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The man who cannot occasionally imagine events and conditions of existence that are
contrary to the causal principle as he knows it will never enrich his science by the

addition of a new idea.
Max Planck (1858-1947)
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RESUMO

O presente trabalho tem como objetivo a caracterização experimental e modelagem cons-
titutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos
quando submetidos a altas taxas de deformação. O material empregado no desenvolvi-
mento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No
âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente.
O desenvolvimento experimental tem por objetivo evidenciar as principais característi-
cas constitutivas que descrevem o comportamento macroscópico desta classe de metais
quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i)
o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de
deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para
a caracterização de cada uma destes aspectos constitutivos, são realizados experimen-
tos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da
presente investigação. De forma geral, os experimentos consistem em ensaios de com-
pressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições
quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente
com evidências experimentais macro e microscópicas disponíveis na literatura, dão su-
porte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação
constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas
e proposição de suas regras de evolução são qualitativamente guiadas por considerações
metalúrgicas baseadas no acúmulo e organização de discordâncias. O modelo proposto,
embora consista em uma abordagem simplificada quando comparado a modelos de base
física, é capaz de representar separadamente cada uma das características constitutivas
destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo
elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência
é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem
como um todo é inserida em um contexto de deformações finitas seguindo uma descrição
Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para
solução de problemas de equilíbrio não lineares seguindo uma formulação incremental im-
plícita empregando o método dos elementos finitos. Em um contexto local, é utilizado
um esquema de integração implícito seguindo um mapeamento exponencial. A lineariza-
ção das equações de mapeamento de retorno possibilita a derivação analítica do módulo
tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são
utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão
em condições de deformações homogêneas, e compressão envolvendo contato com atrito.
As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em
descrever o comportamento de estruturas quando deformadas sob condições envolvendo
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elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de
análises de convergência. Em conclusão, com o procedimento experimental adotado é pos-
sível evidenciar as principais características macroscópicas inerentes ao comportamento de
metais quando submetidos a processos de deformação envolvendo altas velocidades. Além
disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitu-
tivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados
experimentalmente.

Palavras-chave: Caracterização experimental; Altas taxas de deformação; Deformações
Finitas; Materiais elasto-viscoplásticos; Modelagem numérica.
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ABSTRACT

The present work aims at performing the experimental characterization and constitutive
modeling associated with the mechanical behavior of polycrystalline FCC (Face Cen-
tered Cubic) metals when subjected to high strain-rate deformations. The material
to be employed in the experiments is a commercially pure aluminum alloy: aluminum
AA1050. Within the present investigation context, experiments are performed at room
temperatures. The primary objective of the laboratory experiments is to assess the main
constitutive features associated with the macroscopic mechanical behavior observed for
FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii)
strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize
each constitutive feature, experiments using equipments specifically devised to achieve
the objectives are performed. The laboratory investigation consists of compression tests
involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order
of 104 s−1. Experimental results together with micro and macroscopic experimental evi-
dences available in the literature give support to the development of a elastic-viscoplastic
model. The stress-strain formulation follows a semi-physical approach, in which inelastic
variables and their evolution equations are qualitatively motivated by metallurgical con-
siderations based on the storage and arrangement of dislocations. Although its simplified
nature when compared to physically-based models, the proposed model is capable of rep-
resenting separately each one of the constitutive features highlighted early. In addition,
in analogy to the stress-strain proposition, a model describing the material hardness evo-
lution in terms of strain and strain-rate histories is also provided. Based on the obtained
experimental results, the proposed elastic-viscoplastic and hardness evolution models are
adjusted and then validated. The corresponding stress-strain numerical formulation is
developed in a subsequent step. The approach as a whole is integrated into finite strain
framework following a Total Lagrangian description. The procedure employed to solve
nonlinear equilibrium problem follows an implicit incremental formulation implemented in
the context of the finite element method. At a local level, an implicit integration scheme
based on an exponential mapping is adopted. From linearization of return mapping equa-
tions, an analytical consistent tangent modulus is obtained. Both constitutive model and
numerical approach are employed to simulated classical problems: a compression test in-
volving homogeneous deformation and a compression test involving contact and frictional
conditions. Numerical simulations evaluate the constitutive capabilities associated with
the proposed model when predicting the structural behavior at high strain-rate loadings.
Furthermore, numerical efficiency and robustness related to the present procedure are also
assessed by means of convergence analysis. While the adopted experimental procedure
gave fundamental evidences of the main macroscopic features inherent in the metallic

vii



material behavior when subjected to high strain-rate deformations, the analytical and
numerical results demonstrated that the proposed constitutive model is able to suitably
reproduce the observed behavior.

Key-words: Experimental characterization; High strain-rates; Finite strains; Elastic-
viscoplastic materials; Numerical modeling.
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1 INTRODUCTION

In many engineering applications, metallic materials and structures are subjected to
extreme straining and loading-rate conditions. These service conditions are present in
many manufacturing processes, such as high speed machining [Neugebauer et al., 2011;
Silva et al., 2014] (Figure 1(a)), forming [Geier et al., 2014], and compaction of metallic
components [Mamalis et al., 2004; dos Santos et al., 2015a]. In addition, high strain-
rates are also observed in analysis of structural crashworthiness in the automotive and
aerospace industries, terminal ballistics research for safety and military activities, among
several others. Examples of typical structures of aerospace, automotive, military/civil en-
gineering, oil and gas, and naval industries activities [Rodríguez-Martínez, 2010; Rusinek
and Jankowiak, 2014] are shown in Figures 1.1(b)-(g), respectively. In summary, high
strain-rates are present in a large variety of modern industrial processes.

Although high speed machining is widely diffused in metal industry, this kind of man-
ufacturing processes are still matter of recent investigations, aiming at predicting cut-
ting efforts, designing machining tools, describing characteristics associated with finished
products, such as surface quality and residual stresses in machined surfaces [Neugebauer
et al., 2011; Miguélez et al., 2013; Wang et al., 2015]. The aerospace industry is constantly
seeking for new materials capable of supporting high velocity conditions (and high tem-
perature variations) while allowing for aircraft mass reduction [Arias et al., 2014]. The
employment of materials for energy absorption in impact applications is an important sub-
ject associated with the automotive designing. This topic is directly related to passenger
security issues and also to governmental costs due to traffic-accidents. In the military
or safety industries, strength materials capable of absorbing impact energy are of great
importance for armor designing and ballistic applications. In civil engineering activities,
materials and structures experience dynamic conditions when they are exposed, for in-
stance, to seismic events. In structural design activities related to oil and gas industries,
it is necessary to account for accidental loadings due to collisions and falling objects,
explosions and fragments penetrations [Rodríguez-Martínez, 2010], or process involving
dynamic rupture of pipelines [Mirzaei et al., 2015]. In addition to those (mechanical, civil,
aerospace, naval,...) engineering applications, deformation processes involving high veloc-
ities have proved to be a useful alternative in activities associated with materials design
and processing. For example, in plastic deformation-induced grain-refinement processes,
there are evidences that, for a given straining level, increasing the imposed strain-rate
results in smaller grains. This feature allows increasing both ductility and strength of
worked material [Zhang and Shim, 2010; Huang and Tao, 2011; Luo et al., 2012b].

In addition to reducing production time, other advantages can be verified by employing
high velocities in manufacturing processes. For example, by increasing the cutting-speed
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Figure 1.1: Engineering applications in which metallic alloys can be subjected to wide
strain and strain-rate ranges during service or accidental conditions. (a) High speed
machining processes; (b) Aerospace industry; (c) Automotive industry; (d) Military

applications; (e) Civil engineering applications; (f) Oil and gas (offshore) industries; (g)
Naval industry. Source: Rodríguez-Martínez, 2010.

in machining processes, a better surface quality can be reached in machined components
[Korkut et al., 2004; Lima et al., 2005]. In processes as cold stamping, bending, or forging,
an increase in strain-rate allows plastically processing materials with low formability, or
consequently reducing the number of forming steps and thus the number of tools involved
in the process [Orava, 1973; Ma et al., 2014]. However, due to higher efforts, increasing the
deformation velocity demands the utilization of more robust and powerful machines, what
clearly increases the cost of equipments. Furthermore, high velocity operation conditions
induce higher vibrations and tool wear, what leads to an increase in frequency of machine
stops for maintenance. In addition, higher vibrations and wave propagations difficult the
utilization of data acquisition systems to monitor desired process parameters.

The significant increase in engineering applications involving extreme mechanical load-
ing conditions, such as severe plastic deformations and high strain-rates, has motivated
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many investigations concerning to dynamic behavior of metals. Although many efforts
and resources have been focused in such investigations, there are many subjects which
are still matter of discussion in academic and industrial environments. However, in-
vestigations have generally evidenced that material response (in terms of flow1 stress,
yield stress, or material hardness, for example) is strongly influenced by the associated
deformation-history experienced by the material. Deformation-history, in addition to
associated strain path, includes both strain-rate and temperature histories [Zener and
Hollomon, 1944; Klepaczko, 1975; Chiem and Duffy, 1983; Tanner and McDowell, 1999;
Rodríguez-Martínez et al., 2011]. Moreover, an increase in flow stress rate-sensitivity is
evidenced when imposed strain-rate exceeds values of 103 s−1 [Lindholm, 1964; Campbell,
1972; Follansbee and Kocks, 1988; Gao and Zhang, 2012]. These aspects concerning mate-
rial behavior depending on past deformation-histories, and instantaneous rate-sensitivity
are better discussed in Section 1.3.

In general, investigations on the dynamic behavior of metals aim at simulating manu-
facturing processes or engineering applications in which those extreme conditions in terms
of straining, loading-rate, and temperature are evidenced. However, these simulations re-
quire to be able of predicting the material behavior under desired service conditions. For
this purpose two major challenges have to be overcome. The first one is associated with
experimental characterization of material behavior under high strain-rate loading condi-
tions. This task depends directly on the ability of designing laboratory machines which
are capable of reproducing the conditions and of acquiring quantities of interest associated
with a given deformation process. The second challenge is related to choose or propose
suitable constitutive models, which are able of predicting material response evidenced
experimentally. As it will be shown latter, both experimental and constitutive issues are
still subject of recent investigations in the current literature.

Motivated by the large number of engineering applications involving high velocity
plastic deformation of metallic materials, and in order to contribute on the two major
challenges cited above, the present work has the aim of performing both experimental
characterization and constitutive modeling of quasi-static and high strain-rate mechanical
behavior of polycrystalline FCCmetals under finite strain conditions at room temperature.
Specifically, the material chosen for the study is an aluminum AA1050 (99.5% wt) in
an annealed condition. It is worth mentioning that commercially pure aluminum, in
addition to be widely employed in many applications as in manufacturing of equipments
for chemical and food industries, can be taken as a reference material for subsequent
analysis of more complex alloys employed in high strength structural applications, as in
automotive, aerospace, naval, and military industries. Based on the preceding proposal,
1Throughout the present work a differentiation between flow and yield stress is considered. Flow stress
refers to the overall stress response, i.e., it comprises the contribution due to current material strength
and due to instantaneous strain-rate and temperature effects. In contrast, term yield stress refers to
current material strength, which results from the current material microstructure.
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the principal objectives related to the present study are outlined in the following.

1.1 Objectives

The main goal of the present work is to perform both experimental and constitutive
characterization of mechanical behavior of polycrystalline FCC metals, specifically the
aluminum AA1050, considering large strain cold deformations in a wide strain-rate range.

1.1.1 Specific objectives

In order to comply with the main goal, specific tasks have to be achieved:

• Performing the mechanical characterization of an aluminum AA1050 by means of
compression and microhardness tests. During compressions, specimens have to be
subjected to finite strains performed at strain-rates covering a wide range: from
quasi-static conditions to strain-rates in the order of 104 s−1;

• From experiments, evidencing the main constitutive features associated with high
strain-rate mechanical behavior of polycrystalline FCC metals under finite strains
and at room temperature:

– (i) strain-hardening will be evidenced by means of quasi-static compressions;

– (ii) strain-rate-hardening will be evidenced by means of incremental compres-
sions, considering distinct constant strain-rates (from 10−2 s−1 to 1.1×104 s−1),
and microhardness tests performed between each deformation increment;

– (iii) instantaneous rate-sensitivity will be characterized by continuous compres-
sions under moderate strains at strain-rates from 10−2 s−1 to 4×103 s−1, where
instantaneous flow stress is monitored;

• Evidencing strain-rate-history effects on both material hardening and material hard-
ness evolution by means of sequential strain-rate experiments: decremental strain-
rate tests, and strain-rate jump tests;

• Considering obtained experimental evidences, as well as macroscopic and micro-
scopic data available in the literature, proposing an isothermal semi-physical2

elastic-viscoplastic model, within a finite strain framework, capable of representing
2Term semi-physical can be used to designate phenomenological models which take into account for
microstructural changes by introducing internal variables which do not correspond directly to physi-
cal identities (e.g., dislocation densities), but they are seen as effective microstructural features, whose
hardening contribution and corresponding evolution are qualitatively based upon metallurgical and exper-
imental results obtained from previous physically-based investigations [Molinari and Ravichandran, 2005;
Rusinek and Jankowiak, 2014]. Along the present work, term semi-physical model is equivalent to terms
phenomenological model and simplified model, in reference to the corresponding physical simplification
employed by this kind of constitutive approach.
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obtained experimental results reasoning on preceding constitutive features: strain-
hardening, strain-rate-hardening, and instantaneous rate-sensitivity;

• Proposing an alternative constitutive formulation for directly modeling the effects of
strain and strain-rate histories on the material hardness evolution. This alternative
proposition is intended to model engineering applications in which the material
hardness has to be predicted or monitored;

• Calibrating and validating the proposed models considering obtained experimental
data;

• Developing both the global and local numerical formulations related to the pro-
posed finite strain elastic-viscoplastic formulation, with the aim of integrating the
constitutive proposal into a finite element framework, in order to solve structural
engineering problems;

• Performing numerical simulations on compression tests considering homogeneous
deformation and frictional conditions, with the aim of demonstrating corresponding
constitutive capacity and numerical aspects, such as local and global convergence
behavior, associated with the developed constitutive model and corresponding nu-
merical solution strategies.

It is of great importance to mention that the experimental part of this work was devel-
oped at the Instituto Superior Técnico (IST) of Lisbon, Portugal, under the supervision
of Professor Pedro Rosa, who designed the new equipments to be presented through
the work. Although the experimental development has initiated approximately one year
before, the final phase of equipment assembling as well as the experimental tests were
carried out during a period of approximately ten months the student Tiago dos Santos
have worked at IST under the guidance of Professor Pedro Rosa.

Having established the main objectives, specific topics concerning the (visco)plastic
deformation of metallic materials are discussed in the following sections. Such a discussion
encompasses aspects on experimental characterization, macroscopic experimental obser-
vations, metallurgical aspects, and constitutive modeling of high strain-rate mechanical
behavior of metals.

1.2 High strain-rate mechanical characterization of materials

In order to properly predict a given material behavior, associated material charac-
terization have to be performed, from a practical point of view, considering strain and
strain-rate regimes similar to those observed in the desired manufacturing process or en-
gineering application. For this purpose, one needs to seek for experimental apparatus and
methods, which are capable of reproducing the same order of magnitude for the specific
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Experimental flow stress data are those of Follansbee and Kocks, 1988, for an annealed
high purity copper at a given strain of 0.15.

deformation characteristics to which the material will be subjected. Figure 1.2 classifies
some testing machines in terms of their strain-rate ranges. These application domains can
be classified into three regimes: (i) quasi-static; (ii) intermediate strain-rate; and (iii) high
strain-rate. The first testing strain-rate regime, 10−4 − 100 s−1, can be reached by means
of conventional universal testing machines, and due to the low velocity conditions, inertial
effects can be neglected [Meyers, 1994, Ch. 12]. In order to reach intermediate strain-rate
conditions, 100−102 s−1, servo-hydraulic testing machines or dropping weight systems can
be used. In this intermediate strain-rate tests, inertial effects become important. These
effects are due to elastic wave propagation along specimen and machine structure. On one
hand, universal servo-hydraulics machines and systems based on a dropping weight are
commercial equipments, which may be acquired from an appropriate manufacturer. On
the other hand, these equipments are capable of performing tests considering a maximum
strain-rate in order of 102 s−1, see Figure 1.2 and reference [Meyers, 1994, Ch. 12].

In order to characterize the material behavior under strain-rates greater than 102 s−1,
or considering a high strain-rate regime, 103− 105 s−1, non-conventional equipments have
to be used for reproducing the desired testing conditions. The most used equipments in
dynamic tests considering strain-rates exceeding 102 s−1 are described below3. Under high
strain-rate conditions, in addition to elastic wave propagation, inertial effects can involve
plastic wave propagating along specimen [Meyers, 1994, Ch. 12].
3For more details on experimental and general aspects associated with dynamic behavior of materials,
see, e.g., works of Meyers, 1994, and Ramesh, 2008.
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Hopkinson bar test [Hopkinson, 1914; Kolsky and Douch, 1962] is the most used ma-
chine in dynamic plasticity characterization, employing strain-rates within the range
of 102−104 s−1. Figure 1.3(a) shows a schematic representation describing how Hop-
kinson bar works. Depending on the apparatus, the striker bar can be fired with a
velocity between 2.5 and 25 m

s . The bar impacts against the incident bar, then an
elastic wave propagates along that until reaching the specimen to be tested, which is
therefore strained. Part of elastic wave is transmitted through the transmitter bar,
and the remaining one is reflected back to the incident bar. These wave propaga-
tions along the bars are monitored by means of strain gauges. Desired quantities as
force and displacement are then post calculated based on elastic wave propagation
theory. As characteristic, tests are performed under quasi-constant strain-rates;

Expanding ring test (see, e.g., Meyers, 1994, Ch. 12) is an experimental procedure
used to determine the stress-strain response of a material subjected to strain-rates
lower than 104 s−1. This method consists of expanding a ring-specimen in its radial
direction. Ring expansion is performed by employing extreme loading conditions
using, e.g., explosives or electromagnetic systems, see Figure 1.3(b). High speed
cameras or optical sensors are used in order to monitor the associated deformation
process. The advantage related to this procedure is the ability of obtaining stress-
strain curves employing high strain-rates. However, the expanding ring test has
experimental difficulties, e.g., maintaining a quasi-constant strain-rate during the
test. As a characteristic, imposed strain-rate is higher in the beginning of experi-
ment, and it is progressively lowered as the imposed strain increases;

Taylor test [Taylor, 1948] is an experimental method in which the specimen is a bar,
which is accelerated and then collides against a “rigid” plate, see Figure 1.3(c). Due
to impact, elastic as well as plastic waves propagate along the bar, and the speci-
men undergoes non-homogeneous plastic deformations. Determination of apparent
yield stress is done considering analytical expressions reasoning on a rigid-plastic
unidimensional analysis. However, in general cases, mainly when high velocities are
employed, associated deformed configuration predicted by this simplified analysis
does not coincide with that observed experimentally at the end of deformation pro-
cess. Thus, modifications of the original approach, as that of Erlich et al., 1982,
were proposed in order to obtain satisfactory stress-strain relationships even when
considering strain-rates in the order of 104 − 105 s−1. Representation of strain-rate
vs. strain curve related to Taylor test showed in Figure 1.3(c) was based on work
of Brünig and Driemeier, 2007;

Electromagnetic cam-driven machine [Silva et al., 2012, 2013] is an experimental
apparatus in which high strain-rate compression tests can be performed. This ma-
chine was proposed in order to allow imposing different strain-rate-histories during
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compression testing. That is, the preceding experimental procedures have specific
loading-histories, whereas the Hopkinson bar test has a quasi-constant strain-rate-
history during deformation, and the expanding ring test has a loading-history in
which the strain-rate decreases with imposed strain. The experimental apparatus
proposed by Silva et al., 2012, 2013 consists of an electromagnetic actuator driving
a cam-follower device, which in turn performs the specimen compression by means
of a movable compression platen, see Figure 1.4(a). Achieved by changing the cam
profile, the foremost advantage of this testing machine is the flexibility of design-
ing specific strain-rate vs. strain relationships according to the desired test to be
performed. Figure 1.4(b) shows different kinematic operating conditions that were
obtained by means of logistic (type A), root (type B), and linear (type C) cam
profiles. The machine flexibility allows to reproduce the working conditions which
are commonly found in real manufacturing processes. This experimental procedure
allows imposing strain-rates reaching 103 s−1;

Gas gun machine test (see, e.g., Meyers, 1994, Ch. 12) is another kind of high strain-
rate testing equipment. In a concise description, it consists of a pressure vessel, a
barrel (or a tube), and a target chamber. The high pressure gas is loaded in the high
pressure vessel and the projectile, mounted in a sabot, is placed in the barrel. A
valve is released and the high pressure gas drives the projectile, which is accelerated
in the barrel and impacts the target chamber. The principal advantages of guns
over other techniques are the reproducibility of results, the excellent planarity and
parallelism at impact, and the relative ease to use sophisticated instrumentation and
diagnostics. One uses light gases for maximum velocity; hydrogen and helium are
preferred, although air can also be used. The maximum velocity can be calculated
from the maximum rate of expansion of the gas. For example, using helium, the
projectile can accelerate to a velocity of 1200 m

s
, thus providing strain-rates reaching

magnitudes as high as 105 s−1. A simplified gas gun machine using air and a novel
instrumented target chamber is used in the present work. However, our tests are
limited to maximum velocities of 70 m

s
, and thus to strain-rates in the order of

magnitude of 104 s−1. Detailed descriptions on the instrumented chamber and on
the gas gun machine used here are given respectively in Subsections 2.2.1 and 2.2.2.

The vast majority of high strain-rate experiments has the goal of monitor the in-
stantaneous stress (flow stress) response corresponding to given strain, strain-rate, and
temperature histories. In order to be able of assessing the current material strength
(yield stress) induced by the whole load-history, a quasi-static reload starting from the
current deformed condition has to be performed [Follansbee and Kocks, 1988; Tanner
and McDowell, 1999; Farbaniec et al., 2012]. This task increases difficulties related to
experimental characterization. For example, the quasi-static reloading is a destructive
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Figure 1.4: Electromagnetic actuator and cam-follower tool. (a) Schematic
representation, nomenclature, photograph of the equipment and details of the cam
profiles and follower. (b) Follower displacement vs. actuator displacement; Follower
velocity vs. its displacement; Strain-rate vs. imposed strain on material specimen,

considering three different types of cam profiles: A - Logistic, B - Root type, and C -
Linear cam. [Silva et al., 2014].

test, restrained specimen can not be used for a characterization considering a constant
strain-rate. Accordingly, the number of work pieces used in experiments is significantly
increased. A nondestructive alternative to assess the strain and strain-rate induced ma-
terial strength is performing hardness (indentation) tests between constant strain-rate
deformation increments. However, to be able of estimating the current material strength
from hardness measurements, a correlation between current yield stress and correspond-
ing material hardness has to be established [Johnson, 1970; Qiao et al., 2009; Tiryakioglu
et al., 2015]. Examples of works investigating strain, strain-rate, and temperature effects
on hardness evolution of metallic materials are: Li et al., 2009, Zhang and Shim, 2010,
and Huang and Tao, 2011. However, these studies have performed only quasi-constant
strain-rate deformations, they have not considered sequential strain-rate tests to assess,
for example, strain-rate-history effects on corresponding hardness evolution.

1.3 Strain-rate influence on phenomenological behavior of metals

Many investigations have been performed, at both micro- and macro-scales, with the
aim of understanding a specific material behavior when subjected to severe plastic defor-
mations and high strain-rates. As far as the macroscopic plastic deformation of metals is
concerned, three rate-dependent phenomena can be highlighted [Lemaitre and Chaboche,
1990; Ottosen and Ristinmaa, 2005; de Souza Neto et al., 2008]: (i) the strain-rate-
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dependence of flow stress; (ii) creep phenomenon; and (iii) phenomenon of stress relax-
ation; which are showed respectively in Figures 1.5(a)-(c). Figure 1.5(a) shows schematic
unidimensional stress-strain curves obtained from tests performed under different strain-
rates. An important aspect to be observed is that both current flow stress and associated
material hardening behavior are influenced by the applied loading-rate, in the sense that
increasing the imposed strain-rate, higher stress levels are reached.

Creep phenomenon, Figure 1.5(b), can be evidenced when a specimen is loaded at
different stress levels, which are then maintained constant during long periods of time. In
such cases, even at a constant stress, the material experiences a continuous plastic flow
that is accelerated for higher stress values. For moderate and high stress levels, three
creep stages can be observed in curves of Figure 1.5(b): (i) primary creep is the branch
starting from origin which has a continuously decreasing strain-rate; (ii) secondary creep
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Figure 1.5: Schematic representation of viscoplastic phenomena: (a) Flow stress
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is the stage in which there is a quasi-constant (and quasi-null) strain-acceleration; and
(iii) tertiary creep, which is characterized by high strain-rates which leads to the material
rupture [Lemaitre and Chaboche, 1990; Ottosen and Ristinmaa, 2005; de Souza Neto
et al., 2008]. For lower stress levels, material strain tends to stabilize during secondary
stage. Constitutive prediction of creep behavior of metals is of great importance for high
temperature applications (T > 1

3Tm, where Tm is the melting temperature), in which the
material is subjected to high loads during a long time, such as is observed in aerospace
turbines.

The stress relaxation phenomenon (Figure 1.5(c)) can be observed in a simple tensile-
relaxation test, in which the specimen is subjected to a prescribed strain level imposed at
a finite strain-rate. As long as the applied strain is kept constant, a decrease in the stress
level is observed in the course of time. The stress value tends asymptotically to an equilib-
rium stress. The set of prescribed strain and corresponding equilibrium stress, attainable
by means of relaxation processes, forms an equilibrium stress-strain curve [Haupt and
Lion, 1995; Haupt, 2000]. The stress relaxation phenomenon is important, particularly in
high velocity mechanical forming processes, the mechanical component is maintained at
constant strain level after the loading phase to reduce spring-back effects.

Furthermore, there are experimental evidences showing that associated flow stress rate-
sensitivity of metallic materials can increase even at room temperatures when imposed
strain-rates exceed a given critical value [Follansbee, 1986; Follansbee and Kocks, 1988].
This behavior is schematically showed in Figure 1.5(d), and experimental results obtained
by Follansbee and Kocks, 1988, considering an annealed high purity copper (99.99% wt.),
and using the Hopkinson bar, are shown in Figure 1.6. This figure assesses the strain-rate
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influence on flow stress response of this material considering a given true strain level of
0.15 at room temperature. In this case, mentioned critical value of strain-rate, above
which an abrupt increase in material rate-sensitivity is observed, is around 103 s−1.

In addition to instantaneous effects, that could be verified by means of constant strain-
rate loadings, experimental results have evidenced loading-history effects, which revel the
dependence of material response with respect to strain-rate (or temperature) histories
associated with a given deformation process [Klepaczko, 1975; Chiem and Duffy, 1983;
Rashid et al., 1992; Tanner and McDowell, 1999]. Strain-rate-history effects can be evi-
denced from strain-rate-sequential tests, in which the material is strained to a certain level
according to a given constant strain-rate, which is then “instantaneously” switched to a
higher or lower level, as showed schematically in Figures 1.7(c) and (d), respectively for
a decremental strain-rate test and for a strain-rate jump test. Flow stress-strain results
of a given sequential test are showed in Figures 1.7(a) and (b) (after Klepaczko, 1975),
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resulting from associated imposed strain-rate-histories of Figures 1.7(c) and (d), respec-
tively. In both decremental and jump tests, at point A, where the imposed strain-rate
is abruptly changed, a jump, 4i, in the current flow stress is observed in both Figures
1.7(a) and (b). This behavior can be attributed to the instantaneous rate effects, associ-
ated with thermally activated mechanisms and viscous drag resistance [Klepaczko, 1975;
Rashid et al., 1992]. However, when comparing the current flow stress response at point
B (i.e, right after the instantaneous stress change) with a monotonic loading curve in
which the second strain-rate (a lower strain-rate for the decremental test, and a higher
strain-rate for the jump test) was imposed from the initial state O, a strain-rate-induced
hardening 4h is evidenced, see Figures 1.7(a) and (b). The current flow stress state at
point B does not recover the monotonic curve considering the second strain-rate. This
behavior indicates that the current stress response, instead of being a state function of
loading parameters as strain, strain-rate and temperature, is dependent on the previous
loading-histories experienced by the deformed material. The strain-rate-induced harden-
ing4h can be attributed to the influence of previously imposed strain-rate on the material
microstructural evolution, e.g., an increase in the density of stored dislocations induced
by an increase of imposed loading-rate [Klepaczko, 1975; Rashid et al., 1992].

In summary, keeping in mind this brief discussion, one can observe that the imposed
strain-rate has a major influence on macroscopic material response. Related phenomeno-
logical features, including the sharp rate-sensitivity change observed at high strain-rates
(Figure 1.5(d) and Figure 1.6) as well as associated strain-rate-history effects (Figures
1.7(a) and (b)) have motivated many fundamental investigations in order to identify
microscopic mechanisms responsible for rate-dependent phenomena observed in plastic
deformation of metals. These investigations were intended to provide a better under-
standing on material behavior of metals when subjected to high strain-rate loadings,
and then to be able of providing support for proposing suitable constitutive models ca-
pable of properly predicting experimental results under desired loading conditions. In
order to advance toward a better understanding on fundamental mechanisms responsible
for the rate-dependent experimental observations described earlier, and then to support
future constitutive developments in this work, the following section outlines important
metallurgical aspects concerning the material microstructural evolution induced by both
quasi-static and high strain-rate plastic deformation of metals.

1.4 Metallurgical aspects of plastic deformation process

Although the constitutive model to be developed in this work consists of a phenomeno-
logical (or semi-physical) approach, in order to be guided by micro-mechanical features,
this section is intended to bring out a brief discussion on metallurgical aspects inherent to
plastic deformation of metallic materials. The present analysis is restricted to “pure” face
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centered cubic (FCC) metals with moderate to high stacking fault energy (SFE) (such as
copper, nickel, and aluminum) at room temperature.

The plastic deformation of metals involves permanent or irreversible changes on the ge-
ometry of mechanical structures. The way the material responds to the imposed loadings
(stress and strains) depends on its initial microstructure and crystallographic texture, and
also, on how these characteristics evolve with deformation. To properly understand and
predict the plastic behavior of metals, relationships between the current microstructural
and mechanical response, such as the current yield stress, have to be established. Aiming
at correlating key microstructural parameters with desired mechanical proprieties, many
investigations have been performed. A rich bibliography on these metallurgical investi-
gations can be found in recent textbooks as those of Hull and Bacon, 2011, Argon, 2012,
François et al., 2012, Kubin, 2013, and Hansen and Barlow, 2014.

Following a physically-based or metallurgical thought, correlating the macroscopic me-
chanical response of a given material to microstructural aspects demands the knowledge
of the fundamental mechanisms governing the material plastic behavior under the phys-
ical and loading conditions of interest. Under low temperature (T ≤ 1

3Tm) applications,
the plastic behavior of “pure” FCC metals with moderate to high SFE is governed by the
relative sliding between specific (compact) crystallographic planes along preferable direc-
tions in which the resolved shear stress reaches a threshold value [Taylor, 1934a,b; Schmid
and Boas, 1935]. In fact, the relative crystallographic sliding is facilitated by the motion
of dislocations along the directions with the highest atomic densities [McClintock and
Argon, 1966; Dieter, 1986; Hull and Bacon, 2011; Hansen and Barlow, 2014]. Both com-
pact crystallographic planes and preferable directions constitute the so-called slip systems.
Considering the mentioned mechanism, the plastic flow occurs by means of superimposed
pure shear deformations, without significantly changing the structural ordering and ar-
rangement of atoms, and consequently without significantly changing the material volume
[McClintock and Argon, 1966; Dieter, 1986; Hull and Bacon, 2011; Hansen and Barlow,
2014].

1.4.1 Strain-hardening behavior

This subsection presents a succinct discussion on the material hardening behavior and
corresponding microstructural evolution considering quasi-static deformation processes.
As the plastic deformation evolves an increase in the material resistance is evidenced,
requiring a higher stress to proceed with deformation. This behavior is denominated
strain-hardening, which refers to the deformation-induced increase on material strength.
As it can be observed in Figure 1.8, the hardening behavior of metals and their alloys is
typically characterized by a distinct number of deformation stages [Nes, 1997; Kocks and
Mecking, 2003; Argon, 2012; Hansen and Barlow, 2014]:
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• Stage I is known as the easy slip stage, once at this phase the material presents a
low hardening-rate. At this stage there are few dislocations stored in the material
structure, consequently the plastic flow occurs in a single (primary) slip system, at
which the higher resolved shear stress is reached. The deformation Stage I is not
observed in the stress-strain behavior of polycrystalline FCC metals;

• Stage II is characterized by a nearly constant hardening-rate, see Figure 1.8(b). At
this stage, due to an increase in the dislocation density and thus in the slip resistance
of the primary system, multiples slip systems are then activate. For metals with
high SFE (as aluminum) the deformation Stage II is almost nonexistent at room
temperature;

• Stage III is featured by a nonlinear evolution in the stress-strain curve, as shown in
Figure 1.8(a). At this stage, the material presents a quick reduction in associated
hardening-rate as the stress level increases. Different microstructural mechanisms
can promote the transition between Stages II and III. One of the most important
is the cross slipping of mobile dislocations. At the end of Stage II, due to a high
amount of stored dislocations and consequently internal stresses, some dislocations
can change their original slip planes and thus annihilate when interacting with
dislocations with opposite sign. The deformation Stage III is characterized by a
competition between the accumulation and annihilation of dislocations;

• Stage IV is characterized by a nearly constant low hardening-rate (Figure 1.8(b)).
This stage can extend itself until high deformation levels. Its end is featured by a
decrease in observed hardening-rate to a quasi-null value, characterizing the begin-
ning of deformation Stage V. Metallurgical aspects associated with Stage IV are less
understood than the preceding stages (I, II, and III). Although some interpretation
relying on the formation of new sub/grains induced by an increase in the misorien-
tation between dislocation cells at advanced stages of straining [Argon and Haasen,
1993; Nes, 1997; Kocks and Mecking, 2003], other authors attribute the hardening
behavior of Stage IV to formation of lamellar or fibrous structures [Hughes et al.,
1997; Hansen and Barlow, 2014]. Furthermore, this stage can also be related to
dislocation debris acting as obstacles to dislocation glide [Rollett et al., 1989]..

In a underlying scale, the hardening behavior of metals is controlled by the interaction,
storage, and arrangement of dislocation structures. Thus, the distinct deformation stages
can be related to microstructural evolution induced by increasing both stress and strain
levels. In a succinct manner, the arrangement of dislocation in a FCC material with mod-
erate to high SFE evolves from a planar configuration at Stage II to a three-dimensional
cell structure at Stage III. At all strain levels, the structural subdivision occurs in a form
of elongated, alternately misoriented domains of a specific orientation. For example, for a
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(a) (b)

Figure 1.8: Schematic representation of the deformation stages evidenced during the
plastic flow of polycrystalline FCC metals [Nes, 1997]: (a) Shear stress (τ) vs. shear

stain (γ) curves for different temperatures (Ti); (b) Hardening-rate (θ) vs. shear stress
(τ) level for different temperatures (Ti). Subscripts II, III, IV and V refer to

corresponding deformation stage. (·)s stands for the saturation value of quantity (·).
Constant cIV correlates the hardening-rate and saturation stress associated with Stage

IV. Source: Nes, 1997.

rolling process, a lamellar structure is obtained, while for a cylindrical extrusion process,
a fibrous configuration is reached [Hansen et al., 2001; Hansen and Barlow, 2014]. A
schematic representation describing the microstructural evolution due to imposed plastic
deformation is showed in Figure 1.9, where a simple compression test is considered. A
brief description on each deformation phase is given in next subsections.

(a) (b) (c)

Figure 1.9: Schematic representation on the microstructural evolution considering a
simple compression test. (a) Undeformed specimen; (b) Specimen subjected to small or
moderate strain levels: Formation of incidental dislocation boundaries (IDBs) (thin

lines) and deformation bands (thick lines), such as geometrically necessary boundaries
(GNBs) and micro-bands (MBs), nearly aligned with the direction of the highest shear
stress; (c) Specimen subjected to large strains: Formation of lamellar structures (thick

lines), almost transversally aligned with the load direction.
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1.4.2 Deformation-induced microstructural evolution

In a general way, dislocations formed during deformation are organized according to
characteristic patterns which assume the form of dislocation boundaries (DBs). These
boundaries can form spatial structures (in “pure” metals with moderate to high SFE),
or extended planar boundaries (in “pure” metals with low SFE, or in metallic al-
loys). Some authors suggest that these configurations represent low energy disloca-
tion structures (LEDS). This line of thought follow ideas and works of researchers like
Kuhlmann-Wilsdorf, Hughes, Hansen and co-authors [Kuhlmann-Wilsdorf and Merwe,
1982; Kuhlmann-Wilsdorf and Hansen, 1991; Bay et al., 1992; Liu et al., 1998; Hughes
and Hansen, 2000; Hansen and Barlow, 2014].

The crystallographic orientations of the regions on both side of a DB are rotated
with respect to each other. The resulting rotation angle is called misorientation angle

Figure 1.10: TEM micrography of the dislocation microstructure typical of deformation
Stage III, shown here for pure nickel following a 20% reduction by cold rolling (cr)

(equivalent von Mises εvM = 0.26). At the top of figure is a tracing of the underlying
and adjacent micrograph to illustrate the cell block structure composed of IDBs and

GNBs. Long GNBs are nearly parallel to the main {111} slip plane and inclined to the
rolling direction (RD). Sections of two grains are visible with a grain boundary (GB)

running diagonally. Viewing plane is the longitudinal section containing the normal and
rolling directions. Source: Hughes, 2001.
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θmis. There are two types of DBs which are formed and subdivided in two scales. In the
smaller scale, there are nearly equiaxed dislocation cells. These dislocation boundaries,
which are denominated incidental dislocation boundaries (IDBs), can be formed formed by
the mutual and statistical trapping of glide dislocations. The larger scale is constituted by
extended boundaries separating two cell blocks (CBs). These boundaries accommodate
strain incompatibilities between two neighbor CBs, and thus are called geometrically
necessary boundaries (GNBs), as illustrated by schematic representation of Figure 1.9
and micrography of Figure 1.10.

While the formation and morphology of dislocation cells have been described qualita-
tively, the next step towards a constitutive description is identifying and quantifying key
structural parameters in order to introduce them in a constitutive law. The dislocation
density ρd, the boundary spacing (DIDB for IDBs and DGND for GNBs, see Figure 1.11),
and the misorientation angles (θIDB for IDBs and θGND for GNBs, see Figure 1.11) have
been used as key microstructural features to estimate the current yield stress of metals
(see, e.g., Hughes and Hansen, 2000). Both boundary spacing and misorientation angles
related to IDBs and GNBs are schematically represented in Figure 1.11.

At small and moderate strains, the GNBs are formed by dense dislocation walls

Figure 1.11: Schematic representation of a deformation microstructure showing the key
structural parameters. Lamellae of extended GNBs are linked by low-angle IDBs

(bamboo-type structure). High-angle (θmis > 15°) GNBs are represented by thick lines,
and those with medium-angle (3° < θmis < 15°) by medium lines. Source: Hughes and

Hansen, 2000.
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Figure 1.12: Boundary spacing and misorientation angles as a function of equivalent
von Mises strain for a cold-rolled nickel: (a) GNBs and (b) IDBs. Source: Hughes and

Hansen, 2000.

Figure 1.13: Fraction of HABs in aluminum alloys deformed by angular extrusion and
rolling. Source: Mishin et al., 2003.

(DDWs) and by micro-bands (MBs). These nearly planar boundaries are organized in
groups almost parallels to the macroscopic planes containing the direction of higher shear
stress [Bay et al., 1992; Hughes et al., 1998], see also Figure 1.9(b). As the strain proceeds
to larger levels, both DDWs and MBs give rise to lamellar boundaries (LBs), which are
approximately transversal to the principal stress directions [Bay et al., 1992], see Figure
1.9(c).

On one hand, at low and medium deformation levels, CBs contain many dislocation
cells. On the other hand, as the plastic straining increases, the number of cell per CB
decreases, what occurs due to a reduction in boundaries spacing (DIDB and DGNB). How-
ever, the spacing between GNBs decay faster than those associated with IDBs [Hughes and
Hansen, 2000], see Figure 1.12. Running in parallel with the microstructural refinement,



21

is the mutual storage of dislocation within boundaries. The dislocation storage increases
both IDB and GNB misorientation angles [Hughes and Hansen, 2000], see Figure 1.12.
In a way that, in large strains processes, the misorientation can exceed 15◦, meaning that
this boundaries become high-angle boundaries (HABs), which in their turn are compared
to the original grain boundaries [Hansen, 2004]. The fraction of HABs can reach about
70− 80% [Mishin et al., 2003], see Figure 1.13.

The preceding analysis presents some experimental results and observations related to
quasi-static deformation processes. In order to proceed with the present analysis, which is
intended to evidence the high strain-rate behavior of metals, effects of plastic deformation
velocity on the microstructural evolution are therefore described in the sequel.

1.4.3 Strain-rate-induced microstructural evolution

As explained in Subsection 1.4.2, dislocation structures in FCC metals deformed under
quasi-static loadings tend to organize themselves in cellular structures (at small strains),
which evolve to lamellar structures as the plastic deformation increases. Some researchers
[Huang and Tao, 2011; Luo et al., 2012a,b] have observed that those morphological fea-
tures are also evidenced in aluminum and nickel samples (high SFE metals), even when
subjected to dynamic loadings, involving strain-rates in the order of 103 s−1. Figures 1.14
and 1.15 show respectively typical cellular and lamellar structures formed in nickel speci-
mens under dynamic plastic deformation. From a constitutive point of view, the fact that
in both quasi-static and high strain-rate conditions the microstructure formed during de-
formation follows a similar organization pattern is of great importance, because in this
way the same microstructural features can be taken as key parameters when proposing
a constitutive model. Based on discussion of Subsection 1.4.2, those key microstructural
parameters can be identified as: the dislocation density ρd, boundary spacing DIDB,GND,
and misorientation angle of dislocation boundaries θIDB,GND.

Many experimental investigations have been performed to identify and understand
how the imposed strain-rate influences the microstructural evolution and the macroscopic
response of metallic materials. Among the most important contributions on this subject
along the years, some works are referenced: Leslie, 1973, Orava, 1973, Chiem and Duffy,
1983, Duffy, 1983, Cheval and Priester, 1989, Shankaranarayan and Varma, 1995, Bhat-
tacharyya et al., 2005, Dirras et al., 2010, Zhang and Shim, 2010, Huang and Tao, 2011,
Rusty Gray III, 2012, Luo et al., 2012a,b, Baig et al., 2013, Pandey et al., 2013, Bodelot
et al., 2015, Vilamosa et al., 2015, and Yang et al., 2015, to cite a few.

Although there exist aspects not well understood on the strain-rate influence on ma-
terial response and its microstructural evolution, some common evidences about the mi-
crostructural rate-sensitivity of metallic materials can be pointed out. For example, stud-
ies have indicated that by increasing the imposed strain-rate, more refined dislocation
substructures can be produced by plastic deformation. In other words, by increasing the
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(a) (b)

Figure 1.14: Typical microstructures of nickel samples after dynamic plastic deformation
with a strain level of 0.3: (a) Cellular structure and (b) extended dislocation boundaries
are dominating features. Extended dislocation boundaries, composed by DDWs (black

triangles) and MBs (empty triangles), are near perpendicular to the compression
direction (black arrows) and coincide with the traces of planes {111}. In figure (b) white

lines indicate the traces of planes {111}. Source: Luo et al., 2012b.

(a) (b)

Figure 1.15: Deformed microstructures of nickel subjected to dynamic plastic
deformations with strains levels of (a) 1.7 and (b) 2.3. Thin lamellar boundaries define
regions subdivided by dislocation boundaries which interconnect the lamellae. There is

low dislocation density between the boundaries. The lamellar boundaries are near
perpendicular (75− 85◦) to the compression direction (black arrows). Source: Luo

et al., 2012b.

strain-rate, one can increase the density of dislocations stored, and thus decrease the
size of sub/grains, the spacing between and the width of lamellar boundaries formed due
to plastic straining [Huang and Tao, 2011; Rusty Gray III, 2012; Luo et al., 2012a]. In
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(a) (b)

Figure 1.16: Dislocation cells formed in copper samples deformed according to (a)
quasi-static strain of ≈ 0.1 and (b) dynamic plastic deformation of ≈ 0.0825. Source:

Rusty Gray III, 2012.

addition to reducing the cell size, increasing the velocity deformation can produce more
homogeneous distributions of sub/grains throughout the sample. Furthermore, there are
experimental results evidencing a strain-rate-induced increase in the misorientation angles
of IDBs [Rusty Gray III, 2012; Luo et al., 2012a,b]. An example of strain-induced mi-
crostructural refinement is shown in Figure 1.16, where dislocation cell structures formed
in copper samples subjected to both quasi-static and dynamic loadings are displayed.

Experimental results [Zhang and Shim, 2010; Huang and Tao, 2011; Luo et al., 2012b]
and dislocation dynamics simulations [Shehadeh et al., 2005] have indicated that, when
subjected to high strain-rate deformation processes, dislocation structures tend to ac-
commodate the imposed plastic deformation and associated restrictions on the slipping
velocity by increasing their nucleation and multiplication rates. This behavior increases
both the density and interaction of stored dislocations, what inhibits dynamic recovery
and dislocation annihilation mechanisms, thus increasing the dislocation population.

As already discussed, the increase in strain-rate leads to a reduction in the sub/grain
size. Beyond a certain strain level, by increasing their misorientation angles, the sub-
grains and dislocation cells formed during the deformation may give rise to new grains
(dynamic recrystallization) with low (θmis < 5°), medium (5° ≤ θmis ≤ 15°) or even high-
angle (θmis > 15°) boundaries [Zhang and Shim, 2010; Huang and Tao, 2011; Luo et al.,
2012b]. The increase in the misorientation angle associated with IDBs is due to a greater
number of dislocations trapped within the cell interiors [Luo et al., 2012b].

Macroscopic features associated with metallic materials, such as the strength (yield
and flow stress), hardness, ductility, among others, are generally controlled by the cur-
rent microstructural configuration: dislocation density, sub/grain size, crystallographic
misorientation, etc. An example of this correlation between microscopic and macroscopic
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Figure 1.17: TEM micrography showing strain-rate (and temperature) influence on
strain-induced grain refinement considering aluminum AA1050 samples: (a) RT-QSC:
Room temperature quasi-static loading; (b) RT-DPD: Room temperature, dynamic
plastic deformation, strain-rate in the order of 103 s−1; (c) LNT-DPD: Cryogenic

temperature (liquid nitrogen temperature), dynamic plastic deformation, strain-rate in
the order of 103 s−1; (d) Vickers microhardness in terms of imposed strain considering
RT-QSC, RT-DPD, and LNT-DPD loading conditions. Source: Adapted from Huang

and Tao, 2011.

features is the well-known Hall-Petch rule [Hall, 1951; Petch, 1953], which states that
by refining the grain size, one can increase the obtained material strength. In this man-
ner, if the imposed strain-rate has a major influence on the microstructural evolution
of metallic materials, as earlier discussed in Section 1.3, it should strongly influence the
related macroscopic behavior. Figures 1.17(a)-(c) show experimental results obtained
by Huang and Tao, 2011, on aluminum AA1050 samples, evidencing that increasing the
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deformation-rate (or decreasing the temperature) produces a more efficient strain-induced
grain refinement. The authors have confirmed the strengthening promoted by the defor-
mation velocity by means of microhardness tests. Results shown in Figure 1.17(d) provide
evidence of an increase in material hardness due to an increase in imposed strain-rate. It is
worth mentioning that similar effects can also be obtained by reducing the testing temper-
ature [Li et al., 2009; Zhang and Shim, 2010; Huang and Tao, 2011]. After identifying and
qualitatively evaluating some key microstructural parameters, the next subsection corre-
lates these features with the current material strength, in order to provide constitutive
fundamentals for developing a suitable plasticity model.

1.4.4 Current yield stress constitutive relationships

As explained in Subsections 1.4.1 to 1.4.3, the deformation stages observed in metal-
lic materials correlate with the current material microstructure. This fact suggests that
relationships between the current yield stress and microstructural parameters can be for-
mulated. As pointed out in preceding discussions, the dislocation density, and parameters
associated with dislocation boundaries, as their spacing and misorientation angles, can
be taken as governing microstructural features. In order to comply with this constitutive
task, the ideas introduced by researchers such as Kuhlmann-Wilsdorf, Hughes, Hansen
and co-authors [Kuhlmann-Wilsdorf, 1989; Bay et al., 1992; Hughes and Hansen, 2000;
Hansen, 2004; Hansen and Barlow, 2014] are followed. This approach is based on strength-
ening contributions due to low angle (θ < 15°) IDBs and GNBs in a CB structure from
low to moderate strains (Stages II and III), and high angle (θ ≥ 15°) lamellar (or fibrous)
structure formed at large strains (Stage V) [Hansen, 2004; Hansen and Barlow, 2014].
Accordingly, the current macroscopic yield stress can be given by the following equation
[Kuhlmann-Wilsdorf and Hansen, 1991; Hansen, 2004; Gazder et al., 2008]:

R̄ = σy + ALAB + AHAB, (1.1)

where σy can be taken as the initial yield stress of a fully annealed material, ALAB and
AGNB are hardening contributions related with LABs (Low Angle Boundaries) and HABs
(High Angle Boundaries), respectively.

Considering a polycrystalline metal, in which the formation of dislocation cells governs
the hardening behavior, experimental evidences have demonstrated that there exists an
empirical relationship between ALAB and an average cell size DC [Kuhlmann-Wilsdorf
and Hansen, 1991]:

ALAB = k1µb

DC

→ ALAB ∝
1
DC

, (1.2)

where µ is the elastic shear modulus, b is the Burgers vector magnitude, and k1 is a
constant. Regarding term AHAB, high angle boundaries have shown to present a hardening
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contribution equivalent to that due to ordinary grain boundaries [Hansen, 2004]. Then,
hardening variable AHAB can be given according to a Hall-Petch relationship [Hall, 1951;
Petch, 1953; Kuhlmann-Wilsdorf and Hansen, 1991; Hansen, 2004]:

AHAB = k̄2√
DHAB

= k2µ

√
b

DHAB

→ AHAB ∝
√

1
DHAB

, (1.3)

where DHAB is the spacing between HABs and k̄2 := k2µ
√
b is a constant. Then, Eq.

(1.1) can be rewritten as

R̄ = σy + µ

k1b

DC

+ k2

√
b

DHAB

 . (1.4)

In a simplified modeling devoted to monotonic loadings, a single isotropic hardening
variable A = ALAB + AHAB is commonly assumed:

R̄ = σy + A. (1.5)

In the constitutive formulation to be developed in the present work, current material
strength shall be given according to Eq. (1.5). But to simplify the notation, the isotropic
hardening variable is considered to be given by A = A1+A2. Although assumed hardening
variables A1 ≡ ALAB and A2 ≡ AHAB may be related to microstructural parameters,
the constitutive model to be formulated hereafter represents both strain and strain-rate
hardening by means of phenomenological constitutive equations. Variable A1 is assumed
to govern the hardening behavior from small to moderate strain levels (at Stages II and
III), and to correlate with an internal variable α1 ∝ 1

DC
, such that

A1 ∝ α1. (1.6)

In contrast, A2 is assumed to represent the quasi-linear hardening behavior at larger
strains (at Stage V), and to be given in terms of an internal variable α2 ∝

√
1

DHAB
:

A2 ∝ α2. (1.7)

Although internal variables α1 and α2 are assumed to have a correlation with physical
features as DC and DHAB, in the present work they are seen as effective parameters
describing the macroscopic material hardening at Stages II, III, and at Stage IV, respec-
tively. Accordingly, phenomenological evolution equations for α1 and α2, accounting for
strain and strain-rate effects, will be addressed in this work.

In preceding topics, a metallurgical discussion on aspects associated with strain and
strain-rate-induced hardening behavior have been provided. The last one refers to the
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microstructural rate-sensitivity. However, there is still the rate-sensitivity corresponding
to instantaneous rate-effects on the current flow stress. In metallic materials this instan-
taneous rate-sensitivity is associated with two main mechanisms: (i) thermally activated
dislocation kinetics until moderate strain-rates; and (ii) dislocation drag mechanisms for
greater strain-rates [Kocks et al., 1975; Meyers, 1994; Nemat-Nasser, 2009; François et al.,
2012]. These two aspects are better discussed in the sequel.4

1.4.5 Thermal activation and dislocation drag mechanisms

While moving through the crystalline lattice, a dislocation continuously faces numerous
barriers. The motion of dislocations is opposed by short-range (e.g., the Peierls-Nabarro
resistance and dislocations trapping the slip plane) and long-range (e.g., the elastic field
due to other defects as grain boundaries and far field forest of dislocations) obstacles. In
addition, the dislocation must overcome any drag resistance that may act on it as the
dislocation moves from one set of short-range barriers to the next. Therefore the energetic
resistance to be overcome by a dislocation to move a given distance is the combination of
short and long-range energy barriers [Kocks et al., 1975; Meyers, 1994], as schematically
shown in Figure 1.18(b). While short-range obstacles can be overcome with the add of
thermal activation (or oscillation) mechanisms, long-range barriers do not directly depend
on the temperature or on the plastic strain-rate. In fact, following a simplified isothermal
approach, the athermal resistance can be assumed to be approximately equal to the me-
chanical strength, σy+A, due to the current microstructural configuration given explicitly
in Eq. (1.5). Keeping in mind the preceding discussion on strain and strain-rate-induced
hardening, the temperature and strain-rate influence on long-range resistance occurs only
in a indirect way, by means of temperature and strain-rate dependent microstructural evo-
lution. However, in order to complete the present metallurgical discussion on constitutive
aspects associated with the plastic deformation of metals, the underlying mechanisms
responsible for the instantaneous flow stress rate-sensitivity still have to be addressed.
With this purpose, the overall flow stress response can be written as

σflow = σy + A+ σv, (1.8)

where σv is the viscous stress, which in this simplified discussion corresponds to the
strength due to short-range barriers.

In order to correlate the viscous stress σv with imposed inelastic strain-rate, one can
consider the mobile dislocation of Figure 1.18(a), which moves a distance d̄ = dr + dsr

from point 1 to position 2. During the motion the dislocation has to overcome the overall
4This explanation consists of a simplified discussion about thermally activated dislocation kinetics and
dislocation drag mechanisms. However, for an in depth discussion on these subjects, works of Kocks
et al., 1975, Meyers, 1994, Nemat-Nasser, 2009, and François et al., 2012, are referenced.
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Figure 1.18: (a) Mobile dislocation traveling from obstacle 1 to 2; (a) Overall energy
barrier to be overcome by the mobile dislocation; (c) Detail of the energetic short-range

barrier at position 1. See also Kocks et al., 1975.

energetic barrier illustrated in Figure 1.18(b). The short-range energetic barrier opposing
the dislocation motion at position 1 is detailed in Figure 1.18(c). Thus focusing on the
viscous stress σv, supposing that the total energy needed to overcome the obstacle 1 is
G0, and that the thermal oscillation is capable of supplying an energy ∆G < G0, thus the
remaining amount of energy is the work to be performed by σv to cross the barrier width
dsr:

∆G = G0 − σvV ∗, (1.9)

where V ∗ := bdsrld is the activation volume needed to overcome this obstacle, ld is the
dislocation length, and b is the Burgers vector magnitude. For a given temperature, the
frequency at which the energy ∆G is supplied by the corresponding thermal oscillation is

ω = ω0 exp
(
−∆G
kθ

)
, (1.10)

where k is the Boltzmann constant, θ is the absolute temperature and ω0 is the thermal
oscillation frequency of this dislocation. Notice that, the higher the temperature the
higher the frequency at which ∆G is supplied. The time the dislocation takes to move
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the distance d̄ is ∆t. This time is composed by the period during which the dislocation
waits for a successful attempt to overcome the barrier 1, tw (waiting time), and by the
time taken to travel from point 1 to 2, tr (running time), thus

∆t = tw + tr. (1.11)

The waiting period is given by

tw = 1
ω

= 1
ω0

exp
(

∆G
kθ

)
. (1.12)

From low to moderate strain-rates one has tw � tr, thus ∆t ≈ tw [Kocks et al., 1975;
Meyers, 1994]. Consequently, the mean dislocation velocity within the distance d̄ can be
expressed as

v̄d = d̄

tw
= d̄ω0 exp

(
−∆G
kθ

)
. (1.13)

Therefore knowing the Orowan kinetic equation [Orowan, 1945]

ε̇ = ρmbv̄d, (1.14)

we obtain an expression for the rate of plastic strain ε̇ due to the motion of a density ρm
of mobile dislocations traveling the distance d̄:

ε̇ = ε̇0 exp
(
−∆G
kθ

)
, (1.15)

where ε̇0 := ρmbd̄ω0 can be seen as a reference plastic strain-rate. Expression (1.15)
consists of a kinetic equation representing the plastic flow at a constant structure. The
main task is to express the energy barrier ∆G in terms of the stress σv = σflow− (σy + A)
and the temperature. A general expression for ∆G was proposed by Kocks et al., 1975,
which reads

∆G = G0

[
1−

(
σv
σ̂v

)p]q
, (1.16)

in which 0 < p ≤ 1 and 1 ≤ q ≤ 2 are parameters depending on the energy barrier
profile controlled by the kind of obstacle and material structure. In general, σv is a state
function of both temperature and strain-rate, being σ̂v the viscous stress at θ → 0K.
Equations (1.15) and (1.16) complete the kinetic description of the plastic flow governed
by thermal activation mechanisms. This proposal fits into a physically-based approach.
However, simplified kinetic equations were proposed by some authors in order to deal
with isothermal problems and avoid the determination of material strength at θ → 0K.
Proposals of Perzyna, 1966, 1986, Perić, 1993, and Bodner and Rubin, 1994, can be cited
as examples.
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Thermal activation mechanisms control the plastic flow from low to intermediate
strain-rates (≈ 103 s−1). However, when strain-rates approaching 104 s−1 are imposed,
the viscous drag resistance becomes pronounced, and effective stresses higher than σv are
needed to proceed with plastic deformation. In this case, the flow stress can be given by

σflow = σy + A+ σv + σvd, (1.17)

where σvd is the viscous drag resistance opposing the dislocation motion from one short-
range obstacle to the next, e.g., from 1 to point 2 of Figure 1.18(a). In a very simplified
way, σvd can be correlated with the dislocation running velocity v̄r by a linear relationship:

v̄r = b

B
σvd, (1.18)

where B is a damping coefficient. Consequently, in a situation where very high strain-
rates are imposed, the viscous drag resistance controls the dislocation motion, v̄d ≈ v̄r,
and then, using Eq. (1.14), the strain-rate reads [Kocks et al., 1975; Meyers, 1994; Nemat-
Nasser, 2009]

ε̇ = ρmb
2

B
σvd. (1.19)

In fact, in a general plastic deformation process, mainly from moderate to high strain-
rates, the inelastic flow is controlled by a combination of thermal activation and viscous
drag mechanisms. Thus, a constitutive proposal to be employed from low to high strain-
rate regimes has to comply with this task. There are physically-based kinetic equations
dealing simultaneously with these two mechanisms [Regazzoni et al., 1987; Nemat-Nasser
and Li, 1998; Gao and Zhang, 2012; Rodríguez-Martínez et al., 2011]. However, phe-
nomenological approaches as those previously cited [Perzyna, 1966, 1986; Perić, 1993;
Bodner and Rubin, 1994], do not account in general for viscous drag mechanisms. Thus,
in order to comply with this modeling task, the model proposed by Perić, 1993 is modified.
Model of Perić, 1993, circumvents some numerical problems associated with the model of
Perzyna, 1966, 1986.

1.5 High strain-rate constitutive modeling of metals

According to the preceding discussion, a suitable constitutive model to predict high
strain-rate behavior of metals should account at least for strain and strain-rate-history
effects, since corresponding material hardening (mainly of FCC metals) is strongly rate-
dependent at high velocity conditions [Klepaczko, 1975; Chiem and Duffy, 1983; Tanner
and McDowell, 1999; Huang and Tao, 2011; Luo et al., 2012a]. However, a constitutive
model to be employed in large scale engineering computations should incorporate suit-
able constitutive capabilities, while keeping it simple enough to be experimentally and
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numerically “attractive”.
In general, the great majority of Internal State Variable (ISV) viscoplastic models (e.g.,

those of Perzyna, 1966, 1971, Perić, 1993, Ristinmaa and Ottosen 1998, Simo et al. 1988,
and Alfano et al., 2001) are proposed in order to account for instantaneous rate-effects
during plastic deformation. But they disregard the hardening dependence on strain-rate.
However, as previously discussed in Subsection 1.4.3 and evidenced by experiments of
Subsection 2.2.3, accounting for rate-dependent microstructural evolution, even following
a macroscopic description, becomes an important feature within a high strain-rate consti-
tutive formulation. In this sense, a variety of ISV models accounting for strain-rate-history
effects have been proposed in the literature. In this context, relevant references include the
works of Bodner and Partom, 1975, Anand, 1985, Klepaczko and Chiem, 1986, Follansbee
and Kocks, 1988, Tong et al., 1992, Bodner and Rubin, 1994, Molinari and Ravichandran,
2005, and recently those of Rusinek et al., 2010, Gao and Zhang, 2012, Vilamosa et al.,
2016, and Yan et al., 2016. See also reviews on high strain-rate constitutive modeling, as
those of Meyers, 1994, Chaboche, 2008, Klepaczko, 2009, Rusinek and Jankowiak, 2014,
and Xu and Huang, 2015.

Tanner and McDowell, 1999, investigated experimentally loading-history effects on
response of annealed high purity copper at various strain-rates and temperatures. In a
subsequent work, Tanner et al., 1999, calibrated and compared the JC [Johnson and Cook,
1983], the MTS (Mechanical Threshold Stress) [Follansbee and Kocks, 1988], and the BCJ
[Bamman et al., 1996] models. These authors concluded that the BCJ model provides a
better performance than that presented by the MTS model. However, specifically on room
temperature decremental strain-rate test, comparison results have shown some scattering
between predictions and experiments, for both MTS and BCJ models. Comparisons
between phenomenological and physically-based constitutive models [Johnson and Cook,
1983; Zerilli and Armstrong, 1992; Nemat-Nasser and Li, 1998; Khan et al., 2004; Voyiadjis
and Abed, 2005; Rusinek et al., 2010] considering FCC metals were also performed by Xu
and Huang, 2015 employing a high purity copper. As a result, physically-based models,
i.e., based on the MTS approach [Follansbee and Kocks, 1988; Nemat-Nasser and Li,
1998; Rusinek et al., 2010], have presented a better description of the high strain-rate,
large deformation behavior of FCC metals. This class of physically-based models allows
for a detailed description of both material behavior and its current state, thus providing
an appropriate framework for capturing loading-history effects. However, these models
require complex optimization algorithms and large computational efforts to find associated
model constants, see for instance comments of Gao and Zhang, 2012.

Since a detailed physically-based description increase the model complexity and the
number of constants to be adjusted (see also discussion of Rusinek and Jankowiak, 2014),
and seeking for the formulation simplicity, researchers [Bodner and Rubin, 1994; Molinari
and Ravichandran, 2005; Rodríguez-Martínez et al., 2009; dos Santos et al., 2016] have
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Table 1.1: Constitutive characteristics of selected models. Source: dos Santos et al.,
2016.

Model SRH Stage IV Temp. AS Number of parameters
Total Phys. Ref. Adjust.

dos Santos et al., 2016
√ √

×
√

10 0 2 8
MR

√
×

√ √
14 0 4 10

BPR
√

× × × 9 0 2 7
MTS

√ √
/×

√
× 14 3 2 9

proposed semi-physical constitutive models, which possesses a lower number of material
parameters and require few experiments to identify them. Bodner and Partom, 1975,
proposed an elastic-viscoplastic model (BP model) to predict the behavior of metals at
different strain-rate and temperature histories within the context of continuum mechan-
ics. Estrin and Mecking, 1986, extended the BP model to predict strain-rate-induced
microstructural evolution by letting the internal variable saturation and hardening-rate
to be rate-dependent. Some years after, Bodner and Rubin, 1994, proposed an isother-
mal modified BP model to account for extensive strain-hardening and strain-rate-induced
hardening in copper at room temperature.

Aiming at providing a simplified viscoplastic model, Molinari and Ravichandran, 2005,
proposed a high strain-rate constitutive formulation based on a single internal variable,
which represents an effective microstructural feature. Although this model fits into a
macroscopic phenomenological approach, the choice of the internal variable and its evolu-
tion were based on microstructural mechanisms, such as dislocation generation and anni-
hilation processes and associated formation of dislocation cells, following ideas developed
in physically-based models as those of Klepaczko and Chiem, 1986, Estrin and Mecking,
1984, and Nes, 1997. Thereby, the model proposed by Molinari and Ravichandran, 2005,
is capable of accounting in a phenomenological manner for rate effects on the material
strength, providing reasonable results in reproducing experimental data for copper tests
under different strain-rates, temperatures, and strain-rate jumps. However, as the inter-
nal variable evolution saturates at a given strain level, the model is not able in its original
form to account for strain-hardening at advanced strains, i.e., during deformation Stage
IV. In this sense, in order to provide a simple constitutive alternative suitable to account
for rate-dependent strain-hardening behavior of polycrystalline FCC metals, dos Santos
et al., 2016, recently proposed a viscoplastic formulation within the ISV thermodynamics
framework. Proposed phenomenological constitutive model showed very good agreement
with experimental data of annealed high purity copper obtained during large strain, high
strain-rate cold deformation processes. The model proposed by dos Santos et al., 2016,
fits into a semi-physical context, once the internal state variable and its evolution were
also based on dislocation dynamics processes.
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With the aim of summarizing the present discussion on viscoplastic modeling and
providing a clear visualization on some of mentioned viscoplastic proposals, some single
internal variable models are highlighted in Table 1.1, namely the models of Bodner and
Rubin, 1994, (BPR), Molinari and Ravichandran, 2005, (MR), Follansbee and Kocks,
1988, (MTS). This table also presents characteristics related to the model [dos Santos
et al., 2016] that will be taken as basis in this work. Both the BPR and MR models
consist of simplified formulations widely employed in viscoplastic modeling of loading-
history effects. The MTS model is introduced to compare the simplified ones with a
physically-based model. Comparison presented in Table 1.1 consists of assessing some
constitutive features related to those models, namely the ability of representing the de-
formation Stage IV, strain-rate (SRH), and temperature (Temp.) history effects, as well
as the simplicity of the internal variable evolution equation, i.e., if it allows an analytic
solution (AS). Furthermore, the number of material parameters, which are classified as
physical (Phys.), adjustable (Adjust.), and non-adjustable or reference (Ref.) parameters,
are also assessed. Unidimensional constitutive formulations related to each of the selected
models are shown in Table A.1 presented in Appendix A, where constitutive equations as-
sociated with unidimensional flow stress (σflow), internal state variable and its evolution,
as well as strain-rate-history effects and related model parameters are addressed.

All models of Table 1.1 should be able of representing strain-rate-history effects. How-
ever, the MR, BPR, and MTS models in their original form cannot account for constant
hardening-rate at larger strains (the deformation Stage IV). The MTS model, in a first
stage can prevents the stress saturation at given strain level. But, as discussed by Kok
et al., 2002, this model saturates with strain. In this table, only the MR and MTS models
are able of modeling thermal effects. Furthermore, among the models analyzed, those of
Molinari and Ravichandran, 2005, and dos Santos et al., 2016, allow to obtain analytical
expressions for the ISV evolution. Concerning the number of parameters, the BPR model
exhibits the lower number of constants to be adjusted. However, as discussed earlier, this
model does not account for hardening in Stage IV, and it seems that at least one param-
eter is needed to perform this task. Among the simplified models, the MR model (under
isothermal condition) and that proposed by dos Santos et al., 2016, have 8 parameters to
be calibrated.

In order to provide constitutive comparisons related to the viscoplastic proposals cited
above, Appendix A compares the model proposed by dos Santos et al., 2016, with models
of Follansbee and Kocks, 1988, Bodner and Rubin, 1994, Bamman et al., 1996, and of
Molinari and Ravichandran, 2005, in predicting decremental strain-rate experiments for
an annealed high purity copper. In a general way, the model proposed by dos Santos
et al., 2016 presents better predictions within the conditions considered. Although the
model of dos Santos et al., 2016, has been developed within the context of the present
thesis, its calibration was performed by employing experimental results available in the
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literature [Nemat-Nasser and Li, 1998; Tanner and McDowell, 1999; Jordan et al., 2013].
Therefore, the present work aims at obtaining original experimental data (considering a
commercially pure aluminum), and then improving the model recently formulated [dos
Santos et al., 2016] in order to properly representing the experimental observations. As a
result of this improvement, the formulation previously published [dos Santos et al., 2016]
will be a particular case of the viscoplastic model to be developed here. The detailed
work proposal is provided in the following section.

1.6 Work outline

In Chapter 2, material details, experimental equipments and procedures are described.
Experimental development is devoted to characterize specific constitutive features: strain-
hardening, strain-rate-hardening and instantaneous rate-sensitivity. Corresponding exper-
imental results are presented in Section 2.3. Quasi-static material behavior is identified
considering strain-induced evolution of both flow stress and material hardness. Consider-
ing those results, an empirical correlation between current yield stress and material hard-
ness is proposed. The strain-rate-hardening feature, which is intimately related to material
microstructure evolution and its current state, is macroscopically assessed by evaluating
strain-rate effects on material hardness. Considering obtained material hardness data,
and using the yield stress-material hardness correlation, current (rate-dependent) mate-
rial strength is therefore estimated. Instantaneous rate-sensitivity is assessed by means
of high velocity compressions employing constant strain-rates. As a result, experimental
high strain-rate flow stress-strain curves are then obtained. Strain-rate-history effects on
the behavior of tested material are identified by performing sequential strain-rate experi-
ments, namely, decremental strain-rate tests, and strain-rate jump tests, thus evaluating
corresponding flow stress and material hardness evolution.

Chapter 3 describes the finite strain framework employed for modeling the mechanical
behavior of an elastic-viscoplastic body. Some continuum mechanics background con-
sidering a Total Lagrangian finite strain framework is presented in Section 3.1. These
fundamentals consists of describing equilibrium equations as well as associated bound-
ary conditions, and further stating thermodynamic principles to be complied with by the
viscoplastic constitutive model to be developed in Section 3.2. Having as reference the ob-
tained experimental results, an elastic-viscoplastic model is then proposed. Constitutive
formulation generalizes the model proposed by dos Santos et al., 2016, which proved to be
a suitable simplified alternative in modeling finite strain, high strain-rate cold deformation
of an annealed high purity copper [Nemat-Nasser and Li, 1998; Tanner and McDowell,
1999; Jordan et al., 2013]. The present development is intended to provide a phenomeno-
logical constitutive framework for modeling the rate-dependent strain-hardening behavior
of polycrystalline FCC metals. Constitutive development assumes a homogeneous mate-
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rial possessing both elastic and inelastic isotropy, and it follows a macroscopic phenomeno-
logical (or semi-physical) framework. This constitutive formulation adopts a von Mises
plasticity employing a strain-rate dependent isotropic hardening whose evolution equa-
tions follow the overstress framework of Perzyna, 1966, 1971.5 The isotropic hardening is
taken into account by two scalar internal variables, which can be interpreted as effective
microstructural features. A new phenomenological viscoplastic function accounting for
thermally-activated and viscous drag mechanisms is also proposed.

Following with material behavior characterization, experimental data presented in Sec-
tion 2.3 are used to adjust model parameters in Chapter 4. Model calibration is performed
considering subsequent steps, what allows identifying separately each constitutive feature
as well as verifying graphically the adjusted constants. This fact permits to employ simpler
and more efficient gradient-based local algorithms as an alternative to global strategies.
Calibrated model is therefore validated considering sequential strain-rate experimental
results reasoning on both flow stress and material hardness.

Chapter 5 presents both global and local numerical formulations. Section 5.1 out-
lines the global strategy adopted for solving associated equilibrium problem satisfying
imposed boundary conditions. Time discretization follows an implicit strategy and space
discretization is carried out by using the Finite Element Method (FEM). Obtained non-
linear incremental boundary value problem is iteratively solved by the Newton-Raphson
method. Section 5.2 describes the local incremental constitutive formulation. Present
approach follows standard works on isotropic finite strain (visco)plasticity, as those of
Eterovic and Bathe, 1990, and Weber and Anand, 1990, thus employing an exponential
implicit integration scheme. Related nonlinear equations are solved by using an elas-
tic predictor-plastic corrector algorithm. Therefore, adopted numerical strategy furnishes
incremental elastic-viscoplastic solutions associated with each reversible or irreversible de-
formation increment. From linearization of corresponding return mapping equations, an
analytical consistent tangent operator is obtained, which is then employed in the iterative
solution of related global equilibrium equations using FEM.

In Chapter 6 numerical results obtained by using the present approach are therefore
presented. Numerical simulations consists of compression tests considering both homoge-
neous deformation and frictional billet upsetting. Numerical tests have the aim of demon-
strating corresponding model capabilities and numerical robustness. Our conclusions and
comments are given in Chapter 7.

Appendix A provides the uniaxial flow stress formulations corresponding to viscoplas-
tic models outlined in Table 1.1. In addition, this appendix also compares some viscoplas-
5We have also to mention that there are other viscoplastic framework in which a phenomenological or
even physically-based model can be embedded, e.g., the overstress model of Duvaut-Lions [Duvaut and
Lions, 1976; Simo et al., 1988; dos Santos et al., 2015b], that of Krempl [Krempl and Gleason, 1996;
Krempl, 1996], or the consistency model of Wang [Wang et al., 1997]. A comparison between models of
Perzyna and of Wang was done by Zaera and Fernández-Sáez, 2006.
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tic model in predicting experimental results obtained from decremental strain-rate tests
for high purity copper samples. Appendix B describes numerical aspects related to the
numerical strategy adopted in solving both global and local problems as well as model
calibration. Specifically, topic B.5 presents a qualitative finite element analysis (using
software Abaqus) on the dynamic behavior of the developed compression tool.
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2 EXPERIMENTAL PROCEDURES AND RESULTS

This chapter reports aspects related to the employed material (aluminum AA1050) and
it provides construction and technical characteristics associated with the developed and
used equipments. Furthermore, experimental procedures used to characterize the desired
material behavior and corresponding results are also presented.

2.1 Employed material

Chemical composition of aluminum AA1050 (99.5% wt) to be employed in this work
is given in Table 2.1. Cylindrical specimens with nominal dimensions of Ø6× 6 mm were
cut from a cold-rolled plate using wire electrical discharge machining and finished by
turning. End faces of the specimens had smooth concentric circular patterns and cutting
parameters were set in order to obtain an initial average surface roughness (Ra) below
0.3µm. The material employed in experiments has been annealed at 450 ◦C during 2 h,
followed by a natural cooling in air. The initial grain size of the samples after annealing
were measured by metallographic examination and it was found to varies from 100 to
300µm. Corresponding specimen dimensions and material metallography are showed in
Figure 2.1.

Table 2.1: Chemical composition of aluminum AA1050.

Element Cu Mg Si Fe Mn Zn Ti Al
% weight (max.) 0.05 0.05 0.25 0.4 0.05 0.07 0.05 Balance

6
 m

m

6 mm

1 mm

Figure 2.1: Optical micrography of annealed aluminum AA1050. Sample was chemically
etched by using a modified Poulton solution. For details on the metallographic analysis

see Reis et al., 2016.
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2.2 Experimental equipments

This section is intended to outline the experimental equipments developed at the In-
stituto Superior Técnico of Lisbon, Portugal, under the supervision of Professor Pedro
Rosa, for characterizing the quasi-static and dynamic material behavior, reasoning on
constitutive features as strain-hardening, strain-rate-hardening and viscous effects.

Material characterization is performed by means of compression tests. For this purpose
specific experimental apparatus were developed: (i) a new compression tool dedicated to
compression testing; and (ii) a gas gun machine to perform high strain-rate compressions.
Developed and commercial experimental equipments used in material characterization are
better described in the following subsections.

2.2.1 Compression tool

In order to perform the corresponding experiments, an instrumented compression tool is
developed. This tool is dedicated to compression testing of cylindrical specimens with both
diameters and heights varying from 2 mm to 8 mm. However, here specimens with nominal
dimensions of Ø6 × 6 mm are used. The aim of this development is to obtain a proper
rigid compression tool, in which both displacement and load measurements associated
with compressions are carried out as close as possible to the experimented specimen.
By making that, experimental errors associated with deformation of tools and testing
machine structure are strongly reduced. Developed compression tool is shown in Figure
2.2. The whole apparatus consists of a high strength steel cylindrical chamber, where two
compression platens are assembled: (i) a fix one, which is positioned over a piezoelectric
load cell (Kistler 9137B, maximum load of 80 kN); and (ii) a mobile one, which is guided
by rubber O-rings, and where the load is applied. The compression platens utilized in the
experimental tests have been machined and polished in order to limit the average values
of surface roughness (Ra) in the range 0.07 − 0.15µm. At the described compression
platens, copper spiral coils are attached, which compose the developed displacement sensor
described in subsequent topic. To the load cell, following recommendations from the
manufacturer, a preload of 10 kN is applied [Kis, 2016]. Then, in order to reduce associated
preload loss during compression, Belleville washers are assembled with the preload bolt.
Furthermore, the load cell is aligned by using a polymeric guide.

The primary coil, assembled in the fixed compression platen, is connected to a func-
tion generator (Thurlby Thandar instruments TG120), which provides an alternate elec-
tric current of 10 MHz with an electric potential of 20 V. In order to avoid short-circuit
due to its low electric resistance of ∼ 1 Ω, the primary coil is connected in series with
a resistor of 20 Ω. The secondary coil is connected to a full-bridge diode (1N5819) rec-
tifier with a capacitor of 0.21µF, whose output, by means of a BNC connecting board
(National Instruments BNC-2120), is connected to a Data Acquisition (DAQ) board (Na-
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Figure 2.2: Schematic representation of compression tool and associated data
acquisition.

tional Instruments PCI-6115, 12-Bit, 10 MS/s/ch), to which the signal amplifier (Kistler
type 5015A, 1 MS/s) of the piezoelectric load cell is also connected. Acquired data are
processed by using the software LabView installed in a dedicated computer.

Displacement sensor

The displacement sensor is composed by two copper spiral coils built from printed
circuit boards (PCBs), see schematic representation of Figure 2.3(a). This sensor works
by an inductive action. In order to allow high velocity compression tests, an alternated
electric current of 10 MHz with an electric potential of 20 V is furnished to the primary
coil. Due to the electromagnetic coupling between the coils, an alternate electric current
is induced in the secondary one. The electric potential associated with the induced charge
depends on the distance l between the coils, see Figure 2.3(b). In this case, the distance
is the specimen height. In this manner, to measure the current specimen height during
compression, the electric potential Ve measured at the rectifier output is correlated with
associated distance l by means of calibration curve obtained a priori (see Figure 2.4).
The correlation follows the functional form:

l = a0 + a1 ln (Ve) , (2.1)

where a0 and a1 are constants to be adjusted. In fact, the calibration curve l−Ve is given
by a logarithmic function. Then, by knowing the initial l0 and final lf specimen lengths
as well as respective electric potentials, Ve0 and Vef , one can confirm or obtain specific
calibration curve corresponding to each compression test. Since the sensor is assembled
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Figure 2.3: Schematic representation of (a) displacement sensor as well as (b) respective
specimen height l and acquired electric voltage Ve.

0.5 1 1.5 2 2.5
1

2

3

4

5

6

7

Ve [V]

l
[m

m
]

 

 

Experimental
Adjusted function

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

ln (Ve) [ln (V)]

l
[m

m
]

 

 

Experimental
Adjusted function

(a) (b)

Figure 2.4: Calibration curve of the specimen height l in terms of measured electric
voltage Ve: (a) linear scale; (b) logarithmic scale.

directly on the compression platens, Figure 2.3(b), this apparatus is less sensible to elastic
strain occurring in the tool or machine structures than in conventional equipments, what
provides more precise measurements of the specimen height during compression.

Developed displacement sensor as well as respective data acquisition system is suit-
able to high strain-rate compressions, once this inductive sensor, combined with a high
frequency function generation and an appropriate electric rectifier on the output, allows
to obtain a high rate displacement data acquisition.

2.2.2 High velocity compression machine (gas gun machine)

The high velocity testing machine is composed of a metallic vessel, which is then
pressurized. Figure 2.5(a) shows the machine with its trigger valve closed, and thus
with the striker bar at rest. Testing is performed by manually actioning the trigger
valve, allowing the passage of pressurized air from the vessel to the tube (Figure 2.5 (b))
where a brass striker bar (with �25 × 190 mm and ∼ 800 g) is inside. The air pressure
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Figure 2.5: Schematic representation of high velocity compression machine: (a) Closed
trigger valve, striker bar at rest; (b) Detail of open trigger valve, beginning of high

velocity compression; (c) Detail of striker bar hitting the compression tool; (d) Detail of
simplified assembling, striker bar hits directly the specimen; (e) Schematic

representation of strain-rate vs. strain loading path.

drives the bar, which after traveling along the tube, hits the compression tool (described
in Subsection 2.2.1), thus performing the specimen compression, as shown in detail in
Figure 2.5(c). During the compression test, load and displacement data are acquired
following data acquisition system described in Subsection 2.2.1. Both load (piezoelectric)
and displacement (inductive) sensors can work under high frequency conditions, and the
DAQ board PCI-6115 has four simultaneous analog inputs at 10 MHz per channel. As
already pointed out, these features are suitable to adequately acquire force-displacement
data during high velocity compressions.

As characteristic, at high velocity compressions, this apparatus can perform compres-
sions at quasi-constant strain-rates. See Figure 2.5(e) for illustration.

Simplified assembling

The simplified high velocity compression machine combines the pneumatic actuator
showed in Figure 2.5(b) and the compression tool displayed in Figure 2.5(d). In this
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case, bar velocity right before impacting the specimen is measured by using two lighters
and two photo diodes, which are connected to an oscilloscope. By knowing the distance
between the two photo diodes, the bar velocity is calculated by the measured time interval
between the interruption of lights by the traveling bar.

Straining of specimen is limited by high strength metallic rings. Limiter thickness
ranges from 1.5 to 5.5 mm. However, it is clear that at these high strain-rate testing
conditions the involved momentum and energies would be greatly enhanced by impact
velocity. Indeed, after the compression test, the remaining energy is high enough to
damage the testing machine components. Thus, the incident bar weight has been properly
adjusted during the experimental research. In this simplified assembling, in which the bar
impacts directly on the work piece, this is aimed to use adaptive incident bar based on
metallic and polymeric parts. The velocity ranging from 6 to 60 m

s corresponds to incident
bar weights ranging from 800 to 25 g, respectively. Further, in order to reduce vibrations,
propagation and reflection of elastic waves due to high velocity impact, a rubber damper
is also used. Contact surfaces of both fixed and movable compression bars were also
machined and polished, limiting the average roughness (Ra) in the range of 0.07−0.15µm.

The machine configuration described above is going to be used to investigate strain-
rate influence on material hardness evolution. As it can be seen, this compression machine
is very simple, since, apart from lighters, photo diodes and oscilloscope, this equipment
has no instrumentation for measuring displacements and forces. However, strains are
calculated by measuring the initial and final specimen lengths. In addition, hardening
tests are performed right after each incremental compression.

Remark 2.1. Observing Figure 2.2, one notes that the specimen is positioned on the
superior part of the fixed platen. On the other hand, the load cell is assembled under
this component. When using this tool considering quasi-static loadings, according to
equilibrium conditions, the compression force employed on tested specimen is very close
to that measured by the load cell. However, this fact can not be readily extended to
high velocity compressions, in which dynamic effects due to impact and wave propagation
are present. Thus, in order to qualitatively evaluate and compare the compression force
applied to the work piece with that dynamically measured by the load cell, Appendix B.5
presents a finite element analysis on the compression apparatus, considering a high velocity
compression. The finite element simulation is conducted in software Abaqus explicit.
The analysis emphasizes the existent time delay between displacement and load data
acquisition during high velocity tests. Numerical results show that oscillations observed
on experimental flow stress (Figure 2.11(a)) would be due to dynamic behavior of the
compression platen and load cell assembling. Furthermore, simulation results qualitatively
demonstrate that, after performing appropriate corrections considering the time delay, in
an average way the force imposed on the load cell is close to that applied on the compressed
specimen. This would demonstrate numerically that the assembly composed by the fixed
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platen and load cell does not present significant damping or dissipating effects.

2.2.3 Hardness measurements: microhardness test machine and samples preparation

Between each compression test, the material strength is determined by microhard-
ness measurements using a Struers hardness tester model Duramin -1/-2 with a Vickers
diamond, applying a load of 4.9 N during a loading time of 15 s. Before hardness mea-
surements, specimens are progressively sanded down with 600, 800, 1200, 2500 and 4000
grit sandpapers using water. This procedure allows to remove the extra strained layer
due friction at the contact interface between tested specimen and compression platens, to
try and bring about a more realistic approach in respect to an idealized uniaxial compres-
sion testing. Each hardness measurement along this work is performed considering ten
hardness points, five on each specimen end face. Concerning the annealed state, initial
hardness measurements of all specimens resulted in an average value of approximately
220 MPa, with an standard deviation not exceeding 5 MPa. This initial hardness value
will be used as a reference quantity in the experimental results to be presented hereafter.

2.3 Experimental results

This section presents the experimental results for the aluminum AA1050 starting from
an annealed condition, using equipments described earlier. The experimental results to
be presented herein evidence the corresponding material behavior and give support to
subsequent constitutive development.

2.3.1 Preliminary experimental aspects

Although strain and stress measures have not been defined yet, to present the corre-
sponding experimental results, at this moment the following logarithmic strain measure
is adopted:

ε := ln (l0/l) , (2.2)

being l0 and l the initial and current specimen lengths, respectively. In addition, flow
stress values to be presented herein are calculated by the following equation:

σflow = F

As
, (2.3)

where F is the current force applied to the specimen, and As is its current cross section
area, which is calculated as

As = πd2
0l0

4l , (2.4)

in which d0 is the initial specimen diameter. Equation (2.4) is obtained by keeping in
mind that in the present analysis large strains are imposed, thus the associated elastic
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strain represents a small part, and by assuming that the plastic deformation does not
induce significant volumetric changes.

Before each compression, a standard procedure to reduce friction between work pieces
and compression platens is employed. For both hardness and stress analysis, the specimen
contact surfaces are sanded down with 400, 600, 800, 1200, 2500 and 4000 grit sandpa-
pers using water, and then lubricated with a thin grease film. Furthermore, it is worth
mentioning that, in every case, the specimen initial length l0 is measured after sanding
processes, that is, right before the compression test. Furthermore, in high strain-rate
experiments, in order to remove irregularities due to impact with work pieces, contact
surfaces of compression tools are sanded down and polished after each three compression
tests, thus guaranteeing compression surfaces with average values of roughness (Ra) in
the range of 0.07− 0.15µm.

The preceding unidimensional and homogeneous stress definition infers that stress
triaxialities induced by friction conditions during compression tests are disregard in the
treatment of experimental results. Stress triaxialities, considering a low friction coeffi-
cient (due to appropriate lubrication) are evaluated by means of numerical simulations in
Chapter 6, where the stress-strain fields and corresponding compression forces of frictional
cases are compared with those associated with frictionless simulations.

2.3.2 Hardness-strain data

In order to investigate both strain and strain-rate effects on material hardness evolution
quasi-static and high strain-rate compression are performed. Experiments have the aim of
investigating the rate-dependent strain-hardening behavior of aluminum AA1050. Quasi-
static experiments are conducted in a Maquidral CNC double effect hydraulic press with
a maximum load of 500 kN. These tests are performed considering an average strain-rate
in the order of 10−2 s−1. High strain-rate compressions are performed using the simplified
high strain-rate compression apparatus described in Subsection 2.2.2, see also Figures
2.5(b) and (d).

Experiments consist of compressing the specimens incrementally to a total strain of
ε ≈ 1.5 at different compression velocities. Incremental procedure considers deformation
steps lower than 25% of the total applied strain (∆ε ≤ 0.4). Specifically on dynamic
compression, applied strain was limited by using high strength metallic rings. Further-
more, the incremental procedure was adopted in order to avoid significant thermal effects
during high strain-rate compressions. This procedure justify the adoption of an idealized
isothermal formulation to represent the obtained experimental data.

After each incremental deformation, both total strain (ε) and hardness (HV ) measure-
ments are conducted. Hardness tests are performed according to the description given
in Subsection 2.2.3. The surface preparation outlined is a useful procedure, since, in ad-
dition of preparing the specimens to perform the hardness measurements, the specimen



45

0 0.3 0.6 0.9 1.2 1.5
200

250

300

350

400

450

500

ε

H
V
[M
P
a
]

Q S

2x10
3
1/s

4x10
3
1/s

1.1x10
4
1/s

Figure 2.6: Hardness-strain experimental data obtained from constant strain-rate tests.
Dashed lines are used only for visualization purposes.

end faces are then regularized (removing irregularities due to deformation and friction
conditions) to the following compression step.

Compression tests are performed considering a wide strain-rate range, from quasi-
static to high strain-rate conditions. The considered strain-rate values are: 10−2, 2× 103,
4×103 and 1.1×104 s−1. Incremental compressions provide hardness-strain data associated
with employed strain-rates. These results are given in the sequel considering both constant
strain-rate and sequential tests.

Constant strain-rate experiments

Constant strain-rate experimental results are displayed in Figure 2.6. In this figure, the
initial hardness corresponds to the average value (≈ 220 MPa) of all annealed specimens.
The other experimental data consist of an average of ten hardness measurements related
to a given deformed specimen after each compression. Hardness points showed in Figure
2.6 present bars showing the corresponding standard deviation. Results of Figure 2.6
consist of four hardness-strain curves referring to a quasi-static testing (ε̇ = 10−2 s−1),
and high velocity compressions performed at near constant strain-rates of 2×103, 4×103

and 1.1× 104 s−1. By analyzing the experimental results presented in Figure 2.6, one can
realize the influence of imposed strain-rate on the material hardness evolution. This rate-
dependence occurs in a manner that, for a given strain level, an increase in strain-rate
increases the current material hardness. The strain-rate influence on material hardness is a
macroscopic evidence of the material microscopic rate-sensitivity. As discussed in Section
1.4.3, the plastic deformation velocity has a significant influence on metallurgical features
as the storage and arrangement of dislocations structures, which directly influence the
formation of new sub/grains during dynamic recrystallization processes. Since the past
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strain-rate-history has a major contribution on the current microstructural state [Zhang
and Shim, 2010; Huang and Tao, 2011], it also does on the current material strength. The
past rate-history influence on the macroscopic behavior of metals can be clearly realized
by means of sequential strain-rate analyzes presented in the sequel.

Sequential strain-rate experiments

In order to investigate strain-rate-history effects on material hardness response, com-
pressions involving decremental strain-rate and strain-rate jump tests are also performed.
The specific sequential strain-rate experiments to be carried out are described in what
follows:

• Decremental strain-rate test: Work piece is incrementally compressed to a given
strain level at a high strain-rate. After this deformation, compression follows a low
strain-rate loading, see schematic representations of Figures 1.7(a) and (c);

• Strain-rate jump test: In this case, the compression is started following a low strain-
rate incremental loading. Then, from a given level of straining, deformation con-
tinues by imposing a high strain-rate deformation increments, see illustrations of
Figures 1.7(b) and (d);

Experimental data concerning a decremental strain-rate test (test 1) is shown in Fig-
ure 2.7(a), in which at a given strain ε1 = 0.14 the loading-rate is changed from a high
strain-rate ε̇ = 4×103 s−1 regime to a quasi-static condition. Notice that in this case, the
hardening state right before the decremental response is lower than the hardness satura-
tion associated with the quasi-static monotonic loading. After a slight reduction in the
hardness response is noticed, it restarts to increase. Analyzing the results given in Figure
2.7(a), one can realize that the decremental response tends asymptotically to the quasi-
static curve. The difference between the decremental and quasi-static curves right after
the change in strain-rate is due to an extra material strength induced by the previously
imposed high strain-rate ε̇ = 4× 103 s−1 until the strain of 0.14. As already commented,
this behavior is a macroscopic evidence of strain-rate-dependent microstructural evolu-
tion. Figure 2.7(a) also shows a decremental strain-rate test, in which the hardness state
right after the decremental response is greater than the quasi-static hardness saturation
(test 2). In this case, at a given strain of ε1 = 0.43, the strain-rate is changed from a high
level of ε̇ = 1.1× 104 s−1 to a quasi-static condition. Right after the strain-rate decrease,
the hardness response shows a fast reduction and then a slight quasi-linear increasing,
following a quasi-constant hardness-rate increasing similar to that associated with the
quasi-static curve. In this case, the difference between the decremental and quasi-static
responses is even higher than that of test 1, since imposed strain-rate and associated total
strain are higher than those employed in the first test.
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Figure 2.7: (a) Hardness-strain experimental data obtained from decremental strain-rate
tests. Test 1: Change from a high strain-rate, 4× 103 s−1, to a quasi-static condition at
a given strain of ε1 = 0.14. Test 2: Change from a high strain-rate, 1.1× 104 s−1, to a
quasi-static condition at a given strain of ε1 = 0.43. (b) Hardness-strain experimental

data obtained from strain-rate jump tests. Change from quasi-static to high strain-rate,
1.1× 104 s−1, conditions at given strains of ε1 = 0.2 (test 1) and ε1 = 0.45 (test 2).

Dashed lines are used only for visualization purposes.

We also perform two strain-rate jump experiments. These simulations are performed
by changing the loading-rate from a quasi-static condition to a high strain-rate ε̇ =
1.1×104 s−1 loading. Obtained results are shown in Figure 2.7(b). Strain-rate jumps were
performed at strains of ε1 = 0.2 (test 1) and ε1 = 0.45 (test 2). For these high strain-rate
regimes, the loading-rate influence on material hardness is also clear, in a manner that
the strain-rate jump has strongly changed the hardness response. However, due to the
known loading-history effects, the jumping response does not tend asymptotically to the
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constant high strain-rate curve. In fact, the experiments show a certain resistance in
approaching the monotonic high strain-rate response.

2.3.3 Stress-strain data

This subsection presents the stress-strain results referring to both quasi-static and high
strain-rate experiments, considering constant strain-rate as well as sequential tests.

Constant strain-rate experiments

This topic outlines the results of constant strain-rate experiments. The results shall be
used in order to characterize the strain-rate influence on specific material behaviors: quasi-
static flow stress, rate-dependent yield stress (or non-viscous stress) and rate-dependent
flow stress. Experimental results to be presented in this topic are obtained from incre-
mental or continuous monotonic compressions.

Quasi-static compressions are performed using the compression tool presented in Sub-
section 2.2.1 and a Maquidral CNC double effect hydraulic press with a maximum load of
500 kN. Quasi-static tests employ an average strain-rate of approximately 10−2 s−1. With
the aim of avoiding significant friction effects, quasi-static compressions are performed in-
crementally. Following this procedure, the compressed specimens are lubricated between
each incremental deformation. Incremental quasi-static stress-strain data are showed in
Figure 2.8 (points). The quasi-static strain-hardening behavior associated with this ma-
terial can be easily observed from this figure. Starting from an annealed state, the initial
yield stress σy of approximately 45 MPa increases to a value near to 140 MPa for total
strain equal to 1. Figure 2.8 also shows the comparison between the results obtained from
both incremental and continuous compressions. From this comparison, higher differences
between the two curves are observed for strain levels greater than 0.6. This behavior is
due to friction effects, which become more pronounced as the imposed strain (and thus
the current contacting areas) increases. It is worth mentioning that incremental reloading
of Figure 2.8 present variations on the curve slope related to elastic phase. These varia-
tions are due to corresponding displacement sensor sensitivity. Although it is adequate to
measure the displacement during the plastic phase, it is not precise enough to accurately
represent the elastic modulus.

In order to obtain the rate-dependent yield stress (σy + A, where A is an isotropic
hardening parameter), preceding experimental rate-dependent hardness data are consid-
ered. For this purpose, a correlation between the current material hardness and the yield
stress,

σy + A = ϕ (HV ) , (2.5)

has therefore to be assessed. In the above equation, σy + A is given as a function ϕ of
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Figure 2.9: Experimental and analytical correlations between current yield stress σy + A
and material hardness HV .

the current material hardness HV . Although, there exist analytical correlations between
the current strength and material hardness (e.g. those of Johnson, 1970, and Gao et al.,
2006), some authors have shown that for metals such as steels [Busby et al., 2005; Pavlina
and Van Tyne, 2008], magnesium [Cáceres et al., 2005], and aluminum [Tiryakioglu et al.,
2015] a linear relationship between Vickers hardness and yield stress can be empirically
employed. Qiao et al., 2009, proposed an exponential relationship between σy + A and
HV for the aluminum AA1050. However, our function ϕ having a quadratic form,

σy + A = c0 + c1HV + c2H
2
V , (2.6)

appears suitable for fitting experimental data.
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Figure 2.10: Strain-rate influence on current yield stress vs. strain curves. Current yield
stress was estimated from hardness data of Figure 2.6 using empirical relation (2.6) and
parameters given in Eqs. (2.7). Dashed lines are used only for visualization purposes.

Figure 2.9 shows an experimental correlation between the yield stress and correspond-
ing material hardness. These experimental results are obtained considering hardness-
strain and stress-strain data. Calibration of Eq. (2.6) considering data of Figure 2.9
results in the following constants:

c0 = −133.5, c1 = 0.937, and c2 = −6.801× 10−4. (2.7)

Figure 2.9 displays the adjusted equation (2.6) together with experimental results, showing
a good correlation. For comparison purposes, experimental data presented by Qiao et al.,
2009, are also shown. This figure has also plotted the Tabor ’s relationship

(
σy + A ≈ HV

3

)
,

which was deduced considering a perfectly-plastic material [Tabor, 2000]. Tabor ’s relation
fits well when local material hardening imposed by indentation process is not pronounced.
In present case, Tabor ’s relation seems to work for σy + A > 130 MPa. In a regime in
which strain-hardening is significant, i.e., for stresses close to the initial yield stress (as-
sociated with an annealed material) a greater difference between Tabor ’s proposal and
experimental data is observed. To solve this problem, an effective strain and correspond-
ing stress hardening due to indentation-induced straining have been employed [Tabor,
2000]. Considering the empirical relation given in Eq. (2.6), this pronounced harden-
ing associated with initial stages of deformation is accounted for by negative values of
constant c0 [Tiryakioglu et al., 2015].

Now, having Eq. (2.6) and constants given in Eqs. (2.7), the rate-dependent yield
stress is estimated from rate-dependent hardness data presented in Figure 2.6. Obtained
results are showed in Figure 2.10. Then, the next step is to characterize the instantaneous
strain-rate-sensitivity.
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Figure 2.11: (a) Experimental flow stress-strain curves for different strain-rates; (b)
Experimental time-histories of imposed strain corresponding to the high velocity

compressions. In figure (a), thin dashed lines are not tendency lines, they were used
only for easy visualization.

The remaining constitutive feature to be addressed is the instantaneous flow stress
rate-sensitivity. To obtain suitable experimental data and perform this constitutive char-
acterization, high strain-rate compressions are performed using the assemblage consisting
of the pneumatic actuator described in Subsection 2.2.2 and the compression tool of Sub-
section 2.2.1, as showed in Figures 2.5(a)-(c). Experiments consist of performing high
strain-rate continuous compressions employing different strain-rates. Chosen values are:
1.2× 103, 1.7× 103, 2.0× 103 and 4.0× 103 s−1. Flow stress-strain curves obtained follow-
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ing this procedure are showed in Figure 2.11.1 Oscillations observed in flow stress-strain
curves would be due to elastic wave propagation induced during high velocity compres-
sions. As numerically evidenced in Appendix B.5, corresponding oscillations could be
attributed to the dynamic behavior of the compression platen and load cell assembling
and not to specimen inertia, since a minor stress (or force) oscillation is numerically
predicted in the compressed specimen. See Figure B.2.

Since the whole compression is performed in a single step (i.e., a continuous test), the
imposed strain is limited to a maximum value of εmax = 0.5 in order to avoid significant
thermal effects due to high velocity plastic deformation. Considering this strain level
and assuming quasi-adiabatic conditions, the maximum temperature increase due to high
velocity plastic deformation can be estimated. Reasoning on the energy conservation
principle, the following expression for the temperature change is obtained:

∆θ = βTQ
ρ0cp

∫ εmax

0
σdε, (2.8)

where βTQ ≈ 0.9 is the Taylor-Quinney coefficient assumed as constant2, ρ0 is the reference
specific mass and cp is the specific heat at constant pressure. Then, employing this
equation to the flow stress-strain curve associated with the strain-rate of 4.0×103 s−1, and
knowing the aluminum AA1050 proprieties, ρ0 = 2700 kg

m3 and cp = 900 J
kgK , a maximum

temperature increase of ∆θ ≈ 20ºC is estimated. Then, starting from a room temperature
of approximately 25 ºC, a maximum temperature of 45 ºC is reached during this high
strain-rate compression. According to experimental results of Andrade-Campos et al.,
2004, starting from room temperature, the thermal softening in the stress response of
an aluminum AA1050 is approximately 10% for a temperature increase of ≈ 20ºC. This
fact can justify the simplifying assumption of considering isothermal conditions in future
developments.

Sequential experiments

This topic focus on sequential strain-rate experiments, more specifically on decremen-
tal strain-rate tests. Experiments consists of high strain-rate compressions, until a given
prestrain level, followed by a quasi-static deformation. Three decremental strain-rate
tests (DT) are considered. Table 2.2 presents the prestrain level ε̄ and strain-rate ˙̄ε asso-
ciated with high velocity loading of each test. The specimen considered herein were in-
crementally compressed during the hardness-strain analysis presented in Subsection 2.2.3
employing constant strain-rate conditions, that is, by using the simplified high strain-rate
1We remark that to obtain adequate stress-strain results from force-displacement data, careful correc-
tions, considering the time delay between displacement and load data acquisition during high velocity
compressions, were performed. See analysis and discussion presented in Appendix B.5.
2Detailed considerations concerning a variable Taylor-Quinney coefficient are reported, e.g., by Mac-
dougall, 2000, and Ristinmaa et al., 2007.
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Figure 2.12: Quasi-static reload stress after high strain-rate loading: (a) DT1; (b) DT2;
(c) DT3. Loading data are given in Table 2.2.

compression apparatus described in Subsection 2.2.2. Pre-deformed specimens, follow-
ing conditions of Table 2.2, are then quasi-statically reloaded in the compression tool of
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Subsection 2.2.1 and driven by a Maquidral CNC double effect hydraulic press with a
maximum load of 500 kN.

Table 2.2: Prestrain ε̄ and related strain-rate ˙̄ε associated with high velocity phase of
decremental strain-rate testing.

DT1 DT2 DT3
ε̄ 0.39 0.40 1.2
˙̄ε [s−1] 1.1× 104 6× 103 2× 103

Experimental reloading stress-strain curves associated with tests DT1, DT2, and DT3
are showed in Figures 2.12(a), (b), and (c), respectively. For comparison purposes, ex-
perimental data associated with high strain-rate and quasi-static monotonic loading of
Figure 2.10 are also displayed. Even having a slight softening at the beginning, the mate-
rial presents a small or quasi-null hardening during quasi-static reloading. When current
reload yield stress is lower than corresponding quasi-static saturation stress, material
presents a slight linear hardening during quasi-static reloading, Figures 2.12(a) and (b).
However, when related reload strength is greater than respective quasi-static saturation,
as shown in Figure 2.12(c), a nearly perfectly-plastic behavior is observed. In every case,
the quasi-static reload stress is greater than that associated with the monotonic quasi-
static flow stress-strain curve. As discussed in Subsection 2.2.3, this behavior evidences
the strain-rate-history effects, reflecting in a macroscopic stress-strain response the strain-
rate influence on the material microstructural evolution. These results are in agreement
with experiments of Klepaczko, 1975, Chiem and Duffy, 1983, Rashid et al., 1992, and
Tanner and McDowell, 1999, on stress analysis, and of Zhang and Shim, 2010, and Huang
and Tao, 2011, on material hardness analysis.
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3 ELASTIC-VISCOPLASTIC FORMULATION

The macroscopic constitutive framework to be developed here is intended to describe
the mechanical behavior of a body B subjected to deformation process involving finite
plastic strains associated to high strain-rates. Thereby, this chapter focus on describ-
ing continuum aspects related to a macroscopic viscoplastic formulation following a finite
strain framework. As simplifying assumptions, B is assumed to be composed by a homoge-
neous material possessing both elastic and inelastic isotropy, and that these characteristics
are not affected by imposed deformation. Furthermore, B is considered to behave as an
elastic-viscoplastic medium: for equivalent stresses lower than a given threshold, the ma-
terial presents an elastic (reversible) behavior, and for stresses exceeding that critical
state, rate-dependent inelastic (irreversible) deformation occurs.

Within the present constitutive context, both phenomenological or physically-based
viscoplastic models can be considered. The difference is given by the choice of internal
variables to be employed as well as their evolution equations. Concerning the finite strain
formulation, the following considerations are adopted:

• a Total Lagrangian description;

• the multiplicative decomposition of the deformation gradient;

• constitutive equations are given in terms of the (logarithmic) Hencky strain measure
and its conjugate pair, the rotated Kirchhoff stress tensor (or Mandel stress tensor
[Mandel, 1972]).

Both Hencky strain and rotated Kirchhoff stress measures were adopted by Eterovic
and Bathe, 1990, and Weber and Anand, 1990, which combined with an implicit expo-
nential integration scheme allowed for obtaining a return mapping algorithm similar to
that obtained in a infinitesimal strain framework.

Remark 3.1. Key hypotheses concerning the present approach are the material homo-
geneity and the persistent elastic and inelastic isotropy. In general, real materials do not
satisfy these conditions. As discussed in the introductory sections, metallic materials at
underlying scales are strongly heterogeneous and anisotropic [Winther, 2005; Farbaniec
et al., 2012; Hansen and Barlow, 2014]. However, when working in a macroscopic scale,
at which the characteristic length of the structure is much grater than that corresponding
to the microscopic heterogeneities, mainly when dealing with annealed materials, the hy-
pothesis of homogeneity and isotropy provide reasonable results when analyzing metallic
structures. However, as explained in Section 1.4, as the deformation proceeds, at least
plastic anisotropy can be induced from formation of textures and lamellar structures.
From a modeling point of view, anisotropic plastic behavior, as material texturing and
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the Bauschinger effect developed during deformation, can not be represented nor by scalar
internal variables representing an isotropic hardening behavior neither by a standard von
Mises yield criterion. These effects become more important when significant changes in
deformation direction occur. In these cases, the flow stress is considerably influenced
by anisotropic hardening effects. On one hand, in a modeling task in which anisotropic
effects are of great importance, non standard anisotropic yield criteria and tensor harden-
ing behavior, resulting from crystallographic texturing, have to be adopted. Following a
non exhaustive list, works of Hill, 1948, 1979a, Barlat, 1987, Barlat et al., 2003, Plunkett
et al., 2006, Beyerlein and Tomé, 2007, Viatkina et al., 2008, Fajoui et al., 2009, Knezevic
et al., 2013, Barlat et al., 2014, Mánik et al., 2015, Zhang et al., 2015, are referred to.
On the other hand, due to experimental limitations and in order to provide a simplified
finite strain model, the present approach, which adopts a von Mises yield criterion with
isotropic hardening, is restricted to applications consisting of monotonic loadings.

3.1 Continuum mechanics fundamentals

Continuum mechanics fundamentals addressed in this section are: (i) finite strain kine-
matic description; (ii) corresponding boundary value problem formulation; (iii) statement
of thermodynamic principles, as the first and second laws of thermodynamics, and the
dissipation inequality; and finally (iv) an overview on the internal variable constitutive
modeling. In particular, thermodynamic restrictions imposed by the first and second
principles are further considered in order to evaluate the thermodynamic consistency of
the proposed constitutive formulation.

Due to brevity of the following overview, more details on continuum mechanics theory
can be found in standard textbooks, as those of Ciarlet, 1988, Marsden and Hughes, 1994,
Haupt, 2000, Spencer, 2004, and Gurtin et al., 2010.

3.1.1 Deformation process description

Let Ω̄0 ∈ R3 be a reference configuration of a body B at an initial time t = t0.
Actually, Ω̄0 is the closure of a bounded, connected, subset Ω̄0 of Euclidean space R3 with
a sufficiently smooth boundary ∂Ω0, i.e., Ω̄0 = Ω0 ∪ ∂Ω0. A given material point P 0 ∈ Ω̄0

is defined by a position vector X ∈ R3 defined with respect to a given coordinate system
with origin “O”, as showed in Figure 3.1. Supposing that B is deformed during a time
interval of interest I = (t0, tf ] ⊂ R≥0, the deformed configuration of B, Ω̄ ∈ R3, is given
by a deformation function

ϕ : Ω̄0 × I → R3, (3.1)

in a manner that, at a given time instant t ∈ I, associated current configuration is
defined by Ω̄ = ϕt

(
Ω̄0
)
, where ϕt (X) = ϕ (X, t). Function ϕ is bijective, smooth, and

orientation-preserving. This function maps each material point P0 ∈ Ω̄0 into a current
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Figure 3.1: Schematic representation of corresponding initial boundary value problem.

one P ∈ Ω̄, which is then defined by a position vector x ∈ R3 related to the same reference
system. Knowing the reference position vector X, the current position vector x can be
obtained by means of function ϕ:

x = ϕ (X, t) . (3.2)

During the deformation motion, each point P0 undergoes a displacement u : Ω̄0×I → R3

given by
x = X + u. (3.3)

A key quantity in deformation analysis is the deformation gradient F : Ω̄0×I →M3
+,1

relating a material line before, dX, and after, dx, deformation: dx = F dX. According
to a Cartesian coordinate system, tensor F is defined as [Gurtin, 1981; Ciarlet, 1988;
Marsden and Hughes, 1994; Spencer, 2004]

F := ∇Xϕ (X, t) or Fij := ∂ϕi
∂Xj

. (3.4)

In terms of displacements, keeping in mind Eq. (3.3), Eq. (3.4) is rewritten as

F = I +∇Xu or Fij = δij + ∂ui
∂Xj

, (3.5)

where I is the identity matrix associated with set M3, and δij is the Kronecker ’s delta
defined as:

δij :=

 0→ i 6= j

1→ i = j
i, j = {1, 2, 3} . (3.6)

1Mn ⊂ Rn ×Rn is the set of every second-order quadratic tensor with dimension n. Mn
+ is the set of

every orientation-preserving tensor belonging toMn. Thus, for n = 3 M3
+ =

{
M ∈M3|det (M) > 0

}
.
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3.1.2 Equilibrium equation and boundary conditions

Following a Total Lagrangian description, deformation experienced by B (Figure 3.1)
is induced by an ordinary loading-history defined by a prescribed body force

b̄ : Ω0 × I → R3, (3.7)

a prescribed surface traction t̄ acting on ∂Ωt
0,

t̄ : ∂Ωt
0 × I → R3, (3.8)

and a prescribed boundary displacement ū : ∂Ωu
0 × I → R3, such that

u = ū on ∂Ωu
0 × I. (3.9)

Thus, according to Eq. (3.1), in this boundary portion function ϕ̄ (X, t) : ∂Ωu
0 ×I → R3

is then prescribed according to imposed displacement-history,

ϕ̄ (X, t) = X + ū (X, t) . (3.10)

Both natural, ∂Ωt
0, and essential, ∂Ωu

0 , boundaries are defined in order to comply with
conditions

∂Ωu
0 ∪ ∂Ωt

0 = ∂Ω0 and ∂Ωu
0 ∩ ∂Ωt

0 = ∅. (3.11)

The set of kinematically admissible displacements K is defined as the set of every suffi-
ciently regular displacement function satisfying the imposed essential boundary conditions
(3.9):

K =
{
u : Ω̄0 × I → R3|u (X, t) = ū (X, t) , t ∈ I, X ∈ ∂Ωu

0

}
. (3.12)

The equation describing the body motion is obtained from the linear momentum con-
servation principle2, such that, considering a quasi-static problem, the following equilib-
rium equation is obtained:

divX [P (X, t)] + b̄ (X, t) = 0 in Ω0 × I, (3.13)

where3

P := det (F )σF−T ∈M3 (3.14)
2Linear momentum conservation principle, D

Dt

∫
Ω ρvdv =

∫
Ω bdv +

∫
∂Ω tda, implies in the following equi-

librium equations (considering Dv
Dt = 0): divx (σ) + b = 0 in Ω, subjected to t = σn on ∂Ω, for an

Eulerian description, and divX (P ) + b̄ = 0 in Ω0, subjected to t̄ = PN on ∂Ω0, for a Lagrangian
description [Gurtin, 1981; Spencer, 2004].
3Along this work single contractions between two second-order tensors, and between a second-order tensor
and a vector are omitted, i.e., S ·T = ST , in components (ST )ij = SikTkj , and S ·t = St, in components
(St)i = Sijtj .
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is the first Piola-Kirchhoff stress tensor, which is related to the Cauchy stress tensor
σ ∈ S3.4 The boundary value problem consists of solving Eq. (3.13) for u ∈ K, such that
the stress field P complies with the natural boundary condition:

P (X, t)N (X) = t̄ (X, t) on ∂Ωt
0 × I, (3.15)

where N is the unit outward normal vector of ∂Ω0 at X.

3.1.3 First law of thermodynamics

The first law of thermodynamics is an assertion on the conservation of energy. This
law states that the rate of external work W done on the system plus the heat Q received
by it is equal to the rate of kinetic energy K plus the rate of internal energy U , i.e.,

U̇ + K̇ = Ẇ +Q. (3.16)

see, e.g., Truesdell, 1968. Knowing the relations

U̇ =
∫

Ω0
ρ0ėdV, (3.17)

K = 1
2

∫
Ω0
ρ0u̇ · u̇dV, (3.18)

Ẇ = K̇ +
∫

Ω0
P : Ḟ dV, (3.19)

Q = −
∫
∂Ω0
q̄ ·NdA+

∫
Ω0
ρ0r̄dV =

∫
Ω0

(−divX q̄ + ρ0r̄) dV, (3.20)

we arrive at the local form of the energy balance [Coleman and Gurtin, 1967], given in a
Lagrangian form,

ρ0ė = P : Ḟ − divX q̄ + ρ0r̄ in Ω0 × I, (3.21)

where e : Ω0 × I → R is the specific internal energy, q̄ : Ω0 × I → Rn is the heat flow,
r̄ : Ω0 × I → R is the specific heat generation, and ρ0 : Ω0 × I → R>0 is the mass per
unity of reference volume. Operator ˙(·) = D

Dt
(·) denotes a material time derivative of (·).

3.1.4 Second law of thermodynamics, and Clausius-Duhem inequality

The second law of thermodynamics is a restriction on the direction in which a ther-
modynamic process can occur. This law states that the entropy production rate Ṡi (irre-
versible part), given by the rate of internal entropy S (state function) minus the rate of
the entropy supplied Sr (reversible part) to B from the environment, must be non-negative

4Sn is the set of every symmetric tensor belonging toMn. For n = 3: S3 =
{
M ∈M3|M = MT

}
.
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[Coleman and Gurtin, 1967; Ziegler, 1977]:

Ṡi = Ṡ − Ṡr ≥ 0 in Ω0 × I. (3.22)

From the expressions
Ṡi =

∫
Ω0
ρ0ṡidV, (3.23)

Ṡ =
∫

Ω0
ρ0ṡdV, (3.24)

and assuming that Ṡr is given by5

Ṡr =
∫

Ω0

(
−divX

q̄

θ
+ ρ0r̄

θ

)
dV, (3.25)

we obtain the local form of the second law

ρ0ṡi = ρ0ṡ+ divX
q̄

θ
− ρ0r̄

θ
≥ 0 in Ω0 × I, (3.26)

where ṡi : Ω0 × I → R≥0 is the specific entropy production rate, ṡ : Ω0 × I → R is the
specific internal entropy rate and θ : Ω0 × I → R>0 is the absolute temperature.

Isolating the specific heat generation r̄ in Eq. (3.21) and substituting it into Eq.
(3.26), after some algebraic manipulations, yields

Φ0 = P : Ḟ − ρ0 (ė− θṡ)− 1
θ
q̄ · ∇Xθ ≥ 0 in Ω0 × I, (3.27)

where∇Xθ denotes the temperature gradient. In inequality (3.27) the dissipation per unit
of reference volume is defined as Φ0 := ρ0θṡi : Ω0 × I → R≥0. Introducing the specific
Helmholtz free energy ψ := e − θs : Ω0 × I → R≥0, and inserting it into the dissipation
inequality (3.27), the following expression is obtained:

Φ0 = P : Ḟ − ρ0
(
ψ̇ + sθ̇

)
− 1
θ
q̄ · ∇Xθ ≥ 0 in Ω0 × I, (3.28)

which is known as Clausius-Duhem inequality.

3.1.5 Thermodynamics with internal variables

According to the principle of thermodynamic determinism, calorodynamic quantities
as P (t), ψ (t), s (t), and q̄ (t) of a given material point of a body subjected to given
loading-history, supposing a simple material and following the local action principle, are
determined from constitutive functionals given in terms of the histories of thermokinetic
quantities, F , θ, and ∇Xθ, given at this point [Coleman and Gurtin, 1967; Perzyna,
5That assumption was criticized by some authors, as Woods, 1981, 1982. However, this criticism does
not apply to bodies in the context of this work, see Lubliner, 2008, p.47.
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1971; Truesdell, 1984]. These constitutive functionals have to satisfy some constitutive
axioms, asmaterial objectivity and symmetry, and also to comply with the first and second
laws of thermodynamics. However, it is hard do deal with a constitutive formulation
given by these history functionals [Mandel, 1972, p. 43], since it should apply to the
behavior of real materials subjected to real thermomechanical processes, thus requiring
to introduce simplification at the constitutive theory level. An alternative approach to
perform this simplification is the thermodynamic with internal variables (TIV) framework.
This approach allows the description of a non-equilibrium thermodynamic process based
on the existence of a set of nint ≥ 1 internal variables α = {α1, α2, ..., αnint} ∈ Rnint . The
internal variables αi (i = 1, 2, ..., nint), possessing scalar, vectorial and/or tensor natures,
characterize dissipative mechanisms,6 and substitute the preceding histories of F , θ, and
∇Xθ in the constitutive description [Coleman and Gurtin, 1967; Kestin and Rice, 1969;
Rice, 1971; Lubliner, 1972]. In other words, the instantaneous material response, which
is the product of the entire past deformation-history undergone by the material, may be
assumed to be representable by a small number of macroscopic internal variables, whose
evolution is represented by rate equations [Rice, 1971; Brown et al., 1989]. Thereby,
following the TIV approach, one assumes that the current local thermodynamic state of a
given material point is uniquely determined by the instantaneous values of the following
state variables:7

(F , θ,α) . (3.29)

It is worth mentioning that, according to the TIV theory, variables as temperature
and entropy, which are fundamentally associated with equilibrium states, are defined at
a non-equilibrium state by associating with this a fictitious “accompanying equilibrium
state”, which is then obtained by fixing the internal variables at the values of the cur-
rent non-equilibrium state, and allowing the system to reach a constrained equilibrium
[Kestin and Rice, 1969; Rice, 1971]. This concept is discussed by several authors, such as
Lubliner, 1972, Bataille and Kestin, 1976, 1979, Germain et al., 1983, and Horstemeyer
and Bammann, 2010.

The following sections specify corresponding kinematic description and associated in-
ternal variable constitutive formulation to an elastic-viscoplastic material.

3.2 Finite strain kinematics for an elastic-viscoplastic material

This section provides the main features of the macroscopic formulation adopted for
modeling an elastic-viscoplastic material at finite strains. The starting point is the clas-
6In order to properly describe a given constitutive behavior, the choice of corresponding internal variables,
intended to phenomenologically represent given microscopic dissipative mechanisms, have to be guided
by means of a model in which those variables have physical interpretation [Muschik, 1990].
7Coleman and Gurtin, 1967, have demonstrated that, in order to satisfy the Clausius-Duhem inequality
(3.28), the specific free energy ψ can not depends on the temperature gradient ∇Xθ, i.e., ∂ψ

∂∇Xθ = 0.
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sical multiplicative decomposition of the deformation gradient

F = F eF vp, (3.30)

where F e and F vp ∈M3
+ are the elastic and viscoplastic parts of F . This decomposition

was introduced by Lee and Liu, 1967, Lee, 1969, and Mandel, 1972, and was also investi-
gated by Lubliner, 1984, 1986, exploring the maximum dissipation principle and normality
rules. Furthermore, the multiplicative decomposition of F can find physical justification
on the crystal plasticity theory, which assumes that the plastic deformation is induced by
relative sliding between material portions occurring in specific crystallographic planes and
directions [Rice, 1971; Mandel, 1972; Asaro, 1983]. Decomposition given in Eq. (3.30)
supposes the existence of a stress-free local state Oξ, which defines an intermediate con-
figuration. The stress-free local state is mapped from reference configuration Ω̄0 by F vp

and from current configuration Ω̄ by F e−1 , see Figure 3.2.

Remark 3.2. We remark that, in general, the stress-free local state is not unique, once
even imposing arbitrary rigid rotations on Oξ, a stress-free state is maintained. However,
in specific applications the decomposition (3.30) can be performed uniquely by means
of additional specifications dictated by the material model. In the present case such an
additional restriction is imposed by assuming a irrotational viscoplastic (null viscoplastic
spin: Eq. (3.60)) deformation in intermediate configuration. For detailed discussion on
that hypothesis, see, e.g., work of Gurtin et al., 2010, p. 567.

Adopting the multiplicative decomposition of F leads to some important kinematic
aspects related to the deformation analysis of B. These aspects are addressed in the
following. By inserting Eq. (3.30) into the definition of the velocity gradient tensor

O
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Figure 3.2: Schematic representation of multiplicative decomposition of F .
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L ∈M3,8

L := ∇xv = Ḟ F−1, (3.31)

we obtain
L = Le +Lvp, (3.32)

where the elastic and inelastic parts of L, are defined respectively as

Le := Ḟ
e
F e−1 and Lvp := F eḞ

vp
F vp−1

F e−1
, (3.33)

both related to the current configuration Ω̄. The strain-rate tensor D ∈ S3, symmetrical
part of L, then also follows an additive decomposition,

D = De +Dvp, (3.34)

with
De := 1

2
(
Le +LeT

)
and Dvp := 1

2
(
Lvp +LvpT

)
. (3.35)

As already stated F ∈M3
+, what yields the Jacobian

J := det (F ) > 0. (3.36)

Assuming dislocation mediated plasticity, results in a volume-preserving inelastic evolu-
tion, what yields

Jvp := det (F vp) = 1, (3.37)

and consequently
Je := det (F e) = det (F ) > 0. (3.38)

This fact guarantees that both F e and F vp are non-singular tensors. By satisfying the last
two conditions, one can apply the polar decomposition of both F e and F vp, respectively
as [Eterovic and Bathe, 1990; Weber and Anand, 1990]

F e = ReU e and F vp = RvpU vp, (3.39)

where9 Re ∈ O3
+

(
Rvp ∈ O3

+

)
is the elastic (inelastic) rotation tensor, and10 U e ∈ S3

>

(U vp ∈ S3
>) is the elastic (inelastic) right-stretch tensor. In addition, concerning the

elastic deformation, tensorU e correlates with the elastic right Cauchy-Green strain tensor,
8It is worth mentioning that L is an Eulerian measure.
9On+ is the set of every proper orthogonal tensor belonging toMn. Therefore, considering n = 3 one has
O3

+ =
{
M ∈M3|MTM = MMT = I and detM = 1

}
.

10Sn> is the set of every symmetric, positive, definite tensor belonging to Mn. Therefore, for n = 3 one
has S3

> =
{
M ∈ S3|aTMa > 0, ∀a ∈ R3 6= 0

}
.
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Ce := F eTF e ∈ S3
>, by

(U e)2 = Ce. (3.40)

The present development adopts the Hencky (or logarithmic) strain measure:11

(Ee)(0) = ln (U e) . (3.41)

For sake of simplicity, in what follows the notation

E = E(0) ∈ S3
> (3.42)

is adopted. The work conjugate of E is the rotated Kirchhoff stress tensor, τ̄ ∈ S3,
defined as

τ̄ = ReT τRe = JReTσRe. (3.43)

The scalar product τ̄ : Ė satisfies the invariance related to the rate of work per unit of
volume (ẇ0 : Ω0 × I → R≥0) [Hill, 1979b]:

ẇ0 = Jσ : D = τ : D = P : Ḟ = 1
2P

S : Ċ = τ̄ : Ė, (3.44)

where the second Piola-Kirchhoff
(
P S ∈ S3

)
and Kirchhoff stress tensors (τ ∈ S3) are

given respectively by (see also Eq. (3.14))

P S := F−1P = JF−1σF−T and τ = PF T = Jσ (3.45)

The symmetry associated with tensors Ce, U e, and Ee allows to perform the following
spectral decompositions [Weber and Anand, 1990; de Souza Neto et al., 2008]:

Ce =
3∑
i=1

(λei )
2 li ⊗ li, U e =

3∑
i=1

λei li ⊗ li, and Ee =
3∑
i=1

ln (λei ) li ⊗ li, (3.46)

where (λei )
2 are the eigenvalues and li the eigenvectors of tensor Ce. One notes that

tensors Ce, U e, and Ee have the same principal directions. Once ln (U e) is an isotropic
function, the spectral decomposition of Ee can be given according to Eq. (3.46)3. For
more details, see de Souza Neto et al., 2008, for example.

3.3 Helmholtz free-energy and reduced dissipation inequality

As discussed previously in Subsection 3.1.5, the TIV approach assumes that the local
thermodynamic state can be uniquely determined by the instantaneous values of a given

11That strain measure is a special case of a Lagrangian family: E(m) =
{ 1

m (Um − I) for m 6= 0
ln (U) for m = 0 [Hill,

1979b; Ogden, 1997; Seth, 1964].
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set of state variables, in this case (F , θ,α) . However, a set composed by (θ,α) and a
given strain measure in terms of F is not suitable for a plastic material, once the total
deformation gradient describes the whole deformation process, from the initial state to
the current one. Consequently, if there is no hardening, the state will be the same at
every stress-free configurations. For example, supposing a cylindrical specimen, which
was subjected to a finite plastic strain, its local thermodynamic state is independent on
the total stretching, that is, it depends on F e and not on F [Mandel, 1972, p. 43-44]. In
summary, to achieve invariance with respect to previous plastic deformations the set of
state variables, instead of depending on F , has to depend on a strain measure given in
terms of the elastic part F e. See also the discussion of Miehe and Schotte, 2004.

In a first moment, two scalar internal variables are introduced. Therefore, nint = 2,
and the set of internal variables becomes α = {α1, α2}, where both α1, α2 ∈ R≥0 are
macroscopic inelastic variables associated with the isotropic hardening. On one hand,
variable α1 is intended to represent the hardening behavior during Stages II and III,
and on the other hand, variable α2 features the quasi-linear hardening observed during
deformation Stage IV (see discussions provided in Subsections 1.4.1 and 1.4.4).

As a consequence of previous discussion, the current local thermodynamic state of a
given material point is uniquely determined by the instantaneous values of variables

(Ee, θ,α) , (3.47)

given in a stress-free configuration. Therefore, considering isothermal processes
(
θ̇ = 0

)
,

the Helmholtz free energy ψ : S3
> × R2

≥0 → R≥0 can be given by the following additive
decomposition [Lubliner, 1984]:

ψ (Ee,α) = ψe (Ee) + ψvp (α) , (3.48)

where the elastic part ψe : S3
> → R≥0 is given in terms of Ee, and the inelastic part

ψvp : R2
≥0 → R≥0 as a function of the internal variables α1 and α2. Thus, supposing that

function ψ (Ee,α) is sufficiently smooth its rate is given by (summation over repeated
indices is not applied)

ψ̇ (Ee,α) = ∂ψe

∂Ee : Ėe +
2∑

k=1

∂ψvp

∂αk
α̇k. (3.49)

Using the decomposition of Eq. (3.34) and knowing the work conjugates of Eq. (3.44),
the Clausius-Duhem inequality(3.28) is rewritten as

Φ0 =
(
τ̄ − ρ0

∂ψe

∂Ee

)
: Ėe + τ : Dvp −

2∑
k=1

ρ0
∂ψvp

∂αk
α̇k ≥ 0. (3.50)
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Once condition (3.50) holds for every thermodynamic processes, the constitutive relation
[Coleman and Gurtin, 1967; Lubliner, 1984; Rice, 1971]

τ̄ = ρ0
∂ψe

∂Ee , (3.51)

and the dissipation inequality

Φ0 = τ : Dvp −
2∑

k=1
Akα̇k ≥ 0, (3.52)

are then obtained. In the last expression, the thermodynamic forces A1, A2 ∈ R≥0, which
are the respective work conjugate of internal variables α1, α2, were defined as:

Ak := ρ0
∂ψvp

∂αk
, k = {1, 2} . (3.53)

Since isothermal processes are assumed, only the intrinsic dissipation is accounted for by
potential Φ0.

In the subsequent development, the free-energy is assumed to be given by the standard
quadratic forms:

ρ0ψ
e = 1

2E
e : De : Ee and ρ0ψ

vp = 1
2
(
H̄α2

1 + H̃α2
2

)
, (3.54)

where De := ρ0
∂2ψe

∂Ee⊗∂Ee is a hyperelastic forth-order tensor, which is assumed to be sym-
metric, positive-definite, and constant. Parameter H̄, H̃ ∈ R≥0 are model constants,
which in a formal way respectively read H̄ := ρ0

∂2ψvp

∂α2
1

and H̃ := ρ0
∂2ψvp

∂α2
2
. Due to the use

of two internal variables, definition of viscoplastic free-energy ρ0ψ
vp stated in Eq. (3.54)

is different to that presented in [dos Santos et al., 2016], where a single internal variable
was employed.

In view of Eqs. (3.51) and (3.54)1, (3.53) and (3.54)2, the following constitutive
relations are therefore obtained:

τ̄ = ρ0
∂ψe

∂Ee = De : Ee, A1 = ρ0
∂ψvp

∂α1
= H̄α1, and A2 = ρ0

∂ψvp

∂α2
= H̃α2. (3.55)

Equations (3.55)2 and (3.55)3 are particularizations of general relations given in Eqs.
(1.6) and (1.7), respectively. Complying with assumed elastic isotropy hypothesis, elastic
tensor is given by

De = 2µI +
(
κ− 2

3µ
)
I ⊗ I, (3.56)

being I, I, µ ∈ R>0, and κ ∈ R>0 the fourth-order and the second-order identity tensors,
the shear and bulk modulus, respectively. Components of I are Iijkl = 1

2 (δikδjl + δilδjk).
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By hypothesis, every hyperelastic characteristic highlighted earlier does not change with
imposed deformation.

As was discussed previously, the velocity gradient tensor L, Eq. (3.31), and its elastic
and inelastic parts, given respectively by Eqs. (3.32) and (3.33), are quantities defined
on the current configuration. Thus, in order to be coherent with the present approach,
those variables, specifically the inelastic strain-rate tensor Dvp, Eq. (3.34)2, have to be
accounted for in the stress-free configuration. Thus, tensor Lvp in Eq. (3.33)2 is pulled
back to the intermediate configuration by performing the product

L̄
vp := F e−1

LvpF e,

which yields
L̄
vp := Ḟ

vp
F vp−1

, (3.57)

where L̄vp is the inelastic part ofL given in the intermediate configuration. Tensor L̄vp can
be decomposed into its symmetric D̄vp (inelastic strain-rate tensor) and antisymmetric
W̄

vp (inelastic spin tensor) parts:

L̄
vp = D̄

vp + W̄ vp
, (3.58)

where
D̄

vp = 1
2

(
L̄
vp + L̄vp

T
)

and W̄
vp = 1

2

(
L̄
vp − L̄vp

T
)
. (3.59)

However, considering the hypothesis of isotropic plasticity adopted in the present formu-
lation, without loss in generality, a irrotational plastic flow may be assumed [Weber and
Anand, 1990; de Souza Neto et al., 2008; Gurtin et al., 2010]:

W̄
vp = 0. (3.60)

This fact allows rewriting the dissipation inequality (3.52) as

Φ0 = τ : F eD̄
vp
F e−1 −

2∑
k=1

Akα̇k ≥ 0. (3.61)

After an algebraic manipulation, considering the isotropy associated with tensor De of
Eq. (3.56), the reduced dissipation inequality reads [Eterovic and Bathe, 1990]:

Φ0 = τ̄ : D̄vp −
2∑

k=1
Akα̇k ≥ 0. (3.62)
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3.4 Elastic domain and yield function

In the present approach, the isotropic hardening is represented by a variable A ∈ R≥0

given by the sum of the two thermodynamic forces A1 and A2:

A = A1 + A2. (3.63)

Accordingly, the isotropic hardening results strengthening mechanisms associated with
earlier (Stages II and III) as well as latter (Stage IV) deformation stages. See discus-
sion provided in Subsection 1.4.4. Hardening variable A dictates the current elastic do-
main size. In a formal way, the transition between a purely elastic state and an elastic-
viscoplastic one is defined by a closed convex set

(
Ȳ ⊂ S3

> ×R≥0
)
given by

Ȳ = {(τ̄ , A) |f (τ̄ , A) ≤ 0} , (3.64)

where the yield function (f : S3
> ×R≥0 → R)

f = f (τ̄ , A) (3.65)

depends on both τ̄ and A. Condition f = 0 defines the yield surface ∂Y ⊂ Ȳ , which is
the boundary of set Ȳ :

∂Y = {(τ̄ , A) |f (τ̄ , A) = 0} . (3.66)

In the rate-independent plasticity theories, set Ȳ stands for the admissible stress space.
Accordingly, all stress states (τ̄ , A) must lie into the domain Ȳ . In contrast, condition
(τ̄ , A) /∈ Ȳ is physically possible in viscoplastic approaches.

For sake of simplicity, a von Mises yield criterion with an isotropic hardening is adopted
in subsequent analysis:

f (τ̄ , A) =
∥∥∥τ̄D∥∥∥−

√
2
3 (σy + A) , (3.67)

where
∥∥∥τ̄D∥∥∥ =

√
τ̄Dij τ̄

D
ij , τ̄D = τ̄ − 1

3tr (τ̄ ) I is the deviatoric part of τ̄ and σy ∈ R>0

is the initial yield stress, which in this work corresponds to an annealed condition. The
initial yield stress (related to an annealed state) of FCC metals can be considered as a
rate-independent quantity [Voyiadjis and Abed, 2005; Rusinek et al., 2010; Rusinek and
Jankowiak, 2014]. In this type of metals, the Peierls-Nabarro stress (which is strongly
temperature and rate-dependent) has a minor contribution on the strength, thus the initial
plastic flow is governed by short range barriers, as dislocations forests [Dieter, 1986], which
in their turn depend on the current microstructural state and not on the instantaneous
strain-rate. Thus, following this discussion, a constant initial yield stress σy is going to
be considered in this work.



69

3.5 Flow potential and inelastic evolution equations

In addition to defining the yield criterion as well as specific internal variables, kinetic
and structure evolution equations have to be addressed. The kinetic equation represents
the kinetics of plastic flow at constant structure. In other words, kinetic equation corre-
lates an equivalent plastic strain-rate with applied stress considering a fixed microstructure
[Kocks et al., 1975; Estrin and Mecking, 1984; Tjøtta and Mo, 1993]. In contrast, the
structure evolution equation describes structure changes due to imposed deformation at
a given strain-rate (and temperature) [Kocks et al., 1975; Estrin and Mecking, 1984].
Selecting suitable internal variables and defining their evolution equations are most cum-
bersome task in developing a suitable viscoplastic model, since the microstructure evolves
in a very complicated manner. According to Brown et al., 1989, this task becomes even
harder because the different mechanisms governing plastic deformation are still incom-
pletely known, and also the actual mechanisms are associated with complex structures
and processes certainly not totally representable by a few internal variables. In what
follows, proposed functional forms are based upon previous constitutive developments,
relevant metallurgical evidences described in the literature, and also on the experimental
results presented in Section 2.3.

Following a formal constitutive framework, inelastic evolution can be given by general
constitutive equations,12

D̄
vp = λ̇

∂φ

∂τ̄
, α̇1 = −λ̇ ∂φ

∂A1
, and α̇2 = −λ̇ ∂φ

∂A2
, (3.68)

in which φ = φ (τ̄ ,A) is a flow potential. In order to comply with thermodynamic
restrictions imposed by the dissipation inequality (3.62), potential φ is required to be a
convex non-negative function of both τ̄ and A = {A1, A2}, and zero-valued at origin, i.e.,
φ (0,0) = 0 [Rice, 1971; Halphen and Son Nguyen, 1975; Chaboche, 1989; Nemat-Nasser,
2009].

In the inelastic evolution equations given in Eq. (3.68), λ̇ ∈ R≥0 is a viscoplas-
tic multiplier which, differently from a rate-independent model, instead of satisfying the
Karush-Kuhn-Tucker and consistency conditions, must satisfy a given kinetic equation. In
the present development, following a phenomenological approach, the viscoplastic frame-
work proposed by Perzyna, 1966, 1971 is chosen. Therefore, the kinetic equation is given
by an overstress function:

λ̇ = Θ (〈f〉 , A) , (3.69)

where 〈x〉 := 1
2 (x+ |x|) denotes the Macaulay brackets and Θ : R2

≥0 → R≥0 is the
overstress function which should be convex. Usually, function Θ is given only in terms of

12If φ (τ̄ ,A) is a non-smooth function, a more general formulation can be obtained inside the convex
analysis framework employing sub-gradient concepts [Eve et al., 1990b,a; de Angelis, 2000].
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positive values of yield function f . However, subsequent analysis conveniently assumes
that Θ depends explicitly on both f and hardening parameter A, and as usual, complies
with condition Θ (0, A) = 0. For values of yield function satisfying f ≥ 0, Θ admits an
inverse in terms of f and λ̇:

f = Θ−1
(
λ̇, A

)
. (3.70)

The following step consists now of choosing the proper flow potential φ, which will
define the functional forms associated with material inelastic evolution. In a first moment,
this potential assumes a simple additive decomposition:

φ (τ̄ , A1, A2) = φτ̄ (τ̄ ) + φ1 (A1) + φ2 (A2) . (3.71)

The following flow potentials are going to be assumed:

φτ̄ =
∥∥∥τ̄D∥∥∥ , φ1 = −

√
2
3h1

(
1− A1

2A∞

)
A1, and φ2 = −

√
2
3h2A2, (3.72)

where A∞ ≥ 0, h1 ≥ 0, and h2 ≥ 0 are parameters which can depend on the imposed
strain-rate, through the accumulated viscoplastic strain ε, whose rate is defined as

ε̇ :=
√

2
3
∥∥∥D̄vp

∥∥∥ ≥ 0. (3.73)

We highlight that, since structure evolution equations are taken at a given viscoplastic
strain-rate [Kocks et al., 1975; Estrin and Mecking, 1984], consequently in potentials φ1

and φ2 corresponding parameters A∞, h1, and h2 are fixed. Furthermore, potentials
defined in Eqs. (3.72) were set a priori in order to comply with the evolution equations
to be presented in the sequel.

Flow potential φτ̄ assumed in Eq. (3.72)1 complies with the von Mises yield crite-
rion and with an associative flow rule. Then the following flow rule is obtained for the
viscoplastic strain-rate:

D̄
vp = λ̇N τ̄ , (3.74)

where N τ̄ := τ̄D

‖τ̄D‖ is an unity tensor: ‖N τ̄‖ = 1. Consequently, the rate given in Eq.
(3.73) becomes

ε̇ =
√

2
3 λ̇ ≥ 0. (3.75)

The other two potentials of Eq. (3.72) are set in order to comply with the following
observations.

There are many phenomenological works [Perzyna, 1966, 1971; Perić, 1993; Ristinmaa
and Ottosen, 1998; Alfano et al., 2001] in which the accumulated viscoplastic strain ε

is taken as an internal variable, which is related to the hardening variable by means of
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constant parameters. However, as discussed by Nemat-Nasser, 2009, p.212, these con-
stitutive proposals have limited predictive capabilities in accounting for loading-history
effects. Then, with the aim of incorporating strain-rate effects into hardening mechanisms,
instead of Eq. (3.73), an alternative evolution law for internal variables α1 and α2 shall be
adopted. In the present development, the internal variables α1 and α2 do not have phys-
ical meaning as in physically-based models, which are based on rational analysis of the
underlying inelastic mechanisms. However, as a simple macroscopic proposal still falling
into a phenomenological approach, the present model has qualitative micromechanical
basis, relying on mechanisms as accumulation and organization of dislocation cells, and
formation of new sub/grains. Some authors as Rusinek and Jankowiak, 2014, classify this
type of constitutive formulation as semi-physical models, in which, similarly to physically-
based formulations, the accumulated plastic strain serves only as a load parameter, and
not as a proper state variable [Nemat-Nasser, 2009, p.213].

From a physical point of view, it is commonly accepted that the overall strain-rate-
sensitivity on stress response of metals is composed by two main contributions: (i) the
instantaneous rate-sensitivity, which is related to the waiting-time of thermally activated
dislocation motion and to viscous drag resistance (this effect can be accounted for by
function Θ); and (ii) the microstructural rate-dependence, associated with the evolution
of metallurgical features, such as dislocation storage and grain/subgrain sizes. Those two
rate-dependent mechanisms can be strongly influenced by both the strain and strain-rate-
histories [Klepaczko and Chiem, 1986; Rashid et al., 1992].

Considering the present constitutive approach, microstructural aspects are macroscop-
ically accounted for by the hardening variable A = A1+A2, which contribute to the current
material strength σy +A (α1, α2, . . .). Since the model is intended to describe finite strain
deformation processes, the present isotropic hardening is proposed be the result of two
contributions covering deformation Stages II, III, and IV. The first hardening variable α1

corresponds to accumulation and arrangement of dislocation cells. These features govern
the material hardening response observed in deformation Stages II and III [Nes, 1997;
Kocks and Mecking, 2003]. The second contribution, featured by α2, relates to mate-
rial hardening observed at later stages of straining: Stage IV. This deformation stage is
characterized by a significant reduction in the hardening-rate at the Stage III saturation
[Rollett et al., 1989; Nes, 1997; Kocks and Mecking, 2003]. See for instance explanation
given in Subsection 1.4.1.

According to Eq. (3.68)2, flow potential of Eq. (3.72)2, and considering Eq. (3.55)2

and (3.75), variable α1 related to dislocation storage has its evolution given by

α̇1 = h1

(
1− α1

α∞

)
ε̇, (3.76)

in which α∞ is the saturation parameter related to α1. Parameter h1 stands for the
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rate at which α1 approaches the saturation. The last evolution equation is a simple
empirical expression based upon dislocation generation and annihilation processes, which
disregards static recovery mechanisms13 [Kocks, 1976; Brown et al., 1989; Tjøtta and Mo,
1993]. Moreover, in view of Eq. (3.55)2 one obtains

Ȧ1 = H1

(
1− A1

A∞

)
ε̇, (3.77)

where H1 := H̄h1 is the hardening-rate and A∞ := H̄α∞ is the saturation hardening
to be defined latter. In order to account for monotonic loading applications, one can
readily integrate evolution equation (3.77) for a constant strain-rate ε̇, what results in the
following Voce hardening rule [Voce, 1948]:

A1 − A∞
A1i − A∞

= exp [−δ (ε− εi)] . (3.78)

Parameters A1i and εi stand for the initial values of A1 and ε, respectively. In the
present formulation, ratio δ := H1

A∞
and parameter A∞ are assumed to be rate-dependent

quantities.
The second hardening variable α2 is linked to hardening behavior observed during

deformation Stage IV, which is not as well understood as are the other stages (I, II and
III). See discussion in Subsection 1.4.1. Based upon monotonic loading applications, a
simple form of potential φ2 (Eq. (3.72)3) was assumed, thus yielding a linear relationship
between α̇2 and the loading rate ε̇,

α̇2 = h2ε̇, (3.79)

which is evidenced to be in accordance with experimentally observed quasi-linear hard-
ening featuring deformation Stage IV. From Eqs. (3.55)3 and (3.79) the rate of A2 can
be given in terms of the accumulated viscoplastic strain-rate ε̇:

Ȧ2 = H2ε̇, (3.80)

where H2 := H̃h2 is the linear hardening-rate related to Stage IV. Even approximately,
it is possible to write a scaling law between H2 and saturation parameter A∞, H2 = cA∞

[Rollett et al., 1989; Kocks and Mecking, 2003], which yields

Ȧ2 = cA∞ε̇, (3.81)
13Law (3.77) is a particular case of the Bailey-Orowan equation [Bailey, 1926; Orowan, 1945], without
the static recovery term. A more general model was employed by Brown et al., 1989, for hot working of
metals, where they assume the evolution α̇1 = h1

∣∣∣(1− α1
α∞

)∣∣∣a sign
(

1− α1
α∞

)
ε̇ − ṙ, in which a ≥ 1 and

ṙ is the static recovery evolution.
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where c ≥ 0 is a small constant. Integrating this equation for a constant rate ε̇, one has

A2 = A2i + cA∞ (ε− εi) . (3.82)

Observing Eq. (3.82), one observes that the hardening-rate at large strains is given by
term cA∞, which is dependent on strain-rate since A∞ is a rate-dependent parameter.
In fact, A∞ increases with imposed strain-rate. However, within the strain-rate range
considered here, as c has a small value, the difference between stress values cA∞ε obtained
for both quasi-static and high strain-rate loading is small when compared with the total
stress for a given strain level ε. Thus, approximation cA∞ ≈ cte can be considered. Then,
assuming A2i = εi = 0, even for a varying strain-rate loading, one has

A2 ≈ cA∞ε. (3.83)

The last equation gives the hardening A2 as a state function of ε. However, since in
general case the accumulated viscoplastic strain ε is not a suitable internal variable, this
state equation is based upon monotonic loading conditions. This simplification was taken
in order to work in terms of only one hardening variable: A. Then, combination of Eqs.
(3.78) and (3.83), in view of Eq. (3.63), results

A = Ai + A∞c (ε− εi) + [A∞ (1 + cεi)− Ai] {1− exp [−δ (ε− εi)]} , (3.84)

where Ai is the initial value of A. Further, for Ai = εi = 0, Eq. (3.84) reduces to

A = A∞ [1 + cε− exp (−δε)] , (3.85)

which can be seen as a modified Voce hardening rule appended with a linear term. This
relationship, which was qualitatively based upon metallurgical aspects, is slightly different
from those proposed by Tome et al., 1984, or Simo and Armero, 1992. The latter is
recovered when both δ and A∞ are constant.

However, here the hardening rule (3.85) should account for rate effects on hardening
response by letting parameters δ and A∞ to be rate-dependent. Therefore, the following
a priori rate-dependent forms are postulated for both δ and A∞, respectively:14

δ = [1− β1 (ε̇)] δlwr + β1 (ε̇) δup (3.86)
14The present constitutive proposal was first published in a previous article [dos Santos et al., 2016].
However, in that work, in order to represent experimental results associated with an annealed high purity
copper available in the literature [Nemat-Nasser and Li, 1998; Tanner and McDowell, 1999; Jordan et al.,
2013], parameter δ was considered to be constant and A∞ rate-dependent. In the present development,
with the aim of providing a more general approach, and also of representing experimental data presented
in Section 2.3, both parameters δ and A∞ are assumed to be rate-dependent.
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Figure 3.3: Influence of parameter ξ on function β (ε̇) for ε̇lwr = 10−4 s−1 and
ε̇up = 5× 104 s−1: (a) linear scale; (b) logarithm scale. Source: dos Santos et al., 2016.

and
A∞ = [1− β2 (ε̇)]Alwr∞ + β2 (ε̇)Aup∞ , (3.87)

where δlwr and Alwr∞ are the respective values of both δ and A∞ measured at a lower
reference rate ε̇lwr � 1, δup and Aup∞ are the values associated with an upper reference
strain-rate ε̇up � 1. In Eqs. (3.86) and (3.87), based on the previous work [dos Santos
et al., 2016], functions βi, i = {1, 2}, are given by

βi (ε̇) =
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξi
, (3.88)

satisfying βi (ε̇lwr) = 0 and βi (ε̇up) = 1. Parameters ξi > 0, i = {1, 2} , are model
constants. Function β versus inelastic strain-rate ε̇ is displayed in Figures 3.3 for different
values of ξ , with ε̇lwr = 10−4 s−1 and ε̇up = 5 × 104 s−1. Increasing parameter ξ causes
a more sudden increase in function β as ε̇ approaches ε̇up. Functions βi, i = {1, 2}, are
empirical relations intended to represent experimental results showing that both nonlinear
hardening-rate and saturation hardening are increased by increasing the imposed strain-
rate (see 2.10). In addition, these features change their rate-sensitivity for higher strain-
rates [Follansbee and Kocks, 1988].

Remark 3.3. A discussion on the strain-rate validity of the constitutive assumptions as-
sociated with the preceding proposal have to be addressed. Some authors, as Qi et al.,
2009, and Yu et al., 2013, advocate that the strain-rate-induced strengthening of engi-
neering materials tends to a saturation limit. On one hand, the functional form of Eq.
(3.88) presented in this work does not express the saturation of parameters δ and A∞ in
terms of strain-rate. Such an assumption becomes reasonable into the strain-rate regime
adopted in this work, since authors such as Armstrong et al., 2007, and Meyers et al.,
2003, have shown that the flow stress (controlled by dislocation generation at the shock
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front) of ductile FCC metals as pure copper still increases with strain-rate for values ex-
ceeding 107 s−1. See also discussion of Huang et al., 2009, and references cited therein.
In fact, there are few works (see Borodin et al., 2014) pointing towards a saturation in
the strain-rate effect on the dynamic yielding strength of metals at ultra-high strain-rates
(> 107 s−1). On the other hand, for material modeling purpose, in which the strain-rate
effect saturation becomes a significant constitutive feature within the desired strain-rate
regime, this saturation behavior can be accounted for by adopting a S-shaped functional
form for parameter βi (ε̇) instead of functional form proposed in Eq. (3.88). However, the
model presented in this work is not intended to model very high strain-rate (much higher
than 104 s−1) processes, where the the plastic deformation and the hardening behavior
can be controlled by shock wave propagation [Meyers, 1994].

For a graphical illustration, keeping δ constant and setting c = 0, a schematic
representation of the strain-rate influence on saturation hardening A∞, and thus on the
stress-strain response, is showed in Figure 3.4(a). In this figure a high strain-rate load-
ing (at a finite inelastic strain-rate ε̇) followed by an unloading and subsequent quasi-
static-reloading is shown. This curve (solid-line) is compared with a quasi-static loading
(dashed-line). From this comparison one can note the previous strain-rate influence on
the saturation hardening A∞, where A∞ (ε̇) is greater than the associated quasi-static
value Alwr∞ , such that the quasi-static loading curve is not recovered by the quasi-static-
reloading. Furthermore, since ε̇ < ε̇up, then A∞ (ε̇) < Aup∞ . In contrast, considering A∞
constant and c = 0, Figure 3.4(b) shows the role played by the rate-dependent parame-
ter δ (ε̇) on hardening evolution. In summary, by increasing the imposed strain-rate the
nonlinear hardening behavior approaches faster its saturation.

Based upon preliminary experimental investigations on the high strain-rate material
behavior, the saturation hardening A∞ was observed to be influenced by previous strain-
rate-history experienced by the material. As a result, instead of being a state function in
terms of the current strain-rate ε̇ (Eq. (3.87)), saturation A∞ has to depend on the past
deformation-history. In this sense, an effective saturation hardening Ā∞ is introduced:

Ā∞ := 1
ε̄

∫ ε̄

0
A∞ (ε̇) dε, (3.89)

where ε̄ is the current accumulated viscoplastic strain and A∞ (ε̇) is computed by Eq.
(3.87). Adopted rule (3.89) is a weighted averaging, and is employed to calculate the
effective parameter Ā∞, where the weights are given in terms of the accumulated vis-
coplastic strain increment dε associated with a corresponding value A∞ (ε̇). Actually, Eq.
(3.89) stands for memory effects, which in fact violates hypothesis inherent in the TIV
theory, but it is necessary in order to represent observed experimental response. Thereby,
henceforth the effective saturation hardening Ā∞ will be employed, keeping in mind that
when the whole loading is performed according to a constant strain-rate it reduces to
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Figure 3.4: Schematic representation of the strain-rate influence on (a) saturation
hardening (A∞) and (b) nonlinear hardening-rate (δ) parameters. Source of figure (a):

dos Santos et al., 2016.

Ā∞ = A∞ (ε̇).
Considering a loading case in which N distinct constant strain-rate steps are imposed,

within the (n+ 1)-th step the current effective saturation hardening of Eq. (3.89) becomes

Ā∞n+1 = 1
ε̄

[
n∑
i=1
A∞i

∆εi + A∞n+1 (ε̄− εn)
]
, (3.90)

where A∞i
= A∞ (ε̇i), ∆εi = εi − εi−1, εn is the total accumulated viscoplastic strain at

the end of the n− th constant strain-rate step. In the last equation, the weights are given
by ∆εi

ε̄
. Therefore, Eq. (3.90) can be rewritten as

Ā∞n+1 = εn
ε̄
Ā∞n +

(
1− εn

ε̄

)
A∞n+1 , (3.91)

where Ā∞n
:= 1

εn

n∑
i=1
A∞i

∆εi. Considering a case with two constant strain-rate steps
(n+ 1 = 2), Eq. (3.91) becomes

Ā∞1 = A∞ (ε̇1) , (3.92)

within the first step, and

Ā∞2 = ε1

ε̄
Ā∞1 +

(
1− ε1

ε̄

)
A∞ (ε̇2) , (3.93)

for the second step, where ε1 is the accumulated viscoplastic strain at the end of step
1. Equations (3.92) and (3.93) will be used to demonstrate the constitutive capabilities
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associated with the present formulation in capturing strain-rate changing effects observed
during decremental strain-rate tests.

Having obtained the corresponding inelastic evolution equations, namely Eqs. (3.74),
(3.76), and (3.79), a relevant discussion refers to the conditions imposed by the non-
negative dissipation stated by inequality (3.62). Accordingly, intrinsic dissipation reads

Φ0 = λ̇

∥∥∥τ̄D∥∥∥−
√

2
3h1

(
1− A1

A∞

)
A1 −

√
2
3h2A2

 ≥ 0, (3.94)

making use of Eqs. (3.67) and (3.70),

Φ0 = λ̇

√2
3 (σy + A1 + A2) + Θ−1 −

√
2
3h1

(
1− A1

A∞

)
A1 −

√
2
3h2A2

 ≥ 0. (3.95)

Since λ̇ ≥ 0, positivity of Φ0 is equivalent to the following condition:

σy +
√

3
2Θ−1 +

[
1− h1

(
1− A1

A∞

)]
A1 + (1− h2)A2 ≥ 0. (3.96)

Keeping in mind that σy ≥ 0, A1
A∞
≤ 1, A1 ≥ 0, and A2 ≥ 0, positivity of each separate

term above is ensured provided that h1 ≤ 1 and h2 ≤ 1, thus implying that inequality
(3.62) is always fulfilled. Furthermore, knowing that h1 = H1

H̄
= A∞δ

H̄
and h2 = H2

H̃
=

A∞c
H̃

, previous conditions indicate that A∞δ ≤ H̄ and A∞c ≤ H̃, respectively. Notice
that parameters A∞, δ, and c related to hardening response are quantified in this work.
However, moduli H̄ and H̃ for the plastically stored energy have to be adjusted from
suitable experiments, for example, from calorimetry [Godfrey et al., 2005], what is beyond
the present scope.

3.5.1 Overstress function

In order to complete the present constitutive formulation, specific functional forms for
the overstress function Θ (〈f〉 , A), Eq. (3.69), must be introduced. Functional forms
of Θ (〈f〉 , A) should incorporate material physical aspects as the instantaneous rate-
dependence, while keeping it simple enough to be mathematically tractable. For this
purpose, phenomenological proposals of function Θ (〈f〉 , A) will be employed. Reasoning
on this way, two widely employed viscoplastic models are those of Perzyna, 1966, 1971,
and Perić, 1993, which are described briefly in what follows. For more details, works of
Alfano et al., 2001, and dos Santos, 2012, are also referred to.
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Perzyna-based model

Constitutive function Θ (〈f〉 , A) is given by [Perzyna, 1966, 1971]

λ̇ = Θ (〈f〉 , A) = 1
ϑ

[
〈f〉
R (A)

]m
, (3.97)

where ϑ ∈ R>0 is a viscosity parameter, 1
m
∈ R>0 is the rate-sensitivity, and R is a

characteristic size associated with the yield locus given in terms of the hardening variable
A. In the context of von Mises criterion, Eq. (3.67), one has

R (A) =
√

2
3 (σy + A) . (3.98)

For f ≥ 0, the inverse function Θ−1
(
λ̇, A

)
is given by

f = Θ−1
(
λ̇, A

)
= R (A)

[
ϑλ̇
] 1
m . (3.99)

Perić-based model

Viscoplastic models should recover the rate-independent behavior as ϑ → 0 or as
m → ∞. Unfortunately, the rate-independent feature is not recovered when m → ∞
by the Perzyna nonlinear model. To overcome this problem, Perić, 1993, proposed a
viscoplastic model which retrieves the inviscid behavior in both limit cases. In this model,
function Θ (〈f〉 , A) is expressed as

λ̇ = Θ (〈f〉 , A) = 1
ϑ

{[
〈f〉+R (A)

R (A)

]m
− 1

}
, (3.100)

and its inverse function Θ−1
(
λ̇, A

)
, for f ≥ 0, reads

f = Θ−1
(
λ̇, A

)
= R (A)

[(
1 + ϑλ̇

) 1
m − 1

]
. (3.101)

Modified Perić model

Both viscoplastic models described earlier (Eqs. (3.97) and (3.100)) can be seen as phe-
nomenological simplifications of an Arrhenius evolution equation [Perzyna, 1986], which
is employed in physically-based models to describe thermally-activated dislocation mo-
tion [Kocks et al., 1975; Follansbee and Kocks, 1988]. However, there are researchers
pointing out that the thermal activation mechanism does not control the dislocation glide
for strain-rates in the order of 104 s−1. For this strain-rate range, the most important
role is played by viscous drag mechanisms [Regazzoni et al., 1987; Rodríguez-Martínez
et al., 2011], which provides a major resistance to the motion of dislocations under these
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Figure 3.5: Evaluation of functions Θ−1
1 :=

(
1 + ϑ1λ̇

) 1
m − 1, Θ−1

2 := ϑ2λ̇ and the sum
Θ−1 = Θ−1

1 + Θ−1
2 (normalized by parameter R) in terms of ε̇ =

√
2
3 λ̇, for ϑ1 = 1× 104 s,

m = 100 and ϑ2 = 1× 10−4 s.

deformation conditions (see also discussion of Subsection 1.4.5). The great majority of
empirical and phenomenological viscoplastic models does not identify the different rate-
dependent features responsible for observed viscous effects [Perzyna, 1966, 1971; Johnson
and Cook, 1983; Perić, 1993; Simo et al., 1988; Ristinmaa and Ottosen, 1998; Alfano et al.,
2001]. Thus, aiming at improving the strain-rate range of applicability of phenomeno-
logical approaches, following a simplifying procedure, the drag resistance is proposed to
be modeled by a linear relationship between stress level and current strain-rate. Ac-
cordingly, phenomenologically accounting for both thermally-activated and viscous drag
mechanisms, a modified version of Perić ’s model is proposed. The modification consists
of introducing the linear term ϑ2λ̇ in Eq. (3.101):

f = Θ−1
(
λ̇, A

)
= R

[(
1 + ϑ1λ̇

) 1
m + ϑ2λ̇− 1

]
. (3.102)

In the proposed viscoplastic equation, constants ϑ1 ∈ R>0 and 1
m
∈ R>0 are respec-

tively the viscosity and rate-sensitivity parameters associated with thermally-activated
mechanisms, and ϑ2 ∈ R>0 is the viscosity parameter related to viscous drag resistance.

For metallic materials, as it will be verified in Chapter 4, parameter 1
ϑ1

can be seen as a
lower reference strain-rate, and ϑ1 assumes high values in the order of 103 s or even higher.
In turn, constant m has values in the order of 102 [dos Santos et al., 2016]. Parameter 1

ϑ2

is seen as a higher reference strain-rate, then ϑ2 has values much lower than the unity, in
the order of 10−3 s or lower. Thus, in order to illustrate the features associated with the
proposed viscoplastic function, functions Θ−1

1 :=
(
1 + ϑ1λ̇

) 1
m − 1, Θ−1

2 := ϑ2λ̇, and the
sum Θ−1

1 + Θ−1
2 (normalized by parameter R) are qualitatively evaluated in Figure 3.5 in
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terms of strain-rate ε̇ =
√

2
3 λ̇, considering ϑ1 = 1 × 104 s, m = 100 and ϑ2 = 1 × 10−4 s.

Results of Figure 3.5 show that a critical strain-rate between 102 and 103 s−1 delimits
the transition from the low strain-rate-sensitivity to the high strain-rate regime. On one
hand, from low to moderate strain-rates the viscous behavior is governed by term Θ−1

1 ,
which in our approach is linked to thermal activation mechanisms and is the model of
Perić, 1993 itself, defined in Eq. (3.101). On the other hand, at high strain-rates, function
Θ−1

2 related to viscous drag resistance controls the instantaneous rate-sensitivity.

3.5.2 Constitutive formulation highlights

Before further theoretical developments, a series of comments related to proposed con-
stitutive modeling deserve to be stated. In this respect, some main features of the model
are emphasized below:

• Starting from additive decomposition of hardening into two contributions, respec-
tively associated with dislocation storage and geometry changes at microscale level,
a hardening law given in Eq. (3.85) has been obtained. Referred to as “modified
Voce hardening law”, it allows to account for nonlinear hardening until correspond-
ing saturation

(
A ≤ Ā∞

)
, and for quasi-linear hardening observed at subsequent

stages of straining. Interestingly, the linear component in the hardening law is also
rate-dependent since the saturation hardening Ā∞ is a rate-dependent parameter;

• The model ability to account for rate-dependent material hardening behavior stems
directly from the rate-dependence of parameters δ and A∞, as clearly expressed
by Eqs. (3.87) and (3.86) through functions βi (ε̇). The specific expression (3.88)
seems suitable for capturing significant hardening rate-sensitivity observed at high
strain-rates, as illustrated in Figure 3.3(b);

• The proposed overstress function, Eq. (3.102), is expected to improve the well
established phenomenological models as those of Perzyna, 1966, 1971, and Perić,
1993, in the sense that it increases the strain-rate range of applicability related
to this kind of approach. The modification is achieved by an additional linear
contribution intended to phenomenologically represent viscous drag effects on the
instantaneous rate-sensitivity;

• Apart from elastic constants, the whole proposed constitutive model depends on
eleven independent scalar parameters whose phenomenological interpretation is
clear. This feature allows to identify corresponding model constants from exper-
imental data by means of subsequent steps. Actually, the model calibration is
rather simple and can be achieved considering four separate constitutive aspects (as
detailed in Chapter 4): (i) quasi-static strain-hardening; (ii) strain-rate-hardening;
(iii) low to intermediate strain-rate; and (iv) high strain-rate viscous behavior.
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• The model proposed in this work is a generalization of the formulation provided by
dos Santos et al. [2016], so that, the last one is retrieved by setting δlwr = δup = δ,
ϑ2 = 0, and the saturation hardening being computed directly from Eq. (3.87).

While presenting relevant constitutive capabilities, limitations related to the proposed
model have to be addressed. In general finite strain applications, temperature depen-
dence of polycrystalline FCC metals becomes important at high strain-rates. However,
the present model does not explicitly account for the heat generated during high velocity
plastic deformations. The present proposal aims at providing a simple constitutive tool
focused mainly on rate-dependent constitutive features considering idealized isothermal
conditions. Under high strain-rate conditions, the present model should be adjusted from
incremental deformation tests, in order to minimize thermal effects in experimental results
(see for instance Follansbee and Kocks, 1988, and Nemat-Nasser and Isaacs, 1997). In
its current form, proposed model can be employed for predicting high strain-rate plastic
deformations restricted to moderate continuous strain increments: ∆ε < 0.5. Simulations
performed considering adiabatic and isothermal settings at high strain-rates have shown
the difference between adiabatic and isothermal conditions for copper is not significant as
long as moderate strain increments are respected [Follansbee and Kocks, 1988; Molinari
and Ravichandran, 2005]. Moreover, isothermal viscoplastic models can be used in high
strain-rate conditions when the desired loading-history corresponding to a given applica-
tion can be reproduced in laboratory material characterization [Silva et al., 2014]. In this
situation, thermal effects are implicitly accounted for through adjusted model parame-
ters. Otherwise, in cases where thermal effects have to be explicitly accounted for, within
the present framework temperature influence shall be considered by adopting adiabatic
conditions at high strain-rates, and assuming temperature-dependences on parameters σy,
ϑ1, ϑ2, m, and on evolution of hardening variables A1, A2 through parameters δ and A∞,
which are somehow related to temperature-dependent dynamic recovery mechanisms.

3.6 Model summary

For easier reading and future discussion, the present constitutive development is sum-
marized in what follows:

• Deformation gradient decomposition:

F = F eF vp; (3.103)

• Helmholtz free-energy:

ψ (Ee, α1, α2) = 1
2E

e : De : Ee + 1
2H

(
α2

1 + α2
2

)
; (3.104)
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• Constitutive relationships:

τ̄ = De : Ee, A1 = Hα1, and A2 = Hα2; (3.105)

• Yield function:

f (τ̄ , A) =
∥∥∥τ̄D∥∥∥−

√
2
3 (σy + A) , (3.106)

with A = A1 + A2;

• Inelastic evolution:
D̄

vp = λ̇N τ̄ , (3.107)

ε̇ =
√

2
3 λ̇, (3.108)

f = Θ−1
(
λ̇, A

)
= R

[(
1 + ϑ1λ̇

) 1
m + ϑ2λ̇− 1

]
, (3.109)

Ȧ1 = H1

(
1− A1

Ā∞

)
ε̇, (3.110)

A2 = cĀ∞ε, (3.111)

where
δ = [1− β1 (ε̇)] δlwr + β1 (ε̇) δup (3.112)

Ā∞ = 1
ε̄

∫ ε̄

0
A∞ (ε̇) dε (3.113)

with
A∞ = [1− β2 (ε̇)]Alwr∞ + β2 (ε̇)Aup∞ , (3.114)

βi (ε̇) =
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξi
, i = {1, 2} , (3.115)

being ε̄ the current accumulated viscoplastic strain and δ = H1
Ā∞

;

• Hardening rule for constant strain-rate loading. For ε̇-cte, in view of relationship
A = A1 + A2, evolution equations (3.110) and (3.111) yield:

A = A∞ [1 + cε− exp (−δε)] . (3.116)

3.7 Modeling the material hardness evolution

So far, the constitutive model considering stress-strain response has been formulated.
However, in some engineering applications, there is a need to directly control and predict
the material hardness evolution. With the goal of handling this issue, this section provides
a constitutive alternative to model the corresponding material hardness response in terms



83

of strain and strain-rate histories. The approach follows from analogy with the formulation
of hardening equations given in Section 3.5. Therefore, the hardness variable is assumed
to be given by

HV = H0 +Hε, (3.117)

where H0 is the hardness associated with an annealed state and Hε depends on the plastic
deformation and strain-rate histories. Thereby, based on Eqs. (3.63) and (3.83) variable
Hε is written as

Hε = Hd + chH∞ε, (3.118)

where ch ≥ 0 is a material parameter, H∞ is the saturation hardness, Hd is associated with
strengthening due dislocation storage, and chH∞ε is related to hardening mechanisms of
Stage IV. Motivated by Eq. (3.77), evolution of Hd assumes the form

Ḣd = Hh

(
1− Hd

H∞

)
ε̇, (3.119)

where Hh > 0 is a parameter. Integrating the last equation for ε̇ constant, reads

Hd −H∞
Hdi −H∞

= exp [−δh (ε− εi)] . (3.120)

Parameters Hdi and εi stand for respectively initial values of Hd and ε, and δh = Hh
H∞

.
Combining Eqs. (3.118) and (3.120) provides

Hε = Hεi +H∞ch (ε− εi) + [H∞ (1 + chεi)−Hεi ] {1− exp [−δh (ε− εi)]} , (3.121)

where Hεi is the initial value of Hε. Considering that Hεi = εi = 0, Eq. (3.121) reduces
to

Hε = H∞ [1 + chε− exp (−δhε)] , (3.122)

which is analogous to Eq. (3.85). In summary, in a constant strain-rate loading, consid-
ering Eqs. (3.117) and (3.122), current material hardness can be calculated by

HV = H0 +H∞ [1 + chε− exp (−δhε)] . (3.123)

Strain-rate-history effects on hardness response can be accounted for by applying the
same procedure employed previously. That is, by letting parameters δh and H∞ to be
rate-dependent. Based upon relationships given in Eqs. (3.86) and (3.87), the respective
rate-dependent forms are then assumed for both δh and H∞:

δh = [1− βh1 (ε̇)] δlwrh + βh1 (ε̇) δuph (3.124)
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and
H∞ = [1− βh2 (ε̇)]H lwr

∞ + βh2 (ε̇)Hup
∞ , (3.125)

where δlwrh and H lwr
∞ are respectively the quasi-static values of δh and H∞ measured at a

lower reference rate ε̇lwr � 1, δuph and Hup
∞ are the values associated with upper reference

strain-rate ε̇up � 1. Functions βhi , i = {1, 2}, follow the form presented in Eq. (3.88):

βhi (ε̇) =
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξhi
, (3.126)

where ξhi > 0, i = {1, 2} , are constants.
Analogously to the stress-strain modeling, referring specifically to Eq. (3.90), an

effective saturation hardness H̄∞ is also introduced to account for strain-rate influence on
hardness evolution:

H̄∞ := 1
ε̄

∫ ε̄

0
H∞ (ε̇) dε, (3.127)

where ε̄ is the current accumulated viscoplastic strain and H∞ (ε̇) is the saturation hard-
ness associated with strain-rate ε̇. Following the integration procedure previously de-
scribed, in which two constant strain-rate steps (n+ 1 = 2) are considered, Eq. (3.127)
yields

H̄∞1 = H∞ (ε̇1) , (3.128)

for the first step, and
H̄∞2 = ε1

ε̄
H̄∞1 +

(
1− ε1

ε̄

)
H∞ (ε̇2) , (3.129)

for the second step. Equations (3.128) and (3.129) are used to asses the constitutive capa-
bilities associated with the present formulation in capturing the hardness-strain response
obtained in sequential strain-rate tests described in Subsection 2.3.2 and showed in Figure
2.7.
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4 CONSTITUTIVE MODEL CALIBRATION AND VALIDATION: ALU-
MINUM AA1050

The objective of this chapter is to describe the calibration strategy employed to de-
termine the adjustable parameters associated with the proposed model. In fact, the
model has three constitutive features to be calibrated: (i) strain-hardening; (ii) strain-
rate-hardening; and (iii) instantaneous rate-sensitivity. The last one is subdivided into
two contributions due to low and to high strain-rate effects. The first one is related to
thermally-activated mechanisms, and the second one with viscous drag resistance.

The model calibration considers the experimental results presented in Section 2.3.
With the aim of performing the model calibration considering the finite strain kinematic
framework previously described, as a first task, in the following section the stress-strain
formulation is therefore particularized to an unidimensional tensile/compression applica-
tion.

4.1 Simulation of unidimensional compression test

Let us considering a homogeneous cylindrical specimen, geometrically defined in refer-
ence configuration by its diameter d0 and length l0, with symmetry axis coinciding with
X1, i.e., 0 ≤ X1 ≤ l0 and 0 ≤

√
X2

2 +X2
3 ≤ d0

2 (Figure 4.1). The specimen is placed be-
tween two rigid and smooth platens subjected to respective vertical displacements u1 = 0
at X1 = 0 and u1 = ū1 at X1 = l0. For simple problem, the constitutively homogeneous
material is considered as rigid-viscoplastic, that is D̄ = D̄

vp.

R

0d

0

1X

0l

)(1 tu

11E−

t

K−
1

Figure 4.1: Schematic representation of unidimensional boundary value problem.
Source: dos Santos et al., 2016.

The displacement vector u and deformation gradient F are considered to be given by

u =


(a1 − 1)X1

(a2 − 1)X2

(a2 − 1)X3

 and F =


a1 0 0
0 a2 0
0 0 a2

 . (4.1)
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Accordingly, the right stretch tensor U =
√
F TF and the logarithmic strain measure

E = ln (U) are

U =


a1 0 0
0 a2 0
0 0 a2

 and E =


ln (a1) 0 0

0 ln (a2) 0
0 0 ln (a2)

 , (4.2)

where the principal stretches must complies with a1 ≤ 1 and a2 ≥ 1 in the compression
case. Furthermore, a1 is determined from boundary condition u1 = ū1 at X1 = l0,

a1 = 1 + ū1

l0
= l

l0
. (4.3)

The rate of axial strain is
Ė11 = ȧ1

a1
=

˙̄u1

l0 + ū1
. (4.4)

Notice that for the specific case considered herein, the strain-rate D̄ = sym
(
Ḟ F−1

)
and

the rate of strain Ė are coincident. The analysis will be restricted to a constant rate of
strain:

Ė11 = D̄11 = K < 0 (compression) . (4.5)

The prescribed displacement ū1 (t) of upper cylinder face is actually controlled through the
value of axial strain E11 applied at a constant rate K. Thus, starting from ū1 (t = 0) = 0,
the prescribed displacement takes the form

ū1 (t) = l0 [exp (Kt)− 1] . (4.6)

For this simple compression case, the uniaxial stress state reads

τ̄ =


τ̄11 0 0
0 0 0
0 0 0

 , τ̄D =


2
3 τ̄11 0 0
0 −1

3 τ̄11 0
0 0 −1

3 τ̄11

 , (4.7)

and ∥∥∥τ̄D∥∥∥ =
√

2
3 |τ̄11| , (4.8)

where |τ̄11| denotes the absolute value of τ̄11. Considering a rigid-viscoplastic material
and assuming an associative evolution, it comes from Eqs. (3.68)1 and (3.72)1:

D̄ =
√

3
2 λ̇
τ̄D

|τ̄11|
=
√

2
3 λ̇


1 0 0
0 −1

2 0
0 0 −1

2

 sign (τ̄11) . (4.9)
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It follows that

D̄11 =
√

2
3 λ̇sign (τ̄11) , (4.10)

where λ̇ = 1
ϑ
Θ (〈f〉 , A) and sign (τ̄11) denotes the signal of τ̄11. Moreover, in view of Eqs.

(3.73) and (4.10), the accumulated viscoplastic strain-rate becomes

ε̇ =
∣∣∣D̄11

∣∣∣ = |K| and ε =
∫ t

0

∣∣∣D̄11

∣∣∣ dt = |K| t, (4.11)

since ε̇ is constant and ε (t = 0) = 0. Remember from Eq. (4.5) that

Ė11 = D̄11 (4.12)

and thus ε = |E11| = |K| t. The hardening variable can be calculated from Eq. (3.85),

A = Ā∞ [1 + cε− exp (−δε)] , (4.13)

where δ is calculated from Eqs. (3.86) and (3.88) with i = 1, and Ā∞ = A∞ from Eqs.
(3.87) and (3.88) with i = 2.

It is worth noting that, when considering this specific rigid-viscoplastic application
with monotonic loading, the accumulated viscoplastic strain defined in Eq. (3.73), and
specialized in Eq. (4.11) for a simple compression test, coincides with the logarithmic
strain measure defined previously in Eq. (2.2) when the experimental results were first
presented.

For this rigid-viscoplastic uniaxial test, the overstress function proposed in Subsection
3.5.1 is employed. In the case of inelastic flow, the current yield function must obey
f = Θ−1, where function Θ−1

(
λ̇, A

)
is given in Eq. (3.102). Combination of Eqs. (3.67),

(3.75), (3.102), (4.8), and (4.10) leads to the following expression for the axial stress

|τ̄11| = (σy + A)


1 +

√
3
2ϑ1ε̇

 1
m

+
√

3
2ϑ2ε̇

 . (4.14)

Equation (4.14) shows how the current yield stress σy + A is intensified by the rate-

dependent term
[(

1 +
√

3
2ϑ1ε̇

) 1
m +

√
3
2ϑ2ε̇

]
in order to obtain the instantaneous flow stress

response, τ̄11, in terms of the current strain-rate ε̇.

4.2 Model calibration

Model calibration is performed reasoning on the rigid-viscoplastic analytical solution
given in Eq. (4.14), and the hardening variable A is computed from Eq. (4.13), for which
δ is calculated from Eqs. (3.86) and (3.88) with i = 1, and Ā∞ = A∞ from Eqs. (3.87)
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and (3.88) with i = 2. Therefore, the set of model constants to be adjusted is:

{
σy, c, δ

lwr, δup, ξ1, A
lwr
∞ , Aup∞ , ξ2, ϑ1,m, ϑ2

}
. (4.15)

The reference strain-rates ε̇lwr and ε̇up are defined a priori:

ε̇lwr = 1× 10−4 s−1 and ε̇up = 1.5× 104 s−1. (4.16)

These reference values define the strain-rate range of applicability associated with the
present model calibration. The upper value ε̇up = 1.5 × 104 s−1 was set in order cover
a wide strain-rate range while being close to the highest experimental strain-rate: ε̇ =
1.1× 104 s−1.

Calibration procedure is carried out by means of a nonlinear least-square method.
Although, the present model has 11 parameters (related to the inelastic response) to
be adjusted, using this simple gradient-based procedure is possible, once the proposed
constitutive model enables to perform the calibration in subsequent steps, what allows
identifying separately each constitutive contribution, and thus verifying graphically the
value of each model constant. Calibration steps are summarized in the following:

• (i) Quasi-static strain-hardening. Four parameters are adjusted:

|τ̄11| = σy + Aqs∞ [1 + cε− exp (−δqsε)]→ {σy, c, δqs, Aqs∞} , (4.17)

• (ii) Strain-rate-hardening. Six parameters are adjusted:

δ = δlwr +
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξ1 (
δup − δlwr

)
→
{
δlwr, δup, ξ1

}
, (4.18)

A∞ = Alwr∞ +
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξ (
Aup∞ − Alwr∞

)
→
{
Alwr∞ , Aup∞ , ξ2

}
, (4.19)

(iii) Instantaneous rate-sensitivity:

1. From quasi-static to moderate strain-rate regimes. Two parameters are ad-
justed:

|τ̄11| = (σy + A)
1 +

√
3
2ϑ1ε̇

 1
m

→ {ϑ1,m} , (4.20)

2. At high strain-rate regimes. One parameter is adjusted:

|τ̄11| = (σy + A)


1 +

√
3
2ϑ1ε̇

 1
m

+
√

3
2ϑ2ε̇

→ {ϑ2} . (4.21)
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Detailed descriptions on each calibration step are provided in the subsequent topics.

4.2.1 Rate-dependent yield stress

The rate-dependent yield stress associated with the present model is given by the sum
of the initial yield stress and hardening variable: σy + A. This quantity accounts for
both the strain and strain-rate-hardening responses. Reasoning on the preceding uniaxial
compression solution, Eqs. (4.13) and (4.14), the current yield stress reads

|τ̄11| = σy + A∞ [1 + cε− exp (−δε)] , (4.22)

in which instantaneous rate effects are disregarded, that is,
[(

1 +
√

3
2ϑ1ε̇

) 1
m +

√
3
2ϑ2ε̇

]
=

1. The model calibration considers the rate-dependent yield stress-strain curves presented
in Figure 2.10 of Subsection 2.3.3.

In a first step, parameters σy, c, Aqs∞, and δqs (of Eq. (4.22)) are adjusted considering
the quasi-static curve. Then, by keeping σy and c fixed, other values of parameters A∞ and
δ associated with higher strain-rate curves are obtained. Adjusted values of σy and c, as
well as of A∞ and δ corresponding to each strain-rate are given in Table 4.1. Considering
data of this table 4.1 and reference strain-rates given in Eq. (4.16), functions δ (ε̇) (param-
eters δlwr, δup, ξ1 of Eqs. (3.86) and (3.88)) and A∞ (ε̇) (parameters Alwr∞ , Aup∞ , ξ2 of Eqs.
(3.87) and (3.88)) are therefore adjusted. Achieved results are described in Table 4.2, and
adjusted functions δ (ε̇) and A∞ (ε̇) are displayed respectively in Figures 4.2(a) and (b). In
these figures, good agreement between adopted functions and reference data are observed.
While Figure 4.2(a) shows a pronounced rate-sensitivity associated with parameter δ, in
Figure 4.2(b) a smooth transition in the rate-sensitivity of parameter A∞ is observed.
Furthermore, Figure 4.2(c) displays how the athermal hardening-rate H1 = A∞δ of Eq.
(3.77) varies in terms of strain-rate changes. In accordance with previous works on FCC
metals (for instance that of Follansbee and Kocks, 1988) the athermal hardening-rate
has a less pronounced rate-sensitivity in a low-strain-rate range (ε̇ < 103 s−1), and when

Table 4.1: Saturation hardening A∞, hardening-rates δ, c, and initial yield stress σy
obtained by calibration.

ε̇ [s−1]
Q− S 2× 103 4× 103 1.1× 104

A∞ [MPa] 83.43 93.65 94.54 96.92
δ [−] 3.917 6.767 7.409 9.074
σy [MPa] 41.17 − − −
c [−] 0.15 − − −



90

Table 4.2: Parameters δlwr, δup, ξ1, Alwr∞ , Aup∞ , and ξ2 obtained by calibration, for
ε̇lwr = 10−4 s−1 and ε̇up = 1.5× 104 s−1.

δlwr [−] δup [−] ξ1 [−] Alwr∞ [MPa] Aup∞ [MPa] ξ2 [−]
3.884 9.653 0.3553 81.28 97.55 0.1421
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Figure 4.2: Comparison of adjusted constitutive functions with values of Table 4.2: (a)
Equations (3.86) and (3.88) with i = 1; and (b) Equations (3.87) and (3.88) with i = 2;

(c) Parameter H1 = A∞δ. Reference strain-rates are ε̇lwr = 10−4 s−1 and
ε̇up = 1.5× 104 s−1. (d) Rate-sensitivity associated with the current yield stress for

different strain levels (Equations (4.22), (3.86), (3.87), and (3.88), as well as parameters
of Table 4.2 are employed).

higher strain-rates (ε̇ > 103 s−1) are reached, a strong rate-dependence is evidenced.
Figures 4.2(d) and 4.3 show respectively the adjusted curves for the evolution of yield

stress as function of ε̇ considering different strain levels, and the yield stress-strain curves
for different values of ε̇, in which the experimental results are also depicted in order to allow
a graphical comparison. Results of Figure 4.2(d) present a small rate-influence on σy +A

at low strain-rates, and a pronounced rate-sensitivity at high strain-rates (ε̇ > 103 s−1)
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Figure 4.3: Yield stress vs. accumulated viscoplastic strain: Comparison of reference
data and adjusted constitutive model, using Eqs. (4.22), (3.86), (3.87), and (3.88), as

well as parameters of Table 4.2.

are evidenced. However, observed rate-sensitivity decreases as the strain level increases.
In Figure 4.3, as expected based on results of Figures 4.2(a) and (b), higher strain-rates
increase both the nonlinear δ and linear A∞c hardening-rates. Both Figures 4.2(d) and
4.3 show that the adjusted model responses are in good agreement with corresponding
reference data.

Preceding calibration was performed in order to characterize both strain-hardening
and strain-rate-hardening responses of the proposed model. In the following subsection
the instantaneous flow stress rate-sensitivity is considered.

4.2.2 Instantaneous flow stress

At this stage, the model parameters related to strain-, strain-rate-hardening behavior
have been adjusted. In what follows, parameters ϑ1, ϑ2, and m associated with instanta-
neous rate-sensitivity of Eq. (4.14) have to be adjusted. For this purpose, flow stress-strain
curves presented in Figure 2.11(a) are now considered.

As previously discussed (see Figure 3.5 and comments of Subsection 3.5.1), the term
containing parameters ϑ1 andm in Eqs. 3.102 and 4.14 is intended to model viscous effects
from low to moderate strain-rates, i.e., within the strain-rate range in which thermal-
activated dislocation glide dominate the plastic deformation process [Regazzoni et al.,
1987; Nemat-Nasser and Li, 1998]. Then, for adjusting constants ϑ1 and m, the flow
stress-strain curves related to strain-rates of 1.0 × 10−2 (Q-S), 1.2, and 1.2 × 103 are
considered. Employing this procedure, the following model parameters are then obtained:
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Figure 4.4: (a) Theoretical flow stress surface in terms of strain and strain-rate; (b)
Flow stress rate-sensitivity of adjusted model for different strain levels (for comparison,
yield stresses of Figure 4.2(d) are also represented by thin lines); (c) Comparison of
theoretical flow stress and experimental data. Theoretical description considers Eqs.

(4.14), (3.86), (3.87), and (3.88), as well as parameters of Table 4.3.

ϑ1 = 2.14× 104 s and m = 291.55. (4.23)

In a subsequent step, to adjust constant ϑ2, all flow stress-strain curves of Figure 2.11(a)
are considered, including those associated with strain-rates of 1.7×103, 2.0×103 s−1, and
4.0× 103 s−1. The resulting value is

ϑ2 = 5.15× 10−6 s.

Corresponding fitted flow stress curves are showed in Figures 4.4(a)-(c). Figure 4.4(a)
shows the overall model response, that is, this figure displays the flow stress response in
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Figure 4.5: (a) Relative error between adjusted model response and experimental flow
stress considering high strain-rates: 1.2× 103, 1.7× 103, 2.0× 103 s−1, and 4.0× 103 s−1;
(b) Average error (Error per number of experimental points) between adjusted model

response and experimental flow stress considering high strain-rates: 1.2× 103, 1.7× 103,
2.0× 103 s−1, and 4.0× 103 s−1.

terms of imposed strain ε and associated strain-rate ε̇. In a general way, considering the
strain-rate influence on material or model responses, a significant increase in instanta-
neous rate-sensitivity is observed for strain-rates higher than 103 s−1. From a physical
point of view, this behavior can be attributed to strong microstructural rate-sensitivity
and also to viscous drag effects verified in a high strain-rate regime [Regazzoni et al.,
1987; Rusinek and Rodríguez-Martínez, 2009; Gao and Zhang, 2012]. Considering the
present constitutive model, associated rate-sensitivities are shown in Figure 4.4(b) for
different strain levels. A slight increase in strain-rate-sensitivity is induced by increasing
the straining level. In addition, for comparison purposes, rate-sensitivities (associated
with the current yield stress) showed in Figure 4.2(d) are also displayed in Figure 4.4(b).
From this comparison, it is clear for the present constitutive approach that viscous effects
become pronounced only when the imposed strain-rate approaches 103 s−1. This behavior
can be phenomenologically related to viscous drag effects occurring at high strain-rates.

Figure 4.4(c) compares the adjusted model with corresponding reference experimen-
tal flow stress-strain curves. As it would be expected, based on preceding results, the
flow stress increases by increasing the imposed strain-rate. Results of Figure 4.4(c) show
significant differences between model response and experimental results, where relative
errors of almost -35% are reached (Figure 4.5(a)) for the highest strain-rate curve. How-
ever, from analysis of Appendix B.5, one notices that this significant discrepancy could be
due to oscillating experimental response due to dynamic behavior of compression platen
and load cell assembling, and not due to intrinsic material response. Due to oscillating
character, taking the average relative error per number of experimental points (Figure
4.5(b)), absolute average errors lower than 8% are verified. Thus, in an average way,
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Figure 4.6: Evaluation of functions Θ−1
1 :=

(
1 + ϑ1λ̇

) 1
m − 1, Θ−1

2 := ϑ2λ̇ and the sum
Θ−1 = Θ−1

1 + Θ−1
2 (normalized by parameter R) in terms of ε̇ =

√
2
3 λ̇ considering

parameters of Table 4.3.

the model flow stress response, within the strain and strain-rate ranges considered, have
provided a reasonable agreement with experimental data.

In order to demonstrate how each rate-sensitivity of term
[(

1 +
√

3
2ϑ1ε̇

) 1
m +

√
3
2ϑ2ε̇

]
influences the theoretical constitutive response associated with the aluminum AA1050,
similarly to what was done in Figure 3.5, corresponding strain-rate evolutions of terms
Θ−1

1 :=
(
1 + ϑ1λ̇

) 1
m −1 and Θ−1

2 := ϑ2λ̇ are displayed in Figure 4.6, considering the model
parameters of Table 4.3. From this Figure, one can readily observe that term Θ−1

1 plays a
major role for strain-rates lower than 103 s−1, in a manner that the original Perić model
given in Eq. (3.101) could be used within this this strain-rate range. In contrast, for
strain-rates exceeding 103 s−1, term Θ−1

2 becomes important, thus demonstrating that a
linear-like relationship between viscous stress and imposed strain-rate prevails at high
strain-rate conditions, and justifying the need to employ the modified model given in Eq.
(3.102).

Up to now, the model calibration considering constant strain-rate experiments was
carried out, and corresponding adjusted model responses were compared with respective
experimental data. Adjusted constants are shown in Table 4.3. In a general way, good
agreement between model and experimental results have been observed. In the next
sections model predictions are validated against sequential strain-rate tests concerning
the reload stress response. Aiming at carrying out the corresponding validation, model
predictions are compared with experimental sequential strain-rate tests reasoning on the
reload stress response.
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Table 4.3: Adjusted model parameters for annealed aluminum AA1050, with
ε̇lwr = 10−4 s−1 and ε̇up = 1.5× 104 s−1.

σy c δlwr δup ξ1 Alwr∞ Aup∞ ξ2 ϑ1 ϑ2 m

[MPa] [−] [−] [−] [−] [MPa] [MPa] [−] [s] [s] [−]
41.2 0.15 3.9 9.7 0.36 81.3 97.6 0.14 2× 104 5× 10−6 292
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Q-S reload at ε = 0.39
DT prediction: Ā∞
DT prediction: A∞

Figure 4.7: Model validation: Quasi-static reload stress after a high strain-rate
(ε̇ = 1.1× 104 s−1) prestraining of ε = 0.39. Comparison of model predictions and

experimental data (squares). Experimental and analytical (thin dashed lines) constant
strain-rate curves are also plotted.

4.3 Model validation considering stress-strain sequential tests

Model calibration considering constant strain-rate experiments resulted in parameters
given in Table 4.3. Therefore, the adjusted model is going to be used for predicting the
corresponding material behavior observed in the decremental strain-rate tests described
in Subsection 2.3.3. Experiments consists of imposing a given strain level following a high
strain-rate loading. The loading data are described in Table 2.2, in which prescribed pre-
strain and related strain-rate are given. After the loading phase, the material is unloaded
and subsequently reloaded following a quasi-static deformation.

Comparison of constitutive predictions and experimental data associated with tests
DT1, DT2, and DT3 (of Table 2.2) are showed in Figures 4.7, 4.8, and 4.9, respectively. In
theses figures, predictions considering the effective saturation hardening Ā∞, Eqs. (3.91)
and (3.87), and considering the instantaneous saturation hardening A∞, Eq. (3.87), are
compared with experimental results obtained from quasi-static reloading performed after
high velocity preloading. In addition, reference data associated with high strain-rate and
quasi-static monotonic loading are also displayed.
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Figure 4.8: Model validation: Quasi-static reload stress after a high strain-rate
(ε̇ = 6× 103 s−1) prestraining of ε = 0.40. Comparison of model predictions and

experimental data (diamonds). Experimental and analytical (thin dashed lines) constant
strain-rate curves are also plotted.
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DT prediction: Ā∞
DT prediction: A∞

Figure 4.9: Model validation: Quasi-static reload stress after a high strain-rate
(ε̇ = 2× 103 s−1) prestraining of ε = 1.2. Comparison of model predictions and

experimental data (circles). Experimental and analytical (thin dashed lines) constant
strain-rate curves are also plotted.

On one hand, in all cases curves directly employing the instantaneous saturation hard-
ening A∞ predict a rapid tendency toward the associated quasi-static response, then these
descriptions quickly deviate from experimental data. On the other hand, although hav-
ing a small deviation at the beginning, predictions considering the effective saturation
hardening Ā∞ present better agreement with observed experimental behavior. According
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to discussion provided in Subsection 2.3.3, specifically on Figure 2.12, when the reload
stress is lower than its respective quasi-static saturation stress, a slight linear hardening
during the reloading phase is observed, Figures 4.7 and 4.8. In contrast, when the reload
stress is higher than the corresponding quasi-static saturation, an almost perfectly-plastic
behavior is evidenced. Furthermore, as expected, in Figure 4.9 where a higher prestrain
was imposed, higher differences between predictions employing the effective Ā∞ and the
instantaneous one A∞ are observed.

4.4 Calibration of hardness model

This section aims at providing the model constants related to the constitutive formu-
lation presented in Section 3.7 related to modeling of material hardness response in terms
of imposed strain and strain-rate-histories. Calibration of hardness constants follows the
procedure outlined in Subsection 4.2.1 corresponding to the rate-dependent yield stress.
Constitutive equation to be calibrated is that given in Eq. (3.123), i.e.,

HV = H0 +H∞ [1 + chε− exp (−δhε)] , (4.24)

where parameters δh and H∞ are given respectively by Eqs. (3.124) and (3.125), as
well as Eq. (3.126). The first step consists of adjusting parameters H0, H∞, δh, and ch
of Eq. (4.24), considering distinct strain-rates. Knowing the average initial hardness of
annealed samples, corresponding quantity is set: H0 = 220 MPa. Subsequently, remaining
parameters are adjusted considering constant strain-rate experimental hardness data of
Figure 2.6. This procedure provides the adjusted parameters given in Table 4.4, associated
with each strain-rate. Constant ch is calibrated only for the quasi-static curve, and then
maintained fixed for the other cases.

Parameters δh and H∞ are plotted in terms of strain-rate ε̇ in Figures 4.10(a) and
(b), respectively. Calibration of function δh (ε̇), Eqs. (3.124) and (3.126), in terms of
constants δlwrh , δuph and ξh1 is performed considering results of Figure 4.10(a). In a similar
way, considering function H∞ (ε̇), parameters H lwr

∞ , Hup
∞ and ξh2 of Eq. (3.125) are also

Table 4.4: Parameters H∞, δh, H0, and ch obtained by calibration.

ε̇ [s−1]
Q− S 2× 103 4× 103 1.1× 104

H∞ [MPa] 161.7 190.5 195.3 199.2
δh [−] 3.326 5.304 5.592 7.277

H0 [MPa] 220 − − −
ch [−] 0.20 − − −
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Table 4.5: Parameters δlwrh , δuph , ξh1 , H lwr
∞ , Hup

∞ and ξh2 obtained by calibration, for
ε̇lwr = 10−4 s−1 and ε̇up = 1.5× 104 s−1.

δlwrh [−] δuph [−] ξh1 [−] H lwr
∞ [MPa] Hup

∞ [MPa] ξh2 [−]
3.333 7.809 0.4512 151.9 201.2 0.1139
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Figure 4.10: Comparison of adjusted constitutive functions with values of Table 4.4: (a)
Equations (3.124) and (3.126) with i = 1; and (b) Equations (3.125) and (3.126) with

i = 2.

adjusted concerning data of Figure 4.10(b). Strain-rates were also set: ε̇lwr = 10−4 s−1

and ε̇up = 1.5× 104 s−1. Obtained constants are given in Table 4.5.
Using those parameters given in Table 4.5, as well as H0 = 220 MPa and ch = 0.2,

considering ε̇lwr = 10−4 s−1 and ε̇up = 1.5 × 104 s−1, theoretical hardness-strain curves
for distinct strain-rates are compared with experiments in Figure 4.11, showing good
agreement.

In order to assess the hardness strain-rate dependence associated with the present
model, the hardness surface as a function of strain ε and its rate ε̇ is displayed in Figure
4.12(a), where model description is compared with experiments. Regarding specifically
on the hardness rate-sensitivity, Figure 4.12(b) shows the model hardness as a function of
strain-rate for different strain levels. Within the strain and strain-rate ranges analyzed,
these figures show that the observed hardness rate-sensitivity is more pronounced at lower
strain levels and at high strain-rates (ε̇ > 103 s−1). At large strains, a significant reduction
in the strain-rate influence over theoretical material hardness is observed.

4.5 Model validation considering hardness-strain sequential tests

We have performed the model calibration considering constant strain-rate experiments,
and as results parameters given in Table 4.5, H0 = 220 MPa and ch = 0.2 were obtained.
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Figure 4.11: Hardness vs. accumulated viscoplastic strain: Comparison of experimental
data and adjusted constitutive model, using Eqs. (3.123), (3.124) and (3.125), as well as
parameters of Table 4.5, H0 = 220 MPa and ch = 0.2, considering ε̇lwr = 10−4 s−1 and

ε̇up = 1.5× 104 s−1.
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Figure 4.12: Comparison of strain-rate-dependence of predicted material hardness with
experiments (discrete points): (a) Model hardness surface; (b) Adjusted model

rate-sensitivity for different strain levels. Adjusted model consists of Eqs. (3.123),
(3.124) and (3.125), together with parameters of Table 4.3, H0 = 220 MPa and ch = 0.2,

with ε̇lwr = 10−4 s−1 and ε̇up = 1.5× 104 s−1.

Now, considering those adjusted parameters, the model capabilities in capturing the effects
of strain-rate changing on material hardness evolution will be evaluated.

Concerning decremental strain-rate simulation, in which at a given strain ε1 = 0.14
the loading-rate is changed from a high strain-rate ε̇ = 4×103 s−1 regime to a quasi-static
condition, comparison of model predictions against experimental data are shown in Fig-
ure 4.13. In this case, the hardening state right before the decremental response is lower
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Figure 4.13: Decremental strain-rate test: 4× 103 s−1 then Q-S at ε1 = 0.14.
Comparison of model predictions and experimental data (squares). Experimental and

analytical (thin dashed lines) constant strain-rate curves are also plotted.

than the hardness saturation associated with the quasi-static monotonic loading. Thus,
even decreasing the hardness-rate associated with ε̇ = 4 × 103 s−1, in this case, after a
slight reduction, the hardness response continues to increase. Concerning modeling as-
pects, Figure 4.13 shows that the decremental response, in which instantaneous saturation
hardness H∞ (Eq. (3.125)) is employed, tends quickly to the quasi-static loading curve.
In contrast, the prediction considering the effective saturation H̄∞, Eq. (3.127), shows
the past history influence on the hardness evolution, in manner that, from a high strain-
rate condition, associated decremental response presents a resistance in approaching the
monotonic quasi-static curve, and thus a better agreement with experiments is observed.

Figure 4.14 shows a decremental strain-rate test, in which the hardening state before
the decremental response is greater than the quasi-static hardness saturation. In this case,
at a given strain of ε1 = 0.43, the strain-rate was changed from a high value of ε̇ = 1.1×
104 s−1 to a quasi-static condition. Right after the strain-rate decrease, experiments shows
a fast reduction and then a slight quasi-linear hardness increasing, following a rate similar
to that showed by the corresponding quasi-static curve. Reasoning on adjusted model
predictions, one observes, on one hand, that the model considering H̄∞ (Eq. (3.127)) is
not able to predict the fast hardness decreasing right after the strain-rate dropping, on
the other hand, it adequately predicts the hardness response as the strain level increases.
In contrast, model response employing H∞ (Eq. (3.125)) can describe fast hardness
decreasing after strain-rate dropping, but it is not capable of predicting low strain-rate
hardness evolution. In other words, model prediction considering H∞ tends to quickly
recover the quasi-static response, what is not verified in experimental results. In a general
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Figure 4.14: Decremental strain-rate test: 1.1× 104 s−1 then Q-S at ε1 = 0.43.
Comparison of model predictions and experimental data (squares). Experimental and

analytical (thin dashed lines) constant strain-rate curves are also plotted.
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Jump test 2: Q-S then 1.1x104 1/s at ε = 0.45
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Figure 4.15: Strain-rate jump tests: Q-S then 1.1× 104 s−1 at ε1 = 0.2 (test 1) and
ε1 = 0.45 (test 2). Comparison of model predictions and experimental data (squares for
test 1 and circles for test 2). Experimental and analytical (thin dashed lines) constant

strain-rate curves are also plotted.

way, one can conclude that the strain-rate-history dependence associated with the effective
saturation hardness H̄∞ is reasonable in order to represent observed experimental results.

We have also performed two strain-rate jump experiments. These simulations were
performed by changing the loading-rate from a quasi-static condition to high strain-rate
ε̇ = 1.1 × 104 s−1 loading. Strain-rate jumps were performed at strains of ε1 = 0.2 (test
1) and ε1 = 0.45 (test 2). Considering these simulations, comparison of experimental
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data and model predictions are showed in Figure 4.15. For these high strain-rate regimes,
an evident loading-rate influence on material hardness is noticed, in a manner that the
strain-rate jump has strongly changed the hardness response. However, due to history
effects the jumping response does not reach the constant high strain-rate curve in a fast
manner as could predict the model employing the instantaneous saturation H∞. Rather,
the experiments show a certain resistance in approaching the monotonic high strain-rate
curve. In this sense, the model prediction employing the effective parameter H̄∞presents
minor deviations from experimental results.
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5 NUMERICAL FORMULATION

Reasoning on large scale simulations, accurate, efficient, and robust numerical tools are
mandatory in order to guarantee appropriate predictions and to save computational time.
Generally speaking, the finite element (FE) method has proved to be a suitable tool in
solving nonlinear initial boundary value problems [Simo and Hughes, 1998; de Souza Neto
et al., 2008]. The whole numerical framework must integrate the set of nonlinear con-
stitutive equations into a FE context, requiring the fulfillment of two main tasks at the
material level: (i) the update of stress and state variables from a given strain increment,
and (ii) the calculation of consistent tangent modulus to be used in the global implicit FE
scheme, thus preserving quadratic convergence rate of Newton-type solution algorithms
[Simo and Hughes, 1998; de Souza Neto et al., 2008]. Aiming at accomplishing these
tasks and improving the computational efficiency, several viscoplastic implicit integration
algorithms for large strain problems have been proposed [Lush et al., 1989; Weber and
Anand, 1990; Zaera and Fernández-Sáez, 2006; Mourad et al., 2014]. Specifically, Lush
et al., 1989, proposed a time-integration procedure for implementing the model of Anand,
1985, into a displacement-based FE context. In this sense, Zaera and Fernández-Sáez,
2006, implemented the constitutive model of Rusinek and Klepaczko, 2001, exploring both
overstress [Perzyna, 1966, 1971] and consistency [Wang et al., 1997] viscoplastic models,
and recently Mourad et al., 2014, proposed an integration scheme in order to incorporate
the MTS model of Follansbee and Kocks, 1988, into a FE framework. Most of the large
strain formulations are based on the well-known multiplicative decomposition of the de-
formation gradient [Lee, 1969; Mandel, 1972], and generally the corresponding algorithmic
formulations preserve material objectivity.

This chapter has the aim of providing both the global and local numerical strategies
for solving a large strain equilibrium problem considering the elastic-viscoplastic model
developed earlier.1 Section 5.1 first describes the global solution strategy to solve the
whole equilibrium problem. The global solution strategy includes the statement of the
continuum and incremental global weak formulation, associated with the whole boundary
value problem stated in Section 3.1. The nonlinear equilibrium equation is then linearized
in order to solve this problem following an iterative scheme, which therefore provides the
displacement increment within a given time step. The spatial integration of the iterative
displacement equation is performed by means of the Finite Element Method (FEM),
which then provides a nodal displacement increment computed from the knowledge of the
residual and the tangent matrix corresponding to the preceding iteration. Determination
of the current stress field and calculation of the tangent matrix required for solving the
incremental equilibrium equation relies upon the local constitutive equations formulated
1The present numerical framework was implemented in a proper finite element code programed in FOR-
TRAN.
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in Chapter 3. The numerical integration scheme employed to solve the local constitutive
model, and analytical derivation of corresponding consistent tangent modulus required
for computing the tangent matrix are outlined in Section 5.2.

5.1 Global solution strategy

As a first step, the weak form associated with the global boundary value problem stated
in Subsection 3.1.2 is formulated. For this purpose, the Virtual Work Principle is em-
ployed. This variational formulation is widely employed for solving equilibrium problems
considering both elastic and inelastic media. It is recalled that the finite strain frame-
work adopted here follows a Total Lagrangian description, in which associated integral
formulation have to be satisfied in the reference configuration Ω̄0.

5.1.1 Weak formulation - Virtual Work Principle

Analytical solutions for the boundary value problem described in Subsection 3.1.2
are possible only when very simple specific conditions, concerning geometry, material,
loading-histories, and boundary conditions, are complied with. This is not the case when
dealing with general engineering applications. Thus, in order to deal with more complex
cases, numerical methods are thereby required. Aiming at using the FEM, the virtual
work formulation2 associated with the strong form of equilibrium problem described in
Subsection 3.1.2 is stated as follows. The problems consists of finding a kinematically
admissible displacement field u (X, t) ∈ K (see Eq. (3.12)), such that for every t ∈ (t0, tf ],
the following integral equation is satisfied:3

R (u,η) =
∫

Ω0
P (u) : ∇XηdV −

∫
Ω0
ρ0b̄ · ηdV −

∫
∂Ωt0
t̄ · ηdA = 0, ∀η ∈ V . (5.1)

R (u,η) is the virtual work functional and can be seen as a residual quantity when the
weak equilibrium equation (5.1) is not satisfied. Set4

V =
{
η : Ω̄0 → R3|η (X) = 0, X ∈ ∂Ωu

0

}
, (5.2)

2When compared with the original strong form solution, a lower regularity degree is required to the
solution function associated with the weak formulation. For a greater discussion on this assertion, see,
e.g., Hughes, 2000, Reddy, 1986, 2002, and Zienkiewicz and Taylor, 2000a. The equivalence between both
weak and strong formulations can be found in many standard textbooks. Concerning inelastic problems,
works of de Souza Neto et al., 2008, p.77, and Simo and Hughes, 1998, p.25, are referenced.
3In general, traction vector t̄ is not always known a priori. In fact, notice that the current traction vector
t = σn is given in terms of the Cauchy stress tensor σ and the current unit outward normal vector n.
Accordingly, the reference traction vector t̄ depends on the current deformation by t̄ = detFσF−TN ,
where N is the reference unit outward normal vector.
4For hardening viscoplastic materials, with t−fix, one has K ⊂ H1 (Ω0) and V ⊂ H1 (Ω0), where H1 (Ω0)
represents the Sobolev space, which contains functions with square-integrable derivatives, see, e.g., the
works of Simo and Hughes, 1998, and Hughes, 2000.
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is the space of kinematically admissible virtual displacements η satisfying the essential
boundary condition of Eq. (3.9).

It is emphasized that, although stating the Virtual Work Principle does not require
specifying the constitutive relationship between both stress P and displacement u fields
[Dym and Shames, 1973; Reddy, 1986, 2002], solving the whole problem requires relating
P to u, which is achieved by adopting a specific constitutive model. The present approach
deals with a path-dependent material, whose constitutive behavior is described according
to the elastic-viscoplastic model formulated in Chapter 3. In this class of materials, the
stress tensor P is not only a function of the instantaneous value of F . The current stress
state depends on the past deformation history to which the material has been subjected
[Coleman and Gurtin, 1967; Perzyna, 1971]. Within the present context, adopting the TIV
approach (Subsection 3.1.5), the stress tensor P is the solution of the constitutive initial
value problem, Eqs. (3.107)-(3.115) and corresponding initial conditions, by knowing the
history of F (t) , ∀t ∈ I. Using a numerical procedure for integrating the corresponding
rate constitutive equations is therefore an essential requirement for solving the whole
equilibrium problem. In the present case, the strategy used to integrate the rate equations
involves a time discretization. In what follows an incremental strategy is thus described
to solve Eq. (5.1) incrementally.

5.1.2 Incremental Boundary Value Problem

The incremental strategy adopted herein consists of subdividing the whole time interval
(t0, tf ] into N > 0 subintervals (tn, tn+1], such that

(t0, tf ] =
N
∪
n=1

(tn, tn+1] , (5.3)

where tn and tn+1 are the initial and final instants associated to the n− th time interval.
Adopting an implicit solution scheme, for a time subinterval (tn, tn+1] equation (5.1) have
to be satisfied at tn+1, and the increment associated with a given quantity (·) is given by

∆ (·) := (·)n+1 − (·)n , (5.4)

being (·)n+1 and (·)n the values at instants tn+1 and tn, respectively.
Within the context of an implicit strategy, the internal variables αn (X), the dis-

placement un (X), as well as the stress P n (X) fields are assumed to be known at the
initial time instant tn and complying with Eq. (5.1). The incremental equilibrium prob-
lem corresponding to a time subinterval (tn, tn+1] consists therefore of finding the current
displacement field un+1 (X) ∈ Kn+1, such that

R (un+1,η) =
∫

Ω0
P n+1 : ∇XηdV −

∫
Ω0
ρ0b̄n+1 ·ηdV −

∫
∂Ωt0
t̄n+1 ·ηdA = 0, ∀η ∈ V , (5.5)
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where
Kn+1 =

{
u : Ω̄0 → R3|u (X) = ūn+1 (X) , X ∈ ∂Ωu

0

}
, (5.6)

being ūn+1 the prescribed displacement at tn+1.
Within the present framework, the deformation gradient F n+1 must determine the

stress P n+1 uniquely through specific integration algorithm (to be described in Section
5.2). This requirement is the numerical counterpart of the principle of thermodynamic
determinism stated in Subsection 3.1.5. In other words, the integration algorithm defines
an incremental constitutive function P̄ given in terms of both F n+1 and αn:

P n+1 = P̄ (F n+1,αn) . (5.7)

The resulting numerical stress tensor P n+1 tends to converge to an exact solution as the
number of time intervals N increases [de Souza Neto et al., 2008, p.95].

Even adopting a numerical formulation, satisfying the incremental equilibrium equa-
tion (5.1) requires the solution to a nonlinear initial boundary value problem, since the in-
cremental constitutive function (5.7) consists of a set of nonlinear equations to be solved.
An iterative procedure for solving Eq. (5.5) is then adopted, specifically the Newton-
Raphson method described in the sequel.

5.1.3 Newton-Raphson Method

Employing the Newton-Raphson method to solve R (un+1,η) = 0 in Eq. (5.5) consists
of an iterative solution strategy in with the method is started by assuming a trial solution
corresponding to an iteration k = 0:

ukn+1 = un, k = 0, ∀X ∈ Ω0 ∪ ∂Ωt
0 (5.8)

and
ukn+1 = ūn+1, k = 0, ∀X ∈ ∂Ωu

0 , (5.9)

where un is the converged solution at tn, and ūn+1 is the prescribed displacement at time
tn+1. At iteration k, one should determine ∆ukn+1 satisfying condition

R
(
uk+1
n+1,η

)
= R

(
ukn+1 + ∆ukn+1,η

)
= 0, ∀η ∈ V , (5.10)

where uk+1
n+1 = ukn+1 + ∆ukn+1 is the approximated solution. Expanding R

(
uk+1
n+1,η

)
according to a Taylor series around ukn+1, and keeping only the first-order terms, yields

R
(
ukn+1 + ∆ukn+1,η

)
≈ R

(
ukn+1,η

)
+DR

(
ukn+1,η

) [
∆ukn+1

]
= 0, ∀η ∈ V , (5.11)
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and consequently

DR
(
ukn+1,η

) [
∆ukn+1

]
= −R

(
ukn+1,η

)
, ∀η ∈ V . (5.12)

Term DR
(
ukn+1,η

) [
∆ukn+1

]
stands for the directional derivative of R at ukn+1 in the

direction of increment ∆ukn+1. The formal definition of this derivative is [Bonet and
Wood, 1997; de Souza Neto et al., 2008; Simo and Hughes, 1998]:

DR (u,η) [∆u] = d

dε
R (u+ ε∆u,η)

∣∣∣∣∣
ε=0

. (5.13)

Considering the incremental equilibrium integral of Eq. (5.5) and the definition given
in Eq. (5.13), linearized equation (5.12) then becomes [de Souza Neto et al., 2008; dos
Santos, 2012]

DR
(
ukn+1,η

) [
∆ukn+1

]
=
∫

Ω0
Mk

n+1 : ∇X
(
∆ukn+1

)
: ∇XηdV, ∀η ∈ V , (5.14)

where term
Mk

n+1 := dP

dF

∣∣∣∣∣
ukn+1

, (5.15)

is the consistent tangent modulus calculated in terms of displacement ukn+1. An explicit
expression for Mn+1 is going to be derived in Subsection 5.2.2. Hence, expression of the
linearized virtual work equation at an iteration k and a time instant tn+1 is given by

∫
Ω0

Mk
n+1 : ∇X

(
∆ukn+1

)
: ∇XηdV = −R

(
ukn+1,η

)
, ∀η ∈ V , (5.16)

with

R
(
ukn+1,η

)
=
∫

Ω0
P k
n+1 : ∇XηdV −

∫
Ω0
ρ0b̄n+1 · ηdV −

∫
∂Ωt0
t̄n+1 · ηdA. (5.17)

These last two equations have to be solved in terms of increment ∆ukn+1, which then
provides the next iterative displacement

uk+1
n+1 ← ukn+1 + ∆ukn+1. (5.18)

We remember that both ukn+1 and uk+1
n+1 must satisfy the imposed essential boundary

conditions. Knowing the new incremental displacement, a new residual R
(
uk+1
n+1,η

)
is

therefore computed and checked against the tolerance etol, that is, if condition

R
(
uk+1
n+1,η

)
< etol (5.19)

holds, then convergence of the algorithm is achieved, and the new attempt is taken as the
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current solution:
un+1 ← uk+1

n+1. (5.20)

Otherwise,
ukn+1 ← uk+1

n+1 and k ← k + 1, (5.21)

and the algorithm is restarted.

5.1.4 Spatial discretization using the FEM

In order to solve the linearized equation (5.16) in terms of ∆ukn+1, the finite element
method is employed in this work. Its simplicity and generality makes this method attrac-
tive to a wide range of nonlinear boundary value problems [Oden, 1972]. Thereby, this
topic is intended to succinctly describe the FE implementation for solving equilibrium
problems in the solid mechanics field. For a detailed discussion on the subject, stan-
dard textbooks as those of Oden, 1972, Bonet and Wood, 1997, Belytschko et al., 2000,
Hughes, 2000, and Zienkiewicz and Taylor, 2000b, are referred to. Yet, for details on the
FE implementation and elements technology, see work of Dhatt and Touzot, 1984, for
example.

Let be a continuum vector function a : Ω0 → Rnd , where 1 ≤ nd ≤ 3 is the dimension
of vector field a. Considering the FEM approach, continuum function a (X) is then ap-
proximated following a discrete procedure. In a simplified way, the discretization consists
of selecting a finite number nN of points (nodes) in Ω̄0. At these nodes the respective
values of function a (X) are specified. The real function domain Ω̄0 is then approxi-
mately represented by a finite number ne of non-overlapping subdomains (elements) Ω̄(e)

0

connected by their boundary nodes, such that

Ω̄0 ≈ hΩ̄0 =
ne∪
e=1

Ω̄(e)
0 . (5.22)

Function a (X) can be locally approximated within each subdomain Ω̄(e)
0 by using its

nodal values and specific base (or interpolation) functions associated to each element
node, in the following manner:

a (X) ≈ ha (X) =
nn∑
i=1
aiN

(e)
i (X) , (5.23)

where ai is the value of function a (X) evaluated at a node i whose coordinate isX i, i.e.,

ai := a
(
X i
)
. (5.24)

Term nn represents the number of nodes of a given element, N (e)
i (X) is the interpolation
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function associated with node i of an element e.5 This function has compact support,
that is, it has a non-null values only over element Ω(e)

0 . Furthermore, N (e)
i (X) is defined

in order to comply with
N

(e)
i

(
Xj

)
= δij. (5.25)

In addition, functions N (e)
i (X) are partitions of unity (PU):

nn∑
i=1
N

(e)
i (X) = 1, ∀X ∈ Ω(e)

0 . (5.26)

The global field a (X) on hΩ0 is represented by means of a piecewise approximation
using nN global interpolation functions N g

i (X) related to each node i. This function has
non-null values only on the elements connected by this same node, see Figure 5.1. Thus,
the approximate form of a (X) in hΩ̄0 is given by

ha (X) =
nN∑
i=1
aiN g

i (X) . (5.27)

Sometimes Eq. (5.27) is conveniently written in a matrix form:

ha (X) = Ng (X)~a, (5.28)

where ~a stands for a vector containing the nodal values of function a (X):

~aT =
[
a1

1, ..., a
1
nd
, ......, anN1 , ..., anNnd

]
(5.29)

in which aji is the i−th component of vector field a related to a global node j. In addition,
Ng (X) is the global interpolation matrix. For a domain with dimension nd, Ng (X) is
given by

Ng (X) =
[
diag [N g

1 (X)] diag [N g
2 (X)] ... diag

[
N g
nN

(X)
]]
, (5.30)

where diag [N g
1 (X)] denotes a nd × nd diagonal matrix defined as

diag [N g
i (X)] =


N g
i (X) 0 · · · 0

0 N g
i (X) · · · 0

... ... . . . 0
0 0 · · · N g

i (X)

 . (5.31)

5Here an element of class Co is considered.
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Figure 5.1: Finite element interpolation. (a) Local interpolation function; (b) Global
interpolation function.

5.1.5 FEM solution of incremental Virtual Work equation

Numerical FEM solution of Eq. (5.16) consists of substituting the set Kkn+1 and space
V by the corresponding finite element counterparts hKkn+1 and hV , defined respectively
as [de Souza Neto et al., 2008, p.85]

hKkn+1 :=
{
hu (X) =

nN∑
i=1
uiN g

i (X) |ui = ūn+1, X
i ∈ ∂Ωu

0

}
, (5.32)

and
hV :=

{
hη (X) =

nN∑
i=1
ηiN g

i (X) |ηi = 0, X i ∈ ∂Ωu
0

}
. (5.33)

It is recalled that both K and V refer to kinematically admissible fields related respectively
to displacements and virtual displacements. Note that definitions related to the subsets
hKkn+1 and hV make use of result given in Eq. (5.27), that is, by substituting Kkn+1 and V
by their discrete versions in Eq. (5.16), one assumes

∆ukn+1 (X) ≈ ∆hukn+1 (X) =
nN∑
i=1

(
∆ui

)k
n+1

N g
i (X) , (5.34)

and
η (X) ≈h η (X) =

nN∑
i=1
ηiN g

i (X) . (5.35)



111

Furthermore, analogously to Eq. (5.28), expressions given in Eq. (5.34) and (5.35) can
be rewritten following a matrix descriptions, such as

∆hukn+1 (X) = Ng (X) ∆~ukn+1, (5.36)

and

hη (X) = Ng (X) ~η, (5.37)

where ∆~ukn+1 and ~η are global vectors containing the nodal values of ∆ukn+1 (X) and
η (X), respectively.

Matrix notation facilitates a compact numerical formulation and further computa-
tional implementation. Matrix forms presented earlier refer to a problem dealing with a
vector field with dimension nd evaluated at nN nodes, i.e., the discrete problem has a total
of nd.nN degrees of freedom. In what follows, this quite general notation is therefore par-
ticularized by introducing plane and axisymmetric assumptions. Consequently, specific
matrix forms for operator ∇X (·) and stress tensor P are given. Those descriptions are
required in order to provide the matrix formulation and FE implementation associated
with Eq. (5.16).

Plane problems. By assuming nd = 2, displacement vector u (X) becomes

uT (X) = [u1 (X) , u2 (X)] , (5.38)

where u1 (X) and u2 (X) are displacements along directions 1 and 2, respectively. For a
vector field a = Ng~a : hΩ̄0 → R2, its gradient ∇X (a) is written in a vector form as

∇Xa (X)→ Gg (X)~a =


a1,1

a1,2

a2,1

a2,2

 =


(∇sa)11

(∇sa)12

(∇sa)21

(∇sa)22

 , (5.39)

where

Gg (X) =


N g

1,1 0
N g

1,2 0
0 N g

1,1

0 N g
1,2

∣∣∣∣∣∣∣∣∣∣∣∣

N g
2,1 0

N g
2,2 0
0 N g

2,1

0 N g
2,2

∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣

N g
nN ,1 0

N g
nN ,2 0
0 N g

nN ,1

0 N g
nN ,2

 , (5.40)

is the discrete global gradient operator, where notation (·)i,j = ∂(·)i
∂Xj

is employed. The
stress tensor P is given in a vector form by

P → ~P T =
[
P11 P12 P21 P22

]
. (5.41)



112

We remark that, for plane strain cases, stress component P33 is generally non-zero. In
this case, the stress is stored but is not include in product operations.

Axisymmetric problems. In order to develop the axisymmetric model, cylindrical
coordinates {r, z, θ} are considered. The vector formulation considering a cylindrical
system assumes a position vector X : Ω̄0 → R3 and a vector field a = Ng~a : hΩ̄0 → R3

whose components are respectively

X1 = r, X2 = z, X3 = θ, (5.42)

and

a1 = ar, a2 = az, a3 = aθ. (5.43)

By adopting the axisymmetric hypothesis, the field a assumes the specific form

ar = ar (r, z) , az = az (r, z) , aθ = 0, (5.44)

and its gradient ∇X (a), according to a cylindrical system, reads

∇X (a) =


ar,r ar,z 0
az,r az,z 0
0 0 ar

r

 . (5.45)

Which, following a matrix description, can be rewritten as

∇Xa (X)→ Gg (X)~a =



ar,r

ar,z

az,r

az,z
ar
r


=



(∇sa)11

(∇sa)12

(∇sa)21

(∇sa)22

(∇sa)33


, (5.46)

with

Gg (X) =



N g
1,r 0

N g
1,z 0
0 N g

1,r

0 N g
1,z

N1
r

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N g
2,r 0

N g
2,z 0
0 N g

2,r

0 N g
2,z

N2
r

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N g
nN ,r

0
N g
nN ,z

0
0 N g

nN ,r

0 N g
nN ,z

NnN
r

0


. (5.47)

Within this context, tensor P assumes the following vector form:

P → ~P T =
[
P11 P12 P21 P22 P33

]
. (5.48)
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Spatial discretization

Making use of results given in Eqs. (5.36), (5.37), (5.39) and (5.41) for plane problems,
or Eqs. (5.46) and (5.48) for axisymmetric problems, in Eq.(5.16), after some algebraic
manipulations, the following discrete equations is then obtained

∫
Ω0

(Gg)T Mk
n+1GgdV∆~ukn+1 = −~R

(
~ukn+1

)
, (5.49)

with

~R
(
~ukn+1

)
=
∫

Ω0
(Gg)T ~P k

n+1dV −
∫

Ω0
(Ng)T b̄n+1dV −

∫
∂Ωt0

(Ng)T t̄n+1dA, (5.50)

where Mk
n+1 is the matrix counterpart of tangent modulus Mk

n+1 given in Eq. (5.15). The
global internal force ~fint, the global external force ~fext, and the global stiffness tangent
matrix KT , at tn+1 for an iteration k, are respectively defined as

(
~fint
)k
n+1

:=
∫

Ω0
(Gg)T ~P k

n+1dV, (5.51)

(
~fext

)
n+1

:=
∫

Ω0
(Ng)T b̄n+1dV +

∫
∂Ωt0

(Ng)T t̄n+1dA, (5.52)

and
(KT )kn+1 :=

∫
Ω0

(Gg)T Mk
n+1GgdV. (5.53)

Thus, the displacement increment ∆~ukn+1 is finally computed by

∆~ukn+1 = −
[
(KT )kn+1

]−1
[(
~fint
)k
n+1
−
(
~fext

)
n+1

]
. (5.54)

Contribution of each finite element. Considering the FE framework, an important
aspect to be highlighted is the determination of global quantities ~fint, ~fext, and KT from
the superimposed local contribution of each finite element, what is performed in the
following manner:

~fint =
ne
A
e=1

(
~f

(e)
int

)
, ~fext =

ne
A
e=1

(
~f

(e)
ext

)
, and KT =

ne
A
e=1

(
K(e)
T

)
, (5.55)

where operator A stands for a finite element assembling operator, which allows that each
global quantity, ~fint, ~fext, and KT , associated with each global node can be computed from
the sum of local contributions associated with elements connected by that node. Terms
~f

(e)
int , ~f

(e)
ext, and K(e)

T are computed respectively by

~f
(e)
int :=

∫
Ω(e)

(
G(e)

)T ~P k
n+1dV, (5.56)
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~f
(e)
ext :=

∫
Ω(e)

(
N(e)

)T
b̄dV −

∫
∂Ωt(e)

(
N(e)

)T
tdA, (5.57)

and
K(e)
T :=

∫
Ω(e)

(
G(e)

)T
MG(e)dV. (5.58)

Considering a generic element e with nn nodes, the local interpolation matrix N(e) is given
by

N(e) (X) =
[
diag

[
N

(e)
1 (X)

]
diag

[
N

(e)
2 (X)

]
... diag

[
N (e)
nn (X)

]]
, (5.59)

and the local gradient matrix G(e) (considering plane analysis) has the form

G(e) (X) =


N

(e)
1,1 0

N
(e)
1,2 0
0 N

(e)
1,1

0 N
(e)
1,2

∣∣∣∣∣∣∣∣∣∣∣∣

N
(e)
2,1 0

N
(e)
2,2 0
0 N

(e)
2,1

0 N
(e)
2,2

∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣

N
(e)
nn,1 0

N
(e)
nn,2 0
0 N

(e)
nn,1

0 N
(e)
nn,2

 . (5.60)

Considering axisymmetric problems, G(e) (X) follows analogously to Gg (X) given in Eq.
(5.47).

The size of matrix N(e) and mathematical features associated with functions N (e)
i (X)

depend on the type of employed finite element. A rich description on a variety of finite
elements can be found in Dhatt and Touzot, 1984. In the present work the following
elements will be used: 6th-node triangular element, and 4th-node quadrilateral element,
both pertaining to the class of C0-elements. Normally, within a finite element context,
Eqs. (5.56), (5.57), and (5.58) are numerically integrated by means of the traditional
Gauss quadrature. This choice is motivated by the fact that in general N (e)

i (X) are
polynomial functions, and using the appropriate number of integration points, the Gauss
method is able of exactly integrating this kind of functions. For more details, see, e.g.,
Hughes, 2000, and Zienkiewicz and Taylor, 2000a.

5.2 Local integration algorithm

This section describes numerical strategy used for solving the local constitutive problem
formulated in Chapter 3, more specifically Eqs. (3.107)-(3.115). Determining the local
quantities is required in order to obtain the current stress state P n+1 and to compute
the consistent tangent modulus Mn+1 needed for solving the global equilibrium problem
described in preceding section. The local numerical scheme relies upon the same time
discretization described in Subsection 5.1.2. Consequently, considering a given subinterval
(tn, tn+1], the rate of a given variable (·) is approximated as

d (·)
dt
≈

(·)n+1 − (·)n
∆t , for t ∈ (tn, tn+1] , (5.61)
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where ∆t := tn+1 − tn is the time increment. Hence, the evolution of the accumulated
viscoplastic strain ε given in Eq. (3.108) is approximated based on a backward Euler
method

εn+1 = εn +
√

2
3∆λ (5.62)

in which the incremental viscoplastic multiplier ∆λ must satisfy

∆λ = 0, for fn+1 ≤ 0, (5.63)

and in view of Eq. (3.70)

f (τ̄ n+1, An+1) =
∥∥∥τ̄Dn+1

∥∥∥−
√

2
3 (σy + An+1) = Θ̄−1 (∆λ,An+1) , (5.64)

for fn+1 > 0. Function Θ̄−1 is the algorithmic form of Θ−1 given in Eq. (3.70), and
specialized in Eqs. (3.99), (3.101), and (3.102). To compute the evolution of hardening
variable A given in Eq. (3.63) together with Eqs. (3.110) and (3.111), a constant rate ε̇ ≈
εn+1−εn

∆t is assumed within time step (tn, tn+1]. Then, Eq. (3.84) can be used considering
tn as the initial state and tn+1 as the current state, leading to

An+1 = An + Ā∞n+1c (εn+1 − εn) +
[
Ā∞n+1 (1 + cεn)− An

]
{1− exp [−δ (εn+1 − εn)]} ,

(5.65)
where parameters δ and Ā∞ are calculated at tn+1 making use of Eqs. (3.91), (3.112),
(3.114), and (3.115), what yield the respective equations:

δn+1 = δlwr +
[

1
∆t

(
εn+1 − εn −∆tε̇lwr

ε̇up − ε̇lwr

)]ξ1 (
δup − δlwr

)
(5.66)

and
Ā∞n+1 = εn

εn+1
Ā∞n +

(
1− εn

εn+1

)
A∞n+1 , (5.67)

with

A∞n+1 = Alwr∞ +
[

1
∆t

(
εn+1 − εn −∆tε̇lwr

ε̇up − ε̇lwr

)]ξ2 (
Aup∞ − Alwr∞

)
. (5.68)

An important aspect related to numerical integration to be highlighted lies on the
fact that, employing a standard procedure to numerically integrate Eq. (3.107), may
originate significant precision loss when solving constitutive equations of incompressible
(visco)plastic models. As a matter of fact, by using a standard implicit integration method
in large strain problems, the plastic flow incompressibility can not be ensured (see for
instance discussion of de Souza Neto et al., 2008, p.592). This problem can be overcome
by employing an integration based on a backward exponential mapping as proposed by
Eterovic and Bathe, 1990, and Weber and Anand, 1990, which then provides the following
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Figure 5.2: Schematic representation of incremental configuration mappings between
time instants tn and tn+1.

incremental equation associated with Eq. (3.107):

F vp
n+1 = exp

(
∆tD̄vp

n+1

)
F vp
n → F vp

n+1 = exp
(
∆λN τ̄n+1

)
F vp
n . (5.69)

where N τ̄n+1 = τ̄Dn+1

‖τ̄Dn+1‖
. Based upon the present incremental formulation, numerical

mappings relating the reference, current, as well as the stress-free configurations consid-
ering a time subinterval (tn, tn+1] are shown in Figure 5.2. Term F u = F n+1F

−1
n is the

deformation increment from tn to tn+1.
Now a numerical method have to be employed for solving the system of nonlinear

equations (5.62)-(5.69)2 in terms of unknowns

{
F vp
n+1, εn+1,∆λ,An+1, δn+1, Ā∞n+1

}
, (5.70)

with (see Eq. (3.105)1)
τ̄ n+1 = De : Ee

n+1. (5.71)

In view of Eqs. (5.63) and (5.64), and considering a given prescribed deformation
increment F u = F n+1F

−1
n within time interval (tn, tn+1], the corresponding local consti-

tutive problem has two possible solutions: (i) a pure elastic solution, which results in
a null viscoplastic multiplier: ∆λ = 0; (ii) an elastic-viscoplastic solution in which the
viscoplastic deformation characterized by ∆λ > 0 proceeds. The algorithm employed to
solve the present problem has to address these two conditions and to provide the correct
solution.
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5.2.1 Elastic prediction and viscoplastic correction algorithm

The nature of the above problem motivates the establishment of a two-step algorithm
in which the two possible solutions are considered sequentially and the final solution is
the unique valid one [Simo and Hughes, 1998; de Souza Neto et al., 2008]. The two steps
consist of: (i) elastic prediction; and (ii) viscoplastic correction. In the elastic prediction
step, a fully elastic deformation increment is assumed, then providing the formal condition

Ḟ
vp = 0 and Ȧ = 0 (5.72)

and its incremental counterpart

F vptrial

n+1 = F vp
n and Atrialn+1 = An. (5.73)

From these conditions, the trial elastic state is defined in terms of elastic deformation
gradient and elastic logarithmic strain measure,

F etrial

n+1 = F n+1
(
F vptrial

n+1

)−1
→ Eetrial

n+1 = 1
2 ln

(
Cetrial

n+1

)
, (5.74)

with Cetrial

n+1 =
(
F etrial

n+1

)T
F etrial

n+1 . Therefore, the trial stress state is computed using Eqs.
(3.55)1: τ̄ trialn+1 = De : Eetrial

n+1 . If this state complies with condition

f
(
τ̄ trialn+1 , A

trial
n+1

)
≤ 0, (5.75)

then it is considered as the unique possible solution, consequently variables at tn+1 are
updated,

(·)n+1 = (·)trialn+1 , (5.76)

and the algorithm has converged, thus proceeding to the next deformation increment.
Otherwise, the plastic correction is required when

f
(
τ̄ trialn+1 , A

trial
n+1

)
> 0. (5.77)

System of nonlinear equations (5.62)-(5.69)2 has therefore to be solved. Making use of
Eq. (5.74)1 into Eq. (5.69)2 reads

F e
n+1 = F etrial

n+1 exp
{
−∆λN τ̄n+1

}
. (5.78)

Moreover, after some manipulations Eq. (5.78) reduces to (see for instance deductions in
works of Eterovic and Bathe, 1990, Eterovic and Bathe, 1990, or dos Santos, 2012)

Ee
n+1 = Eetrial

n+1 −∆λN τ̄n+1 . (5.79)
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Actually, when the constitutive formulation is restricted to elastic and inelastic isotropy,
equivalence of Eqs. (5.69)2 and (5.79) is exact. Otherwise, Eq. (5.79) is in fact an
approximation based on moderately small elastic strains with a second-order error on
elastic strains. These conditions are needed to obtain the relation Re

n+1 = Retrial

n+1 for
elastic rotation tensor [Eterovic and Bathe, 1990; Weber and Anand, 1990].

The return mapping algorithm consists therefore in solving the system of nonlinear
equations (5.62)-(5.68) and (5.79) with respect to the set of unknowns

{
Ee
n+1, εn+1, ∆λ,

An+1, δn+1, Ā∞n+1

}
. However, equality N τ̄n+1 = N τ̄ trialn+1

can be established in the context
of von Mises criterion stated in Eq. (3.67). Equations (5.62)-(5.64) and (5.79) thus reduce
to the scalar equation (see deduction in B.2):

∥∥∥τ̄Dtrialn+1

∥∥∥−∆λ2µ−
√

2
3 (σy + An+1) = Θ̄−1 (∆λ,An+1) , (5.80)

with unknowns ∆λ and An+1. Furthermore, inserting Eq. (5.62) into Eqs. (5.65), (5.66),
(5.67), and (5.68) yields the respective equations

An+1 = An+Ā∞n+1c

√
2
3∆λ+

[
Ā∞n+1 (1 + cεn)− An

] 1− exp
−δn+1

√
2
3∆λ

 , (5.81)

δn+1 = δlwr∞ +
 1

∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ1 (
δup∞ − δlwr∞

)
, (5.82)

and

Ā∞n+1 = εn√
2
3∆λ+ εn

Ā∞n +
1− εn√

2
3∆λ+ εn

A∞n+1 , (5.83)

with

A∞n+1 = Alwr∞ +
 1

∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ2 (
Aup∞ − Alwr∞

)
. (5.84)

Then, the reduced return mapping algorithm consists of solving Eqs. (5.80)-(5.84) with
respect to unknowns

{
∆λ,An+1, δn+1, Ā∞n+1

}
. Derivatives of Eqs. (5.80)-(5.84) with

respect to ∆λ, An+1, δn+1, and Ā∞n+1 , required in the Newton-Raphson method described
in B.1, are given in Appendix B.3 and are employed to solve this set of nonlinear equations.
After solution in terms of unknowns

{
∆λ,An+1, δn+1, Ā∞n+1

}
, mechanical quantities are

then updated at tn+1:
τ̄Dn+1 =

(
τ̄D

trial

n+1

)t
−∆λ2µN τ̄ trialn+1

, (5.85)

τ̄ n+1 = τ̄Dn+1 + 1
3tr

(
τ̄ trialn+1

)
I, (5.86)

τ n+1 = Retrial

n+1 τ̄ n+1
(
Retrial

n+1

)T
, (5.87)
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P n+1 = τ n+1F
−T
n+1, (5.88)

Ee
n+1 = Eetrial

n+1 −∆λN τ̄ trialn+1
, (5.89)

εn+1 = εtrialn+1 +
√

2
3∆λ, (5.90)

and
F vp
n+1 = exp

(
∆λN τ̄ trialn+1

)
F vp
n . (5.91)

5.2.2 Consistent tangent modulus

The consistent tangent modulus Mn+1 :=
(
dP
dF

)
n+1

previously introduced in Eq. (5.15),
can be written as:

Mijkln+1 =
(
∂τip
∂Fkl

F−1
jp − τipF−1

jk F
−1
lp

)
n+1

, (5.92)

since P = τF−T , as indicated in Eq. (3.45)2, computation of Mn+1 requires thus the
derivative of τ with respect to F . However, expressing τ in terms of the rotated Kirchhoff
stress tensor τ̄ (see Eq. (3.43)) provides an alternative way to compute this derivative.
Within a time interval (tn, tn+1], tensor τ̄ n+1, similarly to P n+1 of Eq. (5.7), is given
by a numerical constitutive function ˜̄τ expressed in terms input variables Eetrial

n+1 and αn:
τ̄ n+1 = ˜̄τ

(
Eetrial

n+1 ,αn
)
. Recalling that αn remains fixed within (tn, tn+1] and exploiting

the chain rule, the derivative of τ̄ n+1 with respect to F n+1 can be calculated as:

D̃n+1 = ∂τ̄ n+1

∂F n+1
= Dn+1 : Pn+1 : Qn+1, (5.93)

where Dn+1 = ∂τ̄n+1

∂Ee
trial
n+1

, Pn+1 = ∂Ee
trial

n+1

∂Ce
trial
n+1

and Qn+1 = ∂Ce
trial

n+1
∂Fn+1

.

Observing that Cetrial

n+1 =
(
F etrial

n+1

)T
F etrial

n+1 , the components of the fourth-order tensor
Qn+1 read

Qijkln+1 = F vp−1

lin
F etrial

kjn+1 + F etrial

kin+1F
vp−1

ljn
. (5.94)

The fourth-order tensor Pn+1 is computed as

Pn+1 = ∂

∂Cetrial

n+1
ln
(
U etrial

n+1

)
= 1

2
∂

∂Cetrial

n+1
ln
(
Cetrial

n+1

)
. (5.95)

The terms Pn+1 and Qn+1 are geometrical quantities related to finite strains, while the
tangent operator Dn+1 is the unique term of D̃n+1 depending on material response. In the
elastic range, Dn+1 turns to be coincident with the elastic stiffness De, while it becomes
the elastic-viscoplastic tangent operator

Dvp
n+1 = ∂τ̄ n+1

∂Eetrial

n+1
(5.96)
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in the inelastic range. Evaluation of Dvp
n+1 is obtained from linearization of Eqs. (5.79),

(5.64), (5.84) and (5.81), what yields (see derivation in Appendix B.4)

Dvp
n+1 = ∂τ̄ n+1

∂Eetrial

n+1
=
(
De−1 + ∆λ∂N τ̄n+1

∂τ̄ n+1
+ 1
χ
N τ̄n+1 ⊗N τ̄n+1

)−1

, (5.97)

where
NAn+1 = ∂fn+1

∂An+1
and χ =

[
∂Θ̄−1

∂∆λ +
(
∂Θ̄−1

∂An+1
−NAn+1

)
Λ
]
, (5.98)

in which
∂Θ̄−1

∂∆λ =
√

2
3 (σy + An+1)

 1
m

ϑ1

∆t

(
1 + ϑ1

∆λ
∆t

) 1
m
−1

+ ϑ2

∆t

 , (5.99)

∂Θ̄−1

∂An+1
=
√

2
3

(1 + ϑ1
∆λ
∆t

) 1
m

+ ϑ2
∆λ
∆t − 1

 , (5.100)

and

Λ =
√

2
3
{
δn+1

[
Ā∞n+1 (1 + cεn)− An

]
ϕ+ Ā∞n+1c

}
+ . . .

. . .+
√

2
3∆λ

[
Ā∞n+1 (1 + cεn)− An

]
ϕω1 + . . . (5.101)

. . .+
(1 + cεn) (1− ϕ) + c

√
2
3∆λ

ω2, (5.102)

with

ω1 =
√

2
3
ξ1

∆t

(
δup − δlwr

ε̇up − ε̇lwr

) 1
∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ1−1

, (5.103)

ω2 =

√
2
3εn(√

2
3∆λ+ εn

)2

(
A∞n+1 − Ā∞n

)
+
1− εn√

2
3∆λ+ εn

 ∂A∞n+1

∂∆λ , (5.104)

where A∞n+1 is given in Eq. (5.84),

∂A∞n+1

∂∆λ =
√

2
3
ξ2

∆t

(
Aup∞ − Alwr∞
ε̇up − ε̇lwr

) 1
∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ2−1

, (5.105)

and

ϕ = exp
−δn+1

√
2
3∆λ

 . (5.106)
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6 NUMERICAL RESULTS

This chapter presents the results obtained by employing the local and global numerical
formulation developed earlier. Each simulation performed in this chapter considers the
elastic-viscoplastic model developed in this work and the parameters given in Table 4.3,
which were obtained for the aluminum AA1050. Simulations are performed in order to
numerically explore the constitutive features associated with the present proposal. Fur-
thermore, to assess the numerical performance related to the employed framework, local
and global convergence studies are also performed. Convergence criterion is the number
of iterations (niter) to reach a Newton-Raphson residue ‖r‖(·) lower than an admissible
error of etol = 10−6. In a local analysis the residue is the Euclidean norm (‖·‖) of vector
fn+1, in which corresponding components are equations fn+1i , i = {1, 2, ..., 5}, given in
Appendix B.3. The finite element residue is the infinity norm (‖·‖∞) of the classical vec-
tor ~Rn+1 = ~fintn+1 − ~fextn+1 , in which ~fextn+1 and ~fintn+1 are respectively the external and
internal finite element force vectors at tn+1 (see Eq. (5.50)).

In order to verify the numerical implementation, numerical solutions associated with
simple homogeneous deformation problems are first compared with the analytical solu-
tions previously developed. Evaluation consists of comparing both numerical and ana-
lytical flow stress-strain, as well as hardening curves considering distinct strain-rates. In
these preliminary simulations, the whole loading-history consists of a constant strain-rate
loading followed by a stress relaxation phase.

In a second step of verification procedure, billet upsetting simulations considering fric-
tional contact conditions are also performed. These cases are evaluated in order to assess
the overall numerical framework in a non-homogeneously deforming structural problem,
and also to discuss on the deformation homogeneity hypothesis, adopted in the analysis
of experimental data and in model calibration procedure, when compared with numerical
results in which frictional conditions are considered.

6.1 Homogeneous deformation simulations

The homogeneous deformation cases considered herein consist of solving the axisym-
metric finite element problem showed in Figure (6.1), where the mesh composed by a
single 4th-node quadrilateral element and imposed boundary conditions are illustrated.
The simulation consists of homogeneously imposing a compressive strain of E11f = −0.5
according to distinct constant strain-rates D̄11 = K < 0. In this case, the prescribed
displacement ū (t) ≤ 0 follows the time history given in Eq. (4.6):

ū (t) = l0 [exp (Kt)− 1] ≤ 0. (6.1)



122

1 2

4 3

( ) 2tu

1X

2X

20l

20d

Figure 6.1: Finite element mesh (single 4th-noth quadrilateral element) and boundary
conditions considered in homogeneous deformation simulations.

To impose a given strain of E11f = −0.5 at a time t = tf , a total displacement ūf =
l0
[
exp

(
E11f

)
− 1

]
= −2.3608 mm have to be prescribed at this time. In order to perform

subsequent stress relaxation test, the prescribed displacement is then maintained constant
for t ≥ tf . Accordingly, the overall loading process is defined as follows:

ū (t) =

 l0 [exp (Kt)− 1]

ūf

0 ≤ t < tf

tf ≤ t <∞
, (6.2)

with ūf = l0 [exp (Ktf )− 1]. For a constant strain-rate case, final loading time is com-
puted according to tf = E11f

K
. Furthermore, it is possible to show that during the loading

phase the prescribed displacement can be described according to the following relation
given in terms of the ratio t

tf
:

ū (t) = l0

[(
ūf
l0

+ 1
) t
tf − 1

]
, (6.3)

satisfying ū = 0 for t
tf

= 0, and ū = ūf for t
tf

= 1. The numerical simulations consist
therefore of incrementally imposing ū (t) in N = 20 subsequent equal time steps following
the absolute strain-rates |K| given in Table 6.1, where the time instant tf , the total strain
E11f and related prescribed displacement ūf , as well as the specimen dimensions, l0 and
d0, are summarized.

Simulation results are displayed in Figures 6.2. Figure 6.2(a) compares flow stress-
strain numerical results with corresponding analytical solutions obtained from Eq. (4.14).
Although good correspondences are verified through the whole compression, slightly
higher differences are observed at small strain levels. This is due to significant elastic
contribution at the beginning of the deformations, once the elastic behavior is not ac-
counted for in the rigid-viscoplastic analytical solution. Figure 6.2(b) shows the stress
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Table 6.1: Parameters used in homogeneous numerical simulations.

|K| [s−1] tf [s] E11f ūf [mm] l0 [mm] d0 [mm]
Case 01 (Q-S) 10−2 5× 101 −0.5 −2.36 6.0 6.0
Case 02 100 5× 10−1 −0.5 −2.36 6.0 6.0
Case 03 102 5× 10−3 −0.5 −2.36 6.0 6.0
Case 04 104 5× 10−5 −0.5 −2.36 6.0 6.0

relaxation behavior associated with the present model. An important result to be high-
lighted is the fact that, depending on the previous loading-rates, different stress levels
are asymptotically reached during the relaxation phase. The higher the loading-rate the
higher the equilibrium stress state. This behavior, similar to the sequential strain-rate
tests presented in Subsection 2.3.3, illustrates the strain-rate influence on corresponding
material hardening response. The latter feature is readily evidenced in Figure 6.2(c),
where the strain-rate influence on the hardening variable A is evaluated. However, in
contrast to the flow stress, which is instantaneously affected by the current deformation
velocity, the hardening behavior does not depend on the instantaneous strain-rate, but on
the whole past strain-rate-history. Thus, when the imposed deformation holds constant,
the corresponding material hardening does not change during the relaxation phase, see
Figure 6.2(d).

In summary, comparison between numerical and analytical results of Figures 6.2(a)
and (c) shows the correct numerical implementation considering the present constitutive
model. Furthermore, in order to evaluate the corresponding convergence, and how it is
influenced by the imposed deformation velocity, local and global convergence analyzes,
considering the lowest (Case 01) and the highest (Case 04) loading-rates, are depicted
in Figures 6.3. Local analysis shows that by increasing the loading-rate induces a slight
increase in the number of iterations needed to achieve the convergence criterion. Consid-
ering Case 01, in which a low strain-rate of 10−2 s−1 is imposed, 4 iterations were needed to
converge in every load step, t

tf
∈ {0.1, 0.2, 0.5, 1.0}. However, in every load steps, Case 04

has achieved convergence in 7 iterations. On the other hand, global analysis does not have
demonstrated significant difference between the convergence behavior associated to cases
01 and 04. Considering this simple problem, both cases have reached the convergence
criterion in 5 iterations.

6.2 Billet upsetting

This section has the goal of evaluating the overall numerical framework considering a
more complex problem. Corresponding simulation consists of compressing a cylindrical
specimen considering both contact and friction conditions, see Figure 6.4(a). This problem
was chosen in order to achieve two main goals. The first one is to employ the present
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Figure 6.2: (a) Comparison of flow stress-strain numerical results with analytical
solution of Eq. (4.14); (b) Stress relaxation numerical curves; (c) Comparison of

hardening vs. accumulated viscoplastic strain numerical curves with analytical solution
of Eq. (4.13); (d) Material hardening behavior during stress relaxation process.

constitutive procedure in a non-homogeneous deformation process, when there is a non-
null friction between specimen and compression platens. The second goal is to evaluate
the hypothesis concerning homogeneous deformation conditions adopted to analyze the
experimental data and also to adjust the proposed constitutive model. Throughout this
section, numerical results are also compared to analytical solutions considering flow stress,
Eq. (4.14), and material hardening responses, Eq. (4.13).

Figure 6.4(a) schematically presents the axisymmetric model considered for analysis,
where upper and lower gray regions represent rigid platens. The specimen dimensions, l0
and r0 = d0

2 , are the same given in Table 4.3. Due to symmetry conditions, only a quarter
of the whole problem is simulated, see Figure 6.4(b). Finite element discretization consists
of 1600 6th-node triangular elements (3281 nodes). Material parameters are also those
of Table 4.3. The contact formulation is based on the Signorini condition and friction
is modeled by the regularized Coulomb model with a friction coefficient of fc = 0.1 and
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Figure 6.3: Local convergence analyzes considering (a) Case 01 and (b) Case 04. Global
convergence analyzes considering (c) Case 01 and (d) Case 04.

regularization parameter εT = 10−4. The Augmented Lagrangian algorithm [Rossi et al.,
2008, 2009] is employed to impose the contact, and penalty parameter associated with the
impenetrability condition is set as εv = 10−7. The main focus of the present simulation is
to analyze the structural response in frictional compression tests. However, the simulation
with fc = 0 shall also be performed and corresponding compression force predictions
compared to the frictional response and analytical results. Starting from ū (t = 0) =
0, the prescribed displacement is given according to Eq. (6.2), which corresponds in
a frictionless problem to a homogeneous axial strain-rate of D̄11 = K < 0. Loading
conditions consider the extreme cases of Table 6.1, namely Case 01 and Case 04. The
total prescribed displacement ūf = −2.36 mm is applied and maintained in 400 equal time
steps (200 for loading stage and 200 for stress relaxation phase). Referring to the friction
case, the prescribed displacement ūf = −2.36 mm induces a non-homogeneous strain field
ε in the specimen whose maximum magnitude is in all cases lower than 0.6.

Friction conditions along loaded faces induce a heterogeneous strain field in the spec-
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Figure 6.4: (a) Axisymmetric billet upsetting model; (b) Finite element mesh (1600
6th-node triangular elements) and boundary conditions for a quarter of workpiece.
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Figure 6.5: Influence of loading-rate on (a) inelastic deformation histories, ε vs. t
tf
, and

on (b) inelastic strain-rate vs. accumulated viscoplastic strain curves of points A, B,
and C (friction cases).

imen. This aspect will be characterized considering three distinct points (A, B, and C)
of the discretized workpiece, see Figure 6.4(a). The loading-rate influence on axial strain-
history of points A, B, and C is depicted in Figure 6.5(a). The latter figure shows the
influence of loading rate parameter |K| on axial strain response vs. normalized time t

tf
.

Due to friction effects, which restrict the radial displacement at platen-specimen interface,
point B undergoes the smallest strain levels (total strain close to 0.25) when compared
to points A and C. In contrast, the highest strain level is experienced by point A (total
strain of ≈ 0.6). However, none of the evaluated points experiences the strain-history
corresponding to a homogeneous (frictionless) compression (total strain of 0.5). While
strains imposed on point A are higher than those of homogeneous case, points B and
C experience lower strain levels. In addition, one notes that, by increasing the imposed
strain-rate, a slight decrease in axial strain of point A is observed, while it induces a small
increase in axial strain of B and minor rate effects are observed in point C.

Another aspect concerning the heterogeneous compression is the strain-rate-history
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experienced by the three points during deformation. Figure 6.5(b) shows evolutions of
normalized strain-rate ε̇

|K| in terms of accumulated viscoplastic strain ε reached on points
A, B, and C, considering cases 01 and 04. These comparisons with the nominal (ho-
mogeneous) loading-rate |K| demonstrate that, in a heterogeneous deformation process,
strain-rates lower (points B and C) and higher (point A) than |K| are observed through-
out the sample. Furthermore, as large as the imposed strain proceeds, a transient behavior
corresponding to the strain-rate-history is evidenced, although this fact is not clear in Fig-
ure 6.5(a). For example, point C at the beginning of the compression process experiences
a strain-rate very close to the nominal value, and as the strain level increases, the strain-
rate related to C decreases. In addition, the results of Figure 6.5(a) are reflecting that
no significant difference is observed when comparing responses of C related to cases 01
and 04. In contrast, when compared with Case 01, Case 04 presents lower (resp. higher)
values of ε̇

|K| associated with point A (resp. B) at the deformation beginning. However,
this behavior changes for strains between 0.1 and 0.2. For both cases 01 and 04, the
strain-rate experienced by point A presents a significant fast decrease as the compression
is started, followed by a smooth oscillation around 1.2 when the deformation exceeds 0.1.
Regarding point B, a rapid slight increase in the strain-rate is first induced by the im-
posed deformation, and parameter ε̇

|K| tends to values close to 0.5 for strain values greater
than 0.1.

As it can be expected, the heterogeneous deformation field imposed on the compressed
specimen has a direct consequence on the stress and hardening fields. The axial rotated
Kirchhoff stress vs. strain curves of points A, B, and C are displayed in Figures 6.6(a)
and (b), respectively for cases 01 and 04. In addition to results obtained from numerical
simulations of frictional compressions, these figures also show the the analytical solution
of Eq. (4.14) considering parameters of Table 4.3. For both cases 01 and 04, the response
of points A and C remains close to corresponding analytical flow stress-strain curves until
strain levels between 0.1 and 0.2. Beyond this strain range, the response in friction cases
present a major deviation from respective reference situations. In contrast, due to confined
strain state, stress triaxiality appears in the vicinity of point B (Figure 6.7(b)) right after
the loading process has been started, leading to lower strain and higher axial stress levels
than at points A and C. This restriction associated with the strain field around point
B is clearly evidenced in corresponding strain-history and associated strain-rate-history
showed respectively in Figures 6.5(a) and (b).

Comparisons between cases 01 and 04, whose axial rotated Kirchhoff stress vs. loga-
rithmic strain curves are shown respectively in Figures 6.6(a) and (b) for frictional com-
pression test, indicate that increasing the value of |K| induces higher absolute stress levels
in the specimen. However, as already evidenced in Figure 6.5(a), the maximum strain
level slightly decreases with |K| at point A, while it exhibits opposite trend at point B.
No significant rate influence is observed in point C.
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Figure 6.6: Comparison of numerical axial stress vs. strain curves associated with points
A, B, and C with analytical solution of Eq. (4.14): (a) Case 01, |K| = 10−2 s−1; (b)

Case 04, |K| = 104 s−1. Stress relaxation curves: (c) Case 01, |K| = 10−2 s−1; (d) Case
04, |K| = 104 s−1. Numerical results consider only frictional simulations.

The analysis performed during loading phase (t ≤ tf ) suggests that, due to instanta-
neous material rate-sensitivity, significant effects of strain-rate on flow stress rise at high
strain-rates. This feature is also corroborated in the relaxation phase imposed to speci-
men. Figures 6.6(c) and (d) respectively present the stress relaxation curves of cases 01
and 04, considering points A, B, and C, i.e., evolution of axial rotated Kirchhoff stress
vs. dimensionless time t

tf
. It is observed from these figures that the equilibrium stress

state reached after relaxation process is generally sensitive to previous loading-rate. This
fact is evidenced when comparing corresponding asymptotic stress states associated with
Case 01 and Case 04. As it would be expected, the equilibrium stress reached in Case
04 is always higher than that corresponding to Case 01, thus reflecting the strain-rate
influence on observed material hardening behavior.

Stress triaxiality effects associated with points A and B are demonstrated respectively
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Figure 6.7: Influence of loading-rate parameter K on pressure transmission coefficient
cpt := τ̄22

τ̄11
vs. strain curves (friction cases): (a) Point A; (b) Point B.

in Figures 6.7(a) and (b), where the pressure transmission coefficients1 cpt = τ̄22
τ̄11

at these
points are plotted against the absolute axial strain. Scalars τ̄11 and τ̄22 refer to axial
and radial rotated Kirchhoff stresses, respectively. For strains lower than 0.1, Case 01
presents higher values of cpt in A, while opposite trend is observed for strains exceeding
this level. This fact can explain a higher deviation from the analytical solution associated
with point A of Case 01 at the beginning of loading phase showed in Figure 6.6(a).
As the stress triaxiality reduces, the numerical curve approaches the analytical solution
for strains near 0.1, and tends to deviate again as the deformation and parameter cpt
increases. A similar behavior is observed in Figure 6.6(b) corresponding to point A of
Case 04. However, due to small initial stress triaxialities, a lower difference between
numerical and analytical curves is evidenced as the loading is started. Furthermore, when
the strain level exceeds the value of 0.1, ratio cpt increases and higher deviations from
analytical curve are verified. In contrast, for both cases 01 and 04, ratio cpt associated
with point B increases rapidly with strain within the small range (until ≈ 0.005), followed
by a moderate smooth increasing with strain level in Case 01, and a smooth oscillation
near cpt = 0.4 in Case 04, see Figure 6.7(b). Still referring to point B, Figure 6.7(b) shows
higher values of cpt for Case 04 until strains of ≈ 0.08, and for deformations higher than
this value, Case 01 presents the highest values of ratio cpt.

The capability of the proposed constitutive model to capture the effects of strain-
rate on flow stress response has been illustrated in Figures 6.6, which indicate that axial
stress-strain curves are significantly affected by the value of imposed loading rate |K|.
As already discussed, the overall stress rate-sensitivity is the result of instantaneous and
microstructural rate-effects. The effect of strain-rate on the material hardening response,
1It is worth to recall that for axisymmetric deformation the value cpt = 0 indicates an axial stress state
and cpt = 1 a hydrostatic one.
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Figure 6.8: Comparison of numerical hardening curves with analytical solution of Eq.
(4.13): (a) Case 01, |K| = 10−2 s−1; (b) Case 04, |K| = 104 s−1. Numerical results

consider only the frictional simulations.

is demonstrated in Figures 6.8(a) and (b) considering frictional compressions. Compari-
son between these figures emphasize that, for a given accumulated viscoplastic strain, by
increasing the value of |K|, a larger material hardening is induced. In addition, Figures
6.8(a) and (b) show the difference between the hardening induced by heterogeneous defor-
mation fields in the distinct points: A, B, and C. Considering Case 01 in Figure 6.8(a),
when low loading-rates are imposed, no significant difference is observed between harden-
ing curves associated with points A, B, and C, although the difference in strain levels. In
contrast, due to the high strain-rate levels, as a result of the distinct strain-rate-history
imposed on each point (Figure 6.5(b)), different hardening curves are obtained for Case 04
in Figure 6.8(b). Due to lower strain-rate levels, point B presents the lowest hardening.
In contrast, as higher deformation velocities are imposed on A, higher hardening values
are observed at this point.

An alternative way to illustrate the strain-rate-history effects on specimen response
consists of visualizing the contours of von Mises equivalent stress, as displayed in Figures
6.9(a) and (b) respectively for cases 01 and 04. Two particular instants are considered
for each case, namely at the onset of stress relaxation (t = tf ) and at the relaxed state.
As expected, no noticeable change is observed between the “before relaxation” and “after
relaxation” states associated with Case 01. In contrast, significant changes between the
“before relaxation” and “after relaxation” states are observed for Case 04, in which |K| =
104 s−1 was set. On one hand, the significant difference between von Mises stress contours,
corresponding to the two states showed in Figure 6.9(b), is due to instantaneous viscous
effects. On the other hand, as already discussed, no major changes on the hardening
contours is observed for both cases 01 and 04, as displayed respectively in Figures 6.9(c)
and (d). Furthermore, comparison of all “after relaxation” states indicates that Case 04
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Figure 6.9: Contours of von Mises equivalent stress [MPa], before stress relaxation(
t
tf

= 1
)
and after stress relaxation: (a) Case 01, |K| = 10−2 s−1; (b) Case 04,

|K| = 104 s−1. Contours of isotropic hardening A [MPa], before stress relaxation(
t
tf

= 1
)
and after stress relaxation: (c) Case 01, |K| = 10−2 s−1; (d) Case 04,

|K| = 104 s−1.

relaxes to a state far from that of Case 04, that is, higher values of |K| leads to higher
von Mises stress and hardening fields.

Based upon the preceding results and discussions, one has to keep in mind the real
heterogeneity induced by frictional contact effects when adopting the homogeneous defor-
mation hypothesis. Throughout the body deformed under friction conditions, points ex-
periencing lower and higher stress levels, when compared with the idealized homogeneous
case, are evidenced. However, overall result of this compression simulation presenting
heterogeneous stress and strain fields is the force-displacement response. The difference
of considering or not frictional effects on the overall behavior of the structure may be char-
acterized by means of the evolution of resultant vertical force applied to specimen with
respect to prescribed displacement. Figure 6.10(a) compares both frictional and friction-
less results obtained from numerical simulations with analytical solution corresponding
to a homogeneous compression, which is obtained from stress solution of Eq. (4.14):

|f1| =
V0

l
|τ̄11| , (6.4)

where |f1| is the resultant compression force, V0 is the initial specimen volume and l is
the current length of workpiece. While the numerical frictionless results are very close to
the analytical solutions, slight friction effects are observed when prescribed displacement
increases. It is emphasized that the whole results should be interpreted keeping in mind
that the considered value of friction coefficient is rather small (fc = 0.1). This fact em-
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Figure 6.10: (a) Comparison of numerical compression forces with analytical solution of
Eq. (6.4); (b) Numerical force relaxation curves. Numerical results concern both

frictional and frictionless simulations, considering loading data of Case 01 and Case 04
of Table 6.1.

phasizes the importance of using lubricant in platen-specimen interfaces. Regarding the
influence of loading-rate parameter |K|, Figure 6.10(a) demonstrate that, in addition to
inducing higher compression forces to impose a given displacement, increasing the loading
rate |K| increases the difference between homogeneous (frictionless) and heterogeneous
(frictional) deformation curves. Although there are differences between the frictional and
frictionless responses, they are not higher than 5%.

Since the prescribed displacement holds constant after the desired compression is
reached, a force relaxation is expected for t

tf
≥ 1. Results considering cases 01 and

04, with and without friction, are displayed in Figure 6.10(b). Based on these results, one
can clearly observe that, even after the relaxation phase, the frictional cases present resid-
ual forces when compared with frictionless simulations. While Case 01 does not present a
significant force relaxation (for both fc = 0.1 and fc = 0), results corresponding to Case
04 present a significant load reduction while the prescribed displacement is maintained
constant. Observed force reduction is due to instantaneous viscous effects induced by
high deformation velocities imposed during the loading step. Furthermore, in addition to
instantaneous rate effects, Figure 6.10(b) also demonstrates effects associated with strain-
rate-hardening behavior. These effects become clear by noting that the asymptotic load
response related to Case 04 does not recover the respective curve corresponding to Case
01.

The performance of numerical procedure is assessed by means of convergence an-
alyzes in both Case 01 and Case 04. The results are summarized in Table 6.2 for
t
tf
∈ {0.005, 0.2, 0.5, 1.0} considering frictionless (fc = 0) and frictional (fc = 0.1) com-

pressions. In this table term ALi stands for the number of iterations to reach convergence



133

Table 6.2: Number of iterations required for convergence of frictionless and frictional
contact algorithm.

Case 01 Case 04
t
tf

- (step number) ALi
niter niter

fc = 0 fc = 0.1 fc = 0 fc = 0.1

0.005 - (1)
1 5 10 5 7
2 3 6 3 5
3 − 3 − 3

0.2 - (40) 1 4 6 5 5
0.5 - (100) 1 5 7 5 6

1.0 - (200) 1 5 11 4 8
2 − 8 − 6

in the Augmented Lagrangian algorithm employed to solve contact problem [Rossi et al.,
2008, 2009] and niter for the number of iterations to reach finite element equilibrium(∥∥∥~Rn+1

∥∥∥
∞
≤ 10−6

)
, see Eq. (5.50). The end of loading phase (t = tf ) in Case 01 corre-

sponds to the higher number of iterations required for numerical convergence (niter = 11).
Table 6.2 also indicates that convergence is enhanced with higher loading rate |K|.
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Figure 6.11: Convergence curves for Case 01 (solid lines) and Case 04 (dash-doted lines):
(a) Frictionless compression; (b) Frictional compression.

Convergence curves are displayed in Figures 6.11(a) and (b) for simulations consid-
ering smooth and frictional contact in the low (Case 01) and high (Case 04) strain-rate
conditions. Two particular instants were examined, namely t

tf
= 0.005 and t

tf
= 1.0.

Figure 6.11(a) shows that there is no significant difference between Case 01 and Case
04 for frictionless compression simulations. On the other hand, it is observed in Figure
6.11(b) that the convergence is improved when imposing a higher strain-rate in the case of
frictional compression test. As a matter of fact, the number of iterations for convergence
drops from 10 (11) to 7 (8) at instant t

tf
= 0.005

(
t
tf

= 1.0
)
and iteration ALi = 1 of Aug-
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mented Lagrangian algorithm. Furthermore, the results for frictional simulations shown
in Figure 6.11(b) indicate that both cases 01 and 04 present a varying convergence-rate at
the beginning of deformation

(
t
tf

= 0.005
)
, while for the other time steps a quasi-constant

convergence-rate is observed.
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7 CONCLUSIONS

The present work has been devoted to the experimental and constitutive characteri-
zation of the mechanical behavior of polycrystalline FCC metals when subjected to high
strain-rate finite deformations. As an specific case of study, experimental characterization
was conducted by means of compression and microhardness tests on samples of aluminum
AA1050. During compressions, work pieces were subjected to finite strains covering a wide
strain-rate range: from quasi-static to high strain-rate (ε̇ ≈ 104 s−1) conditions. From spe-
cific constant strain-rate experiments, complying with a primary objective, the main con-
stitutive features associated with the high strain-rate cold deformation of polycrystalline
FCC metals were evidenced: (i) strain-hardening; (ii) strain-rate-hardening; and (iii)
instantaneous rate-sensitivity. Strain-rate-history effects on material hardening and ma-
terial hardness evolution were evidenced by means of sequential strain-rate experiments.
Based on obtained experimental results, as well as on micro and macroscopic experiments
available in the literature, an isothermal semi-physical elastic-viscoplastic model was pro-
posed. Constitutive formulation was carried out within a finite strain framework, and
proposed model was intended to represent the constitutive features cited above. Further-
more, an alternative model describing the material hardness evolution in terms of strain
and strain-rate histories was also provided. Taking advantage of the experimental data
for aluminum AA1050, proposed models were adjusted and then validated. Regarding the
general validation of the constitutive modeling at material level, both stress and hard-
ness predictions have presented reasonable agreement with experimental results. At the
structural level, corresponding global and local stress-strain numerical formulations were
developed within the finite element framework. The constitutive ability and accuracy
of numerical procedures were assessed by simulating a homogeneous deformation com-
pression as well as a frictional billet upsetting. Numerical results have demonstrated the
ability of the constitutive modeling to appropriately capturing the main features of FCC
metals in structural analysis. Furthermore, numerical efficiency and robustness associated
with the employed numerical procedures were assessed by means of local and global con-
vergence analyses. From a general view point, the main contribution of the present work is
the experimental characterization, mathematical constitutive formulation at finite strain,
and associated finite element implementation with account for high strain-rate effects. In
this respect, an isothermal simplified constitutive proposal, presenting considerable consti-
tutive capabilities for solving engineering problems considering high strain-rate loadings,
was provided.

Based on experimental results obtained at the material level, one can realize the strain-
rate-dependent material behavior observed at different strain-rate levels. A rather signif-
icant hardening rate-sensitivity was evidenced when comparing low and high strain-rate
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responses, in the sense that, for a given strain level, by increasing the corresponding
strain-rate higher stress hardening are reached. Furthermore, a pronounced flow stress
increasing is observed when strain-rates exceeding 103 s−1 are imposed. From these obser-
vations, one readily finds the importance of accounting for both hardening and flow stress
rate-dependences. For example, supposing that a constitutive model not accounting for
strain-rate-induced hardening have been adjusted by using low to moderate strain-rate
experiments for a given metal. If the adjusted model is employed to simulate the corre-
sponding material behavior under high strain-rate conditions, it will underestimate the
material hardening promoted by the high velocity plastic deformation imposed. In addi-
tion, the flow stress will also be underestimated if the model does not account for strain-
rate-sensitivity changes according to imposed strain-rate range, since the calibration pro-
cedure was performed considering low to moderate strain-rate experimental results. Each
one of preceding constitutive deficiencies will result in drawbacks associated with the
overall structural response. Reasoning on a mechanical component which is processed
according to a high velocity manufacturing process (such as machining, rolling, forging,
or compaction). If the strain-rate material hardening is not accounted for, the mechanical
strength associated with the processed component will be underestimated. Consequently,
based on the predicted material strength, on one hand an over-sized component will be
designed for further engineering application. On the other hand, the machine and tools
will be undersized for processing the component in question.

In view of the aforementioned high strain-rate effects, one realizes practical cases in
which the constitutive model proposed in this work has direct applicability. Since, in
addition to account for both rate-dependences associated with hardening and flow stress
responses, it has a simplified character towards simpler numerical implementation and nu-
merical efficiency. Another aspect favoring the utilization of the proposed model concerns
the easier model calibration performed in subsequent steps. In contrast, the isothermal
approach followed by the present development restricts the continuously imposed strain
level when working at high strain-rate situations, since adiabatic thermal effects are not
accounted for by the present model. Other limitation associated with the formulation
developed in this work, concern the hypotheses on permanent elastic and plastic isotropy.
This features, mainly the plastic one, will results in prediction drawbacks if one wish to
apply the model for describing plastic process in which strain path changes or reversal
loadings are present.

Concerning future studies on the present subject, at the structural level, straightfor-
ward continuation of the present work is the global formulation and associated numerical
implementation accounting for inertial effects. In addition, reasoning on advancing the
present constitutive modeling, thus reducing its limitations, the results that have been
obtained motivate future developments including: (i) thermo-mechanical coupling, which
is expected to enhance the rate-effects on viscoplastic deformations and to allow for large



137

strain, high strain-rate predictions, and (ii) formulation of micromechanically-based mod-
els accounting for microstructural mechanisms responsible for the overall macroscopic
response, such as the plastically-induced crystallographic texture and anisotropy.
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APPENDIX A Comparison of viscoplastic models

This topic uniaxial flow stress formulation of the viscoplastic models summarized in
Table A.1 of the introductory chapter: the MTS, BPR, MR models and the model of dos
Santos et al. [2016]. The corresponding model summary is given in Table A.1, in which
the constitutive features outlined are the flow stress, internal state variable evolution,
strain-rate-history, and corresponding model parameters.

This chapter has also the aim of comparing the model developed by dos Santos et al.,
2016, which is a particular case of the present formulation (see Subsection 3.5.2), with
other constitutive proposals, namely the models of Follansbee and Kocks, 1988, MTS,
Bamman et al., 1996, BCJ, Bodner and Rubin, 1994, BPR, and Molinari and Ravichan-
dran, 2005, MR. Constitutive approaches are assessed considering experimental results
obtained from decremental strain-rate tests (see Figure 1.7(a) and (c)) for an annealed
high purity copper.

Two comparisons are carried out. The first one employs the experimental results of
Tanner and McDowell, 1999, and compares the models MTS and BCJ adjusted by Tanner
et al., 1999, as well as the model of dos Santos et al., 2016, with parameters given in Table
A.2. Corresponding loading data and comparison results are presented in Section A.1. The
second comparison considers the models BPR and MR adjusted respectively by Bodner
and Rubin, 1994, and Molinari and Ravichandran, 2005, employing the experiments of
Follansbee and Kocks, 1988, and Follansbee and Gray III, 1991. In this case, the model
of dos Santos et al., 2016, uses the parameters of Table A.3. The pertinent loading
informations and results are presented in Section A.2.

A.1 Decremental strain-rate test of Tanner and McDowell, 1999

The decremental strain-rate test performed by Tanner and McDowell, 1999, consisted
of:

• QS : quasi-static test. Material is subjected to a total strain equal to 0.92 at a
strain-rate of D̄11 = 4× 10−4 s−1;

• DSR: decremental strain-rate test. Material is subjected to a high strain-rate of
D̄111 = 6 × 103 s−1 until a partial strain of 0.32 is reached, then the strain-rate is
abruptly changed to a lower value D̄112 = 4× 10−4 s−1 while the strain level reaches
0.79.

The results of each model are depicted in Figure A.1(a). Based on this results one
concludes, on one hand, that the MTS model overestimates the hardening rate after flow
stress drop while BCJ model underestimates the experimental dropped flow stress. The
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latter estimation is closer to the low strain-rate response. On the other hand, the model
of dos Santos et al., 2016, produces estimations closer to the experimental data for both
high strain-rate loading and dropped flow stress responses.

Table A.1: Summary of some single variable viscoplastic models. Source: dos Santos
et al., 2016.

Model proposed by dos Santos et al., 2016

Flow stress σflow = (σy + A)
(
1 +

√
3
2ϑε̇

) 1
m

ISV evolution
Ȧ = Ȧ1 + Ȧ2

Ȧ1 = δ (A∞ − A1) ε̇ and A2 = cA∞ε
A = A∞ [1 + cε− exp (−δε)]

Strain-rate-history A∞ = Alwr∞ +
(

ε̇−ε̇lwr
ε̇up−ε̇lwr

)ξ (
Aup∞ − Alwr∞

)
Parameters (10)

{
σy, ϑ,m, δ, c, ε̇lwr, ε̇up, A

up
∞ , A

lwr
∞ , ξ

}
Molinari-Ravichandran model [Molinari and Ravichandran, 2005]

Flow stress σflow = σ̂ (d)
(
δ0
δ

) (
ε̇
ε̇0

) θ
A

ISV evolution δ̇ = − δr
δs

(δ2 − δsδ) ε̇
δ = δs

1−
(

1− δs
δ0

)
exp(−δrε)

Strain-rate-history δr = δr0

[
1 + ar

(
ε̇
ε̇r0

)ξr ( θ
θ0

)−νr]
δs = δs0

[
1 + as

(
ε̇
ε̇s0

)ξs ( θ
θ0

)−νs]
Parameters (14) {σ̂, δ0, A, ε̇0, ε̇r0 , ε̇s0 , δr0 , δs0 , ar, as, ξr, ξs, νr, νs}

Bodner-Partom-Rubin model [Bodner and Rubin, 1994]

Flow stress σflow =
[
2 ln

(
2ε̇0√

3ε̇

)]− 1
2n Z

ISV evolution Ż = m (Z1 − Z)σε̇
m = mb + (ma +mb) exp [−mc (Z − Z0)]

Strain-rate-history ma = Ma

[
1 +

(
ε̇
ε̇s0

)q]
Parameters (9) {ε̇0, n, Z1,ma,mb,mc, ε̇s0 , q, Z0}

MTS model [Follansbee and Kocks, 1988]

Flow stress σ = σ̂a + (σ̂ − σ̂a)

1−
[
kθ ln( ε̇0

ε̇ )
g0µb3

] 1
q


1
p

ISV evolution
σ̂ = h0

[
1− tanh

(
2 σ̂−σ̂a
σ̂s−σ̂a

)]
ε̇

ε = tanh(2)
h0[tanh2(2)−1]

{
(σ̂ − σ̂a) tanh (2) + (σ̂s−σ̂a)

2 ×

× ln
[
tanh (2) cosh

(
2 σ̂−σ̂a
σ̂s−σ̂a

)
− sinh

(
2 σ̂−σ̂a
σ̂s−σ̂a

)]}∣∣∣σ̂f
σ̂i

Strain-rate-history σ̂s = σ̂s0 exp
[

kθ
Aµb3 ln

(
ε̇
ε̇s0

)]
and h0 = c1 + c2 ln (ε̇) + c3ε̇

Parameters (14) {σ̂a, k, µ, b, g0, p, q, ε̇0, σ̂s0 , ε̇s0 , A, c1, c2, c3}
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Table A.2: Material parameters of dos Santos et al., 2016, adjusted using experiments of
Tanner and McDowell, 1999.

E ν σy δ c Alwr∞ Aup∞ ε̇lwr ε̇up ξ ϑ m
[GPa] [−] [MPa] [−] [−] [MPa] [MPa] [s−1] [s−1] [−] [s] [−]
112 0.33 35 6.46 0.42 233 420 10−4 104 3.16 1.2× 103 105

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

|E11|

|τ̄ 1
1
|[
M
P
a
]

 

 

Exp.: 0.0004 1/s
Exp.: 6000 then 0.0004 1/s
Model: 0.0004 1/s
Model: 6000 then 0.0004 1/s
MTS−model
BCJ−model

(a)

Figure A.1: Decremental strain-rate test results: (a) Comparison of present model
estimation with experiments [Tanner and McDowell, 1999], MTS, and BCJ model

predictions presented by Tanner and McDowell [1999]. Source: dos Santos et al., 2016.

A.2 Decremental strain-rate test of Follansbee and Kocks, 1988

Now, the model of dos Santos et al., 2016, is compared with models of Molinari and
Ravichandran, 2005, Figure A.2(a), and Bodner and Rubin, 1994, Figure A.2(b). The
calibrated constitutive results are confronted with experiments reported by Follansbee
and Kocks, 1988, and Follansbee and Gray III, 1991. The experiments consist of:

• QS test: A total strain equal to 0.7 is imposed at a strain-rate of D̄11 = 1.5×10−3 s−1;

• DSR test: High strain-rate of D̄111 = 6×103 s−1 until a partial strain of 0.51. Lower
strain-rate of D̄112 = 1.5× 10−3 s−1 to a strain level of 0.7.

Figure A.2(a) shows that the model of dos Santos et al., 2016, provides a better es-
timation than the MR model. Notice that, the low strain-rate response of the latter
overestimates the experimental data, since the behavior predicted by the MR model is
higher even than the dropped flow stress after the strain-rate reduction. Further, decre-
mental behavior estimated by the MR model is slightly distant from the experimental
response, when compared with the estimation of dos Santos et al., 2016. The results
presented in Figure A.2(b) also show that the model of dos Santos et al., 2016, is able to
produce better estimations than the BPR model. The latter approximates a low strain-
rate response far from the experiments of Follansbee and Gray III, 1991. Still, the BPR
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Table A.3: Material parameters of dos Santos et al., 2016, adjusted using experiments of
Follansbee and Kocks, 1988.

E ν σy δ c Alwr∞ Aup∞ ε̇lwr ε̇up ξ ϑ m
[GPa] [−] [MPa] [−] [−] [MPa] [MPa] [s−1] [s−1] [−] [s] [−]
112 0.33 40 7.15 0.54 230 290 10−4 104 0.35 2.7× 104 215

model presents a higher hardening rate than that observed in experimental flow stress
after strain-rate decrease. As for Section A.1, the results corresponding to the proposal
of dos Santos et al., 2016, present estimations closer to the experimental data for both
high strain-rate loading and flow stress dropping responses.
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Figure A.2: Decremental strain-rate test results. Comparison of present model
estimation with (a) MR model; and (b) BPR model. Experiments of Follansbee and

Kocks, 1988, (FK) and Follansbee and Gray III, 1991, (FG). Source: dos Santos et al.,
2016.
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APPENDIX B Numerical aspects

This appendix aims at providing some details on the numerical procedure adopted
in this work. First, Section B.1 provides a general description on the Newton-Raphson
method employed to solve nonlinear equations. Section B.2 outlines the reduction of
Eqs. (5.62)-(5.64) and (5.79) into a single equation. In Section B.3 tangent terms re-
quired by the Newton-Raphson method to solve the local constitutive problem are then
described. Section B.4 presents the analytical derivation of the consistent tangent oper-
ator associated with the present elastic-viscoplastic model. In Section B.5 a qualitative
finite element analysis on the proposed compression tool, evaluating and comparing the
compression force applied to the work piece with that dynamically measured by the load
cell, is performed considering a high velocity compression.

B.1 Newton-Raphson method

In general, the Newton-Raphson method can be stated as in the following. Let be q a
vector containing n variables to be found by solving a nonlinear (or even linear) problem:

qT =
[
q1 q2 q3 , ..., qn

]
. (B.1)

The method starts by assuming an initial estimative qt for q related to an iteration k = 0,
i.e.,

q0 ← qt. (B.2)

Thus, considering an iteration k, the problem consists of determining an increment ∆qk

satisfying
g
(
qk+1

)
= g

(
qk + ∆qk

)
= 0, (B.3)

where g (q) is a vector with n nonlinear equations to be solved in terms of the unknown
vector q. With the aim of determining the increment ∆qk, an expansion using a Taylor
series around qk is employed, which truncating in the first-order terms provides

g
(
qk+1

)
= g

(
qk + ∆qk

)
≈ g

(
qk
)

+ ∂g (q)
∂q

∣∣∣∣∣
k

∆qk = 0, (B.4)

where the tangent matrix is defined as

M k := ∂g (q)
∂q

∣∣∣∣∣
k

=⇒Mk
ij := ∂gi (q)

∂qj

∣∣∣∣∣
k

, (B.5)
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what allows Eq. (B.4) to be rewritten as

g
(
qk
)

+M k∆qk = 0

M k∆qk = −g
(
qk
)

∆qk = −
(
M k

)−1
g
(
qk
)
. (B.6)

By knowing a new increment ∆qk, the new unknown vector is then updated:

qk+1 ← qk + ∆qk. (B.7)

Thus, the new values of function g
(
qk+1

)
are calculated. Then, if the new residual∥∥∥g (qk+1

)∥∥∥
(·)

is lower than a given tolerance etol, i.e., if

∥∥∥g (qk+1
)∥∥∥

(·)
< etol, (B.8)

the algorithm is finished and the solution is updated:

q ← qk+1. (B.9)

Otherwise, if ∥∥∥g (qk+1
)∥∥∥

(·)
≥ etol, (B.10)

one assumes
qk ← qk+1 (B.11)

k ← k + 1, (B.12)

and the algorithm is restarted. Operator ‖·‖(·) denotes a given norm.

B.2 Reduction of return mapping equations for von Mises plasticity

By employing the von Mises yield criterion given in Eq. (3.67), equations (5.62)-(5.64)
and (5.79) can be reduced to a single equation. For this purpose, first the elastic strain
tensor is split into its volumetric Ee

v and deviatoric Ee
d parts:

Ee = Ee
v +Ee

d, (B.13)

where
Ee
v = 1

3tr (Ee) . (B.14)
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Consequently, equation (5.79) is also split into its volumetric and deviatoric parts [Eterovic
and Bathe, 1990; Weber and Anand, 1990]:

(Ee
v)n+1 = (Ee

v)
trial
n+1 (B.15)

(Ee
d)n+1 = (Ee

d)
trial
n+1 −∆λN τ̄n+1 . (B.16)

These first equation informs that, considering the von Mises criterion and an associa-
tive flow rule, related viscoplastic correction is performed only on the deviatoric elastic
strain. Furthermore, terms Ee

v and Ee
d relate with stress tensor τ̄ according to respective

expressions (see Eqs. (3.55)1 and (3.56))

tr (τ̄ ) I = 9κEe
v ⇒ tr (τ̄ ) = 3κtr (Ee) , (B.17)

and
τ̄D = 2µEe

d. (B.18)

Therefore, by means of last elastic relationship, the deviatoric stress tensor can be calcu-
lated as

τ̄Dn+1 =
(
τ̄Dn+1

)trial
−∆λ2µN τ̄n+1 . (B.19)

Manipulating Eq. (B.19), one can show that both current τ̄Dn+1 and trial τ̄Dtrialn+1 stresses
are “collinear” tensors, that is,

N τ̄n+1 = N τ̄ trialn+1
, (B.20)

where N := τ̄D

‖τ̄D‖ . This fact, from Eq. (B.19), leads to the following result:

∥∥∥τ̄Dn+1

∥∥∥ =
∥∥∥∥(τ̄Dn+1

)trial∥∥∥∥−∆λ2µ. (B.21)

Substituting Eq. (B.21) into Eq. (5.64) results in the single equation

∥∥∥τ̄Dtrialn+1

∥∥∥−∆λ2µ−
√

2
3 (σy + An+1) = Θ̄−1 (∆λ,An+1) (B.22)

given in terms of ∆λ and An+1.

B.3 Tangent terms required in the local problem solution

The return mapping algorithm is used to solve the nonlinear equations (5.80)-(5.84),
making use of the Newton-Raphson algorithm. In this context, corresponding tangent
quantities have to be evaluated. The system of nonlinear linear equations to be solved
can be set as
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f1 =
∥∥∥τ̄Dtrialn+1

∥∥∥−∆λ2µ−
√

2
3 (σy + An+1)− Θ̄−1 (∆λ,An+1) = 0, (B.23)

f2 = An+1−An−Ā∞n+1c

√
2
3∆λ−

[
Ā∞n+1 (1 + cεn)− An

] 1− exp
−δn+1

√
2
3∆λ

 = 0,

(B.24)

f3 = δn+1 − δlwr −

 1
∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ1 (
δup − δlwr

)
= 0, (B.25)

f4 = Ā∞n+1 −
εn√

2
3∆λ+ εn

Ā∞n −

1− εn√
2
3∆λ+ εn

A∞n+1 = 0, (B.26)

with

A∞n+1 = Alwr∞ +
 1

∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ2 (
Aup∞ − Alwr∞

)
, (B.27)

where involved unknowns are
{

∆λ,An+1, δn+1, Ā∞n+1

}
. Accordingly, the tangent terms

are defined by

∂f1

∂∆λ = −2µ− ∂Θ̄−1

∂∆λ , (B.28)

∂f2
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Ā∞n+1 (1 + cεn)− An

]
exp

−δn+1

√
2
3∆λ

 , (B.29)
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with
∂A∞n+1
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√

2
3
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2
3∆λ−∆tε̇lwr
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∂f1

∂An+1
= −

√
2
3 −

∂Θ̄−1

∂An+1
,

∂f2

∂An+1
= 1, ∂f3

∂An+1
= 0, ∂f4

∂An+1
= 0, (B.33)

∂f1

∂δn+1
= 0, ∂f3

∂δn+1
= 1, ∂f4

∂δn+1
= 0 (B.34)

∂f2

∂δn+1
=
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Ā∞n+1 (1 + cεn)− An

]√2
3∆λ exp

−δn+1

√
2
3∆λ

 , (B.35)
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= 1, (B.36)
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From Eq. (3.102), the derivatives

Θ−1
(
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)
= R

[(
1 + ϑ1λ̇

) 1
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]
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) 1
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 , (B.38)
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) 1
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+ ϑ2
∆λ
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are obtained.

B.4 Consistent tangent operator

Evaluation of Dvp is obtained from linearization of Eqs. (5.64), (5.79), (5.81), (5.82),
and (5.84), what yields

N τ̄n+1 : dτ̄ n+1 +NAn+1dAn+1 = ∂Θ̄−1

∂∆λ d (∆λ) + ∂Θ̄−1

∂An+1
dAn+1, (B.40)

dEe
n+1 + d (∆λ)N τ̄n+1 + ∆λ∂N τ̄n+1

∂τ̄ n+1
: dτ̄ n+1 = dEetrial

n+1 , (B.41)
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. . .+
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2
3∆λ

[
Ā∞n+1 (1 + cεn)− An

]
ϕdδn+1,

dδn+1 = ω1d (∆λ) , (B.43)

and
dĀ∞n+1 = ω2d (∆λ) , (B.44)

where
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∂τ̄ n+1
= 1∥∥∥τ̄Dn+1
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(
I− 1

3I ⊗ I −N τ̄n+1 ⊗N τ̄n+1

)
, (B.45)
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and
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∂∆λ , (B.49)

in which A∞n+1 is given in Eq. (5.84) and ∂A∞n+1
∂∆λ in Eq. (B.32). Combining Eqs. (B.42),

(B.43), and (B.44) reads to
dAn+1 = Λd (∆λ) , (B.50)
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Ā∞n+1 (1 + cεn)− An

]
ϕω1 + . . . (B.51)
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Inserting Eq. (B.50) into Eq. (B.40) reads

N τ̄n+1 : dτ̄ n+1 =
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∂Θ̄−1
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where
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Substitution of Eq. (B.53) into Eq. (B.41) provides

dEe
n+1 +

(
1
χ
N τ̄n+1 : dτ̄ n+1

)
N τ̄n+1 + ∆λ∂N τ̄n+1

∂τ̄ n+1
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n+1 . (B.55)
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Observing that (A⊗G) : K = (G : K)A, the above equation writes

dEe
n+1 + 1

χ

(
N τ̄n+1 ⊗N τ̄n+1

)
: dτ̄ n+1 + ∆λ∂N τ̄n+1

∂τ̄ n+1
: dτ̄ n+1 = dEetrial

n+1 , (B.56)

and from the elastic relationship dEe
n+1 = De−1 : dτ̄ n+1 Eq. (B.56) can be rearranged as

(
De−1 + ∆λ∂N τ̄n+1

∂τ̄ n+1

)
: dτ̄ n+1 + 1

χ

(
N τ̄n+1 ⊗N τ̄n+1

)
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n+1 , (B.57)

leading finally to

Dvp = ∂τ̄ n+1

∂Eetrial

n+1
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(
De−1 + ∆λ∂N τ̄n+1

∂τ̄ n+1
+ 1
χ
N τ̄n+1 ⊗N τ̄n+1

)−1

. (B.58)

B.5 Qualitative analysis of compression tool under high strain-rate test

As one can readily observe in Figure 2.2, on one hand, the specimen is positioned on
the superior part of the fixed platen. On the other hand, the load cell is assembled un-
der this component. When using this tool considering quasi-static loadings, according to
equilibrium conditions, the compression force employed on tested specimen is very close
to that measured by the load cell. However, this fact can not be readily transported to
high velocity compressions, in which dynamic effects due to impact and wave propaga-
tion are present. Thus, in order to qualitatively evaluate and compare the compression
force applied to the work piece with that dynamically measured by the load cell, a finite
element analysis on the compression apparatus considering a high velocity compression is
performed. The analysis is conducted making use of software Abaqus explicit. Related
model, showing assembled components, as well as employed boundary and initial condi-
tions, is displayed in Figure B.1(a). Material, element type, number of elements employed
to each component of Figure B.1 are informed in Table B.1. To the load cell a fictitious
material endowed with equivalent elastic modulus (E = 78 GPa) and equivalent specific
mass

(
ρ0 = 5273 kg

m3

)
was employed. This values were obtained in order to reproducing

the stiffness and total mass of the load cell according to the manufacturer (Kistler).
In the present analysis, the specimen was modeled as a viscoplastic material employing

the Johnson-Cook (JC) model available in Abaqus (see Abaqus manual). Model param-
eters were adjusted in order to represent the flow stress-strain curves of Figure 2.11(a),
what, considering an isothermal analysis, has provided the following JC model constants:
A = 41 MPa, B = 104 MPa, n = 0.5543, and m = 1. Contact model and friction param-
eters used are given in Table B.2. The analysis consists of prescribing an initial velocity
of v0 = 25 m

s to the striker bar, which hits the movable platen, and thus performing the
specimen compression. This bar velocity produces a strain-rate of ≈ 4.0× 103 s−1 on the
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Table B.1: Material, element type, and number of elements used in each component.
CAX4R refers to a linear quadrilateral element, with reduced integration, used in

explicit analysis of Abaqus.

Component Material E [GPa] ν [−] ρ0
[

kg
m3

]
Element type Number of elements

1 Brass 97 0.34 8500 CAX4R 380
2 Steel 200 0.3 7800 CAX4R 5206
3 Aluminum 70 0.33 2700 CAX4R 1800
4 Steel 200 0.3 7800 CAX4R 2330
5 Fictitious 78 0.3 5273 CAX4R 5500
6 Steel 200 0.3 7800 CAX4R 2525
7 Steel 200 0.3 7800 CAX4R 6200

Table B.2: Model and friction data used in each contact interface.

Contact interface Model Friction coefficient Penalty setting
A Coulomb Frictionless Default
B Coulomb 0.3 Default
C Coulomb 0.1 Default
D Coulomb 0.1 Default
E Coulomb Frictionless Default
F Coulomb Frictionless Default
G Coulomb Frictionless Default

tested material. That velocity was chosen in order to evaluate the tested condition which
produces major dynamic effects. The total time interval of the overall analysis is of 1 ms,
and a nominal time increment of 1µs was set. For this qualitative simulation, convergence
criteria and parameters employed were those set by default in Abaqus explicit analysis.

The history associated with the displacement imposed on specimen due to impact
is showed in Figure 2.11(d), where a quasi-constant displacement-rate is observed. For
visualization purposes, both undeformed and deformed configurations are displayed re-
spectively in Figures 2.11(b) and (c), where von Mises stress contours are displayed. In
the last configuration, a displacement ū ≈ 2.4 is prescribed on specimen, this condition
would provide a homogeneous strain of ε ≈ 0.5 in a frictionless simulation.

The present evaluation consists of comparing the contact force between the specimen
and fixed platen (interface D) with that between the load cell and fixed platen (interface
E), see Figure 2.2. It is worth remark that, in real experiment procedure, the compression
displacement is measured directly on the specimen length (distance between interfaces C
and D), and the data of load is measured by the cell positioned under the fixed platen.
During high velocity tests, there is a time delay between these two acquired data, as well
as, between the contact forces of interfaces D and E, what is shown in Figure B.2(a),
where the time delay is 20µs. This value corresponds to 16.67% of the compression
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Figure B.1: (a) Simplified model, initial and boundary conditions used for qualitative
analysis of compression tool considering dynamic conditions. Detail of specimen in (b)
undeformed and (c) deformed (ū ≈ 2.4) configurations. (d) Numerical time history of

prescribed displacement.

time interval of 120µs. Thus, in order to establish a force-displacement relationship
from measured experimental data, a correction due to this time delay must be consid-
ered. Comparisons between these two contact forces, considering this time correction, are
performed in Figures B.2(b) and (c), where force-time and force-displacement data are
respectively displayed. For comparison purposes, the experimental curve of Figure 2.11(a)
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Figure B.2: Numerical comparison between contact forces of interfaces D (force on
specimen) and E (force on load cell): (a) Force vs. time curves without time delay
correction. (b) Force vs. time with time delay correction; (c) Force vs. displacement

curved with time delay correction.

for the strain-rate of 4.0 × 103 s−1 is also plotted. From results, although consisting of a
qualitative analysis, one can observe that, despite the oscillation associated with contact
force of interface E, in an average way there is a good correlation between the contact
forces analyzed. Therefore, within the time and displacement ranges considered herein,
one concludes that measuring the load data right after the fixed platen, instead of directly
on the specimen position, once a suitable time correction is carried out, does not causes
major errors in the desired experimental information.
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