukoban 210.32 210.61 210.79 211.26
Sokoban 240.54 241.81 244.32 248.03

free squares increase the number of alternatives that stones can be moved to goal squares.

This, results in a decrease in the mean size of the maze zone.

Table 4.10 compares the mean heuristic value for Pukoban and Sokoban on the

initial states of the instances from the standard set. Different from Sokoban, in Pukoban

we do not have upper bounds on the solution length for all instances. Thus, in the last

column “HF’, we present the highest f value found during the search by an experiment

using IPDB-4 and tie breaking by rule INFO.

The table shows that HF for Pukoban is lower than for Sokoban. This is expected

since with the additional pull moves shorter solutions could be found. In Pukoban, IPDBs

of size 2 and 4 were able to improve marginally the results of EMM. This can be explained

by the reduction in the mean size of the maze zone. The difference between EMM and HF

in Pukoban is unexpected. In Sokoban, this difference is almost eight while in Pukoban

is less than one. The xSokoban set is hard for Sokoban and not necessarily for Pukoban.

This could explain the small improvement of the IPDBs.
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4.4.4 Solving Pukoban with Pattern Databases

In this subsection, we present experiments regarding our techniques on the task

of optimally solving Pukoban. We compare our results to the ones obtained by Zubaran

and Ritt (2011). Zubaran and Ritt (2011) present two sets of results for optimally solving

Pukoban. In the first, they solve Pukoban using an A∗ guided by EMM and tie breaking

by LBIN. We call this solver ZR. In the second, which is their complete solver, they add to

ZR a more sophisticated scheme of tie breaking, an approach to dynamically update the

heuristic function and, an admissible memory-based technique to improve the heuristic

function that is similar to linear conflicts. We call this solver ZRI.

We present three sets of experiments. In the first, we compare ZR to our solver

guided by an IPDB built from abstractions with two and four stones. We use the same tie

breaking rule LBIN as ZR. In this experiment, we want to verify if an IPDB by itself could

improve the results when comparing to the standard heuristic function for Pukoban. Then,

we compare ZRI to our solver tie breaking by INFO and guided by IPDB in the same

setting as before. Finally, we present our results using INFI and IPDB with abstractions

with two and four stones.

Table 4.11 shows the results of the two Pukoban solvers using LBIN as tie breaking

rule. ZR is able to solve 15 instances, IPDB-2 solves 22 and IPDB-4 solves 21 instances.

More instances were solved by the Pukoban solver when compared to a solver with the

same techniques in the Sokoban setting. In Sokoban, an IPDB-2 tie breaking by LBIN

solves 12 instances. This difference could be explained by the fact that the solution lengths

under Pukoban rules are shorter than under Sokoban rules. The most likely explanation is

that the xSokoban set is hard for Sokoban, but not for Pukoban. The subset of instances

solved is not the same when comparing the two solvers. This is due to implementation

details that define the order in which the successors of a node were generated. Our solver

can explore more nodes per second than ZR, but this is not the reason for the increase in

the number of solved instances. An IPDB-4 limited to explore one million nodes solves

20 instances, five more than ZR.

In Table 4.12 we present the results of our solver breaking ties by INFO and the

best version of the ZRI (ZUBARAN; RITT, 2011). Our solver is able to improve the

results obtained by ZRI. ZRI solves 20 instances the same number that an IPDB-4 using

LBIN solves when limited to explore 1 million nodes. Clearly our best technique to

solve Pukoban is INFO. Using INFO, our solver is able almost to double the number
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of instances solved. Using larger abstractions does not improve the number of solved

instances.

Finally, Table 4.13 we presents the results of our solver breaking ties by INFI and

ZRI (ZUBARAN; RITT, 2011). The modified Fill Order produces a significant improve-

ment in the results. Our solver increases the number of solved instances by nine.

4.5 Generalization of IPDBs

In this section we discuss how IPDBs could be generalized to other problems.

We give concrete examples of problems where IPDBs may lead to better heuristics. We

also highlight some similarities between landmarks (HOFFMANN; PORTEOUS; SE-

BASTIA, 2004) and cut squares, and discuss how our approach could be an example of

an abstraction based heuristic function enhanced by landmarks.

We have shown that an instance decomposition can improve the effectiveness of

PDBs in Sokoban. Thus an instance decomposition is very likely to lead to improved

heuristic functions in similar moving-block puzzles. These include all variants of Sokoban

that have been studied in the literature, which allow to push several or even an unlimited

number of stones, add the capacity of pulling stones, or require push and pull moves to

slide until hitting the next obstacle (DEMAINE; HEARN; HOFFMANN, 2002; RITT,

2010; DEMAINE; HOFFMANN; HOLZER, 2004). Another example of a related puzzle

where our idea may be applied is Atomix, where the player has to assemble a molecule

in a maze grid. Atomix has no man and allows only slide moves, but like Sokoban has

multiple goal states, since the assembly site of the molecule is not fixed.

More generally to apply IPDBs to a concrete problem, three properties are re-

quired. The problem must have a set of objects, a set of locations, and the objective is to

move the objects to goal locations, in such a way that the mapping of objects to goal lo-

cations is not fixed beforehand. The effectiveness of IPDBs depends on the existence of a

cut location that the objects must pass over to reach the goal locations. Such a cut location

divides the locations into two sets: those reached before the cut, and those reached after

the cut. In the first set, a PDB can be applied without suffering from the multiple abstract

goal states. In the second set, any heuristic can be used. The admissibility of the resulting

heuristic function is guaranteed by a cost partition (KATZ; DOMSHLAK, 2008a; YANG

et al., 2008): each heuristic has actions with zero cost in the opposite set of locations.

Several problems from the International Planning Competition (IPC) which are
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transportation problems satisfy these properties. Examples include the STORAGE and

TIDYBOT domains. Both have objects with several goal locations and a topology which

likely permits to find cut locations. For more realistic variants of some domains this also

holds. An example is the AIRPORT domain (TRUG; HOFFMANN; NEBEL, 2004) from

the IPC-4, which models an airport ground traffic planning. In this domain, airplanes

must be moved from their original locations to a goal locations (runway or parking). In

the definition of the domain used in the IPC, each airplane has a specific goal position.

However, an airplane could as well go to one among several parking positions, instead of

a specific one. The same applies to runways. Thus, we could change the objective to only

define as the goal state for airplanes that they would be airborne or parked. In this setting,

the planner can select the optimal park or runway locations. And thus, our approach could

be used to enhance the effectiveness of PDBs.

It has been recognized that combining critical path methods, abstractions, and

landmarks, three of the most successful techniques for obtaining good heuristic func-

tions, can lead to better heuristics (DOMSHLAK; KATZ; LEFLER, 2012). In particu-

lar, the combination of landmarks and abstractions has been pursued in lines of research

like cartesian (SEIPP; HELMERT, 2013; SEIPP; HELMERT, 2014) or implicit (KATZ;

DOMSHLAK, 2010; DOMSHLAK; KATZ; LEFLER, 2012) abstractions. Domshlak,

Katz and Lefler (2012) have shown that abstractions are highly sensitive to the goal

specification, and that making landmarks explicitly available (by what they call an L-

reformulation), the quality of an abstraction-based heuristic can be improved.

The effectiveness of our approach can be understood in the context of landmarks

and abstractions. The cut squares used in our decomposition are related to landmarks (HOFF-

MANN; PORTEOUS; SEBASTIA, 2004), which are implicit sub-goals that must be ac-

complished in every optimal plan. Since every box b in the maze zone must pass over

the cut square c, at(b, c) is a fact landmark, and the set of pushes which achieve at(b, c)

form a (disjunctive) action landmark in the Sokoban domain. We use the cost partition

mentioned above to obtain the subproblem of achieving this specific set of landmarks, and

another subproblem of reaching the goal state from a state where all landmarks have been

achieved. Landmarks usually make the heuristic path-dependent, since a landmark that

has been achieved may not be true in a later state. We avoid this by relaxing the first sub-

problem in such a way that there exists an optimal solution where all landmarks are true

in the corresponding goal state. Finally a PDB abstraction is used to find a better heuristic

function for the first subproblem. It seems possible that this idea could be generalized to
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be applied in a domain-independent way.

4.6 Conclusion and Future Work

We have shown that PDBs can be applied successfully to find optimal solutions to

Sokoban and Pukoban and improve the current state of the art. This result is not obvious,

since a PDB must be built for each instance, and these problems have k! goal states, which

lead to weak lower bounds. Indeed, MPDBs, a straightforward application of PDBs to

Sokoban, lead to ineffective heuristic functions.

To be able to effectively apply PDBs to Sokoban and Pukoban, we partition the

search space into a maze and a goal zones, to obtain an explicit intermediate goal state. In

this way, we can apply PDBs to compute a lower bound on the distance to the intermediate

goal state, and use any existing lower bound for the distance from the intermediate goal

state to some final goal state. We also propose a new domain-specific tie breaking rule

called fill order.

In Sokoban, we have shown that the lower bound can be effectively computed,

dominates the state-of-the-art lower bound in 62 of the 90 instances of the standard set,

and identifies four times more deadlocks in tests over random states. Our experiments

also show that the fill order is an effective tie breaker. Applied together in an A∗ search,

these techniques explore fewer nodes, and are an order of magnitude faster than other

approaches. In one hour our solver finds the optimal solutions of 20 instances, compared

to 6 for the state-of-the-art solver RS∗, and 10 for EMM. We also improved the results in

Pukoban, mainly due to our proposed tie breaking rule.

Although MPDBs result in weak lower bounds, they detect more deadlocks than

the other approaches. We have shown that MPDBs can serve the role of an efficient

deadlock detector and combined with other heuristic function can increase the number of

optimally solved instances of Sokoban. It is further possible to use instance decomposi-

tions with several, smaller maze zones. PDBs for smaller maze zones have fewer entries

which allow for larger abstractions, so we capture more interactions of stones within maze

zones, but lose the interactions between maze zones. It would be also interesting to apply

PDBs and better tie breaking rules in non-admissible solvers.
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Table 4.11: Number of explored nodes and computation time (in seconds) for different
Pukoban solvers breaking ties by rule LBIN.

# ZR IPDB

2 4

Nodes Time Nodes Time Nodes Time

1 125 0 88 0 88 6
2 6,900 2 172 0 118 15
3 161,348 148 7,275 2 136 6
4 >747,745 3,600 >4,329,902 3,600 6,651 1,471
5 411,147 821 991,532 271 183 22
6 >753,529 3,600 2,523,327 515 107 8
7 97 0 2,982 1 2,982 1
8 296 1 7,461 4 7,461 4
9 >794,601 3,600 774,066 254 >110,237 3,600

11 >558,184 3,600 28,822 8 28,614 866
17 >1,498,085 3,600 124 38 124 59
21 >589,015 3,600 1,039 1 1,036 150
27 >292,889 3,600 3,029,716 2,022 >11,662 3,600
36 968,816 3,311 >3,429,532 3,600 >14,805 3,600
38 361 0 38 0 38 0
51 >564,492 3,600 5,670 1 5,670 2
56 40,727 45 >5,973,150 3,600 >22,345 3,600
76 >364,254 3,600 1,227,191 398 1,227,191 496
78 131 0 127 1 127 18
79 166 0 167 1 167 1
80 >941,829 3,600 12,570 4 225 73
81 179 0 168 1 168 1
82 33,199 28 639 1 269 68
83 1,379,790 3,578 5,940 1 195 98
84 201 0 >9,020,739 3,600 >114,641 3,600
86 >681,512 3,600 125 0 125 7

15 47,534 22 17,925 21 21,372
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Table 4.12: Number of explored nodes and computation time (in seconds) for different
Pukoban solvers breaking ties by rule INFO.

# ZRI IPDB

2 4

Nodes Time Nodes Time Nodes Time

1 88 0 149 0 149 6
2 2,089 1 1,369 1 1,333 21
3 12,072 1 269 0 269 8
4 328 0 1,620 5 1,585 908
5 13,728 2 293 1 293 27
6 >557,734 3,600 3,450 1 176 8
7 97 0 20,427 4 20,427 3
8 296 1 486 2 486 2
9 >533,730 3,600 435 1 433 54

11 4,555 1 3,092 2 3,083 171
13 >427,501 3,600 704 2 681 171
17 >1,502,845 3,600 181 23 179 48
19 >613,026 3,600 540 2 540 71
21 >602,391 3,600 14,844 7 14,500 373
23 7,739 3 30,700 17 30,690 3,113
33 >696,681 3,600 2,720 31 2,720 157
35 >270,892 3,600 518 3 518 126
36 897,979 3,105 697 3 696 374
38 359 0 45 0 45 0
45 >335,943 3,600 439 1 407 191
51 >559,787 3,600 230 0 230 0
52 >664,429 3,600 622 2 592 583
54 >430,857 3,600 445 2 445 97
56 40,727 43 >8,965,704 3,600 >48,408 3,600
62 236 0 389 1 389 295
63 >440,801 3,600 749 2 749 208
64 >377,204 3,600 535 1 535 332
65 >491,234 3,600 695 2 341 721
67 >898,984 3,600 641 2 641 265
68 >518,070 3,600 524 2 524 334
70 >585,147 3,600 777 2 755 318
73 >1,153,156 3,600 717 2 703 255
78 131 0 225 1 225 17
79 166 0 385 1 385 1
80 936,075 3,278 2,565 2 1,823 110
81 178 0 319 1 319 1
82 4,585 1 702 1 600 71
83 74,091 16 3,596 2 3,253 120
84 157 0 >7,585,369 3,600 >116,350 3,600
86 >740,512 3,600 1,661,768 326 >647,756 3,600

20 78,452 38 7,656 37 20,360
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Table 4.13: Number of explored nodes and computation time (in seconds) for different
Pukoban solvers breaking ties by rule INFI.

# ZRI IPDB

2 4

Nodes Time Nodes Time Nodes Time

1 88 0 149 0 149 6
2 2,089 1 1,369 1 1,333 21
3 12,072 1 269 0 269 8
4 328 0 1,620 4 1,585 944
5 13,728 2 293 1 293 30
6 >557,734 3,600 3,450 1 176 10
7 97 0 214 0 214 0
8 296 1 568 2 568 2
9 >533,730 3,600 435 1 433 60

11 4,555 1 17,810 7 17,798 729
13 >427,501 3,600 1,123 3 1,036 263
16 >562,795 3,600 4,648 2 4,648 246
17 >1,502,845 3,600 181 0 179 57
19 >613,026 3,600 540 1 540 85
21 >602,391 3,600 334 1 329 139
23 7,739 3 10,953 6 10,946 1,639
31 >412,396 3,600 3,900,173 1,788 3,900,173 1,949
32 >306,827 3,600 4,091,736 1,872 4,091,736 2,043
33 >696,681 3,600 447 17 447 64
34 >404,778 3,600 58,194 36 58,194 3,420
35 >270,892 3,600 656 2 656 167
36 897,979 3,105 18,768 30 >7,294 3,600
38 359 0 388 0 388 0
45 >335,943 3,600 439 1 407 231
48 >223,040 3,600 275,391 693 >1,294 3,600
51 >559,787 3,600 318 0 318 1
52 >664,429 3,600 622 2 592 650
54 >430,857 3,600 646 2 646 146
55 >676,478 3,600 418 1 418 27
56 40,727 43 7,769 7 7,769 1,318
59 >484,496 3,600 988 2 988 214
61 >344,446 3,600 716 2 716 506
62 236 0 389 1 389 301
63 >440,801 3,600 749 2 749 201
64 >377,204 3,600 535 1 535 335
65 >491,234 3,600 633 2 341 721
67 >898,984 3,600 641 2 641 263
68 >518,070 3,600 524 2 524 337
70 >585,147 3,600 1,526 2 1,259 408
73 >1,153,156 3,600 717 2 703 257
76 >365,590 3,600 607 2 607 2
78 131 0 225 1 225 18
79 166 0 385 1 385 1
80 936,075 3,278 9,198 5 5,107 198
81 178 0 355 1 355 1
82 4,585 1 702 1 600 70
83 74,091 16 3,596 2 3,253 117
84 157 0 >7,673,373 3,600 >109,088 3,600

20 107,252 47 8,111 45 29,003
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5 IMPROVED HEURISTIC AND TIE-BREAKING FOR OPTIMALLY SOLVING

MOVING-BLOCKS PROBLEMS

In this chapter, we present a novel admissible pattern database heuristic (D) and

tie-breaking rule (L) for Sokoban, allowing us to increase the number of optimally solved

standard Sokoban instances from 20 to 28 and the number of proved optimal solutions

from 25 to 32 compared to previous methods. The previously best heuristic for Sokoban

(I) – presented in Chapter 4 – used the idea of an intermediate goal state to enable the

effective use of pattern database heuristics in transportation domains, where the mapping

of movable objects to goal locations is not fixed beforehand. We extend this idea to allow

the use of multiple intermediate goal states and show that heuristic I is no longer effective.

We solve this problem and show that our heuristic D is effective in this situation. We first

reintroduce heuristic I with a new notation. This presentation will be useful to introduce

the new heuristic D in Section 5.2. In Section 5.5 we discuss the proposed techniques

and present preliminary results that show that our heuristics and tie-breaking rules are

effective in other domains.

5.1 Background

Let Q be the set of free squares of an instance, G ⊆ Q the set of goal squares

and B the set of stones. A state u is a pair u = (p(B),m), where p is a map from the

stones to the free squares and m is the position of the man. For a stone at square p(b) let

δ(p(b), g) be the minimum cost to push the stone at p(b) to square g when the man is at

m in an instance with only one stone. This cost ignores all other stones. The enhanced

minimum matching (EMM) is the standard heuristic of Sokoban, it is based on a minimum

cost perfect matching in the complete bipartite graph between stones and goal squares

with edge set {(b, g) | b ∈ B, g ∈ G} and weights δ(p(b), g). In this bipartite graph

let M∗ be a minimum cost perfect matching. The matching cost is enhanced with linear

conflicts that increase the heuristic value by two when a pair of adjacent stones is in the

optimal path of each other, each stone can be part of only one linear conflict. Let L be the

number of linear conflicts in a state. Then, the value of EMM for a state u is,
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Figure 5.1: Decompositions with one (5.1b), two (5.1c) and three (5.1d) cut squares of
the instance shown in (5.1a). Cut squares are shown in black, maze zone squares in white,
goal zone squares in brown with diagonal lines and dead squares in gray.

(a) Instance. (b) One cut square. (c) Two cut squares. (d) Three cut squares.

EMM =
∑

(b,g)∈M∗
δ(p(b), g) + 2L.

A series of articles (PEREIRA; RITT; BURIOL, 2013; PEREIRA; RITT; BU-

RIOL, 2014b; PEREIRA; RITT; BURIOL, 2015) introduced admissible PDB heuristics

to Sokoban. The heuristic I (PEREIRA; RITT; BURIOL, 2015) provides the best pre-

vious results. It uses an instance decomposition to obtain an intermediate goal state. If

all stones on a set of non-dead squares M have to pass over a fixed cut square c to be

pushed to all reachable goal squares, the cut square c is used as an intermediate goal state.

The squares in M are the maze zone squares and all other non-dead and non-goal squares

are the goal zone squares. Figure 5.1b shows an instance decomposition: the cut square

shown at 6C is part of the maze zone, the two maze zone squares at 7C and 8C and for

example a goal zone square at 7D.

The heuristic I is the sum of the cost to solve two independent subproblems that

are a relaxation of the original problem. The cut square defines the intermediate goal

state and it can store many stones and the man simultaneously (this is the relaxation). The

maze subproblem corresponds to the cost to push stones that are in the maze zone to the

cut square. The goal subproblem corresponds to the cost to push stones at the cut square

and in the goal zone to the goal squares. Let hM and hG be respectively the heuristic

functions for the maze and goal subproblems. The value of heuristic I for a state u is

defined as the sum of hM and hG.

A PDB is used to compute hM . The abstraction used maintains only k′ of all k

stones in the instance, a PDB-k′ uses an abstraction of k′ stones. For this PDB, there

is a unique abstract goal state that has k′ stones placed at the cut square. To build the

PDB the algorithm performs a reverse search from the abstract goal state to enumerate all
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reachable abstract states with stones k′ in the maze zone. Let δ(p(P )) be the cost stored

in the PDB for an abstract state u′ with stones P ⊆ B. To compute hM the algorithm

creates a partition B of all stones in the maze zone into parts P of size k′. Among all

possible partitions B the heuristic tries to find one that maximizes the heuristic value as

described in (PEREIRA; RITT; BURIOL, 2015). The value of hM for a state u is,

hM =
∑
P∈B

δ(p(P )).

A modified state is used to compute hG. Stones in the maze zone are placed at the

cut square and the position of the man is changed accordingly, all stones in the goal zone

remain the same. A complete description of the procedure can be found in (PEREIRA;

RITT; BURIOL, 2015). Let d be this new map from the stones to free squares and position

of the man. Let L be the number of linear conflicts in a state considering only stones in

the goal zone and at the cut square. Finally, the value of hG for a state u is defined as,

hG =
∑

(b,g)∈M∗
δ(d(b), g) + 2L.

5.2 Proposed Pattern Database Heuristic based on Multiple Intermediate Goal States

In this section, we describe a simple method to extend the heuristic I to use multi-

ple intermediate goal states and we show why it is ineffective. We present a more complex

approach our novel admissible PDB heuristic D and describe how to compute the it effi-

ciently in Section 5.2.2.

5.2.1 Instance Decomposition and Independent Subproblems

We want to find a set of cut squares C that maximizes the size of the maze zoneM .

To find such a set we analyze all possible sets of cut squares of fixed size. Given a set C

we perform k reverse searches one for each goal square in which we place a single stone

at the goal square. In all searches the squares in C are blocked for the stone, it cannot

be placed at them. Then, all reachable non-dead and non-goal squares in these searches
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are part of the goal zone, and all other non-dead squares are part of the maze zone. By

construction, all stones in the set of non-dead squares M can only be pushed to the goal

zone passing over the squares in C.

We place a number in front of the letter I (and later D) to define the number

of cut squares used. 1I uses one cut square and 2I uses two cut squares. The PDB

construction for heuristic I using more cut squares is the same as the original approach

the only difference is that there are more abstract goal states. Each combinations of k′

stones on the cut squares generates an abstract goal state. With two cut squares, x stones

on one cut square and y on the other, and k′ = 4 stones, we have five abstract goal states

(x, y) = (0, 4), (1, 3), (2, 2), (3, 1) and (4, 0). Each pair (x, y) is a unique abstract goal

state. When computing hG for each stone in the maze zone, it is unknown which cut

square will be used in pushing that stone into the goal zone. Then, when placing stones

in the maze zone at the cut squares, the stone will be placed at the closest cut square for

each goal square. The remainder of the heuristic computation is the same.

An instance decomposition of Figure 5.1a using one cut square, Figure 5.1b, finds

a maze zone with three squares (6C, 7C and 8C). Because of that 1I and plain EMM have

the same heuristic value of 27 for that instance. In an instance decomposition using two

cut squares (Figure 5.1c), the maze zone comprises almost the whole instance, a three cut

squares decomposition increases the maze zone by one square (Figure 5.1d). 2I with a

PDB-k′ = 4 provides the optimal solution cost of 23 for the maze subproblem, where all

stones are pushed to the cut square on 3C. When computing hG, two stones are placed at

each cut square and the cost of this subproblem is two. 2I provides the heuristic value of

25 which is lower than plain EMM; because of that small difference, 2I expands 100 times

more nodes to solve the instance.

The solution to improve the heuristic value is to solve the subproblems recognizing

that they are dependent – the number of stones in each cut square in both subproblems

has to be the same. We call this heuristic D. Using it in the instance shown in Figure 5.1a

it provides the heuristic value of 31 – the optimum solution cost.

5.2.2 PDB Construction and Heuristic Computation

In heuristic D, we have a unique PDB for each abstract goal state generated by

the combinations of k′ stones on the cut squares. One PDB for each pair (x, y) of the

previous example. Let a be an assignment that maps stones in the maze zone to cut



96

squares, stones in the goal zone remain the same. Let A be the set of all possible such

assignments. Let δa(P )(p(P )) be the cost in one of the PDBs for an abstract state with

subset of stones P , the number of stones in each cut squares defined by a(P ) selects

the PDB. To guarantee admissibility of heuristic D we have to find an assignment a that

minimizes the sum of hM and hG. Thus, the value of heuristic D for a state u is defined

as,

D = min
∀a∈A

∑
P∈B

δa(P )(p(P )) +
∑

(b,g)∈M∗
δ(a(b), g)

+ 2L.

In the following, we describe how to compute the partition B and an optimal as-

signment efficiently.

5.2.2.1 Partitioning Computation

When computing B it is unknown at the time which cut square will be assigned to

each stone. We assume that each subset P will be assigned to the set of cut squares that

minimizes its cost and thus selecting the PDB with minimum cost. If k′ = 2, the optimalB

can be found in polynomial time by a maximum weighted matching. If k′ > 2, we use a

greedy randomized constructive method based on the one proposed by (PEREIRA; RITT;

BURIOL, 2015). The method starts by querying the cost of every subset, all
(
k
k′

)
subsets.

Then, it ranks the subset according to the number of conflict pushes: the difference be-

tween the cost of the subset and the cost to push each stone in the subset individually to its

closest cut square. Then, a greedy randomized method selects a disjoint partition trying

to maximize the sum of the conflict pushes. Only subsets with all stones in the maze zone

are included in B.

5.2.2.2 Assignment Computation

The assignment computation, in general, is the costly part of the heuristic. If the

sum of conflict pushes in B is zero, we return the value of EMM. We only assign cut squares

for stones in parts P with conflict pushes greater than zero, all other parts are removed

from B. The intuition is that we just have to select cut squares for stones that are likely to

increase the heuristic value. The simplest approach is to compute the cost of all possible

assignments. When checking all possible assignments we call the heuristic the exhaustive
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heuristic DE . The difficulty is that the number of stones in B could be k and thus, we have

to check the cost of |C|k assignments for a single state. To find an optimal assignment

more efficiently we propose the use of a branch and bound computation.

We use a best-first branch and bound computation (BB). At each step in the BB a

stone is assigned to a cut square. At the beginning, no stones have cut squares assigned

and thus the lower bound is equal to EMM. If all stones in a part have cut squares then we

compute the lower bound, otherwise, we just use the lower bound of the parent in the BB

tree. The lower bound is defined as the cost of the two subproblems, but only parts where

all stones have assigned cut squares use the cost of the PDB. The upper bound is defined

as the cost of EMM plus the number of conflict pushes. The heuristic D using the BB is

called DB.

5.2.3 Admissibility

In this subsection, we show that the heuristic D is admissible. Let h∗ be the perfect

heuristic. It is witnessed by some optimal sequence of actions S. For each stone in any

part of B, consider the corresponding subsequence of S that brings it for the first time to

some cut square. Such a subsequence must exist, by definition of the cut squares. The

final position of each stone in these subsequences defines an assignment a of the stones

in B to the cut squares. For all the stones in B, there must be a subsequence disjoint from

the subsequence above, that brings it from the cut square to some goal square. Similarly,

for all remaining stones there must be such a sequence. These subsequences define a

matching M of stones to goal squares. Therefore, we have a pair (a,M) and the value

of h∗ can be defined as h∗(a,M) = δ(p(B), a(B)) + δ(a(B),M(B)). Let hD(a∗,M∗) =

hM(p(B), a∗(B)) + hG(a∗(B),M∗(B)) be the heuristic D with an optimal assignment a∗

that minimizes the total cost given an optimal matching M∗.

Theorem 5.2.1. hD(a∗,M∗) is admissible.

Proof. For any state, we want to show that hD(a∗,M∗) ≤ h∗(a,M).

By definition, the pair (a∗,M∗) minimizes the value of hD, any other pair (a,M)

cannot provide a lower value. Thus, we have that hD(a∗,M∗) ≤ hD(a,M).

Now, we want to show that hD(a,M) ≤ h∗(a,M) where (a,M) is the pair ex-

tracted from the optimal sequence S. First, consider hM and δ(p(B), a(B)). Both heuris-

tics compute the cost to push the same set of stones from their original squares p(B) to
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Figure 5.2: Two different tie-breaking rules.

(a) Fill Order F. (b) Level Order L.

the same set of cut squares a(B). The value of δ(p(B), a(B)) accounts for conflicts be-

tween all stones in B, but the value of hM accounts only for conflicts that occur within

each part P and thus it must be a lower bound on δ(p(B), a(B)). A similar argument

also applies for δ(a(B),M(B)) and hG. All stones B have the same original a(B)

and destination M(B) squares. The value of hG accounts only for linear conflicts while

δ(a(B),M(B)) accounts for all conflicts which include linear conflicts. Thus, hG must

be a lower bound on δ(a(B),M(B)). Therefore,

hD(a∗,M∗) ≤ hD(a,M) ≤ h∗(a,M).

5.3 Tie-Breaking Rule

Having the f -value equal to the optimal solution length does not necessarily mean

a solution is close at hand; there can be a prohibitively large number of states remaining

to be expanded. This makes tie-breaking rules important. When comparing two Sokoban

states, the one with more stones on goal squares, in general, is closer to being solved.

Moreover, there is an optimal order to place stones on goal squares such that a solution

can be found or the solution cost is minimized. The tie-breaking rule F (PEREIRA; RITT;

BURIOL, 2015) explores these ideas to speed up the process of finding solutions. Using F

the search expands fewer nodes and solves more instances, but it has three main sources

of errors: the total order of the goal squares, the rule used to define the order, and the

assignment of partial priorities.

A total order may be attempting too much. When there is insufficient informa-

tion to define an order to fill the goal squares one should not be preferred to the other.

Figure 5.2a shows an order defined by F. In this instance according to the rule F, the

goal square with number three has to receive a stone before the goal square with number
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two, which is not a feasible solution and thus the order is wrong. The rule used to define

the order could be strengthened to avoid this type of error. Also, giving partial priorities

may prioritize nodes with stones on goal squares with lower priorities such that those

with higher priorities cannot be filled anymore. These problems may cause the search to

explore a large portion of the search space without finding a solution.

To solve these problems we propose the tie-breaking rule level order (L). We com-

pute L by placing all stones on goal squares. Then, iteratively we remove a stone with

reverse moves. A stone is considered removed if it can reach a square that has a stone on

it on the initial state of the instance without moving other stones on goal squares. Goal

squares that have their stones removed in the same iteration receive the same priority. If

after one iteration no stone can be removed, all the remaining goal squares with stones

receive the highest priority. Figure 5.2b shows the order defined by L. During the search,

a node receives a priority of the goal square with a stone only if all the goal squares with

higher priority (bigger numbers) already have stones. For example, (a) a node with a

single stone on a goal square with priority three will not receive any priority, and (b) a

node with two stones on goal squares with priority four and one stone on goal square with

priority zero will receive a priority of two.

5.4 Experimental Results

In this section, we compare our proposed heuristic D and tie-breaking rule L with

the state-of-the-art heuristic I and tie-breaking rule F. As well, we include extending

heuristic I to multiple intermediate goal states. All experiments were run on a PC with an

AMD FX-8150 CPU running at 3.6 GHz with 32 GB of RAM. We use the standard limits

for Sokoban of 20 million expanded nodes or one hour of CPU time. In our experiments a

search ended either because a solution was found or the time limit was reached, the node

limit was never reached. The standard test set xSokoban of 90 instances is used.

5.4.1 Instance Decomposition and PDB Construction

Our first experiment is regarding instance decomposition. We compare the per-

centage of maze zone squares obtained by one, two, and three cut squares. These results

are shown in Figure 5.3. Over the 90 instances, decompositions with one, two, and three
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Figure 5.3: Comparison of the percentage of maze zone squares considering different
numbers of cut squares: (5.3a) two cut squares compared to one cut square has a >
10% increase in the size of the maze zone in 48 instances, and (5.3b) three cut squares
compared to two cut squares has it in 14 instances.
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(b) Two vs. three cut squares.

cut squares on average include respectively 66%, 92% and 97% of the squares in the in-

stance are maze zone squares. Using two cut squares has 100% of the maze zone squares

in 33 instances, while using one cut has only three instances.

A two cut squares decomposition provides a considerable improvement in the per-

centage of maze zone squares over one cut square. Because of that we perform experi-

ments to at most two cut squares. PDBs built with k′ = 4 are the largest that can be built

for all instances in one hour, and previously provided the best results. Thus, we fix the

size of k′ = 4 in all our experiments. On average, PDB-4 for 2I has 323, 572 entries and

takes 15 seconds to build, while 2D has 695, 606 entries and takes 108 seconds.

5.4.2 Heuristics on Initial States and Proved Optimal Solutions

Table 5.1 shows the heuristic values for the initial states of the 90 instances. Col-

umn UB shows the best-known upper bound. The first information to be noted is that

heuristic I when extended from one cut square 1I to two cut squares 2I has worse re-

sults in general, but it is still able to increase the heuristic value on some instances (e.g.

#7). 2D improves the heuristic value on average by 1.71 compared to 1I over instances

where 1I doesn’t provide the best-known solution. For some instances it may be hard to

improve the heuristic value. For example, consider #10: the heuristic has not improved,

but 1I has 32% maze zone squares while 2D has 100%. Thus during the search 2D will

detect more deadlocks. 2D improves the heuristic value in 25% of the instances compared

to 1I, including an enormous improvement of 18 for instance #33.
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Table 5.1: Heuristic values for the initial states of the standard set of 90 instances. High-
lighted cells in columns 1I, 2I and 2D have values equal to the best-known solution.
Improved values over 1I are shown in bold. Highlighted cells in column column UB
show proved optimal solution lengths: when the time limit is reached, the lowest f -value
on the open list is equal to the best-known solution. 1I proves the optimal solution length
of 25 instances and 2DB of 32 instances.

# 1I 2I 2D UB

1 97 93 97 97

2 131 123 131 131

3 134 126 134 134

4 355 343 355 355

5 141 133 141 143

6 106 100 106 110

7 80 86 86 88

8 220 220 220 230

9 231 222 231 237

10 510 510 510 512

11 213 209 213 241

12 206 198 208 212

13 224 224 224 238

14 231 231 231 239

15 100 106 108 122

16 170 162 170 186

17 203 199 203 213

18 106 103 106 124

19 286 278 286 302

20 450 374 450 462

21 137 126 137 147

22 308 307 310 324

23 432 428 432 448

24 518 517 534 544

25 378 361 378 386

26 175 162 175 195

27 359 350 359 363

28 290 287 290 308

29 132 130 132 164

30 407 400 407 465

# 1I 2I 2D UB

31 236 233 236 250

32 115 122 129 139

33 152 140 170 174

34 164 164 164 168

35 368 352 368 378

36 511 502 511 521

37 242 225 246 284

38 79 79 79 81

39 658 598 658 672

40 314 306 314 324

41 227 227 227 237

42 208 204 208 218

43 138 130 138 146

44 169 165 169 179

45 290 282 290 300

46 227 217 227 247

47 201 183 201 209

48 200 186 200 200

49 106 88 114 124

50 102 100 100 370

51 118 100 118 118

52 379 359 379 421

53 186 182 186 186

54 181 178 181 187

55 120 115 120 120

56 193 193 201 203

57 217 219 219 225

58 197 189 197 199

59 218 222 222 230

60 148 147 150 152

# 1I 2I 2D UB

61 253 255 255 263

62 241 236 241 245

63 429 424 429 431

64 381 373 381 385

65 207 203 207 211

66 193 193 193 325

67 395 392 395 401

68 333 329 333 341

69 223 217 223 433

70 329 327 329 333

71 298 300 302 308

72 294 262 294 296

73 441 437 441 441

74 182 176 190 212

75 263 267 273 295

76 194 196 198 204

77 360 238 364 368

78 136 136 136 136

79 170 149 170 174

80 231 201 231 231

81 167 141 173 173

82 137 131 137 143

83 194 184 194 194

84 153 149 155 155

85 307 307 307 329

86 124 112 124 134

87 223 217 223 233

88 342 336 342 390

89 361 351 361 379

90 446 447 448 460
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Highlighted entries in Table 5.1 are the instances for which the optimal solution

cost is now known. If the heuristic value of the initial state or the lowest f -value on

the open list when the time limit is reached is equal to the best-known solution, then the

optimal solution length is known. Considering only the heuristic value for the initial states

14 instances have the optimal solution proved. 1I, 2I and 2D prove respectively 12, 1 and

14. The ones proved by 1I and 2I are a subset of 2D. Considering the f -value when the

time limit is reached, 32 instances have their optimal solution cost proven. 2DB proves 32,

and 1I proves 25, a subset of 2DB. For some instances, we may not prove the optimality

of the solution cost because the upper bound is loose (best human solution). However,

we can compare which heuristic is closer to solve the instance: over all algorithms, 1I

has the highest or equal highest f -value on the open list at the end of the search for 64

instances while 2DB has it for 87 instances.

5.4.3 Solved Instances

All methods use the same basic code infrastructure and an A∗ search. We applied

an additional improvement to heuristic I to make the comparison fairer: only use the cost

in the PDB if the whole subset of stones is in the maze zone. Doing this 1I can solve one

more instance.

Table 5.2 shows all instances solved by at least one of the methods. We use two

combinations of tie-breaking rules: IF corresponds to the previous best tie-breaking rule

using inertia (JUNGHANNS; SCHAEFFER, 2001) as first order rule, and fill order as

second order rule, and LI corresponds to our proposed tie-breaking rule L as first level

rule, and inertia as second order rule. For each heuristic (1I, 2I, 2DE , 2DB) there are

two columns, one for each tie-breaking rule (IF, LI). A dot in a specific column indicates

that the instance defining the row was solved by that combination of heuristic and tie-

breaking rule. With the exception of 2I all heuristics solve more instances using LI. The

improvement is more significant in 2DB solving five more instances, but even 1I benefits

from LI. For example in instance #21 it expands 100 times fewer nodes and reduces the

time by more than half an hour.
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Table 5.2: Solved instances for different heuristics and tie-breaking rules. Only instances
solved by at least one of the methods are shown.

# 1I 2I 2DE 2DB

IF LI IF LI IF LI IF LI

1 • • • • • • • •

2 • • • • • •

3 • • • • • •

4 • • • • • •

5 • • • • • •

6 • • • • • •

7 • • • • • • • •

9 • • • • • •

17 • • • • • • • •

21 • • • •

33 •

38 • • • • • • • •

43 • • • • • •

48 • •

51 • • •

53 • • • • • •

55 • • •

57 •

60 •

65 • • • • • •

73 • • • • • •

78 • • • • • • • •

79 • • • • • •

80 • • • • • •

81 • • • •

82 • • • • • •

83 • • • • • •

84 • •

Tot. 21 22 5 5 20 21 23 28

Comparing the heuristics, 2I can only solve five instances, showing that the ex-

tension to multiple intermediate goal states is ineffective with heuristic I. Even with a
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Figure 5.4: Comparison of the heuristics 1I+IF (previous state-of-the-art) and 2DB+LI.
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more accurate heuristic, 2DE cannot solve more instances than 1I due to the cost of ex-

panding nodes. 2DB can solve more instances than 1I with both tie-breaking rules. In

computing Table 5.2, 2DB on average expands 10 times fewer nodes per second than 1I,

but it solves seven more instances. In large search spaces the comparison of 1I and 2DB

indicates that a heuristic that is more informed can be beneficial, even if more computa-

tionally expensive. Another point highlighted by the results of 2DB is the effort to prove

the optimality and to find the solution. 2DB can prove the optimality of 32 instances.

However, it can only find the optimal solution for 28.

Figure 5.4 shows the detailed results of 1I+IF, the previous state-of-the-art, com-

pared to 2DB+LI. 2DB uses at most 307 seconds more than 1I to solve any instance

(#73). Comparing only the instances solved by both methods, 2DB uses more time in

13 instances while 1I uses more time in 15 instances. Regarding time, there is no clear

winner. Regarding expanded nodes 2DB is the clear winner. Comparing only the solved

instances by both methods 2DB expands 200 times fewer nodes on average.

The main limitation of our approach is that an increase of the number of cut

squares will make the heuristic computation more costly. If the number of cut squares

is similar to the number of goal locations the heuristic D is unlikely to improve the results.

It is reasonable to increase the number of cut squares given that we are not using any

specific method to prune the BB and that many selections of cut squares will not produce

an optimal solution. In Sokoban for example, it is often the case that if more than one

stone chooses the same cut square the solution is already infeasible. We could detect this

infeasibility early without EMM. Pruning methods based on these cases could increase the

efficiency of our method.
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5.5 Experiments in Other Domains

We have shown how to effectively apply PDB heuristics in transportation do-

mains where the mapping of movable objects to goal locations is not fixed beforehand

and where multiple intermediate goal states are helpful. We use our heuristic D and tie-

breaking rule L and solve optimally more instances than previous methods. Domains like

ATOMIX (HÜFFNER et al., 2001) and AIRPORT-IPC-4 (TRUG; HOFFMANN; NEBEL,

2004) require D instead of heuristic I because in these domains the heuristic 1I in gen-

eral doesn’t provide maze zones with effective size. Tie-breaking rules inspired in L could

also improve the results in these domains. Other domains with similar characteristics like

STORAGE and TIDYBOT (both from IPC) are likely to benefit from our techniques.

In this section, we present preliminary experiments related to applying our tech-

niques in domain-independent planning. In Subsection 5.5.1 we compare a domain-

independent PDB heuristic to a simple matching heuristic in a realistic version of AIRPORT-

IPC-4. In Subsection 5.5.2 we present preliminary results of simple versions of our tie-

breaking rules applied as domain-independent techniques.

5.5.1 Solving Airport

We perform two modifications to the AIRPORT-IPC-4 domain making it more

similar to the real-world problem. First, we modify the goal state. In the original formu-

lation, all airplanes have a defined goal (parking and take off) positions. In a more realistic

formulation, the controller would be able to assign goal positions to airplanes. Thus, we

modify the goal state to define as the goal for airplanes only to be parked or airborne,

leaving free the choice of the specific position. Second, we add an action to land. In the

original formulation, there are many actions to move airplanes through the airport, but

there is no action to land. For this reason, there is a strong imbalance between the number

of airplanes that have to park compared to the number of airplanes that have to take off.

Thus, we add an action to land airplanes. For all instances, we add k airplanes that have

as initial state airborne and as goal state to park, where k is the number of airplanes that

have to take off in the original formulation. We perform experiments using the modified

version of the domain.

We compare three heuristic functions iPDB, Closest and MM. iPDB (HASLUM

et al., 2007; SIEVERS; ORTLIEB; HELMERT, 2012) is an efficient implementation of
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PDBs for domain-independent planning. Closest and MM are simple domain-dependent

heuristics. Both heuristics are based on the cost to an airplane a at position u move to

position v if a is the only airplane in the airport. These distances are computed in a pre-

processing phase and stored in a lookup table. Closest is defined as the sum of the cost

for all airplanes reach the closest position that satisfies their goal state. Closest ignores

the fact that all airplanes with park goals must end up in different park positions. MM

solves this problem using a minimum cost perfect matching between airplanes and park

positions. Thus, MM is defined as the sum of the cost for all airplanes reach their closest

take off position and the cost of the minimum matching.

The iPDB heuristic may have two sources of ineffectiveness in this domain: the

pattern selection and the multiple abstract goal states. Being a domain-independent heuris-

tic iPDB has to select informative patterns without domain-dependent knowledge, a poor

selection of patterns may result in a weak heuristic function. Furthermore, as we showed

in Chapter 4 standard PDBs are ineffective in transportation domains where the map-

ping of movable objects to goal locations is not fixed beforehand. We use the heuristic

Closest to emulate a PDB heuristic with atomic projections and a perfect pattern se-

lection. Compared to MM, the only source of ineffectiveness of Closest are the multiple

abstract goal states.

We implemented Closest and MM in Fast Downward (HELMERT, 2006a), thus,

all heuristics share the same basic framework. All experiments use the same hardware

as before and we use the time limit of 30 minutes and the memory limit of 4 GB for

each instance. We use an A∗ algorithm and the version of iPDB implemented in Fast

Downward with default parameters. Table 5.3 compares the initial heuristic value and

the best f -value of the heuristics. The best f -value is the lowest f -value on the open

list when time or memory limits are reached, or the solution cost if the instance is solved.

Closest and iPDB solve 18 instances, a subset of the instances solved by MM. MM solves

19 instances, #19 is the additional instance solved. Closest and MM can improve the

best f -value for many instances when compared to iPDB. In general, we can observe that

the multiple abstract goal states reduce both the initial heuristic value and best f -value of

Closest and iPDB, and that MM provides better results. These results indicate that our

heuristics could improve the results in this domain.
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Table 5.3: Values of the initial heuristic (h) and best f -value (f) for Airport instances.
Improved values over iPDB are shown in bold. Highlighted cells in column # are solved
instances.

# iPDB Closest MM

h f h f h f

1 8 8 8 8 8 8
2 19 19 16 19 16 19
3 17 17 16 17 16 17
4 20 20 20 20 20 20
5 43 43 40 43 40 43
6 63 63 60 63 60 63
7 63 63 60 63 60 63
8 84 84 80 84 80 84
9 71 71 69 71 69 71

10 18 18 18 18 18 18
11 41 41 38 41 38 41
12 59 59 56 59 56 59
13 57 57 54 57 54 57
14 100 102 94 102 96 102
15 98 100 92 100 94 100
16 139 139 130 134 134 138
17 126 126 119 123 123 126
18 145 145 137 140 141 144
19 108 110 104 108 108 112
20 133 133 127 130 131 133
21 146 148 145 148 147 148
22 193 197 192 197 196 197
23 195 195 194 197 202 202
24 309 309 306 306 314 314
25 359 359 356 356 368 368
26 349 349 346 346 364 364
27 451 451 490 490 508 508
28 500 500 538 538 562 562
29 481 481 534 534 566 566
30 612 612 654 654 686 686
31 615 615 702 702 744 744
32 566 566 716 716 768 768
33 602 602 787 787 839 839
34 555 555 803 803 865 865
35 604 604 783 783 857 857
36 105 105 104 105 104 105
37 198 198 194 195 198 198
38 171 171 168 169 170 170
39 249 249 246 246 254 254
40 240 240 237 237 241 241
41 189 189 186 186 190 190
42 293 293 289 289 297 297
43 259 259 257 257 265 265
44 229 229 226 226 232 232
45 244 244 242 242 252 252
46 310 310 309 309 321 321
47 293 293 368 368 388 388
48 374 374 507 507 539 539
49 373 373 510 510 544 544
50 514 514 819 819 907 907

Avg. 239.80 240.04 270.92 272.44 285.00 286.18

Solved 18 18 19



108

5.5.2 Domain-Independent Tie-Breaking Rules

In this subsection, we perform experiments with all domain from the first to the

seventh IPC. In total, there are 1050 instances divided among 33 domains, many of these

domains are based on real-world problems. The tie-breaking rule inertia is simple to

define as a domain-independent technique: it prioritizes states generated by the longest

number of actions that change the value of the same variable in sequence. We have imple-

mented this tie-breaking rule in Fast Downward. The simplest possible version of fill/level

order prioritizes states that have more goal conditions satisfied. This tie-breaking rule cor-

responds to the goal count heuristic which is already available in Fast Downward.

Table 5.4 shows the comparison of inertia I, goal count C to the standard approach

used in the community of planning and heuristic search that prioritizes states with lower h-

values (ASAI; FUKUNAGA, 2016). We run these experiments using the Fast Downward

an A∗ search and LM-Cut as heuristic function. We set as limits 5 minutes and 2 GB of

memory. Each column presents the number of solved instances for different domains with

a given tie-breaking rule. H prioritizes states with lower h-values. I and C corresponds

to inertia and goal count respectively, IC uses inertia as first order and goal count as the

second order tie-breaking rule. Finally, ICH is the same as IC, but adds H as a third

level tie-breaking rule. The main findings of this experiment are that simple tie-breaking

rules can increase the number of solved instances when compared to the most common

approach used in the community. Given that goal count is a simple approximation of

fill/level order a more refined technique may provide even better results.

5.6 Conclusion

We extend the effectiveness of PDB heuristics in transportation domains and use

this to increase the number of optimally solved instances of Sokoban. Further improve-

ments in Sokoban could be produced by better strategies to select the subsets and by

increasing the number of stones in the PDB. Another improvement could be related to the

tie-breaking rule. We have proven the optimal solution cost for 32 instances, but we were

not able to find a solution for four of them mainly because of tie-breaking.
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Table 5.4: Number of solved instances by domain using an A∗ and LM-Cut as heuristic
for each tie-breaking rule on IPC benchmarks with 5 minutes as time limit and 2 GB.

Domains H I C IC ICH

airport 26 25 21 25 26
barman-opt11-strips 0 0 0 0 0

blocks 27 27 27 27 28
cybersec-strips 2 4 1 2 3

depot 5 6 6 6 6
driverlog 13 13 13 13 13

elevators-opt11-strips 15 14 15 15 15
floortile-opt11-strips 6 6 6 6 6

freecell 9 9 9 9 9
grid 1 1 1 1 1

gripper 6 6 6 6 6
logistics00 20 19 20 20 20

miconic 140 66 140 140 140
mystery 15 15 15 15 15

nomystery-opt11-strips 13 12 13 13 13
openstacks-opt11-strips 11 18 18 18 18
parcprinter-opt11-strips 13 13 13 13 13

parking-opt11-strips 1 1 1 1 1
pathways 5 5 5 5 5

pegsol-opt11-strips 17 17 17 17 17
pipesworld-notankage 13 13 13 14 14

pipesworld-tankage 8 8 7 8 8
psr-small 48 48 48 48 48

rovers 7 7 7 7 7
scanalyzer-opt11-strips 10 10 10 10 10

sokoban-opt11-strips 19 19 19 19 19
storage 14 14 14 14 14

tidybot-opt11-strips 11 12 11 11 11
tpp 6 6 6 6 6

transport-opt11-strips 6 6 6 6 6
visitall-opt11-strips 10 10 10 10 10

woodworking-opt11-strips 9 12 9 10 10
zenotravel 11 10 11 11 11

1050 517 452 518 526 529
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6 CONCLUSIONS AND FUTURE WORK

In this thesis, we considered the class of moving-blocks problems introducing

heuristic search techniques and proving computational complexity results. First, we im-

proved the performance of heuristic search techniques in the task of obtaining optimal

solutions to the moving-blocks problems. We proposed PDB heuristics and tie-breaking

rules that were able to increase the number of optimally solved instances of Sokoban.

Second, we enhanced the theoretical understanding about moving-blocks problems. We

were able to prove that the whole class of PUSHPULL problems is PSPACE-complete and

that several PULL problems are PSPACE-complete (PEREIRA; RITT; BURIOL, 2014a).

In Chapter 3 we proved that several PULL and PUSHPULL problems are PSPACE-

complete. Our reductions are from the Nondeterministic Constraint Logic. We presented

two sets of gadgets for PULL and PUSHPULL problems. We introduced three gadgets

that are used to show that many versions of PULL problems with two decision prob-

lems are PSPACE-complete. We developed gadgets to show that PUSHPULL problems

are PSPACE-complete including specific gadgets for PUSHPULL-1 versions (PEREIRA;

RITT; BURIOL, 2016).

In Chapter 4 we propose a heuristic search approach to optimally solve Sokoban

and moving-blocks problems. We showed that the natural abstraction used by PDBs when

applied to Sokoban is ineffective. We introduced an instance decomposition to obtain

an intermediate goal state which enabled the effective application of PDBs in Sokoban.

We also showed that tie-breaking rules are important when solving Sokoban. We in-

troduced the novel tie-breaking rule called fill order. Using both the PDB heuristic and

the tie-breaking rule we improved the number of optimally solved instances of Sokoban

compared to previous methods. The same techniques applied to Pukoban provide similar

results. Finally, we conclude the chapter discussing how the idea of intermediate goal

states is general and can be applied for the class of moving-blocks problems (PEREIRA;

RITT; BURIOL, 2013; PEREIRA; RITT; BURIOL, 2014b; PEREIRA; RITT; BURIOL,

2015).

In Chapter 5 we improved the techniques presented in Chapter 4 increasing the

number optimally solve instances of Sokoban. We begin the chapter showing that the

heuristic proposed in Chapter 4 is ineffective when applied to multiple intermediate goal

states. We show that the solution to this problem is not trivial and propose a strategy to

solve it. We introduce a branch and bound method to solve the problem efficiently. We
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also show that the tie-breaking rule fill order can be improved. Using both techniques we

again increase the number of optimally solved instances of Sokoban and have currently

the best results (PEREIRA et al., 2016).

6.1 Future Work

In this section we present ongoing and future work related to this thesis.

6.1.1 Admissible Pattern Search and Learning

PDB heuristics are informative for Sokoban. However, Sokoban can be viewed

as an adversarial problem. Instances in the standard set are designed to have conflicts

between all stones in the maze. To build the PDB some stones must be projected away

and consequently some of these conflicts may be missed. Another interesting point to

observe are the strategies that humans use to solve Sokoban. One such strategy is to learn

from mistakes, after trying some move and realize the lower bound has increased or a

deadlock has been created one might avoid such move and try something new.

Techniques as Pattern Search (JUNGHANNS; SCHAEFFER, 1998a) in Sokoban

and CEGAR (SEIPP; HELMERT, 2014) in domain-independent planning try to solve

these issues by learning these high order conflicts from counter-examples during the

search. Pattern Search is one of the most successful techniques introduced in Rolling

Stone (JUNGHANNS, 1999). The technique speculatively perform small searches dur-

ing the main search trying to prove counter-examples to learn deadlocks and penalties

that enhance the heuristic value. Pattern Search in Sokoban doubles the number of solved

instances. The problem is that because of the abstraction used the resulting enhanced is

not admissible.

We proposed a new abstraction that is similar to Pattern Search but it is admissi-

ble. We use this new abstraction to during the search to find high order conflicts through

counter-examples learning deadlocks and penalties improving the heuristic value. In pre-

liminary experiments, the new technique used by itself – no PDBs – can improve the

heuristic value on initial states and double the number of optimally solved instances.
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6.1.2 Domain-Independent Tie-Breaking Rules

Another possible line of research is to apply our tie breaking rules in domain-

dependent planning. The tie-breaking rules used in Sokoban seem to be crucial to increase

the number of optimally solved instances. Asai and Fukunaga (2016) introduced tie-

breaking rules in domain-dependent planning for domains that have zero-cost actions

and were able to improve the results. We performed preliminary experiments with simple

versions of our tie-breaking rules and we were able to improve the results obtained by Asai

and Fukunaga (2016) in domains without zero-cost actions. This is an interesting line of

research due to the general belief in the planning and heuristic search community that

tie-breaking by lower h-value is a good strategy.

6.1.3 Improving the Sokoban Solver

The first point to investigate is better methods to compute the heuristic value for

abstractions with k′ greater than two. Our current method is computationally inefficient.

A more efficient method would enable us to use abstractions with more stones. Another

possible improvement is the domain-dependent tie-breaking rules. The proposed rules are

effective for several instances, but they are not for many others.

6.1.4 Applying the Proposed Methods to Other Domains

Another possible research line is to apply our methods to other domains. Our

first attempt is to apply our techniques to moving-blocks problems related to Sokoban.

Atomix is a good candidate. The best domain-dependent solver of Atomix (HÜFFNER et

al., 2001) uses a weak heuristic function. The authors stated that the most likely aspect to

improve the solver is an improvement of the heuristic function. Preliminary experiments

show that PDBs and tie-breaking rules improve the number of optimally solved instances

of Atomix.

The Airport domain (TRUG; HOFFMANN; NEBEL, 2004) is another candidate.

In the standard definition of this problem airplanes have defined goal locations. However,

an airplane could as well go to one among several goal locations, instead of a specific

one. Thus, we could change the objective to only define as the goal state for airplanes
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that they would be airborne or parked. In this setting, the planner can select the opti-

mal goal location. Thus, our approach could be used to enhance the effectiveness of

PDBs. A simple matching heuristic outperforms iPDB (HASLUM et al., 2007) and the

lm-cut (HELMERT; DOMSHLAK, 2009) heuristics. Tie-breaking strategies also reduce

the number of expanded nodes to solve instances.

6.1.5 Applying the Proposed Methods to Domain-Independent Planning

Besides specific problems, we could apply our heuristics to domain-independent

planning. A cut square is similar to a fact landmark (HOFFMANN; PORTEOUS; SE-

BASTIA, 2004). Thus, our heuristics can be seen as the use of landmarks to enhance the

performance of an abstraction based heuristic function. The high-level idea would be to

investigate how to incorporate landmarks information to improve PDBs.

6.1.6 Better Heuristic Function for Sokoban

Finally, we could investigate a novel heuristic function for Sokoban. One possible

line of research are domain (HERNáDVöLGYI; HOLTE, 2000) and Cartesian abstrac-

tions (SEIPP; HELMERT, 2013). We believe that the direct application of these ideas

would not produce competitive results in Sokoban. These abstractions miss the infor-

mation of the exact position of each stone. Thus, they could be too uninformative when

compared to the heuristics present in this thesis. However, the flexibility provided by

these abstractions could be one way to solve the problem of multiple abstract goal states

since they could be abstracted to a unique high-level abstract state.

Our main challenge when applying abstractions to Sokoban is that each stone can

go to multiple goal squares. This generates the multiple abstract goal state problem.

Abstraction heuristics explore distances in the state space. Differently, landmarks heuris-

tics explore the structure of the problem, and this could be the key to solve the multiple

abstract goal state problem. Landmark-based heuristics are currently one the most effec-

tive approaches in the domain-independent planning. Since we already explored PDBs

it makes sense to explore now landmarks. The idea is to produce a domain-dependent

heuristic function based on landmarks for Sokoban. This was already done for the Pan-

cake problem (HELMERT, 2010). The best PDB approach for the Pancake problem can
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solve instances with 20 disks in a day. The domain-dependent landmark heuristic dramat-

ically outperforms this result, being able to solve instances with 60 disks in seconds.
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APPENDIX A RESOLVENDO PROBLEMAS DE BLOCOS-MÓVEIS

Nesta tese, consideramos a classe de problemas de blocos-móveis para a qual

propomos técnicas de busca heurística e provamos resultados de complexidade computa-

cional. Nós melhoramos o desempenho de técnicas de busca heurística na tarefa de obter

soluções ótimas para problemas de blocos-móveis. Propomos funções heurísticas de ab-

stração baseadas em bancos de dados de padrão e regras de desempate que foram ca-

pazes de aumentar o número de instâncias de Sokoban resolvidas com garantia de oti-

malidade. Nós ampliamos o conhecimento teórico sobre problemas de blocos-móveis

provando que toda a classe de problemas com movimentos de EMPURRAR e PUXAR é

PSPACE-complete e que vários problemas com movimentos de PUXAR são PSPACE-

complete.

Um problema de blocos-móveis consiste em k blocos móveis dispostos em um

labirinto em grade quadrangular onde há um bloco móvel adicional chamado de o homem,

que é o único bloco que pode ser movido diretamente. Em particular, cada problema de

blocos-móveis é definido pelo conjunto de movimentos disponíveis, pela descrição do

objetivo e pelo o que acontece quando o homem tenta mover um bloco. Sokoban é o

problema de blocos-móveis mais conhecido e pesquisado.

Problema de blocos-móveis são ao mesmo tempo desafiadores de forma teórica e

pratica. Em geral, problemas na classe de blocos-móveis são PSPACE-complete, e ape-

nas restrições artificiais os torna tratáveis. Estes problemas têm uma descrição simples e

concisa, são fáceis de entender, mas ainda intelectualmente desafiadores. Há um número

considerável de pessoas interessadas em resolvê-los. Além disso, há uma comunidade

interessada em desenvolver abordagens algorítmicas para resolver instâncias destes prob-

lemas.

Antes desta tese, a maior parte da literatura cientifica estudou a complexidade

computacional de problemas de blocos-móveis apenas com movimentos de EMPURRAR,

na maioria dos casos provando que esses problemas são PSPACE-complete. Outras ver-

sões do problema com diferentes movimentos foram provadas ser NP-hard. A Lógica

de Restrições Não Determinística (NCL) é um framework desenvolvido por Hearn and

Demaine (2005) para diminuir o esforço de provar resultados de PSPACE-hardness. Nor-

malmente, ela é usada para provar que puzzles e jogos são PSPACE-hard. Nós usamos

NCL para investigar a dificuldade de resolver problemas de blocos-móveis.
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No Capítulo 3 provamos que vários problemas com movimentos de PUXAR e com

movimentos de EMPURRAR e PUXAR são PSPACE-complete. Nós apresentamos dois

conjuntos de gadgets para problemas com movimentos de PUXAR e com movimentos de

EMPURRAR e PUXAR. Nós introduzimos três gadgets que são usados para provar que

muitas versões de problemas com movimentos de PUXAR com duas descrições de ob-

jetivo são PSPACE-complete. Nós também desenvolvemos gadgets para mostrar que a

classe de problemas com movimentos de EMPURRAR e PUXAR é PSPACE-complete, in-

cluindo gadgets específicos para versões em que o homem pode mover apenas um bloco

simultaneamente. A nossa contribuição nessa linha de pesquisa é aprimorar o conheci-

mento sobre o panorama da complexidade de problemas de blocos-móveis.

Nosso principal objetivo com essa tese é investigar abordagens para resolver com

garantia de otimalidade problemas de blocos-móveis com foco em Sokoban. Métodos

baseados em busca heurística e heurísticas de abstrações como bancos de dados de padrão

são as abordagens mais efetivas para resolver otimamente esses problemas. Nós fazemos

muitas contribuições nessa linha de pesquisa. Nós introduzimos novas funções heurísticas

usando bancos de dados padrão com a ideia de estados objetivos intermediários. Propo-

mos uma técnica baseada em bancos de dados padrão para detectar impasses. Propo-

mos regras de desempate que exploram a estrutura do problema. Usando estas funções

heurísticas e regras de desempate nós aumentamos o número de instâncias resolvidas de

forma ótima em Sokoban e em outros problemas de blocos-móveis em comparação com

os métodos anteriores.

No Capítulo 4 propomos uma abordagem de busca heurística para resolver de

forma ótima Sokoban e problemas de blocos-móveis. Nós mostramos que a abstração

natural utilizada por heurísticas baseadas em bancos de dados de padrão quando apli-

cado a Sokoban é ineficaz. Nós introduzimos uma decomposição instâncias para obter

um estado objetivo intermediário que permitiu a aplicação efetiva de heurísticas baseadas

em bancos de dados de padrão em Sokoban. Nós também mostramos que as regras de

desempate são importantes na resolução de Sokoban. Assim, propomos uma regra de

desempate que usa a informação da disposição dos quadrados objetivos e dos blocos no

labirinto para decidir durante a busca quais estados são mais promissores. Usando tanto

a heurística baseada em bancos de dados de padrão quanto a regra de desempate mel-

horamos o número de instâncias resolvidas de forma ótima de Sokoban em comparação

com os métodos anteriores. As mesmas técnicas utilizadas em Pukoban proporcionam

resultados semelhantes. Finalmente, concluímos o capítulo discutindo como a ideia de
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estados objetivo intermediário é geral e pode ser aplicada para a classe de problemas de

blocos-móveis.

No Capítulo 5 melhoramos as técnicas apresentadas no capítulo 4 aumentando o

número de instâncias resolvidas de forma ótima em Sokoban. Começamos o capítulo

mostrando que a função heurística proposta no Capítulo 4 é ineficaz quando aplicada a

vários estados objetivos intermediários. Nós mostramos que a solução para este prob-

lema não é trivial e propomos uma estratégia para resolvê-lo introduzindo um método de

branch and bound para resolver o problema de forma eficiente. Mostramos também que

existem variações da regra de desempate que geram melhores resultados. Com ambas as

técnicas novamente aumentamos o número de instâncias resolvidas de forma ótima em

Sokoban e possuímos atualmente os melhores resultados publicados.
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