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ABSTRACT
The presence of quark-hadron phase transitions in neutron stars can be related to several inter-
esting phenomena. In particular, previous calculations have shown that fast rotating neutron
stars, when subjected to a quark-hadron phase transition in their interiors, could give rise to
the backbending phenomenon characterized by a spin-up era. In this work, we use an equation
of state composed of two phases, containing nucleons (and leptons) and quarks. The hadronic
phase is described in a relativistic mean field formalism that takes many-body forces into
account, and the quark phase is described by the MIT bag model with a vector interaction.
Stationary and axisymmetric stellar models are obtained in a self-consistent way by solving
numerically the Einstein–Maxwell equations by means of a pseudo-spectral method. As a
result, we obtain the interesting backbending phenomenon for fast spinning neutron stars.
More importantly, we show that a magnetic field, which is assumed to be axisymmetric and
poloidal, can also be enhanced due to the phase transition from normal hadronic matter to
quark matter on highly magnetized neutron stars. Therefore, in parallel to the spin-up era,
classes of neutron stars endowed with strong magnetic fields may go through a ‘magnetic-up
era’ in their lives.
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1 IN T RO D U C T I O N

Compact stars refer collectively to white dwarfs (WD), neutron
stars (NS), or even black holes. The latter two are usually formed in
catastrophic astrophysical events such as supernova explosions, see
e.g. Glendenning (2012) and Shapiro & Teukolsky (2008). In a few
seconds, these explosions release the brightness of millions of suns,
so it is not surprising that such phenomena have been observed since
ancient times. The kind of the remnant depends primarily on the
mass of the proto-star. Moreover, these objects harbour compressed
ultradense matter in their interiors, have spin rotation from zero
to milliseconds and can support ultrahigh magnetic fields. These
features, in conjunction with the corresponding progress in obser-
vational astrophysics, make them one of the most and, sometimes,
the only suitable environment to inspect, or at least to infer from,
the behaviour of matter and electromagnetic fields under extreme
conditions.

Depending on the equation of state (EoS) chosen to describe the
matter, the density inside NS can reach values several times higher
than the nuclear saturation density ρ0 ∼ 0.15 fm−3. In fact, during
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the past years, much effort has been made in order to describe
and shed light on the still open question concerning the EoS for
ultradense nuclear matter. Furthermore, another important question
that we address in this work is the impact of the magnetic field
on the structure and on the evolution of these stars. The knowledge
of the microscopic theory related to the EoS allows not only to study
the general structure of the star, including its deformation due to the
magnetic field and due to rotation, but also provides information
about the inner composition of the star, including possible exotic
phases such as quarks and hyperon in the stellar core.

As shown in Glendenning, Pei & Weber (1997) and Zdunik et al.
(2006), phase transitions inside NS can be accessed through the
backbending phenomenon, where stars spin-up over time as a con-
sequence of a phase change in their cores. However, the exact mech-
anism responsible for the spin-down of stars is still unclear. The
most accepted idea is that these stars spin-down because of mag-
netic torques and lose energy through magnetic dipole radiation
(MDR). In this way, rotating magnetized stars behave as oblique
rotators (Pacini 1967, 1968; Gold 1975). In addition to the dipole
radiation, processes such as emission of gravitational radiation and
pulsar wind can also contribute to the braking index of NS (Ostriker
& Gunn (1969), Ferrari & Ruffini (1969), Blandford & Romani
(1988), Manchester, Durdin & Newton (1985)). In all cases, the
star energy loss can be described by a power law Ė = −C�n+1,
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C being a term that accounts for the pulsar structure, E for the kinetic
energy, � is the pulsar angular velocity and n is the braking index,
which therefore describes the dependence of the braking torque on
the rotation frequency.

According to the MDR theory, a rigid star with a constant dipole
magnetic field and a constant moment of inertia I has the canonical
braking index of n = 3. As calculated in Pacini (1967, 1968), the
spin-down relation for such stars is given by �̇ ∝ �3. However,
in the presence of rotation, the moment of inertia I is not constant
in time and, therefore, one has to considerer the dependence I(�).
In this case, the star responds to changes due to the centrifugal
force becoming oblate. This effect reduces the value of the brak-
ing index from the standard oblique rotator model to a value of
n < 3, see Hamil et al. (2015). Furthermore, the microphysics im-
pacts strongly the braking index, which can have values in the range
of −∞ < n < ∞ in presence of a first-order phase transition, see
e.g. Glendenning et al. (1997) and Chubarian et al. (2000).

In case of a phase transition, its duration epoch is governed
by a slower loss of the star angular momentum due to radiation.
This will be seen in the behaviour of the I(�) curve presented
in Section 3. Similar results as those presented in Section 3 were
already investigated before, see for example Glendenning et al.
(1997), Zdunik et al. (2006) and Chubarian et al. (2000). At the
same time, as we will see in Section 4, this phase change in the
stellar interior can introduce not only a spin-up era, but also an
increase in the magnetic field throughout the star.

From pulsar spin-down observations together with the magnetic
dipole model, the magnitude of the surface magnetic field in NS is
typically estimated to be of the order of 1012–1013 G. However, other
classes of NS known as anomalous X-ray pulsars and soft gamma-
ray repeater, referred to magnetars, can have surface magnetic fields
as large as 1014–1015 G (Duncan & Thompson 1992; Paczynski
1992; Thompson & Duncan 1993, 1996; Melatos 1999). Such strong
magnetic fields affect both the structure and the composition of these
stars and can, potentially, convert a hybrid star into a hadronic star
as shown in Franzon, Dexheimer & Schramm (2015).

By modelling rapidly rotating NS, we show the effects of a phase
transition on the moment of inertia I(�) of the stars and, as a
consequence, the impact on the braking index n(�) (which be-
comes frequency-dependent). In addition, we constructed models
for highly magnetized NS and we show that, similarly to the rotat-
ing case, the magnetic field induces a reduction in the moment of
inertia, which introduces an era in the stellar evolution where the
magnetic field increases. In comparison with the spin-up era for fast
rotating bodies, we call this phenomenon a ‘magnetic-up era’.

2 EQUATIO N O F STATE

The transition from confined to deconfined matter inside NS has
been extensively studied over the last years and, in many cases, also
applied to study properties of hybrid stars (Bombaci et al. 2007,
2009; Yasutake et al. 2011; Lenzi & Lugones 2012; Ayvazyan et al.
2013; Brillante & Mishustin 2014; Alvarez-Castillo & Blaschke
2015; de Carvalho et al. 2015; Dexheimer et al. 2015; Franzon et al.
2015). Despite this progress, at the present moment, there are still
substantial uncertainties in the EoS regarding the description of the
stellar matter at supra-nuclear densities.

In this work, we use an EoS with quark-hadron phase transition
to describe the stellar interior. The hadronic phase, composed of
nucleons (together with leptons), is described in the framework of
a relativistic mean-field theory and takes into account many-body
forces contributions in the baryon couplings. For the quark phase,

Table 1. Properties of the particles used in the formalism: mass m, projec-
tion of the isospin in the z direction I3, baryon charge qb and electric charge
qe.

Particle Mass (MeV) I3 qb qe

p 939.6 1/2 1 +1
n 938.3 −1/2 1 0
e− 0.511 0 0 −1
μ− 105.7 0 0 −1
u 1.0 − 1/3 +2/3
d 1.0 − 1/3 −1/3
s 100.0 − 1/3 −1/3

Table 2. Meson fields properties considered in the hadronic phase and their
respective coupling constants at nuclear saturation density.

Meson Classification Mass (giN /mi )2

(MeV) (fm2)

σ scalar-isoscalar 550 14.51
δ scalar-isovector 980 0.38
ωμ vector-isoscalar 782 8.74
� vector-isovector 770 4.47

we use the MIT bag model with vector interaction, in order to re-
produce the maximum effect that phase transitions can produce. We
choose in this work to describe the deconfinement phase transition
by using the usual Maxwell construction, i.e. reproduce a sharp
phase transition.

2.1 Hadronic phase

The Lagrangian density of the MBF model reads:

L =
∑

b

ψb

[
γμ

(
i∂μ − gωbωμ − g�bI3b�

μ
3

) − m∗
bζ

]
ψb

+
(
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∂μσ∂μσ − m2

σ σ 2

)
+ 1

2

(
−1

2
ωμνω

μν + m2
ωωμωμ

)

+ 1

2

(
−1

2
�μν.�

μν + m2
��μ.�μ

)
+

(
1

2
∂μδ.∂μδ − m2

δδ
2

)

+
∑

l

ψ lγμ

(
i∂μ − ml

)
ψl. (1)

The subscripts b and l correspond to nucleonic (n, p) and lepton
(e−, μ−) degrees of freedom. The first and last terms in equation (1)
represent the Dirac Lagrangian density for nucleons and leptons.
The other terms represent the Lagrangian densities of the scalar
mesons σ and δ (Klein–Gordon Lagrangian density), and the vector
mesons ω and � (Proca Lagrangian density). The meson–baryon
interaction appears in the first term, contained in the coupling con-
stants (gωb, g�b) and effective masses (m∗

bζ ). The properties of the
particles used in this work can be found in the Tables 1 and 2. In this
formalism, the δ and � fields allow for a better description of the
isospin asymmetry of the system. See Alaverdyan, Alaverdyan &
Chiladze (2010) for an analysis of the influence of the delta meson
on phase transitions.

The effects of the many-body forces contribution (controlled by
the ζ parameter) and the nuclear interaction on the baryonic effective
masses and chemical potentials are expressed in the following

m∗
b = mb −

(
1 + gσbσ + gδbI3bδ3

ζmb

)−ζ

(gσbσ + gδbI3bδ3) (2)
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μ∗
bi

=
√

k2
fb

+ (m∗
bζ )2 + gωbω + g�bI3b�3 + gφbφ, (3)

where kfb and mb correspond to the fermi momenta and the bare
masses of the baryons.

By choosing small values of the ζ parameter, the second term in
equation (2) can be expanded by means of nonlinear self-couplings
of the scalar fields (σ , δ), simulating the effects of many-body forces
in the nuclear interaction. Each set of parameters generates different
EoS’s and, hence, different sets of nuclear saturation properties. For
this study, we use the parametrization: ζ = 0.040, reproducing a
binding energy of B/A = −15.75 MeV and the saturation density
ρ0 = 0.149 fm−3. This set of parameters reproduces the follow-
ing nuclear saturation properties: effective mass of the nucleon
m∗/m = 0.66, incompressibility K0 = 297 MeV, symmetry energy
J0 = 32 MeV and slope of the symmetry energy L0 = 97 MeV (for
more details of nuclear saturation properties covered by the MBF
model, see e.g. Gomes et al. 2015).

2.2 Quark phase

For the quark phase, we adopt the MIT bag model with an additional
vector interaction. We take the quarks u, d and s, and the leptons
e− and μ− as degrees of freedom (see Table 1). The Lagrangian
density of the model reads:

L =
∑

q

[
ψq(iγμ∂μ − gV qγμV μ − mq − B)ψq

]
θH

+
∑

l

ψ lγμ

(
i∂μ − ml

)
ψl, (4)

with θH being the Heavyside function responsible for the confine-
ment feature of the model (θH = 1 inside the bag; θH = 0 outside),
and B is the bag constant. This constant represents the extra en-
ergy per unit of volume required to create a region of perturbative
vacuum (Farhi & Jaffe 1984).

The vector interaction is introduced by a vector-isoscalar meson
Vμ, with coupling constant gV, coupling to all three quarks. As
discussed in Shao et al. (2013), the field that introduces the vector
interaction can be considered analogous to the ω field used in the
hadronic model. As in the hadronic phase, the vector interaction
introduces a shift in the quark chemical potential:

μ∗
qi

=
√

k2
fq

+ m2
q + gVqV . (5)

The vector interaction has been extensively studied in the con-
text of bag models (Contrera et al. 2014; Klähn & Fischer 2015)
and Nambu–Jona–Lasinio models (Contrera et al. 2014; Klähn &
Fischer 2015; Ranea-Sandoval et al. 2016), and has been applied
to different investigations such as the study of the phase structure
and transitions of matter (Shao et al. 2012; Contrera et al. 2014),
the effect of strong magnetic fields (Denke & Pinto 2013; Menezes
et al. 2014), the thermal evolution of NS (de Carvalho et al. 2015)
and others. In particular, the approach used in this work is analo-
gous to the one proposed in Alford et al. (2005) and Weissenborn
et al. (2011), which introduces phenomenological corrections based
on gluon effects that result in extra terms in the EoS and particles
densities of quark matter. Note that the introduction of a vector-
isovector field generates these same shifts in the EoS, due to the
additional term, Vμ, in the pressure, as well as in the energy den-
sity. In addition, Vμ changes the particle population, as the quark
chemical potentials are modified.

In this context, the hardest task of such models is to determine
the coupling constant of the vector interaction. There are attempts

Figure 1. EOS for neutron star matter including a deconfinement phase
transition for the parametrization ζ = 0.040 of the MBF formalism. The bag
constant is B = 160 MeV4 and the vector coupling (gV/mV)2 = 2.2 fm2.

to account for the interactions of quarks and gluons and, then,
constrain the value of the coupling by incorporating higher orders
of perturbation theory and radiative corrections as done in Fraga,
Pisarski & Schaffner-Bielich (2001), Fraga, Kurkela & Vuorinen
(2014) and Restrepo et al. (2015). However, such couplings remain
widely uncertain and may also have a dependence on the density
and temperature.

To conclude, we take the values of the vector coupling and bag
constant to be: (gV/mV)2 = 2.2 fm2, B1/4 = 160 MeV, in order to
reproduce massive and stable hybrid stars. The choice of parameters
of both phases permits the complete EoS to describe the symmetric
nuclear matter in terms of a pure hadronic phase at low densities,
and the regime of high density reached in the inner core of NS to
be described by a quark phase.

2.3 Phase transition

In this section, we describe the hadron-quark phase transition
in the interior of hybrid stars by using a Maxwell construction.
In this case, both phases are charge neutral and the conditions
on the chemical equilibrium determine the co-existence phase. This
transition is described by a regime of constant pressure, which leads
to a discontinuity in the energy density and in the baryon number
density. The Maxwell criteria read:

PH = PQ, μH
n = μQ

n . (6)

For the parametrizations used in this work, we found that the
phase transition occurs at μn = 1101.3 MeV, which corresponds
to a transition pressure of P0 = 0.16 fm−4 and an energy gap of
�ε = 0.52 fm−4. The EoS including both phases is depicted in
Fig. 1.

The issue of whether the phase transition takes place in a Maxwell
or a Gibbs scenario depends on the surface tension between the two
phases. The comparison of both scenarios in the investigation of hy-
brid stars has been studied in several works, see e.g. Bhattacharyya,
Mishustin & Greiner (2010), Hempel, Pagliara & Schaffner-Bielich
(2009), Yasutake & Kashiwa (2009), Yasutake et al. (2011) and
Alaverdyan et al. (2010). Furthermore, the threshold values of the
surface tension necessary to describe each type of transition sce-
nario have been calculated in Lugones, Grunfeld & Al Ajmi (2013)
and Garcia & Pinto (2013). However, such estimations are highly
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Figure 2. Baryon mass versus equatorial radius for neutron stars at different
fixed rotation frequencies. These configurations were calculated using the
EoS presented in Fig. 1.

model-dependent, and the issue of possible phase transition scenar-
ios remains an open question.

3 ROTAT I N G H Y B R I D STA R S

Rapidly rotating general relativistic stars were already described in
Komatsu, Eriguchi & Hachisu (1989), Cook, Shapiro & Teukol-
sky (1992) and Stergioulas & Friedman (1995). In this section, we
calculate stationary equilibrium configurations of uniformly rotat-
ing cold NS within a general relativity framework. We solve the
Einstein field equations for stationary axisymmetric space–time
using the C++ class library for numerical relativity, LORENE
(http://www.lorene.obspm.fr). The formalism, the relevant equa-
tions, the numerical procedure and tests used to construct the stel-
lar models can be found in Gourgoulhon (2012), Bonazzola et al.
(1993), Bocquet et al. (1995) and Chatterjee et al. (2015). Recently,
this formalism was applied to magnetized hybrid stars and mag-
netized and fast rotating WD, see e.g. Franzon et al. (2015) and
Franzon & Schramm (2015).

The internal composition of rotating NS is modelled by the EoS
as described in Section 2. The dependence of the internal structure
of the NS with rotation is crucial, since the centrifugal force due
to the rotation will help to stabilize the star against collapse and
the star will be deformed: compressed in the polar direction and
expands in the equatorial direction. With this in mind, different
rotation frequencies produce different relations between the mass
and the radius for rapidly rotating stars as shown in Friedman &
Ipser (1992), Spyrou & Stergioulas (2002), Zdunik et al. (2008),
Haensel et al. (2009) and Zdunik et al. (2004). In addition, similar
calculations were done with a broad set of realistic EoS in Salgado
et al. (1994).

Effects of rotation on the backbending phenomenon in NS were
considered before in Zdunik et al. (2006), Chubarian et al. (2000),
Cheng, Yuan & Zhang (2002) and Heiselberg & Hjorth-Jensen
(1998). As the stars spin-down due to the loss of angular momentum,
the central density increases and a phase transition to pure quark
matter might occur (Glendenning et al. 1997; Cheng et al. 2002).
In order to investigate if our EoS produces similar mass–radius di-
agrams as in Zdunik et al. (2006), in Fig. 2, we show the baryonic
mass as a function of the circular equatorial radius for NS with
frequencies ranging from 0 to 1200 Hz. For similar mass–radius
diagrams MB(Req), see also Zdunik et al. (2004). In this case, it was

Figure 3. Relation between the moment of inertia and the frequency for
rotating neutron stars at different fixed baryon masses, 1.90 and 2.15 M�,
respectively.

shown that EoS with hyperon degrees of freedom can also produce
the backbending phenomenon. In our case, we have neglected addi-
tional exotic phases with hyperons in order to investigate exclusively
the effects of a quark-hadron phase transition.

According to Fig. 2, the mass–radius curves present inflexion
points (with a minimum in the baryon mass MB) for frequencies be-
tween ∼900 and ∼1200 Hz. This defines a region (at fixed baryon
masses) where the backbending phenomenon may appear in the
stars. Conclusions along this line were already studied in Zdunik
et al. (2006). The diagram in Fig. 2 shows that, as the frequency
increases, both the baryon mass and the radius of the stars increase,
which is a direct effect of the centrifugal forces due to rotation. We
choose to show in Fig. 2 the baryon mass instead the usual gravita-
tional mass, since this is the fixed quantity during the evolution of
isolated NS.

In Fig. 3, we present the moment of inertia as a function of the
rotational frequency f for two different stars at fixed baryon masses
of MB = 1.90 and 2.15 M�. Both the moment of inertia I and the
angular velocity � are decreasing functions of time. According to
the Fig. 3, for the star with MB = 1.90 M�, there is a reduction in
the spin-down rate when this star undergoes a phase transition. This
effect is more pronounced in the case of MB = 2.15 M�, in which
the quark-hadron phase transition induces a spin-up era in the star’s
evolution. During this time, the star will lose energy due to dipole
radiation but, still, it will spin faster and grow in size. This same
effect was already reported in Glendenning et al. (1997) and Weber,
Glendenning & Pei (1997).

The spin-down relation of a pulsar can be written as �̇ =
−C�n+1, where C is a term related to the structure of the star
and n is the braking index, which can be obtained directly from
the frequency � of the pulsar and its time derivatives, �̇ and �̈.
The braking index can be expressed through the relation (Gao et al.
2016):

n = ��̈

�̇2
. (7)

The energy loss due to the emission of radiation can be repre-
sented by the equation:

dE

dt
= d

dt

(
1

2
I�2

)
= −C�n+1. (8)
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Figure 4. Braking index as a function of the frequency for rotating neutron
stars. The curves correspond to the same stars as shown in Fig. 3

From equation (8), one can rewrite equation (7) in the form:

n(�) = 3 − 3I ′� + I ′′�2

2I + I ′�
, (9)

with I′ and I′′ being the first and the second derivatives of the
angular momentum with respect to the angular velocity �, dI

d�
and

d2I
d2�

, respectively. As a result, the braking index is now written in a
frequency-dependent manner, n(�).

If one ignores the changes in the moment of inertia during the
spin-down evolution, it can be seen from equation (9) that a purely
dipole radiation yields a braking index of 3. However, few measure-
ments of braking index of isolated NS are available in the literature
(see e.g. Gao et al. 2016; Hamil et al. 2015 and references therein),
and in all cases, one has n < 3. In order to determine accurately the
braking index n, it is necessary to have high-precision measurements
of the angular velocity � and its corresponding time derivatives �̇,
which show how stars are slowing down. For this reason, braking
index observations are much easier for young pulsars, not only be-
cause they spin very fast, but also because the braking is not affected
by low timing noise or glitches. In addition, for older pulsars, the
measurements of �̇ and �̈ might require many years and yield very
small values.

In order to evaluate the braking index in presence of a quark-
hadron phase transition, we make use of the rotating configurations
already shown in Fig. 3. The results are depicted in Fig. 4. In this
case, the braking index does not deviate from 3 for slow rotation.
However, as the frequency increases, it can reach values far from
3. In addition, when the phase transition is reached in the core
of the star, there is an anomalous behaviour in the braking index
curve n(�), whose extreme case is seen for the higher mass case
MB = 2.15 M�, where the braking index reaches values from −∞
to +∞.

Besides rotation, strong surface magnetic fields can be observed
in some NSs, with values up to 1015 G. In this case, one expects to
find even stronger magnetic fields inside these stars. For example,
according to the virial theorem, compact stars can support internal
magnetic fields of up to 1018–20 G (see e.g. Fushiki, Gudmundsson
& Pethick 1989; Lai & Shapiro 1991; Cardall, Prakash & Lattimer
2001; Ferrer et al. 2010), turning such stars into a distinguished
species than conventional radio pulsars. In contrast to rotation-
powered pulsars, the strongly magnetized NS rotate slowly and,

therefore, are powered by their magnetic field, see for example
Olausen & Kaspi (2014).

4 MAG NETI ZED HYBRI D STARS

In this section, we discuss the effects of strong magnetic fields
on the global properties of NS, which are subjected to a sharp
quark-hadron phase transition in their interior. Stationary and ax-
isymmetric stellar models are constructed with the same numerical
procedure and mathematical set-up as in Bocquet et al. (1995),
Chatterjee et al. (2015) and Franzon et al. (2015), where the cou-
pled Einstein–Maxwell equations were solved in a self-consistent
way by means of a pseudo-spectral method.

It was shown in Chatterjee et al. (2015) and Franzon et al.
(2015) that the leading contribution to the macroscopic proper-
ties of strongly magnetized stars, like mass and radius, originates
from the pure field contribution to the energy–momentum tensor. In
addition, the inclusion of magnetic fields effects in the EoS and the
interaction between the magnetic field and matter (the magnetiza-
tion) do not affect the stellar structure considerably. In this context,
we do not take into consideration the magnetic field effects in our
EoS.

According to Bocquet et al. (1995) and Cardall et al. (2001),
the magnetic field is generated by the azimuthal component the
electromagnetic current 4-vector ju:

jφ = �j t + (e + p)f0, (10)

with jt being the time component of the electric current, � the stellar
angular velocity, e the energy density and p the isotropic contribu-
tion to the pressure. The magnetic stellar models are obtained by
assuming a constant current functions f0. As shown in Bocquet
et al. (1995), other choices for f0 different from a constant value are
possible, however, they do not alter the conclusions qualitatively.
Nevertheless, a more comprehensive study of the field changes and
the corresponding variation of current distributions would be very
desirable. Such an analysis, however, requires much more insight
into the microscopics of the currents in the different hadronic and
quark phases and is beyond the scope of this initial discussion of
possible observable effects of field decay in highly magnetized stars.
As one can see from equation (10), for different values of f0, the
electric current changes and, therefore, the intensity of the magnetic
field in the star changes.

We show in Fig. 5 the mass–radius diagram for stars at different
fixed magnetic dipole moments μ and different current functions f0.
From Fig. 5, the masses and the radii increase by increasing μ and f0.
This is an effect of the Lorentz force which acts outwards and against
gravity and, therefore the stars increase in size and can support
more mass. A star with MB = 2.15 M� would be represented by
a horizontal line in Fig. 5; in other words, it corresponds to a set
of evolutionary sequences with smaller magnetic dipole moments.
In this case, the magnetic moment loss in can be related to the
change of the magnetic flux strength and distribution in the star
due to ohmic dissipation (Goldreich & Reisenegger 1992; Heyl &
Kulkarni 1998).

The existence of the backbending phenomenon in fast rotating NS
are determined by the combination of three quantities: the baryon
mass MB, the total angular momentum J and the rotational frequency
f. Minimum values of MB at fixed f with a monotonic behaviour
of MB versus J leads to the backbending phenomenon, see e.g.
Zdunik et al. (2006, 2004). In parallel to this, we conclude that
the backbending in highly magnetized NS depends also on three
quantities: the baryon mass MB, the magnetic dipole moment μ
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Figure 5. Mass–radius diagram for magnetized models. The calculations
were done for different fixed current functions f0 and different fixed magnetic
dipole moments μ.

Figure 6. Relation between the moment of inertia and central magnetic
field for magnetized neutron stars with different fixed baryon masses, 1.90
and 2.15 M�, respectively.

and the current function f0. In this case, the magnetic dipole loss
leads to a quark-hadron phase transition inside the stars, followed
by an increase in the electric current (and, therefore, the magnetic
field) through the equation (10), which it is related to the change
of the type of matter in the star with a different EoS. In contrast,
rotating stars at fixed baryon masses have their frequency increased
by angular moment loss during the backbending epoch.

As we already discussed for the case of rotation (but without
magnetic field) in Fig. 3, the moment of inertia changes drastically
from a constant value in the case of a more realistic treatment.
In addition, a slower reduction of the moment of inertia, which is
followed by a spin-up of the star, is observed when the EoS that
describes the matter inside these objects includes a strong quark-
hadron phase transition. We study the effect of magnetic fields on
the moment of inertia I for highly magnetized stars in Figs 6 and 7.
We present I as a function of the central and surface star magnetic
fields, Bc and Bs, respectively. These calculations are done for stars
with the same fixed baryon masses as the ones presented in Fig. 3.

From Fig. 6, the higher the central magnetic field, the higher the
moment of inertia of the stars. This effect is due to the Lorentz
force which allow stars to support more mass. In addition, the
circular equatorial radius of the sequence increases, as can be seen

Figure 7. Same as in Fig. 6 but as a function of the surface magnetic field.

in the mass–radius diagram in Fig. 5 for higher current functions
or magnetic dipole moments. According to Fig. 6, the maximum
central magnetic field reached in stars depends strongly on the stellar
mass. For example, a star with MB = 1.90 M� has a maximum
central magnetic field of ∼7.0 × 1017 G, whereas the star with
MB = 2.15 M� can have a central magnetic field up to 1.0 × 1018 G.

If knowing that the magnetic field decays over time, and fixing
the baryon mass, each curve depicted in Fig. 6 represents the time
evolution of the stellar magnetic field and moment of inertia of a
different star. In other words, younger stars decrease in size and
as the magnetic field decays, the central density increases, see e.g.
Franzon et al. (2015). During this time, these stars might change
from a hadronic to a quark phase in the core. In particular, the in-
crease of the central magnetic field as shown in Fig. 6 may represent
a signature of a phase transition inside these objects. However, inter-
nal magnetic fields cannot be directly constrained by observation.
For this reason, we present in Fig. 7 the same star configurations as
shown in Fig. 6, but as a function of the (polar) surface magnetic
field, which can potentially be observed.

Looking at the star with fixed baryon mass of 1.90 M� in Fig. 7,
one sees that the moment of inertia, which decreases in time, has a
slower reduction when the stars passes through the phase transition.
However, for the star with baryon mass of 2.15 M�, the surface
magnetic field, in fact, increases due to the phase transition. In this
case, the moment of inertia as a function of Bs exhibits a small
‘magnetic-up era’, whereas this same effect is much more evident
when the central magnetic field Bc is considered.

According to Fig. 6, during the ‘magnetic-up era’, an MB =
2.15 M� star has increased the value of its central magnetic field by
an amount of 0.23 × 1018 G, while the surface magnetic field varies
from 0.37 × 1018 to 0.38 × 1018 G (see Fig. 7). For a star with MB =
1.90 M�, the central magnetic field increases by an amount of 0.1
× 1018 G, while the surface magnetic field always decreases. Such
effects might be associated with giant flares presented in magnetars
(Mallick & Sahu 2014). In addition, properties of these objects, such
as neutrino emission and, consequently, the stellar cooling, can be
strongly affected by this variation in the magnetic field strength.
Studies in this line are being performed.

By increasing the magnetic field strength, the stellar deforma-
tion is much more significant. As a result, the shape of the star
will become more elongated and a topological change to a toroidal
configuration can take place (Cardall et al. 2001). However, our cur-
rent numerical tools do not handle toroidal configuration, setting a
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Figure 8. Magnetic field, i.e Aφ , iso-contours measured by the Eulerian
observer O0 for a star at fixed baryon mass of 2.15 M�. This star is near the
maximum equilibrium configuration achieved by the code with a magnetic
dipole moment of μ = 2.36 × 1032 Am2.

limit for the magnetic field strengths that we can obtain within this
approach.

In order to see the deviation of spherical symmetry due to the
anisotropy of the energy–momentum tensor in presence of strong
magnetic fields, we show in Fig. 8 a star with MB = 2.15 M�.
The corresponding central baryon density is n = 0.45 fm−3, with
a gravitational mass of 1.92 M�. The polar and the central mag-
netic fields are 4.62 × 1017 and 1.03 × 1018 G, respectively. The
ratio between the magnetic pressure and the matter pressure at the
centre of this star is 0.42. This configuration is quite close to the
maximum magnetic field configuration achieved with the code. One
sees that the deviation from spherical symmetry is remarkable and
it needs to be taken into account while modelling these highly mag-
netized neutron stars. Studies of relativistic models of magnetized
stars with toroidal magnetic fields demonstrated also that the devia-
tion from spherical symmetry is important, see Frieben & Rezzolla
(2012). Therefore, a simple Tolman–Oppenheimer–Volkoff general
relativist solution (Oppenheimer & Volkoff 1939; Tolman 1939) for
these stars cannot be applied.

The deformation of magnetized NS can also be quantified by
their quadrupole moment Q with respect to the rotational axis. In
Fig. 9, we show the quadrupole moment Q as a function of the
magnetic moment μ for a star at fixed baryon mass of 2.15 M�. In
Bonazzola & Gourgoulhon (1996), it was found that in a low B-field
approximation, Q scales as μ2. From Fig. 9, one sees that indeed the
quadrupole moment Q grows parabolically for low polar magnetic
fields. Still, according to Bonazzola & Gourgoulhon (1996), the
gravitational wave (GW) amplitude h0 is given by

h0 = 6G

c4

�2

D
Q, (11)

Figure 9. Quadrupole Q as a function of the magnetic dipole moment for a
star at fixed baryon mass of 2.15 M�. This same star is depicted in Fig. 8.

Figure 10. Gravitational wave amplitude as a function of the central mag-
netic field for the same configurations as in Figs 8 and 9.

with G being the gravitational constant, c the speed of light, D the
distance of the star and � the rotational velocity of the star.

In our models, the rotation and magnetic axes are aligned. In
this case, even stars strongly deformed do not emit gravitational
radiation. However, an estimate of the strength of GW emission can
be deduced if we assume that the magnetic axis and the rotation
axis are not aligned, as it seems to be the case, for example, in
observable pulsars (Bonazzola & Gourgoulhon 1996). This is a
good approximation as long as rotational and magnetic field effects
do not start to compete in deforming the star. For strong magnetic
fields and as long as the rotation frequency is well below the Kepler
frequency, this assumption should hold true.

We use our models to make a crude estimate of the GW strength in
highly magnetized NS. Assuming that a star with MB = 2.15 M�
rotates at a frequency of f = �/2π = 1 Hz at a distance D =
10 kpc, we obtain a GW amplitude of h0 = 2.56 × 10−25 (see the
black circle in Fig. 10), which could be measured by Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) and European
Gravitational Observatory (EGO) interferometric detectors (Bonaz-
zola & Marck 1994; Bonazzola & Gourgoulhon 1996).

In Fig. 10, we estimate the GW emission amplitude for different
central magnetic fields. As already depicted in the relation between
the moment of inertia I and the magnetic field (see Fig. 6), we see
that the GW amplitude h0 can change significantly as the magnetic
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field decays over time showing a backbending behaviour as the star
undergoes a quark-hadron phase transition. According to Fig. 10,
the star may have a period of faster reduction in the GWs emission
before the magnetic reduces completely. In Fig. 10, the black circle
represents the same stars as depicted in Fig. 8.

5 C O N C L U S I O N S

In this work, we studied the effects of quark-hadron phase transi-
tion on the structure of NS, considering rotation as well as strong
magnetic fields. The stellar models were obtained within a general
relativity approach which solves the Einstein–Maxwell equations
self-consistently by means of a spectral method. We employed an
EoS that describes massive hybrid stars composed of nucleons, lep-
tons and quarks u, d and s. The hadronic phase was described in
a relativistic mean field formalism, where many-body forces were
taken into consideration. For the quark phase, we used the MIT
bag model with a vector interaction. As in previous calculations
(Chubarian et al. 2000; Zdunik et al. 2006), we showed that by
employing this type of EoS with a sharp phase order transition, one
obtains the backbending phenomenon.

The change from a confined to a deconfinement phase at the centre
of NS leads to a drastic softening of the EoS. As a result, stars at
fixed baryon masses decrease their gravitational masses (and the
central pressure increases) during the evolutionary sequence. When
the softening of the EoS is very pronounced, this leads to a sudden
contraction of the neutron star at a critical angular velocity, which
can be observed during the evolution of fast rotating and isolated
pulsars through the spin-up era.

For stars at fixed baryon masses of 1.90 and 2.15 M�, we have
shown that, as they slow down due to the angular momentum loss
through MDR, the internal density increases because of the weaken-
ing of the centrifugal force, leading the stars to reach the conditions
for a phase transition in their interior. As a result of the phase change,
the braking index changes dramatically around the frequency where
the phase transition takes place, showing a divergent point.

We have also studied the effect of a quark-hadron phase tran-
sitions in NS with strong magnetic fields. We concluded that the
mass–radius diagram and the shape of the star change significantly
with the consistent inclusion of magnetic fields. The mass excess
of the star is related to the Lorenz force, which increases with the
magnetic field and therefore helps the star to support more mass
than in the non-magnetized case. At the same time, the equato-
rial radii of theses stars increase, becoming much larger than their
non-magnetized counterpart.

In parallel to the rotating case, we carried out relativistic calcula-
tions of the mass–radius diagram and the moment of inertia for hy-
brid stars endowed with strong magnetic fields. We have neglected
the effect of the magnetic field in the EoS and of the magnetiza-
tion of matter, since it was already shown that these contributions
are very small even at large magnetic fields (Franzon et al. 2015).
According to our results, in the same way that isolated pulsars have
their frequencies increased in presence of a quark-hadron phase
transition, the magnetic field can be amplified in highly magnetized
hybrid NS. We performed calculations for stars at two different
baryon masses, 1.90 and 2.15 M�, respectively.

The relation MB(Req) presents similar behaviour in both rotating
(and non-magnetized) and magnetized (and non-rotating) cases. For
fast rotating pulsars, it is already known that the backbending phe-
nomenon depends on three quantities: baryon mass MB, the angular
momentum J and the rotation frequency f. For strong magnetized
stars, the increasing softening of the EOS leads to inflexions in

the diagram MB(Req) versus f0 with a monotonic behaviour at fixed
magnetic dipole moments μ. This is a similar condition expected
to produce the backbending in isolated and fast rotating pulsars. In
this case, the triple values (MB, μ, f0) corresponds to (MB, J, f).

The quark-hadron phase transition induces not only structural
changes in NS, but can also modify their internal magnetic fields,
what can affect, for instance, the thermal evolution processes. Mag-
netars have been observed to have very strong surface magnetic
fields, Bs. For this reason, we performed calculations of the moment
of inertia as a function of Bs. We have shown that the appearance
of a ‘magnetic-up era’ is strongly related to the stellar mass. For
these cases, we used a purely poloidal magnetic configuration with
values for the surface magnetic fields beyond those observed. On
the other hand, from virial theorem arguments, one can estimate a
maximum limit for the magnetic field in the stellar interior and the
values considered here agree with realistic situations.

We have also solved the Einstein–Maxwell equations and ob-
tained the quadrupole moment Q for slowly rotating magnetized
NS. Although these stellar models have rotating and magnetic axes
aligned and, therefore, do not emit gravitation waves, we use them
to make a crude estimate of the gravitational radiation emitted by a
star with MB = 2.15 M�. The value obtained might lead to a de-
tectable signal by VIRGO and LIGO. Note that the GW amplitude
h0 can be reduced rapidly in presence of a quark-hadron phase tran-
sition (see Fig. 10) inside stars with strong magnetic fields which,
again, might be detected by VIRGO and LIGO.

As shown before in Markey & Tayler (1973), Tayler (1973),
Wright (1973) and Flowers & Ruderman (1977), simple magnetic
field configurations composed of purely poloidal or purely toroidal
magnetic field configurations are always unstable. In addition, re-
cent calculations showed that stable equilibrium configurations are
possible only with magnetic fields configurations composed by a
poloidal and a toroidal components (Braithwaite & Spruit 2004;
Braithwaite & Nordlund 2006; Akgün et al. 2013; Armaza et al.
2015). Finally, the authors in Goldreich & Reisenegger (1992)
showed that ohmic decay, ambipolar diffusion, and Hall drift are
responsible for the magnetic field decay in isolated NS. In this case,
the magnetic field flux might be reduced and change its strength
and distribution in the star (Srinivasan et al. 1990; Goldreich &
Reisenegger 1992; Heyl & Kulkarni 1998). These points should be
addressed in future investigations.
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