
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JEAN LUCA BEZ

Evaluating I/O Scheduling Techniques at
the Forwarding Layer and Coordinating

Data Server Accesses

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Philippe O. A. Navaux

Porto Alegre
December 2016

CIP — CATALOGING-IN-PUBLICATION

Bez, Jean Luca

Evaluating I/O Scheduling Techniques at the Forwarding
Layer and Coordinating Data Server Accesses / Jean Luca Bez.
– Porto Alegre: PPGC da UFRGS, 2016.

73 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2016. Advisor: Philippe O. A. Navaux.

1. High Performance I/O. 2. Parallel File Systems. 3. Parallel
I/O. 4. I/O Forwarding. 5. I/O Scheduling. 6. Access Coordina-
tion. I. O. A. Navaux, Philippe. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“We keep moving forward, opening new doors, and doing new things,

because we’re curious and curiosity keeps leading us down new paths.”

— WALT DISNEY

ACKNOWLEDGMENTS

I want to thank my advisor Philippe Navaux for the opportunity to work with him

and his research group, for all the guidance and advice during the past two years. I would

also like to thank professor Lucas Schnorr who taught me a lot about some important

concepts of scientific research and for helping me organize, document and structure all

my research projects.

I want to express my sincere gratitude to my friends of the GPPD research group,

in special to my collegues of the parallel I/O field, Francieli Boito and Rodrigo Kassick,

for introducing and guiding me on my first steps in this amazing research field. I also

would like to acknowledge Francieli Boito for all the suggestions, insights, and discus-

sions throughout this period.

A special thank to my family who supported me during this exiting new phase of

my life and who encouraged me to persue my dreams. To my friends and all those not

mentioned here, that helped me in this journey, a sincere and thankful hug.

I would also like to extend my gratitude to the Federal University of Rio Grande

do Sul (UFRGS) and the Institute of Informatics (INF) for the opportunity of conducting

my research in this amazing scientific community; and the Conselho Nacional de Desen-

volvimento Científico e Tecnológico (CNPq) and the HPC for Energy (HPC4e) project

for the scholarship.

Experiments presented in this document were carried out using the Grid’5000

testbed, supported by a scientific interest group hosted by Inria and including CNRS,

RENATER and several Universities as well as other organizations (https://www.grid5000.fr).

ABSTRACT

In High Performance Computing (HPC) environments, scientific applications rely on Par-

allel File Systems (PFS) to obtain Input/Output (I/O) performance especially when han-

dling large amounts of data. However, I/O is still a bottleneck for an increasing number

of applications, due to the historical gap between processing and data access speed. To

alleviate the concurrency caused by thousands of nodes accessing a significantly smaller

number of PFS servers, intermediate I/O nodes are typically employed between process-

ing nodes and the file system. Each intermediate node forwards requests from multiple

clients to the parallel file system, a setup which gives this component the opportunity to

perform optimizations like I/O scheduling. The objective of this dissertation is to evaluate

different scheduling algorithms, at the I/O forwarding layer, that work to improve concur-

rent access patterns by aggregating and reordering requests to avoid patterns known to

harm performance. We demonstrate that the FIFO (First In, First Out), HBRR (Handle-

Based Round-Robin), TO (Time Order), SJF (Shortest Job First) and MLF (Multilevel

Feedback) schedulers are only partially effective because the access pattern is not the

main factor that affects performance in the I/O forwarding layer, especially for read re-

quests. A new scheduling algorithm, TWINS, is proposed to coordinate the access of

intermediate I/O nodes to the parallel file system data servers. Our approach decreases

concurrency at the data servers, a factor previously proven to negatively affect perfor-

mance. The proposed algorithm is able to improve read performance from shared files by

up to 28% over other scheduling algorithms and by up to 50% over not forwarding I/O

requests.

Keywords: High Performance I/O. Parallel File Systems. Parallel I/O. I/O Forwarding.

I/O Scheduling. Access Coordination.

Avaliação de Técnicas de Escalonamento de E/S na Camada de Encaminhamento e

Coordenação de Acessos ao Servidores de Dados

RESUMO

Em ambientes de Computação de Alto Desempenho, as aplicações científicas dependem

dos Sistemas de Arquivos Paralelos (SAP) para obter desempenho de Entrada/Saída (E/S),

especialmente ao lidar com grandes quantidades de dados. No entanto, E/S ainda é um

gargalo para um número crescente de aplicações, devido à diferença histórica entre a ve-

locidade de processamento e de acesso aos dados. Para aliviar a concorrência causada por

milhares de nós que acessam um número significativamente menor de servidores SAP,

normalmente nós intermediários de E/S são adicionados entre os nós de processamento e

o sistema de arquivos. Cada nó intermediário encaminha solicitações de vários clientes

para o sistema, uma configuração que dá a este componente a oportunidade de execu-

tar otimizações como o escalonamento de requisições de E/S. O objetivo desta disserta-

ção é avaliar diferentes algoritmos de escalonamento, na camada de encaminhamento de

E/S, cuja finalidade é melhorar o padrão de acesso das aplicações, agregando e reorde-

nando requisições para evitar padrões que são conhecidos por prejudicar o desempenho.

Demonstramos que os escalonadores FIFO (First In, First Out), HBRR (Handle-Based

Round-Robin), TO (Time Order), SJF (Shortest Job First) e MLF (Multilevel Feedback)

são apenas parcialmente eficazes porque o padrão de acesso não é o principal fator que

afeta o desempenho na camada de encaminhamento de E/S, especialmente para requisi-

ções de leitura. Um novo algoritmo de escalonamento chamado TWINS é proposto para

coordenar o acesso de nós intermediários de E/S aos servidores de dados do sistema de ar-

quivos paralelo. Nossa abordagem reduz a concorrência nos servidores de dados, um fator

previamente demonstrado como reponsável por afetar negativamente o desempenho. O

algoritmo proposto é capaz de melhorar o tempo de leitura de arquivos compartilhados em

até 28% se comparado a outros algoritmos de escalonamento e em até 50% se comparado

a não fazer o encaminhamento de requisições de E/S.

Palavras-chave: E/S de Alto Desempenho, Sistemas de Arquivos Paralelos, E/S Paralela,

Encaminhamento de E/S, Escalonamento de E/S, Coordenação de Acessos.

LIST OF FIGURES

Figure 2.1 Parallel I/O software stack...15
Figure 2.2 Major components of a parallel file system...17
Figure 2.3 Most used parallel file systems in parallel I/O research.18
Figure 2.4 Forwarding layer in the HPC I/O stack. ..18
Figure 2.5 I/O forwarding scheme on a large-scale cluster or supercomputer................19
Figure 2.6 Different representative I/O access patterns for scientific applications.........22
Figure 2.7 Illustration of the two phases of a collective I/O operation in MPI...............24
Figure 2.8 Interference on the access pattern of concurrently executing applications. ..24

Figure 3.1 Flow of requests through the IOFSL I/O node daemon.28
Figure 3.2 Four possible locations to use the AGIOS scheduling library.29
Figure 3.3 Flow of requests through an IOFSL node daemon with the new schedulers.31
Figure 3.4 Execution time of read requests directly accessing PVFS and with the

IOFSL default schedulers: FIFO and HBRR..35
Figure 3.5 Execution time of write requests directly accessing PVFS and with the

IOFSL default schedulers: FIFO and HBRR..35
Figure 3.6 Execution time of read requests directly accessing PVFS with the IOFSL

default schedulers (FIFO and HBRR) and AGIOS schedulers (TO, SJF, and
MLF). ..38

Figure 3.7 Execution time of write requests directly accessing PVFS with the IOFSL
default schedulers (FIFO and HBRR) and AGIOS schedulers (TO, SJF, and
MLF). ..39

Figure 4.1 Execution time of read requests using the SW scheduler when com-
pared to alternatives. ...45

Figure 4.2 Execution time of write requests using the SW scheduler when com-
pared to alternatives. ...45

Figure 4.3 Execution time of read requests using different window sizes for the SW. .47
Figure 4.4 Execution time of write requests using different window sizes for the SW. 47

Figure 5.1 Execution time of read requests using the TWINS scheduler compared
to HBRR and SW..51

Figure 5.2 Execution time of write requests using the TWINS scheduler compared
to HBRR and SW..52

Figure 5.3 Execution time of read requests using different window sizes for TWINS..54
Figure 5.4 Execution time of write requests using different window sizes for TWINS.55
Figure 5.5 Congestion window size for small read 1D strided accesses to a shared file.57
Figure 5.6 TWINS vs. collective I/O operations ..58
Figure 5.7 Overview of the impact of the number of I/O nodes using distinct sched-

ulers for the small file-per-process access pattern. ...59
Figure 5.8 Overview of the impact of the number of I/O nodes using distinct sched-

ulers for the small 1D strided access to a shared file. ...60
Figure 5.9 Overview of the impact of the number of I/O nodes using distinct sched-

ulers for the small contiguous access to a shared file. ..60
Figure 5.10 Execution time for an application under contention caused by another

concurrent running application. ..62
Figure 5.11 Interference factor between concurrent running applications using dis-

tinct scheduling algorithms. ..62

LIST OF TABLES

Table 3.1 Average request size (in KB) at different levels of the I/O stack for the
shared file scenario with small (32KB) 1D strided and contiguous accesses.36

Table 3.2 Average offset distance (in MB) leaving the I/O nodes for the shared file
tests. ..37

Table 3.3 Average request size (in KB) at different levels of the I/O stack for the
shared file scenario with small (32KB) 1D strided and contiguous accesses.40

Table 4.1 Average request size (in KB) at different levels of the I/O stack for the
shared file scenario with small (32KB) 1D strided and contiguous accesses.46

Table 4.2 Summary of the time complexity for inserting and selecting requests in
each scheduler. M is the number of servers and N is the number of requests in
the queue. ..50

Table 5.1 Average request size (in KB) at different levels of the I/O stack for the
shared file scenario with small (32KB) 1D strided and contiguous accesses.56

LIST OF ABBREVIATIONS AND ACRONYMS

AGIOS Application-Guided I/O Scheduler

ADIOS Adaptable I/O System

API Application Programming Interface

CIOD Console I/O Daemon

DOE United States Department of Energy

DVS Data Virtualization Service

FIFO First In, First Out

FUSE Filesystem in Userspace

GPFS General Parallel File System

HBRR Handle-Based Round-Robin

HDD Hard-disk Drive

HDF5 Hierarchical Data Format, Version 5

HPC High Performance Computing

I/O Input/Output

IBM International Business Machines

IOD I/O Daemon

IOFSL I/O Forwarding Scalability Layer

ION I/O Node

MLF Multilevel Feedback

MPI Message Passing Interface

NetCDF Network Common Data Form

PFS Parallel File System

POSIX Portable Operating System Interface

PVFS Parallel Virtual File System

RAID Redundant Array of Independent Disks

SJF Shortest Job First

SSD Solid State Drive

SW Server Window Scheduler

TO Time Order

TO-agg Time Order with Aggregation

TWINS Time WINdows Scheduler

UFRGS Federal University of Rio Grande do Sul

UFS Unix File System

ZOID ZeptoOS I/O Daemon

CONTENTS

1 INTRODUCTION...12
1.1 Contributions...13
1.2 Document Organization ...13
2 BACKGROUND AND RELATED WORK..15
2.1 Parallel I/O for High Performance Computing..15
2.1.1 Parallel File Systems..16
2.1.2 The Forwarding Layer ...18
2.2 I/O Optimizations ...20
2.2.1 Access Patterns ..21
2.2.2 Request Aggregation and Reordering..23
2.2.3 Request Scheduling..24
2.3 Summary..26
3 EVALUATING SCHEDULING IN THE I/O NODES ..27
3.1 I/O Forwarding Software Layer ..27
3.2 AGIOS Scheduling Library ...28
3.2.1 Schedulers ..30
3.3 Integrating AGIOS to the IOFSL Framework...31
3.4 Performance Evaluation...32
3.4.1 Experimental Platform...32
3.4.2 Experimental Methodology ...33
3.4.3 Performance of the IOFSL Scheduling Algorithms...34
3.4.4 Performance of the AGIOS Scheduling Algorithms..38
3.5 Conclusions..41
4 TWINS: AN I/O SCHEDULER TO COORDINATE SERVER ACCESS42
4.1 I/O Contention and Coordination ...42
4.2 Server Access Coordination ...43
4.2.1 Required Information to Determine the Data Servers ...44
4.2.2 Performance Evaluation...45
4.2.3 Investigating the Window Size...46
4.2.4 Discussion ..47
4.3 Time Window Based Scheduler ...48
4.4 Conclusions..50
5 EXPERIMENTAL RESULTS ...51
5.1 Performance of Write Requests...52
5.2 Investigating the Window Size ...53
5.3 Aggregation Sizes and Contention ..55
5.4 TWINS vs. Collective Operations ...57
5.5 Mapping I/O Nodes...58
5.6 Multiple Applications Scenario ...61
5.7 Conclusions..63
6 CONCLUSIONS ...64
6.1 Future Work ..65
6.2 Publications ...65
REFERENCES...69

12

1 INTRODUCTION

Scientific applications such as climate, flow, and seismic simulations fill the High-

Performance Computing (HPC) field with rising performance requirements in order to

provide knowledge and help understand complex phenomena. These requirements justify

the appearance of ever increasing large scale parallel platforms. For instance, the Sunway

TaihuLight supercomputer (NSCCWX, 2016) has 40, 960 nodes to achieve 93 petaflops

and the the Aurora supercomputer (ARGONNE, 2016), expected for the next few years,

will have over 50, 000 processing nodes to achieve 180 petaflops.

“The Opportunities and Challenges of Exascale Computing” report presented by

the U.S. Department of Energy (DOE, 2010) stated that the Exascale problem is more

than just a matter of scale. Applications’ behavior and performance will be determined

by a complex interplay of the program code, processor, memory, interconnection net-

work, and I/O operation. Therefore, achieving good performance on scale requires an

optimized orchestration of those components and a whole system view in order to under-

stand root causes of inefficiencies. Since I/O is a bottleneck for an increasing number of

applications, due to the historical gap between processing and data accesses speeds, it has

the potential of critically impacting applications’ performance on the next generation of

supercomputers.

To alleviate this existing imbalance and to reduce concurrency, a technique known

as I/O forwarding can be applied. This technique introduces a new layer in the I/O soft-

ware stack to decrease contention in the access to a file system. Thus, instead of having

thousands of machines accessing the servers at the same time, only a few hundreds of

intermediate nodes will be directly interacting with the storage servers. This additional

layer presents great potential to apply optimization on I/O requests. These optimizations

include, but are not limited to, requests reordering, aggregation and compression.

The I/O scheduling optimization technique has already been successfully applied

to the forwarding layer (VISHWANATH et al., 2010; OHTA et al., 2010) to adjust the ap-

plications’ access patterns. Nonetheless, in this work, we evaluate a distinct set of sched-

ulers including algorithms that were proven to bring performance improvements when

applied directly on the data servers, now employed at the forwarding nodes. Furthermore,

we demonstrate that both sets are only partially effective because the access pattern is

not the main factor that influences the performance of requests through I/O nodes. Addi-

tional details, such as concurrency and contention when accessing the data servers, must

13

be taken into account in this scenario.

Therefore, we propose two new scheduling algorithms for the I/O nodes which

work to decrease contention in the access to the parallel file system data servers. Our

algorithm uses time windows and coordinates accesses from intermediate nodes so that at

each time window they focus on one of the servers. As far as we know, this is the first

work to propose a scheduling technique such as this to the forwarding layer.

Based on an extensive set of experiments, we detect I/O performance improve-

ments with our algorithm over state-of-the-art algorithms. Moreover, our solution pro-

vides gains for 1D strided access pattern, comparable to the use of collective I/O opera-

tions, while being completely transparent to applications and I/O library-independent.

1.1 Contributions

The main objective of our research is to evaluate I/O scheduling in the forward-

ing layer, detecting algorithms that help improve performance and those whose overhead

prevent them from being used in this context.

Considering these goals, our main contributions are the following:

• We evaluate a total of five scheduling algorithms in the I/O forwarding layer.

We demonstrate that existing schedulers, that provide improvements when used in

the file system servers, do not provide similar results when applied to the forward-

ing layer. Furthermore, in most of the evaluated scenarios, their usage does not

harm performance.

• We propose two new scheduling algorithms to coordinate accesses to the parallel

file system servers, aiming at reducing contention and increasing performance.

We conducted an extensive evaluation of these new schedulers considering differ-

ent access patterns and forwarding scenarios.

1.2 Document Organization

The document is organized as follows. Chapter 2 presents a background on the

topics of this dissertation and discusses related work in parallel I/O optimizations. Chap-

ter 3 details the forwarding framework and scheduling library employed in our experi-

ments, alongside some insights on their integration. Additionally, this chapter describes

14

and presents the first results of our evaluation, considering the available scheduling algo-

rithms. Our new I/O schedulers are detailed in Chapter 4. In Chapter 5, we evaluate our

scheduler on the same scenarios as the previous experiments, comparing the results with

our previous investigation. Finally, Chapter 6 draws conclusions based on our findings

and presents some insights on future work.

15

2 BACKGROUND AND RELATED WORK

Some important concepts that serve as a base for this dissertation are explained

in the following sections. A brief overview of the I/O stack for High Performance Com-

puting is presented, alongside known I/O optimizations such as request reordering and

aggregation. Furthermore, this chapter also details related work in optimizing parallel

I/O, comparing those efforts to our own approach.

2.1 Parallel I/O for High Performance Computing

Scientific applications such as climate, flow, and seismic simulations fill the High-

Performance Computing (HPC) field with several performance requirements in order to

provide understanding of complex phenomena. These performance requirements also

include the ability to perform faster I/O operations at an increasing rate to collect as much

information as possible.

When such applications execute in a cluster environment or on a supercomputer,

their computation is divided among processes and those are distributed over selected

nodes to perform the computation. However, those applications generally have to read

or write data from shared files. In the case of supercomputers, the nodes responsible for

executing the application often have a simplified kernel to avoid possible interferences,

and they do not have local storage devices. For such scenarios, parallel file systems are

the alternative because they provide a shared storage infrastructure so applications can

access remote files as if they were stored on a local file system.

Because of the historical gap between processing and data access speeds, parallel

I/O is a limiting factor for many applications. Moreover, if all processing nodes were to

concurrently access the shared file system servers, contention would impair performance.

Figure 2.1: Parallel I/O software stack.
Parallel / Serial Applications

High-Level I/O Libraries

MPI-IO
POSIX I/O

VFS, FUSE

Parallel File System

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH2
(ROMIO)

PVFS2, Lustre, GPFS, Panasas

HDD, SSD, RAID

Source: Author, inspired by Ohta et al. (2010)

16

In order to support I/O from serial or parallel scientific applications, current super-

computers provide a multilayer software environment, as depicted by Figure 2.1. High-

level I/O libraries such as HDF5 (The HDF Group, 1997-2016), NetCDF (LEE; YANG;

AYDT, 2008) and ADIOS (LIU et al., 2014), provide storage abstraction and data porta-

bility for the applications. Those libraries execute on compute nodes, mapping application

abstractions into files, and encoding data in portable formats. Interfaces such as MPI-IO

(CORBETT et al., 1995) and POSIX (FUSE) are employed to interact with the parallel

file systems servers. These, in their turn, provide a logical file system abstraction over

many storage devices such as HDDs, SSDs or RAID.

2.1.1 Parallel File Systems

Large-scale systems, such as cluster and supercomputers, rely on parallel file sys-

tems (PFS) to provide a persistent shared storage infrastructure. These systems provide a

shared namespace, so applications can access remote files as if they were stored on their

local file system. Furthermore, to achieve high performance they harness parallelism by

distributing data across multiple storage nodes.

The parallel file system’s servers are divided into two groups: the data servers

and the metadata servers. The former are responsible for storing data, while the latter

are responsible for the metadata. Metadata is information about the stored data such

as its size, permissions, and its distribution among the data servers. Figure 2.2 depicts

a common parallel file system deployment, with separated metadata servers. However,

in some systems, the data and metadata servers roles can be played by the same node.

Additionally, parallel applications may span over several compute nodes or clients which

will generate concurrency when accessing the PFS’s servers.

All basic file system operations involve metadata access. For instance, when a

client wants to read or write a file it must first obtain the layout information and permis-

sions from the metadata server. Therefore the scalability of those accesses has a direct

impact on the overall system (REN et al., 2014). An alternative to improve performance

is to allow clients to cache metadata information, however in this scenario a cache coher-

ence policy must be in place. Some parallel file systems such as PVFS2 (LATHAM et

al., 2004) distribute metadata among multiple servers, while others such as Lustre (SUN,

2007) maintain a single centralized metadata storage. Centralizing metadata operations

may became a bottleneck for applications that work with a large number of small files.

17

Figure 2.2: Major components of a parallel file system.

Meta Server 1

Meta Server 2

Meta Server M

...

Data Server 1

Data Server 2

Data Server N

...

Meta Data Servers

Data Servers

Parallel File System

Client

Client

Client

...

Client

Client

Client

...

App. C

App. X

Processing Nodes

Client

Client

Client

...

Client

Client

Client

...

App. B

App. E

Client

Client

Client

...

Client

Client

Client

...

App. A

App. D

Source: Author

Each file is broken down into small sized chunks and distributed among the data

servers following a distribution algorithm (STENDER et al., 2008). This technique, called

striping, allows PFS to harness parallelism when reading or writing data. For instance,

PVFS2 and Lustre file systems use a default round-robin policy between data servers.

Additionally, the stripe size used in each PFS generally depends on the target applications.

The major parallel file systems in use are Lustre, IBM’s General Parallel File

System (GPFS) (SCHMUCK; HASKIN, 2002), Panasas (WELCH et al., 2008), and the

Parallel Virtual File System (PVFS) or its new branch, OrangeFS (DELL, 2012). From the

ten most powerful supercomputers in the world according to the November 2016 edition

of the Top500 list1, five use Lustre, two use their own solutions, two are based on Lustre,

and one uses GPFS.

As an overview of the most used parallel file systems in scientific research, we

analyzed several papers in a pre-defined five-year window for a survey on parallel I/O.

We have made a selection of widely known, leading quality conferences and journals.

This window covers publications between 2010 and 2014. We went through all proceed-

ings and issues inside the time window (5, 159 publications) to identify relevant work by

looking at title and abstract. During this process, 120 papers were pre-selected for further

analysis (2.3%). After reading the articles and answering a set of questions some pa-

pers were excluded because they were not relevant for the survey. In the end, 86 articles

remained (1.7%).

1https://www.top500.org/lists/2016/11/

18

Figure 2.3: Most used parallel file systems in parallel I/O research.

36
33

6

18

12

0

10

20

30

40

PVFS Lustre GPFSPanasasOther

(a) Parallel I/O research

29

23

15

6

12

0

10

20

30

40

PVFS Lustre GPFSPanasasOther

(b) I/O optimizations

Source: Author

We present those results in Figure 2.3 grouped by PFS and research purpose.

We can see that PVFS is one of the most used systems for parallel I/O research (Fig-

ure 2.3(a)). Furthermore, studies that focused on proposing I/O optimization techniques

(Figure 2.3(b)) were also carried out in PVFS. Therefore, for the purposes of this research,

we also employ PVFS. Since we focus on the I/O nodes, the choice of PFS does not make

our solution less generic.

2.1.2 The Forwarding Layer

The layered construction presented by Figure 2.1 can potentially accelerate paral-

lel application I/O for smaller-scale systems (ALI et al., 2009). However, as the number

of processing servers starts to grow, so does the existing bottleneck on the parallel file

system servers. A new layer was included in the I/O stack to alleviate the contention by

grouping accesses, and thus reducing the number of clients that directly interact with the

servers, as depicted by Figure 2.4.

Figure 2.4: Forwarding layer in the HPC I/O stack.
Parallel / Serial Applications

High-Level I/O Libraries

MPI-IO
POSIX I/O

VFS, FUSE

I/O Forwarding

Parallel File System

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH2
(ROMIO)

PVFS2, Lustre, GPFS, Panasas

HDD, SSD, RAID

IBM CIOD, Cray DVS, IOFSL

Source: Author, inspired by Ohta et al. (2010)

19

With the I/O forwarding layer, all requests are forwarded to dedicated processing

elements, known as I/O nodes. Typically, the number of I/O nodes is larger than the

number of file system servers, and smaller than the number of processing nodes. In this

scenario, the processing nodes may be powered with only a very simplified local I/O stack

in order to avoid its interference on performance, also known as operating system “noise”

(VISHWANATH et al., 2010).

When an I/O node (ION) receives requests, it redirects them to the back-end par-

allel file system, as depicted by Figure 2.5. This strategy reduces the number of clients

concurrently accessing the file system and can potentially reduce the file system traffic by

aggregating and reordering I/O requests (OHTA et al., 2010).

Figure 2.5: I/O forwarding scheme on a large-scale cluster or supercomputer.

Meta Server 1

Meta Server 2

Meta Server M

...

Data Server 1

Data Server 2

Data Server N

...

Meta Data Servers

Data Servers

Parallel File System

Client

Client

Client

...

Client

Client

Client

...

App. C

App. X

Processing Nodes

Client

Client

Client

...

Client

Client

Client

...

App. B

App. E

Client

Client

Client

...

Client

Client

Client

...

App. A

App. D

ION 1

ION 2

ION 3...
ION K

Forwarding Layer

Source: Author

By interposing this layer above the file system but below the rest of the I/O soft-

ware stack, as depicted by Figure 2.4, the I/O forwarding framework provides a com-

pelling point for optimizations (ALI et al., 2009). The main reason for this is that this

layer is transparent to applications and high-level I/O libraries and all optimizations per-

formed at the forwarding level are generally not file system dependent. Existing forward-

ing alternatives include IBM CIOD (ALMÁSI et al., 2003), Cray DVS (SUGIYAMA;

WALLACE, 2008) and the open-source IOFSL (ALI et al., 2009).

Considerable research (VISHWANATH et al., 2010; OHTA et al., 2010; VISH-

WANATH et al., 2011; ISAILA et al., 2011) has been focused on improving the I/O for-

warding layer performance. Some of them (VISHWANATH et al., 2010; VISHWANATH

et al., 2011; ISAILA et al., 2011) studied the I/O subsystem of an IBM Blue Gene/P su-

20

percomputer. In this architecture, the data staging mechanism initially applied multiple

threads per I/O node (one per processing node), without any coordination among them.

Vishwanath et al. (2010) identified some contention-related bottlenecks associated with

this design. They improved performance by allowing asynchronous operations in the I/O

nodes and by including a simple FIFO scheduler to coordinate accesses from multiple

threads. This scheduler alone provides improvements of up to 38%. They also optimized

data movement between layers through a topology-aware approach. Isaila et al. (2011)

proposed a two-level pre-fetching scheme for this architecture.

Similarly Ohta et al. (2010) improve performance of the IOFSL framework by

using I/O scheduling. They implement two algorithms: a simple FIFO and a quantum

based algorithm called Handle-Based Round-Robin (HBRR). The latter is based on an

algorithm successfully applied to parallel file systems’ data servers (LEBRE et al., 2006;

QIAN et al., 2009; BOITO et al., 2013; BOITO et al., 2015), that aims at reordering and

aggregating requests to improve the performance of the applications by modifying their

access pattern.

The I/O forwarding layer is present in the HPC I/O stack of several supercomput-

ers. For instance, the I/O forwarding technique was applied to build the storage infras-

tructure of Tianhe-2 supercomputer (XU et al., 2014), currently the second in the Top

500 list for November 2016 2. In this scenario, as the computing nodes do not have a

local I/O stack, all I/O operations are transferred to the intermediate I/O nodes. Other

supercomputers, such as the Titan (#3) (ZIMMER; GUPTA; LARREA, 2016), the Se-

quoia (#4) (PRABHAT; KOZIOL, 2014), the Cori (#6) (DECLERCK et al., 2016), the K

Computer (#7) (MIYAZAKI et al., 2012) and the Mira (#9) (PRABHAT; KOZIOL, 2014)

also have in their infrastructure some nodes dedicated to forward I/O requests and reduce

contention. This highlights the fact that the I/O forwarding technique is widely adopted.

Furthermore, several optimization strategies are applied to this layer for being transparent

to applications and file system-independent.

2.2 I/O Optimizations

It is known that numerous factors may interfere with applications’ I/O perfor-

mance, especially at large scale. Performance degradation can occur because of network

problems, software bugs, slow disk or contention when accessing the shared storage sys-

2TOP 10 Sites for November 2016 - https://www.top500.org/lists/2016/11/

21

tem (LARREA et al., 2015). A lot of research effort is put into optimizing, at different

layers of the I/O stack, how the applications perform their I/O. Modifying the file system

servers or clients, the applications, or using libraries and APIs are distinct ways of achiev-

ing the same goal: adjust the way applications issue their I/O requests, avoiding situations

that are known to degrade performance.

The following sections detail concepts related to I/O optimizations. The appli-

cation’s access pattern is described in Section 2.2.1 and some optimizations techniques

applied on these patterns are described in Sections 2.2.2 and 2.2.3.

2.2.1 Access Patterns

Applications issue their I/O requests (read/write) to the parallel file system servers

in different ways, depending on how they were designed and coded. Several characteris-

tics such as how many requests are issued, the requests’ sizes and their spatial location in

the file compose what we call the application’s access pattern. This pattern has a direct

impact on performance, hence a lot of research effort is put into optimizing data access

(LOFSTEAD et al., 2011; HE et al., 2013; YIN et al., 2013; KUO et al., 2014).

We can classify the access pattern in global or local. The global pattern describes

the behavior of the entire application, whereas the local pattern does it in the context

of a process or task (YIN et al., 2013). The local access pattern information is usually

employed to identify and apply optimizations on the client side, while the global access

pattern is more suitable in the context of the forwarding layer or file system servers since

it has an overview of the application’s data accesses.

Despite the fact that there is not a globally accepted convention to describe these

patterns, some factors or parameters are examined by several researchers of the parallel

I/O field. In this study, we consider the following key aspects to describe the application’s

data access pattern: the number of files, the spatial locality within the file, the size of

accesses and the I/O operation.

Regarding the number of files, we consider two common scenarios that portray

how most of the HPC scientific applications perform I/O. In the first one, each process of

an application that reads or writes data executes its operations in its individual file (file-

per-process) as depicted by Figure 2.6(a). On the second scenario, all the process share

a common file (shared file). Furthermore, the spatial locality parameter describes if the

access to a shared file is sequential, i.e. each process accesses contiguous chunks of the

22

Figure 2.6: Different representative I/O access patterns for scientific applications.

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

File B Layout

Process 0 Process 1 Process N

File A Layout File N Layout

(a) File-per-process

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

File Layout

Process 0 Process 1 Process N

(b) Shared file with contiguous access

0 1 2 3 4 5 6 7 8

0 3 6 1 4 7 2 5 8

File Layout

Process 0 Process 1 Process N

(c) Shared file with 1D-strided access

Source: Author

file (Figure 2.6(b)) or 1D-strided, i.e. each process accesses portions with a fixed-size gap

between them (Figure 2.6(c)).

When each application accesses its own file, the existence of a shared file system

is not always required. However, even when this pattern is present, often the files are

accessed by other processes or another application for post-processing or visualization,

requiring the existence of a common shared storage. Additionally, when the processing

nodes do not have storage devices attached to them, the PFS is a commonly used alterna-

tive, independently of the type of access.

The request size also has a profound impact on the I/O performance because of

the storage devices’ sensitivity to access sizes and network cost transmissions (BOITO et

al., 2015). For instance, small requests suffer more due to the overhead imposed by the

network latency, which dominates the cost of processing the request.

It is valuable and feasible to make use of application’s characteristic information

such as its access pattern to apply I/O optimizations (YIN et al., 2013). The next section

describes why aggregating and reordering requests, thus modifying the access pattern, is

essential to improve the I/O performance.

23

2.2.2 Request Aggregation and Reordering

The performance of contiguous data access is normally higher than that of non-

contiguous ones (YIN et al., 2013). This holds true for both hard disk drives (HDD) and

solid state disks (SSD). Furthermore, (ZIMMER; GUPTA; LARREA, 2016) points out

that small and random I/O request patterns negatively impact the file system performance.

Thus, applications benefit from continguously accessing a file and issuing fewer requests

to the file system, reducing the high I/O latency.

A technique called data sieving (THAKUR; GROPP; LUSK, 2002) attempts to

optimize read requests by issuing larger requests than the ones described by the user.

So, instead of making several non-contiguous access, a single call could be made that

enclosed all the offsets required by the application. This technique, however, is not ad-

vantageous when the gaps between requests outweigh the cost of reading and transferring

the extra data.

Collective I/O is another optimization strategy to improve read and write requests.

This technique can be employed at the disk level, server level or client level (THAKUR;

GROPP; LUSK, 2002). The MPI-IO interface allows users to collectively specify the

I/O requests of a group of processes, thereby providing additional access information and

a greater scope for optimization. Collective calls force all processes in an MPI com-

municator to issue their I/O operation simultaneously and to wait for each other upon

completion. Therefore, requests from each process are combined and merged whenever

possible to optimize data access. This allows the application to perform large, contiguous

accesses, even though the application’s requests may represent a non-contiguous one.

To implement collective operations, MPI-IO uses a technique called two-phase

I/O (ROSARIO; BORDAWEKAR; CHOUDHARY, 1993). In the first phase, processes

access data by making a single, large contiguous access. In the second phase, processes

distribute the data among themselves according to the desired offsets, as depicted by

Figure 2.7. This technique usually provides performance improvements because the I/O

cost is significantly reduced by issuing fewer, larger and more contiguous requests, even

though an additional communication is required.

It is important to notice that the optimizations cited so far, i.e. data sieving and

collective I/O, typically require the applications to modify its source code. The next

section describes additional efforts in providing better access patterns to the parallel file

systems without further alterations to the applications.

24

Figure 2.7: Illustration of the two phases of a collective I/O operation in MPI.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

File Layout

0 3 6 1 4 7 2 5 8

Process 1Process 0 Process N

Buffers

PHASE TWO
Communication

PHASE ONE
Read

Source: Author

2.2.3 Request Scheduling

Applications concurrently running on large scale clusters or supercomputers have

to perform their I/O operations to a shared file system, as stated in Section 2.1.1. However,

as one might expect, this concurrency is most likely to impair performance. Applications

may use high-level libraries as an attempt to improve their local access pattern. Nev-

ertheless, interferences generated by multiple applications accessing the shared storage

infrastructure might break or compromise the efficiency of the optimizations performed

on the client side.

In these scenarios, the I/O scheduling technique is applied to improve access to

the file systems data servers by organizing and reordering requests, taking into account

multiple competing applications. For instance, consider two applications that were locally

optimized by a library to issue their I/O requests contiguously. When those requests reach

the forwarding layer or the data servers, they may be interleaved, affecting each other

and possibly reducing the performance when compared to processing all the requests of

the application if it were to execute by itself. Furthermore, this may also happen in the

context of a single application. For example, if distinct processes were to contiguously

access a shared file, the file system’s data servers will observe a non-contiguous access

pattern. This phenomenon, illustrated in Figure 2.8, is called interference and it is the

cause of many performance losses in these shared environments.

Figure 2.8: Interference on the access pattern of concurrently executing applications.

Incoming queue of requests

3 2 1
REQUESTS

Application A

3 2 1
REQUESTS

Application B

0

0

Data Server

3 3 2 2 1 1 0 0

Source: Author

25

The role of the I/O scheduler is then to reorder, aggregate and determine the best

time to process each request. These scheduling techniques, applied at some layer of the

I/O stack (clients, I/O nodes or servers), decide where and when requests must be served.

Different schedulers can be found in the literature that range from a simple First-Come,

First-Served to more complex ones that involve coordination or access pattern adaptation.

Parallel file systems stripe data across data servers to explore parallelism. This ac-

tion, although effective in serving asynchronous requests, can break individual program’s

spatial locality. This holds true especially for synchronous requests of multiple concur-

rent applications. Based on the principle that applications usually rely on strong spatial

locality to ensure high I/O performance, Zhang, Davis and Jiang (2010) propose a scheme

named IOrchestrator. Their proposal coordinates request scheduling across data servers

by using time slices, based on the access patterns. Thus it can exploit spatial locality

by dedicating the service to one program at a time. Towards a similar goal Song et al.

(2011) proposed a scheduling algorithm for PFS servers. A window-wide coordination

concept was employed to make all data servers focus on serving requests from only one

application at a time.

The performance of collective I/O operations could be degraded in today’s HPC

systems due to the increasing shuffle cost caused by highly concurrent data accesses. To

address this issue Liu, Chen and Zhuang (2013) propose a hierarchical I/O scheduling

algorithm. They argue that the non-contiguous access pattern of many scientific appli-

cations results in a large number of I/O requests, which can seriously impair the per-

formance. The usage of two-phase collective I/O operations is a commonly employed

alternative but it also implies in increasing shuffle cost (both inter and intra-node) as the

scale and concurrency increases. Hence, they implement a scheduler that considers an

acceptable delay time to minimize the shuffle cost.

Different I/O scheduling algorithms were analyzed by Boito et al. (2015) at the

parallel file system’s data servers layer. These algorithms, selected and adapted from state

of the art, decide the order in which requests to each data server must be processed. They

do not focus on cross-application interference per se, but on adjusting access patterns to

obtain the best performance of the underlying I/O system. In many cases, this means

generating offset ordered requests or aggregating a large number of small requests into a

smaller number of larger requests.

Although many schedulers were created for the data servers, only a few were

designed or tested in the forwarding layer. Applying such technique in this layer of the

26

I/O stack has the benefits of being able to work with the global access pattern of the

applications and even coordinate access between concurrent ones. Based on this principle,

this work aims at evaluating and analyzing the behavior of selected schedulers that were

proven to show performance improvements in the parallel file system data servers but

now applied to the forwarding nodes. We hope that by working on a layer above the file

system, we could improve the overall I/O performance of the applications. Moreover,

applying schedulers in this layer of the I/O stack is complementary to using them in other

levels of the stack, i.e. this technique could be simultaneously applied in the clients, in

the I/O nodes, and in the parallel file system data servers.

2.3 Summary

Parallel I/O is a limiting factor for many applications because of the historical

gap between processing and data access speeds. Additionally, at scale, I/O performance

degradation can occur because of network errors, software bugs, slow disk or contention

when accessing the shared storage system. As an attempt to improve this unbalanced en-

vironment several techniques were proposed during the years. The I/O stack of large scale

clusters and supercomputers was expanded, including a forwarding layer to reduce con-

tention. Furthermore, optimizations on the clients, I/O nodes and servers were proposed

to adjust the way applications issue I/O requests, avoiding situations that are known to

degrade performance.

By studying related work, we observed that previous research efforts aimed at im-

proving the application’s access pattern. This was done by using collective I/O operations

or high-level libraries at the client side, or requests scheduling and aggregation at the par-

allel file system servers. Only a few work focused on the forwarding layer, present in

most of the today’s supercomputers. The research focused on the I/O nodes, still aims

at transparently improving the I/O performance of parallel applications. In this research,

we also tackle this problem by evaluating different scheduling algorithms in the context

of the forwarding nodes. We selected known schedulers, proven to improve performance

when employed by the parallel file system servers, to understand and measure their bene-

fits and drawbacks in the forwarding layer. Therefore, we focus our work on investigating

this and on proposing new schedulers for this layer.

27

3 EVALUATING SCHEDULING IN THE I/O NODES

In this chapter, we provide an investigation of five existing schedulers, covering

read and write requests for the three access patterns detailed in Section 2.2.1. Further-

more, we introduce the tools we have selected to help in our analysis of the benefits and

drawbacks of distinct scheduling algorithms in the forwarding layer.

3.1 I/O Forwarding Software Layer

The IOFSL framework (ALI et al., 2009) implements the I/O forwarding technique

as an attempt to bridge the increasing performance scalability gap between computing and

I/O components (LIU et al., 2013). IOFSL ships I/O calls from the applications, running

on computing nodes, to dedicated I/O nodes. The latter will then transparently perform

operations on behalf of the computing nodes.

This framework uses the stateless ZOIDFS I/O protocol and API from the ZOID

forwarding infrastructure (ISKRA et al., 2008), and the Buffered Message Interface (BMI)

network abstraction layer for high-performance parallel I/O. BMI provides request for-

warding over multiple parallel file systems (PVFS, Lustre, UFS, and PanFS) and inter-

connection networks (TCP/IP, InfiniBand, and Myrinet). The framework’s software stack

consists of two main components: a ZOIDFS client library running on the computing

nodes and I/O forwarding daemon (IOD) running on I/O nodes. The client library for-

wards I/O requests from the compute node kernel to the IOD which performs I/O on

behalf of the compute nodes.

In the I/O nodes, multiple threads are created to process the client’s requests. The

request scheduler component coordinates these threads’ accesses. It offers two options of

scheduling algorithms – FIFO and HBRR – to fill a dispatch queue and thus decide the or-

der requests must be processed. FIFO is a simple time order algorithm, and HBRR stands

for Handle-Based Round-Robin. HBRR employs multiple queues, one per handle, where

contiguous requests are aggregated whenever possible. From each queue, a maximum

number of requests (defined by the quantum parameter) may be served before moving to

the next queue (OHTA et al., 2010).

The flow of I/O requests through the IOFSL I/O node daemon is illustrated by

Figure 3.1. After going through one of the scheduling algorithms, requests are stored in

the dispatch queue. From the dispatch queue, requests to the same file and of the same

28

Figure 3.1: Flow of requests through the IOFSL I/O node daemon.

...
Server 1 Server 2 Server N

FIFO Scheduler

HBRR Scheduler

Time Order Queue

Per Handle Queues

I/O Schedulers

Request Aggregator

Dispatch Queue

Request Dispatcher

Parallel File System
Source: Author

type (read or write) are aggregated before being forwarded to the file system. Although all

data and metadata operations go through the IOFSL nodes, only read and write operations

go through the request scheduler component and are affected by scheduling algorithms.

For the experimental purposes of this work, we have selected the IOFSL frame-

work because besides being the only open-source alternative, it was already tested on

small and medium scale clusters and in production in a supercomputer. Additionally,

we could build on previous contributions and effectively compare our new scheduler, de-

scribed in Chapter 4, with the state of the art. Section 3.4.3 will discuss the performance

obtained by IOFSL with the FIFO and HBRR algorithms.

3.2 AGIOS Scheduling Library

Application-Guided I/O Scheduler (AGIOS) is a scheduling library (BOITO et

al., 2015) developed to be used by any I/O service that treats requests at file level, such

as parallel file systems or intermediates I/O nodes. The library itself is generic and can

be employed at four distinct and independent locations, as depicted by Figure 3.2. These

locations include the clients (left), the intermediary nodes from an I/O forwarding scheme

(middle), the parallel file system servers for metadata (top right) or data (bottom right).

Since AGIOS does not make global scheduling decisions, no overhead is expected

to come from that. Furthermore, the efficiency of the scheduling library is also dependent

on its placement in the I/O stack. For instance, each I/O node or data server could have

29

Figure 3.2: Four possible locations to use the AGIOS scheduling library.

Meta Server 2...

Data Server 1

Data Server 2...

Meta Data Servers

Data Servers

Parallel File System

Client

Client

Client

...

Client

Client

Client

...

App. C

App. X

Processing Nodes

Client

Client

Client

...

Client

Client

Client

...

App. B

App. E

Client

Client

Client

...

App. D

ION 1

ION 2

ION 3...

Forwarding Layer

Client

Client

...

App. A

Meta Server 1Client AGIOS

Meta Server AGIOS

Data Server AGIOS

ION AGIOS

Source: Author

its local scheduler managed by AGIOS and the decisions would be local concerning the

requests that arrive at that server. Therefore, the information about the access pattern the

scheduler has to work with is bounded by the environment deployment. For instance,

if AGIOS is placed on the clients, it would work only on scheduling requests from the

processes of that host. If placed on the forwarding nodes, it could work with a global

access pattern of a single application or with multiple applications (depending on the

forwarding layer deployment). Finally, if placed on the data servers, AGIOS would be

able to schedule the request to that specific server, without knowledge of other requests

or servers.

The AGIOS scheduling library implements five distinct scheduling algorithms:

• aIOLi (LEBRE et al., 2006);

• Multilevel Feedback (MLF) (BOITO et al., 2015);

• Shortest Job First (SJF);

• Time-Order (TO);

• Time-Order with Aggregation (TO-agg).

These algorithms, alongside their advantages, drawbacks and costs are further de-

tailed in the following section.

30

3.2.1 Schedulers

The aIOLi scheduler (LEBRE et al., 2006) is a quantum-based scheduler that

works to aggregate requests into larger ones. Once requests arrive at the scheduler, they

are inserted into the proper queue, based on the file. There are two queues per file to sep-

arately store read and write requests. The cost for including requests is O(M + Nqueue),

where M is the number of files and Nqueue is the number of requests in the largest queue.

To process the requests, each queue is iterated in offset order, aggregating contiguous

requests. A First-Come, First-Served criteria is used to select between distinct queues.

Additional waiting time may be introduced. However, while waiting, the scheduler is

able to aggregate requests in other queues. To select a request, the scheduler must go

through all the queues, thus the cost for selecting is O(M × N). From the algorithms

implemented in AGIOS, aIOLi is the only one that behaves synchronously, i.e. the next

request will only be selected to be served after the current one is processed.

The MLF was developed based on aIOLi. Thus, its insertion cost is the same as

aIOLi’s. However, MLF is capable of providing more throughput because there is no

synchronization between the user and the library after processing requests. Consequently,

it may not have the same aggregation opportunities as aIOLi. Additionally, not all queues

need to be considered before selecting a request, thus the incoming request order may not

be respected, which makes the selection O(M +N).

The SJF scheduling algorithm consists of two separate queues per file: one for

read and one for write requests. In each queue, requests are considered in offset order,

examining possible aggregations of contiguous requests. The first request of the smallest

queue (based on the sum of all its request’ sizes) is selected first. Therefore, the cost for

including requests is the same as aIOLi’s and for selecting requests is O(M).

The TO algorithm works with a unique single queue for both reads and writes.

Requests are processed in the First-Come, First-Served order. Furthermore, TO does not

perform aggregations by default. Therefore no scheduling overhead is expected, so the

cost for inserting new requests is constant. TO-agg, on the other hand, works just like TO

but it performs aggregations of contiguous requests. Because of that, inserting a request

implies in going through the entire queue. Thus, the cost isO(N), whereN is the number

of requests in the queue. The cost for selecting a requests is O(1).

It is important to notice that no scheduling algorithm is able to improve perfor-

mance for all situations, and the best fit depends on applications’ and storage devices’

31

characteristics (BOITO, 2015). The scheduling algorithms in AGIOS were evaluated

only in the context of the parallel file system servers. Hence, it is still unknown if those

that presented performance improvements are also able to improve read and write times

when decisions are made at the I/O forwarding layer. For this reason, we focus this study

on evaluating these different scheduling algorithms in this layer.

For the purposes of this research, from the available alternatives, we select three

schedulers: TO, SJF, and MLF. Although based on the same principle as the FIFO sched-

uler, we included the TO to illustrate the overhead of redirecting the flow of requests

through AGIOS. Moreover, the aIOLi scheduler is not considered because its synchronous

approach is not suited for the forwarding layer, and neither is the TO-agg because IOFSL

already has an aggregator before dispatching the requests to the file system.

3.3 Integrating AGIOS to the IOFSL Framework

Since AGIOS can be used by I/O services to manage incoming I/O requests at file

level (file offsets), we have integrated the scheduling library into the IOFSL framework as

a new scheduling option, just like FIFO or HBRR. This integration allows us to evaluate

Figure 3.3: Flow of requests through an IOFSL node daemon with the new schedulers.

FIFO Scheduler

Request Aggregator

HBRR Scheduler

Time order queue

Queue per handle

Dispatcher queue

Request Dispatcher

AGIOS Schedulers

TO

TO-agg SJF

MLF aIOLi

IOFSL Node Daemon

...

Parallel File SystemI/O Schedulers

Server 1 Server 2 Server N

Source: Author

32

existing schedulers for the parallel file system servers in the forwarding layer.

The new organization inside the I/O node is illustrated in Figure 3.3. With the

AGIOS scheduling option, incoming requests are added to the library’s queues when they

arrive at the forwarding layer. When the algorithm applied by AGIOS decides that it

is time to process a request, the callback function written inside IOFSL adds it to the

dispatch queue. This ensures that requests will be processed in the order dictated by the

scheduling algorithm in use by AGIOS.

Scheduling decisions for the existing algorithms implemented in IOFSL are local

to an I/O node, i.e. no global decisions or explicit coordination is done. Furthermore,

since AGIOS’ algorithms also share this characteristic, this behavior is maintained after

the integration. The library also exposes an API to prototype new schedulers.

3.4 Performance Evaluation

In this section, we evaluate and analyze the existing scheduling algorithms in

IOFSL and in AGIOS. Details about the platform used in our experiments are given in

Section 3.4.1 and our evaluation methodology is described in Section 3.4.2. Sections

3.4.4 and 3.4.4 discuss the results obtained with IOFSL and AGIOS, respectively. Fi-

nally, Section 3.5 summarizes the results and brings finals remarks to this chapter.

3.4.1 Experimental Platform

All experiments conducted in this dissertation were carried out in two clusters

from the Nancy site of Grid’5000 (BALOUEK et al., 2013). Four machines from the

Grimoire cluster were used as PVFS2 servers (acting as both data and metadata servers)

and 32 machines from the Grisou cluster were employed as clients. Up to 8 additional

machines from Grisou were selected to act as forwarding servers. Hence, each I/O node

runs on a separate machine not shared with clients or PFS servers. Furthermore, the

forwarding nodes are placed in the same cluster, close to the clients, to represent a real

life-like scenario.

Each node of the Grimoire cluster has two 8 core Intel Xeon E5-2630 v3 and

128GB of RAM. Grisou nodes are identical to Grimoire ones. A 558GB HDD is used for

storage at each server. Nodes are interconnected through a 10Gbps Ethernet network, and

33

there is also a 10Gbps link between the clusters. During the experiments, we exclusively

reserved all nodes of both clusters to minimize interference of concurrent jobs.

We used version 2.8.2 of PVFS with all its default parameters, including a simple

stripe distribution and a 64KB stripe size. Data servers were configured to perform I/O

operations directly to their storage devices, bypassing buffer caches (-trove-method

directio). This was done to avoid a situation where the scale of the tests would hide

the access pattern impact on performance.

The IOFSL framework was deployed in each I/O node, and its dispatcher uses the

PVFS client library to communicate with the file system, allowing a direct access instead

of accessing it through the PVFS kernel module. The use of IOFSL is transparent to

applications, as accesses are forwarded through the ZOID API. Therefore, no additional

modifications in the application’s source code were necessary. An environment variable

(ZOIDFS_ION_NAME) is set at the processing nodes to determine where requests must

be redirected. In tests where we work with more than one IOFSL node, clients are equally

distributed among I/O nodes. Additionally, the IOFSL daemon, which runs on each I/O

node was executed with all its default parameters, keeping the maximum number of re-

quests that can be aggregated from the dispatch queue (batch size) as 16. For the event

handler, IOFSL uses state machines.

3.4.2 Experimental Methodology

Los Alamos National Lab’s MPI-IO Test was written for parallel I/O and scale

testing (LANL, 2006). The MPI-IO test is built on top of MPI’s I/O calls and is used

to gather timing and bandwidth information for different access patterns such as N pro-

cesses writing to N files, N processes writing to one file, N processes sending data to

M processes writing to M files, or N processes sending data to M processes to one file.

We selected the MPI-IO Test benchmark because it implements different access patterns,

including the scenario where a single file is shared between processes and the access to

this file is not contiguous (1D strided). Other benchmarks, such as the IOR do not support

this access pattern common to applications and know to harm performance (LIU; CHEN;

ZHUANG, 2013; WANG et al., 2014).

The MPI-IO Test benchmark was executed by 128 processes to generate requests

through the MPI-IO interface. Tests were executed for the file-per-process approach,

where each process accesses contiguously its own independent file, and for the shared file

34

one. With the shared file approach, processes either access their own contiguous portions

or follow a 1D strided access pattern. These experiments represent access patterns that

are usual among scientific applications (LARREA et al., 2015).

Processes issue small (32KB) or large (256KB) requests to read or write files.

Small requests sizes are denoted to be less than the PFS stripe size, i.e. 64KB. On the

other hand, large request sizes represents a scenario where more than one data server is

required to complete the request. For the purposes of our experiments, we selected a

value so that all four data servers were involved in the operation. In each experiment the

application reads or writes a total of 4GB, i.e. 32MB per process.

From each execution, we take the makespan, i.e. the completion time of the slow-

est process, as the test’s execution time. We use this value as a performance metric be-

cause it represents the total time to process a workload from the file system point of view.

Experiments were repeated at least 8 times, and error bars were calculated using a

99, 7% confidence interval, i.e. there is a 99.7% probability that the true mean lies between

the lower and upper bounds of the interval. These bounds are equivalent to three times the

standard deviation divided by the square root of the number of measurements. Different

experiments were executed in a random order to avoid bias imposed by some uncontrolled

parameter, or some unexpected effect caused by a specific experimentation order. Addi-

tionally, the PFS servers and the forwarding services were stopped and restarted before

each experiment to avoid possible interference of previous executions.

3.4.3 Performance of the IOFSL Scheduling Algorithms

In order to evaluate and analyze the trade-offs of different scheduling algorithms

at the forwarding layer, we must determine the impact of this layer on the studied scale.

For that, we define a scenario where each node directly accesses the file system servers.

We consider two schedulers already implemented in the IOFSL framework: FIFO

and HBRR. The FIFO scheduler highlights the impact of forwarding the requests because

the intermediate I/O nodes are an extra hop between processing nodes and the file system.

In this approach, I/O nodes do not act as burst buffers but instead clients’ expectation of

persistent storage in the file system is met. Therefore, as this scheduler does not include

additional waiting times or any complex decision-making process, we can evaluate the

cost of the requests going though the I/O nodes plus the extra network hop before reaching

the data servers.

35

Figure 3.4: Execution time of read requests directly accessing PVFS and with the IOFSL
default schedulers: FIFO and HBRR.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

80.4

52.0 51.6

84.6

59.1 57.8

93.1

65.4 66.1

0

10

20

30

40

50

60

70

80

90

100

NO FIFO HBRR NO FIFO HBRR NO FIFO HBRR

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

66.6 62.6 62.7
59.6 56.8 56.9

61.1 59.3 59.1

0

10

20

30

40

50

60

70

80

90

100

NO FIFO HBRR NO FIFO HBRR NO FIFO HBRR

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

Figure 3.5: Execution time of write requests directly accessing PVFS and with the IOFSL
default schedulers: FIFO and HBRR.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

204.0

404.1 397.7

203.2
219.6 219.4 203.4

238.4 238.6

0

50

100

150

200

250

300

350

400

450

NO FIFO HBRR NO FIFO HBRR NO FIFO HBRR

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

69.8

185.0 184.2

107.6 107.4 106.7 110.5 110.4 111.3

0

50

100

150

200

250

300

350

400

450

NO FIFO HBRR NO FIFO HBRR NO FIFO HBRR

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

Figures 3.4 and 3.5 present the results obtained in the read and write tests, respec-

tively, with the three selected access patterns, described in Section 2.2.1. In all plots, the

first column (in yellow) denotes the time obtained without using the forwarding layer,

labeled as NO (no forwarding); and the second and third columns (in shades of red) show

the time obtained using IOFSL with its base scheduling algorithms. On the latter, the first

bar illustrates the FIFO scheduling algorithm, while the second bar represents HBRR.

We can see that the read performance for small requests (32KB) is improved up

to 35.80% just by using IOFSL (Figure 3.4), despite the extra transmission cost between

clients and the file system. Performance benefits from using the I/O forwarding layer to

all tested read access patterns: 35.80% when each process accesses its own file, 31.70%

36

and 23.73% when a common shared file is used with 1D strided and contiguous accesses,

respectively. Better results were observed for small requests than for large ones (256KB).

This can be explained by the fact that small requests benefit more from being aggregated

before arriving at the servers than the larger ones.

On the other hand, for write requests (Figure 3.5), performance significantly de-

creased in all scenarios, except for large requests to a shared file where no degradation was

observed. However, for small accesses to a shared file, the increase in execution time is

significant: 8.05% for 1D strided and 17.33% contiguous accesses. Large requests in the

file-per-process scenario presented the worse results. We observed performance degra-

dation of up to 165.23% if compared to writing data directly to the PVFS data servers.

Additionally, if we take into consideration only the FIFO and HBRR schedulers they do

present, on average, small differences in time, but error bars do not allow us to say that

they are statistically different.

One could believe the explanation for the good results observed for read tests

is that the gains obtained by aggregating requests before forwarding them to the PFS

compensates the overhead imposed by the extra hop. Nonetheless, this is not the case.

Table 3.1 details the median request size at different layers of the I/O stack during at least

10 repetitions of each one of the experiments with the IOFSL schedulers and the shared

file scenario. We did not include values for file-per-process because each file is accessed

by a single process, one request at a time, so there are no aggregation opportunities.

Table 3.1: Average request size (in KB) at different levels of the I/O stack for the shared
file scenario with small (32KB) 1D strided and contiguous accesses.

1D Strided (KB) Contiguous (KB)
READ WRITE READ WRITE

FIFO

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 57.75 57.72 57.72 57.79
Arriving at the data servers 49.87 49.23 43.52 43.66

HBRR

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 57.77 57.68 57.77 57.69
Arriving at the data servers 49.80 49.36 42.75 43.65

Source: Author

We can see that write tests present similar aggregated request sizes by IOFSL, but

they still do not achieve the same gains as the read tests. Moreover, the average request

size aggregated by the FIFO and HBRR schedulers are also similar.

37

Therefore, despite aggregating requests usually being helpful for performance, this

is not the main factor in the observed improvements of read operations. Another evidence

in this direction is that the best gains were seen with small requests in the file-per-process

scenario, where there are no aggregations opportunities. Furthermore, despite making

more effort into generating a better access pattern, HBRR does not outperforms FIFO.

Results for the two algorithms were not statistically different in any of the tests.

Table 3.2 presents the average offset distance of requests leaving the I/O nodes

during the shared file tests. The offset distance is a spatiality metric calculated by taking

the offset difference between every two consecutive requests. The higher the distance,

the less contiguous an access pattern is. The contiguous local access pattern presents

the highest average offset distances, i.e., it is actually the least contiguous global access

pattern. This happens because each process contiguously accesses its own portion of the

shared file, but different processes are accessing requests that are sparse in the file. During

the 1D strided test, requests from different processes are contiguous to each other. The

average offset distances during tests with FIFO and HBRR are very similar. Hence, we

can notice both algorithms result in very similar access patterns. This explains why they

perform similarly.

Table 3.2: Average offset distance (in MB) leaving the I/O nodes for the shared file tests.

1D Strided (MB) Contiguous (MB)
READ WRITE READ WRITE

FIFO 42.94 47.83 1358.18 1353.51

HBRR 42.05 47.57 1357.22 1353.79

Source: Author

We have also measured the time difference between consecutive requests. These

values were obtained from four new executions of the 1D strided shared file test through

a single I/O node. In the intermediate I/O node, we have traced all requests’ arrival

time. We have considered only the first 128, i.e. the first request from each of the 128

processes. Since tests are synchronous, all requests after the first 128 depend on the time it

took to process the previous ones, so they are not independent. We have used the median

because it is less sensitive to outliers, and timing values inside each test tend to have high

variability. For read requests, the median time difference is 26.09µs, whereas for write

requests it is 50.92µs. Since read requests are smaller than writes (they do not carry data

when issued), they arrive at a faster pace to the I/O nodes or to the server, if I/O nodes

are not present. Hence, the extra hop between clients and PFS works to “funnel” requests

38

and decrease concurrency at the servers.

Therefore, despite the fact that read and write requests present similar aggregated

sizes in the shared file scenario, when leaving the I/O nodes, they do not provide the

same performance gains. Furthermore, as demonstrated by the average offset distance

of requests leaving the I/O nodes, both algorithms result in very similar access patterns,

although HBRR puts more effort into optimizing the requests.

3.4.4 Performance of the AGIOS Scheduling Algorithms

We applied the same methodology to evaluate three additional schedulers selected

from AGIOS. Figure 3.6 expands the previous plots, introducing the results of read oper-

ations with the three selected schedulers: TO, SJF, and MLF (in shades of purple).

Figure 3.6: Execution time of read requests directly accessing PVFS with the IOFSL
default schedulers (FIFO and HBRR) and AGIOS schedulers (TO, SJF, and MLF).

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

80.4

52.0 51.6 51.3 52.1 52.4

84.6

59.1 57.8 54.9 53.8 50.7

93.1

65.4 66.1
59.6

62.0 61.8

0

10

20

30

40

50

60

70

80

90

100

NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

66.6 62.6 62.7 63.5 62.5 62.2 59.6 56.8 56.9 57.2 56.5 56.3
61.1 59.3 59.1 59.6 59.1 58.9

0

10

20

30

40

50

60

70

80

90

100

NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

39

Considering first the file-per-process scenario we still do not see any statistically

significant difference between the alternatives. The included schedulers behave just like

FIFO and HBRR for both small (32KB) and large (256KB) requests. Moreover, for the

shared file scenario, with large requests the same conclusion applies. With small strided

requests it is possible to see that SJF presented a small reduction in the execution time.

MLF significantly improved performance by 14.17% if compared to the default FIFO

scheduler. For contiguous small accesses, the TO scheduler from AGIOS also improved

the performance up to 9.87% over HBRR.

On the other hand, for write requests, we observed the same behavior for all the

tested schedulers, as depicted by Figure 3.7. There are small variations between the mean

time of each alternative, but they are not statistically significant and in some situations,

this is not expressive enough to justify usage of one scheduler rather than the other.

Figure 3.7: Execution time of write requests directly accessing PVFS with the IOFSL
default schedulers (FIFO and HBRR) and AGIOS schedulers (TO, SJF, and MLF).

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

204.0

404.1 397.7 396.0 397.3 402.5

203.2
219.6 219.4 218.0 216.9 214.1 203.4

238.4 238.6 236.5 235.3 236.0

0

50

100

150

200

250

300

350

400

450

NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

69.8

185.0 184.2 184.0 182.2 181.7

107.6 107.4 106.7 108.8 108.3 104.8 110.5 110.4 111.3 110.9 110.4 110.7

0

50

100

150

200

250

300

350

400

450

NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF NO FIFO HBRR TO SJF MLF

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

40

Table 3.3 details the average request size at different levels of the I/O stack for

these schedulers. We have also included the previous results with FIFO and HBRR to

facilitate the correlation of results. The first noticeable behavior is that for both read and

write requests TO, SJF, and MLF schedulers from AGIOS manage to aggregate more than

the previously tested alternatives.

Table 3.3: Average request size (in KB) at different levels of the I/O stack for the shared
file scenario with small (32KB) 1D strided and contiguous accesses.

1D Strided (KB) Contiguous (KB)
READ WRITE READ WRITE

FIFO

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 57.75 57.72 57.72 57.79
Arriving at the data servers 49.87 49.23 43.52 43.66

HBRR

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 57.77 57.68 57.77 57.69
Arriving at the data servers 49.80 49.36 42.75 43.65

TO

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 75.09 65.70 77.07 66.34
Arriving at the data servers 53.69 51.41 53.37 50.98

SJF

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 74.79 65.71 76.81 65.91
Arriving at the data servers 53.63 51.33 53.31 50.94

MLF

Leaving the clients 32 32 32 32
Arriving at the I/O nodes 32 32 32 32
Leaving I/O nodes 79.59 66.39 76.53 66.82
Arriving at the data servers 51.17 48.31 50.44 49.22

Source: Author

We believe that just for including the library in the flow of requests through the I/O

nodes, requests are been slightly delayed, providing more aggregation opportunities. This

small delay may be imposed by the additional coordination between the library’s threads

when concurrently accessing the shared queues. Although AGIOS is aggregating more,

the results are still similar to the other schedulers. This indicates that the aggregations are

not what define the performance in this scenario. Thus, there may be something else that

is influencing the results.

41

3.5 Conclusions

By including the forwarding layer in the I/O stack of our experimental testbed,

small read requests have demonstrated large performance improvements. Even though

this represents an extra hop between clients and data servers, we could see a reduction in

the time it took to serve those requests for the file-per-process and shared file scenarios.

Although it was expected that not all algorithms were to improve performance on

the forwarding layer, results differ from our initial assumption by demonstrating few cases

where significant performance was gained. The existing FIFO and HBRR schedulers im-

plemented in the IOFSL framework do not appear to be distinct at the scale and workload

tested. Moreover, performance was also not improved by the solutions implemented in

AGIOS: TO, SJF, and MLF. It was possible to see, by measuring the average size of re-

quests at different points of the I/O stack, that those schedulers were able to aggregate

more, thus issuing larger requests to the PFS. Despite that, performance did not benefit

from their usage, which suggests that they are only partially effective.

We believe results to be related to the congestion still present when accessing

the parallel file system data servers. Therefore, the lack of a coordination mechanism

between the I/O nodes may still be directly affecting performance. To test our hypothesis,

we propose a new scheduler that focuses on coordinating this access to further mitigate

contention, as it is detailed in Chapter 4.

42

4 TWINS: AN I/O SCHEDULER TO COORDINATE SERVER ACCESS

Based on the results collected from our initial experiments, presented in Chapter

3, with the schedulers available in IOFSL (FIFO and HBRR) and in AGIOS (TO, SJF,

and MLF), we propose two new schedulers whose goal is to further decrease concurrency

when accessing the file system servers. In this chapter, we argue about the impact of

I/O contention and the importance of coordinated data accesses. Building on that, we

describe the concepts and mechanisms of our new I/O scheduling algorithms for the I/O

forwarding layer: Server Window (SW) and Server Time WINdows (TWINS).

4.1 I/O Contention and Coordination

Research on optimizations to reduce the effects of I/O contention can be classified

into two categories: client side and server side. As we focus on the forwarding nodes,

which act as PFS’s clients – just as the computing nodes do in a setup where no I/O

forwarding exists – we must examine this problem from the client’s perspective. On the

client side, processes usually collaborate by coordinating accesses to the PFS.

For instance, Nisar, Liao and Choudhary (2008) propose a mechanism to delegate

certain tasks, such as file caching, consistency control, and collective I/O optimization to

a small set of compute nodes, thus mitigating resource contention. Their experimental

evaluation indicates considerable performance improvement with a small percentage of

computing resources reserved to act as I/O delegators. Additionally, Abbasi et al. (2009)

argue that the use of asynchronous methods for data transfer can reduce or eliminate

the blocking time experienced by HPC codes using synchronous I/O. However, an issue

with such approach is the need for a coordinated use of machine resources, to avoid the

contention caused by the aggressive data transfers performed for I/O purposes.

In the previous experiments with the different scheduling algorithms, we noticed

only small differences in performance between the evaluated solutions. Furthermore, dif-

ferently from what was observed when AGIOS schedulers were employed in the parallel

file system data servers (BOITO, 2015), at first glance, the tested algorithms did not seem

fit for the forwarding layer. When we observed the request aggregation sizes, we could

notice that the algorithms are performing their work, i.e. they are merging and combining

contiguous requests. Therefore, there must be another factor that is affecting the perfor-

mance.

43

Our initial hypothesis is that the uncoordinated access to the data servers could

still be harming performance. Therefore, we believe that by creating a new scheduler that

is able to focus access to one server at a time, we could reduce contention and improve

performance. The next section provides details on how we plan on achieving this goal.

4.2 Server Access Coordination

The main idea behind our proposed scheduler is to coordinate intermediate I/O

nodes’ accesses to the file system so that, at any given moment, the following two condi-

tions hold true:

I. an I/O node is focusing its accesses to only one data server;

II. different I/O nodes are focusing on different servers.

We created a new scheduler scheduler to use time windows as a coordination

mechanism, similar to what was proposed by (SONG et al., 2011) for the PFS servers.

There, a window-wide coordination concept was employed to make all data servers focus

on serving requests from one application at a time. Our proposal to make intermedi-

ate I/O nodes dedicate time windows to different data servers was inspired by their work.

Nonetheless, there are at least two differences between their proposal and ours. First, they

target the PFS servers while we change the behaviour of the intermediate I/O nodes. Sec-

ond, their algorithm coordinates access from different applications, while we coordinate

server accesses.

We named this scheduler as Server Window (SW). The pseudo-code is presented

by Algorithm 1. As soon as a request arrives at the I/O node, it is sent to AGIOS. The

scheduler then calculates its priority and inserts it in a single request queue, in ascending

order of “priority”, thus requests with smaller priority would be scheduled earlier.

Algorithm 1 Server Window (SW)
Require: Q is the list of requests to be serve
Require: R is the new incoming request

1: priority ← ((R.timestamp/windowSize) ∗max) +R.serverID
2: for each request in Q do
3: if request.priority > priority then
4: Q.insert_after(request.previous,R)
5: break
6: end if
7: end for

44

Since we have integrated the AGIOS scheduling library (BOITO et al., 2015) in

IOFSL as a scheduling option (just like FIFO and HBRR), as detailed in Section 3.3,

we harness its API to prototype and evaluate our solution. It would have been possible

to implement it inside the IOFSL source code instead. However, doing so with AGIOS

makes our solution more generic, as it can be used by other I/O services which use this

library, or even by other I/O forwarding frameworks.

As a prerequisite for this scheduler to work, we need to know the destination server

of each incoming request, i.e. since a file is broken down into stripes that are distributed

amongs the servers, we need to know where the stripe that contains the request’s data is

located among the data servers. Normally that information is not available at this layer of

the I/O stack. The next section details how it is obtained and the additional overhead.

4.2.1 Required Information to Determine the Data Servers

In addition to typically available information about requests such as file handle,

offset, type of operation, and size, our algorithm requires a server identifier to disclose the

location of the very first stripe of a file. Based on that and on the distribution employed by

the PFS we can determine the location of every other stripe for that file. We have modified

IOFSL to collect the file distribution information from the PFS metadata servers when

opening or creating a file. Since this information is easily available to clients in most file

systems such as PVFS and Lustre, our solution can still be considered file system generic.

The distribution information is requested only once per file. To determine the

overhead of fetching such information, we conducted a small experiment, by measuring

the time it took to obtain this data. The introduced overhead is of 54.3ms on our exper-

imental environment (average of 124 observations). Since this information is requested

only once per file, it is possible to say that it is relatively small if compared to the read and

write times to the PFS. Furthermore, as more operations are issued to the same file, this

overhead is expected to be diluted throughout the execution. Therefore, the total overhead

introduced is the sum of all calls (one per file), and it depends on the network speed.

Using the file distribution information, the starting server for a request is obtained

as a function of its starting offset and stripe size, also part of the collected distribution

information, as illustrated by Equation 4.1. Servers are mapped to identifiers between 0

45

and numberofservers− 1, according to their machines names.

destionationServer =

(
firstStripeLocation+

offset

stripeSize

)
% totalServers (4.1)

4.2.2 Performance Evaluation

In this section, we employ the same experimental setup and methodology de-

scribed in Sections 3.4.1 and 3.4.2 to evaluate the Server Window (SW) scheduler. For

this first set of experiments we define the window size as one second. Additionally, an

investigation of this parameter is presented in Section 4.2.3.

Figure 4.1: Execution time of read requests using the SW scheduler when compared to
alternatives.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

80.4

52.0 51.6 50.0

84.6

59.1 57.8 55.4

93.1

65.4 66.1 63.1

0

10

20

30

40

50

60

70

80

90

100

NO FIFO HBRR SW NO FIFO HBRR SW NO FIFO HBRR SW

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

66.6 62.6 62.7 62.8
59.6 56.8 56.9 56.8

61.1 59.3 59.1 60.0

0

10

20

30

40

50

60

70

80

90

100

NO FIFO HBRR SW NO FIFO HBRR SW NO FIFO HBRR SW

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

Figure 4.2: Execution time of write requests using the SW scheduler when compared to
alternatives.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

204.0

404.1397.7387.1

203.2
219.6219.4217.9 203.4

238.4238.6236.0

0

50

100

150

200

250

300

350

400

450

NO FIFO HBRR SW NO FIFO HBRR SW NO FIFO HBRR SW

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

69.8

185.0184.2181.4

107.6107.4106.7107.9 110.5110.4111.3111.1

0

50

100

150

200

NO FIFO HBRR SW NO FIFO HBRR SW NO FIFO HBRR SW

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

46

Table 4.1: Average request size (in KB) at different levels of the I/O stack for the shared
file scenario with small (32KB) 1D strided and contiguous accesses.

1D Strided (KB) Contiguous (KB)
READ WRITE READ WRITE

FIFO
Leaving I/O nodes 57.75 57.72 57.72 57.79
Arriving at the data servers 49.87 49.23 43.52 43.66

HBRR
Leaving I/O nodes 57.77 57.68 57.77 57.69
Arriving at the data servers 49.80 49.36 42.75 43.65

TO
Leaving I/O nodes 75.09 65.70 77.07 66.34
Arriving at the data servers 53.69 51.41 53.37 50.98

SJF
Leaving I/O nodes 74.79 65.71 76.81 65.91
Arriving at the data servers 53.63 51.33 53.31 50.94

MLF
Leaving I/O nodes 79.59 66.39 76.53 66.82
Arriving at the data servers 51.17 48.31 50.44 49.22

SW Leaving I/O nodes 73.08 64.93 72.64 64.11
(1s) Arriving at the data servers 50.08 48.38 50.16 48.17

Source: Author

SW does not seem to bring performance improvements when compared to the

previously tested alternatives. Figures 4.1 and 4.2 illustrate the average execution time

for read and write requests, respectively, considering the distinct access patterns taken

into account in this study. It appears that, just by ordering requests by destination server

and using a “limiting” window so requests do not starve, it is not enough to coordinate

access and reduce contention. For the sake of completeness, we also show the aggregate

sizes observed with SW in Table 4.1. Although SW is aggregating more than FIFO and

HBRR, it is not able to aggregate as much as the schedulers from AGIOS. Despite that,

no overhead or loss in performance is visible.

4.2.3 Investigating the Window Size

Since we are working with a time-window based scheduler, we must also take into

consideration the impact of distinct values for window size. In our previous experiments

we considered initialy a one second window, as proposed by Song et al. (2011) in his

approach for the data servers with HDD devices. However, since we are no longer in the

context of a single PFS data server, but on an upper layer of the I/O stack, we should

also investigate larger window sizes to account for the costs of remote accessing the data.

Accordingly, we evaluate five other window sizes, from 1s to 16s.

47

Figure 4.3: Execution time of read requests using different window sizes for the SW.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ●
50 51 50 50 50 ● ●

● ● ●
55 55

57 57 56 ● ●
●

● ●

63 62 65 63 61

0

10

20

30

40

50

60

70

80

90

100

1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0
Window size (seconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ●
63 62 62 63 63

● ● ● ● ●
57 57 57 57 56 ● ● ● ● ●

60 59 59 59 59

0

10

20

30

40

50

60

70

80

90

100

1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0
Window size (seconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

Figure 4.4: Execution time of write requests using different window sizes for the SW.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ●

387 387 382 383 384

● ● ● ● ●
218 218 219 217 218 ● ● ● ● ●

236 236 237 238 236

0

50

100

150

200

250

300

350

400

450

1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0
Window size (seconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ●
181 181 183 183 183

● ● ● ● ●
108 108 108 108 108

● ● ● ● ●
111 110 110 110 110

0

25

50

75

100

125

150

175

200

1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0 1.0 2.0 4.0 8.0 16.0
Window size (seconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

Figure 4.3 depicts the different window sizes (seconds) in the x-axis and the exe-

cution time of the slowest process to complete (makespan) in the y-axis, for all the tested

access patterns. It is important to notice that the x-axis is non-linear. We can see that

despite increasing the window size there are no improvements nor degradation on perfor-

mance. The same holds true for write requests, as illustrated in Figure 4.4.

4.2.4 Discussion

We proposed a new scheduler named Server Window (SW) as an effort to reduce

concurrency when accessing the PFS data servers, yet SW seemed ineffective. Two pos-

sible explanations for the observed results are:

I. concurrency was actually not affecting performance;

II. SW was not, in fact, able to reduce concurrency.

48

We traced the execution of the algorithm, in the forwarding layer, by recording

additional information such as when requests arrived at the I/O node; when they were

included in the algorithm’s queue; when they were selected to be served; and their aggre-

gated sizes and offsets. We were able to determine that although SW indeed sorted the

requests grouping them by servers, they ended up merged on the dispatch queue. Conse-

quently, they were sent together to the PFS data servers. This indicates that the requests

were not staying long enough in SW’s queues to enforce the desired coordination effect.

Based on that, the next section proposes a new scheduler to target that issue by

considering a fixed time window. This may imply in additional waiting times. Yet, we do

this as an effort to improve performance by coordinating accesses and by further aggre-

gating incoming I/O requests.

4.3 Time Window Based Scheduler

As demonstrated in the previous section, the SW scheduler is not able to coor-

dinate accesses. We believe this to be correlated to the way SW works, with no fixed

time window but rather an abstract window so requests do not starve. Thus, requests are

not staying long enough in the algorithm’s queue to ensure a coordination. In order to

improve that, we propose a new scheduler with fixed time windows.

We present a new scheduling algorithm for the I/O forwarding layer named Server

Time WINdows (TWINS). TWINS pseudo-code is presented in Algorithm 2. Differently

from TO and SW, it keeps multiple request queues, one per data server. During the exe-

Algorithm 2 Server Time WINdows (TWINS)

Require: Q[i] is the updated list of requests to server i
1: i← 0
2: while true do
3: resetT imer()
4: while elapsedT ime() < windowSize do
5: if length(Q[i]) > 0 then
6: processRequest(Q[i])
7: else
8: timeout← windowSize− elapsedT ime()
9: timedWaitForRequests(Q[i], timeout)

10: end if
11: end while
12: i← nextServer(i)
13: end while

49

cution, TWINS iterates between the different queues in a round-robin fashion, respecting

a time window that must be dedicated to each server. This means that, if server i is the

current server being accessed but there are no requests to this server, the scheduler will

wait until requests to server i arrive or the time window ends, even if there are incoming

or queued requests to other servers.

Using TWINS, requests are added to the per-server queues upon arrival at IOFSL.

When the algorithm decides to process a request, a callback function written inside IOFSL

simply adds it to the dispatch queue. This ensures requests will be processed in the order

dictated by the scheduler.

Differently from FIFO, that uses a single queue, and HBRR, that uses two queues

per file handle, TWINS uses one queue per data server. Considering that the number of

files is typically far superior to the number of servers, the overhead induced by TWINS

regarding the management of multiple queues is expected to be lower than what is caused

by HBRR.

Examining the described TWINS algorithm, we can notice that simply following

this approach would cause all intermediate I/O nodes to focus on the same servers at

the same time. To cause the desired distribution effect, we add an extra server identifier

translation step before adding requests to the corresponding queues. This translation is

done according to the I/O node identifier. The Nth I/O node will use the Nth permutation

of the servers list as a translation rule. Therefore, if the number of intermediate nodes is

larger than the number of servers, more than one node may access the same server at the

same time, but these concurrent accesses are minimized. For instance, if there are 4 I/O

nodes (N1 to N4) and four data servers (S1 to S4) each I/O node will use the following

order:

• N1 : S1 → S2 → S3 → S4

• N2 : S2 → S3 → S4 → S1

• N3 : S3 → S4 → S1 → S2

• N4 : S4 → S1 → S2 → S3

Therefore the translation function in each I/O node maps the initial server to a

different data server. This ensures that each I/O node will focus on a different server at

each time window.

Table 4.2 summarizes the complexity costs for inserting and selecting requests

from the queue(s) of the proposed schedulers, compared to TO. It is important to notice

50

Table 4.2: Summary of the time complexity for inserting and selecting requests in each
scheduler. M is the number of servers and N is the number of requests in the queue.

Scheduler Queues Insert Select

TO 1 O(1) O(1)
SW 1 O(N) O(1)

TWINS M O(1) O(1)

Source: Author

that despite being more elaborated than SW, TWINS has a lower complexity cost for in-

serting requests due to the additional information the algorithm has. For instance, TWINS

does not have to iterate overM queues, one for each server, because the destination server

is previously known. Furthermore, as requests are appended to the end of each server’s

queue, TWINS do not need to iterate over it.

4.4 Conclusions

This chapter presented two new schedulers crafted for the I/O forwarding layer:

Server Window (SW) and Server Time WINdows (TWINS). Unlike other schedulers, they

aim at coordinating accesses to the parallel file system data servers, to further reduce the

contention.

We presented SW and an evaluation of its performance and aggregation capa-

bilities considering distinct window sizes. However, since SW does not work with a

fixed time window, requests were not staying in the algorithm’s queues long enough to

be grouped by the destination server. To solve this, we created TWINS, that imposes

additional waiting times by using a fixed window size. Furthermore, we discussed how

TWINS proposes to coordinate the accesses without additional communications between

the I/O nodes.

The next chapter is dedicated to a thorough evaluation of TWINS, including an

investigation of the impact of distinct window sizes and its usage on a multi-application

scenario. Moreover, we compare our new scheduler to all the previously tested algo-

rithms, considering aggregation sizes and execution time.

51

5 EXPERIMENTAL RESULTS

In this chapter, we evaluate the performance of the new TWINS algorithm, which

works to decrease contention in the access to the parallel file system data servers. As de-

scribed in Section 4.3, in order to do that, TWINS divides the execution in time windows

and focuses each IOFSL node’s accesses to a different data server. The experimental en-

vironment and setup remain the same for this evaluation. Further details can be found in

Sections 3.4.1 and 3.4.2.

Since we will be dedicating an entire window to a server, we selected a smaller

value (1ms) for the time window in our first set of experiments. Figure 5.1 summarizes

the results of read operations with TWINS for the three access patterns. We can see that

the shared file scenario with small accesses (Figure 5.1(a)) benefits from TWINS. For 1D

strided access we observe improvements of 46.93% over not using the forwarding layer,

24.03% over using FIFO, 22.30% over using HBRR and 18.93% over using SW. For the

contiguous accesses these values are 43.68%, 19.85%, 20.63% and 16.92% respectively.

Figure 5.1: Execution time of read requests using the TWINS scheduler compared to
HBRR and SW.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

80.4

51.6 50.0 51.7

84.6

57.8 55.4

44.9

93.1

66.1 63.1

52.4

0

10

20

30

40

50

60

70

80

90

100

NO HBRR SW TWINS NO HBRR SW TWINS NO HBRR SW TWINS

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

66.6
62.7 62.8 62.4

59.6 56.9 56.8

44.9

61.1 59.1 60.0

48.6

0

10

20

30

40

50

60

70

80

90

100

NO HBRR SW TWINS NO HBRR SW TWINS NO HBRR SW TWINS

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

For large read requests (Figure 5.1(b)), TWINS’ performance on the file-per-

process scenario is similar to the other tested schedulers. On the other hand, when pro-

cesses shared a file, with 1D strided acceses, our approach yields 24.68% improvements

over not using the forwarding layer and 21.06% if compared to HBRR. Additionally, for

contiguous access, improvements are of 20.58% and 17.79% respectively.

The lower improvements obtained for contiguous access patterns are justified by

the requests distribution among the data servers, caused by the access pattern. In the 1D

strided test, processes start their accesses at different servers and this behavior is kept

52

Figure 5.2: Execution time of write requests using the TWINS scheduler compared to
HBRR and SW.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

204.0

397.7387.1399.1

203.2
219.4217.9223.0

203.4
238.6236.0

259.8

0

50

100

150

200

250

300

350

400

450

NO HBRR SW TWINS NO HBRR SW TWINS NO HBRR SW TWINS

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

69.8

184.2181.4182.5

107.6106.7107.9104.8 110.5111.3111.1107.3

0

50

100

150

200

NO HBRR SW TWINS NO HBRR SW TWINS NO HBRR SW TWINS

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

throughout the whole execution. Therefore, with this access pattern the scheduler always

has requests for all servers and thus has the opportunity to perform meaningful coordina-

tion. In the contiguous test, since each process segment has 32MB, which is a multiple

of the stripe size × the number of servers, all processes start their accesses by the same

server. In this case, the situations where there are queued requests for multiple servers

come during the execution as the delays induced by the TWINS scheduling algorithm

causes the execution of some processes to advance faster than others. This phenomenon

is not guaranteed to happen.

Performance does not benefit from using TWINS when each process issues read

requests to its own file, or with write requests (Figure 5.2). Moreover, in all of the tested

scenarios, with exception of small 32KB contiguous requests to a shared file, no per-

formance degradation was observed. In the aforementioned case, we believe a different

window size may help reduce the scheduler’s overhead, as will be presented in Section

5.2. Therefore, in addition to improving the performance in some situations, our proposal

does not necessarily harm performance in other scenarios.

5.1 Performance of Write Requests

Lofstead et al. (2011) points to some approaches that aim at addressing the mis-

match between the output organization and the read pattern needs. These include the use

of a staging area to host data reorganization and pre-analysis routines. Both synchronous

data staging and the I/O Forwarding Software Layer (IOFSL) effectively manage the writ-

ing time spent by an application through aggregating such requests and thereby partially

53

managing the resulting impact on the storage system. However, the before-mentioned

work has not taken advantage of staging areas to accelerate subsequent data use for anal-

ysis or other reading tasks.

The previous observations concur with our findings. Based on the extensive exper-

imentation so far, we believe there are not further opportunities to improve write requests,

that is why no difference was spotted when applying different scheduling algorithms. Be-

cause write requests carry the data when they are issued, they arrive at the I/O nodes at

a slower pace, if compared to the rate of read requests. This was demonstrated, in Sec-

tion 3.4.3, where we observed that the time between consecutive write requests is almost

twice of the time observed between read requests. Thus, at this scale, writes do not gen-

erate such an intense flow of requests which explains why funneling them through the I/O

nodes does not yield performance improvements.

Additionally, as IOFSL was created to improve throughput (OHTA et al., 2010),

the aggregation mechanisms in place in its dispatch queue are quite “aggressive”, which

also justifies why no further improvements were observed even when we changed the

scheduler.

5.2 Investigating the Window Size

TWINS’ behavior is affected by its time window duration. A window that is too

small does not allow for an effective coordination of accesses among the data servers

because it is not long enough to allow the execution of multiple requests. Moreover, a fast

time window does not hold requests to other servers for long enough so requests to the

currently accessed data server are out of the dispatch queue to the file system. If requests

for different servers are in the dispatch queue at the same time, they could be aggregated

before being forwarded to the PFS and thus the scheduling algorithm work would be

undone. On the other hand, a window that is too large imposes overhead as there are not

enough requests to each data server to fill a whole window, so the scheduler spends too

much time waiting. Another source of overhead, in this case, would be the delay imposed

to requests, which could not be compensated by the gains of decreasing concurrency at

the data servers.

Figure 5.3 summarizes all the experiments with different window sizes. It is im-

portante to notice that the x-axis is non-linear. The best window duration is not the same

for all situations where TWINS improves performance. The best results for small (32KB)

54

1D strided requests to a single shared file, with read operations, were observed using

a 8ms window, as depicted by Figure 5.3(a). However, for the shared-file tests, a 1ms

time window appears to be more suited. On the other hand, for write requests, different

window sizes do not bring performance benefits. Furthermore, degradation is only ob-

served in the shared file scenario if the window is too large, as expected, which imposes

additional waiting times and thus more overhead, as illustrated by Figure 5.4.

TWINS provides read performance improvements of up to 28% over the baseline

scheduling algorithms and of up to 50% over not using IOFSL. The best results were

obtained for the shared file 1D strided access pattern, and gains for the shared-file con-

tiguous pattern were also observed – up to 20% over the baseline. There is a trade-off to be

observed between the induced overhead and how distributed among the servers requests

are. Further analysis is required to determine how the scheduler could automatically find

the best window duration. This will be the focus of future work.

Figure 5.3: Execution time of read requests using different window sizes for TWINS.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ● ● ●

●
52 51 53 52 52 51 52

61

● ● ●
● ● ● ●

●

49 48
50

45 44 44 43
46

● ●
● ● ● ● ●

●
57 57 54 52 54 54 54

62

0

10

20

30

40

50

60

70

80

90

100

0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0
Window size (milliseconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ● ● ● ●
62 63

61 62 62 64 62 62

● ● ●
● ● ● ● ●

54 52 50 45 44 44 43 45
● ●

●
● ● ● ● ●

56 54 51 49 48 47 46 48

0

10

20

30

40

50

60

70

80

90

100

0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0
Window size (milliseconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

55

Figure 5.4: Execution time of write requests using different window sizes for TWINS.

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ● ● ● ●
398 405 396 399 398 402 400 402

● ● ● ● ● ● ● ●218 220 221 223 223 224 225 227 ● ● ● ● ● ● ● ●241 248 255 260 259 261 265 266

0

50

100

150

200

250

300

350

400

450

0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0
Window size (milliseconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) Small requests (32KB)

FILE PER PROCESS
CONTIGUOUS

SHARED FILE
1D STRIDED

SHARED FILE
CONTIGUOUS

● ● ● ● ● ● ● ●

183 184 181 183 181 184 184 182

● ● ● ● ● ● ● ●
106 106 105 105 105 105 105 106

● ● ● ● ● ● ● ●
110 109 109 107 109 108 108 108

0

25

50

75

100

125

150

175

200

0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0
Window size (milliseconds)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Large requests (256KB)

Source: Author

5.3 Aggregation Sizes and Contention

An evidence towards explaining why delaying requests at the forwarding nodes,

with the TWINS scheduler, can benefit performance is presented by the aggregation met-

rics. By including additional delays, using fixed time windows, requests might stay longer

in the algorithm’s queues, thus there are more aggregations opportunities. Table 5.1 sum-

marizes this information considering all schedulers evaluated in this work plus the best

two window sizes observed for the tests with a small (32KB) request size. Nonethe-

less, as we have previously pointed, just combining requests is not enough to provide

performance in the tested scenarios. The gains obtained with TWINS also come from

coordinating accesses to the data servers, thus reducing contention.

To determine if the coordination mechanism is indeed working and helping in re-

ducing contention when accessing the data servers, we designed an additional experiment.

All the parameters were the same as the previous ones, but now we monitored the TCP

56

Table 5.1: Average request size (in KB) at different levels of the I/O stack for the shared
file scenario with small (32KB) 1D strided and contiguous accesses.

1D Strided (KB) Contiguous (KB)
READ WRITE READ WRITE

FIFO
Leaving I/O nodes 57.75 57.72 57.72 57.79
Arriving at the data servers 49.87 49.23 43.52 43.66

HBRR
Leaving I/O nodes 57.77 57.68 57.77 57.69
Arriving at the data servers 49.80 49.36 42.75 43.65

TO
Leaving I/O nodes 75.09 65.70 77.07 66.34
Arriving at the data servers 53.69 51.41 53.37 50.98

SJF
Leaving I/O nodes 74.79 65.71 76.81 65.91
Arriving at the data servers 53.63 51.33 53.31 50.94

MLF
Leaving I/O nodes 79.59 66.39 76.53 66.82
Arriving at the data servers 51.17 48.31 50.44 49.22

SW Leaving I/O nodes 73.08 64.93 72.64 64.11
(1s) Arriving at the data servers 50.08 48.38 50.16 48.17

TWINS Leaving I/O nodes 119.29 87.83 106.17 78.08
(1ms) Arriving at the data servers 57.79 51.41 53.15 48.07

TWINS Leaving I/O nodes 149.99 95.75 162.60 85.66
(8ms) Arriving at the data servers 68.08 49.25 61.38 46.71

Source: Author

congestion window size. This window is maintained by the sender as an upper bound

for the data communication between a sender and a receiver. The congestion window

(cwnd) and slow start threshold (ssthresh) are two internal variables of the TCP conges-

tion control mechanism, in addition to the advertised window by the receiver (awnd). By

monitoring the congestion window parameter it is possible to determine if the connection

is undergoing stress due to congestion (ALENEZI; REED, 2013).

To collect this information, we opted to use the ss tool available in the Linux

operating system, commonly used to dump socket statistics. This tool is similar to netstat,

however, it can display more TCP and state information than other tools. We collected

metrics, in intervals of one second, during the entire execution, on each one of the four

PVFS data servers. Therefore they represent the flow of requests sent (replied) by each

PVFS server to the connected IOFSL server.

For this experiment, we considered only small (32KB) 1D strided read operations

to a shared filed as this represent the scenario where we observed more improvements.

Figure 5.5 summarizes the results, comparing the FIFO, TO, TWINS (1ms) and TWINS

(8ms) schedulers. We plotted all communications between each of the four data servers

57

Figure 5.5: Congestion window size for small read 1D strided accesses to a shared file.

DATA SERVER #1 DATA SERVER #2 DATA SERVER #3 DATA SERVER #4

●
●

●●
●

●
●

●
●●

●●●
●

●
●

●
●

●
●●

●●●
●

●
●●●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●

●
●●

●

●
●●●●●

●

●

●
●●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●
●●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●
●●●●

●

●

●

●

●

●
●●

●●
●

●
●

●

●●
●

●
●

●
●

●

●

●
●●●

●

●
●●

●●

●
●

●●
●

●

●

●

●

●
●

●
●

●●
●●●

●●
●●

●
●●●●

●●
●

●
●●

●
●●●

●
●●●●●●●

●

●
●

●
●●

●●
●

●
●

●

●
●●●

●
●

●
●

●●●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●●●

●
●●●

●

●
●

●

●

●
●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●
●●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●
●●●●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●●

●
●●

●
●●●●●●●

●●●●●
●●●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●
●●

●
●

●
●

●

●●●
●

●●●●●●●●●●●

●●
●●

●●
●

●

●

●
●

●●●

●

●
●

●

●
●●●●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●

●●●●●

●

●
●

●
●

●●●●
●

●

●

●●●●●●

●
●●●●

●
●

●
●

●●
●●

●

●

●

●●●

●
●

●●
●●●

●
●

●●●●
●

●
●

●

●

●

●

●
●●●

●

●

●●
●●

●

●

●

●
●●●

●
●●

●●●

●
●

●●●●

●●
●

●
●

●
●

●
●

●●
●

●●

●

●
●

●
●●

●●
●●●

●●

●●●
●●●

●
●

●●
●

●
●●●

●
●

●●●
●

●
●

●●●●●●●

●

●

●●●●●
●

●

●

●
●

●

●
●●●●

●
●

●●

●

●●●

●

●

●

●

●

●●●●

●

●
●

●●
●

●
●

●

●

●

●

●
●●●

●
●●●

●●
●

●
●

●

●
●●●●

●●●●●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●
●

●●
●●●

●

●

●

●
●

●

●

●

●●

●●
●

●●●
●

●
●

●

●●

●

●
●●●●

●
●

●●
●

●
●

●
●

●
●

●
●●

●
●

●
●●●

●
●

●●
●

●
●●

●●
●

●
●

●

●
●

●
●

●●
●

●
●

●●●●
●

●

●

●

●

●●

●
●

●●●●●

●
●●

●●●

●●●●●
●●

●
●●●

●●
●

●
●●●●●

●
●●

●

●

●

●

●
●

●

●

●

●
●●●

●●●●●
●

●●●●●●

●

●

●

●

●

●
●

●

●●

●
●

●●
●

●●●

●●
●●

●●
●●

●
●

●●

●
●

●
●●

●●●●
●

●●●
●

●

●

●

●

●●●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●●
●

●
●

●
●

●

●
●●

●
●●●

●
●●

●

●
●●

●
●

●●
●

●

●

●

●●

●

●●
●

●

●

●●●

●●●●
●

●
●

●

●

●

●
●●●●

●

●
●●●●

●

●

●

●

●

●
●●●●●

●●●●●

●
●●

●●

●

●
●

●
●

●

●●
●

●
●

●
●●

●●
●

●●●●
●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●
●

●

●●●●
●

●
●

●
●

●

●●

●

●●●
●

●

●

●

●●

●

●
●●

●

●
●●●

●
●●●●

●

●
●

●

●
●●

●

●●
●

●
●

●
●

●
●

●
●

●
●●●

●
●●●

●

●

●●●
●

●
●●

●
●

●
●

●

●
●●

●

●●●●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●

●●●●
●

●
●●●

●

●●●
●●●●

●●●●●
●●●

●
●

●●●
●

●●
●●●

●

●
●●●●

●

●

●

●

●
●

●

●

●●●●

●

●●
●

●●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●●
●

●●●●
●

●
●

●●

●

●

●
●●●●●

●
●

●
●

●

●

●

●

●

●●
●

●

●●●
●

●●

●●●●●●●●

●

●
●

●●●
●

●●
●●

●

●

●

●●

●

●

●
●●

●

●
●

●●●●

●

●

●
●●●●

●

●●

●

●

●
●

●

●

●

●

●
●●●●

●
●

●
●

●

●

●

●

●

●
●●●●

●●

●

●
●

●●
●

●
●

●
●

●●
●

●
●

●
●

●●●
●

●

●

●
●

●

●
●

●
●●●●●●

●
●

●●●
●

●
●●

●
●

●
●●●

●

●

●
●●●●

●

●
●

●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●
●

●

●
●●●

●●
●

●
●

●●
●

●
●

●●
●●

●
●●●

●
●

●●●●●
●

●●●●●●
●

●

●

●
●

●
●

●
●●

●●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●●●●
●

●

●

●

●●●●

●

●
●

●

●●●

●

●

●
●

●

●●

●
●

●
●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●
●

●
●●

●

●
●

●
●

●
●●

●
●

●●●
●

●
●

●
●●●

●

●

●
●

●●

●
●●

●
●

●
●●●●

●●

●
●

●

●●●●●●

●

●●
●

●
●

●

●

●●
●

●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

●●●●
●

●
●

●●
●●

●●
●

●
●●

●

●

●

●
●●●●

●

●

●

●●

●

●
●

●●●●
●

●
●●●●

●

●

●

●

●
●●●●●

●●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●●●

●
●●●●●

●
●●●

●●
●

●
●

●
●

●
●

●●
●●

●

●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●

●●●●●

●●

●
●

●
●

●
●●

●
●

●●
●

●
●●

●
●

●

●
●

●
●

●
●●●●

●

●

●
●●●

●●

●

●
●●●●

●

●●

●

●
●

●●●
●●●

●
●

●
●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●●●●
●

●●●●●●
●●●●●

●

●

●
●●●●

●
●

●

●

●
●●●●

●
●

●●●●●

●

●
●●●

●
●●

●
●●●●

●
●●●

●●
●

●
●

●
●●

●
●

●●
●

●
●

●●
●●

●
●●●

●
●●●

●
●●●●

●
●●

●
●

●
●

●●●●●

●
●

●

●
●

●
●

●●

●●

●●●●●●●
●

●
●

●
●

●●
●

●●●●

●

●●
●●●

●

●

●

●●●
●

●●
●

●●●
●●●●●

●●●●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●●●●

●

●

●●

●

●●●●

●●●●
●●●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●●●

●●
●

●
●●

●
●●●

●
●

●●●
●

●●●●

●●●
●●●●

●

●
●

●
●●●

●

●

●●

●

●●
●●

●●

●●●●

●●●
●

●
●

●
●●

●●
●

●
●

●

●

●●
●

●●
●

●
●

●●●●

●

●●●
●

●

●

●
●●

●
●●

●●

●
●

●
●●●

●
●●

●●

●

●

●
●●●●

●
●

●

●

●
●

●

●
●●●●●

●

●

●

●

●
●

●●●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●●

●●●●●●

●

●●

●●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●●●●

●

●

●
●

●
●

●
●

●

●●

●●
●

●
●●

●
●

●

●
●

●
●

●
●●●●

●
●●

●
●

●
●

●●
●

●
●●

●
●●●●●

●
●●●●

●

●
●●

●

●
●●●

●
●

●●
●●

●
●

●
●

●●●

●
●

●
●●

●

●
●●●

●

●

●

●

●

●

●
●●●●

●
●

●

●●

●
●●●●

●

●●●●

●●●

●

●●
●

●
●●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●

●●
●●●●●●●

●
●

●●
●

●
●●

●
●●

●
●

●
●

●●
●●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●●

●
●

●●
●

●
●●●

●●

●

●

●
●●

●
●●●

●

●

●●

●

●
●●

●●●
●

●●
●

●

●
●●●

●●

●
●

●
●●

●●●●

●●●●

●

●●●●●
●

●●
●

●

●●

●

●
●●●●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●●●
●●●

●
●

●
●●

●
●●●●

●
●●

●
●

●

●

●
●●●●

●
●●●●●●

●
●

●
●●

●
●

●
●

●●
●

●●
●●

●
●●

●
●

●

●
●

●●
●●

●
●●●●

●
●●

●
●●●●

●

●

●
●●●●

●

●
●●●

●
●

●●
●

●
●

●
●

●●●
●

●
●●

●●●

●

●●●

●

●●

●
●

●●
●●

●
●

●
●

●
●

●
●

●●●●●

●
●●●●●

●
●

●

●

●

●

●
●●●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●●●●

●

●

●

●
●●●●

●

●

●
●●●●

●

●

●●

●
●

●●●●
●

●
●

●

●

●

●

●
●●●

●
●●●●●●●●

●●
●●

●
●

●
●

●●
●

●
●

●
●

●
●●

●●●
●

●
●

●
●●●

●

●
●

●
●

●●
●

●

●

●●●

●

●

●●●●●

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

I/O
 N

O
D

E
 #1

I/O
 N

O
D

E
 #2

I/O
 N

O
D

E
 #3

I/O
 N

O
D

E
 #4

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Seconds

C
on

ge
st

io
n

W
in

do
w

I/O Scheduler ● ● ● ●FIFO TO TWINS (1ms) TWINS (8ms)

Source: Author

and the four I/O nodes. It is possible to see that by using TWINS (blue lines) we are

indeed reducing contention, thus the congestion window is larger, allowing more data to

flow if compared to the FIFO and TO schedulers. Furthermore, the 8ms window, that was

the most suited for this scenario, has on average a higher value for the window than the

1ms alternative.

5.4 TWINS vs. Collective Operations

The traditional way of improving performance of small non-contiguous requests is

to use collective I/O operations (THAKUR; GROPP; LUSK, 2002; LIU; CHEN; ZHUANG,

2013; WANG et al., 2014). Figure 5.6 compares the performance obtained by TWINS for

the 1D strided access pattern with what is achieved by making the single application

perform collective calls. As a reference, times obtained using IOFSL with the baseline

algorithms are also presented. We can see TWINS is able to provide as much performance

as the use of collective operations for the small (32KB) 1D strided read access pattern.

58

Figure 5.6: TWINS vs. collective I/O operations

NO IOFSL IOFSL

84.6

40.0

59.1 57.8

42.5

0

15

30

45

60

75

90

NO Collective FIFO HBRR TWINS

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Source: Author

It is important to notice that TWINS represents a more transparent and generic so-

lution than MPI-IO collective operations. Because it is applied in the I/O nodes, TWINS

is completely transparent to applications and I/O library generic. Therefore applications

using any method to perform I/O operations, such as POSIX, can benefit from this opti-

mization, without modifications to the source code.

To the best of our knowledge, this is the first work to propose a scheduler to the

I/O forwarding layer which transparently coordinates accesses to alleviate concurrency at

the PFS data servers.

5.5 Mapping I/O Nodes

The forwarding layer deployment and configuration may also interfere with the

effectiveness of the schedulers employed in this layer. Because of the huge parameter

scope, so far, we have selected a few representative scenarios to conduct a more thorough

investigation. However, for the sake of completeness, we also present a summary evalu-

ation of all the previous tested algorithms, considering different ratios of clients per I/O

nodes.

For instance, Figure 5.7 illustrates the impact of different numbers of forwarding

nodes (0, 1, 2, 4 or 8 I/O nodes), combined with distinct requests schedulers, and con-

sidering only one common access pattern (file-per-process, 32KB contiguous requests).

Parameters concerning the parallel file system and the forwarding layer configuration

were left untouched.

Results are grouped into five blocks. The first one represents a scenario where the

59

Figure 5.7: Overview of the impact of the number of I/O nodes using distinct schedulers
for the small file-per-process access pattern.

 IOFSL IOFSL + AGIOS IOFSL + SW (s) IOFSL + TWINS (ms)

●

80.4

 ● ●

● ●

● ●

●

●

77.8 77.4

52.0 51.6

● ● ●

●
● ●

● ● ●

●

●

●

77.7 76.8 77.5

51.3 52.1 52.4

● ●
●

● ●

●
● ● ● ●

● ● ● ● ●

●
●

● ●
●

76.5 76.4

78.0

75.7 76.2

50.0 50.8 50.0 49.9 50.0

● ●
●

●
● ● ●

●

● ● ● ● ● ● ●

●

● ●
●

● ●
● ●

●

● ●
●

● ●

●

●

●

76.0 75.5
73.8

72.0
70.6 71.3 71.9

75.6

51.6 51.2
53.2

51.7 52.2 51.3 52.0

60.7

40

45

50

55

60

65

70

75

80

85

90

NO FIFO HBRR TO SJF MLF 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Forwarding Nodes ● ● ● ● ●0 1 2 4 8

Source: Author

forwarding layer is not present, i.e. clients directly access the file system data servers. The

second group illustrates two schedulers from the IOFSL forwarding framework: FIFO

and HBRR. On the third group, we integrated AGIOS scheduling library into IOFSL to

test other schedulers that were demonstrated to provide performance improvements in the

parallel file system data servers: TO, SJF, and MLF. The fourth group represents the SW

scheduler with distinct window sizes (in seconds). Finally, the last block depicts different

window sizes for TWINS (in milliseconds), our best solution. It is important to notice

that the y-axis of these plots does not start at zero to better visualize the differences. We

have also included lines in the window based schedulers to help visualize the trend.

We can see that just by changing the number of I/O nodes and the scheduler, the

I/O performance is significantly improved or worsened, without any additional modifica-

tion to the executing application. Furthermore, if we consider an extra parameter, such

as the window size of time-window based schedulers (represented by IOFSL + SW and

IOFSL + TWINS) the results are impacted by that configuration as well.

Figure 5.8 summarizes the results for small 1D strided requests to a common

shared file. The difference between using a distinct number of I/O nodes with each sched-

uler is not as prominent as the file-per-process scenario, but it is still relevant. For instance,

observe that FIFO and HBRR demonstrate better results (lower is better) using only one

I/O node (ratio of 1 : 32). However, if four I/O nodes are used (ratio of 1 : 8), TWINS

with a window size greater than one millisecond is more suited. Furthermore, for eight

60

Figure 5.8: Overview of the impact of the number of I/O nodes using distinct schedulers
for the small 1D strided access to a shared file.

 IOFSL IOFSL + AGIOS IOFSL + SW (s) IOFSL + TWINS (ms)

●

84.6

● ●

● ●
●

●

●
●

 59.1 57.8

51.1 50.9

 ● ●

●● ●

●
● ●

●●
●

●

56.254.9
53.8

48.6

48.2

45.2

● ● ● ● ●

● ●
●

● ●● ●
● ●

●

● ● ●
●

●

 55.4 54.9
57.2 57.4 55.7

49.4 49.9 50.8

 50.4
48.1

● ● ●
● ●

●

●

●

● ● ● ● ●
●

●
●

● ●
●

● ● ●
●

●

●

● ● ●
● ●

●

●

 50.8 51.1 52.5 53.0
55.2

59.2

70.6

50.1

 48.5 50.3

44.9 44.4 44.1
42.5

45.8

37.7

30

35

40

45

50

55

60

65

70

75

80

85

90

NO FIFO HBRR TO SJF MLF 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Forwarding Nodes ● ● ● ● ●0 1 2 4 8

Source: Author

Figure 5.9: Overview of the impact of the number of I/O nodes using distinct schedulers
for the small contiguous access to a shared file.

 IOFSL IOFSL + AGIOS IOFSL + SW (s) IOFSL + TWINS (ms)

●

93.1

● ●

● ●● ●

●

●

73.0
69.8

58.1 58.4

● ● ●

● ●

●

●
● ●

● ●
●

70.2

67.8
67.3

55.3 55.6 55.1

● ● ● ●

●● ● ●
● ●

● ●
●

●
●

●
●

●
● ●

68.8 70.5
64.6 66.9 66.1

56.1 56.4 57.0 56.4

61.0

● ●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

● ●

●
● ● ● ●

●

●

●

●
●

● ●

●

●

62.0

68.2

66.6

62.6

58.3

63.1

63.0

79.7

55.4

 57.1
54.3 52.4 53.5 54.0

54.1

61.7

40

45

50

55

60

65

70

75

80

85

90

95

100

NO FIFO HBRR TO SJF MLF 1.0 2.0 4.0 8.0 16.0 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Forwarding Nodes ● ● ● ● ●0 1 2 4 8

Source: Author

I/O nodes (ratio of 1 : 4) TWINS with a really small window size (0.125ms) presents the

best result.

To complete our analysis, Figure 5.9 brings the results for small contiguous ac-

cesses to a shared file. A similar conclusion can be drawn here. FIFO and HBRR are the

best alternatives when only one I/O node is connected to the 32 clients, and TWINS is

better suited when 4 I/O nodes (ratio of 1 : 8) are in place.

61

These results demonstrate the complexity of proper configuring the forwarding

layer, without considering other levels of the I/O stack. Furthermore, manually tuning

and finding the near-optimal configuration for each application is a time consuming and

somewhat an elusive job. Moreover, no single scheduler or configuration is able to im-

prove performance for all scenarios and access patterns. That alone justifies the increasing

research effort in seeking new schedulers and alternatives to improve I/O performance.

Techniques for automatic tuning the HPC IO stack could assist in this task. However, this

is out of the scope of this dissertation and it is suggested as future work.

5.6 Multiple Applications Scenario

Albeit applications run on dedicated nodes on large scale clusters or supercom-

puters, they do share the access to the file system servers and the forwarding nodes, if

the latter are present. Since our scheduling algorithm was designed for this particular

layer, we have to test it on a multi-application scenarios. To confirm our algorithm’s per-

formance, we have conducted additional experiments using the Ifer micro benchmark1.

Ifer is a benchmark similar to IOR that starts by splitting its set of processes into groups

running on two different sets of nodes. Each group of processes executes a series of MPI-

IO operations, simulating two applications accessing the shared file system in contention

(YILDIZ, 2016). Ifer measures the time taken by each group of processes to complete its

set of I/O operations.

Ifer was created to issue only write requests, however we have modified it to per-

form read operations to previously created files. For these experiments, each applica-

tion has 64 processes and presents the shared file 1D strided access pattern. Figure 5.10

presents execution times of the first application (A) in the multi-application experiments.

The lines represent different options: not using the forwarding layer, using it with the

baseline algorithms, and using it with TWINS. The x-axis represents the time difference

between start time for applications A and B: when dt is 0 both start at the same time,

positive dt means A starts before B and negative dt means B starts first.

We can see the I/O forwarding layer also improves read performance for the mul-

tiple applications scenario – up to 35% with the baseline algorithms. The interference

experienced by the application is decreased by FIFO and HBRR up to 25%, except when

applications start with a 10 seconds difference, as depicted by Figure 5.11. The inter-

1https://team.inria.fr/kerdata/ifer-microbenchmark-for-studying-the-cross-application-io-interference/

62

Figure 5.10: Execution time for an application under contention caused by another con-
current running application.

●

●

●

●

● ● ●

●

●

●

●●
●

●

●

●

●

● ● ●

●

●

●

●●●

●

●

●

●
● ● ●

●

●

●●●●

●
●

●

●

●

● ●

●

●

●

●

●● 49.7

61.3

40.7

30.5 29.2 29.9 29.8

61.6

40.7

30.229.528.628.7

90.9
93.9

78.9

65.0

52.7

43.3 43.1

90.3

77.1

62.6

48.5
44.043.8

0

25

50

75

100

0 10 20 30 40 50 60−10−20−30−40−50−60

dt (seconds)

E
xe

cu
tio

n
tim

e
of

 a
pp

lic
at

io
n

A
 (

s)
● ● ● ●NO IOFSL IOFSL − FIFO IOFSL − HBRR IOFSL − TWINS (8ms)

Source: Author

Figure 5.11: Interference factor between concurrent running applications using distinct
scheduling algorithms.

●

●

●

●

● ● ●

●

●

●

●●
●

●

●

●

●

● ● ●

●

●

●

●●●

●

●

●

●
● ● ●

●

●

●●●●

●
●

●

●

●

● ●

●

●

●

●

●●

1.68

2.07

1.38

1.03 0.99 1.01 1.01

2.08

1.38

1.021.000.970.97

2.09
2.15

1.81

1.49

1.21

0.99 0.99

2.07

1.77

1.44

1.11
1.011.00

0

1

2

3

0 10 20 30 40 50 60−10−20−30−40−50−60

dt (seconds)

In
te

rf
er

en
ce

 fa
ct

or
 o

f a
pp

lic
at

io
n

A

● ● ● ●NO IOFSL IOFSL − FIFO IOFSL − HBRR IOFSL − TWINS (8ms)

Source: Author

ference factor is calculated as the ratio between the execution time of the application

under contention and the time of the application executing by itself. TWINS improves

performance up to 16% over FIFO and HBRR, and up to 45% over not using IOFSL. In-

terference is further decreased by using TWINS – up to 12% over the baseline algorithms

and up to 31% over not using intermediate I/O nodes.

63

5.7 Conclusions

This chapter presented a thorough evaluation of our proposed scheduler for the

I/O forwarding layer. Better results were observed for the shared file scenario. For 1D

strided access improvements were of 22.30% over using HBRR and 18.93% over using

SW. For the contiguous accesses, improvements were of 20.63% over HBRR and 16.92%

over SW. For write requests, TWINS was not able to provide improvements in this scale,

similarly to the other tested alternatives.

We have also investigated different values for window size parameter. Best results

for small (32KB) 1D strided requests to a single shared file, with read operations, were

observed in a 8ms window. However, for the shared-file tests 1ms time window appears

to be more appropriate. Furthermore, degradation is only observed in the shared file

scenario if the window is too large, which imposes additional waiting times and thus

more overhead.

By collecting additional metrics such as request aggregation size and congestion

window, on the PFS data servers, we were able to correlate the results and explain the per-

formance improvements observed with our solution. Additionally, TWINS also improved

the performance of read requests up to 16% over FIFO and HBRR for the multiple appli-

cations scenario. Interference among concurrent applications was also further decreased

by up to 12%.

64

6 CONCLUSIONS

This work presented a study of the I/O scheduling technique at the I/O forwarding

layer. We evaluated five algorithms, two of which were previously applied to this layer

– FIFO and HBRR – and three that have demonstrated performance improvements when

applied to the parallel file system data servers. This evaluation has shown that no statisti-

cally significant difference was observed between the simple FIFO and the more complex

HBRR algorithm. Furthermore, the solutions implemented in the AGIOS scheduling li-

brary also did not significantly improve performance. However, it was possible to see,

by measuring the average size of requests at different points of the I/O stack, that those

schedulers – TO, SJF, and MLF – indeed were able to improve aggregations. This demon-

strates that they are only partially effective and other factors were responsible for harming

performance.

We believed the lack of a coordination mechanism between the I/O nodes, when

accessing the data servers, might still be directly affecting performance. To confirm our

hypothesis, we proposed a new scheduling algorithm for the I/O forwarding layer named

Server Window (SW). Although SW grouped the requests by the destination server, they

ended up being merged on the dispatch queue. Hence, they were sent together to the PFS

data servers, without focusing accesses to one data server at a time.

As an effort to enforce the desired coordination effect, we proposed Server Time

WINdows (TWINS). Our algorithm uses multiple requests queues – one per PFS data

server – and fixed time windows to coordinate the I/O nodes’ accesses and decrease

contention. To the best of our knowledge, ours is the first work to apply such a tech-

nique to the forwarding layer of the HPC I/O stack. Since our proposed schedulers were

implemented in the AGIOS library, they remain generic and can be employed by other

forwarding frameworks or even by the file system servers.

TWINS results have shown performance improvements for shared-file read access

patterns of up to 28% over the state-of-the-art algorithms. Compared to not using I/O

forwarding nodes, the gains were of up to 50%. Improvements were also shown for a

multi-application scenario, accompanied by a decrease in interference. Moreover, even

for situations where TWINS is not able tpo improve performance, it does not necessarily

harm it.

By analyzing the congestion window size at each data server we succeeded in

correlating the improvements observed due to congestion reduction. Additionally, the

65

performance obtained by TWINS for the 1D strided read access pattern was compara-

ble to what can be achieved by making the application use collective operations. We

compared our results with collective I/O because this is a popular alternative applied to

improve the performance of the applications with 1D strided access patterns. Neverthe-

less, opposed to collective I/O, our proposal is completely transparent to applications and

library independent.

6.1 Future Work

Future work will focus on proposing an automatic mechanism to tune the TWINS’

time window duration parameter based on the observed access pattern. Moreover, we plan

on expanding our evaluation of TWINS and other schedulers considering additional pa-

rameters and factors of other levels of the I/O stack that may directly or indirectly affect

the schedulers’ performance. We also plan on increasing the number of servers and for-

warding nodes to test scenarios where the algorithm’s overhead may impact performance.

In those scenarios, an idea would be to focus access to a group of servers, instead of

treating them separately.

Furthermore, we plan on proposing automatic tuning mechanisms to adjust the

stack’s configurations, including selecting the best scheduler and tune it’s parameters, to

achieve good performance based on each application’s access pattern and characteristics.

6.2 Publications

The following papers were produced during this dissertation. We first list the ones

related to the this work and to the parallel I/O research field, including those submitted

and under review:

• BEZ, J. L; BOITO, F. Z.; SCHNORR, L. M.; NAVAUX, P. O. A.; MEHAUT, J.

TWINS: Server Access Coordination in the I/O Forwarding Layer. In: Euromicro

International Conference on Parallel, Distributed, and Network-Based Processing,

2017 (Accepted).

• MACHADO, V. R.; RAMPON, N. G.; BRAGA, A. B.; BEZ, J. L.; BOITO, F.

Z.; KASSICK, R. V.; PADOIN, E. L.; DIAZ, J.; MAHUT, J.; NAVAUX, P. O. A.;

66

Towards Energy-Efficient Storage Servers. In: The 32nd ACM Symposium On

Applied Computing, 2017 (Accepted).

• BOITO, F. Z.; BEZ, J. L; DUPROS, F.; DANTAS, M.; NAVAUX, P. O. A.; AOCHI,

HIDEO. High Performance I/O for Seismic Wave Propagation Simulations. In:

Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing, 2017 (Accepted).

• BOITO, F. Z.; INACIO, E. C.; BEZ, J. L.; NAVAUX, P. O. A.; DANTAS, M.

A. R; DENNEULIN, YVES. A Checkpoint of Parallel I/O Research. In: ACM

Computing Surveys, 2016 (Submitted).

• PAVAN, P. J.; LORENZONI, R. K.; BEZ, J. L.; BOITO, F. Z.; PADOIN, E. L.;

NAVAUX, P. O. A.; MEHAUT, J. Eficiência Energética e Desempenho de E/S com

Arquiteturas de Baixa Potência. In: WSCAD 2016 - XVII Simpósio em Sistemas

Computacionais de Alto Desempenho, 2016, Aracaju.

• BEZ, J. L.; BOITO, F. Z.; SCHNORR, L. M.; NAVAUX, P. O. A. Escalonamento

de I/O em Servidores de Encaminhamento. In: XVI Escola Regional de Alto De-

sempenho (ERAD/RS), 2016, São Leopoldo. Anais da XVI Escola Regional de

Alto Desempenho (ERAD/RS). São Leopoldo, 2016. v. 1. p. 173-174.

BEZ, J. L.; BOITO, F. Z.; SCHNORR, L. M.; NAVAUX, P. O. A. Coordinating

Data Access at I/O Forwarding Nodes. In: WSPPD 2016 - XIV Workshop de

Processamento Paralelo e Distribuído, 2016, Porto Alegre. Proceedings WSPPD

2016 - XIV Workshop de Processamento Paralelo e Distribuído. Porto Alegre,

2016. v. 1. p. 9-11.

• PAVAN, P. J.; LORENZONI, R. K.; BEZ, J. L.; BOITO, F. Z.; PADOIN, E. L.;

NAVAUX, P. O. A. Análise de Consumo Energético e Desempenho de Operações

E/S em Arquiteturas de Baixa Potência. In: WSPPD 2016 - XIV Workshop de

Processamento Paralelo e Distribuído, 2016, Porto Alegre. Proceedings WSPPD

2016 - XIV Workshop de Processamento Paralelo e Distribuído. Porto Alegre,

2016. v. 1. p. 5-9.

• BRAGA, A. B.; RAMPON, N. G.; MACHADO, V. R.; BEZ, J. L.; BOITO, F.

Z.; KASSICK, R. V.; PADOIN, E. L.; NAVAUX, P. O. A. Viability of Low-Power

Architectures as Parallel File Systems. In: WSPPD 2016 - XIV Workshop de Pro-

cessamento Paralelo e Distribuído, 2016, Porto Alegre. Proceedings WSPPD 2016

67

- XIV Workshop de Processamento Paralelo e Distribuído. Porto Alegre, 2016. v.

1. p. 27-30.

• MACHADO, V. R.; BOITO, F. Z.; KASSICK, R. V.; BEZ, J. L.; NAVAUX, P.

O. A.; DENNEULIN, Y. Parallel Storage Devices Profiling with SeRRa. In: 14º

WPerformance - XIV Workshop em Desempenho de Sistemas Computacionais e de

Comunicação, 2015, Recife. 14º WPerformance - XIV Workshop em Desempenho

de Sistemas Computacionais e de Comunicação, 2015.

• BEZ, J. L.; BOITO, F. Z. ; KASSICK, R. V. ; MACHADO, V. R. ; NAVAUX, P.

O. A. . Faster Storage Devices Profiling with Parallel SeRRa. In: WSPPD 2015 -

XIII Workshop de Processamento Paralelo e Distribuído, 2015, Porto Alegre. Pro-

ceedings WSPPD 2015 - XIII Workshop de Processamento Paralelo e Distribuído,

2015. v. 1. p. 33-36.

The following papers were also published but are not directly related to the parallel

I/O field, though they are still relevant to the HPC research field:

• BEZ, J. L; BERNART, E. E.; SANTOS, F. F.; SCHNORR, L. M.; NAVAUX, P.

O. A. Performance and Energy Efficiency Analysis of HPC Physics Simulation

Applications in a Cluster of ARM Processors. In: Concurrency and Computation:

Practice and Experience, 2016.

• BEZ, J. L.; BERNART, E. E.; SANTOS, F. F.; SCHNORR, L. M.; NAVAUX, P.

O. A. Análise da Eficiência Energética de uma Aplicação HPC de Geofísica em

um Cluster de Baixo Consumo. In: WSCAD 2015 - XVI Simpósio em Sistemas

Computacionais de Alto Desempenho, 2015, Florianópolis. Anais da 16a Edição

do Simpósio em Sistemas Computacionais de Alto Desempenho, 2015. v. 1. p.

228-239.

• BEZ, J. L.; SCHNORR, L. M.; NAVAUX, P. O. A. Characterizing Anomalies of a

Multicore ARMv7 Cluster with Parallel N-Body Simulations. In: 10th Workshop

on Applications for Multi-Core Architectures, 2015, Florianópolis. Proceedings

10th Workshop on Applications for Multi-Core Architectures, 2015. v. 1. p. 27-32.

• DOS ANJOS, JULIO C.S.; ASSUNCAO, MARCOS D.; BEZ, JEAN; GEYER,

CLAUDIO; DE FREITAS, EDISON PIGNATON; CARISSIMI, ALEXANDRE;

COSTA, JOAO PAULO C. L.; FEDAK, GILLES; FREITAG, FELIX; MARKL,

68

VOLKER; FERGUS, PAUL; PEREIRA, RUBEM. SMART: An Application Frame-

work for Real Time Big Data Analysis on Heterogeneous Cloud Environments.

In: 2015 IEEE International Conference on Computer and Information Technol-

ogy; Ubiquitous Computing and Communications; Dependable, Autonomic and

Secure Computing; Pervasive Intelligence and Computing, 2015, LIVERPOOL.

CIT/IUCC/DASC/PICOM. p. 199.

69

REFERENCES

ABBASI, H. et al. DataStager: Scalable data staging services for petascale applications.
In: Proceedings... New York, NY, USA: ACM, 2009. (HPDC ’09), p. 39–48. ISBN
978-1-60558-587-1. Available from Internet: <http://doi.acm.org/10.1145/1551609.
1551618>.

ALENEZI, M.; REED, M. J. Denial of service detection through TCP congestion
window analysis. In: Proceedings... [S.l.: s.n.], 2013. (WorldCIS-2013), p. 145–150.

ALI, N. et al. Scalable I/O forwarding framework for high-performance computing
systems. In: IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING
AND WORKSHOPS, 2009, Berkeley, USA. Proceedings... [S.l.]: IEEE, 2009. p. 1–10.

ALMÁSI, G. et al. An overview of the Blue Gene/L system software organization. In:
EURO-PAR 2003 CONFERENCE, LECTURE NOTES IN COMPUTER SCIENCE,
2003. Proceedings... [S.l.]: Springer-Verlag, 2003. p. 543–555.

ARGONNE, L. C. F. Aurora Supercomputer. 2016. <http://aurora.alcf.anl.gov/>.
Accessed: October 2016.

BALOUEK, D. et al. Adding virtualization capabilities to the Grid’5000 testbed,
In: IVANOV, I. ET AL. Cloud Computing and Services Science. [S.l.]: Springer
International Publishing, 2013. (Communications in Computer and Information Science),
p. 3–20. ISBN 978-3-319-04518-4.

BOITO, F. Z. Transversal I/O Scheduling for Parallel File Systems: from
Applications to Devices. Thesis (PhD) — PPGC - Federal University of Rio Grande do
Sul, 2015.

BOITO, F. Z. et al. Towards fast profiling of storage devices regarding access
sequentiality. In: 30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING,
2015, Salamanca, Spain. Proceedings... ACM, 2015. (SAC ’15), p. 2015–2020. ISBN
978-1-4503-3196-8. Available from Internet: <http://doi.acm.org/10.1145/2695664.
2695701>.

BOITO, F. Z. et al. AGIOS: Application-guided I/O scheduling for parallel file systems.
In: INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED
SYSTEMS (ICPADS), 2013, Seoul. Proceedings... [S.l.]: IEEE, 2013. p. 43–50. ISSN
1521-9097.

BOITO, F. Z. et al. Automatic I/O scheduling algorithm selection for parallel file
systems. Concurrency and Computation: Practice and Experience, 2015. ISSN
1532-0634. Available from Internet: <http://dx.doi.org/10.1002/cpe.3606>.

CORBETT, P. et al. Overview Of The MPI-IO Parallel I/O Interface. 1995.

DECLERCK, T. et al. Cori - a system to support data-intensive computing. In:
Proceedings... [s.n.], 2016. p. 8. Available from Internet: <http://www.fujitsu.com/
global/documents/about/resources/publications/fstj/archives/vol48-3/paper02.pdf>.

http://doi.acm.org/10.1145/1551609.1551618
http://doi.acm.org/10.1145/1551609.1551618
http://aurora.alcf.anl.gov/
http://doi.acm.org/10.1145/2695664.2695701
http://doi.acm.org/10.1145/2695664.2695701
http://dx.doi.org/10.1002/cpe.3606
http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-3/paper02.pdf
http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-3/paper02.pdf

70

DELL. OrangeFS Reference Architecture. [S.l.], 2012. Available from Internet:
<http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/
orange-fs-reference-architecture.pdf>.

DOE. The Opportunities and Challenges of Exascale Computing. [S.l.], 2010.

HE, J. et al. I/O acceleration with pattern detection. In: 22ND INTERNATIONAL
SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED
COMPUTING, 2013, New York, New York, USA. Proceedings... ACM, 2013.
(HPDC ’13), p. 25–36. ISBN 978-1-4503-1910-2. Available from Internet:
<http://doi.acm.org/10.1145/2462902.2462909>.

ISAILA, F. et al. Design and evaluation of multiple-level data staging for blue gene
systems. Parallel and Distributed Systems, IEEE Transactions on, IEEE Computer
Society, v. 22, n. 6, p. 946–959, 2011.

ISKRA, K. et al. ZOID: I/O forwarding infrastructure for petascale architectures.
In: 13TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF
PARALLEL PROGRAMMING. Proceedings... [S.l.], 2008. p. 153–162.

KUO, C.-S. et al. How file access patterns influence interference among cluster
applications. In: 2014 IEEE INTERNATIONAL CONFERENCE ON CLUSTER
COMPUTING (CLUSTER), 2014, Madrid, ES. Proceedings... [S.l.]: IEEE, 2014. p.
185–193. ISSN 1552-5244.

LANL. Los Alamos National Lab MPI-IO Test, User’s Guide. 2006.

LARREA, V. G. V. et al. A more realistic way of stressing the end-to-end I/O system. In:
CRAY USER GROUP MEETING, 2015, Chicago, IL. Proceedings... [S.l.], 2015.

LATHAM, R. et al. A next-generation parallel file system for linux clusters. LinuxWorld
Magazine, v. 2, n. 1, January 2004.

LEBRE, A. et al. I/O scheduling service for multi-application clusters. In: IEEE
INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2006, Barcelona.
Proceedings... [S.l.]: IEEE, 2006. p. 1–10. ISSN 1552-5244.

LEE, C.; YANG, M.; AYDT, R. Netcdf-4 performance report. 2008. Available from
Internet: <https://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf>.

LIU, J.; CHEN, Y.; ZHUANG, Y. Hierarchical I/O scheduling for collective I/O. In:
Proceedings... [S.l.: s.n.], 2013. (CCGRID’13), p. 211–218.

LIU, Q. et al. Hello ADIOS: the challenges and lessons of developing leadership class I/O
frameworks. Concurrency and Computation: Practice and Experience, v. 26, n. 7, p.
1453–1473, 2014. Available from Internet: <http://dx.doi.org/10.1002/cpe.3125>.

LIU, Z. et al. Profiling and improving I/O performance of a large-scale climate
scientific application. In: 22ND INTERNATIONAL CONFERENCE ON COMPUTER
COMMUNICATIONS AND NETWORKS (ICCCN), 2013, Nasssau. Proceedings...
[S.l.]: IEEE, 2013. p. 1–7.

http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/orange-fs-reference-architecture.pdf
http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/orange-fs-reference-architecture.pdf
http://doi.acm.org/10.1145/2462902.2462909
https://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
http://dx.doi.org/10.1002/cpe.3125

71

LOFSTEAD, J. et al. Six degrees of scientific data: Reading patterns for extreme scale
science IO. In: 20TH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE
DISTRIBUTED COMPUTING, 2011, San Jose, California, USA. Proceedings...
ACM, 2011. (HPDC ’11), p. 49–60. ISBN 978-1-4503-0552-5. Available from Internet:
<http://doi.acm.org/10.1145/1996130.1996139>.

MIYAZAKI, H. et al. Overview of the K computer system. [S.l.], 2012. 48 p. Available
from Internet: <http://www.fujitsu.com/global/documents/about/resources/publications/
fstj/archives/vol48-3/paper02.pdf>.

NISAR, A.; LIAO, W.-k.; CHOUDHARY, A. Scaling parallel I/O performance through
I/O delegate and caching system. In: Proceedings... [S.l.: s.n.], 2008. (SC’08), p. 1–12.
ISSN 2167-4329.

NSCCWX, N. S. C. Sunway TaihuLight Supercomputer. 2016. <http://www.nsccwx.
cn/wxcyw/>. Accessed: December 2016.

OHTA, K. et al. Optimization techniques at the I/O forwarding layer. In: IEEE
INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2009, Heraklion,
Crete. Proceedings... [S.l.]: IEEE, 2010. p. 312–321.

PRABHAT; KOZIOL, Q. High Performance Parallel I/O. 1st. ed. [S.l.]: Chapman &
Hall/CRC, 2014. ISBN 1466582340, 9781466582347.

QIAN, Y. et al. A novel network request scheduler for a large scale storage
system. Computer Science - Research and Development, Springer-Verlag,
v. 23, n. 3–4, p. 143–148, 2009. ISSN 1865-2034. Available from Internet:
<http://dx.doi.org/10.1007/s00450-009-0073-9>.

REN, K. et al. IndexFS: Scaling file system metadata performance with stateless
caching and bulk insertion. In: Proceedings... Piscataway, NJ, USA: IEEE Press,
2014. (SC’14), p. 237–248. ISBN 978-1-4799-5500-8. Available from Internet:
<http://dx.doi.org/10.1109/SC.2014.25>.

ROSARIO, J. M. del; BORDAWEKAR, R.; CHOUDHARY, A. Improved parallel i/o via
a two-phase run-time access strategy. ACM SIGARCH Computer Architecture News,
ACM, New York, NY, USA, v. 21, n. 5, p. 31–38, dec. 1993. ISSN 0163-5964. Available
from Internet: <http://doi.acm.org/10.1145/165660.165667>.

SCHMUCK, F.; HASKIN, R. GPFS: A shared-disk file system for large computing clus-
ters. In: 1ST USENIX CONFERENCE ON FILE AND STORAGE TECHNOLOGIES,
2002, Monterey, CA. Proceedings... USENIX Association, 2002. (FAST ’02). Available
from Internet: <http://dl.acm.org/citation.cfm?id=1083323.1083349>.

SONG, H. et al. Server-side I/O coordination for parallel file systems. In: Proceedings...
[S.l.: s.n.], 2011. (SC ’11), p. 1–11. ISSN 2167-4329.

STENDER, J. et al. Striping without sacrifices: Maintaining posix semantics
in a parallel file system. In: Proceedings... Berkeley, CA, USA: USENIX
Association, 2008. (LASCO’08), p. 6:1–6:8. Available from Internet: <http:
//dl.acm.org/citation.cfm?id=1411725.1411731>.

http://doi.acm.org/10.1145/1996130.1996139
http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-3/paper02.pdf
http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-3/paper02.pdf
http://www.nsccwx.cn/wxcyw/
http://www.nsccwx.cn/wxcyw/
http://dx.doi.org/10.1007/s00450-009-0073-9
http://dx.doi.org/10.1109/SC.2014.25
http://doi.acm.org/10.1145/165660.165667
http://dl.acm.org/citation.cfm?id=1083323.1083349
http://dl.acm.org/citation.cfm?id=1411725.1411731
http://dl.acm.org/citation.cfm?id=1411725.1411731

72

SUGIYAMA, S.; WALLACE, D. Cray dvs: Data virtualization service. 2008.

SUN. High-Performance Storage Architecture and Scalable Cluster File System.
[S.l.], 2007. Available from Internet: <http://www.csee.ogi.edu/~zak/cs506-pslc/
lustrefilesystem.pdf>.

THAKUR, R.; GROPP, W.; LUSK, E. Optimizing noncontiguous accesses in mpi-io.
Parallel Computing, Elsevier Science Publishers B. V., Amsterdam, The Netherlands,
The Netherlands, v. 28, n. 1, p. 83–105, jan. 2002. ISSN 0167-8191. Available from
Internet: <http://dx.doi.org/10.1016/S0167-8191(01)00129-6>.

The HDF Group. Hierarchical Data Format, version 5. 1997–2016. /HDF5/.

VISHWANATH, V. et al. Accelerating I/O forwarding in IBM blue gene/p systems. In:
2010 ACM/IEEE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE
COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2010, New Orleans,
USA. Proceedings... [S.l.]: IEEE Computer Society, 2010. (SC’10), p. 1–10. ISBN
978-1-4244-7559-9.

VISHWANATH, V. et al. Topology-aware data movement and staging for I/O
acceleration on blue gene/p supercomputing systems. In: 2011 INTERNATIONAL
CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING,
STORAGE AND ANALYSIS, 2011, Seattle, Washington. Proceedings... ACM,
2011. (SC ’11), p. 19:1–19:11. ISBN 978-1-4503-0771-0. Available from Internet:
<http://doi.acm.org/10.1145/2063384.2063409>.

WANG, Z. et al. Iteration based collective I/O strategy for parallel I/O systems. In:
Proceedings... [S.l.: s.n.], 2014. (CCGrid’14), p. 287–294.

WELCH, B. et al. Scalable performance of the panasas parallel file system. In: 6TH
USENIX CONFERENCE ON FILE AND STORAGE TECHNOLOGIES, 2008, San
Jose, California. Proceedings... USENIX Association, 2008. (FAST’08), p. 2:1–2:17.
Available from Internet: <http://dl.acm.org/citation.cfm?id=1364813.1364815>.

XU, W. et al. Hybrid hierarchy storage system in MilkyWay-2 supercomputer. Frontiers
of Computer Science, Higher Education Press, v. 8, n. 3, p. 367–377, 2014. ISSN
2095-2228. Available from Internet: <http://dx.doi.org/10.1007/s11704-014-3499-6>.

YILDIZ, O. IFER: MicroBenchmark for Studying the Cross-
Application I/O Interference. 2016. <https://team.inria.fr/kerdata/
ifer-microbenchmark-for-studying-the-cross-application-io-interference/>. Accessed:
September 2016.

YIN, Y. et al. Pattern-direct and layout-aware replication scheme for parallel i/o
systems. In: 2013 IEEE 27TH INTERNATIONAL SYMPOSIUM ON PARALLEL
DISTRIBUTED PROCESSING (IPDPS), 2013, Boston, MA. Proceedings... [S.l.]:
IEEE, 2013. p. 345–356. ISSN 1530-2075.

ZHANG, X.; DAVIS, K.; JIANG, S. IOrchestrator: Improving the performance of
multi-node I/O systems via inter-server coordination. In: Proceedings... [S.l.: s.n.],
2010. p. 1–11. ISSN 2167-4329.

http://www.csee.ogi.edu/~zak/cs506-pslc/lustrefilesystem.pdf
http://www.csee.ogi.edu/~zak/cs506-pslc/lustrefilesystem.pdf
http://dx.doi.org/10.1016/S0167-8191(01)00129-6
http://doi.acm.org/10.1145/2063384.2063409
http://dl.acm.org/citation.cfm?id=1364813.1364815
http://dx.doi.org/10.1007/s11704-014-3499-6
https://team.inria.fr/kerdata/ifer-microbenchmark-for-studying-the-cross-application-io-interference/
https://team.inria.fr/kerdata/ifer-microbenchmark-for-studying-the-cross-application-io-interference/

73

ZIMMER, C.; GUPTA, S.; LARREA, V. G. V. Finally, a way to measure frontend i/o
performance. In: CRAY USER GROUP MEETING, 2016, London, UK. Proceedings...
[S.l.], 2016.

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Document Organization

	2 Background and Related Work
	2.1 Parallel I/O for High Performance Computing
	2.1.1 Parallel File Systems
	2.1.2 The Forwarding Layer

	2.2 I/O Optimizations
	2.2.1 Access Patterns
	2.2.2 Request Aggregation and Reordering
	2.2.3 Request Scheduling

	2.3 Summary

	3 Evaluating Scheduling in the I/O Nodes
	3.1 I/O Forwarding Software Layer
	3.2 AGIOS Scheduling Library
	3.2.1 Schedulers

	3.3 Integrating AGIOS to the IOFSL Framework
	3.4 Performance Evaluation
	3.4.1 Experimental Platform
	3.4.2 Experimental Methodology
	3.4.3 Performance of the IOFSL Scheduling Algorithms
	3.4.4 Performance of the AGIOS Scheduling Algorithms

	3.5 Conclusions

	4 TWINS: An I/O Scheduler to Coordinate Server Access
	4.1 I/O Contention and Coordination
	4.2 Server Access Coordination
	4.2.1 Required Information to Determine the Data Servers
	4.2.2 Performance Evaluation
	4.2.3 Investigating the Window Size
	4.2.4 Discussion

	4.3 Time Window Based Scheduler
	4.4 Conclusions

	5 Experimental Results
	5.1 Performance of Write Requests
	5.2 Investigating the Window Size
	5.3 Aggregation Sizes and Contention
	5.4 TWINS vs. Collective Operations
	5.5 Mapping I/O Nodes
	5.6 Multiple Applications Scenario
	5.7 Conclusions

	6 Conclusions
	6.1 Future Work
	6.2 Publications

	References

