Transactional Graph Transformation
Systems

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Computer Science

Profa. Dr. Leila Ribeiro
Advisor

Prof. Dr. Andrea Corradini
Coadvisor

Porto Alegre, July 2008
Foss, Luciana

123 f.: il.

To my mother Celina, my brother André and my niece Julia.
In the memory of my father, Luiz Foss.
TABLE OF CONTENTS

LIST OF FIGURES ... 6
LIST OF TABLES .. 8
ABSTRACT ... 9
RESUMO ... 10

1 INTRODUCTION ... 11
1.1 Outline ... 13
1.2 PhD Thesis Motivation and Definition 13
1.2.1 Goals of Thesis .. 14

2 TYPED GRAPH TRANSFORMATION SYSTEMS 15
2.1 Operational Semantics .. 18
2.2 Category GTS .. 23

3 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS 27
3.1 Introduction to Transactional GTS 27
3.2 Category TGTS ... 33
3.3 Abstract GTS associated to a T-GTS 38
3.4 Transactions as graph processes 39
3.4.1 Graph Processes ... 40
3.4.2 Transactional Processes .. 44
3.4.3 Abstract GTS for a T-GTS based on process 45
3.5 Implementation morphisms for T-GTSS 47
3.6 Adjunction between GTS and TGTS* 63

4 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS WITH DE-
PENDENCY RELATION .. 66
4.1 Categories dGTS and dTGTS .. 70
4.2 Abstract d-GTS for a T-GTS with dependency relation 72
4.3 Implementation morphism for dT-GTS 77
4.4 Adjunction between dGTS and dTGTS* 79
4.5 Comparing T-GTS with dT-GTS 81
4.6 Construction of the abstract system associated to a dT-GTS 85
4.7 Refinement of transactional graph transformation systems 87
5 CONCLUSIONS

5.1 Theoretical contribution

5.2 Software Engineering contribution

5.3 Future work

REFERENCES

APPENDIX A CATEGORICAL DEFINITIONS

APPENDIX B PROPER QUOTIENT PRODUCTIONS

APPENDIX C TRANSACTIONS OF A DT-GTS

APPENDIX D RESUMO ESTENDIDO DA TESE

D.1 Contribuições

D.1.1 Contribuições para a área teórica

D.1.2 Contribuições para a área de Engenharia de Software

D.1.3 Trabalhos futuros
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typed graph G</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>A graph production</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Example of GTS: a pump operator of a gas station system.</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Direct derivation from G to H using ACCEPT based on m.</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Two sequentially independent direct derivations.</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Sequential independence</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Parallel production</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Parallel production $q_1 + q_2$ and a proper quotient production q of $q_1 + q_2$.</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Derivation shift-equivalent to derivation in Figure 2.5.</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>Isomorphism of derivations</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>Partial morphism f_T.</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Translation of STOP production with respect to f_T: STOP production (left), pulling back along f_T (center) and STOP' typed over T_1 (right).</td>
<td>24</td>
</tr>
<tr>
<td>2.13</td>
<td>Productions of G_1.</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Transactional GTS $PumpOper$ for a pump operator of a gas station.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Transactional GTS $Customer$ for a customer of a gas station.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Stabilised graph.</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>A transaction of the T-GTS $PumpOper$ in Example 3.1.</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>GTS morphism f does not define a T-GTS morphism.</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Derivation $S(\rho)$ and its equivalent derivation via proper quotient pro-duction.</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>Derivations $f_T^{-1}(\rho)$ and $f_T^{-1}(\delta)$.</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Abstract production associated to the transaction in Figure 3.4.</td>
<td>39</td>
</tr>
<tr>
<td>3.9</td>
<td>Type graph (top-left), the maximal and the minimal graphs (bottom-left), and productions (right) of the process associated to derivation in Figure 3.4.</td>
<td>42</td>
</tr>
<tr>
<td>3.10</td>
<td>Isomorphism of processes.</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Class of shift-equivalent derivations (left) and the equivalent graph pro-cess (right)</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Abstract GTS associated to the T-GTS $PumpOper$, depicted in Figure 3.1.</td>
<td>46</td>
</tr>
<tr>
<td>3.13</td>
<td>Transactional process ϕ implements production p.</td>
<td>47</td>
</tr>
<tr>
<td>3.14</td>
<td>Implementation morphism from the abstract GTS $A(Customer)$ to the T-GTS $Customer$</td>
<td>48</td>
</tr>
<tr>
<td>3.15</td>
<td>Transactional processes of customer system.</td>
<td>48</td>
</tr>
<tr>
<td>3.16</td>
<td>Composition of implementation T-GTS morphisms is associative.</td>
<td>55</td>
</tr>
</tbody>
</table>
Figure 3.17: Universality of ϵ_Z in TGTS^{imp} .. 64

Figure 4.1: Transactions implementing STOP production depicted in Figure 3.1. 67
Figure 4.2: A dep-production. .. 68
Figure 4.3: A T-GTS DepPumpOper with dependency relation for gas station system. .. 70
Figure 4.4: dep-productions p_1 and p_2. .. 72
Figure 4.5: Transactional process of $\text{dt-GTS DepPumpOper}$. 73
Figure 4.6: dep-production associated to the process in Example 4.4. 76
Figure 4.7: Abstract d-GTS Z_1 associated to the d-GTS DepPumpOper, described in Example 4.2. .. 76
Figure 4.8: Universality of ϵ_Z in $\text{dTGTS}^{\text{imp}}$ 80
Figure 4.9: Transaction constructed from dep-production STOP in Figure 4.2. 83
Figure 4.10: The d-T-GTS Z_2. ... 84
Figure 4.11: Productions ACCEPT and FINISH for the d-T-GTS Z'_2. 84
Figure 4.12: A refinement d-T-GTS Z for DepPumpOper (Figure 4.3). 90
Figure 4.13: An unstable transactional process associated to STOP production. 90
LIST OF TABLES

Table 4.1:	Dependency relations of productions of transactional process ϕ_1	74
Table 4.2:	Transitive closure of dependency relations of production of ϕ_1	75
Table 4.3:	Dependency relation associated to transactional process ϕ_1	75
Table 4.4:	Transitive closure of dependencies of productions of ϕ depicted in Figure 4.9	82
ABSTRACT

Reactive systems, in contrast to transformational systems, are characterised by having to continuously react to stimuli from its environment. If, in addition to reactivity, we consider that for many applications the specification method should provide a way to describe the spatial distribution of states, graph transformation seems to be a suitable specification technique. Some applications with these characteristics are mobile systems and biological pathways. However, the approaches provided for graph transformations so far are not adequate to explicitly describe interaction patterns.

Furthermore, several approaches to specify reactive systems propose to use asynchronous languages to specify communication between components and define mechanisms to describe a set (or sequence) of activities that are performed atomically. However, scarce attention has been devoted to the idea of extending GTSS in order to allow the specification of atomic activities.

Inspired by the ideas of zero-safe Petri nets, an extension of graph transformation systems (GTSS) – called transactional GTS (T-GTS) – was defined, equipping them with a transaction notion. A transaction, in this approach, describes a set of actions that are executed in an atomic way and it is defined by distinguishing the resources that are visible or invisible from an external point of view, where the last ones are considered temporary and are forgotten at a more abstract level.

In this thesis, we give a more theoretical foundation to T-GTS defining a notion of implementation morphisms between T-GTSS (associating graph productions of a system with transactions of other system) and using this notion we demonstrate the existence of an adjunction between categories of GTSS and T-GTSS with implementation morphisms. Moreover, we extends transactional GTSS with a mechanism to describe interaction patterns of reactive systems, by means of dependency relations included in the graph productions. The idea is that a system interacts with its environment by consuming and creating elements visible to this environment, obeying a causal dependency. Finally, we propose a notion of glass-box refinement for T-GTSS with dependency relations, where some internal aspects are preserved. In an abstract level, the system is specified by productions describing (in an atomic way) complete reactions, where the dependency relations give some constraints on the internal structure of these reactions. A refinement of a system is given by a total implementation morphism, that associates each (abstract) production to a transaction. Hence, the refined system preserves all external behaviour of the original system and the internal constraints given by the dependency relations.

Keywords: Graph transformation, transactions, refinement, interaction pattern, Graph transformation, transactions, refinement, interaction pattern.
Sistemas de Transformação de Grafos Transacionais

RESUMO

Em contraste aos sistemas transformacionais, sistemas reativos são caracterizados por reagir continuamente a estímulos provinientes seu ambiente. Além da reatividade, se considerarmos que muitas aplicações requerem métodos de especificação que possibilitem descrever a distribuição espacial dos estados, sistemas de transformação de grafos parecem ser uma técnica de especificação bastante adequada. Algumas aplicações com essas características são sistemas móveis e vias biológicas.

Além disso, diversas abordagens para especificação de sistemas reativos propõem usar linguagens assíncronas para especificar a comunicação entre componentes e definem mecanismos para descrever um conjunto (ou sequência) de atividades que são realizadas atomicamente. Porém, pouca atenção tem sido dada à idéia de estender sistemas de transformação de grafos para permitir a especificação de atividades atômicas.

Recentemente, inspirada nas idéias das redes de Petri “zero-safe” foi definida uma extensão de sistemas de transformação de grafos (GTS) – denominada GTS transacional (T-GTS) – equipando-os com uma noção de transação. Uma transação, nesta abordagem, descreve um conjunto de ações que são executadas de um modo atômico e é definida através de uma distinção entre os recursos visíveis e invisíveis de um ponto de vista externo, onde os últimos são considerados temporários e “esquecidos” em um nível abstrato.

Nesta tese é dada uma fundamentação mais teórica para T-GTSs definindo uma noção de morfismos de implementação T-GTS (associando produções de um sistema com transações de outro) e, usando essa noção, é demonstrada a existência de uma adjunção entre as categorias de GTSs e T-GTSs com morfismos de implementação. Além disso, GTSs transacionais são estendidas com um mecanismo para descrever padrões de interação de sistemas reativos através de relações de dependência incluídas nas produções. A idéia é que um sistema interage com seu ambiente consumindo e criando elementos visíveis para esse ambiente, uma relação de causalidade. Finalmente, propomos uma noção de refinamento para T-GTSs com relação de dependência caracterizada por uma visão “caixa-de-vidro”, onde alguns aspectos internos são preservados. Em um nível abstrato, o sistema é especificado por produções que descrevem (de uma maneira atômica) reações completas, onde a relação de dependência determina algumas restrições na estrutura interna dessas reações. Um refinamento de um sistema é definido por um morfismo total de implementação que associa cada produção (abstrata) a uma transação. Assim, o sistema refinado preserva todo o comportamento externo do sistema original e as restrições da estrutura interna determinadas pelas relações de dependência.

Palavras-chave: Transformação de grafos, transações, refinamento, padrão de interação.
1 INTRODUCTION

The complexity of today systems requires the use of development methods that guarantee correctness and quality. Formal specification is an important instrument used to achieve these goals. A specification is a description of the behaviour of a system and/or its structure.

Graph transformation systems (GTSs) are a flexible formalism for the specification of complex systems, that may take into account aspects such as object-orientation, concurrency, mobility and distribution (EHRIG et al., 1999a). In fact, graphs can be naturally used to provide a structured representation of the states of a system, which highlights its subcomponents and their logical or physical interconnections. Then, the events occurring in the system, which are responsible for the evolution from one state into another, are modelled by applications of suitable transformation rules, called (graph) productions. Such a representation is precise enough to allow the formal analysis of the system under scrutiny, as well as amenable of an intuitive, visual representation, which can be easily understood also by a non-expert audience.

Along the years several enrichments of the original framework have been introduced, extending GTSs with structuring concepts that are needed to master the complexity of large specifications. Several modularity and refinement notions have been proposed, providing basic mechanisms for encapsulation, abstraction and information hiding – see (HECKEL et al., 1999; SCHÜRR; WINTER, 2000; KREOWSKI; KUSKE, 1999), (DREWS et al., 2000; HECKEL et al., 1998; TAENTZER; SCHÜRR, 1995; GROSE-RHODE; PARISI-PRESICCE; SIMEONI, 1999; EHRIG; ENGELS, 1993, 1996). However, to our knowledge, scarce attention has been devoted to the idea of extending GTSs in order to allow the specification of transactional activities. Abstractly, a transaction is an activity, involving the execution of a group of events, which can either bring the system to a successful state or fail. In the last case the partial execution of the transaction is discarded and has no effect on the system. In concrete implementations this is achieved with a roll-back mechanism which restores the starting state when a failure is detected.

In an introductory work (BALDAN et al., 2008), inspired by the ideas of zero-safe Petri nets, we define an extension of GTSs, called *transactional graph transformation systems* (T-GTS), equipping them with a transaction notion. Roughly speaking, states (graphs) are partitioned into a stable and a non-stable (unstable) parts, and a transaction is defined as a computation that starts and ends in states consisting only of stable items, in which all intermediate states have some unstable parts. This approach is motivated by the understanding of graph transformation as a *data-flow* formalism, where the productions of a system are applied non-deterministically, and any form of control on the application of productions has to be encoded in the graphs. Thus, transactions are more naturally defined indirectly, by identifying parts of the state which represent temporary (or “unstable”)
resources, only visible within a transaction. Transactions can be seen in two different levels of abstraction. In a lower level, both stable and unstable items, and thus also the internal structure of transaction, are visible. But at a more abstract level, the unstable items can be forgotten and only the complete transactions are observable. Intuitively, this gives rise to another GTS, where abstract transactions of the original T-GTS become productions which rewrite directly the source stable state into the target stable state.

Reactive systems, in contrast to transformational systems, are characterised by continuous having to react to stimuli from its environment. If, in addition to reactivity, we consider that for many applications the specification method should provide a way to describe the spatial distribution of states, graph transformation seems to be a suitable specification technique. Some applications with these characteristics are mobile systems and biological pathways.

Several methods for design and analysis of reactive systems propose synchronous languages as specification formalism (BERRY, 2000; HALBWACHS et al., 1991; LEGUERNIC et al., 1991), where the time of reaction to an event is null. Other methods (SECELEANU; SECELEANU, 2004; MAIA; IORIO; BIGONHA, 1998; RIESCO; TUYA, 2004) propose to use asynchronous languages to specify communication between components and define mechanisms to describe a set (or sequence) of activities that are performed atomically. Therefore, we can use the notion of transactions to describe, at an abstract level, these atomic activities. Moreover, in (MAIA; IORIO; BIGONHA, 1998) an approach to specify interaction pattern explicitly using Abstract State Machines (ASM)s was proposed, where the designer, besides specifies the operations of component, can describe signals that are sent to and received from environment. The designer can also partially specify the environment showing only the interaction specification.

However, the approaches for graph transformations do not provide a mechanism to explicitly specify patterns of interaction between a system and its environment. Some of them restrict the interaction pattern to functions (and thus actually describe transformational systems), and others just allow very restricted forms of interactions. In (HECKEL, 1998), it is proposed to use graph transformation systems to specify reactive systems: the interaction between system and its environment it not explicitly specified, instead, it is described in the semantical level, where the states of the system show effects that are not determined by rule applications. Therefore, we extend the transactional graph transformations systems to explicitly express interaction.

In this thesis, we firstly develop a more elaborated work on transactional GTS: we define a more manageable characterisation of transactions as graph processes, which simplifies categorical definitions; based on the characterisation of transactions as processes, we show how the internal structure of transactions can be abstracted away, by considering an abstract GTS associated to a T-GTS; and, we demonstrate that the concrete T-GTS and its associated abstract GTS have the same behaviour in terms of transactions by characterising this construction as a functor from the category of T-GTSS to the category of GTS and showing that it is the right adjoint to the inclusion functor in the opposite direction. In order to do this, we define appropriated morphisms in both categories, specially a notion of implementation morphism for the category of T-GTSS. Using the notion of implementation morphism it is possible to describe the behaviour of a system at an abstract level and assure that the refined system really executes according to this abstract behaviour. Preliminary results of this work was published in (BALDAN et al., 2006).

Next, we extend T-GTS to a version of T-GTS with dependency relations (dT-GTS), by providing a mechanism to describe a weaker dependency among created and consumed
items of a production. We extend, too, all concepts and results of the original version to dT-GTSS. The notion of dependency is extended to transactions and it reflects the dependencies generated by internal items of the transaction. Moreover, this relation restricts the definition of implementation morphisms giving additional constraints to possible refinements for each production. Preliminary results of this work was published in (FOSS; MACHADO; RIBEIRO, 2007). Finally, we propose to use dT-GTS to specify reactive systems. The idea, in our proposal, is that a component interacts with its environment by consuming and creating elements visible to this environment. These actions may be described as (abstract) graph productions in the abstract specification that are implemented by a series of other productions in the more concrete specification. Defining a relationship between these different levels of abstraction we can have a notion of refinement. Additionally, the dependency relation associated to each abstract production can describe a complex pattern of interaction between a system and its environment.

1.1 Outline

In Chapter 2, some concepts of double-pushout approach for typed graph transformation systems (GTS) will be presented. An extension of this formalism, called transactional graph transformation systems (T-GTS), will be presented in Chapter 3. We review all definitions of transactions and abstract system associated to a T-GTS. In this chapter, we also introduce a characterisation of transactions as graph processes that is used to define implementation morphisms and to demonstrate the existence of an adjunction between categories of GTS and T-GTS with implementation morphism. A further extension of T-GTSS is given in Chapter 4, where all definitions and results obtained in Chapter 3 are reproduced for T-GTSS with dependency relations. In the last section of this chapter, we propose a notion of refinement for specification of reactive systems. And, in the last chapter (5), we summarise the contributions of this work, give an overview about related work and describe the future directions of this research. In the appendices, some of the formal definitions and theorems used/proved along of this proposal can be found.

1.2 PhD Thesis Motivation and Definition

This research is inserted in a cooperation project between Brazil and Italy, called IQ-Mobile, which has as main goal to improve the software quality for open environments, specially mobile and distributed applications, using formal methods. Within the scope of this project, some aspects of Java language and graph transformation systems were compared: the object model; the support and treatment of concurrency; systems composed of several classes. After analysing these aspects some translations between Java and GTS were considered. The interest in these translations has two aspects: on the one hand, the possibility of to map GTSS in a programming language; and on the other hand, if Java constructions can be translated in GTS, one can analyse Java systems by means of formal techniques. Therefore, some work was developed in this sense: GTSS were mapped into Java classes (DOTTI et al., 2005) and vice-versa (CORRADINI et al., 2004). Some questions arose from the last translation:

- in this mapping we had to consider several details of Java implementation, thus the concept of transaction became an important mechanism to allow the abstraction of these details;
the Java language, with its class concepts, allows a modular development of large systems. An interest in leading these modularity concepts into GTS arose as a result of comparison between the languages.

Thus, as a first step, a transaction notion was defined (BALDAN et al., 2008), where a transaction is a computation with some special properties. Moreover, a transaction can be seen at an abstract level, where some intermediate steps can be forgotten. This introductory work presented some basic definitions without further formal foundations. It would be nice to express the abstraction construction as a functor from the category of transactional GTSs to the category of GTSs, giving raise, as in the case of Petri nets, to the right adjoint to the inclusion functor in the opposite direction. This allows us to relate the abstract and concrete systems by means of morphisms and prove that they are equivalent from an external observer point of view. For this, it seems that the appropriate choice of morphisms in the category of T-GTSs must allow to map a production into a transaction. Therefore, the following step in this research was to give a categorical foundations for T-GTSs.

Other researchers proposed, in the scope of IQ-Mobile project, an approach to verify partial systems using restricted GTSs, called object-based graph grammars (DOTTI et al., 2006). This work was based on the assume-guarantee approach for verification (PNUELI, 1985). The basic idea is to see each part of a system as an open system - a system whose behaviour is not fully specified and that depends on interactions with its environment. In order to verify a component alone, one can assume an environment behaviour and, based on this assumption, try to prove the desired properties of the component. In their approach, they describe several steps to allow this verification and the first two are: (1) define the interface and (2) define interaction pattern (assume). In the second step, a description of the desired interaction pattern between the system and its environment is required. Inspired in (DOTTI et al., 2006), we, finally, define an extension of T-GTSs incorporating a notion of dependency relation and propose it to specify reactive systems.

1.2.1 Goals of Thesis

The main goals of this thesis are:

• to define a notion of atomic activity for GTSs;
• to demonstrate that atomic activities are preserved in a higher level of abstraction;
• to propose a mechanism to describe interaction pattern by means of graph productions to specify reactive systems;
• to define a notion of refinement which take in account the interaction pattern.
2 TYPED GRAPH TRANSFORMATION SYSTEMS

In this chapter, the basic definitions of typed graph transformation systems in the algebraic approach are reviewed. Typing discipline for graphs will allow us to distinguish between stable and unstable items in a given graph. Typing for graphs (see HECKEL et al., 1996; CORRADINI; MONTANARI; ROSSI, 1996 for more details) can be seen as a labelling technique, which allows to label each graph over a structure that is itself a graph (called the type graph). The base of this approach is the category of graphs and graph morphisms.

(Typed) Graph and graph morphisms. A graph is composed by vertices and edges connecting source and target vertices. We can relate two graphs if they are structurally compatible. This relation is given by means of a graph morphism: a mapping between graphs that respects the source and the target of each edge, i.e., each edge mapped into another must have its source and target vertices mapped into the source and the target vertices of the other, respectively. Besides, we can label each item of a graph mapping it into other graph, called type graph. A typed graph is a graph equipped with a typing morphism from it into a type graph. The compatibility between graphs typed over the same type graph is determined by typed graph morphisms, that are mappings respecting the type of each item of the graph, i.e., the vertices and edges of a graph can be mapped only into vertices and edges of another if they have the same type. If the typing mapping of a graph is injective, the graph is called injective, as well.

Definition 2.1 ((Typed) Graph and graph morphisms) A graph is a tuple $G = \langle V_G, E_G, s^G, t^G \rangle$, where V_G and E_G are sets of vertices and edges, and $s^G, t^G : E_G \to V_G$ are the source and target function. A (total) graph morphism $f : G \to G'$ is a pair of functions $(f_V : V_G \to V_{G'}, f_E : E_G \to E_{G'})$ such that $f_V \circ s^G = s^{G'} \circ f_E$ and $f_V \circ t^G = t^{G'} \circ f_E$. The category of graph and total graph morphisms is called Graph.

Let $T \in \text{Graph}$ be a fixed graph, called type graph, a T-typed graph G^T is given by a graph G and a graph morphism $t_G : G \to T$. When type graph is obvious we will write G instead of G_T. A morphism of T-typed graphs $f : G^T \to G'^T$ is a graph morphism $f : G \to G'$ that satisfies $t_G' \circ f = t_G$. A typed graph G^T is called injective if the typing morphism t_G is injective. The category of T-typed graphs and T-typed graph morphisms is the comma category $(\text{Graph} \downarrow T)$, shorted by T-Graph.

Example 2.1 ((Typed) Graph and graph morphisms) Figure 2.1 shows two graphs T and G and a morphism f between them. The vertices are represented by round squares and circles, for example Operator and Free; and the edges are represented by arrows with names (inscribed in polygons or not), for example, Busy and Start. When source and target of an edge are the same vertex, we omit the source in the pictures, for example,
the edge Busy has the pump vertex as source and target. Morphism \(f \) maps the vertices and edges of \(G \) into vertices and edges of \(T \), respectively. This mapping is defined by the numbering. Graph \(G \) and morphism \(f \) compose a typed graph \(G^T = (G, f) \).

![Figure 2.1: Typed graph \(G \).](image)

The behaviour of a graph transformation system is determined by the application of rewriting rules, also called graph productions (ROZENBERG, 1997).

Productions. At an abstract level, a production is composed by three graphs: the **left-hand side** \(L \), the **right-hand side** \(R \), and an **interface** \(K \) which represents the parts that \(L \) and \(R \) have in common. It specifies that, once an occurrence of the graph \(L \) is found in the current state\(^1\), it can be replaced with the graph \(R \), preserving \(K \).

Definition 2.2 (Productions) A \(T \)-typed (graph) production is a tuple \(q : L_q \xleftarrow{l_q} K_q \xrightarrow{r_q} R_q \) where \(q \) is the name of the production, \(L_q \), \(K_q \) and \(R_q \) are \(T \)-typed graph, \(l_q \) is an inclusion and \(r_q \) is an injective morphism. The class of all \(T \)-typed graph production is denoted by \(T\text{-Prod} \).

In this work we will only consider consuming productions, i.e., productions must consume something.

Example 2.2 (Productions) Figure 2.2 shows a production \(q \) whose left-hand side, right-hand side and interface are graphs \(L_q \), \(R_q \) and \(K_q \), respectively. Graph \(K_q \) is mapped into \(L_q \) and \(R_q \) by two morphisms: \(l \) and \(r \). This production can be applied in a state containing graph \(L_q \) (i.e. containing vertices typed as \textit{Customer} and \textit{Operator}, and edge typed as \textit{Prepay} from the \textit{Customer} to the \textit{Operator}), resulting in a graph where \textit{Prepay} was deleted; \textit{Customer} and \textit{Operator} were preserved; and \textit{Coupon} and \textit{PreOrd} were created.

\(^1\)The graph representing the current state of the system.
Graph transformation systems. A graph transformation system is defined by a collection of graph productions typed over a fixed type graph. Its definition is given by a type graph, a set of production names, and a function associating each production name to a typed production.

Definition 2.3 (Graph transformation systems - GTS) A (typed) graph transformation system is a tuple $G = (T, P, \pi)$, where T is a type graph, P is a set of production names, π is a function mapping production names to productions in T-Prod.

Example 2.3 (Graph transformation systems) An example will be used to illustrate the main presented concepts. We will model an adapted version of a gas station system presented in (DOTTI et al., 2006) using GTSS. In this example, a customer prepay a certain amount of money to the operator of a gas station for the gas that will be supplied by the pump. If the operator is free, the pump supplies the gas and then the operator returns the change to the customer, based on the real amount of money expended by the customer. Otherwise, the customer receives a message advising him to retry. Another activity realised in the gas station is the analysis of the pump in order to test the purity or impurity of its gas.

In Figure 2.3, the GTS modelling the system of a pump operator of a gas station system is shown. The type graph of the system is depicted at the bottom of the figure. We have, in this system, three entities modelled by vertices: Customer, Operator, and Pump. Each entity can have attributes (for example FF or Free) and receive messages (for example Prepay or Supply). Each entity can have a reference to other one, that represents an attribute as well. Both, attributes and messages are modelled as edges. So, by type graph we can see the Pump entity with their attributes: the operator (op) that operates it and three flags indicating if it is free (Free), or activated (FF), or busy (Busy). The Customer entity has only a reference to the operator (op) as attribute; and the Operator has as attributes the pump that it operates (pu).

The behaviour of this system is described by the productions at the top of Figure 2.3 – the interface graphs of the productions were omitted but they can be built as the intersection between the left-hand side and the right-hand side of each production. The Operator entity controls the access to the Pump when a customer tries to use it. If pump is not being used, the operator accepts (generating a PreOrd message) the prepayment and gives to customer a coupon (ACCEPT production) and it prepares the pump to be activated (SERVE production). The Pump maybe activated, changing its flag from Free to FF (ACTIVATE production) and it may start supplying gas changing its flag from FF to Busy (START production). Eventually, the Pump finishes supplying the gas – changing its flag from Busy to Free again – and it indicates to the operator (generating Charge message) the real amount that the customer expended (STOP production). Finally, the
operator can return the change to the customer (FINISH production). If pump is being used, the operator advises customer (sending a message BUSY) to try again (REJECT production). Moreover, the Operator entity can perform an analysis of the pumps, verifying if the provided gas is pure or not (PUREANALYSIS or IMPUREANALYSIS productions, respectively).

2.1 Operational Semantics

The operational semantics of a T-typed GTS is given by derivations. A derivation describes the application of a production to a graph representing a state of the system. In the double-pushout approach, a derivation is given in terms of pushouts in T-Graph. Intuitively, the pushout of two graphs with respect to another one, called interface graph, is given by the gluing of these two graphs together, identifying the items in the interface (see appendix A).

Direct derivation and derivations. If there exists an occurrence of the left-hand side of a production in a graph, this production can be applied to it. An application of a production
is given by a direct derivation in the double pushout approach. In this approach, a \textit{direct derivation} is defined by two pushouts: the first deletes all items that shall be consumed and the second includes all items that shall be created. Figure 2.4 shows a direct derivation using the production \textsc{Accept}.

Figure 2.4: Direct derivation from G to H using \textsc{Accept} based on m.

A \textit{derivation} is a finite or infinite sequence of direct derivations where the final graph of one is the start graph of another.

\textbf{Definition 2.4 (Direct derivation and derivations)} Given a T-typed graph G, a T-typed graph production $q = L_q \xleftarrow{l} K_q \xrightarrow{r} R_q$ and a match (i.e. an injective T-typed graph morphism) $m : L_q \rightarrow G$, a direct derivation from G to H using q (based on m) exists if and only if the diagram below can be constructed, where both squares are pushouts in T-Graph. In this case the direct derivation is denoted by $\delta : G \xRightarrow{q,m} H$ or $\delta : G \xRightarrow{q} H$ if we do not make explicit m.

Given a GTS $\mathcal{G} = (T, P, \pi)$, a derivation $\rho : G^T_0 \xRightarrow{p_1,m_1} G^T_1 \xRightarrow{p_2,m_2} G^T_2 \cdots$ of \mathcal{G} is a finite or infinite of direct derivations $\delta_i : G^T_i \xRightarrow{p_i,m_i} H^T_i$, where $G^T_{i+1} = H^T_i$ and $i \geq 0$. If a derivation $\rho : G^T_0 \xRightarrow{p_1,m_1} \cdots \xRightarrow{p_n,m_n} G^T_n$ is finite we call G^T_0 and G^T_n of initial and final graphs, respectively. The semantics of \mathcal{G} is the class of all derivations in \mathcal{G}, denoted by $\text{Der}(\mathcal{G})$.

The construction of the diagram above depends on the existence of the pushout complement D. In order to guarantee this existence, m must satisfy the \textit{gluing condition} with respect to l. This condition is partitioned in two: \textit{dangling condition}, i.e., if a vertex is deleted, there are not edges that are incident to it; and the \textit{identification condition}, i.e., two vertices can be identified by m, only if they are preserved. Since the considered matches are injective, the identification condition is always satisfied, so it remains to verify the dangling condition (see appendix A).

\textbf{Sequential independence}. If two direct derivations $\rho : G^T \xRightarrow{q_1,m_1} X^T \xRightarrow{q_2,m_2} H^T$ overlap only on items preserved by both, they are called \textit{sequential independent}. For example,
the Figure 2.5 shows two independent direct derivations. We can see in this example (in a lighter colour) that the items used by both productions are preserved by them.

Figure 2.5: Two sequentially independent direct derivations.

Figure 2.6: Sequential independence.

Parallel productions. A parallel production associated to a set P of productions is given by the disjoint union of them.

Definition 2.6 (Parallel productions) (CORRADINI et al., 1997) Let q_1, \ldots, q_n be productions. A parallel production associated with q_1, \ldots, q_n is the production $q_1 + \ldots + q_n = \langle (q_1, i_{n_1}), \ldots, (q_n, i_{n_n}) \rangle : L \overset{l}{\leftarrow} K \overset{r}{\rightarrow} R$ (depicted in Figure 2.7), where $n \leq 0$, $q_i : L_i \overset{l_i}{\leftarrow} K_i \overset{r_i}{\rightarrow} R_i \in P$, for each $i \in \{1, \ldots, n\}$, L, K and R are the coproduct objects of the graphs in (L_1, \ldots, L_n), (K_1, \ldots, K_n) and (R_1, \ldots, R_n) respectively. Moreover, l and r are uniquely determined by the families of arrows $\{l_1, \ldots, l_n\}$ and $\{r_1, \ldots, r_n\}$, respectively. Finally, for each $i \in \{1, \ldots, n\}$, i_{n_i} is the triple of injections $\langle i_{n_i}^L : L_i \rightarrow L, i_{n_i}^K : K_i \rightarrow K, i_{n_i}^R : R_i \rightarrow R \rangle$.

By the classical parallelism theorem (CORRADINI et al., 1997) for the double-pushout approach of GTS, two sequentially independent direct derivation $G \xrightarrow{p_1} H_1 \xrightarrow{p_2} H$ may be replaced by a single parallel direct derivation $G \xrightarrow{p_1+p_2} H$. But if we are using injective matches, this is not always true: if p_1 and p_2 preserve the same item, there is no injective match that allows to construct the corresponding parallel direct derivation. This situation
makes necessary the notion of proper quotient production of a parallel production. In the following, we present the definition of proper quotient productions and the parallelism theorem considering proper quotient productions as introduced in (HABEL; MÜLLER; PLUMP, 2001).

Proper quotient productions. Because we are using injective matches, sometimes we cannot find a match from a parallel production into a graph such that this derivation is equivalent to another, where productions in P are applied in a sequential way. This is because, if we have two independent direct derivations sharing at least one preserved item, the parallel production associated to these derivations will have two different items for this shared preserved item. Since we use injective matches, we can have two different matches to pointing to shared item, but we cannot have one match from parallel production to the same shared item. So we will use *proper quotient productions* of parallel productions in order to have an equivalent production for which there is an injective match (see appendix B for formal definitions). In (HABEL; MÜLLER; PLUMP, 2001), a method for constructing the set of all proper quotient productions of $q_1 + q_2$ is presented. It is based on the idea of “gluing” L_1 and L_2, K_1 and K_2, R_1 and R_2 according to a graph S which relates the productions q_1 and q_2, based on its relationship in a derivation. For example, in Figure 2.8 we have the parallel production of q_1 and q_2 and its proper quotient production (at the bottom line of the figure) – the lighter colour in $q_1 + q_2$ indicates the items that are identified in q.

Parallelism theorem. Considering the above sequential independent derivations, by the Parallelism Theorem (Theorem 7.8 in (HABEL; MÜLLER; PLUMP, 2001)), we can obtain an equivalent direct derivation, applying a suitable production $q \in PQ(q_1 + q_2)$ – a proper quotient of the parallel production $q_1 + q_2$ – via an injective match. This means
that \(q_1 \) and \(q_2 \) can be applied in a reverse order resulting in the same graph \(H \), i.e., there is a derivation \(\rho': G \xrightarrow{T \ q_2, m_2} X' \xrightarrow{T \ q_1, m_1} H' \) where the two derivation steps are “switched”.

Theorem 2.1 (Parallelism theorem) (HABEL; MÜLLER; PLUMP, 2001) Given two productions \(q_1 \) and \(q_2 \), the following statements are equivalent:

1. There is a parallel direct derivation \(G \xrightarrow{\ q \ } H \), for some production \(q \in PQ(q_1 + q_2) \);
2. There are sequentially independent derivations \(G \xrightarrow{\ q_1, m_1 } H_1 \xrightarrow{\ q_2, m_2 } H \);
3. There are sequentially independent derivations \(G \xrightarrow{\ q_2, m_2 } H_2 \xrightarrow{\ q_1, m_1 } H \);

Shift-equivalence. The equivalence on derivations induced by switchings of sequential independent direct derivations is called *shift-equivalence*. In Figure 2.9, a derivation shift-equivalent to the derivation in Figure 2.5 is shown. In this derivation, \(q_2 \) and \(q_1 \) are applied in reverse order. It is easy to see that we can apply the proper quotient production (see Figure 2.8) to \(G^T \) obtaining \(H^T \) in a single step derivation, i.e., there exists the direct derivation \(G^T \xrightarrow{\ q_{m_1} } H^T \).

Figure 2.9: Derivation shift-equivalent to derivation in Figure 2.5.

Definition 2.7 (Shift equivalence) (BALDAN; CORRADINI; MONTANARI, 1998a) Given a derivation \(\rho = G \xrightarrow{\ q_1, m_1 } X \xrightarrow{\ q_2, m_2 } H \), consisting of two sequentially independent direct derivations, \(\rho' = G \xrightarrow{\ q_2, m_2 } X' \xrightarrow{\ q_1, m_1 } H \) is obtained as in the Theorem 2.1, where productions \(q_1 \) and \(q_2 \) are applied in the reverse order. \(\rho' \) is called a switching of \(\rho \) and is denoted by \(\rho \sim_{sh} \rho' \). The shift equivalence \(\equiv_{sh} \) on derivations is the transitive and “context” closure of \(\sim_{sh} \), i.e., the least equivalence, containing \(\sim_{sh} \), such that if \(\rho \equiv_{sh} \rho' \) then \(\rho_1; \rho; \rho_2 \equiv_{sh} \rho_1; \rho'; \rho_2 \).

Abstract traces. If we want to abstract the concrete identities of the items of typed graphs involved in a derivation, i.e., considering graphs with the same structure as being the same (abstract) graph, we can consider classes of *abstract equivalent derivations*. Combining shift-equivalence with abstraction equivalence we obtain the so-called *abstract truly-concurrent equivalence*. Equivalence classes of derivations, with respect to abstract truly-concurrent equivalence, are denoted as \(_{\equiv_{abs}} \) and are called *abstract traces*.

Definition 2.8 (Abstraction equivalence) Let \(\rho : G_0 \xrightarrow{\ q_1, m_1 } \cdots \xrightarrow{\ q_n, m_n } G_n \) and \(\rho' : G_0' \xrightarrow{\ q'_1, m'_1 } \cdots \xrightarrow{\ q'_n, m'_n } G'_n \) (whose \(i^{th} \) step is depicted in the low arrows of the diagram in Figure 2.10) be two derivations. Then they are abstraction equivalent, denoted by \(\rho \equiv_{abs} \rho' \), if \(n = n' \),
\(q_i = q'_i \) for \(1 \leq i \leq n \) and there exists a family of isomorphisms \(\{ \theta_{X,q_i} : X_{q_i} \mapsto X'_{q_i} \mid X \in \{ G, D \} \} \), between corresponding graphs in the two derivations, such that the resulting diagram (step \(i \)) depicted in Figure 2.10 commutes. Equivalence classes of decorated derivations with respect to \(\equiv^{abs} \) are called abstract derivations and are denoted by \([\rho]_{abs}\), where \(\rho \) is an element of the class (BALDAN; CORRADINI; MONTANARI, 1998a).

Figure 2.10: Isomorphism of derivations.

Definition 2.9 (Abstract truly-concurrent equivalence) The abstract truly-concurrent equivalence \(\equiv^a \) on derivations is the transitive closure of the union of the relations \(\equiv^{abs} \) and \(\equiv^{sh} \). Equivalence classes of derivations with respect to \(\equiv^a \) are denoted as \([\rho]^a\) and are called abstract traces (BALDAN; CORRADINI; MONTANARI, 1998a).

2.2 Category GTS

We can relate two GTSs by mapping the source type graph and production names into the target ones. This mapping is given by morphisms in category of GTS. This definition will be used as the base for definitions of morphisms introduced in the next chapters.

Various notions of morphisms for graph transformation systems have been introduced in literature (CORRADINI et al., 1996; GROSSE-RHODE; PARISI-PRESICCE; SIMIONI, 1999; HECKEL et al., 1996; RIBEIRO, 1996; BALDAN, 2000). Our morphisms on GTSs are a slight variation of morphisms in (BALDAN, 2000). The mapping between type graphs must allow to forget some items, therefore we will use partial morphisms to relate them.

Partial graph morphisms A partial relation between two graphs maps only part of the source graph to the target one. Here, we use the definition that simulates a partial graph morphism using a pair of total graph morphisms, with origin in a subgraph \(\text{dom}(f) \) of the source graph (domain of the partial graph morphism). The first morphism maps \(\text{dom}(f) \) into source graph and the second one maps \(\text{dom}(f) \) into target graph.

Definition 2.10 (Partial graph morphisms) A partial graph morphism \(f : G_1 \rightarrow G_2 \) is a total graph morphism from a subgraph of \(G_1 \), called \(\text{dom}(f) \), to \(G_2 \), and is depicted as \(G_1 \xrightarrow{f} \text{dom}(f) \xrightarrow{r_f} G_2 \).

Example 2.4 (Partial graph morphisms) In Figure 2.11, a partial morphism \(f_T \) from the type graph of the pump operator GTS to a graph \(T_1 \) is depicted. The mapping is described by numbering, where the items without a number are not in the range of the morphism. It means, that items in \(T_{\text{PumpOper}} \), that are not in \(\text{dom}(f_T) \) are all forgotten by morphism \(f_T \).
Proposition 2.1 Graphs and partial graph morphisms form a category, denoted by Graph¹ (see (HECKEL et al., 1996)).

The mapping between productions must preserve them, so we will require that the target production be a translation of the source one, with respect to the mapping between the type graphs. Formally, this is given by a pullback functor, that, intuitively, forgets all items whose type is not preserved by the type graph mapping and then by typing the production over the target type graph. For example, the translation of the production STOP by means the pullback functor, with respect to f_T is shown on the center of Figure 2.12 and, on the right, it is typed over T_1. One can see that production STOP' ↓ T_1 is not a consuming production, since it defines an isomorphism.

Definition 2.11 (Pullback functor) Given an object A of a category C, the slice category C↓ A has all C-arrows with target A as objects; an arrow h: f → g in C↓ A is a C-arrow h such that g ∘ h = f.

Let m: A → B be an arrow in a category C with pullbacks. Chosen a pullback square as (1) below for any f: D → B, the pullback functor along m: A → B, denoted m*: C↓ B → C↓ A, maps an object (f: D → B) ∈ C↓ B to (m*(f): m*(D) → A) ∈ C↓ A.

Given arrows m: A → B and f: D → B of C, we write g ≃_{C↓ A} m*(f) if there exists an arrow C → D such that square (2) below is a pullback.

\[
\begin{array}{c}
 m^*(D) \downarrow \downarrow D \\
 m^*(f) \downarrow \downarrow f \\
 A \downarrow \downarrow B \\
 \end{array}
\]

Thus, for example, T-Graph = Graph↓ T as in Definition 2.1.
In the following lemmas we prove that pullback functor preserves pushouts and commutativity.

Lemma 2.1 (pullback functor preserves pushouts) Let the square (1) be a pushout in \(T\text{-}\text{Graph} \). Let \(G'_i \) be a graph obtained from \(G_i \), applying the pullback functor. Then the square (2) is a pushout in \(\text{dom}(f_T)\text{-}\text{Graph} \).

![Diagram](image)

Proof: By definition of pullback functor, all arrows \(g : G_0 \to G_1 \) in \(T\text{-}\text{Graph} \), we have \(g' : G'_0 \to G'_1 \) in \(\text{dom}(f_T)\text{-}\text{Graph} \), such that the square (3) above is a pullback. It holds by definition of pullback functor and Lemma A.5, since \(\langle G'_0, G_0, \text{dom}(f_T), T \rangle \) and \(\langle G'_1, G_1, \text{dom}(f_T), T \rangle \) are pullbacks. Therefore, the right, front, left and back squares, in cube diagram above, are pullbacks. Thus, by Lemma A.6, the top square is a pushout, as well. \(\square \)

Lemma 2.2 (pullback functor preserves commutativity) Let (1) be a commuting diagram in \(T\text{-}\text{Graph} \). Let \(G'_i \) be a graph obtained from \(G_i \), applying the pullback functor. Then (1') is a commuting diagram in \(\text{dom}(f_T)\text{-}\text{Graph} \).

![Diagram](image)

Proof: We must prove that \(a \circ f = g_1 \). By Lemma A.5, there exist \(g_1 : G'_1 \to G'_0 \), \(g_2 : G'_0 \to G'_1 \) and \(f : G'_1 \to G'_2 \) such that \(b \circ g_1 = c, b \circ g_2 = a \) and \(a \circ f = c \). Thus, we have \(a \circ f = b \circ g_1 = b \circ g_2 \circ f \). Since \(b \) is injective, then \(a \circ f = g_1 \). \(\square \)

GTS morphism A **GTS morphism** \(f : G_1 \to G_2 \) is given by two components. The first, \(f_T \), is a partial and non injective morphism between the type graphs, that besides allowing to forget some type item, allows to identify two items of the first GTS into one of the second. The second component, \(f_P \), is a partial mapping between the production names such that the mapped the productions are preserved.

Definition 2.12 (GTS morphism) Let \(G_1 = \langle T_1, P_1, \pi_1 \rangle \) and \(G_2 = \langle T_2, P_2, \pi_2 \rangle \) be GTSs. A GTS morphism \(f : G_1 \to G_2 \) is a pair \(f = \langle f_T, f_P \rangle \), where

- \(f_T : T_1 \to T_2 \) is a partial graph morphism;

- \(f_P : P_1 \to P_2 \) is a partial function on production names, such that for all \(p \in P_1 \):
if \(f_P(p) = q \), then there are morphisms \(f^X_l(p), f^K_l(p) \) and \(f^R_l(p) \) such that the diagram below commutes, and \(f^X_l(p) \cong_{\text{Graph} \backslash X_p} t^*_X(p, l_fT) \) (See Definition 2.11) for \(X \in \{ L, K, R \} \);

- if \(f_P(p) \) is not defined, then morphisms \(l^*_fK(p) \to l^*_fL(p) \) and \(l^*_fK(p) \to l^*_fR(p) \) are isomorphisms.

![Diagram](image)

Example 2.5 (GTS morphism) If we consider a GTS \(G_1 \), where the type graph is \(T_1 \) in Figure 2.11 and the productions in Figure 2.13, we can have a GTS morphism \(f \) from the GTS of the pump operator system to \(G_1 \). The component on the type graphs \(f_T \) is defined as in Figure 2.11 and the component on the production sets maps PURANALYSIS and IMPUREANALYSIS into \(q_1 \) and \(q_2 \), respectively. The other productions are not mapped, because their translations result in isomorphisms, as we can see for the production STOP in Figure 2.12.

![Figure 2.13: Productions of \(G_1 \).](image)

Then in the following proposition we show that GTSS and GTS morphisms form a category, proving that the composition and identities are well defined GTS morphisms, i.e., they preserve the existence of a mapping between components of productions, required by Definition 2.12.

Proposition 2.2 GTSS and GTS morphisms form a category, denoted by GTS, in which composition and identities are defined componentwise. (see (HECKEL et al., 1996))

Chosen a pullback functor \(l^*_f \), as in Definition 2.12, the partial morphism \(f_T: T_1 \to T_2 \) induces a retyping functor \(f^{-}_T: T_1-\text{Graph} \to T_2-\text{Graph} \), defined on objects as \(f^{-}_T(t_G: G \to T_1) = r_fT \circ l^*_f(t_G) \). The condition on morphisms involving the pullback squares ensures that all the items in \(X_p \), whose type is preserved by \(f_T \) occur in \(X_{f_T(p)} \). Thus, GTS morphisms are simulations, meaning that, for a derivation \(\delta \) in \(G_1 \), (any choice of) the retyped diagram \(f^{-}_T(\delta) \) is a derivation in \(G_2 \). This fact is showed in the following proposition.

Proposition 2.3 (GTS morphisms preserve derivations) Let \(f: G_1 \to G_2 \), and let \(\delta_1: G_1 \Rightarrow_{p_1} H_1 \) be a direct derivation in \(G_1 \). Then there exists corresponding direct derivation \(f^{-}_T(\delta_1) = \delta_2: f^{-}_T(G_1) \Rightarrow_{f_T(p_1)} f^{-}_T(H_1) \) in \(G_2 \) (see (HECKEL et al., 1996)).
3 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS

In this chapter, we present the basic definitions of a GTS extension with support to the notion of transactions. A transaction in this approach describes a set of actions that must be executed in an atomic way. The notion of transaction has been originally defined and studied in the realm of database management systems, and only later it has been considered in programming and specification formalisms, like process calculi, programming languages and Petri nets. A transaction represents a unit of interaction with the management system, that is treated in a coherent and reliable way, independently of other transactions, and that must be either entirely completed or aborted.

Transactions can be introduced in different ways in a modelling, specification or programming formalism. In control-centered formalisms, like process calculi and programming languages, where the execution of computations is ruled by expressive control mechanisms, typically new control structures are introduced for starting/committing transactions. In data-centered formalisms (see (SHIELDS, 2007) and Section 2.3 of (GAJSKI et al., 2000) for data vs. control flows), like rewriting formalisms and Petri nets, where the control structures are typically poor and the emphasis is on the structure of the state that evolves during a computation, transactions are more naturally defined indirectly, by identifying parts of the state which represent temporary (or “unstable”) resources, only visible within a transaction. This is the approach that has been defined for zero-safe nets (BRUNI; MONTANARI, 2001, 2000).

3.1 Introduction to Transactional GTS

Inspired by the work on zero-safe nets, transactional graph transformation systems (T-GTSs), introduced in (BALDAN et al., 2008), are an extension to the double-pushout (DPO) approach to graph transformation, providing a simple way of expressing transactional activities. The basic tool is a typing mechanism for graphs which induces a distinction between stable and unstable graph items. Given a typed graph, representing a system state, we can identify a subgraph which represent its “stable” part, i.e., the fragment of the state which is visible for an external observer. Transactions in a T-GTS are thus abstract, “minimal” computations starting from a completely stable graph, evolving through graphs with unstable items and eventually ending up in a new stable state. Definitions and propositions of this section, as well as corresponding proofs, can be found in (BALDAN et al., 2008).

Transactional GTS. A transactional GTS is defined as a collection of productions, typed over a fixed type graph – i.e. a graph transformation system – with a subgraph of this type.
graph determining the stable items, i.e., the items that are visible for an external observer. The other items are considered temporary, so, they are invisible, or unstable.

Definition 3.1 (Transactional GTS) A transactional GTS is a pair \(\langle G, T_s \rangle \), where \(G \) is a \(T \)-typed GTS and \(T_s \) is a subgraph of the type graph \(T \) of \(G \), called the stable type graph.

Example 3.1 (transactional GTS) One can consider some activities of the system described in Example 2.3 being executed as transactions. In order to do this, we must define the temporary items of the system, i.e., the items that cannot be seen at a more abstract level. For example, when the operator receives a prepayment we can be interested only in the supplied gas, without considering the series of steps to achieve this goal. To do this, the messages \(\text{PreOrd}, \text{Activate} \) and \(\text{Charge} \) will become unstable in the transactional GTS \(\mathcal{P} \text{umpOper} \), as shown in Figure 3.1. Thus, when an operator receives a prepayment and accepts it (\(\text{ACCEPT} \) and \(\text{SERVE} \) productions), a \(\text{Start} \) message (signing that gas can be supplied) is sent to customer, but the activation of the pump becomes unobservable (\(\text{ACTIVATE} \) production). In the type graph (depicted at the bottom of the figure) we marked the temporary (or unstable) messages, that are used to perform some steps of the pump operator activities, with dashed lines, while the stable ones are depicted with solid lines.

![Figure 3.1: Transactional GTS \(\mathcal{P} \text{umpOper} \) for a pump operator of a gas station.](image-url)
In Figure 3.2, the T-GTS Customer, modelling the customer system, is shown. The type graph (bottom) shows us the same three entities in the pump operator system and its behaviour is described by the productions at the top of this figure. In this system, a Customer entity has a cyclic behaviour. It initiates prepaying an amount of money in order to get some gas (INIT production). If the pump is being used the customer is advised by the operator (REJECT production), then it retries to be supplied (with a Busy message). Otherwise, the operator accepts the prepaying and the customer can initiate to supply itself with gas (STARTSUPPLY production). It goes until the wanted volume of gas was reached, when the customer can stop the pump (ENDSUPPLY production) and receive the change and a coupon from the operator. At this moment the pump is set free and then the customer is ready to start all the process again (RESTART production).

![Figure 3.2: Transactional GTS Customer for a customer of a gas station.](image)

Inspired by the approach for Petri nets proposed in (BRUNI; MONTANARI, 2000) and extended to nets with read arcs in (BRUNI; MONTANARI, 2001), stable steps, transactions and abstract transactions are introduced. In order to give these definitions, we need a notion of stable graphs.

Stabilising functor. We can get the stable part of a graph considering only the items typed over the stable type graph. Formally, this operation is defined by a functor. We denote by $S: T\text{-Graph} \rightarrow T_s\text{-Graph}$ the functor that maps each graph G, typed over T, to its subgraph consisting of its stably-typed items only, and each morphism to its restriction to stable items: thus S, called the stabilising functor, is a concrete choice for the pullback functor induced by i_s, where the morphism $S(G) \hookrightarrow G$ is an inclusion.

Definition 3.2 (Stabilising functor) Let $Z = \langle\langle T, P, \pi\rangle, T_s\rangle$ be a T-GTS and $i_s:T_s \hookrightarrow T$ be the inclusion morphism determined by subgraph T_s of T. The stabilising functor $S:T\text{-Graph} \rightarrow T_s\text{-Graph}$ is defined by:

- on objects: for each G_T, $S(G^T) = \langle i_s^*(G), i_s^*(t_G)\rangle$, where i_s^* (see diagram (1) below) is an inclusion, and
• on morphisms: for each morphism \(f : G_T \to H_T \), \(S(f) = g \), where \(g : i^*_s(G) \to i^*_s(H) \) is the morphism uniquely determined by universal property of pullback (2) below, such that (3) commutes.

Sometimes, when it does not cause confusion, we will use \(S(G_T) \) to denote the \(T \)-Graph graph \(\langle i^*_s(G), i_s \circ i^*_s(t_G) \rangle \).

\[
\begin{array}{c}
\xymatrix{ i^*_s(G) \ar[rr]^{i'_{s}} & & G \\
T_s \ar[u]^{i^*_s(t_G)} \ar[rr]_{t_G} & & T \\
G \ar[uu]^{i_s} \ar[rr]_{t} & & H }
\end{array}
\]

In Figure 3.3, we can see a stabilised graph, where \(S(G) \) is the stable part of \(G \).

If a graph has only visible items, i.e., it is type over \(T_s \), it is called stable, otherwise, it is unstable.

Definition 3.3 (Stable graph) A \(T \)-Graph \(G^T \) is called stable if \(S(G^T) = G^T \) (i.e., if the morphism \(i'_s \) – in diagram (1) above – is the identity). It is called unstable otherwise.

Stabilised GTS. The stabilising functor can be applied pointwise to any production of a given \(T \)-GTS, producing a stabilised \(T \)-GTS – a GTS typed over the stable type graph.
Definition 3.4 (Stabilised GTS) Given a T-typed T-GTS $Z = \langle (T, P, \pi), T_s \rangle$, the stabilised GTS $S(Z)$ is given by $\langle T_s, P, \pi' \rangle$, where $\pi'(q) = S(\pi(q))$ for any $q \in P$.

The functor S, when applied to a derivation in a given T-GTS $Z = \langle G, T_s \rangle$, produces a derivation in $S(Z)$. An indirect proof of this fact can be obtained by observing that there exists a typed GTS morphism $\langle id_{T_s} : T \rightarrow T_s, id_F \rangle$, in the sense of (BALDAN; CORRADINI; MONTANARI, 1998b), which essentially forgets about the unstable items. Then, using the fact that GTS morphisms are simulations (Proposition 2.3), one can conclude the mentioned fact.

Proposition 3.1 Let $Z = \langle G, T_s \rangle$ be a T-GTS and let $\rho = G_0 \xrightarrow{q_1,m_1} G_1 \xrightarrow{q_2,m_2} \ldots \xrightarrow{q_n,m_n} G_n$ be a derivation in Z. Then

$$S(\rho) = S(G_0) \xrightarrow{q_1,S(m_1)} S(G_1) \xrightarrow{q_2,S(m_2)} \ldots \xrightarrow{q_n,S(m_n)} S(G_n)$$

is a derivation in $S(Z)$.

Now, we are ready to define stable steps and transactions. In the following, $Z = \langle G, T_s \rangle$ is a fixed T-GTS.

Stable step and transaction. A stable step is, intuitively, a computation which (1) starts and ends in stable states. Moreover, stable items which are generated are “frozen”, in the sense that they cannot be preserved nor consumed by other productions inside the same step; similarly, stable items which are deleted cannot be preserved by other productions. Therefore, (2) the dependencies between productions occurring in a step are induced by unstable items: this implies that at the abstract level, where unstable items are forgotten, all such productions are applicable in parallel. A transaction is a stable step where (3) the start graph contains exactly what it needs to reach a successful end – so, in a computation, it can be embedded into a larger context – and (4) none of its sub-derivations is a transaction as well, so all intermediated graphs must be unstable. The formal definition is given as follows, where each above restrictions are defined by conditions with corresponding numbers.

Definition 3.5 (Stable step and transaction) A stable step is a derivation $\rho = G_0 \xrightarrow{q_1,m_1} G_1 \xrightarrow{q_2,m_2} \ldots \xrightarrow{q_n,m_n} G_n$ which satisfies the following properties:

1. G_0 and G_n are stable graphs;
2. the derivation $S(\rho)$ is equivalent in $S(G)$ to a direct derivation via a proper quotient of the production $q_1 + \ldots + q_n$ and a suitable match m, i.e., $S(G_0) \xrightarrow{PQ(q_1 + \ldots + q_n),m} S(G_n)$ is a derivation in $S(G)$.

A transaction is a stable step additionally satisfying

3. the match m is an isomorphism;
4. any intermediate graph G_i ($i \neq 0, n$) is not stable.

Remark 3.1 Note that by restriction (2) (a stable item created by a transaction cannot be used within this transaction) a stable connected graph must be created by a single production, this is because we need to preserve a vertex in order to add an edge over it. Therefore, one cannot define a T-GTS which generates stable connected graphs of arbitrary size.
Example 3.2 (transaction) Figure 3.4 shows the derivation \(G_0 \xrightarrow{m_1} \cdots \xrightarrow{m_6} G_6 \) of the T-GTS \(\text{PumpOper} \) (Example 3.1). \(G_0 \) and \(G_6 \) are the initial and the final graphs, respectively, and the morphisms are described by numbering, i.e., two related items have the same number. We can see that this derivation corresponds to a transaction, since it respects the requirements of Definition 3.5, i.e., 1) the initial (\(G_0 \)) and final (\(G_6 \)) graphs are stable; 2) dependency between direct derivation is given only on stable items, since the unique items created by one production and consumed by another are unstable (e.g. ACCEPT production creates \(\text{Preord} \) which is consumed by \(\text{Serve} \) production); 3) all items in \(G_0 \) are used (i.e. at least one production preserves or consumes items in \(G_0 \)); and 4) intermediate states \(G_1 \) to \(G_5 \) are not stable.

Actually, since we are considering a concurrent model of computation, the fact that all the intermediate graphs are not stable should not be related to the specific order in which productions are applied. Rather, this property should still hold for any derivation which is obtained from the original one by exchanging independent steps of computation, i.e., shift-equivalent derivations. Moreover, we also want to abstract the concrete identities of items in the involved graphs, i.e., considering graphs up to isomorphism.

Abstract transaction. An abstract transaction is defined as an abstract trace (a class of shift-equivalent derivations where the involved graphs are considered up to isomorphism) containing only transactions.
Definition 3.6 (Abstract stable transaction) An abstract stable transaction is an abstract derivation trace $[\rho]_a$, such that for any $\rho' \in [\rho]_a$ the derivation ρ' is a stable transaction. The class of all abstract stable transactions of a T-GTS \mathcal{Z} is denoted by $\text{absTrans}(\mathcal{Z})$.

It follows from the definition that if two abstract transactions can be applied in parallel to a stable graph, then all direct derivations of one are independent of the direct derivations of the other one. Thus, as desired, the transactions can be interleaved in an arbitrary way.

In order to use transactions to define relations between transactional graph transformation systems – e.g., a refinement relation, where a production is associated to a transaction – we must be able to compose transactions. This composition is defined as an operation in an appropriated category. The definition of transactions as derivation traces can be hard to cope with, since traces are equivalence classes and their composition is not simple. Therefore, a more manageable characterisation of abstract stable transactions would be desirable. This characterisation can be given by using the idea of graph processes (Baldan; Corradini; Montanari, 1998a), where one graph process represents a whole class of shift-equivalent derivation, i.e., a derivation trace. In following sections we will present this characterisation and use it to define a notion of refinement or implementation morphism and abstract GTS.

3.2 Category TGTS

In this section we introduce a definition T-GTS morphism, which relates productions of source T-GTS to productions of target one, and prove that T-GTSS and these morphisms form a category. These results will be used to characterise transactions as graph processes in subsection 3.4.1.

Two T-GTSS are related by a special GTS morphism between their underlying GTSS. This morphism must preserve transactions, i.e., each transaction of the source T-GTS must be “translated” to a transaction in the target T-GTS. Thus, we impose two restrictions to this GTS morphism to guarantee that transactions are preserved: the first one requires that it is total on unstable items and that these items are preserved – each unstable item is mapped into another unstable item; and the second one requires that the stable items are preserved – each mapped stable item must be related to another stable item. Preserving stable items we avoid that a stable graph in the source becomes an unstable graph in the target. In addition, requiring preservation of and totality on unstable items we avoid to turn unstable intermediary states of a transaction into stable graphs. For example, Figure 3.5 illustrates what can happen if the restrictions are not imposed: in the left, it is showed a mapping between type graphs (given by numbers) that is not total on unstable items (the unstable arrow 9 of T_1 is not mapped) and it does not preserve the stable items (the stable arrow 8 if T_1 is mapped into an unstable arrow in T_2); in the right, it is showed (at the top) a transaction in the source T-GTS and (at the bottom) its translation, which is not a transaction, since the intermediated graph G'_1 is not unstable and the initial graph G'_0 is not stable.

T-GTS morphisms. A T-GTS morphism between two T-GTSS is a GTS morphism between their underlying GTSS, such that the type component preserves the stable and unstable items and it is total on unstable ones.

Definition 3.7 (T-GTS morphism) Let $\mathcal{Z}_1 = \langle \mathcal{G}_1, T_{1s} \rangle$ and $\mathcal{Z}_2 = \langle \mathcal{G}_2, T_{2s} \rangle$ be T-GTSS. A T-GTS morphism $f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$ is a GTS morphism $f : \mathcal{G}_1 \rightarrow \mathcal{G}_2$ between the underlying GTSS, such that
which composition and identities are defined as in GTS.

Proof:

1. for all \(z \in T_1 \setminus T_{1s} \), we have that \(f_T(z) \) is defined and \(f_T(z) \in T_2 \setminus T_{2s} \);

2. for all \(z \in T_{1s} \), if \(f_T(z) \) is defined then \(f_T(z) \in T_{2s} \).

Proposition 3.2 T-GTSSs and T-GTS morphisms form a category, denoted by TGTS, in which composition and identities are defined as in GTS.

Proof:

1. Composition is well-defined: Let \(f : Z_1 \rightarrow Z_2 \) and \(g : Z_2 \rightarrow Z_3 \) be T-GTSS morphisms and \(g \circ f \) be their composition. By definition of T-GTSS morphism \(\forall z_1 \in T_1 \setminus T_{1s} \cdot f_T(z_1) = z_2 \in T_2 \setminus T_{2s} ; \forall z_2 \in T_2 \setminus T_{2s} \cdot g_T(z_2) = z_3 \in T_3 \setminus T_{3s} ; \forall z_1 \in T_{1s} \cdot f_T(z_1) = z_2 \in T_{2s} \lor f_T(z_1) = \text{undefined} ; \) and \(\forall z_2 \in T_{2s} \cdot g_T(z_2) = z_3 \in T_{3s} \lor f_T(z_2) = \text{undefined} \). Therefore, by composition of graph morphisms:

 (a) \(\forall z_1 \in T_1 \setminus T_{1s} \), we have that \(g_T(f_T(z_1)) = z_3 \), with \(z_3 \in T_3 \setminus T_{3s} \);

 (b) \(\forall z_1 \in T_{1s} \) if \(f_T(z_1) \) and \(g_T(z_2) \) are defined, then \(g_T(f_T(z_1)) = z_3 \in T_{3s} \), else \(g_T(f_T(z_1)) = \text{undefined} \).

2. Identities are well-defined morphisms: Let \(id_Z = \langle id_T, id_P \rangle \) be the identity on \(Z = \langle (T, P, \pi), T_s \rangle \). By definition of identity on GTS, we have that \(\forall z \in T \cdot id_T(z) = z \), therefore:

 (a) \(\forall z \in T \setminus T_s \cdot id_T(z) \in T \setminus T_s \);

 (b) \(\forall z \in T_s \cdot id_T(z) \in T_s \).

3. Neutrality of identity and associativity of composition follow from these properties in GTS.

\[\square \]

In order to ensure that morphisms are simulations in this more general framework, we prove that T-GTSS morphisms preserve abstract transactions, i.e., if two T-GTSSs are related by a T-GTSS morphism, each transaction in the source T-GTSS when retyped using the retyping functor induced by the morphism between the type graphs gives raise to a transaction in the target T-GTSS. The following proposition describes this property.
Proposition 3.3 (T-GTS morphisms preserve transactions) Let \(f : Z_1 \rightarrow Z_2 \) be a T-GTS morphism and let \([\rho]_a \) be an abstract transaction in \(Z_1 \). Then \([f_T^{-1}(\rho)]_a \) is an abstract transaction in \(Z_2 \).

Proof: Assume that the derivation \(\rho \) in \(Z_1 \) has the following shape:

\[
\begin{array}{cccccccc}
L_{p_1} & \xleftarrow{K_{p_1}} & R_{p_1} & \\
\downarrow & & \downarrow & \\
G_0 & \xleftarrow{D_1} & G_1 & \\
\end{array}
\quad
\begin{array}{cccccccc}
L_{p_2} & \xleftarrow{K_{p_2}} & R_{p_2} & \\
\downarrow & & \downarrow & \\
G_1 & \xleftarrow{D_2} & G_2 & \\
\end{array}
\quad
\begin{array}{cccccccc}
\cdots & \cdots & \cdots & \\
L_{p_n} & \xleftarrow{K_{p_n}} & R_{p_n} & \\
\downarrow & & \downarrow & \\
G_n & \xleftarrow{D_n} & G_{n+1} & \\
\end{array}
\]

By 2.3, we have that \(f_T^{-1}(\rho) \) is a derivation in \(Z_2 \). Let us consider \(H_i \) be the graph obtained from \(G_i \), by applying the pullback functor. We have to prove that:

1. \(H_0 \) and \(H_n \) are stable graphs: we have to show that \(S(H_0) \approx H_0 \) and \(S(H_n) \approx H_n \).

As \(H_0 \) is obtained from \(G_0 \), by applying the pullback functor, the square (1), in diagram below, is a pullback. Since \(f_T \) preserves the stable items, (4) and (5) are pullbacks, as well. Moreover, by definition of \(S \), (2) and (3) are pullbacks.

Since \(G_0 \) is stable, i.e. \(S(G_0) \approx G_0 \), then there exists \(\iota_{G_0} : G_0 \rightarrow S(G_0) \) such that \(\iota_{G_0} \circ \iota_{G_0} = id_{S(G_0)} \) and \(\iota_{G_0} \circ \iota_{G_0} = id_{G_0} \). Moreover, we have:

a. by universal property of pullback (5), \(\exists s : H_0 \rightarrow X \), such that:
 i. \(o \circ s = g \)
 ii. \(n \circ s = j \circ \iota_{G_0} \circ f \).

b. by (a.i), \(l \circ g = l \circ o \circ s \) and by commutativity of (4), \(l \circ g = \iota_{T_2} \circ m \circ s \);

c. by universal property of pullback (2), \(\exists t : H_0 \rightarrow S(H_0) \), such that:
 i. \(\iota_{S(H_0)} \circ t = id_{H_0} \)
 ii. \(k \circ t = m \circ s \).

Since \(\iota_{S(H_0)} \) is surjective (by (c.i)) and injective (because of (2) is a pullback and \(\iota_{T_2} \) is injective), then it is an isomorphism. Therefore, we have \(S(H_0) \approx H_0 \). By symmetry we also have \(S(H_n) \approx H_n \), as we want to prove.

2. \(S(\delta') = S(H_0) \xrightarrow{p \circ m} S(H_n) \) is a derivation in \(S(Z_2) \). Let \(S(\delta) = S(G_0) \xrightarrow{p \circ m} S(G_n) \) be the derivation via \(p : L \leftarrow K \rightarrow R \), the proper quotient production of \(p_1 + \ldots + p_n \). The derivation \(S(\rho) \) is depicted by solid lines in Figure 3.6 and \(S(\delta) \) is depicted by dashed ones. The dotted part of represents the construction of proper quotient production \(p \). Note that, for the sake of clearness, we will consider \(n = 2 \), but the proof can be trivially extended for derivation with any length. Moreover, as all graphs in the diagram is stabilised we omitted the “\(S' \)”, e.g., we use \(G_0 \) to refer \(S(G_0) \).

By definition of proper quotient production, we have that the squares (6) and \(\langle X, R_{p_1}, L_{p_2}, G_1 \rangle \) are pullbacks, and the squares (1), (2), (3), (4), (5), \(\langle D_1^*, L, D_1, G_0 \rangle \), \(\langle D_1^*, D_1, G_1 \rangle \), \(\langle D_2^*, D_2, G_1 \rangle \), \(\langle D_2^*, R, D_2, G_2 \rangle \), \(\langle K_{p_2}, L_{p_2}, K, D_1^* \rangle \), \(\langle K_{p_2}, R_{p_1}, K, D_2^* \rangle \) and
\(\langle X, K_{p_1}, K_{p_2}, K \rangle \) are pushouts. By definition of transactions \(S(\rho) \approx S(\delta) \), then we have that the squares (7) and (8) are pushouts and (9) is a pullback. Moreover, since \(\langle K, L, D, G_0 \rangle \) and \(\langle D^*_1, L, D_1, G_0 \rangle \) are pushouts then \(\langle K, D^*_1, D, D_1 \rangle \) is a pushout (by Lemma A.4). By symmetry, \(\langle K, D^*_2, D, D_2 \rangle \) is a pushout, as well. Since \(f_T \) preserves the

\[\text{Figure 3.6: Derivation } S(\rho) \text{ and its equivalent derivation via proper quotient production.} \]

stable and unstable items and by propositions 2.3 and 3.1, we have that \(f_T^{-1}(S(\rho)) = S(\rho') \) and \(f_T^{-1}(S(\delta)) = S(\delta') \) are derivations in \(S(\mathcal{Z}_2) \). Therefore, it remains to prove that \(p' : L' \to K' \to R' \) is the proper quotient of \(f_{P}(p_1) + \ldots + f_{P}(p_2) \) and that \(\rho' \approx \delta' \).

Figure 3.7 depicts the derivations \(\rho' \) and \(\delta' \) obtained from \(\rho \) and \(\delta \), applying the pullback functor on each graph. Thus we have that the squares \(\langle K'_1, L'_1, D'_1, H'_0 \rangle, \langle K'_1, R'_1, D'_1, H'_1 \rangle, \langle K'_2, L'_2, D'_2, H'_1 \rangle, \langle K'_2, R'_2, D'_2, H'_2 \rangle, \langle K', L', D', H'_0 \rangle \) and \(\langle K', R', D', H'_2 \rangle \) are pushouts. Then we must prove that:

- the squares (1'), (2'), (3'), (4'), (5'), (6'), (7), (8) are pullbacks. In the following diagram \((a) \) we have that the top and bottom squares are pushouts and the back and left squares are pullbacks (by Lemma A.1). Then, by Lemma A.6, (6') is a pullback.

- the squares (9') are pullbacks. In the following diagram \((b) \) above we have that the top square is a pullback and the back, left, front and right are pushouts. Then, by Lemma A.6, (9') is a pullback.

- the diagrams (=) in Figure 3.7 commute: it holds by Lemma 2.2.
3. the match \(m' \) is an isomorphism: considering the Figure 3.6, since \(m : L \to G_0 \) is an isomorphism, there exists an morphism \(g : G_0 \to L \) as depicted in diagram below, such that \(g \circ m = id_L \) and \(m \circ g = id_{G_0} \).

\[\begin{align*}
G_0' & \quad \text{and} \quad L' \\
\end{align*} \]

\(G_0' \) and \(L' \) are obtained from \(G_0 \) and \(L \), respectively, by applying the pullback functor. We must prove that \(g' \circ m' = id_{L'} \) and \(m' \circ g' = id_{G_0'} \). By commuting diagram above, we have that:

1. \(m \circ g \circ a = id_{G_0} \circ a \);
2. \(m \circ b \circ g' = a \);
3. \(a \circ m' \circ g' = a \);
4. \(a \circ m' \circ g' = a \circ id_{G_0} \), by property of identity;
5. \(m' \circ g' = id_{G_0'} \), since \(a \) is injective; and
6. \(g \circ m \circ b = id_L \circ b \);
7. \(g \circ a \circ m' = b \);
8. \(b \circ g' \circ m' = b \);
9. \(b \circ g' \circ m' = b \circ id_{L'} \), by property of identity;
10. \(g' \circ m' = id_{L'} \), since \(b \) is injective.

Therefore, by (5) and (10), \(m' \) is an isomorphism, as well.

4. any intermediate graph \(H_i \) \((i \neq 0, n) \) is not stable: we have to prove that \(\exists x \in H_i \).
\[r_{f_T}(d(x)) \in T_2 \setminus T_{2s} \]. Considering the diagram below we have:

\[
\begin{array}{c}
G_I \leftarrow h \quad H_I \\
\downarrow g \quad PB \quad \downarrow d \\
T_1 \leftarrow \text{dom}(f_T)_{f_T} \quad T_2
\end{array}
\]

(a) By definition of T-GTS morphisms:

i. \(f_T \) is total on unstable items (\(l_{f_T} \) is surjective on unstable items): \(\forall x \in T_1 \setminus T_{1s} \cdot x \in \text{dom}(f_T) \setminus \mathcal{S}(\text{dom}(f_T)); \)

ii. \(f_T \) preserves unstable items: \(\forall x \in \text{dom}(f_T) \setminus \mathcal{S}(\text{dom}(f_T)) \cdot r_{f_T}(x) \in T_2 \setminus T_{2s} \)

(b) By definition of \(\mathcal{S} \) and graph morphisms: \(\forall y \in G_i \setminus \mathcal{S}(G_i) \cdot \exists x \in T_1 \setminus T_{1s} \cdot g(y) = x; \)

(c) By (a.i) and (b): \(\forall y \in G_i \setminus \mathcal{S}(G_i) \cdot \exists x \in \text{dom}(f_T) \setminus \mathcal{S}(\text{dom}(f_T)) \wedge g(y) = x; \)

(d) By definition of pullbacks in Graph:

i. Since \(l_{f_T} \) is surjective on unstable (a.i), then \(\forall y \in G_i \setminus \mathcal{S}(G_i) \cdot \exists z \in H_i \cdot h(z) = y \wedge g(h(z)) = l_{f_T}(d(z)); \)

ii. By (d.i) and since \(l_{f_T} \) is an inclusion: \(\forall y \in G_i \setminus \mathcal{S}(G_i), z \in H_i \cdot h(z) = y \cdot g(h(z)) = d(z). \)

(e) By definition of transactions: \(\exists y \in G_i \setminus \mathcal{S}(G_i); \)

(f) By (d.i) and (e): \(\exists y \in G_i \setminus \mathcal{S}(G_i) \cdot \exists z \in H_i \cdot h(z) = y; \)

(g) By (c) and (f): \(\exists y \in G_i \setminus \mathcal{S}(G_i) \cdot \exists z \in H_i \cdot \exists x \in \text{dom}(f_T) \setminus \mathcal{S}(\text{dom}(f_T)) \cdot h(z) = y \wedge g(y) = x; \)

(h) By (d.ii) and (g): \(\exists x \in H_i \cdot \exists x \in \text{dom}(f_T) \setminus \mathcal{S}(\text{dom}(f_T)) \cdot g(h(z)) = x = d(z); \)

(i) By (a.ii) and (h): \(\exists z \in H_i \cdot d(z) \in \text{dom}(f_T) \setminus \mathcal{S}(\text{dom}(f_T)) \wedge r_{f_T}(d(z)) \in T_2 \setminus T_{2s}. \)

Therefore, by (i), \(\exists z \in H_i \cdot r_{f_T}(d(z)) \in T_2 \setminus T_{2s}. \)

\[\square \]

3.3 Abstract GTS associated to a T-GTS

As mentioned in the introduction, a T-GTS can be seen at two different levels of abstraction. It can be viewed as a standard graph transformation system, where both stable and unstable items of states are visible. But we can also abstract away from the unstable states and observe only complete transactions. Formally, this gives rise to another GTS, where the productions are all transactions of the original T-GTS. This definition requires the notion of the production induced by a derivation sequence, a known construction in the literature (CORRADINI et al., 1997).

Induced production of a derivation. The *production induced* by a derivation \(\rho : G_0 \Rightarrow^* G_n \) has \(G_0 \) as left-hand side and \(G_n \) as right-hand side. The interface graph is the subgraph of \(G_0 \) which, intuitively, consists of all the items which are preserved by all the direct derivations occurring in the sequence.

Definition 3.8 (Induced production of a derivation) Given a derivation \(\rho : G_0 \overset{p_1,m_1}{\Rightarrow} \cdots \overset{p_n,m_n}{\Rightarrow} G_n \) for a T-GTS \(\mathcal{Z} \), the induced production of \(\rho \) is \(G_0 \overset{l}{\Rightarrow} K \overset{r}{\Rightarrow} G_n \), where \(K \) is
the limit object obtained as in diagram below, \(l = l^*_1 \circ p_1 \) and \(r = r^*_n \circ p_n \).

Without loss of generality, we will assume a concrete choice for \(K \), by imposing that the morphism \(p_1 \) in the limit diagram above is an inclusion.

Example 3.3 (Induced production of a derivation) Figure 3.8 shows the abstract production associated to the transaction in Figure 3.4.

Figure 3.8: Abstract production associated to the transaction in Figure 3.4.

Abstract GTS. The abstract GTS associated to the given T-GTS \(Z \), denoted by \(A(Z) \), is a GTS where the type graph is the stable type graph of \(Z \), the set of production names contains all abstract stable transactions of \(Z \) and each abstract stable transaction is associated to the production induced by it.

Definition 3.9 (Abstract GTS) Let \(Z = (G, T_s) \) be a T-GTS. Given an abstract stable transactions \([\rho]_a\), a production induced by \(\rho \) is called abstract production for the transaction \([\rho]_a\). The abstract GTS associated to the given T-GTS, denoted by \(A_Z \), is the GTS \((T_s, P', \pi')\) where \(P' \) is the set of abstract stable transactions \([\rho]_a\) and \(\pi'([\rho]_a) \) is an abstract production for the transaction \([\rho]_a\).

3.4 Transactions as graph processes

Inspired by the classical non-sequential processes for Petri nets (GOLTZ; REISIG, 1983), graph processes have been proposed in (CORRADINI; MONTANARI; ROSSI, 1996; BALDAN; CORRADINI; MONTANARI, 1998a) as a faithful representation of the derivations of a GTS up to shift-equivalence. Since abstract transactions are defined as abstract traces we will introduce an equivalent, and yet more manageable, definition of transaction based on graph processes – this presentation is used to provide a universal characterisation for the class of transactions of a given T-GTS.
A graph process for a T-GTS \(Z \) is defined as an “occurrence grammar” \(O \), i.e., a grammar satisfying suitable acyclicity constraints, equipped with a T-GTS morphism from \(O \) to \(Z \). This definition is given in terms of structural properties, but we can use a more concrete definition where a graph process for \(Z \) is constructed from a derivation in \(Z \) by means of an explicitly colimit construction.

An occurrence grammar is a graph grammar (a T-GTS with start graph) that represents a class of derivations, so, it contains the items used in the derivation and the applied productions. Each item in the type graph of this kind of grammar represents an occurrence in the derivation and can be created, consumed or preserved by its productions. Therefore, an occurrence grammar must satisfy some restrictions: all reachable graphs from the start graph, applying some sequence of productions, have an injective typing morphism; the type graph items and the productions have an acyclic dependence among them; the start graph coincides with the graph obtained restricting the type graph to the items that are not created by any production; all productions can be applied; and each type graph item is created or deleted at most once.

For any graph process, we can obtain a derivation applying all productions exactly once, in any compatible order, from its initial graph. This allows to realise that a process defined as above can be seen as a representative of a class of derivations of the original T-GTS, where only the independent steps may be switched, that is, an abstract trace. Thus, we can construct a graph process from a trace: since a process represents a class of derivations, any derivation in this class can be chosen to construct the equivalent process.

3.4.1 Graph Processes

In this subsection, we review some definitions about graph processes (CORRADINI; MONTANARI; ROSSI, 1996; BALDAN, 2000), (BALDAN; CORRADINI; MONTANARI, 1998a).

Graph process from a derivation. Intuitively, the colimit construction applied to a derivation of \(Z \) essentially constructs the type graph as a copy of the source graph plus the items created during the rewriting process. Productions are instances of production applications and are related to the original ones by means of identities in the category of typed graphs over \(T \) (the type graph of \(Z \)).

Definition 3.10 (process from a derivation) Let \(Z = \langle \langle T, P, \pi \rangle, T_s \rangle \) be a T-GTS, and let \(\rho = G_0 \xrightarrow{q_1,m_1} G_1 \xrightarrow{q_2,m_2} \cdots \xrightarrow{q_n,m_n} G_n \) be a derivation in \(Z \). A process \(\phi \) associated to \(\rho \) is a T-GTS morphism \(\phi = \langle \phi_T, \phi_P \rangle : O_\phi \rightarrow Z \), where \(O_\phi = \langle \langle T_\phi, P_\phi, \pi_\phi \rangle, T_{\phi s} \rangle \) is obtained as follows

- \(T_\phi = \langle T_\phi, t_{T_\phi} \rangle \) is a colimit object (in \(T\text{-Graph} \)) of the diagram representing derivation \(\rho \), as depicted (for a single derivation step) in the diagram below, where \(c_{X_i} : X_i^T \rightarrow T_\phi \) is the induced injection for \(X \in \{ D, G, L, K, R \} \);
- \(T_{\phi s} \hookrightarrow T_\phi = t_{T_\phi} (T_s \hookrightarrow T) \);
- \(P_\phi = \{ \langle q_i, i \rangle \mid i \in \{1, \ldots, n\} \} \);
- \(\pi_\phi(\langle q_i, i \rangle) = \langle L_i, c_{L_i} \rangle \xleftarrow{\text{L}} \langle K_i, c_{K_i} \rangle \xrightarrow{\text{R}} \langle R_i, c_{R_i} \rangle \) (see the diagram below);
- \(\phi_T = t_{T_\phi} \);
- \(\phi_P(\langle q_i, i \rangle) = q_i, \text{ for all } i \in \{1, \ldots, n\} \).
Since in a derivation all matches are assumed to be injective, in the associated process all productions are injectively typed, so we can say that a production consumes, preserves or creates elements of the type graph. Considering the diagram above, if \(x \in T_\varphi \) and \(q = \langle q_i, i \rangle \), we say that the production \(q \) consumes \(x \) if \(x \) is in the image of \(c_{L_i} \) and not in that of \(c_{K_i} \); that \(q \) creates \(x \) if \(x \) is in the image of \(c_{R_i} \) and not in that of \(c_{K_i} \); and that \(q \) preserves \(x \) if it is in the image of \(c_{K_i} \). This leads to the following net-like notation

\[
\text{\(q = c_{L_i}(L_i \setminus l_i(K_i)) \)} \quad \text{\(q^* = c_{R_i}(R_i \setminus r_i(K_i)) \)} \quad \text{\(q = c_{K_i}(K_i) \)}
\]

We say that \(q \) consumes, creates and preserves items in \(q^*, q^* \) and \(q \), respectively. Similarly, the sets of productions which consume, create and preserve \(x \in T_\varphi \) are denoted by \(*_x, x^* \) and \(\varnothing \), respectively.

Minimal and maximal graphs. Considering the sets defined above, we can obtain the minimal and the maximal graphs of a graph process, i.e., the initial and final graphs of the derivation associated to it. The minimal graph is a subgraph of the type graph whose items are not created by any production of the process and the maximal is a subgraph of the type graph whose items are not consumed by any production.

Definition 3.11 (minimal and maximal graphs) Let \(\phi : \langle \langle T_\phi, P_\phi, \pi_\phi \rangle, T_{\phi hi} \rangle \to \mathcal{G} \) be a process of a GTS \(\mathcal{G} \). The minimal graph of \(\phi \), denoted by \(\text{Min}(\mathcal{O}_\phi) \), is the subgraph of \(T_\phi \) consisting of the items \(x \) such that \(*_x = \emptyset \), and \(\phi^* \) is the same graph typed over \(T \) by the restriction of \(\phi_T \). The maximal graph of \(\phi \), denoted by \(\text{Max}(\mathcal{O}_\phi) \), is the subgraph of \(T_{p hi} \) consisting of the items \(x \) such that \(x^* = \emptyset \), and \(\phi^* \) is the same graph typed over \(T \).

Example 3.4 (graph process) As an example, in Figure 3.9 (top-left), we show the type graph of the process \(\phi_1 \) associated to the derivation of Figure 3.4 – it was constructed as a gluing of all graphs in the derivation. The injections from the graphs of the derivation are implicitly represented by using an index pair for the items with a creation index on the first position of the pair, and a deletion index on the last one. The creation index is missing (\(- \)) in the items that are not created, i.e., that belong to the start graph, and symmetrically for the deletion index. The image of graph \(G_i \) of the derivation, with \(i \in \{0, \ldots, 6\} \), contains all items with creation index, if any, smaller than \(i \), and deletion index, if any, larger than or equal to \(i \). The minimal and the maximal graphs of this process are shown at the bottom-left side of the figure. The productions (see Figure 3.9 (right)) of the process are all productions in Figure 3.4 typed over the process type graph.

If we consider two productions in a graph process, we can have different situations concerning their application: if they do not use items that are common to both or only preserve them, these productions can be applied in parallel, but if one of the productions...
consumes (or preserves) the same item that is preserved (or created) by the other, the latter must be applied before the former. Thus we can define a causal relation between all elements (items of the type graph and productions) of a graph process, considering the relation described above.

Definition 3.12 (causal relation) The causal relation of a process ϕ is the least transitive and reflexive relation \leq_ϕ over $T_\phi \uplus P_\phi$ such that for all $x, y \in T_\phi \uplus P_\phi$ and $q_1, q_2 \in P_\phi$:

i) $x \leq_\phi y$ if $x \in \mathcal{N}_y$ and

ii) $q_1 \leq_\phi q_2$ if $(q_1 \cap \mathcal{N}_q) \cup (\mathcal{N}_q \cap q_2) \neq \emptyset$.

Reachable sets. Reachable sets of a process are subsets of elements of type graph of these processes. Each of them represents a graph reachable from minimal graph, applying a subset of productions of a process. A reachable set is obtained based on the causal relation and contains all items that are created/preserved and are not consumed by considered productions.

Definition 3.13 (Reachable sets) Let ϕ be a process. For any \leq_ϕ-left-closed $P' \subseteq P_\phi$, the reachable set associated to P' is the set $S_{P'} \subseteq T_\phi$ defined by

$$x \in S_{P'} \iff \forall q \in P_\phi. (x \leq_\phi q \Rightarrow q \not\in P') \land (q \leq_\phi x \Rightarrow q \in P').$$

Graph processes which have the same structure but, for example, different identities of vertices, edges and productions should be considered as being equivalent.

Abstract process. An abstract process is a class of isomorphic processes of a T-GTS. Two processes of a T-GTS \mathcal{Z} are isomorphic if their type graphs are isomorphic (they
have the same structure) and their productions are instances of the same productions of \(\mathcal{Z} \). Since each item in the type graph of a process represents an occurrence of this item, the typing morphisms of productions indicate, for each item, the productions that created, consumed and/or preserved it. Therefore the isomorphism between the type graphs must be compatible with the typing of productions.

Definition 3.14 (Abstract process) Let \(\langle O_{\phi_1}, \phi_1 \rangle \) and \(\langle O_{\phi_2}, \phi_2 \rangle \) be two graph processes of a GTS \(\mathcal{G} \). Then \(\phi_1 \) and \(\phi_2 \) are isomorphic if only if there exists a pair \(\langle f_T, f_P \rangle \), where:

- \(f_T : \langle T_{\phi_1}, \phi_{1T} \rangle \rightarrow \langle T_{\phi_2}, \phi_{2T} \rangle \) is an isomorphism in \(T\text{-Graph} \)
- \(f_P : P_{\phi_1} \rightarrow P_{\phi_2} \) is a bijection, such that \(\phi_{1P} = \phi_{2P} \circ f_P \)
- for each \(q_1 : L_{q_1} \xleftarrow{t_{q_1}} K_{q_1} \xrightarrow{r_{q_1}} R_{q_1} \in P_{\phi_1} \), \(q_2 = f_P(q_1) : L_{q_2} \xleftarrow{t_{q_2}} K_{q_2} \xrightarrow{r_{q_2}} R_{q_2} \in P_{\phi_2} \), if \(q = \phi_{1P}(q_1) = \phi_{2P}(q_2) \):

 - the diagram in Figure 3.10 commutes.

![Figure 3.10: Isomorphism of processes.](image)

If two processes \(\phi_1 \) and \(\phi_2 \) are isomorphic, then we will write \(\phi_1 \cong \phi_2 \). Moreover, given any process \(\phi \), we will write \([\phi]\) to denote \(\{\phi' | \phi' \cong \phi \} \), and we will call \([\phi]\) an abstract process.

From the theory of graph processes (see (Baldan; Corradini; Montanari, 1998a)) we know that the abstract processes of a T-GTS \(\mathcal{Z} \) are in one-to-one correspondence with the abstract traces of \(\mathcal{Z} \). More precisely, if \([\rho]_a \) is an abstract trace of \(\mathcal{Z} \) and \(\rho', \rho'' \in [\rho]_a \) are two derivations, then the processes associated to \(\rho' \) and \(\rho'' \) are isomorphic. This defines a function \(TP_\mathcal{Z} \) mapping the abstract traces of \(\mathcal{Z} \) to abstract processes for \(\mathcal{Z} \). Vice versa, if \(\phi \) is a process for \(\mathcal{Z} \), and \(\rho, \rho' \) are two derivations of \(O_\phi \), then the retyped derivations \(\phi_T^{-1}(\rho) \) and \(\phi_T^{-1}(\rho') \) of \(\mathcal{Z} \) (see the observation after Proposition 2.2) are abstract truly-concurrent equivalent, and thus belong to the same abstract trace. This defines a function \(PT_\mathcal{Z} \) mapping the abstract processes for \(\mathcal{Z} \) to abstract traces of \(\mathcal{Z} \). Moreover, it can be proved that functions \(TP_\mathcal{Z} \) and \(PT_\mathcal{Z} \) are inverse to each other. By Proposition 3.4 an isomorphism between abstract traces and abstract processes is established: hence, the latter provides an alternative, equivalent characterisation of the former ones.
Proposition 3.4 Let Z be a T-GTS. Then $[\phi]$ is an abstract t-process of Z iff $PT_Z([\phi])$ is an abstract transaction (see (BALDAN; CORRADINI; MONTANARI, 1998a)).

Figure 3.11 shows an abstract representation of the relationship between derivation traces and graph processes: in the left, we have a class of shift-equivalent derivations containing three direct derivations (δ_1, δ_2 and δ_3) occurring in different order; and, in the right, we have the correspondent process, where the direct derivations are not ordered.

3.4.2 Transactional Processes

Since we can build a process from any derivation, we can characterise the processes that can be obtained from transactions, these processes are called transactional processes.

Transactional process. A transactional process is a process having the minimal and the maximal graphs stable and the remaining reachable graphs are unstable; moreover, all items in the minimal graph must be used and the stable type items can be or consumed, or created, or preserved by the productions in the process.

Since transactional processes are used to define implementation morphisms, where productions are mapped into processes, we need to consider also a wider class of processes, the unstable transactional processes, which may start and end in unstable states. These processes are used to define implementations of unstable productions.

Definition 3.15 (transactional process) Let $Z = \langle (T, P, \pi), T_o \rangle$ be a T-GTS. An unstable transactional process (ut-process) is a process ϕ of Z such that

1. for any $x \in T_{\phi s}$, at most one of the sets *x, *x, x is not empty;
2. for any $x \in \text{Min}(O_\phi)$, there exists $q \in P_\phi$ such that either $x \in ^*q$ or $x \in q$;
3. for any reachable set $S_{P'}$ associated to a non-empty $P' \subseteq P_\phi$, there exists $x \in S_{P'}$ such that $x \notin \text{Min}(O_\phi) \cup \text{Max}(O_\phi)$.

If $\text{Min}(O_\phi) \cup \text{Max}(O_\phi) \subseteq T_{\phi s}$, then ϕ is called transactional process (t-process). The family of abstract ut-processes of Z is denoted by $\text{utProc}(Z)$ and $\text{tProc}(Z) \subseteq \text{utProc}(Z)$ denotes the class of all abstract t-processes of Z.
Note that if a representative of an abstract process is a(n) unstable) transactional one, then all the other members of the equivalence class are transactional processes, as well. Condition 1 implies that each stable item is either in the source or in the target state of the process. Additionally, each stable item that is preserved by at least one production cannot be generated nor consumed in the process itself: this would induce a dependency between productions, violating the defining requirements for transactions (see Definition 3.5). By condition 2, any item in the source state is used in the computation. Condition 3 ensures that the process is not decomposable into “smaller pieces”. It tells that by executing only an initial, non-empty subset P' of the productions of the process, we end up in a graph $S_{P'}$ which is not entirely contained in $\min(\omega) \cup \max(\omega)$, i.e., which contains at least one unstable item. Finally, in a transactional process the source and target states are required to be stable. For example, the process described in Example 3.4 is transactional.

3.4.3 Abstract GTS for a T-GTS based on process

Since the abstract transaction and the abstract t-processes of a T-GTS have an one-to-one relationship, we can redefine abstract GTSS associated to a T-GTSS using this more manageable representation for the transactions. This new definition will be used to characterise the operation that associates an abstract GTS to a T-GTS as an adjunction.

In this chapter, we consider a class of equivalent transactional processes which does not take in account the causal relation. Since an abstract process is defined as a class of isomorphic processes, two processes with same productions, isomorphic type, minimal and maximal graphs may not be in the same abstract process (class of equivalence) if there are two elements with the same type but with different causal relation. Therefore, we define a notion of equivalence of processes which is weaker than isomorphic process, allowing to consider the mentioned process as equivalent, called weak equivalence. Thus, we will use all classes of weak-equivalent processes to represent all transactions of a T-GTS. This definition allows us to characterise the abstraction operation as an adjunction: if we had used abstract processes (class of isomorphic processes) as transactions, this characterisation could not be established, because the causal relation is lost in abstraction operation.

Weak processes. Two abstract processes are weak-equivalent if there are isomorphisms between their type graphs, minimal graphs and maximal graphs, and they have the same instances of productions. Note that here, the condition on typing of productions is disregarded.

Definition 3.16 (Weak-equivalence, wut-processes) Let ϕ_1 and ϕ_2 be two ut-processes. Then, ϕ_1 and ϕ_2 are weak-equivalent, written $\phi_1 \approx^{w} \phi_2$, if only if there exists a pair $\langle f_T, f_P \rangle$, where:

- $f_T: \langle T_{\phi_1}, \phi_1 T \rangle \rightarrow \langle T_{\phi_2}, \phi_2 T \rangle$ is an isomorphism in T-Graph, such that $\min(\omega_{\phi_1}) \approx \min(\omega_{\phi_2})$ and $\max(\omega_{\phi_1}) \approx \max(\omega_{\phi_2})$
- $f_P: P_{\phi_1} \rightarrow P_{\phi_2}$ is a bijection, such that $\phi_1 P = \phi_2 P \circ f_P$

A weak abstract ut-process (wut-process) is defined as an equivalence class of ut-processes with respect to weak equivalence, denoted as $[\phi]$ for a representative ϕ. The set of wut-processes of a T-GTS Z is denoted by $\text{wutProc}(Z)$. The set of weak t-processes (wt-processes) $\text{wtProc}(Z)$ is defined in an analogous way.
Underlying span. Like for the traces, we can associate to each transactional process a production, i.e., an underlying span, where the left- and right-hand side are the minimal and the maximal graphs of the process, respectively, and the interface is the intersection between these graphs. In order to associate a concrete span to an abstract process, we need to assume a chosen representative for any equivalence class of processes.

Definition 3.17 (span underlying abstract process) Given a process ϕ for a T-GTS Z, we have $\Pi(\phi) = \bullet \phi \leftarrow \bullet \phi \cap \phi^* \leftarrow \phi^*$ (intersection is taken component-wise).

Let us assume for each T-GTS Z a choice function ch_Z, mapping each wut-process $[\phi]_w$ to a concrete representative $ch_Z([\phi]_w) \in [\phi]_w$. The underlying span of a wut-process $[\phi]_w$ is defined as $\Pi_Z([\phi]_w) = \Pi(ch_Z([\phi]_w))$.

We are now able to define the abstract system associated with a T-GTS using transactional processes. This definition differs from that in Definition 3.9 to use the weak equivalence, therefore, some different transactions in Definition 3.9 can be the same in the following definition.

Abstract GTS. An abstract system associated to a T-GTS Z is a graph transformation system $A(Z)$ that have as type graph the stable type graph of Z and the set of production names contains all wt-processes of Z, where each one is associated to its underlying production.

Definition 3.18 (Abstract GTS) Let $Z = (G, T_s)$ be a T-GTS. The abstract GTS associated to Z, denoted by A_Z, is the GTS $(T_s, \text{wtProc}(Z), \Pi_Z)$ where $\text{wtProc}(Z)$ is the set of wt-processes of Z and Π_Z is as in Definition 3.17.

Example 3.5 (Abstract GTS) As an example, we can see in Figure 3.12 the abstract system associated to $PumpOper$ (see Example 3.1).

![Figure 3.12: Abstract GTS associated to the T-GTS $PumpOper$, depicted in Figure 3.1.](image)

It is easy to see that the type graph of this system is the stable type graph of $PumpOper$. The productions of this GTS are all transactional process of the original T-GTS:

- the process $[\phi_1]_w$ is shown in Example 3.4;
- the processes $[\phi_2]_w$, $[\phi_3]_w$ and $[\phi_4]_w$ are those which have as the only productions REJECT, PUREANALYSIS and IMPUREANALYSIS, respectively.
3.5 Implementation morphisms for T-GTSs

As described in the previous section, a T-GTS can be viewed as a standard GTS, where the unstable states are abstracted away and only the complete transactions are observable. This transformation defines a mapping from the objects of the category T-GTS to those of GTS. Interestingly, equipping the category of transactional GTSs with a more general notion of morphism, – called implementation morphism – this mapping can be turned into a functor, which is the right adjoint to the inclusion functor in the opposite direction.

Then, we equip T-GTSs with a suitable notion of implementation morphism, allowing to relate two systems, mapping the productions of one into transactions of the other – this notion is also used to relate the components of a module: the body is the implementation of the interface. Figure 3.13 shows a schematic representation of mapping a production into a transaction: a production is depicted at the top; and a transactional process implementing this production is depicted at the bottom. The mapping from production to process must preserve the left- and right-hand sides, i.e., all items in these graphs, whose types are preserved, must be in minimal and maximal graphs of the process, respectively.

Figure 3.13: Transactional process φ implements production p.

T-GTS implementation morphisms. An implementation morphism is a T-GTS morphism that maps each given production of the source system to a weak unstable transactional process of the target system.

Definition 3.19 (T-GTS implementation morphisms) Given T-GTS \(Z_i = \langle \langle T_i, P_i, \pi_i \rangle, T_{is} \rangle \), let \(\widehat{Z}_i = \langle \langle T_i, \text{wutProc}(Z_i), \Pi_{Z_i} \rangle, T_{is} \rangle \) be a T-GTS having all weak ut-processes of \(Z_i \) as productions for \(i \in \{1, 2\} \). An (T-GTS) implementation morphism \(f : Z_1 \rightarrow \widehat{Z}_2 \) is the T-GTS morphism \(\langle f_T, f_P \rangle : Z_1 \rightarrow \widehat{Z}_2 \).

Example 3.6 ((T-GTS) implementation morphism) In Figure 3.14 we can see an implementation morphism between the abstract GTS of the customer system to the concrete T-GTS of this system.

The type component \(e_T \) is the obvious inclusion and the production component \(e_P \) maps each production \([\varphi_i]_w\) of \(A(\text{Customer}) \) into the corresponding weak t-process \([\varphi_i]_w\) of \(\text{Customer} \). In Figure 3.15, the type graphs and the set of name productions of each wt-process of \(\text{Customer} \) system are shown.

To provide a correct definition of the category having T-GTSs as objects and implementation morphisms as arrows, we have to explain how implementation morphisms compose. This is summarised by the next propositions. In order to compose implementation
morphism, we first have to know how to map wut-processes of source T-GTS into wut-processes of target one. Proposition 3.5 shows how to obtain this mapping extending the mapping of productions of source (T-GTS) into wut-processes of target one. The proof of this proposition is divided in two parts: (1) the definition of the extension; and (2) the
proof that the extension is well-defined, i.e., it results in a unique implementation morphism (the productions component maps each wut-process into a unique class of weak ut-processes, independently of the concrete choice for the mapping between productions and t-processes).

Given a T-GTS Z and a production p in Z, below we denote by ϕ_{id} the process associated (see Definition 3.10) to the one-step derivation which applies p to its left-hand side L_p with the identity match.

Proposition 3.5 Given a T-GTS Z_i, let \hat{Z}_i be as in Definition 3.19, for $i \in \{1, 2\}$. Then any T-GTS morphism $f: Z_1 \to \hat{Z}_2$ extends to a T-GTS morphism $\hat{f}: \hat{Z}_1 \to \hat{Z}_2$.

Proof:

1. \hat{f} is defined by (f_T, \hat{f}_p), where for all weak ut-process $[\phi]_w \in \text{wutProc}(Z_1)$, $\hat{f}_p([\phi]_w) = [\phi]_w$, with $[\phi]_w \in \text{wutProc}(Z_2)$ and $\phi: \mathcal{O}_\phi \to Z_2 = \langle \varphi_T, \varphi_P \rangle$ defined as follows:

- for $1 \leq i < j \leq n$ and $n = \#P_\phi$, (T_φ, φ_T) is the colimit (in $T_2\text{-Graph}$) of the diagram (a) depicted (only for the processes φ_1 and φ_n – the other ones are omitted) below:

$$
\begin{array}{c}
\text{(a)}
\end{array}
$$

where $p_i \in P_\phi$, $[\varphi_i]_w = f_P(\phi_P(p_i))$, $\Pi_{Z_2}([\varphi_i]_w) = L_{\varphi_i} \leftarrow K_{\varphi_i} \to R_{\varphi_i}$ and $(X_{(A_\varphi_i, B_\varphi_i)}, PA_{\varphi_i}, PB_{\varphi_i})$ is the pullback (in Graph) of the diagram (b) above, with $A, B \in \{L, R\}$ and $f^A_i(p_i)$ and $f^B_i(p_j)$ are any choice for the isomorphisms required by definition of GTS morphism.

- $P_\varphi = \{ q \mid q \in P_{\varphi_k}, k = 1..\#P_\phi \}$
- for all $q \in P_\varphi$, if $q \in P_{\varphi_k}$ then $\varphi_P(q) = \varphi_k(p)$.
- $T_{\varphi_q} \hookrightarrow T_\varphi = \varphi_T^*(T_{2_q} \hookrightarrow T_2)$
- $\varphi^* \equiv \varphi$, minimal and maximal graphs, respectively, are defined by colimits (4) and (4') depicted in diagrams below, where (1), (2), (3), (1'), (2') and (3') are pullbacks.
2. \(\hat{f} \) is well-defined. Since \(f \) is a \(\mathcal{T} \)-GTS morphism, \(f_T \) is a graph morphism and preserves stable and unstable items. By definition of \(\hat{f}_P, \forall [\phi]_w \in \text{\textbf{mutProc}}(Z_1) \cdot \hat{f}_P([\phi]_w) = [\varphi]_w \).

It remains to prove that any choice of the isomorphisms \(f^A_i(p_i) \) and \(f^B_i(p_j) \), in diagram (b) above, determines the same weak ut-process. Therefore, we must prove that all concrete process obtained as above from the same process \(\phi \), are weak equivalent, i.e., there exists a bijection between their sets of productions and their type, minimal and maximal graphs are isomorphic. Since the set of productions are always the same, independent of the choice for \(f^A_i(p_i) \) and \(f^B_i(p_j) \), we only must prove that type, minimal and maximal graphs are isomorphic.

By definition of \(\mathcal{T} \)-GTS morphism, there exists \(f^A_i(p_i) \) such that (1) below is a pullback, with \(A, B \in \{L, R\} \).

\[
\begin{array}{c}
A_{p_i} \\
\downarrow \text{t}_{A_{p_i}} \\
T_1 \downarrow \text{dom}(f_T) \\
A_{\varphi_i} \\
\downarrow \text{t}_{A_{\varphi_i}} \\
T_2
\end{array}
\]

If there exists a different arrow \(f^A_i'(p_i) : A_{\varphi_i} \rightarrow A_{p_i} \) such that (1) is a pullback, then

(i) \(\exists x \in A_{\varphi_i} \cdot f^A_i(p_i)(x) \neq f^A_i'(p_i)(x) \) only if \(t_{A_{p_i}}(f^A_i(p_i)(x)) = t_{A_{p_i}}(f^A_i'(p_i)(x)) \).

(a) Type graphs are isomorphic: If we use, in diagram (b) above, \(f^A_i'(p_i) \) instead of \(f^A_i(p_i) \), we will obtain a graph \(X'_{(A_{\varphi_i},B_{\varphi_j})} \) as depicted in the following diagram,
which is equivalent to $X_{(A_{\varphi_1}, B_{\varphi'})}$: in the following we will use $f^*_A = t_{A_{\varphi_1}} \circ \text{id}_{A_{\varphi_1}} \circ f^*_A(p_1)$, $f_A = t_{A_{\varphi_1}} \circ \text{id}_{A_{\varphi_1}} \circ f^*_A(p_1)$ and $f_B = t_{B_{\varphi'}} \circ \text{id}_{B_{\varphi'}} \circ f^*_B(p_2)$.

- By (i), we have:

 (ii) $\forall e \in A_{\varphi_1} \cdot f^*_A(p_1)(e) \neq f^*_A(p_1)(e)$ only if $\phi_T(f_A(e)) = \phi_T(f_A'(e))$;

- By definition of pullbacks:

 (iii) $\exists x \in X_{(A_{\varphi_1}, B_{\varphi'})} \cdot f_A(p_A(x)) = f_B(p_{B_{\varphi'}}(x))$

 (iv) $\exists x' \in X'_{(A_{\varphi_1}, B_{\varphi'})} \cdot f_A'(p_A'(x')) = f_B'(p_{B_{\varphi'}}'(x'))$

- By (ii), (iii) and (iv), we can define:

 (v) $h : X_{(A_{\varphi_1}, B_{\varphi'})} \to X'_{(A_{\varphi_1}, B_{\varphi'})}$, as follows: $\forall x \in X_{(A_{\varphi_1}, B_{\varphi'})}$

 $h(x) = \begin{cases}
 x'_1, & \text{if } p_A(x) = e \land f_A(e) = f_A'(e), \\
 x'_2, & \text{if } p_A(x) = e \land f_A(e) \neq f_A'(e) = e',
 \end{cases}$

 where, by definition, $p_A = p_A' \circ h$ and $p_B = p_B' \circ h$.

 (vi) $h' : X'_{(A_{\varphi_1}, B_{\varphi'})} \to X_{(A_{\varphi_1}, B_{\varphi'})}$, as follows: $\forall x' \in X'_{(A_{\varphi_1}, B_{\varphi'})}$

 $h'(x') = \begin{cases}
 x_1, & \text{if } p'_A(x') = e \land f_A(e) = f_A'(e), \\
 x_2, & \text{if } p'_A(x') = e \land f_A(e) \neq f_A(e) = e',
 \end{cases}$

 where, by definition, $p'_B = p_B \circ h'$ and $p'_A = p_A \circ h'$.

- By commutativity of diagram above, we have:

 (vii) $f_A' \circ p_A = f_B \circ p_B'$

 (viii) $f_A' \circ p_A \circ h' = f_B \circ p_B'$

 $f_B \circ p_B \circ h \circ h' = f_B \circ p_B'$

 $f_B \circ p_B \circ h \circ h' = f_B \circ p_B' \circ \text{id}_{X'_{(A_{\varphi_1}, B_{\varphi'})}}$

 (ix) $h' \circ h = \text{id}_{X'_{(A_{\varphi_1}, B_{\varphi'})}}$

- By commutativity of diagram above, we have:

 (viii) $h \circ h' = \text{id}_{X_{(A_{\varphi_1}, B_{\varphi'})}}$

- By (vii), (ix) and (ii) we have $X_{(A_{\varphi_1}, B_{\varphi'})} \approx X'_{(A_{\varphi_1}, B_{\varphi'})}$ in T_1-Graph.

Using $X_{(A_{\varphi_1}, B_{\varphi'})}$ and $X'_{(A_{\varphi_1}, B_{\varphi'})}$ to construct the type graph of φ we obtain T_φ and T'_φ, respectively, as the colimits depicted in diagram below. Now, we must prove that
By commutativity of diagram above and by definition of identities, we have:

\[(x)\quad t_{A_{\varphi_1}} \circ p'_{A_{\varphi_1}} = t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \circ h' \quad \text{and} \quad t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} = t_{A_{\varphi_1}} \circ p'_{A_{\varphi_1}} \circ h\]

\[(xi)\quad t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}} = t_{B_{\varphi_j}} \circ p'_{B_{\varphi_j}} \circ h' \quad \text{and} \quad t_{B_{\varphi_j}} \circ p'_{B_{\varphi_j}} = t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}} \circ h\]

By (x), (xi) and commutativity of diagram above, we have:

\[(xii)\quad ct'_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} = ct'_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p'_{A_{\varphi_1}} \circ h\]
\[= ct'_{\varphi_1} \circ t_{B_{\varphi_j}} \circ p'_{B_{\varphi_j}} \circ h\]
\[= ct'_{\varphi_j} \circ t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}}\]
and

\[(xiii)\quad ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p'_{A_{\varphi_1}} = ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \circ h'\]
\[= ct_{\varphi_1} \circ t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}} \circ h'\]
\[= ct_{\varphi_j} \circ t_{B_{\varphi_j}} \circ p'_{B_{\varphi_j}}\]

By (xii) and (xiii), we have: \(g : T_{\varphi} \to T'_{\varphi}\) and \(g' : T'_{\varphi} \to T_{\varphi}\) as the morphisms uniquely determined by universal property of colimits, such that:

\[(xiv)\quad g \circ ct_{\varphi_1} = ct'_{\varphi_1} \quad \text{and} \quad g \circ ct_{\varphi_j} = ct'_{\varphi_j}\]

\[(xv)\quad g' \circ ct'_{\varphi_1} = ct_{\varphi_1} \quad \text{and} \quad g' \circ ct'_{\varphi_j} = ct_{\varphi_j}\]

By commutativity of diagram above and by definition of identities, we have:

\[id_{T_{\varphi}} \circ ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} = ct_{\varphi_1} \circ t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}}\]
\[= g' \circ ct'_{\varphi_j} \circ t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}} \quad \text{by (xv)}\]
\[= g' \circ ct'_{\varphi_j} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \quad \text{by (xii)}\]
\[= g' \circ g \circ ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \quad \text{by (xiv)}\]
and

\[id_{T_{\varphi}} \circ ct_{\varphi_j} \circ t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}} = ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}}\]
\[= g \circ ct'_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \quad \text{by (xv)}\]
\[= g \circ ct'_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \quad \text{by (xii)}\]
\[= g \circ g \circ ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}} \quad \text{by (xv)}\]

Since \(ct_{\varphi_1} \circ t_{A_{\varphi_1}} \circ p_{A_{\varphi_1}}\) and \(ct_{\varphi_j} \circ t_{B_{\varphi_j}} \circ p_{B_{\varphi_j}}\) are jointly surjective, we have:
(xvi) \(id_{T_\varphi} = g' \circ g \)

\[
\begin{align*}
\text{id}_{T_\varphi} \circ c\varphi \circ t_{A\varphi} \circ p_{A\varphi} &= ct'_{\varphi} \circ t_{B\varphi} \circ p_{B\varphi} \\
 &= g \circ ct_{\varphi} \circ t_{B\varphi} \circ p_{B\varphi} \\
 &= g \circ ct_{\varphi} \circ t_{A\varphi} \circ p_{A\varphi} \\
 &= g \circ g' \circ ct_{\varphi} \circ t_{A\varphi} \circ p_{A\varphi} \\
\end{align*}
\]

by (xiv)

and

\[
\begin{align*}
\text{id}_{T_\varphi} \circ c\varphi \circ t_{B\varphi} \circ p_{B\varphi} &= ct_{\varphi} \circ t_{A\varphi} \circ p_{A\varphi} \\
 &= g \circ ct_{\varphi} \circ t_{A\varphi} \circ p_{A\varphi} \\
 &= g \circ ct_{\varphi} \circ t_{B\varphi} \circ p_{B\varphi} \\
 &= g \circ g' \circ ct_{\varphi} \circ t_{B\varphi} \circ p_{B\varphi} \\
\end{align*}
\]

by (xv)

- Since \(ct'_{\varphi} \circ t_{A\varphi} \circ p_{A\varphi} \) and \(ct_{\varphi} \circ t_{B\varphi} \circ p_{B\varphi} \) are jointly surjective, we have:

(xviii) \(id_{T_\varphi} = g \circ g' \)

- Therefore, by (xvii) and (xviii), we have that \(T_\varphi \simeq T_{\varphi}' \).

(b) Minimal graphs are isomorphic: If we use, in diagram (c) above, \(f_\alpha'(p_i) \) instead of \(f_\alpha(p_i) \), we will obtain a graph \(Mn_{\varphi}' \), as depicted in the diagram (e) below,

\[
\begin{align*}
h \circ h' &\circ a' = h \circ a \circ g' \\
\text{id}_{Mn_{\varphi}'} \circ a' &= h \circ a \circ g' \\
a' &= a' \circ g \circ g' \\
a' \circ \text{id}_{X'_{Mn}} &= a' \circ g \circ g' \\
\text{id}_{X'_{Mn}} &= g \circ g' \\
h' \circ h \circ a &= h' \circ a' \circ g \\
\text{id}_{Mn_{\varphi}'} \circ a &= h' \circ a' \circ g \\
a &= h' \circ a' \circ g \\
a &= a \circ g' \circ g \\
a \circ \text{id}_{X'_{Mn}} &= a \circ g' \circ g \\
\text{id}_{X_{Mn}} &= g' \circ g \\
\end{align*}
\]

by (i)

by definition of \(h \) and \(h' \).

by definition of identity.

by (iii)

by definition of identity.

by injectivity of \(a' \).

by (iii)

by definition of \(h \) and \(h' \).

by definition of identity.

by (i)

by definition of identity.

by injectivity of \(a \).
By (v) and (vi) we have $X_{kM}^i \cong X_{M}$. If we construct φ and φ' as in the diagram (f) above, we have k and k' uniquely determined by property of colimits, where (vii) $e' \circ h = k \circ e$, (viii) $f' = k \circ f$, (ix) $e \circ h' = k' \circ e'$ and (x) $f = k' \circ f'$.

\begin{align*}
k' \circ e' \circ h &= e \circ h' \circ h & \text{by (ix)} \\
k' \circ e' \circ h &= e \circ id_{Mn_{\varphi_1}} & \text{by definition of h and h'.} \\
k' \circ e' \circ h &= e & \text{by definition of identity.} \\
k' \circ k \circ e &= e & \text{by (vii)} \\
k' \circ k \circ e &= id \circ e & \text{by definition of identity.} \\
k' \circ k \circ f &= f & \text{by (x) and (viii)} \\
k' \circ k \circ f &= id \circ f & \text{by definition of identity.} \\
k \circ e \circ h' &= e' \circ h \circ h' & \text{by (vii)} \\
k \circ e \circ h' &= e' \circ id_{Mn_{\varphi_1}} & \text{by definition of h and h'.} \\
k \circ e \circ h &= e' & \text{by definition of identity.} \\
k \circ k' \circ e &= e' & \text{by (ix)} \\
k \circ k' \circ e &= id \circ e & \text{by definition of identity.} \\
k \circ k' \circ f &= f' & \text{by (viii) and (x)} \\
k \circ k' \circ f &= id \circ f & \text{by definition of identity.}
\end{align*}

Since e and f are jointly surjective and by (xi) and (xii), then $k' \circ k = id \circ \varphi$. By symmetry, $k \circ k' = id \circ \varphi'$. Therefore, $\varphi \approx \varphi'$.

(c) Maximal graphs are isomorphic: by symmetry with minimal graphs, we have $\varphi^* \approx \varphi'^*$.

\square

Now we can explain how to compose implementation morphisms. In the next proposition, we define this composition and prove that it is well-defined and associative. Moreover, we define the identities of this morphisms and prove its neutrality with respect to composition. Figure 3.16 shows a schema of the composition of three implementation morphisms, on the productions component: the black diagram describes the mapping of productions of one T-GTS into wut-processes of another, where $f_p : \mathbb{P}_{Z_1} \rightarrow \text{wutProc}(Z_2)$, $g_p : \mathbb{P}_{Z_2} \rightarrow \text{wutProc}(Z_3)$ and $h_p : \mathbb{P}_{Z_3} \rightarrow \text{wutProc}(Z_4)$, all depicted by dashed arrows. Moreover, we have that $q_i \in \mathbb{P}_\varphi$ and $r_j \in \mathbb{P}_{\varphi_1}$, for $i \in \{1, \ldots, n\}$ and $j = \{1, \ldots, m, \ldots, k, \ldots, z\}$. The composition of two implementation morphisms must map each production of the first T-GTS to a wut-process of the third one. Then, if we want to define the composition $g \circ f$ we have to maps each production of Z_1 to a wut-process of Z_2. Since we have that f_p maps each production of Z_1 to a wut-process of Z_2 and g_p maps each wut-process of Z_2 to a wut-process of Z_3, we define the composition $g \circ f$ on productions as $g_p \circ f_p$. The blue diagram describes the composition of $h_p \circ (\hat{g}_p \circ f_p)$ (dashed blue arrows) mapping production p (in Z_1) to wut-process ψ_{1mkz} (in Z_4) and the red one describes the composition $(\hat{h}_p \circ g_p) \circ f_p$ (dashed red arrows) mapping the same production to ψ'_{1mkz} (in Z_4). In order to prove that composition of implementation morphisms is associative we need to show that both compositions (blue and red) are equivalent, i.e., $\psi_{1mkz} \approx w \psi'_{1mkz}$. The blue and red processes in this figure are obtained gluing other ones, for example, the process φ_{1n} is obtained gluing the processes $\varphi_i (i \in \{1, n\})$ with respect to their items in common in $T_{\varphi} (X_0)$. In Proposition 3.6 we define this composition and prove its associativity. The following lemmas are used to prove this proposition.
Figure 3.16: Composition of implementation T-GTS morphisms is associative.

Lemma 3.1 Given the following diagram in Graph, obtained by the extension of implementation morphisms defined as in Proposition 3.5, where (1), (2) and $\langle X_1, b_6, b_7 \rangle$ are pullbacks and $c_1 \circ b_4 \circ b_6 = c_3 \circ b_5 \circ b_7$. Then there exist $b : M x \psi_m \rightarrow \psi_{1m}$,
$b_{11} : Mx_{\psi_m} \to \psi_m$ and $b_{15} : \psi_{1m} \to T_{\psi_{1m}}$, such that $c'_3 \circ b_5 \circ b_{11} = b_{15} \circ b$.

Proof: b_{11} is defined by pullback (2). X' is obtained as pullback object of b_6 and b_{10}, and b is defined by the colimit (3). $b_{15} : \psi_{1m} \to T_{\psi_{1m}}$ is uniquely determined by the universal property of the colimit (3), such that $c'_3 \circ b_5 \circ b_{11} = b_{15} \circ b$. Moreover, $b' : \psi_{1m} \to \varphi_1$ is uniquely determined by universal property of colimit (3), such that $b' \circ b = b_{10}$.

Lemma 3.2 Let us consider the following commutative diagram, where (1) is a colimit and (2) – (5) are pullbacks. Then there exists $g : X_2 \to Mx_{\psi_m}$, such that $b_{11} \circ g = e_{11}$; and there exists $f : X_2 \to Mn_{\psi_k}$, such that $d_{11} \circ f = e_{12}$.
Proof:

(i) \(\text{rng}(e_9) \cap \text{rng}(e_{10}) = \text{rng}(e_1) \) by (1) and (3)

(ii) \(\text{rng}(e_9) \cap \text{rng}(e_{10}) \supseteq \text{rng}(e_4) \)
\(\text{rng}(e_1) \supseteq \text{rng}(e_4) \) by (i)

(iii) \(\text{rng}(b_2) \supseteq \text{rng}(e_7) \) by (3) and \(b_2 \circ e_5 = e_7 \)

(iv) \((\text{rng}(b_3) - \text{rng}(b_2)) \cap \text{rng}(e_7) = \emptyset \) by (iii)

(v) \(\text{rng}(e_2) \cap \text{rng}(e_7) = \) \(\text{rng}(b_3) \cap \text{rng}(e_7) \) by (2) and (iii)

(vi) \(\text{rng}(e_7) \supseteq \text{rng}(b_3 \circ e_11) \) by (i) and commutativity of diagram above

(vii) \(\text{rng}(e_7) \cap \text{rng}(b_3) \supseteq \text{rng}(b_3 \circ e_11) \) by (vi) and (vii)

(viii) \(\text{rng}(e_2) \cap \text{rng}(e_7) \supseteq \text{rng}(b_3 \circ e_11) \) by (v) and (viii)

(ix) \(\text{rng}(b_3 \circ b_11) \supseteq \text{rng}(b_3 \circ e_11) \) by (ix) and \(e_2 = b_3 \circ b_11 \)

\(\text{rng}(b_3 \circ b_11) \supseteq \text{rng}(e_7) \) by injectivity of \(b_3 \)

By symmetry, (xi) \(\text{rng}(d_{11}) \supseteq \text{rng}(e_12) \). By (x) and (xi), we have that \(\exists g : X_2 \to Mx_{\psi_m} \) and \(\exists f : X_2 \to Mn_{\psi_k} \), defined as follows:

\[
\forall x \in X_2 \cdot g(x) = y, \text{ where } b_{11}(y) = e_{11}(x) \\
\forall x \in X_2 \cdot f(x) = y, \text{ where } d_{11}(y) = e_{12}(x)
\]

\(\square \)

Lemma 3.3 Let us consider diagram below, where \((1+2)\) is a pushout and \((2)\) and \((3+4)\) are pullbacks. There exists \(y_2 : X_2 \to X_2' \), such that \(i_5 \circ y_2 = b \circ g \) and \(i_4 \circ y_2 = d \circ f \).
Proof:
\[i_1 : T_{\varphi_1} \rightarrow T_{\varphi_1} \] and \[m_2 : T_{\varphi_1} \rightarrow T_0 \] are uniquely determined by universal property of pushout \((1 + 2)\). Moreover, \(m_1 : X_2 \rightarrow X_0 \) is uniquely determined by universal property of pullback \((2)\).

By commutativity of diagram above, we have:

\[
e_{i_0} \circ e_3 \circ f = e_9 \circ e_2 \circ g \\
e_{i_0} \circ d_0 \circ d' \circ d \circ f = e_9 \circ b_2 \circ b' \circ b \circ g \\
i_1 \circ i_3 \circ b' \circ b \circ g = i_1 \circ i_3 \circ b' \circ b \circ g \\
i_2 \circ d' \circ d \circ f = i_3 \circ b' \circ b \circ g \quad \text{by injectivity of } i_1
\]

By (i) and commutativity of diagram above, we have:

\[
m_2 \circ i_2 \circ d' \circ d \circ f = m_2 \circ i_3 \circ b' \circ b \circ g \\
e_{14} \circ d' \circ d \circ f = e_{13} \circ b' \circ b \circ g
\]

Since \((3 + 4)\) is a pullback and by (ii), we have that \(y_2 : X_2 \rightarrow X_2'\) is uniquely determined by universal property of \((3 + 4)\), such that \(i_5 \circ y_2 = b \circ g\) and \(i_4 \circ y_2 = d \circ f\).

\[\square \]

Proposition 3.6 (composition and identity for T-GTS implementation morphisms)

Given a T-GTS \(\mathcal{Z}\), let \(\hat{\mathcal{Z}}\) be as in Definition 3.19. Then, the properties below hold.

1. Given implementation morphisms \(f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_2\) and \(g : \mathcal{Z}_2 \rightarrow \mathcal{Z}_3\), let their composition \(g \circ f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_3\) be defined by the T-GTS morphism \(\langle h_T, h_P \rangle : \hat{g} \circ f : \mathcal{Z}_1 \rightarrow \hat{\mathcal{Z}}_3\). Then the composition is well defined and it is associative.

2. For each T-GTS \(\mathcal{Z}\), let \(id_\mathcal{Z} = \langle id_{\mathcal{Z}_T}, id_{\mathcal{Z}_P} \rangle : \mathcal{Z} \rightarrow \hat{\mathcal{Z}}\) be defined as
 - the type graph component \(id_{\mathcal{Z}_T}\) is the identity;
 - each production \(p\) is mapped by \(id_{\mathcal{Z}_P}\) to the abstract process \([\phi_{id_P}]_w\);

Then \(id_\mathcal{Z}\) is well-defined and it is the identity on \(\mathcal{Z}\).

Proof:

1. Since we proved, by Proposition 3.5, that \(\hat{g}\) maps each wut-process of \(\mathcal{Z}_2\) into a wut-process of \(\mathcal{Z}_3\) and it is well-defined, then the composition \(\hat{g} \circ f\) is well defined. It remains to prove that the composition is associative. Let \(f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_2\), \(g : \mathcal{Z}_2 \rightarrow \mathcal{Z}_3\) and \(h : \mathcal{Z}_3 \rightarrow \mathcal{Z}_4\) be implementation morphism. Then we must prove:

\[
(h \circ g) \circ f = h \circ (g \circ f)
\]

(a) \((h_T \circ g_T) \circ f_T = h_T \circ (g_T \circ f_T)\): by associativity of partial graph morphisms.

(b) \(\hat{h}_T \circ g_P \circ f_P = \hat{h}_T \circ \hat{(g_P \circ f_P)} : \) as depicted in Figure 3.16, for each production \(p \in P_1 \cdot f_P(p) = [\phi]_w, g_P([\phi]_w) = [\varphi_1]_w\text{ and } \hat{h}_P([\varphi_1]_w) = [\psi_{1mkz}]_w\). Moreover, for all \(q_i \in P_2 \cdot g_P(q_i) = [\varphi]_w, h_P([\varphi]_w) = [\psi_{1mkz}]_w, \hat{h}_P([\varphi]_w) = [\psi_{1mkz}]_w\) and \((\hat{h}_P \circ g_P)([\phi]_w) = [\psi_{1mkz}]_w\). By definition of composition, the sets of productions of \([\psi_{1mkz}]_w\) and \([\psi_{1mkz}]_w\) contain the same productions (in Figure 3.16: the union of productions in \([\psi_1]_w, ..., [\psi_{mkz}]_w, ..., [\psi_k]_w, ..., [\psi_2]_w\). Then it remains to prove that \(T_{\psi_{1mkz}} \Rightarrow T_{\psi_{1mkz}}\) :
i. \(\exists u : T_{\psi_{\text{univ}}} \rightarrow T_{\psi_{\text{univ}}} \), such that the following diagram commutes, i.e., \(c_8 \circ c'_1 = u \circ c_1 \), \(c_8 \circ c'_2 = u \circ c_2 \), \(c_8 \circ c'_3 = u \circ c_3 \), \(c_9 \circ c'_5 = u \circ c_5 \), \(c_9 \circ c'_6 = u \circ c_6 \) and \(c_9 \circ c'_7 = u \circ c_7 \).

Since \(T_{\psi_{\text{univ}}} \) is the colimit of diagram depicted in blue in diagram above, \(u \) is determined by universal property of this colimit. Then we must prove that exists morphisms \(y_1 : X_1 \rightarrow X_1', \ y_2 : X_2 \rightarrow X_2' \) and \(y_3 : X_3 \rightarrow X_3' \) such that the diagram commutes.

- \(\exists y_1 : X_1 \rightarrow X_1' \cdot p'_1 \circ y_1 = p_1 \land p'_2 \circ y_1 = p_2 \) and \(\exists y_3 : X_3 \rightarrow X_3' \cdot p'_3 \circ y_3 = p_5 \land p'_6 \circ y_3 = p_6 \). Consider the commuting diagram below, where (1) is a pullback and (a) \(p_1 = p_{12} \circ p_{11} \), (b) \(p'_1 = p_{12} \circ p'_{11} \), (c) \(p_2 = p_{22} \circ p_{21} \), (d) \(p'_2 = p_{22} \circ p'_{21} \).

Since \(a'_1 \circ p_{21} = a'_3 \circ p_{11} \) (by commutativity of diagram above), then the morphism \(y_1 : X_1 \rightarrow X_1' \) is determined by the universal property of pullback (1), such that \(p'_{11} \circ y_1 = p_{11} \) and \(p'_{21} \circ y_1 = p_{21} \). Then \(p'_2 \circ y_1 = p_{22} \circ p_{21} \circ y_1 = p_{22} \circ p_{21} = p_2 \) and \(p'_1 \circ y_1 = p_{12} \circ p'_{11} \circ y_1 = p_{12} \circ p_{11} = p_1 \). Hence \(y_3 : X_3 \rightarrow X_3' \) is determined by symmetry.
• \(\exists! y_2 : X_2 \to X'_2 \cdot p'_3 \circ y_2 = p_3 \land p'_4 \circ y_2 = p_4\).

By the commuting diagram above, where \(p_3 = b_5 \circ e_{11}\), \(p_4 = d_5 \circ e_{12}\), \(p'_3 = b_{15} \circ i_5\) and \(p'_4 = d_{15} \circ i_4\), we have \(i_5 \circ y_2 = b \circ b\) and \(i_4 \circ y_2 = d \circ f\). Moreover, by commutativity of diagram:

- \(c'_5 \circ b_5 \circ e_{11} = c'_5 \circ b_5 \circ b_{11} \circ g = b_{15} \circ b \circ g = b_{15} \circ i_5 \circ y_2.\)
- \(c'_5 \circ d_5 \circ e_{12} = c'_5 \circ d_5 \circ d_{11} \circ f = d_{15} \circ d \circ f = d_{15} \circ i_4 \circ y_2.\)

But, in order to construct the diagram above, we must prove:

A. There exist \(b : Mx_{\psi_m} \to \psi_{1m}\), \(b_{11} : Mx_{\psi_m} \to \psi_m\) and \(b_{15} : \psi_{1m} \to T_{\psi_{1m}}\), such that \(c'_5 \circ b_5 \circ b_{11} = b_{15} \circ b\). It holds by Lemma 3.1. By symmetry, we have that there exist \(d : Mn_{\psi_k} \to \psi_{kz}\), \(d_{11} : Mn_{\psi_k} \to \psi_k\) and \(d_{15} : \psi_{kz} \to T_{\psi_{kz}}\), such that \(c'_5 \circ d_5 \circ d_{11} = d_{15} \circ d\); and there exists \(d' : \psi_{kz} \to \psi_m\), such that \(d' \circ d = d_{10}\).

B. There exists \(g : X_2 \to Mx_{\psi_m}\), such that \(b_{11} \circ g = e_{11}\); and there exists \(f : X_2 \to Mn_{\psi_k}\), such that \(d_{11} \circ f = e_{12}\). It holds by Lemma 3.2.

C. There exists \(y_2 : X_2 \to X'_2\), such that \(i_5 \circ y_2 = b \circ g\) and \(i_4 \circ y_2 = d \circ f\). It holds by Lemma 3.3.

ii. \(\exists! v : T_{\psi_{1m}} \to T_{\psi_{1m}kz}\), such that \(v \circ c_8 = q_1\) and \(v \circ c_9 = q_2\), as depicted in diagram below.
iii. $v \circ u = id_{T_{v_{1m}}}$ and $u \circ v = id_{T_{v_{1m}}'}$.

By i. and ii., we have that:

\[
\begin{align*}
 v \circ c_8 \circ c'_1 &= q_1 \circ c'_1 \\
 v \circ u \circ c_1 &= q_1 \circ c'_1 \\
 v \circ u \circ c_1 &= c_1 \quad \text{by ii. (a)} \\
 (a) \quad v \circ u \circ c_1 &= id_{T_{v_{1m}}} \circ c_1 \quad \text{by definition of identity} \\
 v \circ c_8 \circ c'_3 &= q_1 \circ c'_3 \\
 v \circ u \circ c_3 &= q_1 \circ c'_3 \\
 v \circ u \circ c_3 &= c_3 \quad \text{by ii. (b)} \\
 (b) \quad v \circ u \circ c_3 &= id_{T_{v_{1m}}} \circ c_3 \quad \text{by definition of identity} \\
 v \circ c_9 \circ c'_5 &= q_2 \circ c'_5 \\
 v \circ u \circ c_5 &= q_2 \circ c'_5 \\
 v \circ u \circ c_5 &= c_5 \quad \text{by ii. (a')} \\
 (c) \quad v \circ u \circ c_5 &= id_{T_{v_{1m}}} \circ c_5 \quad \text{by definition of identity} \\
 v \circ c_9 \circ c'_7 &= q_2 \circ c'_7 \\
 v \circ u \circ c_7 &= q_2 \circ c'_7 \\
 v \circ u \circ c_7 &= c_7 \quad \text{by ii. (b')} \\
 (d) \quad v \circ u \circ c_7 &= id_{T_{v_{1m}}} \circ c_7 \quad \text{by definition of identity}
\end{align*}
\]

By (a)-(d) and since c_1, c_3, c_5 and c_7 are jointly surjective, then

\[
(a') \quad v \circ u = id_{T_{v_{1m}}}.
\]

Moreover, by i., we have:

\[
\begin{align*}
 c_8 \circ c'_1 &= u \circ c_1 \\
 &= u \circ q_1 \circ c'_1 \quad \text{by ii.(a)} \\
 &= u \circ v \circ c_8 \circ c'_1 \quad \text{by ii.} \\
 (f) \quad id_{T_{v_{1m}}} \circ c_8 \circ c'_1 &= u \circ v \circ c_8 \circ c'_1 \quad \text{by definition of identity}\n c_8 \circ c'_3 &= u \circ c_3 \\
 &= u \circ q_1 \circ c'_3 \quad \text{by ii.(b)} \\
 &= u \circ v \circ c_8 \circ c'_3 \quad \text{by ii.} \\
 (g) \quad id_{T_{v_{1m}}} \circ c_8 \circ c'_3 &= u \circ v \circ c_8 \circ c'_3 \quad \text{by definition of identity}\n c_9 \circ c'_5 &= u \circ c_5 \\
 &= u \circ q_2 \circ c'_5 \quad \text{by ii.(a')} \\
 &= u \circ v \circ c_9 \circ c'_5 \quad \text{by ii.} \\
 (h) \quad id_{T_{v_{1m}}} \circ c_9 \circ c'_5 &= u \circ v \circ c_9 \circ c'_5 \quad \text{by definition of identity}
\end{align*}
\]
2. (a) \(id_Z \) is well-defined. Since \(id_Z \) is an identity, then it is total and preserves stable and unstable items. Moreover, \(id_Z \) maps each production of \(Z \) into a wut-process of \(Z \), it remains to prove that, for all production \(p \in P \), \(id_Z(p) = [\phi id_p]_w \), there are three morphisms from \(\Pi Z([\phi id_p]_w) \) to \(L_p \xleftarrow{} K_p \xrightarrow{} R_p \). Since \([\phi id_p]_w \) is the wut-process containing only \(p \) as production, its underlying span is isomorphic to \(L_p \xleftarrow{} K_p \xrightarrow{} R_p \), then the required morphisms are given by any triple of isomorphisms mapping the span \(\Pi Z([\phi id_p]_w) \) to \(L_p \xleftarrow{} K_p \xrightarrow{} R_p \) and making the two resulting squares commute.

(b) \(id_Z \) is the identity. For each implementation morphism \(f : Z_1 \to Z \) and \(g : Z \to Z_2 \), then:

i. \(id_Z \circ f = f \)

- \(id_Z \circ f_T = f_T \) by definition of identity of graphs.
- \(\hat{id}_Z \circ f_P = f_P \). Since each production \(p \) of \(Z \) is mapped into a wut-processes which contains \(p \) as the unique production, for all \([\phi]_w \in \text{wutProc}(Z) \), \(\hat{id}_Z([\phi]_w) = [\phi]_w \). This holds by definition of \(\hat{id}_Z P \):
 - Let us consider \(P_\phi \) as the set of productions of \(\hat{id}_Z P([\phi]_w) \). Then \(P_\phi \) is composed of all productions of the wut-processes associated with productions of \([\phi]_w \). Since \(id_Z P \) associates each production to a process containing it as unique production, then \(P_\phi \) is the same set of productions of \([\phi]_w \).
 - By definitions of graph process (type graph is a colimit of associated derivation) and of wut-process (all items in minimal graph are used), we have that the type graph of \([\phi]_w \) is the colimit of components of all its productions. Let us consider \(T_\phi \) the type graph of \(\hat{id}_Z P([\phi]_w) \), then \(T_\phi \) is obtained as colimit of type graphs of all wut-processes associated with the productions of \([\phi]_w \). As each one of these wut-processes contains only one production, its the type graph is the colimit of the production components. Then, \(T_\phi \) is the colimit of components of all productions in \(P_\phi \), and therefore \(T_\phi \) is the same type graph of \([\phi]_w \).

ii. \(g \circ id_Z = g \)

- \(g_T \circ id_Z T = g_T \) by definition of identity of graphs.
- \(\hat{g}_P \circ id_Z P = g_P \). By definition of composition, for all \([\phi id_p]_w \in \text{wutProc}(Z) \) we have \(\hat{g}_P([\phi id_p]_w) = g_P(p) \). Then,
 \[\forall p \in P \cdot \hat{g}_P(id_Z(p)) = \hat{g}_P([\phi id_p]_w) = g_P(p). \]

Then, by i. and ii. we can conclude that \(id_Z \) is the identity on \(Z \).

The Proposition 3.6 allows to introduce a category with implementation morphisms.
Definition 3.20 (category TGTS^{imp}) We denote by TGTS^{imp} the category having T-GTSs as objects and T-GTS implementation morphisms as arrows.

3.6 Adjunction between GTS and TGTS^{imp}

A T-GTS can be described in a higher level of abstraction, where the unobservable items are hidden and each transaction is performed in a single atomic step. This abstract system is given by a GTS obtained as described in Definition 3.18.

The main result of this chapter is that the abstract GTS associated to a T-GTS has the same behaviour of the original T-GTS, from the point of view of an external observer. This is proven by using a universal construction in the categorical setting: an adjunction between the categories GTS and TGTS^{imp}. This construction is given by two functors: the abstraction functor $\text{A}(_): \text{TGTS}^{\text{imp}} \to \text{GTS}$, that maps each T-GTS into its abstract counterpart; and the functor $\text{I}(_): \text{GTS} \to \text{TGTS}^{\text{imp}}$, that allows to see a GTS as a T-GTS whose items are all stable.

Using these functors, we can relate an abstract system to its concrete counterpart through an implementation morphism, mapping each production (of the source) into the transaction (of the target) that originated it – remember that the productions of the abstract systems are all transactions of the concrete one. Since all productions of the abstract system are completely stable, they are also the transactions of this system. Thus, we have a one-to-one relation between the transactions of the abstract and the concrete systems.

Theorem 3.1 (Universality of abstraction) The functor $\text{A}(_): \text{TGTS}^{\text{imp}} \to \text{GTS}$, that maps every T-GTS \mathcal{Z} into its abstract GTS (see Definition 3.9), has a left adjoint $\text{I}(_): \text{GTS} \to \text{TGTS}^{\text{imp}}$, which can be seen as the inclusion of GTS into TGTS^{imp}.

Proof: This proof can be divided in three parts:

1. Definition of the functor $\text{I}(_): \text{GTS} \to \text{TGTS}^{\text{imp}}$:
 - on objects: let $\mathcal{G} = \langle T, P, \pi \rangle$ be a GTS, then $\text{I}(\mathcal{G}) = \langle \langle T, P, \pi \rangle, T \rangle$;
 - on morphisms: for any $f : \mathcal{G}_1 \to \mathcal{G}_2$, $\text{I}(f) : \mathcal{I}(\mathcal{G}_1) \to \mathcal{I}(\mathcal{G}_2) = \langle f_T, f_P \rangle$, where $\forall p \in P \cdot f_P(p) = [\phi_{\text{id}_p}]_w$, such that $f_P(p) = q$.

2. Definition of the functor $\text{A}(_): \text{TGTS}^{\text{imp}} \to \text{GTS}$:
 - on objects: let \mathcal{Z} be a T-GTS, then $\mathcal{A}(\mathcal{Z}) = \mathcal{A}_\mathcal{Z} = \langle T_s, \text{wtProc}(\mathcal{Z}), \Pi_\mathcal{Z} \rangle$;
 - on morphisms: for any $f : \mathcal{Z}_1 \to \mathcal{Z}_2$, $\mathcal{A}(f) : \mathcal{A}(\mathcal{Z}_1) \to \mathcal{A}(\mathcal{Z}_2) = \langle h_T, h_P \rangle$, where:
 - $h_T = (f_{T_1}|_{\mathcal{V}_{T_1,s}}, f_{T_E}|_{E_{T_1,s}})$;
 - $\forall[\phi]_w \in \text{wtProc}(\mathcal{Z}_1), h_P([\phi]_w) = \hat{f}_P([\phi]_w)$.

3. To prove that $\text{I}(_)$ is left-adjoint to $\mathcal{A}(_)$ (as depicted in Figure 3.17) we have to show
 \[
 \forall \mathcal{G} \in \text{GTS}, \forall \mathcal{Z} \in \text{TGTS}^{\text{imp}}, \forall f : \text{I}(\mathcal{G}) \to \mathcal{Z}. \exists! h : \mathcal{G} \to \mathcal{A}(\mathcal{Z}). \epsilon_\mathcal{Z} \circ \text{I}(h) = f
 \]

 For each T-GTS \mathcal{Z}, we define the component at \mathcal{Z} of the counit $\epsilon_\mathcal{Z} : \text{I}(\mathcal{A}(\mathcal{Z})) \to \mathcal{Z}$. This is an implementation morphism, thus a T-GTS morphism $\epsilon_\mathcal{Z} : \text{I}(\mathcal{A}(\mathcal{Z})) \to \mathcal{Z}$ is defined as follows:
 - $\epsilon_{\mathcal{Z}T} = T_s \hookrightarrow T$;
It remains to show that given a $\text{GTS} \ G$ and a $\text{T-GTS} \ Z$, for each implementation morphism $f: \mathcal{I}(G) \to Z$, there is a unique $h: G \to \mathcal{A}(Z)$ such that $\epsilon_Z \circ \mathcal{I}(h) = f$.

(a) Definition of (GTS morphism) $h: G \to \mathcal{A}(Z)$.

- $h_T = f_T$ (since f_T maps the type graph of G into stable items of Z);
- $\forall p \in P, h_P(p) = f_P(p)$ (since productions in $\mathcal{A}(Z)$ are exactly the wt-processes of Z and f maps each production of G to a wt-process of Z).

(b) $\epsilon_Z \circ \mathcal{I}(h) = f$.

- $\epsilon_Z \circ \mathcal{I}(h_T) = f_T$.

By definition, $\epsilon_Z = \iota_{T_Z}$, and $h_T = f_T$. Since $\mathcal{I}(h_T)$ is the restriction of h_T to stable items and f_T relates only stable items (the type graph of $\mathcal{I}(G)$ is totally stable), then $\mathcal{I}(h_T) = f_T$. Therefore, $\epsilon_Z \circ \mathcal{I}(h_T) = \iota_{T_Z} \circ f_T$. Since ι_{T_Z} is an inclusion $T_Z \hookrightarrow T_Z$ and f_T relates only stable items, then $\iota_{T_Z} \circ f_T = f_T$. Therefore $\epsilon_Z \circ \mathcal{I}(h_T) = f_T$.

- $\bar{\epsilon}_Z P \circ \mathcal{I}(h_P) = f_P$.

Since all productions of $\mathcal{I}(\mathcal{A}(Z))$ are totally stable (they are all transactions of Z), then $\mathcal{I}(\mathcal{A}(Z))$ have one wt-processes $[\phi_{id_P}]_w$ for each production $[\phi]_w$ (see the observation before Proposition 3.5). Moreover, by definition of $\bar{\epsilon}_Z P$, we have $\bar{\epsilon}_Z P([\phi_{id_P}]_w) = [\phi]_w$. By definition, $h_P = f_P$ and $\mathcal{I}(h_P)$ maps each production $p \in P_G$ to wt-process $[\phi_{id_P(p)}]_w$, then $\forall p \in P_G \cdot \epsilon_Z P(\mathcal{I}(h_P)(p)) = \epsilon_Z P([\phi_{id_P(p)}]_w) = f_P(p)$.

(c) h is unique. Let us suppose that exists $u = (u_T, u_P) \neq h$, such that $\epsilon_Z \circ \mathcal{I}(u) = f$:

- Since u_T (it is a GTS morphism) relates only stable items and by definition $\mathcal{I}(u_T)$ is the restriction of u_T to stable items, then $\mathcal{I}(u_T) = u_T$. Since ϵ_Z is the inclusion $T_Z \hookrightarrow T_Z$ and u_T relates only items in T_Z, then $\epsilon_Z \circ \mathcal{I}(u_T) = u_T = f_T$. Since $h_T = f_T$, then $u_T = h_T$;

- By definition of $\mathcal{I}(_)$, $\forall p \in P_G \cdot \mathcal{I}(u_P)(p) = [\phi_{id_P(p)}]_w$, and, by definition of $\bar{\epsilon}_Z P$, we have $\bar{\epsilon}_Z P([\phi_{id_P}]_w) = [\phi]_w$. Therefore, $\forall p \in P_G \cdot \epsilon_Z P(\mathcal{I}(u_P)(p)) = \epsilon_Z P([\phi_{id_P(p)}]_w) = u_P(p) = f_P(p)$. Since $\forall p \in P_G \cdot h_P(p) = f_P(p)$, then $\forall p \in P_G, u_P(p) = h_P(p)$.

\(\square\)
Proving that \(\mathcal{A}(_\,) \) is the right adjoint of \(\mathcal{I}(_\,) \) we have that the abstract system as defined in Definition 3.18 is the best approximation of a \(T\text{-GTS} \) when the unstable items are forgotten. Moreover, if we consider \(T\text{-GTS}s \) from an abstract point of view, a \(T\text{-GTS} \) \(\mathcal{Z} \) has the same behaviour of \(\mathcal{A}(\mathcal{Z}) \), i.e., the transactions of both systems are isomorphic.
4 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS WITH DEPENDENCY RELATION

In this section, we present an extension of T-GTSSs to include a dependency relation in the productions. This dependency gives us an extra information about the relationship between the deleted and created elements in each production. The dependency information can be used to determine implementations (by transactions) of productions, restricting the set of possible valid implementations. A first approach was published in (FOSS; MACHADO; RIBEIRO, 2007).

When a production is applied, we can observe a total relation between the created elements and the consumed/preserved ones, i.e., all elements are created because of the existence of all the elements (consumed or preserved) in the left-hand side of the production. However, if we want to associate to a production an implementation composed by many productions applied in a specific way, we should be able to specify the relation between the elements of left- and right-hand sides in a more sophisticated way. For example, if we consider the production STOP depicted in Figure 3.1, we can have different transactions implementing it. In Figure 4.1, two implementations for production STOP are shown. In first transaction (at the top), when the pump finishes supplying gas, it is freed before operator to verify the charge of supplied gas. Thus, Free flag of pump and Charge message depend on both Busy flag of pump and Finish message. In the second transaction (at the bottom), when the pump finishes supplying gas, the charge of supplied gas can be verified even if the pump is not free. Thus, Charge message depends only on Finish message and Free flag of pump depends on both Finish message and Busy flag. Both transactions implement STOP production, since their minimal and maximal graphs are equal to left- and right-hand sides of this production, respectively, but the dependencies of Free and Charge in their maximal graphs are different. However, if we want to specify that only one of them is a desirable implementation of the STOP production, we need a mechanism to describe these different dependencies. Therefore, we will add to each production a relation describing the desirable dependency between its created and consumed/preserved items that must be considered when the production is implemented.

Since we want to use productions with dependencies, called dep-productions, to model transactions in an abstract way, the dependency relation associated to a production must satisfy some restrictions, such that a transaction implementing this production exists, i.e., the transaction must produce the same observable effect, but in more steps and possibly using unobservable items. Therefore, the dependency relation of a production must allow to decompose it in a set of productions, which together constitute a transaction. The first two restrictions of the next definition assure us that this set of productions exists: (1) the
left- and right-hand sides and the interface of the productions are graphs, i.e., all edges in these graphs have the source and the target vertices; (2) all productions are consuming, i.e., all of them consume something. The next restriction guarantees that these productions compose a transaction: (3) all observable created items cannot be used (deleted or preserved) in the transaction. In order to define the latter restriction, we need to get the (weakly) connected component (DIESTEL, 2005) of the graph created by a production (i.e. the greatest subgraph in the right-hand side of the production containing only created elements). These components must be created in the same time, otherwise it would be necessary to use the vertices created within the transaction to create the edges.

We define $C(G)$ as the set of connected components of G (disregarding the directions of the edges).

Definition 4.1 (dependency relation) Given a T-typed production $p : L_p \xymatrix{ . \ar[r]^L & K_p \ar[r]^T & R_p}$. A dependency relation \prec_p for p is a relation over $L_p \times (R_p - K_p)$, such that

1. each created item b depending on a preserved or consumed edge must depend on its target and source vertices, i.e.,

 $\forall e \in E_{L_p} \cdot \forall b \in R_p \cdot e \prec_p b \Rightarrow t^{L_p}(e) \prec_p b \land s^{L_p}(e) \prec_p b$

2. (a) all created items that depends on a preserved one must depend on a deleted item as well, i.e.,

 $\forall b \in R_p \cdot \forall a \in K_p \cdot a \prec_p b \Rightarrow \exists a' \in (L_p - K_p) \land a' \prec_p b$

Figure 4.1: Transactions implementing STOP production depicted in Figure 3.1.
(b) if there exists a preserved item that is not related to anything, then there exists a deleted item that is not related to anything, i.e.,

\[\exists a \in K_p \cdot \forall b \in R_p \cdot a \not\prec_p b \Rightarrow \exists a' \in (L_p - K_p) \cdot \forall b \in R_p \cdot a' \not\prec_p b \]

3. all the items of a connected component of the graph created by the production (all created items of the production, excluding the created edges having either source or target preserved), must have the same dependency, i.e.,

\[\forall G \in C(R'_p) \cdot \forall b, b' \in G \land a \in L_p \cdot a \not\prec_p b \Leftrightarrow a \not\prec_p b' \]

where \(R'_p = (V_{R_p}, E_{R_p}; s_{R_p}, t_{R_p}) \),
\[V_{R'_p} = (V_{R_p} - V_{K_p}) \cup \{ v | v \in V_{R_p} \land \exists e \in E_{R_p} \cdot (s_{R_p}(e) = v \lor t_{R_p}(e) = v) \} \],
\[E_{R'_p} = \{ e | e \in (E_{R_p} - E_{K_p}) \land (s_{R_p}(e) \not\in V_{K_p} \lor t_{R_p}(e) \not\in V_{K_p}) \} \] and
\[\forall e \in E_{R'_p} \cdot s_{R_p}(e) = s_{R_p}(e) \land t_{R_p}(e) = t_{R_p}(e) \]

By the three conditions of definition above, we assure that it is possible to have a transaction implementing a production with an associated dependency relation, where this relation must be preserved and reflected, i.e., the relation is the same in both production and transaction. Considering a production \(p \) with a dependency relation, condition 1, requires that all elements which depend on an edge, depend on their source and target vertices, too. This assures that we can define productions that consume/preserve edges of \(p \) using their source and target vertices. Condition 2 \((a \text{ and } b)\), assures that the productions in the transaction are all consuming, by requiring that for all preserved items, there exists one deleted item with the same dependency (avoiding productions that preserve but do not consume something). Condition 3 assures that no created observable item is used in the transaction where it was created. This is done by requiring that all items in each connected component created by a production have the same dependency, which forces them to be all created at the same time (in the same production) (see Remark 3.1). This restriction avoids the need to read (preserve) vertices in order to create edges over them.

Definition 4.2 *(dep-production)* A dep-production is a tuple \(\langle L_p \leftarrow K_p \rightarrow R_p, \prec_p \rangle \), where \(L_p \leftarrow K_p \rightarrow R_p \) is the span of production \(p \) and \(\prec_p \) is a dependency relation for \(p \). The class of all \(T \)-typed dep-production is denoted by \(T\cdot\text{DProd} \).

Example 4.1 *(dep-production)* If we consider that the STOP production (Figure 3.1) can be partitioned into more steps, as depicted at the bottom of Figure 4.1, we will obtain the dep-production in Figure 4.2. The dependency is defined by the letters \(x, y, z, b, d \) and \(h \), relating each created element (in the right-hand side) with the set of all consumed or read elements (in the left-hand side) on which it depends.

![Figure 4.2: A dep-production.](image)

Then the corresponding dependency relation associated to the STOP production is:
where the Free attribute was created because both Busy and Finish are consumed, and the Charge message was created only because the Finish message was consumed; the preserved (or read) elements are Pump, Operator, Customer and op (for both Free and Charge).

A T-GTS with dep-productions is defined as a T-GTS where the \(\pi \) function maps each production name into a dep-production.

Definition 4.3 (GTS and T-GTS with dependency relation) A graph transformation system with dependency relation (d-GTS) is a GTS \(\langle T, P, \pi \rangle \), where \(\pi \) is a total function mapping production names to dep-productions in T-DProd.

A transactional graph transformation system with dependency relation (dT-GTS) is a T-GTS \(\langle \langle T, P, \pi \rangle, T_s \rangle \), where \(\langle T, P, \pi \rangle \) is a d-GTS.

Example 4.2 (T-GTS with dependency relation) As an example of dT-GTS, we can consider the gas station system of Example 3.1 adding dependency relations to productions. The resulting dT-GTS DepPumpOper is shown in Figure 4.3, where all of them, but STOP, have total dependencies, i.e., all created elements depend on all deleted and preserved ones. The type graph is the same shown in Figure 3.1. The dependencies restrict implementations of these productions: for example, STOP can be implemented by transaction \(\phi_2 \) in Figure 4.1 (at the bottom), but not by \(\phi_1 \) in the same figure. The choice of a total dependency, for example, for the SERVE production, establishes that the Busy flag must be created only if both Supply message and Free flag are consumed, even if this consumption and creation are done in several small steps.

The dependency relation of productions does not interfere in the semantics of a T-GTS. The match is not restricted by dependency, it only gives an extra syntactic information about possible refinement or implementation. Therefore, the semantics of dT-GTSS are given by direct derivations and derivations like in Definition 2.4, substituting productions by dep-productions.

Definition 4.4 (direct derivations and derivations of dT-GTSS) Given a T-typed graph \(G \), a T-typed graph dep-production \(q = (L_q \xleftarrow{l} K_q \xrightarrow{r} R_q, \prec_q) \) and a match (i.e. an injective T-typed graph morphism) \(m : L_q \rightarrow G \), a direct derivation from \(G \) to \(H \) using \(q \) (based on \(m \)) exists if and only if the diagram below can be constructed, where both squares are pushouts in T-Graph. In this case the direct derivation is denoted by \(\delta : G \xrightarrow{q,m} H \) or \(\delta : G \xrightarrow{q} H \) if we do not make explicit \(m \).
Given a d-GTS $Z = \langle \langle T, P, \pi, T_s \rangle, T_s \rangle$, a derivation $\rho : G_0^T \xRightarrow{p_1,m_1} G_1^T \xRightarrow{p_2,m_2} G_2^T \cdots$ of Z is a finite or infinite of direct derivations $\delta_i : G_i^T \xRightarrow{p_i,m_i} H_i^T$, where $G_i^T = \equiv H_i^T$ and $i \geq 0$. If a derivation $\rho : G_0^T \xRightarrow{p_1,m_1} \cdots \xRightarrow{p_n,m_n} G_n^T$ is finite we call G_0^T and G_n^T of initial and final graphs, respectively. The semantics of Z is the class of all derivations in Z, denoted by $d$$\text{Der}(Z)$.

4.1 Categories $d$$GTS$ and $d$$TGTS$

If we want to relate two d-$GTSS$ we need to consider the dependency relation associated to their productions. Therefore, the production mapping must respect this relation, i.e., a production can be mapped only into another if the target one has the same dependency relation between the translated elements. This restriction reduces the possible relationships between d-$GTSS$, with respect to $GTSS$, because we impose an extra restriction, excluding same relationships valid for $GTSS$.

Definition 4.5 (d-GTS morphism) Given two d-$GTSS$ G_1 and G_2. A d-GTS morphism $f : G_1 \rightarrow G_2$ is a $GTSS$ morphism between G_1 and G_2 such that the production mapping respects dependency relations, i.e., for all $p_1 \in P_1$ and for each concrete choice of $f_i(p_1)$, with
\(f_P(p_1) = p_2 \), we have that: \(\forall a_1, b_1 \in P_1 \cdot \forall a_2, b_2 \in P_2 \cdot (f^L_i(p_1)(a_2) = a_1 \wedge f^R_i(p_1)(b_2) = b_1) \Rightarrow ((a_1 \triangleleft_p b_1) \Leftrightarrow (a_2 \triangleleft_{p_2} b_2)) \).

Proposition 4.1 \(d\)-GTSSs and \(d\)-GTS morphisms form a category, denoted by \(d\)GTS, in which composition and identities are defined as in GTS.

Proof:

1. **Composition is well-defined:** Let \(f : G_1 \rightarrow G_2 \) and \(g : G_2 \rightarrow G_3 \) be \(d\)-GTSS morphisms and \(g \circ f \) be their composition. By Proposition 2.2, we have that \(g \circ f \) is a GTSS morphism, then it remains to prove that \(g_P \circ f_P \) respects dependency relations, i.e., for all \(p_1 \in P_1 \) and for each concrete choice of \(f_i(p_1) \circ g_i(p_2) \), with \(f_P(p_1) = p_2 \) and \(g_P(p_2) = p_3 \), we have that: \(\forall (a_1 \triangleleft_{p_1} b_1) \cdot \forall (a_3 \triangleleft_{p_3} b_3) \cdot f^L_i(p_1)(g^L_i(p_2)(a_3)) = a_1 \wedge f^R_i(p_1)(g^R_i(p_2)(b_3)) = b_1 \cdot (a_1 \triangleleft_{p_1} b_1) \Leftrightarrow (a_2 \triangleleft_{p_2} b_2) \).

 By definition the following statements hold:

 \[
 \begin{align*}
 (a) & \quad \forall (a_1 \triangleleft_{p_1} b_1) \cdot \forall (a_2 \triangleleft_{p_2} b_2) \cdot f^L_i(p_1)(a_2) = a_1 \wedge f^R_i(p_1)(b_2) = b_1 \cdot (a_1 \triangleleft_{p_1} b_1) \Leftrightarrow (a_2 \triangleleft_{p_2} b_2); \\
 (b) & \quad \forall (a_2 \triangleleft_{p_2} b_2) \cdot \forall (a_3 \triangleleft_{p_3} b_3) \cdot g^L_i(p_2)(a_3) = a_2 \wedge g^R_i(p_2)(b_3) = b_2 \cdot (a_2 \triangleleft_{p_2} b_2) \Leftrightarrow (a_3 \triangleleft_{p_3} b_3).
 \end{align*}
 \]

 By (a) and (b), we have that:

 \[
 \forall (a_1 \triangleleft_{p_1} b_1) \cdot \forall (a_2 \triangleleft_{p_2} b_2) \cdot \forall (a_3 \triangleleft_{p_3} b_3),
 \]

 \[
 f^L_i(p_1)(a_2) = a_1 \wedge f^R_i(p_1)(b_2) = b_1 \wedge g^R_i(p_2)(b_3) = b_2 \vee (a_1 \triangleleft_{p_1} b_1) \Leftrightarrow (a_2 \triangleleft_{p_2} b_2) \wedge (a_3 \triangleleft_{p_3} b_3) \Leftrightarrow (a_3 \triangleleft_{p_3} b_3).
 \]

 Therefore,

 \[
 \forall (a_1 \triangleleft_{p_1} b_1) \cdot \forall (a_3 \triangleleft_{p_3} b_3),
 \]

 \[
 f^L_i(p_1)(g^L_i(p_2)(a_3)) = a_1 \wedge f^R_i(p_1)(g^R_i(p_2)(b_3)) = b_1 \cdot (a_1 \triangleleft_{p_1} b_1) \Leftrightarrow (a_3 \triangleleft_{p_3} b_3).
 \]

2. **Identities are well-defined morphisms:** Let \(id_G = \langle id_T, id_P \rangle \) be the identity on \(G = (T, P, \pi) \). By definition of identities in \(GTS \), for all \(p \in P \cdot id_P(p) = p \) and \(id_T(p) = id_{L_P}, id_{K_P}, id_{R_P} \). By definition of identities in \(T\)-Graph, we have

 \[
 \forall (a \triangleleft p \ b). id_{L_P}(a) = a \wedge id_{R_P}(b) = b \cdot (a \triangleleft p \ b) \Leftrightarrow (a \triangleleft p \ b)
 \]

3. **Neutrality of identity and associativity of composition follow from these properties in GTS.

 \[\Box \]

As defined for \(T\)-GTSS, \(dt\)-GTSS morphisms are \(d\)-GTS morphisms that, preserves stable and unstable items, and are total on unstable ones.

Definition 4.6 (\(dt\)-GTS morphism) Let \(Z_1 = (G_1, T_1s) \) and \(Z_2 = (G_2, T_2s) \) be \(dt\)-GTSSs. A \(dt\)-GTS morphism \(f : Z_1 \rightarrow Z_2 \) is a \(d\)-GTS morphism \(f : G_1 \rightarrow G_2 \) between the underlying \(d\)-GTSSs, such that

1. for all \(z \in T_1 \setminus T_1s \), we have that \(f_T(z) \) is defined and \(f_T(z) \in T_2 \setminus T_2s; \)

2. for all \(z \in T_1s \), if \(f_T(z) \) is defined then \(f_T(z) \in T_2s. \)
Example 4.3 (dT-GTS morphism) The dep-production STOP, defined in Example 4.1, could be mapped by a dT-GTS morphism f to the production p_1 in Figure 4.4, but not to p_2, because p_2 has a different dependency relation. We consider the mapping $f_i(\text{STOP})$ defined by $\{P \leftrightarrow \text{Pump}, O \leftrightarrow \text{Operator}, C \leftrightarrow \text{Customer}, B \leftrightarrow \text{Busy}, F \leftrightarrow \text{Finish}, Fr \leftrightarrow \text{Free}, Ch \leftrightarrow \text{Charge}, o \leftrightarrow \text{op}\}$ for both p_1 and p_2.

Proposition 4.2 dT-GTss and dT-GTS morphisms form a category, denoted by dTGTS, in which composition and identities are defined as in dGTS.

Proof: This proof follows from Propositions 4.1 and 3.2.

Since the introduction of dependencies does not modify the semantics of a graph transformation system and graph processes are obtained from derivations, the graph processes of a dT-GTS are obtained as in Definition 3.10, substituting productions in graph processes by dep-productions, i.e. $\pi_\phi(\langle q_i, i \rangle) = \langle (L_i, c_{L_i}) \xrightarrow{t_i} (K_i, c_{K_i}) \xrightarrow{r_i} (R_i, c_{R_i}), \prec_{q_i}\rangle$, where $\pi_\phi(q_i) = \langle L_i \leftarrow K_i \rightarrow R_i, \prec_{q_i}\rangle$. Moreover, the transactional process of a dT-GTS is defined like in Definition 3.15 and dT-GTS morphisms preserve transactions as T-GTS morphisms.

4.2 Abstract d-GTS for a T-GTS with dependency relation

Since we are considering dep-productions, abstract transactions must consider the dependencies of their productions. Here, we will distinguish weak ut-processes with different relation dependencies. The relation dependency of a process can be obtained as the transitive closure of dependencies of their productions. Moreover, at a more abstract level, we only see the minimal and maximal graphs of a transaction, therefore, we will consider only the dependencies on elements in these graphs.

Definition 4.7 (Dependency relation of a process) Given a process ϕ of a dT-GTS Z, the dependency relation of a process ϕ is the relation \prec_ϕ over $\phi \times \phi^*$, defined by

$$\prec_\phi = \leq_{P_\phi} \cap R,$$

where \leq_{P_ϕ} is the transitive closure of $\bigcup_{p \in P_\phi} \prec_p$ and $R = \{(a, b) \mid a \in \phi \land b \in \phi^*\}$.

The transitive closure of dependency relations of productions of a graph process give us the dependency resulting of application of these productions in the associated derivation. For example, by two productions p and q of a process ϕ, if in p we have $a \prec_p b$ (a is consumed/preserved in order to create b) and in q we have $b \prec_q c$ (b is consumed/preserved in order to create c), then in the process $\phi_1 = \phi \Theta (p \cup q)$, we have $a \prec_{\phi_1} c$ (a is consumed/preserved in order to create c).
in order to create \(c \), we will have in the dependency relation of \(\phi a \preceq_{\phi} c \) \((a \) is consumed/preserved in order to create \(c \)). The intersection of \(\preceq_{P_{\phi}} \) with \(R \) (set of pairs of elements in minimal and maximal graphs of \(\phi \)) give us the restriction of the transitive closure of dependency relations of productions in \(\phi \) to pairs of elements in minimal and maximal graphs for \(\phi \).

Example 4.4 (Dependency relation of a process) Figure 4.5 shows the transactional process \(\phi_1 \) of \(dT \)-GTS presented in Example 4.2.

![Diagram of transactional process](image)

Figure 4.5: Transactional process of \(dT \)-GTS \(DepPumpOper \).

The dependency relations of all productions of \(\phi_1 \) are illustrated in Table 4.1. The transitive closure of these relations is shown in Table 4.2. The transitive closure includes in a dependency relation a pair \(a \preceq c \) if the pairs \(a \preceq b \) and \(b \preceq c \) are already in the relation. In the example, we have that operator accepts a prepayment only if there is some prepayment being offered it him \((Prepay \prec_{ACCEPT} PreOrd) \); moreover, we have that activation of pump is triggered only if the operator has accepted a prepayment \((PreOrd \prec_{SERVE} Activate) \). Consequently, we will have that the activation of the pump is triggered only if someone has offered a prepayment \((Prepay \preceq_{P_{\phi_1}} Activate) \). Besides, the pump is activated only if the activation has been triggered \((Activate \prec_{ACTIVATE} FF) \). Therefore, pump is activated only if a prepayment has been offered \((Prepay \preceq_{P_{\phi_1}} FF) \). Finally, Table 4.3 shows the restriction to minimal and maximal graphs of \(\phi_1 \) of the relation shown in Table 4.2. This restriction eliminates from the dependency relation of \(\phi \) all pairs containing elements that are not in minimal or maximal graphs. For example, the pair \(Charge \preceq_{P_{\phi_1}} Charge \) is eliminated since \(Charge \) is not in minimal neither in maximal graphs.

Now, we can define the class of abstract transactions considering the dependency relation. A dependency weak ut-process is a class of weak equivalent processes that have the same dependency relation.
Table 4.1: Dependency relations of productions of transactional process ϕ_1.

<table>
<thead>
<tr>
<th>ϕ_1</th>
<th>\prec_{ACCEPT}</th>
<th>Preord</th>
<th>ϕ_1</th>
<th>\prec_{ACCEPT}</th>
<th>Coupon</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td></td>
<td></td>
<td>O1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepay</td>
<td></td>
<td></td>
<td>Prepay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td></td>
<td></td>
<td>O1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td>P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\prec_{SERVE}</td>
<td>Start</td>
<td></td>
<td>\prec_{SERVE}</td>
<td>Activate</td>
<td></td>
</tr>
<tr>
<td>pu</td>
<td></td>
<td></td>
<td>pu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preord</td>
<td></td>
<td></td>
<td>Preord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td>P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\prec_{ACTIVATE}</td>
<td>FF</td>
<td></td>
<td>\prec_{START}</td>
<td>Busy</td>
<td></td>
</tr>
<tr>
<td>Activate</td>
<td></td>
<td></td>
<td>Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td></td>
<td></td>
<td>O1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td>P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\prec_{STOP}</td>
<td>$Free^2$</td>
<td></td>
<td>\prec_{STOP}</td>
<td>Charge</td>
<td></td>
</tr>
<tr>
<td>Busy</td>
<td></td>
<td></td>
<td>Busy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td></td>
<td></td>
<td>Finish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td></td>
<td></td>
<td>O1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\prec_{FINISH}</td>
<td>Change</td>
<td></td>
<td>\prec_{FINISH}</td>
<td>Change</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2: Transitive closure of dependency relations of production of ϕ_1.

<table>
<thead>
<tr>
<th>\preceq_{P_1} Sub-Relation</th>
<th>\preceq_{P_1} Preord</th>
<th>\preceq_{P_1} Coupon</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
</tbody>
</table>

Table 4.3: Dependency relation associated to transactional process ϕ_1.

<table>
<thead>
<tr>
<th>\prec_{ϕ_1} Sub-Relation</th>
<th>\prec_{ϕ_1} Coupon</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\prec_{ϕ_1} Sub-Relation</th>
<th>\prec_{ϕ_1} Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\prec_{ϕ_1} Sub-Relation</th>
<th>\prec_{ϕ_1} Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\prec_{ϕ_1} Sub-Relation</th>
<th>\prec_{ϕ_1} Free 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\prec_{ϕ_1} Sub-Relation</th>
<th>\prec_{ϕ_1} Free 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\prec_{ϕ_1} Sub-Relation</th>
<th>\prec_{ϕ_1} Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>O_1</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>$Prepay$</td>
<td>$Prepay$</td>
</tr>
<tr>
<td>Supply</td>
<td>Finish</td>
</tr>
</tbody>
</table>
Table 4.3 is described by the letters. This production describes an execution of the system in an abstract way and the dependency relation give us some information about the interaction of the system with its environment, for example, the system only sends a Coupon or a Start message if it has received previously a Prepay message, and only sends a Change message after it has received a Prepay, Supplay and Finish messages.

![Diagram](image_url)

Figure 4.6: *dep*-production associated to the process in Example 4.4.

We are now able to define the abstract system associated with a dT-GTS. An abstract system associated to a dT-GTS Z is defined as for T-GTSS (Definition 3.18), where the set of productions names contains all dwt-processes of Z.

Definition 4.10 (Abstract d-GTS) Let $Z = \langle G, T_s \rangle$ be a dT-GTS. The abstract d-GTS associated to Z, denoted by A_Z, is the d-GTS $\langle T_s, DwtProc(Z), \Pi_Z \rangle$ where $DwtProc(Z)$ is the set of dwt-processes of Z and Π_Z is as in Definition 4.9.

Example 4.6 (Abstract d-GTS) In Figure 4.7, we can see the abstract system Z_1 associated to dT-GTS *DepPumpOper* (Example 4.2).

![Diagram](image_url)

Figure 4.7: Abstract d-GTS Z_1 associated to the dT-GTS *DepPumpOper*, described in Example 4.2.

As for the ordinary T-GTS, the type graph of Z_1 is the stable type graph of *DepPumpOper*. The productions of Z_1 are all transactional process of the original dT-GTS:
• the process $[\phi_1]_d$ is shown in Figure 4.5;

• the processes $[\phi_2]_d$, $[\phi_3]_d$ and $[\phi_4]_d$ are those which have as the only productions REJECT, PUREANALYSIS and IMPUREANALYSIS, respectively.

4.3 Implementation morphism for dT-GTS

In this section we describe the relationship between a more abstract dT-GTS and its implementation. This definition is analogous to that for t-GTSS. Here, an implementation is given by a pair of mappings: (a) a morphism between the type graphs and (b) a function mapping each production of the source dT-GTS into a transaction of the target one. If we consider $\widehat{\mathcal{Z}}_2$ be the dT-GTS having the same type graph of \mathcal{Z}_2 and the dep-productions associated to all unstable transactional processes of \mathcal{Z}_2, we can define a implementation relationship between dT-GTSS \mathcal{Z}_1 and $\widehat{\mathcal{Z}}_2$ as a dT-GTS morphism, where the productions component associates each production of \mathcal{Z}_1 to a production of $\widehat{\mathcal{Z}}_2$, i.e., to a transaction of \mathcal{Z}_2.

Definition 4.11 (dT-GTS implementation morphisms) Given dT-GTS $\mathcal{Z}_i = \langle (T_i, P_i, \pi_i), T_{1s} \rangle$, for $i \in \{1, 2\}$. Let $\widehat{\mathcal{Z}}_i = \langle (T_i, \text{DwutProc}(\mathcal{Z}_i), \Pi_{Z_i}), T_{1s} \rangle$ be a dT-GTS having all dep-weak ut-processes of \mathcal{Z}_i as productions. An (dT-GTS) implementation morphism $f: \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$ is a dT-GTS morphism $(f_T, f_P): \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$.

Example 4.7 (implementation morphisms for dT-GTSS) Consider the dT-GTS \mathcal{Z}_1 depicted in Figure 4.7. We can define an implementation morphism between \mathcal{Z}_1 and the dT-GTS of the gas station system (Example 4.2). The type mapping is given by the inclusion of T_{Z_1} into the type graph of the gas station system (Figure 3.1). The mapping between the productions is defined by: $[\phi_1]_d$ is mapped to the transaction in Example 4.4; $[\phi_2]_d$, $[\phi_3]_d$ and $[\phi_4]_d$ are mapped to transactions containing productions REJECT, PUREANALYSIS and IMPUREANALYSIS, respectively. Note that dependencies of all productions are respected, i.e., they have the same dependency of the transactions to which they are mapped.

In the following, $D^<(a, a')$ is true if a and a' have the same dependencies in \prec, i.e., they are related with the same elements by \prec, that is

$$D^<(a, a') = \begin{cases}
\text{true} & \text{iff } \forall x \cdot (a \prec x \leftrightarrow a' \prec x) \text{ and } (x \prec a \leftrightarrow x \prec a') \\
\text{false} & \text{otherwise.}
\end{cases}$$

Proposition 4.3 Given a dT-GTS \mathcal{Z}_i, let $\widehat{\mathcal{Z}}_i$ be as in Definition 4.11, for $i \in \{1, 2\}$. Then any dT-GTS morphism $f: \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$ extends to a dT-GTS morphism $\widehat{f}: \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$.

Proof: The definition of \widehat{f} is given as in Proposition 3.5. Then it remains to prove that \widehat{f} is well-defined. By Proposition 3.5, all concrete processes are weak equivalent, then it remains to prove that all concrete processes have the same dependency relation.
If we would chose a different concrete process φ' (dep-weak-equivalent to φ_1) in Proposition 3.5, we would obtain a different process φ', such that $\hat{f}(\varphi) = \varphi'$. By definition of \hat{f}, we have that $P_\varphi = P_{\varphi'}$ and $T_\varphi \approx T_{\varphi'}$. Moreover, in order to obtain the dependency relation of φ, we can get the transitive closure of $\varphi_1 \cdots \varphi_n$, because the dependencies between elements of these processes is given only on those elements in maximal and minimal graphs.

By definition of dT-GTS implementation morphism, $\prec \varphi_1$ and $\prec \varphi_1'$ can differ only on elements having the same dependency, i.e.,

$$\forall a \in \varphi_1 \lor \varphi_1', f_{\varphi_1}^A(p_1)(1) \neq f_{\varphi_1'}^A(p_1)(a) \Rightarrow D \prec \varphi_1(h_\varphi(a), a'),$$

where $f_{\varphi_1}^A(p_1)$ and $f_{\varphi_1'}^A(p_1)$ are defined as in diagram below, $h_\varphi : T_{\varphi_1} \rightarrow T_{\varphi_1'}$ is an isomorphism, $A = \{L, R\}$, $f_{\varphi_1}^A(p_1)(a) = f_{\varphi_1'}^A(p_1)(a')$.

Let us consider $f_{\varphi_1'}^A(p_1)(a') = f_{\varphi_1}^A(p_1)(a)$. By definition of the dependency relation of a process, for all $(a, x) \in \varphi_1$ and all $(y, a) \in \varphi_1'$, with $i = 1..n$, if $f_{\varphi_1}^A(p_1)(h_\varphi(a)) = f_{\varphi_1'}^A(p_1)(a)$, then there exists $(h_\varphi(a), x) \in \varphi_1$ and (y, x) is in φ using φ_1 or φ_1'; otherwise, using φ_1, we have $(y, x) \in \varphi$ and using φ_1 we have (y, x) as well, because, by (1), there exists $(a', x) \in \varphi_1'$. This holds for all $(x, a) \in \varphi_1$ and all $(a, y) \in \varphi_1$ by symmetry.

Now we can define the composition and identity for dT-GTS implementation morphisms.

Proposition 4.4 (composition and identity for dT-GTS implementation morphisms)

Given a dT-GTS \mathcal{Z}, let $\hat{\mathcal{Z}}$ be as in Definition 4.11. Then, the properties below hold.

1. Given dT-GTS implementation morphisms $f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$ and $g : \mathcal{Z}_2 \rightarrow \mathcal{Z}_3$, let their composition $\langle h_\varphi, h_P \rangle = g \circ f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_3$ be defined by dT-GTS morphism $\langle h_\varphi, h_P \rangle : \hat{g} \circ f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_3$. Then the composition is well defined and it is associative.

2. For each dT-GTS \mathcal{Z}, let $\text{id}_\mathcal{Z} = \langle \text{id}_{\mathcal{Z}_T}, \text{id}_{\mathcal{Z}_P} \rangle : \mathcal{Z} \rightarrow \hat{\mathcal{Z}}$ be defined as

 - the type graph component $\text{id}_{\mathcal{Z}_T}$ is the identity;
 - each dep-production p is mapped by $\text{id}_{\mathcal{Z}_P}$ to the dwut-process $[\phi_{idp}]_d$.

Then $\text{id}_\mathcal{Z}$ is well-defined and it is the identity on \mathcal{Z}.

Proof:

1. Since we proved, by Proposition 4.3, that \hat{g} maps each dwut-process of \mathcal{Z}_2 into a dwut-process of \mathcal{Z}_3 and it is well-defined, then the composition $\hat{g} \circ f$ is well defined. It remains to prove that the composition is associative. Let $f : \mathcal{Z}_1 \rightarrow \mathcal{Z}_2$, $g : \mathcal{Z}_2 \rightarrow \mathcal{Z}_3$ and $h : \mathcal{Z}_3 \rightarrow \mathcal{Z}_4$ be dT-GTS implementation morphisms. Then we must prove:

$$h \circ (g \circ f) = (h \circ g \circ f)$$
(a) \((h_T \circ g_T) \circ f_T = h_T \circ (g_T \circ f_T)\): by associativity of partial graph morphisms.

(b) \((\hat{h}_P \circ \hat{g}_P) \circ f_P = \hat{h}_P \circ (\hat{g}_P \circ f_P)\): since extension \(\hat{f}\) for any implementation morphism \(f\) is defined in the same way for \(\text{T-GTSS}\) and \(\text{dT-GTSS}\) and by Proposition 3.6, we have that \(\forall p \in \mathcal{P}_1 \bullet ((\hat{h}_P \circ \hat{g}_P) \circ f_P)(p) \approx^w (\hat{h}_P \circ (\hat{g}_P \circ f_P))(p)\), i.e., both compositions result in the same wt-process. Then it remains to prove that the dependency relations of these processes are the same: it holds by associativity of union of relations.

2. (a) \(id_Z\) is well-defined. Since \(id_Z\) is an identity, then it is total and preserves stable and unstable items. Moreover, \(id_Z\) maps each \(\text{dep}\)-production of \(Z\) into a \(\text{dwut}\)-process of \(Z\). It remains to prove that, for all \(\text{dep}\)-production \(p \in \mathcal{P} \bullet id_Z(p) = [\phi_{id_p}]_d\), there are three morphisms from \(\Pi_Z([\phi_{id_p}]_d)\) to \(L_p \leftrightarrow K_p \to R_p\). Since \([\phi_{id_p}]_d\) is the \(\text{dwut}\)-process containing only \(p\) as production, its underlying span is isomorphic to \(L_p \leftrightarrow K_p \to R_p\), then the required morphisms are given by any triple of isomorphisms mapping the span \(\Pi_Z([\phi_{id_p}]_d)\) to \(L_p \leftrightarrow K_p \to R_p\) and making \(\prec_{\phi_{id_p}} = \prec_p\).

(b) \(id_Z\) is the identity. It holds by Proposition 3.6.

\begin{proof}

\end{proof}

Definition 4.12 (category \(\text{dTGTS}^{\text{imp}}\)) We denote by \(\text{dTGTS}^{\text{imp}}\) the category having \(\text{dt-GTSS}\) as objects and \(\text{dt-GTS}\) implementation morphisms as arrows.

4.4 Adjunction between \(\text{dGTS}\) and \(\text{dTGTS}^{\text{imp}}\)

As like for \(\text{T-GTSS}\), we will show that the abstract \(\text{d-GTS}\) associated to a \(\text{dT-GTS}\) has the same behaviour of the original \(\text{dT-GTS}\), from the point of view of an external observer. This is done by using an adjunction between the categories \(\text{dGTS}\) and \(\text{dTGTS}^{\text{imp}}\).

In order to prove that the adjunction exists, we define two functors: the abstraction functor and the inclusion functor. Using these functors, we can relate an abstract system to its concrete counterpart through an implementation morphism, showing the one-to-one relation between transactions of a \(\text{dT-GTS}\) and those of its abstract counterpart.

Theorem 4.1 (Universality of abstraction) The functor \(\mathcal{A}^D: \text{dTGTS}^{\text{imp}} \to \text{dGTS}\), that maps every \(\text{dt-GTS}\) \(Z\) into its abstract \(\text{d-GTS}\) (see Definition 4.10), has a left adjoint \(\mathcal{I}^D: \text{dGTS} \to \text{dTGTS}^{\text{imp}}\), which is the inclusion of \(\text{dGTS}\) into \(\text{dTGTS}^{\text{imp}}\).

Proof: This proof can be divided in three parts:

1. Definition of the functor \(\mathcal{I}^D(_): \text{dGTS} \to \text{dTGTS}^{\text{imp}}:\)
 - on objects: let \(G = \langle T, P, \pi \rangle\) be a \(\text{d-GTS}\), then \(\mathcal{I}^D(G) = \langle \langle T, P, \pi \rangle, T \rangle\);
 - on morphisms: for any \(f: G_1 \to G_2\), \(\mathcal{I}^D(f): \mathcal{I}^D(G_1) \to \mathcal{I}^D(G_2) = \langle f_T, f_P \rangle\), where \(\forall p \in \mathcal{P} \bullet f_P(p) = [\phi_{id_p}]_d\), such that \(f_T(p) = q\). Note that dependency of \(p\) is preserved by \(\prec_{\phi_{id_q}}\) because \(\prec_{q} = \prec_{\phi_{id_q}}\) and \(f_P\) preserves dependency of \(p\) (by definition).

2. Definition of the functor \(\mathcal{A}^D(_): \text{dTGTS}^{\text{imp}} \to \text{dGTS}\):
 - on objects: let \(Z\) be a \(\text{dT-GTS}\), then \(\mathcal{A}^D(Z) = A_Z = \langle T_s, \text{DwtpProc}(Z), \Pi_Z \rangle\);
 - on morphisms: for any \(f: Z_1 \to Z_2\), \(\mathcal{A}^D(f): \mathcal{A}^D(Z_1) \to \mathcal{A}^D(Z_2) = \langle h_T, h_P \rangle\), where:
 - \(h_T = \langle f_{T_V|\Gamma_{T_1g}}, f_{T_E|\Gamma_{T_1g}} \rangle\);
3. To prove that $\mathcal{I}^D(_)$ and $\mathcal{A}^D(_)$ form an adjunction we have to prove that

$$\forall G \in \text{dGTS}, \forall Z \in \text{dTGTS}^{\text{imp}}, \forall f : \mathcal{I}^D(G) \rightarrow Z, \exists h : G \rightarrow \mathcal{A}^D(Z), \epsilon_Z \circ \mathcal{I}^D(h) = f$$

3.1. Universality of ϵ_Z in $\text{dTGTS}^{\text{imp}}$.

For each dT-GTS Z, we define the component at Z of the counit $\epsilon_Z : \mathcal{I}^D(\mathcal{A}^D(Z)) \rightarrow Z$.

This is an implementation morphism, thus a dT-GTS morphism $\epsilon_Z : \mathcal{I}^D(\mathcal{A}^D(Z)) \rightarrow \widehat{Z}$ is defined as follows:

- $\epsilon_Z T = T_s \hookrightarrow T$;
- $\forall [\phi]_d \in \text{DwtProc}(Z). \epsilon_Z P([\phi]_d) = [\phi]_d$ (remember that productions in $\mathcal{A}^D(Z)$ are exactly the dwt-processes of Z).

It remains to show that given a d-GTS G and a dT-GTS Z, for each dT-GTS implementation morphism $f : \mathcal{I}^D(G) \rightarrow Z$, there is a unique $h : G \rightarrow \mathcal{A}^D(Z)$ such that $\epsilon_Z \circ \mathcal{I}^D(h) = f$.

(a) Definition of (d-GTS morphism) $h : G \rightarrow \mathcal{A}^D(Z)$.

- $h_T = f_T$ (since f_T maps the type graph of G into stable items of Z);
- $\forall p \in P. h_P(p) = f_P(p)$ (since productions in $\mathcal{A}^D(Z)$ are exactly the dwt-processes of Z and f maps each production of G to a dwt-process of Z).

(b) $\epsilon_Z \circ \mathcal{I}^D(h) = f$.

- $\epsilon_Z T \circ \mathcal{I}^D(h_T) = f_T$. This holds by item (3.b) of Theorem 3.1.
- $\epsilon_Z P \circ \mathcal{I}^D(h_P) = f_P$.

Since all productions of $\mathcal{I}^D(\mathcal{A}^D(Z))$ are totally stable (they are all transactions of Z), then $\mathcal{I}^D(\mathcal{A}^D(Z))$ have one dwt-processes $[\phi_1d]_{d}d$ for each dep-production $[\phi]_d$ (see the observation before Proposition 3.5). Moreover, by definition of $\epsilon_Z P$, we have $\epsilon_Z P([\phi_1d]_{d}d) = [\phi]_d$, with $\prec_{\phi_1d} = \prec_{\phi}$. By definition, $h_P = f_P$ and $\mathcal{I}^D(h_P)$ maps each dep-production $p \in P_d$ to dwt-process $[\phi_1d_{f_P(p)}]_{d}$, then $\forall p \in P_d. \epsilon_Z P(\mathcal{I}^D(h_P)(p)) = \epsilon_Z P([\phi_1d_{f_P(p)}]_{d}) = f_P(p)$, with $\prec_{\phi_1d_{f_P(p)}} = \prec_{f_P(p)}$.

(c) h is unique. It holds by item (3.c) of Theorem 3.1.
4.5 Comparing T-GTS with dT-GTS

In this section, we compare T-GTSs and dT-GTSs in terms of information that each one can express. The inclusion of dependencies in a production does not modify its semantics, but in adds information about its implementation. This extra information permits to identify resources needed to produces partial results. For example, the dependency relation associated to the dep-production in Figure 4.6 determines that message Coupon maybe sent after a message Prepay has been received, even if the others (Supplay, Finish and Free) are not received. Using this information, we can restrict possible implementations for a production, because only transactions which respect its dependency relation can be valid implementations.

We can say that a T-GTS (or dT-GTS) \(Z \) implements another one \(Z' \), if there exists an implementation morphism \(f : Z \rightarrow Z' \), where \(f_T \) is total. Moreover, when a dep-production can be related to a transaction (by means of an implementation morphism), we say that the transaction implements the production. Considering this relationship between dep-productions and transactions, we will show that all dep-production can be implemented by some transaction. This is due to the restrictions imposed on the dependency relation, that guarantee the existence of at least one transaction implementing the dep-production.

Proposition 4.5 There exists at least one transaction that implements a dep-production.

Proof: The proposition holds because, for any dep-production \(p \), we can obtain a transaction \(\phi \), which implements \(p \). A transaction can be constructed as follows: consider \(a, b \) and \(c \) ranging over the deleted, created and preserved items of \(p \), respectively; \(R'_p \) be the graph created by \(p \) (as defined in Definition 4.1); and \(G = C(R'_p) \) ranging over the connected components of \(R'_p \). The set of productions of \(\phi \) contains:

- **deleting productions** one production for each \(a \), deleting \(a \); preserving the source and target of \(a \), if it is an edge; and creating an unstable item \(\langle a, b \rangle \) for each \(b \) that depends on \(a \), where if \(a \) is a vertex then \(\langle a, b \rangle \) will be a vertex, else \(\langle a, b \rangle \) will be an edge with same source and target of \(a \);

- **creating productions** one production for:
 - each \(G \), deleting all unstable items \(\langle a, b \rangle \), where \(b \) is in \(G \); preserving each \(c \) such that some \(b \) in \(G \) depend on it; and creating an unstable item \(\langle G \rangle \) (used for synchronisation) and creating all \(b \) in \(G \);
 - each \(x \in R_p - K_p \), \(x \notin R'_p \) (edges created over preserved vertices), deleting all unstable items \(\langle a, x \rangle \); preserving all \(c \) such that \(x \) depends on it; and creating \(x \) and unstable vertex \(\langle x, \text{"s"} \) synchronisation production one production deleting all vertex \(\langle G \rangle \) and \(\langle x, \text{"s"} \).

The dependency relations associated to productions of \(\phi \) are total, i.e., the created items depend of all items in the left-hand side. Besides, the type graph of \(\phi \) is the graph obtained joining all left- and right-hand sides and interfaces of all deleting, creating and synchronisation productions.

One can note that \(\phi \) is a transaction because: (1) all productions create unstable items, but the synchronisation one. As this production can be applied only after all stable items of \(p \) are created, it is the last production to applied, resulting in a stable state. Therefore, the intermediate states have always at least one unstable item; (2) all created stable items are not used in the transaction because the deleting productions (which are the only ones that delete stable items) delete only
items in the initial state; and (3) all items consumed and preserved are used, because there is one production for each deleted item and the preserved ones are used in the creating productions. Besides, we can see that ϕ implements p because the minimal graph (all deleted and preserved items) coincides with L_p, the maximal graph (all created and preserved items) coincides with R_p and, as the productions are constructed considering the dependency relation, ϕ preserves the dependency of p.

The ut-process ϕ depicted in Figure 4.9 is a transaction that implements the production STOP in Figure 4.2, obtained as defined in Proposition 4.5. The productions named as cDeletedElement and cCreatedElement (cCreatedGraph) are productions obtained as described in deleting and creating productions, respectively. The synchronisation production has the obvious name. The type graph, depicted at the top-right, is constructed as the gluing of all graphs of productions and the minimal (maximal) graph is composed by items of type graph that are not created (consumed) by any production. Table 4.4 describes transitive closure of all dependency relations of productions of ϕ, and the corresponding restriction to minimal and maximal graphs is:

$$
\begin{align*}
\text{Pump} & \preceq_{\phi} \text{Free} \\
\text{Operator} & \preceq_{\phi} \text{Free} \\
\text{Customer} & \preceq_{\phi} \text{Free} \\
\text{Finish} & \preceq_{\phi} \text{Free} \\
\text{Busy} & \preceq_{\phi} \text{Free} \\
\end{align*}
\begin{align*}
\text{Pump} & \preceq_{\phi} \text{Charge} \\
\text{Operator} & \preceq_{\phi} \text{Charge} \\
\text{Customer} & \preceq_{\phi} \text{Charge} \\
\text{Finish} & \preceq_{\phi} \text{Charge} \\
\end{align*}
$$

Observing the minimal and maximal graphs, one can see that the minimal and maximal graphs of ϕ are isomorphic to left- and right-hand sides of STOP production, respectively. Moreover, the dependency relation associated to ϕ (described above) is equivalent to that associated to STOP production.

Table 4.4: Transitive closure of dependencies of productions of ϕ depicted in Figure 4.9.

<table>
<thead>
<tr>
<th>Pump</th>
<th>Customer</th>
<th>Finish/Free</th>
<th>Customer</th>
<th>Finish/Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>\preceq_{p_o}</td>
<td>\preceq_{p_o}</td>
<td>\preceq_{p_o}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>op</td>
<td>op</td>
<td>op</td>
<td>op</td>
<td>op</td>
</tr>
<tr>
<td>Customer</td>
<td>Finish/Free</td>
<td></td>
<td>Customer</td>
<td>Finish/Charge</td>
</tr>
<tr>
<td>Finish</td>
<td>$Free$</td>
<td>$Free$</td>
<td></td>
<td>$Free$</td>
</tr>
<tr>
<td>Busy</td>
<td>$Free$</td>
<td>$Free$</td>
<td>Finish/Free</td>
<td>$Free$</td>
</tr>
<tr>
<td>Finish/Free</td>
<td></td>
<td>$Free$</td>
<td></td>
<td>$Free$</td>
</tr>
<tr>
<td>Busy/Free</td>
<td></td>
<td></td>
<td>$Free$</td>
<td>$Free/"s"$</td>
</tr>
</tbody>
</table>

As mentioned, the association of the dependency relation to productions of a T-GTS restricts the possible valid implementations. This restriction means that, when we are in the context of T-GTSSs, we can have different transactions implementing a production p. Even if they have different dependencies between their elements, they are still implementations of p, since dependencies are not being taken into account. On the other hand, if we consider the same production p having two different dependency relations associated to it, we would have two dep-productions p_1 and p_2 differing only on the dependencies. Some implementations of p are, now, implementations of p_1, while other ones may be implementations of p_2, but there are no common implementation for both, because the
implementation relationship must preserve the dependencies. Therefore, if we choose \(p_1 \) we will be discarding all implementations of \(p_2 \) (which are valid for \(p \)) and vice-versa. We demonstrate this fact in the following theorem.

In the following, the set \(I(Z) \) contains all T-GTSS (or dt-GTSS) that implement \(Z \).

Theorem 4.2 (dependency relation restricts the implementations of a T-GTS) Given a dt-GTSS \(Z = \langle \langle T, P, \pi, T_s \rangle \rangle \) and a T-GTSS \(U(Z) = \langle \langle T, P, \pi', T_s \rangle \rangle \), where \(\forall p \in P \land \pi(p) = \langle L_p \leftarrow K_p \rightarrow R_p, \varphi_p \rangle \cdot \pi'(p) = L_p \leftarrow K_p \rightarrow R_p, \varphi' \rangle \), then:

\[
\exists Z' \notin I(Z) \cdot Z'' \in I(U(Z)) \land Z' \neq U(Z'').
\]

Proof: The theorem holds by definition of implementation relationship, that differs from T-GTSS to dt-GTSS by including a restriction for dt-GTSS: it must preserve the dependency relations. Considering a T-GTSS \(Z \) containing only the production \(p \), if there are two different dependency relations \(\prec_1 \) and \(\prec_2 \) for \(p \), then we can consider two different dt-GTSS \(Z_1 \) and \(Z_2 \) containing the dep-productions \(\prec_1 \) and \(\prec_2 \), respectively. For each dt-GTSS \(Z_i \) there exists an implementation \(Z'_i \) associating the transaction \([\phi_i]_d \) with the production \(\langle p, \prec_i \rangle \). By definition of implementation relationship, the dt-GTSS \(Z'_i \) cannot be an implementation for \(Z_2 \). When we consider T-GTSS, the restriction on dependencies does not exist and, therefore, \(Z \) can be implemented by both \(Z'_1 \) and \(Z'_2 \) (forgetting the dependency relations). \(\square \)

Example 4.8 (restriction of implementations) Let us consider the dt-GTSS \(Z_2 \) depicted in Figure 4.10. Note that \(Z_1 \), in Figure 4.7, and \(Z_2 \) differ only in the dependency for Coupon in the production \(p_1 \): here the Coupon message is sent only after the system have received the Prepay, Finish and Supply messages.
As shown in Example 4.6, DepPumpOper (in Example 4.2) is a possible implementation of Z_1, but we can see that DepPumpOper cannot be an implementation of Z_2, because it does not have a transaction with the same dependency relation of p_1. A possible implementation for Z_2, would be a dT-GTS Z'_2 with the same type graph and productions of DepPumpOper, substituting the ACCEPT and FINISH productions by those shown in Figure 4.11. If we forget the dependencies of Z_1 and Z_2 we obtain the same T-GTS that can be implemented by both DepPumpOper and Z'_2 (forgetting their dependencies, as well).

The proposed extension of T-GTSS including dependency relations on productions allows us to describe (abstractly) more information than its version without dependencies, for example, interactions between systems (or between a system and its environment). Comparing the abstract systems depicted in Figures 3.12 and 4.7, we can see that describing the same wuT-process ϕ (described in Figures 3.9 and 4.5) using the production $[\phi_1]_w$ (version without dependencies) we are requiring that all messages Prepay, Finish and Start are present, as well as the pump is free, in order to produce its result (to send Change, Coupon and Start messages and to free the pump). But if we consider the implementation of this production, we can see, for example, that Coupon message is sent as soon as the Prepay message is received. This situation is perfectly described by the dependency relation of $[\phi_1]_d$ (version with dependencies).
4.6 Construction of the abstract system associated to a dT-GTS

It can be useful to have a method to construct an abstract system from a dT-GTS. This construction be used to obtain automatically the abstract view of a system and to verify the correction of an implementation, since each production of an abstract system must be associated to a transaction of the concrete one. In Definition 4.14, we propose an algorithm to construct the abstraction of a dT-GTS. However, this construction can not be performed for any dT-GTS, only for systems with finite number of transactions. In order to guarantee the finiteness of the system, we must restrict the kind of dT-GTSSs used to specify our modules. Therefore, we will consider only systems whose productions do not have cycles on unstable items, i.e., if we consider the causal dependency of the unstable part of the type graph, we do not allow one element to depend on itself. In order to simplify the construction we will restrict to dT-GTSSs whose productions create or delete only one element of each type and do not consume vertices.

In order to construct the abstract system associated to a dT-GTS we must obtain the set of transactions of this system. The construction of set of transactions of a dT-GTS is formally described as in Definition 4.13. Summarising this construction, we first initialise the set of transactions (line 1): we pick each stable production out of set of productions and include one transaction containing this production as the unique production; next we construct the set \(P' \) of all possible subsets of productions of the system; finally we eliminate from \(P' \) those subsets which do not contain at least one production with the left-hand side stable and other with the right-hand side stable. Then, we select (among the remaining subsets in \(P' \)) the production subsets that constitute transactions and construct them (lines 2 – 43).

A set of productions is balanced if all unstable items created by these productions are consumed by them. In line 3, for each subset of productions \(A \) (in \(P' \)) the function \(\text{preTransactions} \) returns a list of pairs of initial graph and balanced productions (based on productions in \(A \)). First, we test if the productions are balanced and, if this test fail, we test if it is possible to obtain other sets of balanced productions, including new instances of these productions. The inclusion of new instances is minimal and may result in several new subsets (if there are more than one way to balance the productions). Then, for each subset of balanced productions (based on \(A \)), we construct all possible initial graphs: gluing the stable part of left-hand side of all productions, in all possible ways.

For each pair of initial graph and balanced productions, we construct the graph process (lines 4 – 30), test if the this process is transactional (lines 31 – 35) and exclude processes that have a \(\text{dep} \)-equivalent process in the set of transactions (lines 36 – 40). The description of functions used in the algorithm below are presented in Appendix C.

Definition 4.13 (construction of transactions of a dT-GTS) Given a dT-GTS \(Z = \langle \langle T_Z, P_Z, \pi_Z \rangle, T_Zs \rangle \), the set of its transactions \(\text{DwtProc}(Z) \) can be obtained as follows:

1: \(\langle P', \text{DwtProc}(Z) \rangle = \text{init}(P_Z) \) \hspace{1cm} \(\triangleright \) initialise the set \(\text{DwtProc}(Z) \) of transactions of \(Z \) with one-step transactions and \(P' \) with subsets of \(P_Z \) containing no stable production and at least one production with left-hand side stable and other with right-hand side stable

2: for all \(A \in P' \) do

3: \[l = \text{preTransactions}(A) \] \hspace{1cm} \(\triangleright \) repeat for each set of productions in \(P' \)

\(\triangleright \) generate initial graph and (balanced – possibly with different instances of a same production) productions of all possible processes with productions in \(A \)
4: while \(l \neq \lambda \) do ▷ repeat for each pair in \(l \)
5: \((G, P) = \text{head}(l) \) ▷ get the first initial graph \(G \) and set of productions \(P \)
6: \(i = \text{tail}(l) \) ▷ eliminate the first element of \(l \)
7: \(U = \emptyset \) ▷ initialise the set of graph processes containing productions in \(P \)
8: \(U_1 = \emptyset \) ▷ initialise the first state of \(U \)
9: \(U_2 = \{ \phi = (\phi_T, \phi_P) : (G, \emptyset, \emptyset), S(G) \rightarrow \mathcal{Z} \} \), where
 \(\phi_T = (\text{id}_G, t_G) : G \rightarrow T_\mathcal{Z} \) is a partial morphism and
 \(\phi_P = \emptyset : \emptyset \rightarrow P_\mathcal{Z} \) ▷ initialise \(U_2 \) (second state of \(U \)) with a graph process
 composed of type graph \(G \) and none production
10: \(i = 2 \)
11: while \(U_i \neq U_{i-1} \) do ▷ repeat until there is no change in \(U_i \)
12: \(\forall i_1 : (T_i, P_i, \pi_i), T_i s) \rightarrow \mathcal{Z} \in U_i \) do ▷ repeat for each process in \(U_i \)
13: \(\text{if } P_i = P \text{ then } \) ▷ if all productions in \(P \) were used in the process, it is complete
14: \(\forall P_i \in U_{i+1} \) ▷ and it is included in \(U_{i+1} \)
15: \(\text{else} \)
16: \(x = 0 \) ▷ initialise \(x \) indicating that there is no change in \(\phi_i \)
17: \(\forall (p, k) \in P \text{ and } (p, k) \notin P_i \) do ▷ repeat for each production in \(P \) that
18: \(\forall m : L_p \rightarrow (T_i, r_{\phi_i}) \) do ▷ repeat for each match of selected
19: \(\text{if } m(L_p) \text{ is a concurrent subgraph of } T_i \text{ then } \) ▷ if the range of selected
20: \(\text{make } \mathcal{Z}(\phi_i, (p, k), m) \in U_{i+1} \) ▷ then include, in \(U_{i+1} \), the process \(\phi_i \)
21: \(x = 1 \) ▷ and assign 1 to \(x \) to indicate that \(\phi_i \) was changed
22: \(\text{end if} \)
23: \(\text{end for} \)
24: \(\text{end for} \)
25: \(\text{if } x = 0 \text{ then } \phi_i \in U_{i+1} \) ▷ if \(x \) was not changed in line 21, the process \(\phi_i \)
26: \(\text{end if} \)
27: \(\text{end if} \)
28: \(i = i + 1 \) ▷ increment \(i \) in order to get next state of \(U \)
29: \(\text{end while} \)
30: \(\forall \phi \in U_{i-1} \) do ▷ get each process in the last state of \(U \)
31: \(\text{if } P_\phi = P \text{ and transaction}(\phi) \) then ▷ if this process contains all productions
32: \(\text{then include it in the set of transactions } U \) ▷ in \(P \) and is a transaction
33: \(\phi \in U \)
34: \(\text{end if} \)
35: \(\text{end for} \)
36: \(\forall \phi \in U \) do ▷ for each transaction in \(U \)
37: \(\text{if there exists } \phi' \in U \land \phi' \neq \phi \land \text{depEq}(\phi', \phi) \) then ▷ if there is other transaction
38: \(U = U - \{ \phi \} \) ▷ exclude it of \(U \)
Analysing the algorithm described above, we can see that the executions of (almost) all loops are controlled by finite structures, for example, the `forall` loop at lines 2 – 43 is repeated for each element in \(P' \), that is a set containing a finite number of productions. However, the `while` loop at lines 11 – 30 does not work in the same way: it stops if the set of graph processes does not change in a previous iteration. This loop always stops because this set is not changed if all productions in \(P \) are applied (lines 13 – 15) or if there is no production in \(P \) that can be applied (lines 25 – 26). Then, considering that all functions used in Definition 4.13 stop (see Appendix C), we can conclude that the proposed algorithm always stops.

Moreover, the algorithm generates exactly the set of transactions of the considered \(\text{dT-GTS} \). It is easy to see that the generated processes are all `dep`-equivalent transactional processes (by tests in lines 32 – 34 and 37 – 39) obtained using productions of \(Z \). Then, it remains to see if all transactions are generated: the transactions with one production are constructed in the algorithm initialisation and the other ones are constructed based on all possible subsets of productions with possible minimal repetitions, i.e., the number of different instances of a same production is limited by the definition of transaction, in particular by the fact that a transaction can not be divided into small transactions. Moreover, for each subset of productions of \(Z \), the possible initial graphs are obtained considering all possible ways to compose the left-hand side of productions (remember that all items in the minimal graph must be used). Since the processes are constructed considering all possible ways to apply the productions in all initial graphs, there can not be transactions that are constructed using productions of \(Z \) applying in different ways (all ways have been considered).

Now, we can construct the abstract system of a \(\text{dT-GTS} \ Z \), using the stable type graph of \(Z \) as type graph and the set of transactions of \(Z \) (obtained as in Definition 4.13).

Definition 4.14 (abstraction construction) Given a \(\text{dT-GTS} \ Z = \langle \langle T, P, \pi \rangle, T_s \rangle \), we can construct the abstract system associated to \(Z \) as the system \(\langle T_s, \text{DwtProc}(Z), \Pi \rangle \), where \(\text{DwtProc}(Z) \) is obtained as in Definition 4.13 and for each \(\phi \in \text{DwtProc}(Z) \), \(\Pi(\phi) \) is defined as in Definition 4.9.

4.7 Refinement of transactional graph transformation systems

Since the aim of transformational systems is to produce a final result, given an input, they can be appropriately specified as a relation between initial and final states. However, the functionalities of reactive systems are given by an ongoing interaction with their environment, rather than by an output upon termination. In this context, notions of reactivity and concurrency are closely related. For example, a good way to explain the difference between transformational and reactive systems is that, in the transformational case, a system and its environment act sequentially, while in the reactive case they act concurrently (MANNA; PNUELI, 1992).
Graph transformation systems are a suitable formalism to specify complex systems, since graphs are used to describe naturally the structure of a system focusing attention on its components and their interconnections. Moreover, this formalism gives us a simple manner to describe concurrency, where all productions of the system can be applied in parallel if they are independent. By means of the extension to the transactional version, introduced in Chapter 3, we can use graph transformation systems to describe atomic activities in a more detailed way and use a more abstract view when it is interesting.

Several methods for design and analysis of reactive systems propose synchronous languages as specification formalism (BERRY, 2000; HALBWACHS et al., 1991; LEGUERNIC et al., 1991), where the time of reaction to an event is null. This characteristic is important to simplify the model, but frequently, it does not correspond to the reality, as is the case of distributed systems, where the communication between components may take some time. Thus, new approaches were introduced to combine synchronous components and asynchronous communication (FILALI; MAURAN; PADIOU, 1993; BERRY; RAMESH; SHYAMASUNDAR, 1993; RIESCO; TUYA, 2004). GTSs have an asynchronous semantics and with the introduction of transaction notion, it becomes possible to synchronise internal activities of a component, modelling them as transactions. Thus, at a more abstract level, we can consider a transaction as an immediate reaction, where the intermediate steps are considered to take a null time. Some of cited approaches use similar notions to model the synchronous behaviour of system components.

Moreover, the extension of transactional GTS to express causal relation between input and output signals allows us to explicitly describe interaction patterns. The dependency associated with each production will be used to describe the dependency between exchanged messages/signals, as proposed in (FOSS; MACHADO; RIBEIRO, 2007): we describe the interaction of the system with its environment in order to realise their operations: which signals are sent to environment in reaction to received ones. Thus, the transactional GTS with dependency relation becomes an interesting formalism to specify reactive systems, that are characterised by an ongoing interaction and atomic reactions.

In a top-down approach to develop a reactive system, one can start abstracting the behaviour of the system defining only the interaction between system and its environment and then, to refine the specification adding new details of each reaction.

There are different notions of refinement, among them, behavioural refinement is more usual, where the properties of the abstract specification are implied by properties of the refined specification. Since we are describing the abstract behaviour of a system by its interaction with the environment, we can consider two kind of system views: black and glass-box views (BROY; STØLEN, 2001). While in the black-box view only the input and output signals are observable, and what happens inside of component between the consumption of an input signal and the generation of the corresponding output signal is hidden, in the glass-box view some constraints on the internal structure or behaviour can be defined. Using the defined implementation morphism we can define a glass-box refinement, where besides the external behaviour, also particular aspects of the internal structure are preserved. The internal structure to be preserved in our approach is the relation dependency between the input and output signals. Therefore, we can say that a dT-GTS \mathcal{Z}_2 is a refinement of a T-GTS \mathcal{Z}_1 if there is an implementation morphism from \mathcal{Z}_1 to \mathcal{Z}_2, where the type mapping is total and surjective on stable items and the production mapping is total and must associate a transactional process of \mathcal{Z}_1 to each transactional process of \mathcal{Z}_2. These requirements guarantee that all external behaviours are preserved and the definition of implementation morphism guarantees that dependency relation is
preserved. The verification of correctness of refinement can be given by comparing the abstractions of both systems: the abstractions of original and refined specifications must be the same.

Definition 4.15 (refinement) Let $Z_1 = \langle (T_1, P_1, \pi_1), T_{1s} \rangle$ and $Z_2 = \langle (T_2, P_2, \pi_2), T_{2s} \rangle$ be two \(dT\)-GTSs. \(Z_2\) is a refinement of \(Z_1\) if there exists an implementation morphism \(f : Z_1 \rightarrow Z_2\) such that,

- \(f_T : T_1 \rightarrow T_2\) is total and \(S(f_T(T_1)) = T_{2s}\);
- \(f_P : P_1 \rightarrow \text{DwutProc}(Z)\) is total;
- \(\forall [\phi_2]_w \in \text{DwtProc}(Z_2) \cdot \exists [\phi_1]_w \in \text{DwtProc}(Z_1) \cdot \hat{f}_P([\phi_1]_w) = [\phi_2]_w\).

Based on this notion of refinement, a first refinement step of the abstract system in Figure 4.7 can result in the \(dT\)-GTS presented in Example 4.2. The implementation morphism defined between them is described in Example 4.7. It is easy to see that both have the same external behaviour, since the abstract specification is indeed the abstract system associated to the concrete one.

A further refinement step can result in the \(dT\)-GTS shown in Figure 4.12. The implementation morphism from \(\text{DepPumpOper}\) to \(Z\) is defined as follows: on the type graphs it is defined by the obvious inclusion of \(T_{\text{DepPumpOper}}\) in \(T_{Z}\) and on productions it is defined by mapping each production, except the STOP production, into a process containing itself as unique production. The STOP production is mapped into the unstable transactional process \([\psi]_d\) depicted in Figure 4.13. It is easy to see that the abstract \(d\)-GTS associated to \(Z\) is the same one associated to \(\text{DepPumpOper}\) depicted in Figure 4.7, this means that both systems have the same abstract behaviour and therefore \(Z\) is a correct refinement of \(\text{DepPumpOper}\).

Here, we propose to use \(dT\)-GTSs to specify, in an abstract way, reactive systems, using the dependency relation to specify reactions of the system to events/signals from the environment.
Figure 4.12: A refinement dT-GTS Z for $DepPumpOper$ (Figure 4.3).

Figure 4.13: An unstable transactional process associated to STOP production.
5 CONCLUSIONS

The contributions of this work are related to two different areas of computer science: theoretical area, by providing a theoretical foundation of transaction concept for graph transformation; and software engineering area, by proposing a formalism to specify reactive systems, where interactions between system and its environment can be described by dependency relations associated to productions. Moreover, using implementation morphisms a method of incremental development can be defined, starting from an abstract view of the system and adding more details in each refinement step.

5.1 Theoretical contribution

In this work, we give the theoretical foundations of the notion of transactional activities in graph transformation. A transaction is defined as a class of derivations, where starting and ending states are stable and all intermediate states are unstable. Thus unstable items represent temporary resources, only visible within a transaction, and the distinction between stable and unstable items is enforced by a typing mechanism. This definition of transactions is inspired by the work on zero-safe nets (BRUNI; MONTANARI, 2000). It is motivated by the data-driven nature of graph transformation formalism, where any form of control on the application of productions has to be encoded in the graphs. The main theoretical result of the present work is the characterisation of the abstract system of a T-GTS, including all transactions as productions, in terms of a universal construction, presented as a right adjoint functor. In order to obtain this result, we first characterise transactions as graph processes and define the notion of implementation morphism, allowing to map productions to transactional processes. The notion of implementation defined for T-GTSS are more general than that defined in (BRUNI; MONTANARI, 2000), because our morphisms can relate unstable productions with unstable transactions and, consequently, we can also refine the implementations of stable productions.

Since stable items cannot be used within the transaction in which they are created, if we need to create stable vertices connected (by edges), this creation must be defined in a unique production. Otherwise, it would be necessary to use the created vertices in order to create the connecting edges. This restriction is not imposed in (BRUNI; MONTANARI, 2000), because Petri Nets can be seen as a GTSS where the states are represented by discrete graphs, i.e., graphs having only vertices.

Besides the above mentioned results, the extension of transactional graph transformations, introduced in Chapter 4 (dT-GTS), enriches the information given by T-GTS graph productions, making explicit the dependency between created and consumed/preserved items. This relation can be used to restrict the refinement of the transactions, since the notion of implementation morphism for dT-GTSS must respect the dependencies. This
extension does not change the semantics of the T-GTSSs, only give an abstract information about desired dependencies in an implementation.

There are other notions of transactional activities in the area of graph transformations. Traditional notions of transaction have been considered, most importantly in the design of PROgramed Graph REwriting Systems (SCHÜRR, 1991; SCHÜRR; WINTER; ZÜNDORF, 1999; SCHÜRR; WINTER, 2000). PROGRES provides a development environment where basic operations, defined by graph transformation rules, can be combined using a rich set of control structures, including traditional programming language constructs, various kinds of non-deterministic choices, as well as transactions. It is a mixed textual and diagrammatic language. A basic specification in PROGRES is composed by a graph schema and a set of graph procedures. The graph schema specifies the static properties of a class of graphs, defining all used types of nodes, edges and their attributes. The graph procedures are defined by productions or transactions. The productions describe the modifications on a graph and have a graphical representation, while the transactions are described textually and provide control structures. The PROGRES approach is therefore similar to the way transactions are introduced in programming languages and other control-centered formalism.

The graph transformation units, used in the GRACE (KREOWSKI; KUSKE, 1996; ANDRIES et al., 1999) approach, give a “kind of transaction notion” based on control-flow. A transformation unit comprises a set of local rules, a set of used transformation units and a control condition which regulates how used units and rules must be applied, allowing infinite applications of them. We cannot consider a transformation unit as a real transaction because a basic characteristic of a transaction is to be a finite computation.

In (GROSSE-RHODE; PARISI-PRESICCE; SIMEONI, 1999), a notion of synchronous activities for typed graph transformation systems is defined. This notion is given by syntactical compositions: sequential and amalgamation compositions. Therefore we cannot extract any causal relation between the state elements.

5.2 Software Engineering contribution

The visual and data-driven approach of GTSSs, makes them a natural formalism to specify reactive system, where the behaviour of components is defined by the flow of signals (data) that are generated by the environment and not by the control flow of the components. The transaction and dependency relation notions introduced in this work turn this formalism even more adequate to specify reactive systems. These extensions improve GTSS formalism with a mechanism to specify atomic reactions and, thus, allow us to describe, at an abstract level, synchronous systems. We also give an insight on vertical structuring proposing a notion of refinement to relate abstract and concrete specifications, where the dependencies between input and output events/signals are given explicitly as an additional information about of abstract behaviour of the system. This information can be useful to specify the environment behaviour and for verification purposes, as will be discussed in section 5.3.

We can find, in the literature, several formalisms and frameworks for specification, verification and code generation of reactive systems, such that Statecharts (HAREL, 1987; SEKERINSKI, 1998), Esterel (BERRY; COURONNE; GONTHIER, 1988; BERRY, 2000; GIL; FERRO; BERNHARD, 1996; BHATTACHARJEE et al., 1999), CRP (Communicating Reactive Processes) (BERRY; RAMESH; SHYAMASUNDAR, 1993), UML diagrams (KERSTEN et al., 2002; ALAVIZAEDH; NEKOO; SIR-
Statecharts are a visual approach to design reactive systems. They extend finite state diagrams (graphical representation of finite state machines) with tree concepts: hierarchy, concurrency, and communication. Statecharts are used in different frameworks as a language for graphical specification and are mapped into other formal languages for automatic verification and code generation (Bhattacharjee et al., 1999; Kersten et al., 2002; Sekerinski, 1998). In (Sekerinski, 1998), the authors propose a translation of Statecharts to Abstract Machine Notation (AMN) of the B method for analysis and refinement purposes. In this approach, a state diagram (simplest form of statecharts) is composed by a finite number of states and transitions, which are translated into AMN as enumerated set type and operations, respectively. The current state is stored in a variable and the operations reflect the state change. Refinement notions are given by AMN refinement rules, i.e., they are only for the translated code. The essence of a refinement relationship is that it preserves already proved system properties. It is based on observational substitutivity: any behaviour of the refined specification is one of the possible observable behaviours of the initial specification. More specifically, AMN refinement allows designers to reduce non-determinism of operations (strengthen the post-condition), to have more input values (weaken their preconditions) and to change the variable space. At the most abstract level it is mandatory to describe the static properties of a model by means of an invariant predicate. The refinement steps give rise to a number of proof obligations, which guarantee their correctness with respect to the invariant. Such proof obligations are discharged by the proof tool using automatic and interactive proof procedures supported by a proof engine. This approach uses a visual language to specify reactive systems, where the interaction pattern is described by labelled transitions of a state diagram. In a large specification, with several and complex interactions, the state diagram can become very large and difficult to understand. In our approach, each event involving simpler interactions can be described by an individual production, which is easier to be understood. Moreover, it is not necessary to know a different language (like Abstract Machine Notation) to refine the specified system. In (Scholz, 1998), a refinement calculus for statecharts was proposed where the charts are obtained from non-deterministic sequential automata, hiding, and parallel composition. A reaction of a system is defined in terms of instants, where all input signals are received and all output signals are sent and the I/O behaviour of a system is described in terms of communication histories. The communication histories are given by streams carrying a set of signals, relating the input signals with output ones. They define a notion of refinement that requires that all input and output signals must be preserved (it is possible to extend them) and all behaviour relating these signals must be preserved, as well. Syntactic rules whose application guarantees a correct refinement step are defined. This approach avoids translations to other languages, but does not permit to describe a weaker relation between input/output signals of a more abstract level.

Esterel is a control-driven textual design language that can be used to generate complex state machines automatically. In this context, an assumption called perfect synchrony hypothesis (or atomic reaction) is made in order to simplify the behavioural specifications of reactive systems. This hypothesis states that the system reacts instantaneously to an input event, and the execution of reactions does not overlap with each other. Other assumption made in Esterel is that the systems are deterministic, thus their statements and con-
structs are guaranteed to be deterministic, as well. This language provides interface refinement. The interface of a system define signals which are exchanged to interact with other systems and can be refined to add new signals. Moreover, in order to reduce the number of states of the system, relations restricting input signals are provided. These restrictions are about incompatibility and master-slave combination of signals. In (BHATTACHARJEE et al., 1999), an graphical interface for Esterel was proposed. They integrate the graphical formalism of Statecharts with verification environments of Esterel, translating Statecharts specifications into Esterel program. CRP (BERRY; RAMESH; SHYAMASUNDAR, 1993) is a unified Esterel and CSP (HOARE, 1978) languages, where their synchronous and asynchronous capabilities are combined. In this paradigm, a set of individually reactive synchronous processes is linked by asynchronous communication channels. The unification is given by a minor extension to the Esterel language. A primitive to permit asynchronous rendezvous is included, where the sending process emits a signal requesting for a rendezvous and receives rendezvous completion signals, by a given communication channel. The automatic verification of CRP programs is provided by a translation into a process calculus Meije (BOUDOL, 1985). These languages differ from dt-GTSS mainly by their control-driven nature that requires the designer to pay attention in control issues instead of concentrating on reactions of the system.

Synchronous Estelle is another language that merges both synchronous and asynchronous paradigms. The main idea is the same in CRP, but the asynchronous communication is given by means of message passing instead of rendezvous. Moreover, it is possible specify asynchronous systems, too. In Standard Estelle a system is viewed as a black-box and is specified by a state in a finite state machine which can be refined into a set of substates. Synchronous Estelle extends the standard one by including synchronous systems, which are specified by a state in a hierarchical state machine, i.e., a set of states (with a hierarchy) that is seen as a unique state. Using the synchronous version, it is possible specify reactive systems, while the communication between them is specified using the standard version. The execution of synchronous systems is divided into a set of computations steps, which are also divided into micro-steps, similar to the idea of transactions. At the beginning of the computation step, all messages arriving to the synchronous system are processed (possible generating internal events) and at the end all external messages generated by the computation are sent. The semantics of Synchronous Estelle is deterministic, using priorities on messages for choice purposes. The development environment of Synchronous Estelle includes a graphical (like Statecharts) editor, a compiler, a graphical animation. Moreover, they provide a translation from Synchronous Estelle to PROMELA (PROMELA LANGUAGE REFERENCE, 2008), for model checking purposes. The main difference from our approach is that this language is also control-driven, requiring to pay attention in control issues.

UML is a general-purpose visual modelling language that provides a complex family of diagrams to specify, construct and document the artifacts of a software system. Because of this complexity, usually, this family of diagrams is restricted by UML profiles. A UML profile is a subset of UML concepts which is adequate to define specific domains. Thus, most of the approaches to model reactive systems using this language propose a profile for this purpose. In general, class diagrams are used to define static aspects of the system and Statecharts or sequence diagrams are used to define dynamic ones. Moreover, despite of semi-formal semantics definition for UML, several approaches use translations to formal languages in order to define a formal semantics for this language, that is used as a graphical interface for visual specification. Most research on the formalisation of UML
refinements adhere to the approach of mapping the graphical notation into a formal domain, for example the works presented in (LEDANG; SOUQUIÈRES, 2002; USELTON; SMOLKA, 1994) among others. In (ALAVIZADEH; SIRJANI, 2006; ALAVIZADEH; NEKOO; SIRJANI, 2007), a UML profile for reactive systems was proposed, using class and object diagrams to describe the structure of system and sequence diagrams to describe the behaviour of it. Besides, they propose a translation to Rebeca language (SIRJANI; MOVAGHAR, 2001), that, in its turn, has translations to PROMELA and Java languages, in order to provide automatic verification and code generation, respectively. A Rebeca model is an actor-based language, with independent reactive objects and asynchronous message passing. The communication is given by means of (buffered) messages and execution of atomic associated methods. They prefer to use sequence diagrams instead of Statecharts, since the latter is more appropriate to specify objects which have a interesting lifecycle and the reactive objects of Rebeca have a limited number of states (idle, waiting and running) and actions (sending a message). Thus, the behaviour of these objects can be better described by its message exchange pattern with its environment/other objects. In (KERSTEN et al., 2002), a translation of the UML profile for reactive systems to Ada (ADA 95 REFERENCE MANUAL, 1995) was proposed, to achieve automatic code generation. This profile uses class diagrams to specify static aspects and Statecharts to specify dynamic aspects. The notion of refinement of this approach is applied to translated code. Different of GTSS, UML is not a formal language and requires knowledge of other languages to have notions of refinement and verification. Moreover, different languages (diagrams) are necessary to describe static and dynamic aspects, while in GTSS both aspects are described in the same specification, avoiding to have to check the compatibility between these two points of view.

In (HECKEL, 1998), a different semantics for graph transformations was defined, which allows to represent effects of environment’s events on the system states. This approach substitutes the pushout operation in definition of derivation by a pullback construction and permits to express more transformations than those specified by the systems’ graph productions, simulating events from environment. The author proposes this semantics to provide a compositional verification of reactive systems, where a system is decomposed in views that anticipate the potential behaviour of the complete system. The composability of this approach ensures that properties of a complete system can be derived from those properties shown for its views. The interactivity with the environment is described only semantically and there is no construction in the formalism allowing to specify this interaction explicitly. Moreover, this approach produces an overhead on specification of properties, where, in addition of desired properties, some constraints must be described to ensure that the additional information generated in the behaviour of a view can be produced only by productions in the other views. A notion of refinement for typed GTSS was proposed in (HECKEL et al., 1996), where two systems are related by partial graph morphisms and each rule is mapped into another one. Moreover, the abstract production is required to be an instance of concrete production, i.e., the visible part of the refined production must not coincide with the original one. Therefore, the refinement relation guarantees only the existence of specialised transformations in the refining system. Another notion of refinement for GTSS was proposed in (GROSSE-RHODE; PARISI-PRESICCE; SIMEONI, 2000), where an abstract system is related to a concrete one by a total graph morphism and a mapping associating each abstract production to an expression over the name productions of the concrete system. Expressions are syntactical descriptions of sequential and parallel compositions of productions. The retyped produc-
tion of the abstract system must coincide with the refining production. This requirement guarantees that refinement relations preserve the full behaviour of abstract system. In this notion of refinement it is not possible to describe causality in the expressions describing composition of productions.

Abstract State Machines (GUREVICH, 1995) (ASM) are a mathematically defined, high-level environment for the system design, verification and analysis (LAMCH; WYRZYKOWSKI, 2006). An Abstract State Machine is a state machine which in each step computes a set of updates of variables from a specific vocabulary, in accordance with transaction rules. In one execution step, all updates are committed simultaneously. ASMs have been introduced in (GUREVICH, 1985) as “a computation model that is more powerful and more universal than standard computation models”. Nowadays, there exist several extensions for ASMs, such as distributed, reactive and timed versions. In (BÖRGER; GLÄSSER, 1995), a predecessor of ASM, external functions are proposed to express environment effects in the system behaviour. A function is called external to a set of rules if it does not appear in any update in these rules. This kind of function is used to define the imported operations of a system and can be specified at any abstraction level. In this model is not possible to maintain a causal relation between elements of the system states, without adding explicit control to do this. In (MAIA; IORIO; BIGONHA, 1998), an extension of original model of ASMs is proposed, that explicitly enables the designer to define how the interactions occur between a system and its environment. There, a system is defined as a set of unit definitions and instances, where the units can be classified as system units (that are completely defined) and environment units (that are partially defined). A unit is composed by three parts: function, interaction and rules specifications. The interaction specification is defined by interaction operators that allow inputs and outputs within a unit, synchronisation and complex interaction patterns (using well-known composition operations: non-deterministic choice, parallel and sequential compositions). The environment units are restrictions of units, showing only the interaction specification, and play the role of interfaces of these units. There is also a notion of atomic reactions defined by interactions cycle. No notion of refinement is defined for this extension.

In the following section, we present some hints about how to improve our design environment.

5.3 Future work

The following open issues will be subject of future works:

- If we restrict our model to a special kind of GTSs called Object-Based Graph Grammars (OBGG), we can use a development environment for visual specification, simulation, automatic verification and code generation (DOTTI et al., 2005, 2006). In (DOTTI et al., 2006) an approach was proposed to verify partial systems using OBGGs based on the assume-guarantee approach. The basic idea is to see each part of a system as an open system - a system whose behaviour is not fully specified and that depends on interactions with its environment. In order to be possible we use this approach, it is necessary to describe the both output and input interactions. The former interaction is already specified by the interface and it is derived from the body behaviour. The input interaction (i.e., the reactions from the environment to the system events/signals) cannot be derived form the system specification, then it is necessary to include a mechanism to explicitly describe this kind of interaction.
It can be done by adding a new dependency relation for each production in an interface module. This extension can permit restrict the semantics of modules, since we have more dependencies to consider in order to complete the module behaviour.

- Besides, if we consider a $\mathrm{dT-GTS}$ and its abstraction related by an implementation morphism, as defined in Theorem 4.1, we can define a module notion, where the abstract system is the interface, describing the interaction between system and its environment; and the $\mathrm{dT-GTS}$ is the body that implements the interface. Moreover, in order to define notions of module composition, it is necessary to define first a notion of interaction compatibility, that requires that composed modules must have transactions of dual interaction patterns. Moreover, for two transactions (of different modules) holding to interaction compatibility, can exist synchronising elements, i.e., stable items that are created by one transaction and consumed by the other, before the end of former. In the composed module, these observable elements must become unobservable because the transactions must be merged. It is necessary to reasoning more about the resulting composed interface, as well as, the semantics of composed module.

- Other notions of refinement must be studied, for example, we can consider a $\mathrm{T-GTS}$ without dependency relation as an abstract specification and to include the dependency in a refinement of this specification. Other kind of refinement that can be considered is on the dependency relation: in the abstract level it can be less restrictive and in the concrete level it more restrictive.

- The OBGG model is extended, in (MICHELON; COSTA; RIBEIRO, 2006), with time notions. We must consider to apply this extension, in order to try to express synchronicity in the concrete level and preemption notions.
REFERENCES

BALDAN, P.; CORRADINI, A.; MONTANARI, U. Unfolding of Double-Pushout Graph Grammars is a Coreflection. In: INTERNATIONAL WORKSHOP ON THEORY AND

APPENDIX A CATEGORICAL DEFINITIONS

Definition A.1 (Pushout and pushout complement) (CORRADINI et al., 1997) Given a category \mathcal{C} and two arrows $l : K \to L$ and $k : K \to D$ of \mathcal{C}, a triple $\langle G, l^* : D \to G, m : L \to G \rangle$ as in the diagram below is called a pushout of $\langle l, k \rangle$ if

\[
\begin{array}{ccc}
K & \xymatrix{ \ar[l]^{l} \ar[d]_{k} & L} \\
D & \xymatrix{ \ar[l]^{l^*} \ar[d]_{g'} & G} \\
D' & \xymatrix{ \ar[u]^{h} \ar[r] & G} \\
\end{array}
\]

Commutativity $m \circ l = l^* \circ k$, and

Universal Property for all objects G' and arrows $g' : L \to G'$ and $f' : D \to G'$, with $g' \circ l = f' \circ k$, there exists a unique arrow $h : G \to G'$ such that $h \circ m = g'$ and $h \circ l^* = f'$.

In this situation, G is called a pushout object of $\langle l, k \rangle$. Moreover, given the arrows $l : K \to L$ and $m : L \to G$, a pushout complement of $\langle l, m \rangle$ is the triple $\langle D, k : K \to D, l^* : D \to G \rangle$ such that $\langle G, m, l^* \rangle$ is a pushout of $\langle l, k \rangle$. In this case D is called a pushout complement of $\langle l, m \rangle$.

Proposition A.1 (Existence and uniqueness of pushout complement) (CORRADINI et al., 1997) Let $l : K \to L$ and $m : L \to G$ be two morphisms in T-Graph, where m is injective. Then there exists a pushout complement $\langle D, k : K \to D, l^* : D \to G \rangle$ of $\langle l, m \rangle$ iff the following condition is satisfied:

Dangling condition No edge $e \in E_G - m_E(E_L)$ is incident to any vertex in $g_V(V_L - l_v(V_K))$.

In this case, $\langle l, m \rangle$ satisfies the gluing condition (or m satisfies the gluing condition with respect to l). If morphism l is injective, then the pushout complement is unique up to isomorphism.
Lemma A.1 Considering the following commuting diagram, with \(b \) mono, then (1) is a pullback in any category:

![Diag](image)

Proof: For all object \(X \) and two morphisms \(g \) and \(f \), such that \(c \circ g = b \circ f \), then \(\exists x : X \to A \) such that \(\text{id} \circ x = g \) and \(a \circ x = f \). By definition of identity \(x = g \), then it remains to prove \(a \circ g = f \). By commutativity of (1), then \(b \circ a \circ g = b \circ f \). Since \(b \) is mono, then \(a \circ g = f \) as we want to prove. \(\square \)

In the following, we consider the following commutative diagram:

![Diag](image)

Lemma A.2 (composition of pushouts and pullbacks). (HABEL; MÜLLER; PLUMP, 2001) If diagrams (1) and (2) are pushouts (pullbacks) then \((1+2) \) is a pushout (pullback) as well.

Lemma A.3 (decomposition of pushouts and pullbacks). If diagrams \((1+2) \) and (1) are pushouts then (2) is a pushout. If diagrams \((1+2) \) and (2) are pullbacks then (1) is a pullback (HABEL; MÜLLER; PLUMP, 2001).

Lemma A.4 (Special decomposition). (HABEL; MÜLLER; PLUMP, 2001) If diagrams \((1+2) \) and (2) are pushouts and \(B \to C \) is injective, then (1) is a pushout. If diagrams \((1+2) \) is pullback, (1) is a pushout, and \(C \to F \) is injective, then (2) is a pullback.

Lemma A.5 Consider the following commuting diagram in \(\text{Set} \)

![Diag](image)

If the two internal squares (1) and (2) are pullbacks, then the outer square with vertices \(A, B, E \) and \(F \) is a pullback as well ()

Lemma A.6 (3-cube lemma) (CORRADINI et al., 1996) Consider the following commuting diagram in \(\text{Set} \), with bottom and top morphisms injective.

![Diag](image)

We have the following 3-cube lemmata:
1. If the bottom square is a pushout, the back and left squares are pullbacks, then the top square is a pushout if and only if the front and right squares are pullbacks.

2. If the top square is a pullback, the front and right squares are pushouts, then the bottom square is a pullback if and only if the back and left squares are pushouts.
APPENDIX B PROPER QUOTIENT PRODUCTIONS

In the following, for a set P of productions, we will write $G \xrightarrow{P} H$ when there is a direct derivation from G to H using a production in P.

Definition B.1 (Quotient production) Given a production $q_1 = L_1 \xleftarrow{l_1} K_1 \xrightarrow{r_1} R_1$, a production $q_2 = L_2 \xleftarrow{l_2} K_2 \xrightarrow{r_2} R_2$ is a quotient production of q_1 if there are two pushouts (in Graph) of the form

\[
\begin{array}{c}
L_1 & \xleftarrow{l_1} & K_1 & \xrightarrow{r_1} & R_1 \\
\downarrow & & \downarrow (1) & & \downarrow \\
L_2 & \xleftarrow{l_2} & K_2 & \xrightarrow{r_2} & R_2
\end{array}
\]

where the vertical morphisms are surjective. The set of quotient productions of q_1 is denoted by $Q(q_1)$.

By the next lemma we have that every application of a production corresponds to an application of one of its quotient productions obeying the injectivity restriction. So, if there is a derivation using a quotient production, then there is an equivalent derivation using the original production. Moreover, if there is a derivation using a production based on an arbitrary match, then there exists an equivalent derivation using some quotient production of it based on an injective match.

Lemma B.1 (Quotient Lemma) For all graphs G and H, and all production q:

1. $G \xrightarrow{Q(q)} H$ implies $G \xrightarrow{q} H$;

2. $G \xrightarrow{qm} H$ implies $G \xrightarrow{q'qm'} H$ for $q' \in Q(q)$ and some injective m'.

The construction of proper quotient production for a parallel production can be find in (HABEL; MÜLLER; PLUMP, 2001).
APPENDIX C TRANSACTIONS OF A DT-GTS

In this chapter we define the functions used to construct the set of transactions of a DT-GTS. We do an analysis of termination for each function, after its definition, when is necessary, i.e., when there are loops in its definition.

Definition C.1 (Initialisation) Let P_Z be a set of production. The initialisation of set of transactions, denoted by $\text{init}(P_Z)$, is defined by the pair $\langle P', \text{DwtProc}(Z) \rangle$ as in the following:

1: for all $p \in P_Z$ do ▶ for each production p in P_Z
2: if $S(p) = p$ then ▶ if this production is stable
3: $\phi_{id_p} \in \text{DwtProc}(Z)$ ▶ then include in the set of transactions of Z the process containing p as its unique production
4: $P_Z = P_Z - \{p\}$ ▶ exclude production p from set of productions
5: end if
6: end for
7: $P' = \mathcal{P}(P_Z)$ ▶ assign to P' the power set of remaining productions in P_Z
8: for all $A \in P'$ do ▶ for all subset A of P_Z
9: if $\not\exists p \in A \cdot (S(L_p) = L_p \lor S(R_p) = R_p)$ then ▶ if there is no production with left-hand side stable or no production with right-hand side stable
10: $P' = P' - \{A\}$ ▶ then the subset of productions cannot compose a transaction and it is excluded from P'
11: end if
12: end for

The function defined above always stops since we can see that the executions of all loops are controlled by finite structures (set of productions P_Z and P').

Definition C.2 (Making a process) Let $Z = \langle \langle T_Z, P_Z, \pi_Z \rangle, T_Zs \rangle$ be a dt-GTS, $\phi = \langle \langle T_\phi, P_\phi, \pi_\phi \rangle, T_\phi s \rangle \rightarrow Z$ be a graph process, $\langle p, k \rangle$ be a pair where $p \in P_Z$ and $m : L_\phi^p \rightarrow \langle T_\phi, r_{\phi_T} \rangle$ be a match. For each Z, the process constructed by applying $\langle p, k \rangle$ in T_ϕ based on m, denoted by $\text{make}_Z(\phi, \langle p, k \rangle, m)$, is defined by ϕ_{aux} as follows:

1: $T_{aux} = \text{glue}_{\langle p, k \rangle}(p, m, T_\phi)$ ▶ construct T_{aux} applying $\langle p, k \rangle$ in T_ϕ based on m
2: $P_{aux} = P_\phi \cup \{\langle p, k \rangle\}$ ▶ assign to P_{aux} the set of productions of ϕ plus $\langle p, k \rangle$
3: $\pi_{aux} = \pi_\phi \cup \{\langle \langle p, k \rangle, L_p, m \rangle \leftrightarrow \langle K_p, m|K_p \rangle \rightarrow \langle R_p, t \rangle\}$, where $\pi_Z(p) = L_\phi^p \leftrightarrow K_\phi^p \rightarrow R_\phi^p$ and $t : R_p \rightarrow T_\phi$ is defined by

$$t(x) = \begin{cases} m(x), & \text{if } x \in K_p; \\
\langle x, \langle p, k \rangle \rangle, & \text{otherwise}. \end{cases}$$
Let \(\phi \) be a graph process. A subgraph \(G \) of \(T_\phi \) is called concurrent if \(G \) is a subgraph of a graph reachable from \(\text{Min}(\phi) \) by means of a derivation which applies all productions in \(\bigcup_{x \in G} [x] \), where \([x] = \{ p \mid p \in P_\phi \land p \preceq \phi x \} \).

Definition C.4 (Gluing) Let \(p : L_p \hookrightarrow K_p \rightarrow R_p \) be a production, \(G \) a graph, \(m : L_p \rightarrow G \) a graph morphism and \(* \) any symbol. The gluing of \(G \) and \(R_p \), according to \(m \) and marked by \(* \), denoted by \(\text{glue}_*(p, m, G) \) is the graph \((V, E, s, t) \), where:

\[
V = \{ V_G \cup m_*(V_{R_p}) \} \\
E = \{ E_G \cup m_*(E_{R_p}) \}
\]

with \(m_* \) defined by:

\[
m_*(x) = \begin{cases}
m(x), & \text{if } x \in K_p; \\
(x, *), & \text{otherwise}.
\end{cases}
\]

The source and target functions are inherited from \(G \) and \(R_p \).

Definition C.5 (Pre-transactions) Let \(A \) be a set of \(T \)-Graph productions. The list of initial graphs and productions, which can possibly constitute a transaction, based on \(A \), denoted by \(\text{preTransactions}(A) \), is the list \(l \) of graphs and production sets, defined as follows:

1: \(X = \{ \{ (p, 1) \mid p \in A \} \} \) \(\triangleright \) initialise \(X \) with one set of productions containing one instance of each production in \(A \)

2: \(l = \lambda \) \(\triangleright \) initialise the list of pre-transactions (initial graph and production instances that can constitute a transaction) with an empty list

3: \(\text{ok} = \text{false} \) \(\triangleright \) initialise \(\text{ok} \) indicating that the list of pre-transactions is not complete

4: \(\text{while } \neg \text{ok do} \) \(\triangleright \) repeat while there are new production instances to be considered to construct the pre-transactions

5: \(\text{ok} = \text{true} \) \(\triangleright \) assign \(\text{true} \) to \(\text{ok} \), that is set to \(\text{false} \) if new instances are needed

6: \(X_\text{aux} = \emptyset \) \(\triangleright \) assign empty set to \(X_\text{aux} \) (set containing sets of production instances generated in order to balance productions in all \(X' \) in \(X \))

7: \(\text{for all } X' \in X \text{ do} \) \(\triangleright \) for each set of production instances \(X' \) in \(X \)

8: \(\text{for all } (p, k) \in X' \text{ do} \) \(\triangleright \) for each production instance \((p, k) \) in \(X' \)

9: \(\text{if } x \in L_p - S(L_p) - K_p \text{ then} \)

10: \(\langle x, (p, k) \rangle \in L \) \(\triangleright \) include in \(L \) (set of unstable elements consumed by productions in \(X' \)) all unstable items consumed by \((p, k) \)

11: \text{end if}

12: \(\text{if } x \in R_p - S(R_p) - K_p \text{ then} \)

13: \(\langle x, (p, k) \rangle \in R \) \(\triangleright \) include in \(R \) (set of unstable elements created by productions in \(X' \)) all unstable items created by \((p, k) \), and

14: \text{end if}
if $x \in K_p - S(K_p)$ then
\[
\langle x, \langle p, k \rangle \rangle \in K
\]
\[
\text{\hspace{1cm}} \triangleright \text{include in } K \text{ (set of unstable elements preserved by productions in } X') \text{ all unstable items preserved by } \langle p, k \rangle
\]
end if

end for

if $\forall \langle x, \langle p, k \rangle \rangle \in K \cdot \exists \langle y, \langle q, k' \rangle \rangle \in R \cdot t_{K_p}(x) = t_{R_q}(y)$ and
\[
\forall \langle x, \langle p, k \rangle \rangle \in L \cdot \exists \langle y, \langle q, k' \rangle \rangle \in R \cdot t_{L_p}(x) = t_{R_q}(y)
\]
\[
\forall \langle y, \langle q, k' \rangle \rangle \in R \cdot \exists \langle x, \langle p, k \rangle \rangle \in L \cdot t_{R_q}(y) = t_{L_p}(x) \text{ then}
\]
\[
\triangleright \text{if all unstable items preserved/consumed (created) by production instances in } X' \text{ are created (consumed) by some production instance in } X'
\]
\[
\text{for all } \langle x, \langle p, k \rangle \rangle \in L \text{ do }
\]
\[
\text{\hspace{1cm}} \triangleright \text{then, for each consumed element } x \text{ in } L
\]
\[
\text{if } \exists \langle y, \langle q, k' \rangle \rangle \in R \cdot t_{L_p}(x) = t_{R_q}(y) \text{ then}
\]
\[
\text{\hspace{1cm}} \triangleright \text{if there is one created element } y \text{ with the same type of } x
\]
\[
L = L - \{ \langle x, \langle p, k \rangle \rangle \}
\]
\[
\triangleright \text{exclude } x \text{ consumed by } \langle p, k \rangle \text{ from set of elements consumed by productions in } X'
\]
\[
R = R - \{ \langle y, \langle q, k' \rangle \rangle \}
\]
\[
\triangleright \text{exclude } y \text{ created by } \langle q, k' \rangle \text{ from set of elements created by productions in } X'
\]
end if

end for

if $L = \emptyset$ and $R = \emptyset$ then
\[
\triangleright \text{if all unstable elements consumed (created) by production instances in } X' \text{ are created (consumed) by some production instance in } X'
\]
\[
l = l \cdot \text{InitGraph}(X')
\]
\[
\triangleright \text{then, add to list of pre-transactions, the list of pairs of initial graphs and productions of } X', \text{ and}
\]
\[
X_2 = \emptyset
\]
\[
\triangleright \text{assign empty set to } X_2 \text{ (set containing sets of production instances generate in order to balance all production instances of each } X' \text{), indicating that is not necessary to add new production instances to } X'
\]
else
\[
X_1 = \{ X' \}
\]
\[
\triangleright \text{otherwise, initialise } X_1 \text{ (set containing sets of production instances generated for each } X' \text{ in order to balance the consumed elements with created ones, if it is necessary) with the set of production instances } X'
\]
if $L \neq \emptyset$ then
\[
\triangleright \text{and, if there are consumed elements that are not created by some production instance in } X'
\]
\[
\text{for all } \langle x, \langle p, k \rangle \rangle \in L \text{ do }
\]
\[
\text{\hspace{1cm}} \triangleright \text{then, for each consumed element remaining in } L
\]
\[
\text{end for}
\]
\[
\text{for all } C \in X_1 \text{ do }
\]
\[
\text{\hspace{1cm}} \triangleright \text{initialise an empty set } X_C \text{ for each set of production instances in } X_1
\]
\[
X_C = \emptyset
\]
\[
\text{\hspace{1cm}} \triangleright \text{for each set of production instances in } X_1 \text{ and}
\]
\[
\text{for all } q \in A \text{ do }
\]
\[
\text{\hspace{1cm}} \triangleright \text{for each production } q \text{ in } A
\]
\[
\text{if } \exists y \in R_q - K_q \cdot t_{L_p}(x) = t_{R_q}(y) \text{ then}
\]
\[
\text{\hspace{1cm}} \triangleright \text{such that } q \text{ creates elements of same type that } x
\]
\[
X_C = \{(q, \#D + 1) \cup C \} \cup X_C,
\]
\[
\text{where } D = \{(q, i) | (q, i) \in C \}
\]
\[
\triangleright \text{include a new instance of } q \text{ in } X_C \text{ (set containing sets of production instances generated for each } C \text{ in } X_1 \text{ in order to create items in } L), \text{ and}
\]
\[
\text{end for}
\]
\[
\text{ok} = \text{false}
\]
\[
\triangleright \text{assign false to } \text{ok}, \text{ indicating that there are new production instances to be considered}
\[
X_1' = \bigcup_{C \in X_1} X_C
\]
\[
X_1 = X_1'
\] ▷ after generate all sets of production instances in \(X_C\), update \(X_1\) with sets of production instances generated in order to create all items \(\langle x, \langle p, k \rangle \rangle\) in \(L\).

55: \[
X_C = \{\{\langle p, \#D + 1 \rangle\} \cup C\} \cup X_C,
\]
where \(D = \{\langle p, i \rangle \mid \langle p, i \rangle \in C\}\) ▷ include a new instance of \(p\) in \(X_C\) (set containing sets of production instances generated for each \(C\) in \(X_2\) in order to consume items in \(R\)), and

56: \[\text{ok} = \text{false}\] ▷ assign false to \(\text{ok}\), indicating that there are new production instances to be considered.

66: \[X_{aux} = X_{aux} \cup X_2\] ▷ update \(X_{aux}\) with the sets of production instances generate in order to balance the productions in \(X'\).

69: \[X = X_{aux}\] ▷ update \(X\) with new sets of production instances generate in the previous iteration in order to balance the productions in all \(X'\) in \(X\).
In the function above, almost all loops are controlled by finite structures, but while loop (at lines 4 – 70) is repeated up to \(x = \text{true} \). \(x \) is set to \(\text{true} \) at the begin of each iteration and becomes \(\text{false} \) when an instance of a production is included to compensate a consumed/created item (lines 37 – 40 and 54 – 57). Since productions of considered \(T\text{-GTSS} \) do not have cycles on creation and consuming of unstable items, the number of needed instances of each production in a transaction is always finite. Consequently, \(x \) eventually is not set to \(\text{false} \) and the loop stops.

Definition C.6 (Initial graphs) Let \(X \) be a set of sets of \(T\text{-Graph} \) productions which have balanced unstable items. The possible initial graphs and for each \(X' \in X \), denoted by \(\text{InitGraph}(X) \), is given by list \(l \) of graphs and production sets, defined as follows:

1. \(l = \lambda \) \hspace{1cm} \triangleright \text{initialise the list of initial graphs and productions with an empty list}
2. \(\text{for all } X' \in X \text{ do} \) \hspace{0.5cm} \triangleright \text{for each set of production instances in } X
3. \(\text{ord} = \text{order}(X') \) \hspace{1cm} \triangleright \text{order the production instances based on possibility of application (created and consumed unstable items)}
4. \(\text{for all } G \in GI(\text{ord}) \text{ do} \) \hspace{0.5cm} \triangleright \text{for each initial graph obtained from ordered productions in } X'
5. \(l = (\langle G, X' \rangle, l) \) \hspace{0.5cm} \triangleright \text{include the pair of initial graph and productions in list } l
6. \(\text{end for} \)
7. \(\text{end for} \)

where \(\text{order}(X') \) orders the productions \(X' \) based on typing of unstable items, which is defined by \(l \) as follows:

1. \(l = \lambda \) \hspace{1cm} \triangleright \text{initialise the ordered list of productions in } X'
2. \(U = \emptyset \) \hspace{1cm} \triangleright \text{initialise the current unstable items (set of items created by considered productions that are not consumed by them)}
3. \(\text{for all } \langle p, k \rangle \in X' \text{ do} \) \hspace{0.5cm} \triangleright \text{for each production in } X'
4. \(\text{if } L_p = S(L_p) \text{ then} \) \hspace{1cm} \triangleright \text{if its left-hand side is stable then}
5. \(l = l \cup \langle p, k \rangle \) \hspace{0.5cm} \triangleright \text{include it in the list } l, \text{ and}
6. \(U = U \cup \{ \langle x, \langle p, k \rangle \rangle \mid x \in R_p - S(R_p) - K_p \} \) \hspace{0.5cm} \triangleright \text{include in } U \text{ the unstable items created by the production, and}
7. \(X' = X' - \{ \langle p, k \rangle \} \) \hspace{0.5cm} \triangleright \text{exclude the production from } X'
8. \(\text{end if} \)
9. \(\text{end for} \)
10. \(\text{while } X' \neq \emptyset \text{ do} \) \hspace{0.5cm} \triangleright \text{repeat while there is some production in } X' \text{ that is not used}
11. \(U_R = \emptyset \) \hspace{0.5cm} \triangleright \text{initialise the set of unstable items created by all enabled productions in each iteration}
12. \(\text{for all } \langle p, k \rangle \in X' \text{ do} \) \hspace{0.5cm} \triangleright \text{for each production } \langle p, k \rangle \text{ in } X' \text{ that can be applied in the graph containing the current items in } U \text{ that is not used}
13. \(C_p = \{ x \mid x \in L_p - S(L_p) \} \) \hspace{0.5cm} \triangleright \text{assign the set of unstable items consumed/preserved by } \langle p, k \rangle \text{ to } C_p \text{ and}
14. \(U_{aux} = U \) \hspace{0.5cm} \triangleright \text{assign the set of current items to } U_{aux}, \text{ which will be used to update } U \text{ excluding items consumed by } \langle p, k \rangle \text{ and}
15. \(C = \emptyset \) \hspace{0.5cm} \triangleright \text{initialise the set of unstable items consumed/preserved by } \langle p, k \rangle \text{ for which there exists a corresponding item in } U_{aux} \text{ and}
16. \(\text{for all } x \in C_p \text{ do} \) \hspace{0.5cm} \triangleright \text{for each unstable item } x \text{ consumed/preserved by } \langle p, k \rangle \text{ and}
17. \(\text{if } \exists \langle y, \langle q, j \rangle \rangle \in U_{aux} \cdot t_{L_p}(x) = t_{R_p}(y) \text{ then} \) \hspace{0.5cm} \triangleright \text{if there is an item in } U_{aux} \text{ with same type of } x
18: \textbf{if} \(x \in L_p - K_p \) \textbf{then} \hspace{1cm} \triangleright \text{then, if } x \text{ is consumed by } \langle p, k \rangle \\
19: \quad U_{aux} = U_{aux} - \{ \langle y, \langle q,j \rangle \rangle \} \hspace{1cm} \triangleright \text{then, exclude the item with same type of } x \\
\quad \text{from } U_{aux}, \text{ and} \\
20: \textbf{end if} \\
21: \quad C = C \cup \{ x \} \hspace{1cm} \triangleright \text{include } x \text{ in } C \\
22: \textbf{end if} \\
23: \textbf{end for} \\
24: \textbf{if} C = C_p \textbf{then} \hspace{1cm} \triangleright \text{if all unstable items consumed/preserved by } \langle p, k \rangle \text{ are currently in } U_{aux} \\
25: \quad l = l \cdot \langle p, k \rangle \hspace{1cm} \triangleright \text{then, include } \langle p, k \rangle \text{ in the list } l, \text{ and} \\
26: \quad X' = X' - \{ \langle p, k \rangle \} \hspace{1cm} \triangleright \text{exclude } \langle p, k \rangle \text{ from } X', \text{ indicating that it was already used, and} \\
27: \quad U = U_{aux} \hspace{1cm} \triangleright \text{update } U, \text{ excluding the unstable items consumed by } \langle p, k \rangle, \text{ and} \\
28: \quad U_R = U_R \cup \{ \langle x, \langle p, k \rangle \rangle \mid x \in R_p - S(R_p) - K_p \} \hspace{1cm} \triangleright \text{include in } U_R \text{ all unstable items created by } \langle p, k \rangle \\
29: \textbf{end if} \\
30: \textbf{end for} \\
31: U = U \cup U_R \hspace{1cm} \triangleright \text{include in set of current items all unstable items created by productions enabled in the current iteration} \\
32: \textbf{end while}

GI(l) is the set of possible initial stable graphs for the productions in l, applied in the order in which they appear in l. It is defined as follows:

1: \(\langle p, k \rangle = \text{head}(l) \) \hspace{1cm} \triangleright \text{get the first the first production in } l \\
2: l = \text{tail}(l) \hspace{1cm} \triangleright \text{exclude the first production from } l \\
3: G_0 = L_p \cup (R_p - S(R_p)) \hspace{1cm} \triangleright \text{initialise the partial initial graph with items consumed by } p \\
\quad \text{and unstable items created by } p \\
4: C = \{ G_0 \} \hspace{1cm} \triangleright \text{initialise the set of initial graphs with items the first partial initial graph } G_0 \\
5: \textbf{while } l \neq \lambda \textbf{ do} \hspace{1cm} \triangleright \text{repeat up to all productions in } l \text{ to be considered} \\
6: \quad \textbf{for all } G \in C \textbf{ do} \hspace{1cm} G_G = \emptyset \hspace{1cm} \triangleright \text{for each graph in } C, \text{ initialise a set } G_G, \text{ which will contain all graphs obtained applying in } G \text{ the production on the top of } l \\
7: \textbf{end for} \\
8: \textbf{for all } G \in C \textbf{ do} \hspace{1cm} \triangleright \text{for each partial initial graph } G \text{ in } C \\
9: \quad \langle p, k \rangle = \text{head}(l) \hspace{1cm} \triangleright \text{get the production on the top of } l \\
10: \quad \textbf{for all } q \in Pr(p) \textbf{ do} \hspace{1cm} \triangleright \text{and for each production } q, \text{ which include in the partial initial graph } G \text{ all stable items consumed by } \langle p,k \rangle \text{ and parts of stable items preserved by } \langle p,k \rangle \text{ (the preserved items must be considered because they can be preserved only by } \langle p, k \rangle \text{ and must be included in } G \rangle \\
11: \quad \textbf{for all match } m: L_q \rightarrow G \textbf{ do} \hspace{1cm} \triangleright \text{and for each match of } q \text{ in } G \\
12: \quad \quad C_G = H \cup C_G, \text{ where } G \overline{\rightarrow} H \hspace{1cm} \triangleright \text{include in } C_G \text{ the graph obtained by applying } q \text{ in } G \text{ based on match } m \\
13: \textbf{end for} \\
14: \textbf{end for} \\
15: \textbf{end for} \\
16: C_{aux} = \bigcup_{G \in C} C_G \hspace{1cm} \triangleright \text{get the union of partial initial graphs obtained from all } G \text{ in } C \\
17: C = C_{aux} \hspace{1cm} \triangleright \text{actualise } C \text{ with all partial initial graphs obtained with base on production } \langle p, k \rangle \text{ on the top of } l \\
18: l = \text{tail}(l) \hspace{1cm} \triangleright \text{exclude the production on the top of } l \\
19: \textbf{end while}
and $Pr(p)$ contains, for each possible subgraph L of preserved stable part of production p, a production that consumes all unstable item consumed by p; preserves L plus all unstable items preserved by p; and creates all stable part of L_p, which is not contained in L, plus all unstable items created by p. It is defined by set X as follows, where p is a T-Graph production:

1: $X = \emptyset$ \ [initialise the set of productions which create all stable items consumed by p and some stable items preserved by p]

2: for all subgraph L of $S(rng(l_p))$ do \ [for each subgraph L of L_p, containing only stable preserved items]

3: $X = X \cup \{q\}$ \ [include in X a production that consumes the unstable items consumed by p and creates the stable items of L_p that is not in L and the unstable items created by p]

where q is the T-Graph production $L_q \xleftarrow{t_q} K_q \xrightarrow{r_q} R_q$, with

$L_q = (V_{L_q}, E_{L_q}, s^{L_q}, t^{L_q})$

$V_{L_q} = V_L \cup V \cup V_u$

$E_{L_q} = E_L \cup E_u$

$E_u = \{e \mid e \in E_{L_p} \land t_{L_p}(e) \notin T_s\}$ \ [set of unstable edges consumed or preserved by p]

$V = \{v \mid (v = s^{L_p}(e) \lor v = t^{L_p}(e)) \land e \in E_u\}$ \ [set of vertices that are source or target of edges in E_u]

$V_u = \{v \mid v \in V_{L_p} \land t_{L_p}(v) \notin T_s\}$ \ [set of unstable vertices consumed or preserved by p]

the functions s^{L_q} and t^{L_q} and the typing morphism are inherited from L_p

$K_q = (V_{K_q}, E_{K_q}, s^{K_q}, t^{K_q})$

$V_{K_q} = V_L \cup V \cup V'_u$

$E_{K_q} = E_L \cup E'_u$

$V'_u = \{v \mid v \in V_u \land v \in rng(l_p)\}$ \ [set of unstable vertices preserved by p]

$E'_u = \{e \mid e \in E_u \land e \in rng(l_p)\}$ \ [set of unstable edges preserved by p]

the functions s^{K_q} and t^{K_q} and the typing morphism are inherited from L_p

$R_q = (V_{R_q}, E_{R_q}, s^{R_q}, t^{R_q})$

$V_{R_q} = V_{S(L_p)} \cup V'_u \cup V_s$

$E_{R_q} = E_{S(L_p)} \cup E'_u \cup E_s$

$V_s = \{v \mid v \in V_{R_p} \land v \notin V_{S(R_p)} \land v \notin rng(r_p)\}$ \ [set of unstable vertices created by p]

$E_s = \{e \mid e \in E_{R_p} \land e \notin E_{S(R_p)} \land e \notin rng(r_p)\}$ \ [set of unstable edges created by p]

the functions s^{R_q} and t^{R_q} and the typing morphism are inherited from L_p

$\forall \in K_q \cdot l_q(x) = id_{L_p}(x) \land r_q(x) = id_{L_p}(x)$ \ [map by l_q and r_q each preserved item to itself]

4: end for

The function $Pr(p)$ always stops since the execution of its loop is realised for each subgraph of $S(rng(l_p))$, that is a finite graph. The while loop (at lines 5 – 19) of $GI(l)$ function is executed up to l becomes empty. Since one element of l is excluded in each iteration this loops eventually finishes. Therefore, since $Pr(p)$ and while loop finishes, the function $GI(l)$ always stops. The unique loop in $order(X')$ that is not controlled by a
finite structure is the while loop at lines 10 – 32. This loop is repeated up to \(X'\) becomes empty. Each production \((p, k)\) of \(X'\) is eliminated when the productions ordered in the previous iterations create all unstable items used by \(p\) (lines 24 – 29). Since the productions in \(X'\) are balanced (i.e., all unstable items consumed/preserved by each production are created by others) all productions will be eliminated of \(X'\). Therefore, the function \(order(X')\) always finishes. Finally, since \(X\) and \(GI(ord)\) are finite and \(order(X')\) always finishes, the function \(InitGraph(X)\) always stops.

Definition C.7 (transactions test) Let \(\phi : O \to \mathcal{Z}\) be a graph process. transaction(\(\phi\)) is true if \(\phi\) is an transactional process and it is false otherwise. It is define by \(b\) as follows:

1: \(b = \text{true}\) \(\triangleright \) initialise \(b\) indicating that \(\phi\) is a transaction
2: \(\text{for all } x \in T_{\phi} \) do
3: \(\text{pre}_x = \{p \mid p \in P_{\phi} \land y \in L_p - \text{dom}(l_p) \land t_{L_p}(y) = x\}\) \(\triangleright \) assign all productions that consume \(x\) to \(\text{pre}_x\)
4: \(\text{cont}_x = \{p \mid p \in P_{\phi} \land y \in K_p \land t_{K_p}(y) = x\}\) \(\triangleright \) assign all productions that preserve \(x\) to \(\text{cont}_x\)
5: \(\text{post}_x = \{p \mid p \in P_{\phi} \land y \in R_p - \text{rng}(r_p) \land t_{R_p}(y) = x\}\) \(\triangleright \) assign all productions that create \(x\) to \(\text{post}_x\)
6: \(\text{if } \text{pre}_x \neq \emptyset \) then \(\triangleright \) if \(\text{pre}_x\) and
7: \(\text{if } \text{cont}_x \neq \emptyset \) then \(\triangleright \) \(\text{cont}_x\) are not empty
8: \(b = \text{false}\) \(\triangleright \) then assign false to \(b\) indicating that \(\phi\) is not a transaction
9: \(\text{else if } \text{post}_x \neq \emptyset \) then \(\triangleright \) if \(\text{pre}_x\) and \(\text{post}_x\) are not empty
10: \(b = \text{false}\) \(\triangleright \) then assign false to \(b\) indicating that \(\phi\) is not a transaction
11: \(\text{end if}\)
12: \(\text{else if } \text{cont}_x \neq \emptyset \) then \(\triangleright \) if \(\text{cont}_x\) and
13: \(\text{if } \text{post}_x \neq \emptyset \) then \(\triangleright \) \(\text{post}_x\) are not empty
14: \(b = \text{false}\) \(\triangleright \) then assign false to \(b\) indicating that \(\phi\) is not a transaction
15: \(\text{end if}\)
16: \(\text{end if}\)
17: \(\text{end for}\)
18: \(\text{Min} = \emptyset\) \(\triangleright \) initialise the set of items of minimal graph of \(\phi\)
19: \(\text{Max} = \emptyset\) \(\triangleright \) initialise the set of items of maximal graph of \(\phi\)
20: \(\text{for all } x \in T_{\phi} \) do \(\triangleright \) for all item \(x\) in the type graph of \(\phi\)
21: \(\text{if } \forall p \in P_{\phi}, \exists y \in R_p - \text{rng}(r_p) \land t_{R_p}(y) = x \) then \(\triangleright \) if there is no production that creates \(x\)
22: \(\text{Min} = \text{Min} \cup \{x\}\) \(\triangleright \) then include \(x\) in \(\text{Min}\)
23: \(\text{end if}\)
24: \(\text{if } \forall p \in P_{\phi}, \exists y \in L_p - \text{dom}(l_p) \land t_{L_p}(y) = x \) then \(\triangleright \) if there is no production that consumes \(x\)
25: \(\text{Max} = \text{Max} \cup \{x\}\) \(\triangleright \) then include \(x\) in \(\text{Max}\)
26: \(\text{end if}\)
27: \(\text{end for}\)
28: \(\text{if } \exists x \in \text{Min} \land x \not\in T_{\phi} \) then \(\triangleright \) if there is an unstable item in \(\text{Min}\)
29: \(b = \text{false}\) \(\triangleright \) then assign false to \(b\) indicating that \(\phi\) is not a transaction
30: \(\text{end if}\)
31: \(\text{if } \exists x \in \text{Max} \land x \not\in T_{\phi} \) then \(\triangleright \) if there is an unstable item in \(\text{Max}\)
32: \(b = \text{false}\) \(\triangleright \) then assign false to \(b\) indicating that \(\phi\) is not a transaction
33: \(\text{end if}\)
for all $x \in \text{Min}$ do
 if $\forall p \in P_\phi \cdot (\exists y \in L_p \cdot t_{L_p}(y) = x)$ then
 $b = \text{false}$
 end if
end for

Reachable = \emptyset

for all $P' \subseteq P_\phi$ do
 if $\forall p \in P' \cdot \forall x \in L_p \cdot$
 $((t_{L_p}(x) \in \text{Min}) \lor (\exists q \in P' \cdot \exists y \in R_q - \text{rng}(r_q) \cdot t_{R_q}(y) = t_{L_p}(x)))$ then
 $S_{P'} = \{ x \mid x \in T_\phi \land ((x \in \text{Min} \land \forall p \in P' \cdot \exists y \in L_p - \text{dom}(l_p) \cdot t_{L_p}(y) = x) \lor (\exists q \in P' \cdot \exists y \in R_q - \text{rng}(r_q) \cdot t_{R_q}(y) = x) \land (\forall y' \in P' \cdot \exists z \in L_{y'} - \text{dom}(l_{y'}) \cdot t_{L_{y'}}(z) = x))\}$
 end if
end for

Reachable = Reachable $\cup \{S_{P'}\}$

for all $S \in \text{Reachable}$ do
 if $\forall x \in S \cdot x \in T_{\phi_2}$ then
 $b = \text{false}$
 end if
end for

All loops in function $\text{transaction}(\phi)$ are controlled by finite structures, then its computations always stop.

Definition C.8 (dep-weak-equivalence test) Let ϕ_1 and ϕ_2 be two transactional process. $\text{depEq}(\phi_1, \phi_2)$ is **true** if the processes are dep-weak-equivalent and it is **false** otherwise. $\text{depEq}(\phi_1, \phi_2)$ is defined by b as follows:

1: $b = \text{false}$

2: if there is an isomorphism $f : T_{\phi_1} \rightarrow T_{\phi_2}$ and there is a bijection $g : P_{\phi_1} \rightarrow P_{\phi_2}$ such that $\text{rng}(f_{\text{Min}(\phi_1)}) = \text{Min}(\phi_2)$, $\text{rng}(f_{\text{Max}(\phi_1)}) = \text{Max}(\phi_2)$ and $\phi_2 \cdot P \circ g = \phi_1 \cdot P$ then

3: $R_{\phi_1} = \emptyset$

4: for all $(a, b) \in \ll_\phi_1$ do

5: $R_{\phi_1} = R_{\phi_1} \cup \{(f(a), f(b))\}$

6: end for
7: if $R_{\phi_1} = \prec_{\phi_2}$ then $b = \text{true}$ \hspace{1cm} \triangleright \text{ if the translation of } \prec_{\phi_1} \text{ is equal } \prec_{\phi_2}, \text{ then assign } \text{true} \text{ to } b \text{ indicating that } \phi_1 \text{ and } \phi_2 \text{ are dep-weak-equivalent}

8: end if
9: end if

Since the loop in function defined above is controlled by a finite structure the computation of $\text{depEq}(\phi_1, \phi_2)$ always stops.
APPENDIX D RESUMO ESTENDIDO DA TESE

A complexidade dos sistemas atuais requer o uso de métodos de desenvolvimento que garantam correção e qualidade. Especificação formal é um importante instrumento usado para atingir estes objetivos. A especificação é uma descrição do comportamento de um sistema e/ou sua estrutura.

Sistemas de transformação de grafos (GTss) é um formalismo adequado para a especificação de sistemas complexos, que podem levar em conta aspectos como orientação-à-objetos, concorrência, mobilidade e distribuição (EHRRG et al., 1999a). De fato, grafos podem ser naturalmente usados para fornecer uma representação estruturada dos estados de um sistema, a qual destaca seus subcomponentes e suas interconexões lógicas e físicas. Os eventos que ocorrem no sistema, que são responsáveis pela evolução de um estado para outro, são modelados por aplicações de regras de transformação adequadas, chamadas de produções (de grafos). Esta representação é suficientemente precisa para permitir análise formal do sistema em consideração, e também oferece uma representação intuitiva visual que pode ser facilmente compreendida por pessoal não-especialista.

Ao longo dos anos, o “framework” original foi sendo enriquecido, estendendo GTss com conceitos de estruturação que são necessários para lidar com a complexidade de grandes especificações. Diversas noções de modularidade e refinamento foram propostas, proporcionando mecanismos básicos para encapsulamento, abstração e ocultação de informação – veja (HECKEL et al., 1999; SCHÜRR; WINTER, 2000; KREOWSKI; KUS-KE, 1999; DREWES et al., 2000; EHRIG; ENGELES, 1996; HECKEL et al., 1998; TALENZER; SCHÜRR, 1995; GROSSE-RHODE; PARISI-PRESICCE; SIMEONI, 1999; EHRIG; ENGELES, 1993). Contudo, pouca atenção tem sido dada à ideia de estender GTss para permitir a especificação de atividades transacionais. Abstratamente, uma transação é uma atividade, envolvendo a execução de um grupo de eventos, os quais podem levar o sistema a um estado de sucesso ou falha. No último caso, a execução parcial da transação é descartada e não tem efeito no sistema. Em implementações concretas esta noção é obtida com mecanismos de “roll-back” que restaura o estado inicial quando a falha é detectada.

Em um trabalho introdutório (BALDAN et al., 2008), foi definida uma extensão de GTss, chamadas sistemas de transformação de grafos transacionais (T-GT), equipando-os com a noção de transação. Rudemente falando, estados (grafos) são divididos em partes estáveis e não-estáveis (instáveis), e uma transação é definida como uma computação que começa e termina em estados contendo somente ítems estáveis, na qual todos os estados intermediários tem alguma parte instável. Esta abordagem é motivado pela natureza “data-flow” deste formalismo, onde as produções do sistema são aplicadas não-deterministicamente, e qualquer forma de controle da aplicação das produções deve ser codificada nos grafos. Assim, transações são mais naturalmente definidas indiretamente,
através da identificação de partes do estado que representam recursos temporários (ou “instáveis”), visíveis somente dentro da transação. Transações podem ser vistas em dois diferentes níveis de abstração. Em um nível mais baixo, ambos os itens estáveis e instáveis, e assim também a estrutura interna da transação, são visíveis. Mas em um nível mais abstrato, os itens instáveis podem ser “esquecidos” e somente transações completas são observáveis. Intuitivamente, um novo GTS é obtido, onde transações do T-GTS original tornam-se produções que reescrevem diretamente o estado de origem no estado de destino.

Sistemas reativos, em contraste aos sistemas transformacionais, são caracterizados pela contínua reação a estímulos provenientes do seu ambiente. Se, além da reatividade, considerarmos que muitas aplicações o método de especificação deveria prover um modo de descrever a distribuição espacial dos estados, transformações de grafos parecem ser uma técnica de especificação adequada. Algumas aplicações com estas características são sistemas móveis e vias biológicas.

Diversos métodos para projeto e análise de sistemas reativos propõem linguagens síncronas como formalismo de especificação (BERRY, 2000; HALBWACHS et al., 1991; LEGUERNIC et al., 1991), onde o tempo de reação a um evento é nulo. Outros métodos (SECELEANU; SECELEANU, 2004; MAIA; IORIO; BIGONHA, 1998; RIESCO; TUYA, 2004) propõem usar linguagens assíncronas para especificar a comunicação entre os componentes e definem um mecanismo para descrever um conjunto (ou sequência) de atividade que são realizadas atomicamente. Portanto, nos podemos usar a noção de transações para descrever, em um nível abstrato, estas atividades atômicas. Além disso, foi proposta, em (MAIA; IORIO; BIGONHA, 1998), uma abordagem para especificar explicitamente padrões de interação usando Máquinas de Estados Abstratas (ASMs), onde o projetista, além de especificar as operações do componente, pode descrever os sinais que são enviados e recebidos do ambiente. O projetista pode também especificar parcialmente o ambiente mostrando somente a especificação das interações.

Contudo, as abordagens para transformações de grafos não fornecem mecanismos para especificar explicitamente padrões de interação entre o sistema e seu ambiente. Algumas delas restringem o padrão de interação à funções (e assim na realidade descrevem sistemas transformacionais), e outras apenas permitem uma forma muito restrita de interações. Em (HECKEL, 1998), foi proposto o uso de sistemas de transformação de grafos para especificar sistemas reativos: a interação entre o sistema e seu ambiente não é explicitamente especificado, ao invés, ela é descrita em um nível semântico, onde os estados do sistema descrevem efeitos que não são determinados por aplicações de regras. Portanto, sistemas de transformação de grafos transacionais são estendidos para expressar interações explicitamente.

Nesta tese, é desenvolvido um trabalho mais elaborado em GTSSs transacionais para permitir a abstração da estrutura interna das transações e demonstrar que um T-GTS e sua abstração têm o mesmo comportamento em termos de transações. Além disso, T-GTSSs foram estendidos com um mecanismo para descrever padrões de interação entre um sistema e seu ambiente, o que permite especificar sistemas reativos. A ideia, nesta proposta, é que um componente interage com seu ambiente consumindo e criando elementos visíveis ao seu ambiente. Estas ações podem ser descritas como produções (abstratas) de grafos na especificação abstrata que são implementadas por uma série de outras produções em uma especificação mais concreta. Uma relação entre estes dois níveis de abstração foi definido, resultando em uma noção de refinamento.

Mais especificamente, os principais objetivos desta tese são:
• definir uma noção de atividade atômica para GTSS: alcançado através da definição da noção de transações;

• demonstrar que atividades atômicas são preservadas em um nível mais alto de abstração: atingido através da definição de morfismos de implementação e da demonstração da existência de uma adjunção entre as categorias dos T-GTS com morfismos de implementação e dos GTSS com morfismos padrão. Resultados preliminares deste trabalho foram publicados em (BALDAN et al., 2006);

• propor um mecanismo para descrever padrões de interação através de produções de grafos para especificar sistemas reativos: obtido através da definição de relações de dependência associadas às produções dos T-GTS. Resultados preliminares deste trabalho foi publicado em (FOSS; MACHADO; RIBEIRO, 2007);

• definir uma noção de refinamento que leve em conta os padrões de interação: atingido através da definição de uma noção de refinamento baseada nos morfismos de implementação.

D.1 Contribuições

As contribuições desta tese estão relacionadas a duas diferentes áreas da Ciência da Computação: a área teórica, através da fundamentação teórica do conceito de transações para transformação de grafos; e a área de engenharia de software, propondo um formalismo para especificar sistemas reativos, onde as interações entre o sistema e seu ambiente podem ser descritas por relações associadas às produções. Além disso, usando morfismos de implementação, pode-se definir um método de desenvolvimento incremental, iniciando com uma visão abstrata do sistema e adicionando mais detalhes a cada passo de refinamento.

D.1.1 Contribuições para a área teórica

Nesta tese foi dada a fundamentação teórica da noção de atividades transacionais em transformação de grafos. Uma transação é definida como uma classe de derivações, onde os estados inicial e final são estáveis e todos os estados intermediários são instáveis. Assim, os ítems instáveis representam recursos temporários, visíveis somente dentro da transação. A distinção entre elementos estáveis e instáveis é forçada pelo mecanismo de tipagem. Esta definição de transações é inspirada no trabalho sobre zero-safe nets (BRUNI; MONTANARI, 2000) e é motivada pela natureza “data-driven” do formalismo de transformação de grafos, onde qualquer forma de controle na aplicação das produções é codificada nos grafos. Um dos principais resultados teóricos deste trabalho é a caracterização do sistema abstrato de um T-GTS (que contém todas as transações do T-GTS como produções) em termos de uma construção universal: um funtor adjunto à direita. Para obter este resultado, inicialmente, as transações foram caracterizadas como processos de grafos e após foi definida a noção de morfismo de implementação (outra importante contribuição teórica), permitindo associar produções a processos transacionais. Essa noção de morfismo de implementação é ainda mais geral que a noção definida em (BRUNI; MONTANARI, 2000), permitindo que produções instáveis possam ser implementadas por transações instáveis e, consequentemente, pode-se refinar também as implementações das produções.
Além dos resultados mencionados, a extensão de transformações de grafos transacionais, introduzida no Capítulo 4 (dT-GTS), enriquece a informação dada pelas produções de grafos das t-GTSS, tornando explícita a dependência entre elementos criados e consumidos/preservados. Esta relação pode ser usada para restringir o refinamento das transações, uma vez que a noção de morfismo de implementação para dT-GTSS deve respeitar as dependências. Assim, usando esta extensão podemos dar informações abstratas a respeito das dependências desejadas nas implementações.

D.1.2 Contribuições para a área de Engenharia de Software

A abordagem visual e dirigida a dados das GTSS, faz delas um formalismo natural para especificar sistemas reativos, onde o comportamento dos componentes é definido pelo fluxo dos sinais (dados) que são gerados pelo ambiente e não pelo fluxo de controle dos componentes. As noções de transação e relação de dependência introduzidas nesta tese tornam o formalismo ainda mais adequado para a especificação de sistemas reativos. Estas extensões incrementam o formalismo de GTSS com um mecanismo para especificar reações atômicas e, assim permite descrever, em um nível abstrato, sistemas síncronos. Nesta tese, também foi apresentada uma ideia inicial sobre estruturação vertical, propondo uma noção de refinamento para relacionar especificações abertas e concretas, onde as dependências entre eventos/sinais de entrada e saída são dadas explicitamente como uma informação adicional a respeito do comportamento do sistema. Esta informação pode ser útil para especificar o comportamento do ambiente e para fins de verificação, como será discutida na seção 5.3.

Na seção a seguir, são apresentadas algumas ideias iniciais sobre como incrementar este framework.

D.1.3 Trabalhos futuros

As seguintes questões serão temas de trabalhos futuros:

- se este modelo for restringido a um tipo especial de GTSS chamado de Gramática de Grafos Baseadas em Objetos (OBBG), pode-se usar uma ambiente de desenvolvimento para especificação visual, simulação, verificação automática e geração de código (DOTTI et al., 2005, 2006). Em (DOTTI et al., 2006) foi proposta uma abordagem, para verificar sistemas parciais usando OBBGs, baseada na abordagem “assume-guarantee”. A ideia básica é ver cada parte do sistema como um sistema aberto - um sistema cujo comportamento não está completamente especificado e que depende das interações com seu ambiente. Para que seja possível usar esta abordagem, é necessário descrever ambas as interações de entrada e saída. As últimas são especificadas pela interface e são derivadas do comportamento do corpo do sistema. As interações de entrada (i.e., as reações provenientes do ambiente resultantes dos eventos/sinais do sistema) não podem ser derivadas da especificação do sistema, então é necessário incluir um mecanismo para descrever explicitamente este tipo de interação. Isto pode ser feito adicionando uma nova relação de dependência para cada produção na interface do módulo. Esta extensão permite restringir a semântica dos módulos, uma vez que tem mais dependências para considerar ao completar o comportamento do módulo.

- além disso, considerando uma dT-GTS e sua abstração relacionadas por um morfismo de implementação, como definido no Teorema 4.1, pode-se definir uma noção
de módulo, onde o sistema abstrato é a interface, descrevendo a interação entre o sistema e seu ambiente; e dT-GTS é o corpo que implementa a interface. Além disso, para definir noções de composição de módulos é necessário definir inicialmente uma noção de compatibilidade entre as interações, requerendo que os módulos compostos devem ter transações com padrões de interação duais. Além disso, para duas transações (de módulos diferentes) com compatibilidade de interações, deve existir elementos de sincronização, i.e., itens estáveis que são criados por uma transação deve ser consumidos pela outra, antes do final da primeira. Em um módulo composto, estes elementos observáveis devem tornar-se inobserváveis pois as transações devem ser fundidas. É necessário ainda estudar melhor sobre a interface composta resultante, bem como, a semântica do módulo composto.

- outras noções de refinamento devem ser estudadas, por exemplos, considerando-se uma T-GTS sem relação de dependência como uma especificação abstrata e adicionando a relação de dependência no refinamento desta especificação. Outro tipo de refinamento que pode ser considerado é o refinamento da relação de dependência: em um nível abstrato ela pode ser menos restritiva e em um nível concreto ela pode ser mais restrita.

- O modelo das OBGGs é estendido, em (MICHELON; COSTA; RIBEIRO, 2006), com noções de tempo. Pode-se considerar aplicar esta extensão, para tentar expressar sincronia e noções de preempção no nível concreto.