
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GIANEI LEANDRO SEBASTIANY

Smart Catalog: an Experience Report on
the Development of a Software Product

Line

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Ingrid Oliveira de Nunes

Porto Alegre
December 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Software Product Lines (SPLs) consist of a large-scale form of software reuse. Instead of

developing single software products reusing components in an ad hoc way, in an SPL ap-

proach, a family of products is addressed. A common set of software assets is built, which

allows derivation of different products in a prescribed way. In this work, this promising

approach is exploited to develop an SPL of product catalogs, namely Smart Catalog, tar-

geting mobile devices using the Android platform. An extractive and reactive approach is

adopted, that is, previously developed applications are considered to extract a new SPL.

Then, new features are incorporated based on new products that the SPL aims to derive.

As result, the challenges and benefits identified in the work are reported, as well as lessons

learned.

Keywords: SPL. Software Product Line. Software Engineering. Android. Clean Archi-

tecture. Catalog. App.

Smart Catalog: um Relatório de Experiencia no Desenvolvimento de uma Linha de

Produto de Software

RESUMO

Linhas de Produto de Software (SPLs) são definidas como uma forma de reuso de soft-

ware em larga escala. Ao invés de desenvolver produtos de software únicos reusando

componentes de forma desorganizada, em uma abordagem SPL, uma família de produ-

tos é definida. Um conjunto comum the artefatos de software é criado, o que permite a

derivação em uma forma pré definida de diferentes produtos. Neste trabalho, esta abor-

dagem promissora será explorada para desenvolver uma SPL de catálogo de produtos,

nomeada Smart Catalog, que tem como alvo dispositivos móveis da plataforma Android.

Uma abordagem reativa será adotada, o que significa que uma SPL será criada a partir de

considerações de aplicações previamente desenvolvidas. Como resultado, os desafios e

benefícios identificados neste trabalho serão reportados, bem como lições aprendidas.

Palavras-chave: Linha de Produto de Software, Enhenharia de Software, Android, Clean

Architecture, Catálogo, App.

LIST OF FIGURES

Figure 2.1 Development cost of single system and SPLE. ...13
Figure 2.2 Time-to-market with and without SPLE..14
Figure 2.3 Overview of the software product line engineering framework.17

Figure 3.1 Amazon app screenshot. ..23
Figure 3.2 Ponto Frio app screenshot..24
Figure 3.3 Mercado Livre app screenshot...25
Figure 3.4 Enjoei app screenshot. ...26
Figure 3.5 Ditlanta Catalog app screenshot. ...27
Figure 3.6 Features vs. analyzed apps. ...28

Figure 4.1 Feature tree. ...31

Figure 5.1 The Clean Architecture..33
Figure 5.2 Core package diagram. ..35
Figure 5.3 Implemented feature tree. ..36

Figure 6.1 Ditlanta Catalog app features selection. ..48
Figure 6.2 Ditlanta Catalog instance home screen screenshot..48
Figure 6.3 Ditlanta Catalog instance item set screenshot. ..49
Figure 6.4 Ditlanta Catalog instance item detail screenshot. ..49

LISTINGS

5.1 Entity example ..37

5.2 Entity extended example...37

5.3 Use case example..38

5.4 Repository example. ...38

5.5 Views configuration. ...40

5.6 UI action..40

5.7 Home screen factory one. ...41

5.8 Home screen factory two. ...41

5.9 Dependency system start...42

5.10 Dependency system start extended. ..43

6.1 Dependency injection component...44

6.2 Dependency injection configuration example...45

6.3 Dependency injection optional feature. ..45

6.4 Dependency injection feature choice. ...45

6.5 Dependency injection splash screen. ..46

LIST OF ABBREVIATIONS AND ACRONYMS

SPL Software Product Line

SPLE Software Product Line Engineering

OS Operational System

OOP Object Oriented Programing

DCI Data, Context, Interaction

BCE Boundary, Control, Entity

MVP Model, View, Presenter

IDE Integrated development environment

DI Dependency Injection

UI User Interface

IO Input Output

ERP Enterprise Resource Planning

CONTENTS

1 INTRODUCTION...9
2 BACKGROUND ON SOFTWARE PRODUCT LINES..11
2.1 Key Concepts ...11
2.2 Basic Requirements ..12
2.3 Outcomes ...13
2.4 Challenges and Limitations..15
2.5 Process..15
3 PRODUCT MANAGEMENT..19
3.1 Scoping...19
3.2 Analysis of Existent Systems..21
3.2.1 E-Commerce Apps...22
3.2.2 Community Commerce Apps ..24
3.2.3 Wholesaler apps ...26
4 DOMAIN REQUIREMENTS..29
4.1 Commonalities and Variability ..29
4.2 Feature Model ...30
5 DOMAIN DESIGN AND REALIZATION ..32
5.1 Domain Design ..32
5.2 Domain Realization...35
6 APPLICATION ENGINEERING...44
6.1 Configuration knowledge ...44
6.2 Ditlanta Catalog - An Instance of the Smart Catalog SPL47
7 DISCUSSION ..50
8 CONCLUSION ...52
REFERENCES...54
APPENDIX A — SOURCE CODE SAMPLES..56
A.1 Category Pages Feature Implementation...56
A.1.1 MainActivityBase ...56
A.1.2 MainActivityCategoryPages ...57
A.1.3 MainActivityCategoryPagesPresenter ..59
A.2 Ditlanta app configuration module...60

9

1 INTRODUCTION

In the software industry, a promising development paradigm called software prod-

uct line engineering (SPLE) is available. In most cases of software applications, it is

possible to identify solutions that are crafted for a specific client and software solutions

that are produced for a broad range of customers. Generally, specific solutions are ex-

pensive, while at the same time broad solutions do not have enough diversification. This

situation created the need for mass customization, which is the production in large-scale

of personalized goods. In order to produce such goods, it is necessary to have platforms

that contain the main aspects of the product. The combination of platforms and mass cus-

tomization resulted in software product line engineering (POHL; BÖCKLE; LINDEN,

2005).

A group of software applications which are very similar to each other and are thor-

oughly used by the industry is products catalog applications. E-commerce applications

are examples of product catalog applications that show a large variety of products in or-

der to make sales. Many product catalog solutions are already available and currently in

use by various business, however, when a new solution is required for a slightly different

business, it is generally created in an ad hoc way, that is, in an improvised way. This

causes waste of development resources due to the inability to reuse code efficiently and

increases the time-to-market.

Furthermore, creating and maintaining a family of similar software solutions that

improves code reuse and time-to-market such as a software product line is complex. It is

fundamental to determine formally what will the software product line (SPL) be capable

of producing. It is also required to create a software architecture that is capable of taking

advantage of the similarities by providing reusability. Furthermore, it is necessary to

understand what is required for a specific client and instantiate the specific customization

from the developed architecture. During the SPL creation, many concerns need to be

accounted for, such as development costs, time of production, quality, maintenance and

evolution.

Many software product lines were already created and analyzed, as discussed by

Linden, Schmid and Rommes (2007), but few are aimed at the mobile environment. A

mobile application consists of a software that can be executed on a mobile device, such as

a smartphone. Business companies are benefiting from the usage of mobile applications

(ISLAM; ISLAM; MAZUMDER, 2010). According to research about operational system

10

market share in 2015 made by IDC (2015), the Android SO has a market share of 82.8 %,

making it a desirable product target.

This work thus consists of the development of a software product line that provides

the infrastructure needed to derive Android apps of product catalogs that show products

efficiently among different business requirements. Due to existing solutions and a pre-

viously similar solution developed by the same author of this work, it is possible to ap-

proach the SPL creation in an extractive form, which is leveraging features of existing

applications to create a new SPL in this area (KRUEGER, 2001). The existing solutions

are used among a large variety of business and each of them has similarities and specific

features, therefore the engineering of a SPL can leverage the commonalities existing in

current solutions to create a core set of functionalities. The engineering process is capable

of creating core parts of the software that are reusable and applicable to different client

needs. With a platform and mass customization, it is possible to deliver specific needs

for specific customers. All this is done while reducing development costs, time-to-market

and maintaining a high quality of products.

This work provides a better understanding of the development of a SPL by cre-

ating a practical example and reporting insights of the process. The implementation is

focused on the creation of the core assets with some variable features intended to exem-

plify the variability implementation in a SPL. It is organized this way: Chapter 2 defines

the concepts of Software Product Lines. Chapter 3 analyzes existing software. Chapter 4

identifies the features of the SPL. Chapter 5 presents the design of the SPL architecture

and describes its implementation. Finally, chapter 6 presents the instantiation of a final

product from the SPL and chapter 7 explains the overall experience in developing this

work.

11

2 BACKGROUND ON SOFTWARE PRODUCT LINES

"Software product line engineering is a paradigm to develop software applica-

tions (software-intensive systems and software products) using platforms and mass cus-

tomization" (POHL; BÖCKLE; LINDEN, 2005). This chapter provides the concepts,

requirements, limitations and benefits of SPLE. Additionally, an overview of the SPLE

frameworks and lifecycle is provided.

2.1 Key Concepts

Software product lines came as a new architecture paradigm that enables the mass

production of software applications while delivering customization in each application.

This subject emerged as a conjunction of already known concepts: mass customization,

common platforms and program families.

Mass production is the conception of goods in large quantities and in low cost.

It allows lower production costs but not necessarily lower product quality. This goal is

achieved by standardizing and automation of the production process. This concept had

remarkable outcomes when Henry Ford designed assembly lines that drastically reduced

time required to build automobiles.

A common platform is any base of technologies on which other technologies pro-

cesses are built (POHL; BÖCKLE; LINDEN, 2005). Mass production, as created with

Ford, reduced the possibility of customization, hence the need for a common platform.

For example, in Ford production, all cars need a floor panel, a suspension system, and

rocker panels. A platform containing these pieces can be created and reused by different

cars. This approach enabled car manufacturers to increase their variety while reducing

costs.

Program families is a concept related to SPL either. A program family is a set of

software systems that has so many common properties that it is advantageous to study

the common properties of the programs before analyzing individual members (PARNAS,

1976). Parnas proposed a new way of creating programs that is by taking an existing

program at an intermediate point and making adaptations from that point. According to

this practice, it is possible to reuse existing solutions and have software programs that

share the same ancestor.

The conjunction of mass production, platforms and program families introduces

12

the base concepts of a software product line. The SPL plan proactively for a systematic

reuse, by creating reusable parts and managing the variability of the products, in order to

deliver mass customization. The software product line requires the systematic construc-

tion of a consistent software platform to enable reuse, which is the core. It is necessary to

make upfront planning to create correct platform artifacts, which are parts of the platform,

such as test plans, test designs, requirements models, architectural models and software

components.

Generally, software is delivered in two forms: standard software such as com-

mercial off the shelf (COTS) which aims to deliver a solution for as many customers as

possible, allowing mass production but not being able to deliver specific customer needs.

The other form is custom software, which aims to fulfill all needs of a single customer,

implying elevated production costs. Software Product Lines (SPL) is a recent and promis-

ing effort to deliver mass customized software, with improved customer satisfaction and

reduced time-to-market. Software product lines enable software companies to deliver a

family of similar products efficiently. Just like a production line of cars, a software prod-

uct line can deliver different applications that meet individual requirements, produced in

large-scale within a certain variability. The Software Product Line paradigm can provide

tools, techniques, and process guidelines to create, maintain and evolve a family of soft-

ware. The SPL paradigm can help the creation of recent forms of software delivery such

as Software as a Service and other cloud-based solutions but requires further investigation

on the subject (SCHMID; RUMMLER, 2012).

2.2 Basic Requirements

The combination of common platforms and mass customization allows the reuse

of existing technology and at the same time creates products that are closer to the customer

expectation. The combination of these ideas changes the developing process as well as

the organization of the company developing the SPL.

The first step is to build the platform where analysis of existing software can be

used to generate a platform. Throughout the development process, it is necessary to iden-

tify and describe where and how products emerging from the same product line differ.

This step is the creation of flexibility which is a precondition for mass customization. The

flexibility defines which are the possible options of the SPL and where exactly they can

vary.

13

Figure 2.1: Development cost of single system and SPLE.

Source: Pohl, Böckle and Linden (2005)

Reorganizing the company is necessary in order to accommodate these steps of de-

velopment. It may be necessary to establish new organization units, for example, one that

is responsible for the platform and another that is responsible for creating the variability.

2.3 Outcomes

Many outcomes emerge from the use of product line engineering. One of the most

prominent benefits is the reduction in development costs. When the software platform

is created, it will reduce development costs of new applications due to the reuse of the

platform. Although creating a platform that is ready to deliver the required variability

has increased upfront costs, the accumulated costs when developing an increased amount

of solutions is reduced. Figure 2.1 shows that there is a break even point where costs of

creating new solutions outcome the upfront cost of creating the platform.

Similarly to production costs, the time-to-market of the solution in a software

product line is longer in the initial phases but generates less time-to-market when more

solutions are developed. There is an initial burden analyzing the variability and creating

the platform of the production line, nevertheless, when the initial work is done, products

can be created by reusing existing code. This drastically reduces the time that new solu-

tions need to go to market. Figure 2.2 shows the initial burden of production compared to

single family systems.

SPL improves the quality of the products. During the development process, the

14

Figure 2.2: Time-to-market with and without SPLE.

Source: Pohl, Böckle and Linden (2005)

platform is tested and reviewed throughout all emerging applications that use the plat-

form. When an improvement is made to the platform due to a necessity discovered in

one application, the improvement is spread across all products of the family, since all of

them are generated from the same core. Therefore it is expected that all products of the

production line have enhanced quality. Maintenance effort and evolution do also benefit

by the same means: when an error correction or evolution is made on the platform, it is

spread throughout the software product line.

Due to an increased amounts of functionalities emerging from different customers,

the complexity to manage the SPL is greater. The code base is more extensive due to

plenty of needed functionalities. SPLE offers adequate measures to cope with the com-

plexity of all the features interactions and management of different but similar products.

By creating a common platform, developing resources can be moved out from separate

places into a concentrated artifact of the platform.

Customers also benefit from software product lines. It generates products that are

more adapted to their needs and wishes in shorter time. They can also take advantage of

improvements that were made to other customers, inasmuch as some of these improve-

ments can happen on the platform of the product line. The customers also have a better

cost estimation, since the development of the platform has already been made, it is known

that a big part of the application was already produced, thus reducing the amount of code

to be estimated. The experience generated during the development of previous applica-

tions of the product line, help to pinpoint the cost estimation of new applications.

15

2.4 Challenges and Limitations

Software product line is a recent paradigm, many barriers existed to the adop-

tion of SPL. The lack of technology was a strong barrier to software product line for a

long time, programming languages that could enable the needs of product line did not

exist. Object-oriented programming (OOP) is one of the most important technologies

that enable software product line and only modern languages provide it. Encapsulation

is a prerequisite to variability management and OOP help programmers to achieve it.

Another enabling technology is the component technology which enables developers to

create parts of software in a way that it is not deeply attached to other parts of the software.

Conditional compilation (COUTO; VALENTE; FIGUEIREDO, 2011), model-driven and

aspect-oriented programming (VOELTER; GROHER, 2007), and feature-oriented SPL

(APEL et al., 2013) are techniques used to create SPL but are studied or provided with

tools only recently. Another technological issue was the difficulty of managing the con-

figuration of the software product line, it requires sophisticated tools to deal with the

complexity.

Besides of the technology, another major prerequisite for SPL is the need for deep

domain expertise. Identification of commonalities and variability among a specific market

involves the knowledge of process, abstractions, and singularities of the market. A feature

that is inserted in the product line which is not used by final products causes development

waste. Similarly missing a needed feature causes additional costs to adapt the SPL in

the future, besides of reducing the effectiveness of the SPL. The domain experts must

have deep knowledge about the subject of the SPL, moreover, the abstractions used in

the engineering process must be in an appropriate level according to the domain. Not

knowing the abstractions and the domain correctly may lead to misunderstandings causing

wrong choices during the development process. Regarding the market domain, it is also

important that it is stable. Product lines require considerable up-front investment if the

domain is volatile as much as to change all requirements, the work already done is wasted.

2.5 Process

There are two main development processes in the software product line engineer-

ing paradigm: domain engineering and application engineering.

16

• Domain Engineering is responsible for creating the platform of the SPL, it defines

the variability and commonality of the product line. The activities involve analysis

of the domain to identify required features, the realization of the platform as well

as maintenance and evolution. The domain engineering also defines the scope of

the SPL, that is, what types of software it will be capable of producing and what

features it will cover. The sub-activities of domain engineering have the purpose of

refining and detailing the variability defined in previous steps and provide feedback

about the feasibility of the required variability.

• Application Engineering is responsible for creating products using the previously

created platform, the variability is instantiated according to the platform possibili-

ties, delivering a custom solution. The goal of application engineering is to achieve

an as high as possible reuse of the platform artifacts when developing new products,

by exploiting the commonality and variability of the SPL. The process is respon-

sible for designing and realizing the application while estimating the impacts of

differences existing on the application and the platform.

By splitting these processes, separation of concerns is obtained. The first process

is concerned in building a robust platform while the latter is concerned with building

a solution that is customer specific in short time. The concerns do also have relation

to variability: domain engineering need to ensure that the proper variability is available

whilst the application engineering binds the variability. Note that neither of the processes

have to be performed in a sequential order.

There are available in literature many different methods to approach the SPLE,

such as COPA, FAST, FORM, KobrA and QADA which are compared by Matinlassi

(2004). The framework proposed by Pohl, Böckle and Linden (2005) defines the gen-

eral processes of a software production line, making it usable in any context with due

adaptations. Pohl et al.’s framework describe subprocess of the domain engineering and

application engineering as described in figure 2.3.

The next five subprocesses define the domain engineering aspect of the framework.

• Product Management is responsible for enforcing the marketing goals throughout

the development of the SPL. The product management accesses what the SPL is

intended to create, defining the targets and stakeholders of the SPL. The major result

of the product management subprocess is to create the product roadmap, that will

guide the overall development of the product line and will be revisited in cycles.

17

Figure 2.3: Overview of the software product line engineering framework.

Source: Pohl, Böckle and Linden (2005)

The product roadmap defines the major features that the product line desires to

create in an approximate time line.

• Domain Requirements Engineering is a continuous process of developing the com-

mon and variable requirements to the domain. This process will take as input the

product roadmap to elucidate and document the commonality and variability of the

SPL core. The output of this step is a domain variability model.

• Domain Design defines the reference architecture of the SPL from the requirements

defined in the previous step. It is a high-level view of the architecture of the plat-

form.

• Domain Realization is the detailed design and implementation of the SPL platform

described in previous steps. The variability implementation of the SPL is possible

by different means or with a combination of different solutions. The result of this

process is loosely coupled configurable components.

• Domain Testing is responsible for validating the developed solutions against the

definitions created in the previous steps. It produces tests that stress the configura-

tion capability of the developed components.

The following four subprocesses define the application engineering aspect of the

18

framework and are closely related to its counterparts on the domain engineering.

• Application Requirements Engineering is responsible for identifying features avail-

able from the SPL that are needed to the custom solution and reporting differences

between application requirements and what is offered from the platform.

• Application Design sub-process produces the architecture specifications of the de-

sired application. It uses the platform architecture definitions and incorporates def-

initions needed for the specific solution.

• Application Realization is the sub-process that develops what was previously de-

signed. It reuses artifacts already produced from the domain realization and adds

code that is specific to the application. The result of this sub-process is a running

application that can be delivered to customers.

• Application Testing is responsible for validating the constructed application accord-

ing to definitions previously created. It is similar to domain testing but focuses on

features that are specific to the application.

However, Pohl, Böckle and Linden (2005) framework is intended to be used in

large environments where a large quantity of personnel is involved, therefore due to

project size restrictions, this work will use a subset of the process described by Pohl,

Böckle and Linden (2005). The domain engineering consists of product management,

domain requirements engineering and a union of domain design and realization. The

application engineering is described as a single process that encompasses all sub-process.

19

3 PRODUCT MANAGEMENT

This chapter is the experience report of the product management subprocess as

defined by Pohl et al. The scope of the SPL is specified by analyzing the market of

catalog applications. An analysis of similarities among available solutions is performed

in order to obtain knowledge about the domain. This software product line is named

Smart Catalog.

3.1 Scoping

Scoping is a sub-activity of Product Management which fundamentally analyzes

the commonality and variability to specify the key features of the software product line

(POHL; BÖCKLE; LINDEN, 2005; CLEMENTS; NORTHROP, 2001).

The aim of this SPL is to create a family of software products that are digital ver-

sions of products portfolios. By creating a virtual form of product catalog, computational

resources can be used in order to give dynamicity to the content, together with common

resources such as real-time product availability synchronization, products recommenda-

tion, personalization, search, and filtering.

Product portfolios are used by a large variety of business, for example, the menu

of restaurants; the product portfolio of a sales representatives; the products showcase

of a hardware company. Each company has its own custom functional process, so the

solution presented must be shaped for each business. Besides of having variability among

different areas of business, there is variability among business of the same area. With

that in mind, SPL is the approach that can deliver products for each specific case whilst

reducing production and maintenance costs by taking advantage of the overall similarity

of the required software.

Different types of markets are the target of this SPL. Wholesalers companies re-

quire catalogs to show their products to consumers. Independent salesman which repre-

sent other companies can also use catalogs to display their products. Stores in general also

use catalogs as a helper to display their products, it is common to find flyers of products

inside clothing stores. Restaurants and bars in general also have a form of showing their

products, which is usually their menu which is a form of a catalog. Currently, the market

is full of solutions, but most of them are specific to a customer and do not make use of

improvements of other solutions.

20

A customer is a person that will acquire an instantiation of the SPL, with the

desired customization according to its market area. The customers of this SPL are com-

panies that work selling items in a specific market. There is also an intended customer

that is the independent salesman, which would acquire the SPL software via an already

available instantiation of the SPL in a common application store.

There is a growing use of mobile applications in an enterprise environment. The

advent of mobile computing and its usage in the business environment makes it an area in

need for new solutions. This SPL takes benefit of this trend by developing the software

for mobile platforms.

For a complete understanding of the abstractions of this work scope, definitions

about product catalogs are necessary. The following is a list of all definitions used

throughout the remainder of this work:

• Item is the item being displayed. The catalog intends to display many items to

consumers. For example TV; radio; Bluetooth player.

• Category, also referred to as departments, it is a set of items that share similar

purposes and or attributes. For example, all items from the previous example are in

the electronics category.

• Item Set is a group of items that are grouped by its category or factors that are not

related to its category. For example, advertised items and recommended items are

item sets.

• Sub Categories are departments defined inside a broader category in order to better

distinguish peculiarities of a set of items

• Category Tree is the organization of the categories since a group of categories can

belong to a broader category.

• E-commerce is a software solution that enables the purchasing and selling of any

goods or services over the internet.

• Drawer Menu is a common user interface artifact in Android apps. It is the menu

of the application, which can be accessed swiping from the left border of the app or

via the menu button.

• Tab layout is another common user interface artifact in Android apps that consists

of different views to be organized in a tab.

21

3.2 Analysis of Existent Systems

During the scoping process, according to the desired market and clients, some

concerns about the main functionalities were found. These concerns are used to analyze

each of the chosen systems:

• Menus and Navigation analyzes which options are available through the app menus,

such as searches, filters, and sorting options. This dictates the way the user interacts

with the app and in which ways the user can reach a specific functionality of the

app.

• Special set of items verifies which set of items the app uses to display to the user,

such as recommendations and advertised items.

• Set of items UI analyzes the layout on which the app present a set of items

• Item detail UI verifies how the app present information regarding one item to the

user.

• Home screen UI verifies the elements shown to the user on the first and main view

of the application.

• Product Management identifies if the app allows the user to register new items and

if the app data is retrieved from external systems.

• Connectivity analyzes if the app can be used offline or if it requires a working

connection to the internet.

Some aspects are not analyzed in this work. Features such as account manage-

ment, purchasing, and shopping charts are not analyzed because they are out of the scope

of this work.

As this SPL line is intended to be built for Android, all chosen applications are

built for the Android OS. Apps were selected due to their similarity to the scope of this

work. Nevertheless, there are plenty of apps available in the defined scope, but due to

constraints, only a few solutions were selected. The chosen apps for analysis are Amazon,

Ponto Frio, Mercado Livre, Enjoei and Ditlanta Catalog. The latter one is the solution that

was developed previously by the same author of this work.

The analysis is split into three groups. The first group is e-commerce apps, the

second group is community commerce apps and third is wholesaler app.

22

3.2.1 E-Commerce Apps

This group generally refers to large department stores. Usually, it is a mobile

version of their e-commerce website. A user of this software can add items to a chart and

make purchases. The products are registered automatically by integration with existing

ERP (Enterprise Resource Planning) that controls items stock, prices, and sales.

Amazon

Amazon App is a top quality app and has the highest number of downloads among

the apps analyzed. This app only works online, where data is fetched from online systems

on each view of the app. The home screen of the app has many views for recommenda-

tions, advertised items and items recommended to the user. The top view is a carousel (an

automatic sliding view of images) that displays ads. The user can make a string search of

items from many points of the app.

The drawer menu displays all available categories, grouped in category groups.

The user can select to view all items from a top category or navigate deep in the hierarchy

to visualize items of a subset of categories. The drawer also has options to visualize other

information, such as the user account.

The Amazon App does a great work showing on many views a group of items that

the system recommends to the user, as well as inserting promoted items to the user. Each

department view has special content, such as ads, best sellers, new releases, top rated.

Below this special content, there is a grid of the first items within that department. There

is also a link to the full list of items.

When showing a group of items, the app can display it in lists or grids, where the

user can select the type and size. The user can filter items with plenty of options that are

relevant to the items being displayed as well as sort items in many aspects.

When displaying a specific item, the app shows all information in sections orga-

nized in a list. Bellow item description, the app display reviews, ratings and a selection of

items that can be the previously visited and or recommendations. The user can share the

item to other apps or have a link to the external website.

23

Figure 3.1: Amazon app screenshot.

Ponto Frio

This app works only when online. There is no way of using the app in the offline

mode. The home screen is a view pager where the starting selected page has a carousel of

adds followed by a selection of previously visualized and advertised items. The leftmost

tab is a category tree view. The other tabs display a small list of items from featured

categories.

The app menu drawer contains only options related to the user account. Categories

navigation is made via the special categories tab in the main screen. The user can make

string search to find specific items.

The app only displays sets of items in large grids of items. The user has sorting

functionality and a few filter options to narrow the item set visualization.

When displaying details of an item, the app split information about the product

in different views. For example, there is a specific tab for item specification and another

specific tab for item reviews.

24

Figure 3.2: Ponto Frio app screenshot.

3.2.2 Community Commerce Apps

The main aspect of this group is that users of the system can register their own

items for sale and system users buy items from other users (and not from the company).

The rest of the application is similar to the previous group.

Mercado Livre

This app, similar to the previous app, can only work in online mode, the app asks

for connection if it is being used without connection to the ethernet. The main view of

the app is presented with a carousel of itemized categories followed by a staggered grid

of items. The items displayed on the main screen are a selection of advertised items.

The drawer menu only has options related to the user account and specific platform

options such as the item registration button. The categories can be accessed from the

categories items on the main view or trough a special button on the main screen.

When displaying a set of items, the user can choose among the following dis-

play options: small staggered grid, large staggered grid or list view. The user can make

25

Figure 3.3: Mercado Livre app screenshot.

searches as well as select, order, and filter group of items.

The product view is concentrated on a single view, where all info is laid in a list

fashion followed by reviews of the vendor.

Enjoei

This app can only function with a working internet connection. The first view

shows a grid of featured items where there are adds in between items. On the main view,

there are three pages where the user can find items according to its preferences. The

categories are accessed from a menu drawer where there is also available options related

to the user account and the option to register a new item.

The items group layouts available to the user are a vertical list, grid, and staggered

grid. When displaying details of an item, the app shows a large picture of the item,

followed by the descriptions organized in a list. After the description, the app shows a set

of recommended items.

26

Figure 3.4: Enjoei app screenshot.

3.2.3 Wholesaler apps

The app in this category is intended for usage by wholesale companies where sales

representatives use the application to help in the company sales process. This type of app,

as opposed to e-commerce, is not intended for final customers.

Ditlanta Catalog

This is the application previously developed by the same author of this work. It

is the only application that works offline. When the app is online, it fetches latest data

and updates its local database, making the app available in situations where there is no

internet connection.

The main screen of the app consists of a grid of shortcuts to category groups. A

category group leads to a tab pager view where each page contains a category from the

shortcuts. The main view has a search option that allows the user to make string searches.

The drawer menu is available when displaying groups of items and it displays

all available categories among the currently displayed items. There is no filter neither

27

Figure 3.5: Ditlanta Catalog app screenshot.

ordering options.

When displaying the details of items, the app only shows a large image of the item

and very limited information. However, this is the only app that has swipe gestures that

can move to the next or previous item without leaving the item detail view.

Features Summary

In order to better understand which features are available in the analyzed applica-

tions, Figure 3.6 shows a table of features present in each of them.

28

Figure 3.6: Features vs. analyzed apps.

29

4 DOMAIN REQUIREMENTS

This chapter organizes the features found in the product management phase. It

defines a formal variability that is used in subsequent processes.

4.1 Commonalities and Variability

During the analysis of the applications, as intended, many similarities were found:

• All of the solutions can show a large set of items, having small images to represent

each item.

• When the user clicks on an item being displayed on a set of items, a detailed view

is opened.

• All apps have a drawer menu.

• The items are organized into categories, and the categories are organized in a tree

structure. All apps have the tree hierarchy available to the user at some point.

• All of the solutions are able to perform string searches in the items.

• Images are used when displaying details of an item.

The studied apps have many variability points. Some aspects are different but sim-

ilar, whereas other aspects are specific to each application. The following is a compilation

of the differences found during the study:

• Four apps have specific sets of recommended items, advertised items and recently

viewed items, but each of these sets is displayed in a different manner among the

apps.

• Four apps use the carousel view in order to display ads.

• Two apps have the home screen split into different pages, and the pages content is

different among them.

• The initial page differs at an increased level between the apps, there are some which

show different contexts of items, whilst others can only show a single subject. Some

apps use the main screen mainly for advertising, while others use it to show only

the categories. The main view can contain a different combination of item sets and

can have different layouts.

• Each app is unique when displaying a single item. There may be ads and recom-

30

mendations on the detail view. The apps may display items specifications in a list,

or organized in tabs. The list layout is different among the apps. One software uses

swipe gestures to change the current item being displayed. It also depends on the

application whether to show or not user feedback and product ratings.

• One app allows the user to save searches.

• The system used to retrieve data is different.

• Two apps allow the registration of items inside the app.

• Four apps can filter items being displayed. All solutions are similar in the form of

displaying the filter, it is a menu accessible by a button.

• The drawer menu content is different. The categories tree view can be on the drawer

and each app has some platform specific options.

• The groups of item layout options available to the user are different. A single type

of layout has small differences between apps.

4.2 Feature Model

Having studied the similarities and variability of the apps, it is possible to detail

which features must be present in the SPL. The following is a list of mandatory features

that the SPL has to deliver in order to be an efficient product catalog solution. The SPL

must:

• Have a category organization, in form of tree. This is used on all apps as the app

navigation backbone. The SPL must allow the grouping of categories so that the

app can display a group of categories in different places.

• Have the item detail visualization fully customizable, in order to allow the use of

the catalog by any customer.

• Provide means of search and filtering. It is preferable that the solution is smart

enough to learn which options are available for a single SPL instantiation and dis-

play the filter and search options accordingly.

• Be able to create apps that work online and or offline.

• Provide a simple way of communication with other data providing applications.

• Allow items creation from inside the app.

• Provide various layout options when displaying groups of items.

31

Figure 4.1: Feature tree.

Figure 4.1 shows the identified features organized in a feature model, together with

applicable restrictions.

32

5 DOMAIN DESIGN AND REALIZATION

This chapter describes the chosen architecture plan and its implementation details

for the Android OS environment.

5.1 Domain Design

In order to take advantage of the commonality of the analyzed applications, it is

necessary to create the core of the SPL with an architecture that can separate concerns ef-

ficiently. There is a large range of architecture ideas that share the objective of separation

of concerns (Clean Architecture, Hexagonal Architecture (COCKBURN, 2005), Onion

Architecture (PALERMO, 2008), DCI from Coplien and Bjørnvig (2010) and BCE from

Jacobson et al. (1993)). All of them split the software into different layers where at least

one layer is for the interface and another is for business rules. The Clean Architecture

as described in Martin (2012) is the conjunction of all other previously cited architec-

tures. This is the chosen base architecture for this Software Product Line. The Clean

Architecture aims to be:

• Independent of Frameworks. It must not depend on specific libraries nor frame-

works. The architecture must be self-contained and allow the use of different frame-

works and libraries that are specific to each instance of the SPL.

• Testable. Each part of the software must be testable individually. UI, Database and

Web Servers must not depend on each other and core elements should not depend

on these factors.

• Independent of UI. The UI can change rapidly following new trends on user experi-

ence and new user interface guidelines. More soever each SPL customer will have

its unique requirements regarding UI.

• Independent of Database. The system must be independent of the persistent stor-

age system. Some solutions may require only local persistence whereas other may

require online synchronization with other systems. The architecture must be able

to save state independently of the system used to do it.

• Independent of any external agency. The business rules of the system must not

know anything about the outside world.

The basic principle of the Clean Architecture is The Dependency Rule where it

33

Figure 5.1: The Clean Architecture.

Source: Martin (2012)

states that code dependency only points inwards. It means that layers from the inside can

not know anything from layers from the outside. In particular, names of any software

entity created on outer rings must not be mentioned in inner rings. Data formats used

on the outside can not be used in the inside layers whereas outer circles changes do not

impact inner circles. The circles of Figure 5.1 represents the layers of the architecture.

The lower right of the Figure 5.1 shows an example interaction between layers.

The flow of data begins from the controller of the interface adapter and travels to the

use cases which deliver data back to interface adapters into the presenters. Note as well

the source code dependency represented by the arrows. In this interaction, there is an

apparent dependency contradiction where a use case must deliver data to presenters, thus

inflicting in main dependency rule that code must only depend inwards. This is solved

with the Dependency Inversion Principle where interfaces and inheritance relationships

are organized in a way that code dependency is different from the flow of control on layer

boundaries. For example, the use case layer defines an interface making the methods

available for use case usage, and the Adapters implement this interface giving the real

implementation. This way the use cases do not need to know how the method will run on

the adapter that is outside of its scope. The same technique is used on all layer boundaries.

Polymorphism is thoroughly used to create code dependencies that are different from data

34

control flow.

Key aspects of the domain architecture

The Android framework which is used for app development introduces many lim-

itations on the application architecture. The basic architecture imposed by the Android

framework has flaws, such as views with very large responsibilities and complex logic

when dealing with asynchronous tasks. A desirable architecture should be efficient while

at the same time be adaptable to existing Android limitations in order to mitigate the in-

herited Android architecture problems. The principles of the Clean Architecture precisely

fulfill the requirements of the architecture for the SPL core. This architecture can adapt

to the restriction of the Android framework while allowing parts of the software to be

built independently. For example, use cases can be built in the core of the SPL, without

knowing where the data is saved or retrieved and removing complexity from the views.

This is the reason to use the Clean Architecture for the Smart Catalog core architecture.

In order to fulfill the dependency rule stated by the clean architecture, dependency

injection (DI) is used. DI allows client code to delegate the responsibility of providing

dependencies to external code (such as the database service) to external entities (the in-

jector). This is extremely useful when creating basic presentation classes in the core. For

example, the presentation layer of the core may require at some point a list of all entities,

although it does not need to know how such entities are stored or delivered. Each instance

of the SPL is an injector, being responsible for delivering the correct dependencies to the

core, allowing the core to work with interfaces or abstract classes.

As described in previous chapters, the core part of the SPL contains the software

assets that are the base for all different product instances. After the existent software

analysis and architecture definition, it is possible to define which features are available in

the core and thus available for reuse in new applications. The core of the Smart Catalog

SPL contains entities, the use cases and implementation of views that are common to

many applications analyzed as well as many utility code.

In the Smart Catalog SPL, the entity layer of the Clean Architecture is imple-

mented with interface models of Items, Categories, and CategoryGroups. The use

cases layer is implemented with concrete use cases for each of the existing models, re-

lying on repository interfaces for each model. The interface adapters are implemented

on the same level as the framework and drivers layer, in the presentation layer. This

outermost layer has implementations for the persistence systems, Android framework ex-

35

Figure 5.2: Core package diagram.

tensions and utilities, and implementation of user interface elements. Figure 5.2 shows

the packet diagram of the core.

5.2 Domain Realization

This section describes the implementation of the architecture defined in the previ-

ous section.

The development of the SPL was entirely made on the Android Studio IDE which

is the officially recommended tool for developing Android applications. The IDE has the

ability to manage various application modules that can depend on each other to create

an app. The core part of the SPL is in a specific module named core. The instances of

the SPL are created each on a new module that depends on the core module. Features are

only implemented on the SPL core module and the configuration is made on each instance

module. This separation is necessary due to the Android environment.

Besides of the feature development, a large development effort is necessary to

create the architecture organization of the SPL. This is why at this stage, some features

of the SPL were removed due to time constraints. Figure 5.3 shows the features that are

36

Figure 5.3: Implemented feature tree.

implemented in this work.

The EXTENDED feature is an example implementation of what could be the ab-

stract ITEM MODEL feature defined in the analysis. Each instance of the SPL may have a

different item model with different fields, depending on the client specification. A sample

specification is represented with the EXTENDED feature. The implemented features aim

at the core functionality of the Smart Catalog and a sample of features that exemplify how

the variability is implemented on software product lines.

In the implementation the architecture was simplified in three layers: Entities that

contain the entities, UseCases containing use cases and Presentation responsible for user

interface elements, persistence, and other utilities.

Entities

All the models defined in the core are interfaces with a method that must return

the id of the entity and other methods related to the other entities fields. This interface

37

is the type of data that is used to transfer data on crossing points. For example, if a UI

layer needs a specific field of the entity, it will use methods from the entity interface. With

this technique, the data does not need to be transformed to different objects when being

transferred between layers. Listing 5.1 shows the code that defines an item model.

Listing 5.1: Entity example

public interface ItemBasicModel extends ItemId {

@Override String getStringId();

String getCategoryStringId();

CategoryModel getCategory();

String getName();

float getPrice();

String getDescription();

String getImageUrl();

}

The defined features model has a mandatory ITEM MODEL feature and an optional

EXTENDED MODEL feature that is related to optional fields of the item model that a SPL

instance may require. In this work, only one extension of the item model was developed.

This is done by creating another entity model with the same identification property and the

additional fields. The two entities models are linked together by a one-to-one relationship

defined by the id property. Listing 5.2 shows the extended item model.

Listing 5.2: Entity extended example

public interface ItemExtendedModel extends ItemId {

@Override String getStringId();

ItemBasicModel getItemBasicModel();

boolean getIsPromoted();

boolean getIsSale();

boolean getIsAssembled();

boolean getIsNew();

float getPreviousPrice();

boolean mustShowPreviousPrice();

java.util.Date getCreationDate();

}

38

Use Cases

This layer accesses the persistence systems and delivers entities to the presenta-

tion layer. Since the persistence system must be implemented on the presentation layer,

as per the Clean Architecture, the repository pattern is used. Each model has a repository

interface described in the use cases layer, this allows the use cases implementation to use

the repository methods without knowing how the real implementation is done. The con-

crete implementation of the repository is delivered by the dependency injection system.

Listing 5.3 shows part of the implementation of the items use cases and Listing 5.4 shows

the ItemBasicRepository interface. It is possible to notice that the repository is not

instantiated by the use case, but injected by the dependency injection system.

Listing 5.3: Use case example

public class ItemBasicUseCases {

@Inject ItemBasicRepository itemBasicRepository;

@Inject public ItemBasicUseCases(){}

public Observable<ItemBasicModel> getAll() {

return Observable.create(

subscriber -> {

for (ItemBasicModel item :

itemBasicRepository.loadAll()) {

subscriber.onNext(item);

}

subscriber.onCompleted();

}

);

}

...

}

Listing 5.4: Repository example.

public interface ItemBasicRepository {

List<? extends ItemBasicModel> loadAll();

ItemBasicModel load(String itemId);

List<? extends ItemBasicModel> query(String query);

void insert(ItemBasicModel itemBasicModel);

void insertAll(List<ItemBasicModel> itemBasicList);

39

void remove(String itemId);

void removeAll();

}

The core also has use cases implementation and a repository interface for the EX-

TENDED ITEM MODEL, CATEGORY MODEL, and CATEGORY GROUP MODEL features.

Presentation

The presentation layer is split into three main packages: persistence, user interface,

and android framework utilities.

Persistence

The persistence system is implemented on the presentation layer, it is created by

implementing all the repositories interfaces defined by the use cases layer and all models

defined by the entities layer. In this work, there is only one persistence implementation,

which fetches data from an external system and saves it on the device to allow offline us-

age. With this, the offline and online features are set as mandatory on the feature model.

Future iterations of the Smart Catalog SPL can easily implement new persistence sys-

tems without changing other parts of the core since it is only necessary to implement the

interfaces.

Android Framework Utilities

This package contains utility methods related to the Android framework. This

package also contains the base classes for the Model View Presenter (MVP) pattern used

by the user interface package.

User Interface

The views of this SPL are organized with the MVP pattern. The usage of this

pattern is intended to decrease the complexity of the Android framework usage by imple-

menting basic code related to Android in the core framework and allowing SPL features

implementation to focus solely on the feature itself.

Each available feature of the SPL that is a user interface, has a specific package

40

that contains its implementation. For example, the HOME SCREEN UI feature is imple-

mented in the package core.presentation.ui.homescreen. In this specific case where

there are two sub-features available, each is implemented in a sub package, homescreen.

categorypages and homescreen.categorygroups, extending the same base class. The

implementation of the feature CATEGORY GROUPS as home screen is available in Ap-

pendix A.1.

The views may have events (such as click for details in an item) where new views

need to be created. The interface BaseAppDisplayFactory is responsible for giving the

variability of the UI elements that are created when such actions are performed. There are

sub interfaces for each UI feature described in the feature model. The methods of these

interfaces are used to start views related to the features. Listing 5.5 shows the definition

of those interfaces.

Listing 5.5: Views configuration.

public interface BaseAppDisplayFactory {

interface HomeScreenConfigurator{

void startHomeScreen(AppCompatActivity activityBase);

}

interface ItemSetsConfigurator{

ItemSetsCallbacks provideItemSetFragment(String searchQuery,

boolean isCategoryIdQuery);

}

interface ItemDetailConfigurator{

void switchToItemView(FragmentActivity fromActivity, String[]

categoriesIds, int position);

ItemDetailFragmentBase getItemDetailFragment(String itemId);

}

}

To exemplify, the creation of the home screen is explained. After the initial splash

screen of the app is showed to the user, the main screen must be loaded. The listing 5.6

shows the code used to perform the action.

Listing 5.6: UI action.

@Inject BaseAppDisplayFactory appDisplayFactory;

...

baseAppDisplayFactory.startHomeScreen(this);

41

...

The instance of AppDisplayFactory.HomeScreenConfigurator that is present

inside the appDisplayFactory field is injected by the dependency injection system.

The AppDisplayFactory.HomeScreenConfigurator interface, according to the feature

model, has two implementations described in Listing 5.7 and Listing 5.8, which can be

chosen from on the configuration of new SPL instances.

Listing 5.7: Home screen factory one.

public class GategoryGroupsHome implements AppDisplayFactory.

HomeScreenConfigurator {

@Inject public GategoryGroupsHome() { }

@Override

public void startHomeScreen(AppCompatActivity activityBase) {

Intent intent = new Intent(activityBase, MainActivityGroup.

class);

activityBase.startActivity(intent);

activityBase.finish();

}

}

Listing 5.8: Home screen factory two.

public class GategoryPagesHome implements AppDisplayFactory.

HomeScreenConfigurator {

@Inject public GategoryPagesHome() { }

@Override

public void startHomeScreen(AppCompatActivity activityBase) {

Intent intent = new Intent(activityBase, MainActivityTabbed.

class);

activityBase.startActivity(intent);

activityBase.finish();

}

}

The dependency configuration system must be started at some point of the soft-

ware execution. Android applications usually have a starting screen that is called splash

screen. This view is the first view created by the application and is showed to the user

while the application loads and configures the dependency system. Listing 5.9 shows

the code of the splash screen used in the Smart Catalog SPL, which is used to start the

42

dependency configuration system.

Listing 5.9: Dependency system start.

public abstract class SplashScreenBase extends AppCompatActivity {

@Inject ItemBasicRepository itemBasicRepository;

@Inject CategoryRepository categoryRepository;

@Inject CategoryGroupRepository categoryGroupRepository;

@Inject BaseAppDisplayFactory baseAppDisplayFactory;

@Inject ItemBasicUseCases itemBasicUseCases;

@Inject CategoryUseCases categoryUseCases;

@Inject CategoryGroupUseCases categoryGroupUseCases;

@Inject FirebaseAuth.AuthStateListener authStateListener;

protected static SplashScreenBase instance = null;

protected void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);

if (instance == null) {

synchronized (SplashScreenBase.class) {

if (instance == null) {

instance = this;

instance.injectMe(instance);

}

}

}

baseAppDisplayFactory.startHomeScreen(this);

}

public static SplashScreenBase getInstance() {

return instance;

}

protected abstract void injectMe(SplashScreenBase splashScreen);

}

The view classes of the Android framework are instantiated by the Android frame-

work itself, thus not allowing the views to be created with the dependency injection sys-

tem. The solution used is to make the splash screen a singleton that when created by

the Android framework, injects all the fields of the SPL. The onCreate method is called

by the Android framework, its implementation injects all fields and starts the singleton

43

reference to make the injected fields available for other views.

An additional splash screen class that extends the base class has to be used when

the EXTENDED ITEM MODEL feature is selected. This class extends the base splash screen

class and adds injected fields related to this specific feature. In this way, the code related

to the extended feature is only used when this feature is selected. Listing 5.10 describes

the additional splash screen class.

Listing 5.10: Dependency system start extended.

public abstract class SplashScreenExtended extends SplashScreenBase{

@Inject public ItemExtendedRepository itemExtendedRepository;

@Inject public ItemExtendedUseCases itemExtendedUseCases;

protected void injectMe(SplashScreenBase splashScreenBase){

injectMeInner(splashScreenBase);

injectMeInner(this);

}

protected abstract void injectMeInner(SplashScreenBase

splashScreenBase);

protected abstract void injectMeInner(SplashScreenExtended

splashScreen);

public static SplashScreenExtended getInstance() {

return (SplashScreenExtended) instance;

}

}

Note that the injectMe method is abstract. This is because the configuration call

must be made by each of the instances. The instances of the SPL must extend this method

in order to configure the dependency system. The configuration of the dependency in-

jection system, which is the configuration of a SPL instance, is explained on the next

chapter.

44

6 APPLICATION ENGINEERING

This chapter describes the process of creating final product instances of the SPL,

describing a general process and using a new app to explain it by example.

6.1 Configuration knowledge

When a new instance of the SPL needs to be created, a sequence of steps must be

followed:

• The first step is to create a new module on the Android Studio IDE and make it

depend on the existing core module.

• The DI configuration files must be generated and configured according to the fea-

tures selected from the feature model.

• Configure the Android manifest file to register the views chosen from the feature

model.

A new instance requires the creation of a new Android Studio IDE module and

only tree configuration classes, besides of the Android Manifest file and build file. The

configuration files are classes that configure the dependency injection system.

The configuration begins with the creation of an ApplicationComponent, which

Listing 6.1 describes. The code of this file is a copy on all instances of the SPL, although,

it must be created on each instance of the SPL due to requirements of packages names

needed by the dependency injection system.

Listing 6.1: Dependency injection component.

@Singleton

@Component(modules = ApplicationModule.class)

public interface ApplicationComponent {

Context context();

void inject(SplashScreenBase splashScreenBase);

}

The next file to create is the ApplicationModule which contains the configura-

tion of the ApplicationComponent. The configuration is done with provides annotated

methods. Each of these methods is responsible for instantiating the correct implementa-

tion of the function’s return type. For example, Listing 6.2 configures the system to use the

45

ItemBasicGreendaoRepository concrete implementation for the ItemBasicRepository

interface.

Listing 6.2: Dependency injection configuration example.

@Provides @Singleton

ItemBasicRepository provideItemBasicRepository(

ItemBasicGreendaoRepository repository){

return repository;

}

The feature ITEM is a mandatory feature, thus the configuration explained before

is mandatory on all instances of the SPL. This configuration is necessary in order to

include the associated assets of the feature in the derived product. This is also the case

for many other mandatory features used by the system. Having a configuration point even

for mandatory features prepares the SPL for new features that may be developed on the

future. For example, if a new repository that can fetch data from a XML file is created,

the new feature can be easily inserted just by changing an existing configuration point.

The optional feature EXTENDED ITEM MODEL requires a configuration method

only when it is selected. When selected, the system uses the classes related to that feature,

and when it is not selected, the classes are not used. Listing 6.3 describes the optional

feature configuration.

Listing 6.3: Dependency injection optional feature.

// Must be provided only if Extended feature is selected

@Provides @Singleton

ItemExtendedRepository provideItemPromotedRepository(

ItemExtendedGreendaoRepository repository){

return repository;

}

There are tree configuration points that vary according to selected features. For

example, when configuring the feature HOME SCREEN UI, if the sub-feature CATEGORY

GROUPS is selected, then the class CategoryGroupsHome must be provided. If feature

CATEGORY PAGES is selected then, the class CategoryPagesHome must be provided.

Listing 6.4 describes all the possible configurations according to a boolean logic, where

the left side of the expression are the features selected in the feature tree and the right side

is the name of the class that needs to be provided.

Listing 6.4: Dependency injection feature choice.

46

// CategoryGroups -> CategoryGroupsHome

// CategoryPages -> CategoryPagesHome

@Provides @Singleton

AppDisplayFactory.HomeScreenConfigurator homeScreenConfigurator(

GategoryGroupsHome homeScreenConfigurator){

return homeScreenConfigurator;

}

// Extended && SwipeToNextItem -> SwipeListExtendedDetail

// Extended && !SwipeToNexItem -> ListExtendedDetail

// !Extended && SwipeToNexItem -> SwipeListDetail

// !Extended && !SwipeToNexItem -> ListDetail

@Provides @Singleton

AppDisplayFactory.ItemDetailConfigurator itemDetailConfigurator(

ListDetail itemDetailConfigurator){

return itemDetailConfigurator;

}

// Extended && GridZoomable -> GridZoomItemExtendedSet

// Extended && Vertical -> VerticalItemExtendedSet

// !Extended && GridZoomable -> GridZoomItemSet

// !Extended && Vertical -> VerticalItemSet

@Provides @Singleton

AppDisplayFactory.ItemSetsConfigurator itemSetsConfigurator(

VerticalItemSet itemSetsConfigurator){

return itemSetsConfigurator;

}

The last file to be created is the splash screen extension, this file is responsible for

instantiating the configuration and injecting it. Listing 6.5 explains the implementation.

Listing 6.5: Dependency injection splash screen.

public class BasicSplashScreen extends SplashScreenBase{

@Override

protected void injectMe(SplashScreenBase splashScreen) {

DaggerApplicationComponent.builder()

.applicationModule(new ApplicationModule(getApplication

().getApplicationContext()))

.build()

.inject(this);

}

47

}

Note that the extended class must be SplashScreenBaseExtended if the EX-

TENDED ITEM MODEL feature is selected for this instance.

The Android manifest file should also be configured by referring the views classes

that are used by the SPL instance. This configuration step is not explained because it is

specific to the Android environment.

6.2 Ditlanta Catalog - An Instance of the Smart Catalog SPL

This section describes the instantiation process of a new Ditlanta Catalog app.

The same app analyzed to retrieve the features of the SPL is now instantiated with the

features created by the SPL. One feature is selected differently from what is available in

the original Ditlanta Catalog app in order to test if the other analyzed applications can

also have reproduced features.

This app requires offline availability because its usage is made in regions with low

internet connectivity. Although, the app must synchronize with an external database in

order to keep its data updated.

The Ditlanta business works with a large variety of items that can be grouped in

segments. This is mirrored to the app by creating a home screen that has shortcuts for

those group of categories. Since groups of categories are used on the home screen, the

menu drawer of categories is organized only with categories and not groups.

The layout that will be available when displaying a set of items is a vertical list

layout, which is different from the original version. The layout used when displaying

details of an item is the list layout. Since the detail view of an item is very simple, this

app allows the usage of the SWIPE TO NEXT ITEM feature.

Figure 6.1 shows the selected features of this instance from the implemented fea-

tures tree. The result of the implementation can be verified on Figures 6.2, 6.3, and 6.4.

The configuration file used by this instance is available in Appendix A.2.

48

Figure 6.1: Ditlanta Catalog app features selection.

Figure 6.2: Ditlanta Catalog instance home screen screenshot.

49

Figure 6.3: Ditlanta Catalog instance item set screenshot.

Figure 6.4: Ditlanta Catalog instance item detail screenshot.

50

7 DISCUSSION

This chapter discusses in more details the experience of developing the Smart

Catalog software product line

The SPL architecture planning and creation was underestimated in the initial phases

of development. It happens that the architecture planning and creation required more work

time than the feature analysis and development phases. This reinforces the idea brought

from the literature that a SPL creation has greater up-front cost, and this knowledge should

be taken into account when developing new software product lines.

The Android environment has peculiarities and restrictions. It is difficult to man-

age the framework activities and fragments, which are the basic views elements. The

classes related to these views have specific and complicated life cycle and are instantiated

by the Android environment. This required the special setup of the dependency injection,

provided by the splash screen.

There is as well a problem with the Android manifest file, which is a configuration

file required for all Android applications. This file needs to be recreated in each instance

of the SPL whereas, on the environment of this work, this file have a similar code on

all instances. A simple mechanism to create inheritance of this configuration file is not

available. On the other side, the Gradle build system that is used to make the builds of

Android applications turned out to be very useful and customizable. Information that was

similar to the core and new instances could be centralized in one single configuration file.

Some tools available for Android can only work correctly in modules that are of

the application type. The core of the SPL must be implemented in a library type module

which hinders the usage of some libraries. It is not possible to make an app module

depend on another app module in Android studio, an instance module must be of type

application and depend on the core library module.

A new SPL instance creation is simple, only requiring the creation of configuration

files, which are similar in every instance of the SPL. Besides, if a new instance requires a

feature that is not yet present in the SPL core, it can create the implementation and make

the configuration use this instance implementation instead of the core implementation.

Although, further cycles of development should generalize the feature and implement it

in the core.

The instantiation process of this SPL, besides of being simple, is made manually,

thus, prone to errors. There are currently available many tools for configuration knowl-

51

edge and product derivation, nevertheless, these tools are recent and do not focus on the

Android environment. The Android environment requires many files to be set up which

are not common in other development environments, these specificities should be mapped

to existing tools.

Further instances of the SPL are expected to trigger new core features. The ideal

process is to develop a feature into a single instance and when it is identified that this

feature is needed in another instance, that feature would be moved to the core and reused

in the new instance.

In comparison with the development of the features in the previous Ditlanta Cat-

alog application, the adaptation of existing features into the SPL platform of this work

required a very increased amount of development time. This is comprehensible because,

on the SPL platform, the features must be implemented according to the architecture de-

fined in this SPL in order to allow it to work in conjunction with all the features in the

feature tree. Moreover, it is expected that new features required by customers of the SPL

require more development time due to the adaptation of the features into the existing

SPL core. On the other side, the creation of new similar products is drastically smaller

when using the SPL. Instead of copying the existing application and adapting the existing

features in an ad hoc manner, leading to code duplication and substantial development ef-

fort, one can now simply make a different configuration of the SPL and generate a newly

adapted software solution. In this way, features are not duplicated, allowing the evolution

and maintenance of the products trough the SPL platform.

52

8 CONCLUSION

Software product line engineering creates a platform of common reusable soft-

ware parts that are used to deliver new products and reduces the time-to-market of new

products after initial steps of creation. In this work, five existing Android catalog applica-

tions were analyzed and derived a new software product line of catalog applications. The

implemented features in this work created the mandatory features necessary for catalog

applications and provided an example of how variability can be implemented. This new

software product line is at the first stage of creation and contains a small features subset

of the analyzed applications, yet, this SPL can generate new similar catalog applications

with reduced production costs.

The core and architecture of this SPL still have room for improvements. Many

features identified in the analysis phase were not implemented but should be, since its

necessity was already identified.

This work is the initial phase of the construction of the Smart Catalog product line.

With the features developed in this work, it is possible to generate many different catalogs

applications easily, which can adjust to some customers. The currently implemented fea-

tures can have sixteen possible configurations, but the full feature model defined by the

apps analysis could have more than five thousand possible configurations. With bigger

features set, more customers can be attended efficiently with low time-to-market.

The variability implementation on a SPL is a complex task. Although an example

implementation is described in this work, there are many different approaches available

for variability implementation. The complexity of implementation increases with new

features being added to the platform, thus, the creation of more features is intended on

future cycles of the Smart Catalog SPL implementation.

This project improved the researcher knowledge on SPL immensely. It gave pow-

erful insights on the analysis and implementation of software product lines. Difficulties

were found during the process and lessons were learned, as well as technologies used in

the Android environment.

The Ditlanta Catalog app instance is already being used by the real company Dit-

lanta. This gives trust to the solution delivered. The SPL aspect of Smart Catalog can

be used to deliver specific needs of specific clients. With this in mind, the Smart Catalog

SPL could be a business, and use SPL methodology as a market strength to deliver great

individualized products for their customers while not requiring a lot of workforce and

53

maintaining a high quality of products.

For a future work, the implementation of all features found by the analysis is

intended, as well as the automation of the configuration and instantiation process. More-

over, further studies can be made on the development of this SPL in a multi-platform

environment, which could aim the creation of Smart Catalog into different mobile plat-

forms.

54

REFERENCES

APEL, S. et al. Feature-Oriented Software Product Lines. [S.l.]: Springer, 2013.

CLEMENTS, P.; NORTHROP, L. Software Product Lines: Practices and Patterns.
[S.l.]: Addison-Wesley Professional, 2001.

COCKBURN, A. Hexagonal architecture. (website). 2005. Available from Internet:
<http://alistair.cockburn.us/Hexagonal+architecture>.

COPLIEN, J.; BJØRNVIG, G. Lean architecture: for agile software development.
[S.l.]: John Wiley & Sons, 2010.

COUTO, M. V.; VALENTE, M. T.; FIGUEIREDO, E. Extracting software product lines:
A case study using conditional compilation. In: IEEE. Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on. [S.l.], 2011. p. 191–200.

IDC, R. I. Smartphone os market share, 2015 q2. (website). 2015. Available from
Internet: <http://www.idc.com/prodserv/smartphone-os-market-share.jsp>.

ISLAM, M. R.; ISLAM, M. R. I.; MAZUMDER, T. A. Mobile application and its global
impact. In: INTERNATIONAL JOURNALS OF ENGINEERING & SCIENCES, 2010,
Rawalpindi, Pakistan. Proceedings... [S.l.]: IJENS, 2010. p. 72–78.

JACOBSON, I. et al. Object-Oriented Software Engineering-A use-case Driven
Approach. [S.l.]: Addison-Wesley, New York, 1993.

KRUEGER, C. Easing the transition to software mass customization. In: SPRINGER.
International Workshop on Software Product-Family Engineering. [S.l.], 2001. p.
282–293.

LINDEN, F. J. van der; SCHMID, K.; ROMMES, E. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. [S.l.]: NJ, USA:
Springer-Verlag New York, Inc, 2007.

MARTIN, R. C. The clean architecture. (website). 2012. Available from Internet:
<https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html>.

MATINLASSI, M. Comparison of software product line architecture design methods:
Copa, fast, form, kobra and qada. In: IEEE COMPUTER SOCIETY. Proceedings of the
26th International Conference on Software Engineering. [S.l.], 2004. p. 127–136.

PALERMO, J. Onion architecture. (website). 2008. Available from Internet:
<http://jeffreypalermo.com/blog/the-onion-architecture-part-1/>.

PARNAS, D. L. On the design and development of program families. IEEE Trans.
Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 2, n. 1, p. 1–9, jan. 1976. ISSN
0098-5589. Available from Internet: <http://dx.doi.org/10.1109/TSE.1976.233797>.

POHL, K.; BÖCKLE, G.; LINDEN, F. J. van der. Software product line engineering:
foundations, principles and techniques. [S.l.]: Springer Science & Business Media,
2005.

http://alistair.cockburn.us/Hexagonal+architecture
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://dx.doi.org/10.1109/TSE.1976.233797

55

SCHMID, K.; RUMMLER, A. Cloud-based software product lines. In: ACM.
Proceedings of the 16th International Software Product Line Conference-Volume 2.
[S.l.], 2012. p. 164–170.

VOELTER, M.; GROHER, I. Product line implementation using aspect-oriented and
model-driven software development. In: IEEE. Software Product Line Conference,
2007. SPLC 2007. 11th International. [S.l.], 2007. p. 233–242.

56

APPENDIX A — SOURCE CODE SAMPLES

A.1 Category Pages Feature Implementation

A.1.1 MainActivityBase

public abstract class MainActivityBase<P extends Presenter> extends

MvpRxActivityBase<P> {

public ProgressBar progressBar;

public Toolbar toolbar;

public BaseAppDisplayFactory baseAppDisplayFactory;

private FirebaseAuthentication firebaseAuthentication;

@Override

protected void onPause() {

super.onPause();

firebaseAuthentication.setOnPause();

}

@Override

protected void onResume() {

super.onResume();

firebaseAuthentication.setOnResume();

}

@Override

@CallSuper

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

baseAppDisplayFactory = SplashScreenBase.getInstance().

baseAppDisplayFactory;

firebaseAuthentication = new FirebaseAuthentication(this,

baseAppDisplayFactory);

progressBar = (ProgressBar) findViewById(R.id.progressBar);

toolbar = (Toolbar) findViewById(R.id.toolbar);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

MenuInflater menuInflater = getMenuInflater();

57

menuInflater.inflate(R.menu.menu_search, menu);

MenuItem searchMenuItem = menu.findItem(R.id.menu_search);

setupSearchMenu(searchMenuItem);

return super.onCreateOptionsMenu(menu);

}

void setupSearchMenu(MenuItem searchMenuItem){

SearchManager searchManager = (SearchManager) getSystemService(

Context.SEARCH_SERVICE);

SearchView searchView = (SearchView) MenuItemCompat.

getActionView(searchMenuItem);

searchView.setSearchableInfo(searchManager.getSearchableInfo(

getComponentName()));

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

int itemId_ = item.getItemId();

if (itemId_ == R.id.menu_switch_lock_task) {

Utils.switchLockTasMode(this);

return true;

}

return super.onOptionsItemSelected(item);

}

protected void setupToolbar() {

setSupportActionBar(toolbar);

}

public void stopLoading() {

progressBar.setVisibility(View.GONE);

}

}

A.1.2 MainActivityCategoryPages

public class MainActivityCategoryPages extends MainActivityBase<

MainActivityCategoryPagesPresenter> {

58

public TabLayout tabLayout;

public ViewPager viewPager;

private TabbedGalleryPageAdapter pagerAdapter;

@Override

protected void onCreate(Bundle savedInstanceState) {

setContentView(R.layout.activity_main_tabbed);

super.onCreate(savedInstanceState);

progressBar = (ProgressBar) findViewById(R.id.progressBar);

toolbar = (Toolbar) findViewById(R.id.toolbar);

tabLayout = (TabLayout) findViewById(R.id.slidingTabLayout);

viewPager = (ViewPager) findViewById(R.id.pager);

afterViews();

}

public void afterViews(){

setSupportActionBar(toolbar);

pagerAdapter = new TabbedGalleryPageAdapter(

getSupportFragmentManager(), baseAppDisplayFactory);

presenterAfterView();

setupToolbar();

setupPager();

}

private void setupPager(){

viewPager.setAdapter(pagerAdapter);

tabLayout.setupWithViewPager(viewPager);

tabLayout.setTabGravity(TabLayout.GRAVITY_CENTER);

tabLayout.setTabMode(TabLayout.MODE_SCROLLABLE);

}

public void stopLoading() {

progressBar.setVisibility(View.GONE);

viewPager.setVisibility(View.VISIBLE);

}

public void addItem(CategoryModel suitCase) {

59

pagerAdapter.addItem(suitCase);

}

}

A.1.3 MainActivityCategoryPagesPresenter

public class MainActivityCategoryPagesPresenter extends Presenter<

MainActivityCategoryPages> {

private static int OBSERVABLE_ID = 0;

CategoryUseCases categoryUseCases;

private Observable<CategoryModel> categoryModelObservable;

public MainActivityCategoryPagesPresenter(){

categoryUseCases = SplashScreenBase.getInstance().

categoryUseCases;

}

@Override

protected void onCreatePresenter(Bundle savedState) {

categoryModelObservable = ObservableHelper.setupThreads(

categoryUseCases.getAll().cache());

}

@Override

protected void onAfterViews() {

makeSubcription();

}

private void makeSubcription() {

restartable(OBSERVABLE_ID,

() -> categoryModelObservable.subscribe(new Observer<

CategoryModel>() {

@Override

public void onCompleted() {

if (getView() != null)

getView().stopLoading();

60

}

@Override

public void onError(Throwable e) {

throw new RuntimeException(e);

}

@Override

public void onNext(CategoryModel categoryModel) {

if (getView() != null) {

getView().stopLoading();

getView().addItem(categoryModel);

}

}

})

);

if (isUnsubscribed(OBSERVABLE_ID))

start(OBSERVABLE_ID);

}

}

A.2 Ditlanta app configuration module

@Module

public class ApplicationModule {

private final Context context;

public ApplicationModule(Context context) {

this.context = context;

}

//--------------------------

//mandatory provides

@Provides @Singleton

Context provideApplicationContext() {

return this.context;

}

61

//Persistence for Item model

@Provides @Singleton

ItemBasicRepository provideItemBasicRepository(

ItemBasicGreendaoRepository repository){

return repository;

}

//Persistence for Category model

@Provides @Singleton

CategoryRepository provideCategoryRepository(

CategoryGreendaoRepository repository){

return repository;

}

//Persistence for CategoryGroup model

@Provides @Singleton

CategoryGroupRepository provideCategoryGroupRepository(

CategoryGroupGreendaoRepository repository){

return repository;

}

//Helper container with options about UI

@Provides @Singleton

BaseAppDisplayFactory provideAppDisplayFactory(AppDisplayFactory

appDisplayFactory){

return appDisplayFactory;

}

//External sync

@Provides @Singleton

public DatabaseReference provideFirebase(){

FirebaseDatabase.getInstance().setLogLevel(Logger.Level.DEBUG);

DatabaseReference firebase = FirebaseDatabase.getInstance().

getReferenceFromUrl(BuildConfig.FIREBASE_URL);

return firebase;

}

//External sync authentication

@Provides @Singleton

62

public FirebaseAuth.AuthStateListener authStateListener(

LoginAuthStateListener authStateListener){

return authStateListener;

}

//--------------------------

//Optional feature

// Must be provided only if Extended feature is selected

@Provides @Singleton

ItemExtendedRepository provideItemPromotedRepository(

ItemExtendedGreendaoRepository repository){

return repository;

}

//--------------------------

// Choice features

// CategoryGroups -> CategoryGroupsHome

// CategoryPages -> CategoryPagesHome

@Provides @Singleton

AppDisplayFactory.HomeScreenConfigurator homeScreenConfigurator(

GategoryGroupsHome homeScreenConfigurator){

return homeScreenConfigurator;

}

// Extended && SwipeToNextItem - > SwipeListExtendedDetail

// Extended && !SwipeToNexItem - > ListExtendedDetail

// !Extended && SwipeToNexItem - > SwipeListDetail

// !Extended && !SwipeToNexItem - > ListDetail

@Provides @Singleton

AppDisplayFactory.ItemDetailConfigurator itemDetailConfigurator(

SwipeListExtendedDetail itemDetailConfigurator){

return itemDetailConfigurator;

}

// Extended && GridZoomable -> GridZoomItemExtendedSet

// Extended && Vertical -> VerticalItemExtendedSet

// !Extended && GridZoomable -> GridZoomItemSet

// !Extended && Vertical -> VerticalItemSet

@Provides @Singleton

63

AppDisplayFactory.ItemSetsConfigurator itemSetsConfigurator(

VerticalItemExtendedSet itemSetsConfigurator) {

return itemSetsConfigurator;

}

}

	Abstract
	Resumo
	List of Figures
	Listings
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background on Software Product Lines
	2.1 Key Concepts
	2.2 Basic Requirements
	2.3 Outcomes
	2.4 Challenges and Limitations
	2.5 Process

	3 Product Management
	3.1 Scoping
	3.2 Analysis of Existent Systems
	3.2.1 E-Commerce Apps
	3.2.2 Community Commerce Apps
	3.2.3 Wholesaler apps

	4 Domain Requirements
	4.1 Commonalities and Variability
	4.2 Feature Model

	5 Domain Design and Realization
	5.1 Domain Design
	5.2 Domain Realization

	6 Application Engineering
	6.1 Configuration knowledge
	6.2 Ditlanta Catalog - An Instance of the Smart Catalog SPL

	7 Discussion
	8 Conclusion
	References
	Appendix A — Source code samples
	A.1 Category Pages Feature Implementation
	A.1.1 MainActivityBase
	A.1.2 MainActivityCategoryPages
	A.1.3 MainActivityCategoryPagesPresenter

	A.2 Ditlanta app configuration module

