
Parallel Computing and GPU Processing Approaches to GAIL Routines
Fabio Araujo da Silva Renan Guarese Fred J. Hickernell

Illinois Institute of Technology, Chicago, IL

Introduction & Objective

I GAIL (Guaranteed Automatic Integration
Library) MATLAB library:
I Set of algorithms for integration problems

in n-dimensions, using Monte Carlo and
Quasi Monte Carlo methods.

I Improving the performance of GAIL routines
through solutions in Parallel Computing and
GPU Processing.

Methodology

I Matlab's Parallel Computing Toolbox (PCT):
both CPU and GPU processing;

I Integrating Java classes to Matlab: parallel
calculations running in Java;

I Julia's performance vs. Matlab's

Materials andMethods

I All tests were done using an 8-Core I7 2.6GHz
CPU, with a NVIDIA GeForce GTX 965M GPU
(1024 cores), on Windows 10.

I Among the functions adapted, MeanMC CLT
was chosen to be displayed in this poster.

I MeanMC CLT: Monte Carlo method to
estimate the mean of a random variable.

References

HICKERNELL, Fred J. et al. GAIL: Guaranteed Automatic Integration
Library 2011. http://gailgithub.github.io/GAIL Dev/

ALTMAN, Yair Accelerating MATLAB Performance 2014: CRC Press.

REESE, Jill; ZARANEK, Sarah GPU Programming in MATLAB 2012.
http://www.mathworks.com/

First Results

Discussion

These results led us to pursue a different course:
GPU Processing. We adapted this function to
increase its computational cost by replacing the
simple random numbers generation with the
European Call Option, given by:

Max(S(T), 0) − K, where

S(T) = S0 × e(
−σ2

2 ×T+σ×
√

T
d×

∑d
j=1 Zj)

Zj = IID N(0, 1)

FutureWork

I Perform tests on a GPU cluster;
I Look for new effective parallel approaches on

CPU.

Final Results

Conclusions

I Preliminary results showed that PCT's
overhead is too high on CPU;

I Tests in Julia language have proven to run
quite fast on 1-core, however there's no gain
on parallel computing;

I Java presented satisfactory results, but the
data conversion (Java to Matlab) takes too
much time, nullifying its gain;

I GPU has proven to run faster as the
parameters get bigger.

Acknowledgements

fabio-ricardo@outlook.com renanghp@gmail.com hickernell@iit.edu


