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ABSTRACT

Search algorithms are used in several applications nowadays; they are used for finding the

best path from a place to another in a city or between two nodes in a complex graph in a

data base system. There is a growing interest in accelerating applications, such as these, in

Field Programmable Gate Arrays (FPGAs). An FPGA is an integrated circuit whose logic

cells can be configured by the user, at any time. Lately these devices integrate processors

with the programmable logic, an example of this is the ZYNQ device from Xilinx with

an ARM processor embedded. This work presents a hybrid design of the best path search

algorithm A*, in which most of the algorithm was implemented to run in a processor and

a part was selected to be implemented in hardware (VHDL). The selected part was the

priority queue, which is based on a min binary heap, that the A* algorithm utilizes.The

ZEDBOARD (AVNET/Digilent) with a ZYNQ inside was used to develop the proposed

solution, which can improve the performance of a min binary heap implemented purely

in software by 68.8%.

Keywords: FPGA. programmable logic. processor. ZYNQ. priority queue. A* algo-

rithm. heuristics.



Um Estudo Sobre a Aceleração de Heurísticas de Busca em Lógica Programável

RESUMO

Algoritmos de busca estão sendo utilizados em diversas aplicações atualmente; são usados

para encontrar o melhor caminho entre um lugar e outro em uma cidade ou entre dois nós

em um grafo complexo em um sistema de banco de dados. Existe uma tendência cada vez

maior de acelerar aplicações, como estas, em Field Programmable Gate Arrays (FPGAs).

Um FPGA é um circuito integrado no qual as células lógicas podem ser reconfiguradas

pelo usuário/desenvolvedor a qualquer momento. Recentemente, estes dispositivos in-

tegram processadores com lógica programável, um exemplo disso é o ZYNQ da Xilinx

com um processador ARM embarcado. Este trabalho apresenta um design híbrido do

algoritmo de busca de melhor caminho A*, no qual a maior parte do algoritmo é imple-

mentada para rodar em um processador e a uma parte foi selecionada para implementação

em hardware. A parte implementada em hardware (VHDL) é a lista de prioridades que

o A* utiliza, a qual é baseada na estrutura de um heap binário. A placa ZEDBOARD

(AVNET/Digilent) com um ZYNQ dentro foi escolhida para desenvolver a solução pro-

posta, que melhora a performance de um heap binário (lista de prioridades) implementada

puramente em software em 68.8%.

Palavras-chave: FPGA, lógica programável, processador, ZYNQ, fila de prioridades,

algoritmo A*, heurística.
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1 INTRODUCTION

It is becoming more popular to find reconfigurable platforms based on Field Pro-

grammable Gate Arrays (FPGAs) integrated with processors. The top integrated circuit

manufacturers are already investing in this new approach, one example being the Zynq

devices from Xilinx, which packs in the same integrated circuit ARM processors fully

interconnected (via AXI bus - ARM AMBA bus) with an FPGA. Another example is the

new Stratix 10 from Altera, which packs in the same chip the programmable logic and

a quad-core ARM Cortex-A53 fully interconnected (via AXI bus also), which promises

better performance and power efficiency (BTDI, 2013).

These devices give designers more flexibility when devising a solution, since part

of an application can easily run in software and the other part can be implemented in

hardware. The co-design of an 802.11a transceiver system using Zynq SoC Drozdenko

et al. (2016) and the Implementation of ECG Encryption and Identification on the Zynq

SoC (ALI et al., 2016) are some examples of the utilization of these hybrid architectures.

This project’s goal is to accelerate a best path search algorithm in a hybrid plat-

form, such as the Zynq device from Xilinx. The A* (A star) search algorithm was pri-

marily chosen to be accelerated, that is, it will be mostly implemented in software with

some of the most time consuming parts implemented in hardware (FPGA). This algorithm

consists in a node-to-node search based on costs, in which each time a node is visited all

its neighbours are added to a list of most promising nodes. And so it goes on for every

node in this list until the goal node is found. The structure chosen to be accelerated was

the list of potential nodes to be visited, which basically is a priority queue.

The best path search algorithms are frequently used in embedded systems and

data centers. Some examples of the use of this algorithm in embedded systems are: path

planning for mobile robots (DUCHON et al., 2014), search and rescue of people in danger

in a perfect maze (LIU; GONG, 2011) and path planning for Unmanned Aerial Vehicles

(UAVs) (TSENG et al., 2014). The best path search algorithms are also used in data

centers to find the distance between two users (VIEIRA et al., 2007), to analyze the most

influential nodes (people) in social networks (KEMPE; KLEINBERG; TARDOS, 2003)

or to find relations between web pages (close web pages have related contents, enabling

page suggestions) (UKKONEN et al., 2008).
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Figure 1.1: Schematic of the Cyclone V SX SoC Development Board.

Source: Altera’s website.

Microsoft has released a paper describing the use of reconfigurable fabrics (FP-

GAs) for the acceleration of large-scale services in data centers (PUTNAM et al., 2014).

This would be a valid application for the project that is being proposed here, since best

path search algorithms (such as A*) are used in data centers and FPGAs are used to ac-

celerate data processing. Hence, the proposed solution has applications in both embedded

systems and large-scale data centers. It might improve not only the performance of these

applications, but also the system’s energy efficiency, which is another big concern in em-

bedded systems and data centers.

This work is organized as follows. Chapter 2 presents the theoretical references.

The proposed solution is presented in chapter 3, and the results are presented in chapter

4. The results are discussed in chapter 5. Finally, chapter 6 concludes the work.
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2 THEORETICAL REFERENCE

2.1 Related Work

Related work on the acceleration of shortest path search algorithms is summa-

rized here. Tommiska and Skytta (2001) present the Dijkstra algorithm implementation

in FPGA, with the intent to use this solution for network routing. The architecture used

is composed of a memory device (ROM) to store the nodes/adjacency list, a prefetching

block to get the potential next node, a comparator block that selects the best path from one

node to another and a RAM memory to store the shortest path so far (visited nodes). A

version of this algorithm was also implemented in C for comparison, and from the results

obtained, the execution time for the FPGA solution grew linearly according to the number

of nodes, whereas for the C solution the execution time had quadratic growth.

The paper on the Floyd-Warshall algorithm (BONDHUGULA et al., 2006) dis-

cusses the parallelization of this search algorithm in an FPGA, the optimization of the

algorithm’s parameters and compares the results obtained running an application in the

FPGA with the results obtained running the application on a CPU. Even though the Floyd-

Warshall algorithm computes all-pairs shortest path solutions for the problem (different

from A*), it is important to notice that, in this paper, all the solution was implemented in

FPGA, which is not what is intended in this project (A*) proposal, although the method-

ology used has some similar aspects to the one proposed in this project.

Priya, R. and Sridharan (2006) present the implementation of the revised simplex

method for linear programming, a single-pair shortest path algorithm, in FPGA. Again,

the entire solution is implemented in hardware, where parallelism is used to speed-up

even more the timing. A possible issue with this solution is that in the paper, the solution

has been tested for small graphs, and, according to the results encountered, a lot of the

area in the FPGA has been used. This leads to the conclusion that this solution is not

scalable, but it is a very fast one.

From the paper written by (BONDHUGULA et al., 2006) on the Floyd-Warshall

implementation in FPGA, we will utilize the idea of testing the performance of the hybrid

A* solution with the performance of a version of the A* search algorithm implemented in

C running in a general-purpose processor. Moreover, from (PRIYA; R.; SRIDHARAN,

2006) it is possible to conclude that the implementation of a search algorithm in hardware

seems to accelerate a lot the search for a path, but it might not be worth it if the area
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utilized on the chip is that huge for such a little quantity of nodes and arcs.

Idris et al. (2009) propose the implementation of the A* algorithm entirely in

FPGA, which was done by assuming that the nodes are organized in a perfect grid. This

assumption, in a way, facilitates the implementation of the solution, given that there is

no need to create/keep an adjacency list, but it also limits the applications in which this

project can be used. Assuming a grid also facilitates on the calculation of the heuristic,

since the best way to calculate the distance is already known (Manhattan distance) and it

will result in the exact cost from one node to the other.

Akiba, Iwata and Yoshida (2013) present the implementation of another shortest-

path algorithm, the breadth-first search, commonly known as one of the most simple

search algorithms. The authors demonstrate that an acceleration of this method can be

done by dividing/parallelizing in different cores the searches and pruning (least promising

paths of the graph are ignored) for search space reduction.

The best path implementation proposed by Akiba, Iwata and Yoshida (2013) ob-

tained a very small average query time for 1000000 random pairs of vertices, but the time

spent on preprocessing (calculating beforehand the distance between some vertices of the

graph) the datasets is very high, making this solution very time consuming.

Related work was also found on the implementation of priority queues. (RöN-

NGREN; AYANU, 1997) presents a comparative study on priority queue algorithms. The

authors obtained the following results: for queue sizes smaller than 1000 entries, the Splay

Tree, the Skew Heap and Henricksen’s algorithms show good access times, whereas for

lager queues, the Calendar Queue and the Lazy Queue have better access times.

(BLOOM; G.; NARAHARI, 2012) proposes a priority queue as a hardware data

structure, which is implementing the data structure using hardware mechanisms to im-

prove the overall performance. A shift-register based priority queue that supports very

large queues was proposed.

2.2 A* Algorithm

The A* is a well known form of best-first search algorithm (HART; NILSSON;

RAPHAEL, 1968). The cost from one node to another is evaluated and the most promis-

ing node is selected. The cost function is different from other algorithms, such as the

Dijkstra algorithm. In A*, the next node n to be expanded is the one that minimizes the

total cost (f(n)), which is the sum of cost from the source to n (g(n)) and an estimation
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of the cost from n to the goal (h(n)), as shown in (2.2.1). Given that h(n) is an admissible

heuristic, as will be discussed in section 2.2.1, the A* algorithm is complete and optimal,

that is, it will always find the best path from the start node to the goal.

f(n) = g(n) + h(n) (2.1)

2.2.1 Heuristics

The heuristics is what differentiates the A* from uniform-cost search algorithms.

It is a ’guess’ of the real distance/cost between a node and the goal node. Since it is

not actually the distance between the nodes, depending on the heuristics calculation the

algorithm converges more rapidly to the best path.

The chosen heuristics function has to respect one rule to guarantee the optimality

of the algorithm it has to be admissible. The heuristics function can also be consistent,

which is important to avoid duplicate node expansion.

• Admissibility:

The cost to reach the goal is never overestimated. That is, for all nodes in the graph,

the heuristic function is never greater than the actual cost from the current node to

the goal node.

This characteristic allows pruning (eliminating possibilities from consideration)

branches/sub-trees without missing the best path.

• Consistency:

According to Russel and Norvig (2014), a heuristic h(n) is consistent if, for every

node n′ of n generated by any action a, the estimated cost of reaching the goal from

n is no greater than the step cost of getting n′ plus the estimated cost of reaching

the goal from n′.

All consistent heuristics are admissible, but the contrary is not always true, al-

though it is quite difficult to achieve, in practice, a heuristic function that it is admissible

but not consistent.
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2.2.2 Algorithm Flow

The program flow of the A* algorithm should be:

1. Assume that the start node is the current node;

2. Find the current node neighbors by checking the adjacency list;

3. Calculate the heuristic (h(n)) and the total cost (f(n)) for each neighbor node;

4. Add neighbors to the priority queue with calculated cost (f(n)). The priority queue

is a queue in which all the entries are ordered priority-wise. By using this type of

queue there will be no need for searching the next node to be visited. A node will

always be inserted in the correct position, keeping the queue ordered. In the case of

the A* algorithm, the considered priority will be the cost function (f(n)), ordered

from minimum (top of the priority queue) to maximum values;

5. Mark the current node as opened/visited. A list should be used to make sure no

repeated nodes will be revisited;

6. Save the current node in a visited node list. This will allow the algorithm to form a

path from the start node to the goal node;

7. Make the first node in the priority queue the current note for evaluation. This will

be done by doing a fetch operation in the queue;

8. Repeat 2 to 7 until the goal node has been found;

9. Use visited node list to form a path from the goal node to the start node;

10. Return best path.

Figure 2.1, presents an example of the A* algorithm. It searches the best path

between the node Arad to the node Bucharest. In a) the algorithm usumes that the

initial node is the current node . b) Expands Arad, by adding it to the visited list, and

puts its neighbours into the priority queue. c) Gets most promesing node from the queue,

Sibiu, adds it to the visited list and puts its neighbours into the priority queue. d) Gets

most promesing node from the queue, Rimnicu Vilcea, adds it to the visited list and

puts its neighbours into the priority queue. e) Gets most promesing node from the queue,

Fagaras, adds it to the visited list and puts its neighbours into the priority queue. f)

Gets most promesing node from the queue, Pitesti, adds it to the visited list and puts

its neighbours into the priority queue. Then gets the most promesing node of the priority

queue, Bucharest, and stops because it is the goal node.
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Figure 2.1: An example of the A* algorithm flow. Under the nodes is shown f(n) =
g(n) + h(n).

Source: (RUSSEL; NORVIG, 2014)
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Note that the Dijkstra algorithm is a special case of A*. Both algorithms have the

same behavior when the heuristic for all the nodes in the graph is equal to zero (which is

an admissible and consistent heuristic).
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2.3 ZEDBOARD

Nowadays there are several options for developers in need of hybrid (software

+ hardware) solutions. Altera and Xilinx have IPs for soft processor cores, such as the

Microblaze (Xilinx) and the Nios (Altera). The problem with soft cores is that they occupy

a lot of FPGA space and the performance is not so good because the clock frequency is

not very high, generally around 125 MHz. Apart from soft cores, these two programmable

logic device suppliers are integrating hard processors in their’s FPGAs, examples of this

are the ZYNQ device from Xilinx and the Cyclone V from Altera. For this project, the

ZedBoard (AVNET/Digilent) was chosen, it contains a ZYNQ-7000 FPGA.

An overview of the ZYNQ-7000 is presented in figure 2.2.

Figure 2.2: ZYNQ-7000 Overview.

Source: Xilinx’s website.

The ZYNQ-7000 has a dual-core ARM Cortex-A9 processor integrated with pro-

grammable logic, which is exactly what it is needed to implement the hybrid A* solution.

There are also several peripherals connected to the ZYNQ-7000 and available to the pro-
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grammable logic part, such as UARTs or I2Cs, that will not be used in this project.

The speedgrade of the ZYNQ inside the ZEDBOARD is -1, and, according to

Xilinx’s documentation, for this speedgrade the clock frequency of the ARM processors

is 667 MHz. A 64-bit counter implemented in the programmable logic runs at a maximum

of 277 MHz according to the Xilinx documentation.

2.3.1 AXI Interface

As shown is figure 2.2, the processor cores communicate with the programmable

logic through the AXI interface, which is an internal bus created by ARM AMBA and

specified in the document AMBA R© AXITM and ACETM Protocol Specification. The

AXI interface is based on a valid/ready handshake, first the master sends a VALID signal

with DATA or ADDRESS and the slave responds with READY. The slave then operates

(read/write on a register) and sends a VALID signal with the RESPONSE (which can be

OK or an Error Indication) for which the master replies with a READY signal.

The AXI interface is divided in 5 channels:

• Write Address Channel: The master asserts VALID and sends the ADDRESS to the

slave, and the slave stores it and sends the READY signal;

• Write Data Channel: The master asserts VALID and sends the DATA to the slave,

and the slave writes it to a register (specified by the address sent previously) and

sends the READY signal;

• Write Response Channel: The slave asserts VALID and sends a RESPONSE, and

the master replies by sending the READY signal;

• Read Address Channel: The master asserts VALID and sends the ADDRESS to the

slave, and the slave stores it and sends the READY signal;

• Read Data Channel:The slave asserts VALID and sends a RESPONSE with the

VALUE read from the specified register, and the master replies by sending the

READY signal;

Figure 2.3 presents an example of the ready/valid handshake.
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Figure 2.3: Ready/Valid Handshake.

Source: AMBA R© AXITM and ACETM Protocol Specification.

The AXI interface supports 32-bit and 64-bit data buses. It also supports wait

states. There is no timeout implemented in the AMBA interconnect and the AXI master,

that is, once the master starts an operation (read or write) by asserting the VALID signal,

the slave can wait several cycles before asserting the READY signal.
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3 PROPOSED SOLUTION

Two implementations of the A* algorithm were made. The first is the algorithm

entirely in software. With this version it was possible to identify one of the most costly

parts of the algorithm, the priority queue operations/management. The queue operations

are so costly because each time a node is needed there is a memory operation, so the

ordering and re-ordering take several memory operations.

The second implementation of the algorithm was the hybrid implementation, in

which the same software developed before was used but with the priority queue imple-

mented in hardware. The A* solution is used to compare with the hybrid solution for

performance measure purposes.

The hybrid implementation of the A* algorithm was divided into three parts (each

described in one of the following subsections). The first part is the software, that will

do most of the operations. The second part is the connection between the programmable

logic (PL) and the programmable system (PS). The last part is the VHDL priority queue.

3.1 A* Software

Before starting the search for a best path between two nodes, the program loads

into its environment the nodes graph from the files stored in the DRAM of the ZED-

BOARD.

The program loads into an adjacency list the graph described in the ’.gr’ and ’.co’

files (3.1.1). After creating the adjacency list, the software program follows the A* search

flow presented in 2.2, that is, it selects the current node and calculates the cost to the

goal node (by adding the cost to the node and the heuristics) and starts an AXI write

transaction (sending the resulting cost value + node identification) to the PL. Then the

software inserts the current node in a path list and starts an AXI read transaction to get

the next current node.

The software always waits for the AXI slave response, which takes only the AXI

transaction cycles, before executing the next operations.

Note that the software was implemented in C with all the priority queue opera-

tions (push/pop of the queue) translated to Vivado’s SDK BSP AXI read/write operations

(Xil.in32 and Xil.out32).
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3.1.1 Challenge 9 format

The standard Challenge 9 format is a way to describe graphs used in the 9th Center

for Discrete Mathematics and Theoretical Computer Science (DIMACS) Implementation

Challenge - Shortest Paths. The graph is described in two files:

• ’.gr’ - Lists all nodes, arcs and arc weights;

• ’.co’ - Lists all nodes coordinates.

Each line of the file starts with a letter, ’c’ for comment, ’p’ for problem line (with

number of nodes and the number of arcs), ’a’ for an arc descriptor line and ’v’ for a

coordinate line. Each file line has one command followed by a new line.

Figure 3.1: Graph Example.

Source: the author.

For instance to describe an arc between nodes 1 and 2 with weight 5 the command

line is :

a 1 2 5

To describe the coordinate of each of this nodes the command lines are:

v 1 3 6

v 2 8 6
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3.1.2 SW - HW Interaction Flow

The diagram in figure 3.2 presents the flow of the entire solution.

Figure 3.2: Processor SW interaction with HW priority queue.

Source: the author.
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3.2 PS-PL Connection

Figure 3.3 presents an overview of the connections between the programmable

system (PS) and the programmable logic (PL).

Figure 3.3: PS-PL connections.

Source: Microelectronic Systems Design Research Group website

As shown is figure 3.3 there are 4 ways of passing data between the PS and the

PL:

• Slave General Purpose Ports - SGP0 and SGP1;

• High Performance Slave Ports - HP0, HP1, HP2 and HP3;

• Master General Purpose Ports - MGP0 and MGP1;

• Accelerator Coherency Port - ACP.

Since the strategy is to run the program in the PS and use the priority queue func-

tionality in the PL, the PS is the AXI Master that requests queue operations to the PL

which is the AXI Slave. Because of that, the port used is the MGP0, which is a master for

the PL and a slave to the PS.

According to ZYNQ’s technical references manual, the PS can access the PL via

MGP0 port by communicating through the memory mapped address range 4000_0000

to 7FFF_FFFF.

3.3 VHDL Priority Queue

The priority queue architecture is based on the binary min heap presented by Ku-

mar et al. (2014). An overview of the block implemented is presented in figure 3.4.
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Figure 3.4: Priority Queue Overview

Source: the author.

The binary heap is a complete binary tree (all levels of the tree, except the last

one are fully filled) consistent with the Heap property, the key (estimated cost) stored in

each element id is less than or equal to the keys in each node’s children. The binary heap

supports two operations, bubble-up and bubble-down. The bubble-up adds a new element

to the heap, it consist of three steps :

1. Add the element to the bottom level of the heap;

2. Compare the added element with its parent; if they are in the correct order, stop;

3. If not, swap the element with its parent and return to the previous step.

The bubble-down removes the root of the heap, it consist of three steps :

1. Replace the root of the heap with the last element on the last level;

2. Compare the new root with its children; if they are in the correct order, stop;

3. If not, swap the element with one of its children and return to the previous step.

3.3.1 AXI Registers

The AXI Registers block contains an AXI slave interface with 2 registers:

• Address [0x00] - Data Read (32-bits): Contains the identification of the root of the

binary heap, the next data to be requested by the PS. This allows the fastest possible

AXI response. This is a read-only register.

• Address [0x04] - Data Written (32-bits): Composed of the estimated cost (16 bits -

which is the size of a ’short int’ in C) and the node identification (16 bits). This is a

read/write register.
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Whenever there is an AXI write on the Data Written register, the Trigger_WR

signal is asserted. Respectively, when there is an AXI read operation, the Trigger_RD

signal is asserted. These triggers plus the data in the registers are sent to the Queue

Manager block.

3.3.2 BRAMs

There is one BRAM block for each binary heap level, allowing parallel access to

data during an Enqueue operation. The BRAMs are fairly simple to operate, they are

dual-port and composed of 8 signals:

• Read Clock: Clock used to read from the BRAM;

• Write Clock: Clock used to write to the BRAM;

• Write Data;

• Write Address;

• Write Enable;

• Read Data;

• Read Address;

• Read Enable;

The BRAM answers 1 cycle after the rising edge of the enables.

Figure 3.5: Binary Heap in a BRAM structure. Each level of the heap is stored in one
BRAM

Source: the author.

The architecture of the heap is saved in a BRAM by level, that is, each level of the

binary heap is stored in a BRAM. Figure 3.5 presents an overview of the distribution of

the heap nodes in the BRAMs structure.
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3.3.3 Queue Manager

The Queue Manager is responsible for handling all the binary heap operations,

that is, the dequeue (bubble-down) and the enqueue (bubble-up). This block also keeps

updated the value of the Data Read register with the root of the heap. The Queue Manager

is divided in 3 modules (the Finite State Machine (FSM), the Get Parents and the Get

Children) and Block Random Access Memories (BRAMS).

To explain these three modules, we will need to understand the priority queue key

operations, the dequeue and the enqueue.

Enqueue

The basic Enqueue operation is: a path from the first vacant leaf to the root is

calculated, the new node to be inserted is compared to all the nodes in this path and re-

ordered if necessary (if the new node has a lower estimated cost than one of its parents

they change places) and the nodes are re-inserted in the heap.

An example of the enqueue is shown in figure 3.6.

Figure 3.6: Enqueue Operation

Source: (KUMAR et al., 2014)

Dequeue

When a Dequeue operation is triggered, the last leaf node is inserted in the root

position and a re-order operation is triggered. The re-order operation is done by compar-

ing and swapping the new root to its children. Obviously it will cause modifications in

the heap, but in the worst case log(n) swap operations will occur.

Figure 3.7: Dequeue Operation

Source: (KUMAR et al., 2014)
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3.3.3.1 Get Parent Module

This module calculates the index of the parents of the first vacant spot in the heap

(k), based on the following function:

kth = i/2k

In hardware, a fast and easy way of implementing this function is to shift right k

times the value of i.

The indexes are calculated in parallel to the rest of the computations, they depend

on the current SIZE of the queue. The SIZE is updated every time a transaction (incre-

mented if there was a node added to the queue, decremented if a node was removed)

finishes. One cycle after the SIZE register is updated, new parent values are made avail-

able, which is before they are needed by the enqueue operation.

3.3.3.2 Get Children Module

This module is composed of two multiplexers that select a PARENT’s children

address based on the PARENT’s address and the LAYER of comparison. The LAYER is

a signal that indicates in which phase of the Dequeue re-order the FSM is. For instance if

LAYER = 0 the children of the ROOT are the nodes in BRAM Level 1, and so on. The

LAYER signal selects in which BRAM the children are stored, and the PARENT address

selects which of the nodes in the BRAM are his children. An example of the comparison

LAYERs is shown in figure 3.9.

Figure 3.8 presents the architecture of this module.

Figure 3.8: Get Children Module.

Source: the author.
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Figure 3.9: Comparison Layers on a Dequeue Operation.

Source: the author.

3.3.3.3 FSM Module

Figure 3.10 shows the fluxogram of the FSM.

After the system is reset, 0xFFFFFFFF (the highest estimated cost possible )is

written to all BRAM positions, this is handled at the INITIALIZE_st and INITIAL-

IZE_WAIT_st. The INITIALIZE_st state sets each BRAM initial address and asserted

the write enables, and the INITIALIZE_WAIT_st state keeps the enables asserted and

increments the BRAM addresses so that all positions are covered. The write enables are

de-asserted after the initialization of the values of the BRAMs is complete. This is done

in order to be easier to check which positions are available and to end the compare/swap

operation in the dequeue operation (in state COMPARE_RD_st).

After the initialization, the system goes to the IDLE_st until an operation is trig-

gered. Since an insert operation in the queue cannot happen at the same time a removal

is occurring, the FSM handles both operations to make sure the queue will always be

ordered before a new operation.

If Trigger_WR is asserted, the Enqueue operation begins. At the WR_st all parents

of the current vacant node are retrieved from the BRAMs (the address of the parents was

already calculated by the Get Parents module). Then at the COMPARE_WR_st the node

to be inserted (N1) is compared to its parents, there are three possible outcomes from

these comparisons:

• If N1 has lower estimated cost than all of its parents, N1 becomes the new root and

all the parents are shifted one level down;

• If N1 has lower estimated cost than some of its parents, it is inserted in the right

spot and the parents with higher estimated cost are shifted one level down;

• If N1 has higher estimated cost than all the other parents, it will be inserted in the

vacant spot and no other changes to the queue will happen.
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Figure 3.10: FSM Flow.

Source: the author.
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After all nodes’ spots have been correctly defined, this data is written back to the

BRAMs at the state WR_WAIT_st, the register SIZE is incremented (thus changing the

output values of the GET PARENT module for the next queue insertion) and the FSM

returns to the IDLE_st.

If Trigger_RD is asserted, the Dequeue operation begins. At the state GET_NEW_ROOT_st,

the element in the SIZE + 1 position is retrieved from the BRAMs and stored in the reg-

ister ROOT. 0xFFFFFFFF is written in the position SIZE + 1.

After a new root is defined, this value is loaded to the PARENT register and the

CHILD1 and CHILD2 of this node are retrieved from the BRAMs at the GET CHILD

states. This has to be done in two states because the children are in the same BRAM.

Three comparisons happen at the COMPARE_RD_st:

• If the PARENT has lower or equal estimated cost than CHILD1 and CHILD2,

the dequeue operation is over. SIZE is decremented and the FSM returns to the

IDLE_st;

• If CHILD1 has lower estimated cost than PARENT and CHILD2, there is a swap

between PARENT and CHILD1 values. New PARENT and CHILD1 values are

written back to the BRAMs in the WRITE_BACK_st state, and CHILD1 value is

loaded to the PARENT register for the next iteration of the dequeue. The LAYER

of comparison is incremented (thus triggering an update on the CHILD1/CHILD2

addresses);

• If CHILD2 has lower estimated cost than PARENT and CHILD1, there is a swap

between PARENT and CHILD2 values. New PARENT and CHILD2 values are

written back to the BRAMs in the WRITE_BACK_st state, and CHILD2 value is

loaded to the PARENT register for the next iteration of the dequeue. The LAYER

of comparison is incremented (thus triggering an update on the CHILD1/CHILD2

addresses).

GET_CHILD1, GET_CHILD2, COMPARE_RD_st and WRITE_BACK_st are

repeated until no more swaps happen.
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3.3.4 Vivado’s Hybrid Solution Top Level Block Diagram

The top level block diagram of the implemented solution in Vivado 2014.2 is pre-

sented in figure 3.11.

Figure 3.11: Vivado’s Hybrid Solution Top Level Block Diagram.

Source: the author.

The top level block diagram is divided in 5 blocks:

• processing_system7_0: It is Xilinx’s ZYNQ processing system IP. The processor

block generates the FPGA clock (FCLK_CLK0). As shown in section 3.2, the PL

is connected to the programmable logic through the M_AXI_GP0 port.

• processing_system7_0_axi_periph: It is Xilinx’s AXI Interconnect IP. This block

is automatically added when one of the processor’s AXI interfaces is used.

• rst_processing_system7_0_100M: This block generates the system reset. It is also

automatically added when one of the processor’s AXI interfaces is used.

• axi4_lite_slave_0: This is the AXI Registers block as described in subsection 3.3.1.

• queue_mngr_0: This is the queue manager block as described in subsection 3.3.3.

The BRAMs are instantiated inside this block.

3.4 Test Environment

The goal of this project is to accelerate the A* algorithm by implementing some

of its functionalities in hardware. The software only solution was simulated entirely in
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the ZEDBOARD processors with a clock frequency of 660 MHz. The hybrid implemen-

tation was simulated also in the ZEDBOARD, with a clock frequency of 100 MHz for the

programmable logic.

The programs that generate files according to the Challenge 9 format do not gener-

ate the ’.co’ files. Since heuristics admissibility depends on the coordinates (the heuristic

function should never be greater than the actual cost from the current node to the goal

node).

The graphs where generated using a program called GTgraph (BADER; MAD-

DURI, 2006). This program generates ’.gr’ files according to the Challenge 9 format, the

size of the graph is configurable. The coordinates file was generated manually, with a

maximum of 15 arcs, which results in a queue with a maximum of 4 levels. Despite this

limitation, the results show that when comparing both designs there is a performance gain

in the hybrid solution.

The algorithm’s running time is kept by a hardware counter with a 10 ns reso-

lution, that is enabled via AXI transaction when the algorithm starts and disabled when

the algorithm ends. This was done because the C ’time’ librarie do not have nanosec-

ond/millisecond precision, which is where there is a difference in the solutions’ times.

The run time as well as the nodes of the final path to the goal were obtained with the help

of Xilinx’s Microprocessor Debugger (XMD).

The min binary heap in software and the min binary heap in hardware went through

three tests:

• Full Depth Insertion: Insert data until all levels of the queue are full;

• Emptying A Full Queue;

• Full A* implementation.

All tests were handled by one blind operator. Each test ran 100 times with random

input data.
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4 RESULTS

4.1 VHDL Priority Queue HW Simulation

While creating the VHDL implementation of the priority queue, several simula-

tions were ran to guarantee the integrity of the operations and that the min binary heap is

always correctly ordered. From the final simulation, it was possible to get a notion of how

long the enqueue and dequeue operation take. For instance, the average time to insert a

node in the queue is 4 clock cycles, to remove the root it takes 1 cycle and to re-order the

queue after a removal can take from 10 to 26 cycles depending on the value of the last

leaf and the depth of the queue.

Figure 4.1: Example Graph For Final Simulation Waveform. First F is inserted, then 4 is
removed and the heap re-ordered

Source: the author.

Figure 4.2 presents the waveform of the final simulation of the queue manager in

the simulator ModelSim. In the beginning of the wave, 4 is being inserted in the queue.

After this operation a node removal happens, the node with priority 4 is removed and after

some cycles the root is updated with the node with priority 8.

Figure 4.2: Excerpt Of The Final Simulation Waveform

Source: the author.
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4.2 VHDL Priority Queue Synthesis/Implementation

After successfully simulating, the design was synthesized and implemented using

Vivado 2014.2. Figure 4.3 shows the resource utilization for three different sizes of the

priority queue implementation.

Figure 4.3: VHDL Priority Queue Resource Utilization on the ZYNQ SoC.

Source: the author.

Analyzing the timing report for the implemented solution it is possible to estimate

the maximum clock frequency based on the Worst Negative Slack (WNS) of the clock

signal in the Intra-Clock Paths section. The WNS of the design is 1.506 ns, this means

that the minimum clock period is 8.494 ns, hence the maximum clock frequency that the

programmable logic will operate correctly is approximately 117.73 MHz.
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Vivado also generates reports on power after routing, which provides information

about the usage of voltage and other power resources for the entire design. According to

this report, the slice logic spends 0.006 W, the Block RAMs spend 0.013 W and the PS7

spends 1.308 W. The static power of the design is 0.147 W. Considering that this report

is done after the routing, when there is no program loaded in the processor, there is no

way to know how some signals will behave (their switching rates and such), so it is safe

to assume that the power consumed by the components is just a power estimate.

4.3 Full Depth Insertion

The first test made was to compare the insertion time of the bare metal software

heap and the hybrid solution. 15 random nodes, the maximum capacity of the heap, were

inserted 100 times and the run time was measured. The hybrid solution had an average

of 1.449 us and the software solution had an average of 3.827 us. Therefore, the hybrid

solution is 62.13% faster for insertion.

4.4 Emptying A Full Queue

Similarly to the procedure in section 4.3, 15 random nodes were inserted in the

heap and then removed from the heap. After running this experiment 100 times, the

average run time for the hybrid solution was 2.03 us and the average run time for the

software only solution was 15.67 us. Hence, the hybrid solution is 87.04% faster.

4.5 Solutions With The A*

For the comparison of the two solutions’ running time for a whole A* best-path

search, the running time counter is only set to count only after all the data initialization

(such as the adjacency list initialization) is done. The reason for this is that this part of

the program is equal in both solutions.

The heuristics function is Euclidean distance between two nodes. For the gener-

ated testing graphs, this is an admissible heuristic. For a 15-arc graph, starting on random

points and with random goals, the average running time measured for the hybrid solution

was approximately 5.41 us and the running time measured for the software only solution
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was 17.36 us.
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5 DISCUSSION

From the VHDL Priority Queue HW Simulation it is possible to conclude that the

re-ordering of the queue is by far the most time consuming operation. This is so, due to

the queue architecture presented in section 3.3. Each level of the queue is represented by

a BRAM, which is terrible when the FSM needs to read the children of a node (they are

in the same BRAM). And there is the delay to read the data from the BRAM. So to get

the children of node the following steps occur in the FSM (each represent 1 clock cycle):

1. Put address of the first child + asserts read enable;

2. wait for the BRAM to return the value;

3. Put address of the second child + save first child value;

4. wait for the BRAM to return the value;

5. Save second child value + de-asserts read enable.

The full depth insertion test result makes sense, considering that each time the

software handles a variable (during the heap enqueue and specially the dequeue) a mem-

ory operation occurs, and in the hybrid solution when adding a node, all nodes in the path

(all parents of the first vacant spot + the new node to be added) are inserted in parallel to

the queue. These results show that, even though the software operates at a higher clock

frequency, there are so much data handling that the memory delay compensates it, thus

making the hybrid solution faster.

The removal has a larger running time in both solutions, because they both have to

retrieve the parent’s children (in the same BRAM/memory) and compare and swap until

all the nodes are in the right position again. This can be very time consuming depending

on the value of the selected leaf node. If it has a very high cost when compared to the

other nodes in the heap, it will take more cycles for it to reach its right position at the

bottom.

While comparing the entire A* algorithm implementation using both solutions,

there was a increase in performance of 68.8%. The improvement is more similar to the

insertion in the queue running time than to the removal, that is because all neighbour

nodes are inserted in the heap, but not all nodes are removed. Moreover, some parts of

the code remained in software, reducing the total acceleration. One node is removed at

each A* iteration until the goal node has been found, which can be way before the queue

is empty.
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Differently from (TOMMISKA; SKYTTA, 2001), this project’s selected algorithm

for best-path finding is the A* algorithm, which expands fewer nodes with a good heuris-

tic. The architecture proposed by (TOMMISKA; SKYTTA, 2001) is similar to the one

proposed in this project, except for the partitioned implementation in hardware and soft-

ware, which gives the solution more flexibility (as explained before). Another difference

is that a priority queue was not used in the implementation of the Dijkstra algorithm.

According to the authors, not using it was a drawback considering the runtime, because

the runtime of a priority queue is O(E lg N2 ) (where E is the number of arcs and N is

the number of nodes) and the runtime without it is O(N2). So the use of priority queues

increases the performance of this type of search algorithms (the Dijkstra algorithm is a

case of the A* algorithm).

Comparing the proposed solution with the one proposed by Idris et al. (2009),

implementing the A* algorithm partially in software gives it greater flexibility, any graph

structure will be accepted and stored. Admitting different types of graphs/applications

also implies in having different methods for calculating the heuristic.
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6 CONCLUSION

The goal of accelerating the A* bare metal software by splitting its functionalities

into software and hardware was successfully achieved. The comparison of the results

of a min binary heap implemented entirely in software compared to one implemented

in hardware demonstrated that the hardware solution is 62.13% faster for insertion and

87.04% faster for removal of an entire 15-node queue.

The next step on the implementation of this solution is to create a mechanism

capable of handling the content in the BRAMs and in the DRAM of the ZEDBOARD.

That way when there are more nodes than space in the BRAMs, this new mechanism will

expand even more the capacity of the queue putting/getting data in/from the DRAM. This

mechanism could be implemented in hardware or in software (as suggested by Kumar et

al. (2014)). Additionally, a possible next source of acceleration is to transfer the cost and

heuristics functions calculations to the hardware.
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