UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
DOUTORADO EM CIENCIA DA COMPUTACAO

EDUARDO KESSLER PIVETA

Improving the Search for Refactoring
Opportunities on Object-Oriented and
Aspect-Oriented Software

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. D. Phil. Roberto Tom Price
Advisor

Prof. Dr. Marcelo Soares Pimenta
Coadvisor

Porto Alegre, January 2009

CATALOGACAO NA PUBLICACAO

Piveta, Eduardo Kessler

Improving the Search for Refactoring Opportunities on
Object-Oriented and Aspect-Oriented Software / Eduardo Kessler
Piveta. — Porto Alegre: Programa de Pds Graduacio em Com-
putacdo, 2009.

235 f.: 1l

Tese (doutorado) — Universidade Federal do Rio Grande do
Sul. Doutorado em Ciéncia da Computagdo, Porto Alegre, BR—
RS, 2009. Advisor: Roberto Tom Price; Coadvisor: Marcelo
Soares Pimenta.

1. Refatoragdao. 2. Desenvolvimento de Software Orientado
a Aspectos. 3. Evolugdo de Software. I. Price, Roberto Tom.
II. Pimenta, Marcelo Soares. III. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de Pés-Graduagdo: Prof. Aldo Bolten Lucion

Diretor do Instituto de Informatica: Prof. Fladvio Rech Wagner

Coordenador do PPGC: Prof. Alvaro Freitas Moreira

Bibliotecaria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

I would like to thank all the people who contributed to the development of this work.

First, I would like to thank Tom Price and Marcelo Pimenta, for their ideas, sugges-
tions, comments and discussions. Their help was fundamental to the conclusion of this
thesis.

Also, I would like to thank Ana Moreira, Jodo Araujo and Pedro Guerreiro, for their
excellent hospitality and for their immense help on my work during my stay in Portugal.

Special thanks go to my family: Gilda, Enio and Juliana, who supported me uncondi-
tionally during these long four years, and to my beloved Deise, who shared the good and
bad moments of this journey, helped me and motivated me when I needed most.

Also, my thanks to all the professors who participated directly or indirectly in the de-
velopment of this work: Maria Lucia Lisboa, Alvaro Moreira, Carlos Eduardo Pereira,
Carla Freitas, Leandro Wives, Daltro Nunes, Paulo Borba, Paulo Masiero, Toacy Cav-
alcante, Sérgio Soares, and Marco Tulio Valente. And my thanks to the colleagues of
UFRGS for their friendship and for the coffee-driven relaxing moments at Campus do
Vale, and to the colleagues at UNL for the guinness-driven tours at Portugal.

I also acknowledge the funding support by CAPES and CNPq, which financially
helped me in my stay in Porto Alegre and Costa da Caparica.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 10
LISTOFFIGURES. e e e e e e e e e 11
LISTOFTABLES i e e e e e e e e e 13
ABSTRACT it e e e e e e e e 15
RESUMO e e e e e e e e e e 16
1 INTRODUCTION i i it e e e e e e e e 17
1.1 Motivation 18
1.2 Contributions 20
1.3 Evaluation. 22
14 ThesisOutline. 23
2 BACKGROUNDttt e e e e e eeas 24
21 Refactoring 24
2.1.1 Identification of Refactoring Opportunities 25
2.1.2 Assessing the Effects of Refactoring on Quality 26
2.2 Aspect-Oriented Software Development 27
2.2.1 Aspect] . .o 28
2.2.2 Measuring Aspect-Oriented Software 30
2.2.3 Refactoring Aspect-Oriented Software 31
2.3 The Analytical Hierarchy Process 33
2.3.1 Problem Definition and Hierarchical Representation 33
2.3.2 Priorities Estimation L L oL 34
233 Synthesis 35
2.3.4 Results Consistency Analysis 35
3 ADISCIPLINEFORREFACTORING 38
31 Introduction. 38
3.2 Select or Create Quality Models 42
3.2.1 ActivitiesandRoleso 42
3.2.2 Artefacts and Tool Support 43
3.3 Select Refactoring Patterns 44
3.3.1 ACHVILIES v o o e e e e 45
332 Roles. 46

3.33 Artefacts 46

34 Select or Create HeuristicRules 48

34.1 ActivitiesandRoles L o 48
342 Artefacts e 49
3.5 Search for Refactoring Opportunities 51
3.5.1 AcCtiVItIeS e e e 51
352 Roles. e 52
353 Artefacts 53
3.6 Compute the Effects of Refactoring 55
3.6.1 Activities e e e 55
3662 Roles. 56
3.6.3 Artefacts e 57
3.7 Prioritise Refactoring Opportunities 58
3.7.1 Activitiesand Roleso 59
372 Artefacts L e e 60
3.8 Apply Refactoring Patterns 61
3.8.1 ACHIVItIES e 61
382 Roles. e 62
3.8.3 Artefacts L 62
39 Conclusions 63
4 RANKING REFACTORING PATTERNS WITH THE ANALYTICAL HI-
ERARCHYPROCESS it it e ns 65
41 Introduction. 65
4.2 Creating a Ranking withAHP 67
4.3 Case Study: Ranking Object-Oriented Refactoring Patterns with AHP . 68
4.3.1 Creating the Quality Attributes Pairwise Comparisons 69
4.3.2 Creating the Refactoring Patterns Pairwise Comparisons 69
4.3.3 Computing the Quality Attributes Ranking 70
434 Computing the Refactoring Patterns versus Quality Attributes Ranking . . 70
43.5 Computing the Overall Ranking 72
44 Discussion 72
4.5 ToolSupport 73
4.6 Related Work 75
47 Conclusions L 76
5 SHORTCOMINGS IN ASPECT-ORIENTED SOFTWARE 77
51 Imtroduction. 77
5.2 Shortcomings in Aspect-Oriented Software 78
5.2.1 Anonymous Pointcut Definition L. 78
5.2.2 Speculative Generality 80
523 FeatureEnvy 81
5.2.4 Abstract Method Introduction 82
5.25 Lazy Aspect e 83
5.2.6 DivergentChanges 84
5.277 Double Personality 85
5.2.8 CodeDuplication 87
5.2.9 Shortcomings and Refactoring Patterns 88
53 Related Work 89

5.4 Conclusions 90

6 SEARCHING FOR REFACTORING OPPORTUNITIES 91

6.1 Introduction. 91
6.2 Searching for Refactoring Opportunities 92
6.2.1 Definition of HeuristicRules 92
6.2.2 ACUVILIES o o e e e e 93
6.23 Example 94
6.3 Case Study: Using Detection Rules to Search for Refactoring Opportu-

nities in Aspect-Oriented Software 101
6.3.1 System 1: Aspect) Examples 101
6.3.2 System 2: Aspect] Design Patterns 103
6.3.3 System 3: Glassbox Inspector 104
6.4 Tool Support 105
6.4.1 Searching for Anonymous Pointcut Definitions 106
6.4.2 Searching for Double Personality 107
6.4.3 Searching for Lazy Aspects 108
6.44 Searching for Feature Envy, 108
6.4.5 Searching for Abstract Method Inter-Type Declarations 109
6.5 Discussion 109
6.5.1 Reducing the Search Space 109
6.5.2 Dealing with Successive Refactoring 110
6.6 Conclusions 110
7 EVALUATING THE EFFECTS OF REFACTORING 112
71 Imtroduction. 112
7.2 Creating Impact Functions 113
7.2.1 Process Roles, Activities and Artefacts 113
7.3 Creating Impact Functions for Pull Up Advice 114
7.3.1 Selecting Refactoring Patterns 115
7.3.2 Selected Metrics 115
7.3.3 Impact Functions for Pull Up Advice 115
7.4 Case Study: Computing the Values of Pull Up Advice in the Glassbox

Inspector 122
7.5 Tool Support: An API for the Creation of Impact Function 125
7.6 Related Work 126
7.7 Conclusions 128
8 REFACTORING SEQUENCES SIMPLIFICATION 129
81 Imtroduction. 129
82 Motivation 130
8.3 Reducing the SearchSpace 131
8.3.1 Creating the Initial Refactoring Sequences 132
8.3.2 Simplifying the Sequences 133
8.4 Case Study: Reducing Sequences of Refactoring Patterns for Methods . 135
8.4.1 Creating the Initial DFA and Removing Impossible Sequences 136
8.4.2 Simplifying the Pull Up Method Sequences 136
843 Comparingthe DFAs, 139
8.4.4 Sequences in the Sample Projects 140

85 ToolSupport 141

8.6 Related Work 143

87 Conclusions 143
9 A CASE STUDY OF METRICS TO EVALUATE ASPECT-ORIENTED
SOFTWARE QUALITY i e e e e e e e e e e 144
9.1 Introduction. 144
9.2 Selected Metrics, Projects, and Statistics 145
9.2.1 Selected Metrics e 145
9.2.2 Selected Projects and Computed Statistics 146
9.3 Formal Definitions of Metrics and Empirical Data 147
9.3.1 Linesof Code 148
9.3.2 Number of OperationsinModule 151
9.3.3 Crosscutting Degree of an Aspect 153
9.3.4 Coupling on Advice Execution 154
9.3.5 Depth of Inheritance Tree 157
93,6 NumberofChildren 158
9.4 Data Correlation 160
9.5 Using Metrics to Spot Shortcomings 161
9.5.1 Linesof Code e 161
9.5.2 Number of OperationsinModule 162
9.53 Depthof Inheritance Tree 164
9.54 Numberof Children, 166
9.5.5 Crosscutting Degree of an Aspect 167
9.5.6 Coupling on Advice Execution 168
9.5.7 Discussion e e 170
9.6 RelatedWork 172
9.7 Conclusions 172
10 CONCLUSION o e s e e e e e e e e e e e e 174
10.1 A Discipline for Refactoring 174
10.2 A Method for Ranking of Refactoring Patterns 175
10.3 An Approach to Search for Refactoring Opportunities 176
10.4 A Catalogue of Shortcomings in Aspect-Oriented Software 176
10.5 Metrics for Evaluating the Quality of Aspect-Oriented Software 177
10.6 An Approach to Evaluate the Effects of Refactoring on Software Quality 178
10.7 An Approach to Reduce the Number of Refactoring Sequences 178
10.8 Future Work 179
REFERENCES e e e e e e e e e e 181
GLOSSARY e e e e e e e e e e e e 191
APPENDIX A PAPERS it e e 194
APPENDIX B GUIDELINES TO AVOID SHORTCOMINGS IN ASPECT-
ORIENTEDSOFTWARE 196
B.1 UseAbstract Aspects 196
B.2 UseNamed Pointcuts 197
B.3 Use Semantic Based Pointcuts 198

B.4 Favour Pointcut Composition 199

B.S5 OneConcernper Aspect 200

B.6 Discussion 201
B.7 Conclusions 202
APPENDIXC AN ANALYTICAL EVALUATION FOR A SET OF
ASPECT-ORIENTED METRICS 203
Cd LinesofCode 204
C.2 Number of Operationsin Module 204
C.3 Depth of Inheritance Tree 205
C.4 Number of Children 206
C.5 Crosscutting Degree of an Aspect 206
C.6 Coupling on Advice Execution 206
C.7 Conclusions 207
APPENDIXD COMPUTING IMPACT FUNCTIONS FOR PULL UP AD-
VICE IN THE GLASSBOX INSPECTOR 208
D.1 Super-Aspects 208
D.1.1 AbstractResourceMonitor L. 208
D.1.2 AbstractXMLProcessingMonitor 209
D.1.3 AbstractRequestMonitor L L oL 209
D.2 Sub-Aspects 209
D.2.1 JDBCConnectionMonitor 210
D.2.2 JDBCStatementMonitor 210
D.2.3 RemoteCallMonitor 210
D.2.4 JaxmCallMonitor 211
D.2.5 AbstractXMLCallMonitor 211
D.2.6 AbstractOperationMonitor L. 211
D3 Advices e 212
D.3.1 p;-around(DataSource) 212
D.3.2 po-around(String) 213
D.3.3 ps - before(Statement,String) 213
D.3.4 ps-around(Statement) 214
D.3.5 ps - after returning(Connection) 214
D.3.6 pg-around(String) 215
D.3.7 p7-around(Object): remote... 216
D.3.8 pg-around(Object): jaxRPC... 216
D.3.9 pg - around(Object, Object, Object) 217
D.3.10 pjp-around(Node) 218
D.3.11 pj; - after returning(Object) Lo 218
D.3.12 pjg-around(Object): class... oL 219
D.3.13 pi3 - around(Object): methodSig... 220
D.3.14 py4 - around(Object): methodNameCon... 220
D.3.15 p;5 - around(Object): methodCon... 221
D.4 Impact Functions and Their Values 221
APPENDIXE COMPUTING THE EFFECTS OF REFACTORING ON
OBJECT-ORIENTED SOFTWARE 227
E.1 Selecting Targets., 227

E.2 Selecting Refactoring Patterns. 227

E.3

F.1

F1.1
F1.2
F1.3
F.2

F2.1
F2.2
F2.3

Creating the Impact Functions. 228
APPENDIX F IMPACT FUNCTIONS FOR EXTRACT POINTCUT AND

INLINE INTER-TYPE FIELD DECLARATION 231

Extract Pointcut Lo 231
Impactonloce. 231
Impactonnom. 231
Example. e 232
Inline Inter-Type Field Declaration 233
Impactonlocc. 233
Impactonnom. L 233
Impactoncda. 233
Impactoncae. L 233

F2.4
F2.5

Example. 233

AHP
AJDT
AO
AOSD
AST
CAE
CDA
CBSD
DIT
GQM
GoF
IDE
ISO
JDBC
JIMX
JSP
J2EE
LOCC
MCDM
DFA
NOC
NOM
(0]0)
RO
RP
SQA
UML

LIST OF ABBREVIATIONS AND ACRONYMS

Analytic Hierarchy Process

Aspect] Development Tools
Aspect-Oriented

Aspect-Oriented Software Development
Abstract Syntax Tree

Coupling on Advice Execution
Crosscutting Degree of an Aspect
Component-Based Software Development
Depth of Inheritance Tree
Goal-Question Metric

Gang-of-Four

Integrated Development Environment
International Organization for Standardization
Java Database Connectivity

Java Management Extensions

Java Server Pages

Java 2 Enterprise Edition

Lines of Code

Multi-Criteria Decision Method
Deterministic Finite Automata

Number of Children

Number of Operations in Module
Object-Oriented

Refactoring Opportunity

Refactoring Pattern

Software Quality Assurance

Unified Modelling Language

Figure 2.1:
Figure 2.2:
Figure 2.3:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:

Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 6.1:
Figure 6.2:

Figure 6.3:

LIST OF FIGURES

Logging in org.apache.tomcat 28
Logging in org.apache.tomcat using aspects 28
AHP hierarchical problem representation 34
Discipline Overview: Main Activities 39
Select or Create Quality Models: Roles 43
Select or Create Quality Models: Artefacts Meta-Model 44
Select Refactoring Patterns (RPs): Activities 45
Select Refactoring Patterns: Roles 47
Select Refactoring Patterns (RPs): Artefacts Meta-Model 47
Select or Create Heuristic Rules: Activities 49
Select or Create Heuristic Rules: Roles 49
Create Heuristic Rules: Artefacts 50
Search for Refactoring Opportunities (ROs): Activities 52
Search for Refactoring Opportunities (ROs): Roles 53
Search for Refactoring Opportunities: Artefacts Meta-Model 54
Compute the Effects of Refactoring: Activities 56
Compute the Effects of Refactoring: Roles 57
Compute the Effects of Refactoring: Artefacts Meta-Model 58
Prioritise Refactoring Opportunities (ROs): Activities. 59
Prioritise Refactoring Opportunities (ROs): Roles 60
Prioritise Refactoring Opportunities: Artefacts Meta-Model 60
Apply Refactoring Patterns (RPs): Activities 61
Apply Refactoring Patterns: Roles 62
Apply Refactoring Patterns: Meta-Model 63
A conceptual model for ranking refactoring patterns 68
Tool for creating AHP rankings of refactoring patterns: core module . 74

Tool for creating AHP rankings of refactoring patterns: example of use 75

Heuristic rule definition activities 93
Examples of values for the heuristic rule if a subclass is extracted.
The x-axis represents each class occurrence and the y-axis is the value
of the heuristicrule. o000 96

Examples of values for the heuristic rule if a sub class is extracted.
The x-axis represents each class occurrence and the y-axis is the value
of the heuristic rule.

Figure 6.4:

Figure 6.5:
Figure 6.6:

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:
Figure 7.8:

Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 8.4:
Figure 8.5:
Figure 8.6:
Figure 8.7:

Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:
Figure 9.5:
Figure 9.6:
Figure 9.7:
Figure 9.8:

Class diagram for the ConnectionProperties class and some of its

subclasses 99
A view showing the shortcomings found in the projects 102
Class hierarchy of the Aspect] extension 106
Process roles, activities and artefacts: overview 113
Percentage of size decrease per number of children 116
Percentage of size decrease per number of children 117
Percentage changes in the cda values for the super-aspects 118
Changes in the cda values for the sub-aspects 119
Changes in the cae values for the super-aspect. 120
Impact functions API - packages 126
Impact functions API-classes 127
Roles, artefacts and activities 132
Binding refactoring patterns to grammar symbols 133
Refactoring methods initial DFA, with 21 paths 136
Pull Up Method - Level 2 137

Commutative paths: Rename Method and Pull Up Method sequences 138
Refactoring methods simplified DFA -8 paths 140
Tool support for binding grammars and catalogues of refactoring pat-

terns, and creating the initial sequences 142
Value of locc for aspects and classes 150
Value of nom for aspects and classes 152
Value of cda foraspects L. 155
Value of cae for aspects and classes 156
Value of dit for aspectsand classes 157
Value of noc for aspectsand classes 160
Correlation between nom and locc 161
Class diagram for the ConnectionProperties class and some of its

sub-classes L 163

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:

Table 5.1:
Table 5.2:

Table 6.1:
Table 6.2:

Table 6.3:

Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:

Table 7.1:
Table 7.2:

Table 7.3:

Table 8.1:
Table 8.2:

Table 9.1:
Table 9.2:
Table 9.3:
Table 9.4:
Table 9.5:
Table 9.6:
Table 9.7:
Table 9.8:
Table 9.9:
Table 9.10:
Table 9.11:

LIST OF TABLES

Examples of refactoring patterns for object-oriented software 25
Examples of refactoring patterns 32
Numerical values for the relative importances. 34
Random consistency index - reference values 36
Examples of shortcomings, 79
Shortcomings vs. refactoring patterns 89
Classes ordered by the values of the heuristicrule 97

Classes ordered in a descendent way by the difference between the
value of the heuristic rule before and after the application of refactor-

INgpatterns L. 98
The heuristic rule values after the application of Extract Class/Sub-

Class e 100
Metric and heuristic rule values for new classes 100
Shortcomings in Aspect] Examples 102
Shortcomings in Aspect] Design Patterns 104
Shortcomings in GlassBox 105

Relationship between the super-aspect, the sub-aspects and the advices. 124
The values for the computation of impact functions for Pull Up Ad-

vice, considering the super-aspect. 124
The values for the computation of impact functions for Pull Up Ad-

vice, considering the super-aspect. 125
Selected refactoring patternso 135
Reduction of Sequences on Sample Projects 141
Summary of selected projects 146
Modules in the project oL 147
Summary statistics for locc values 150
Summary statistics for nom values 153
Summary statistics for cda values 155
Summary statistics for cae valueso 156
Summary statistics for dif values L. 158
Summary statistics for noc values L. 159
Correlation coefficients between values for aspects 160
Correlation coefficients between values for classes 160

Number of modules withcae >1 169

Table 9.12: Number of modules with cae > 2

ABSTRACT

Refactoring is the process of improving the design of software systems without chang-
ing their externally observable behaviour. Refactoring can help to incrementally improve
the quality of a software system through the application of behavioural preserving trans-
formations called refactoring patterns.

The main goal of the research this thesis reports is to provide a detailed process for
refactoring, including mechanism for (i) the selection and creation of quality models,
the selection of refactoring patterns, and the creation and use of heuristic rules, (i1) the
search for refactoring opportunities and prioritisation, (iii) the assessment of the effects
of refactoring on software quality, and (iv) the trade-off analysis and the application of
refactoring patterns.

To exemplify how the approach works and how the process can be used, different
case studies are being used throughout the thesis. The selection of refactoring patterns,
quality models and heuristic rules, and the search and prioritisation mechanisms are ex-
emplified for object-oriented software. The assessment of refactoring effects on software
quality, the trade-off analysis and the application of refactoring patterns are discussed in
the context of aspect-oriented programming.

Besides the definition of a refactoring process, a set of additional contributions of
this thesis are (i) the definition of an approach for the selection and ranking of refactor-
ing patterns, (ii) an approach for reducing the search space for refactoring opportunities
when dealing with successive refactoring, (iii) the definition of search mechanisms for
refactoring opportunities, (iv) an approach to evaluate the effects of refactoring on soft-
ware quality, (v) a catalogue of shortcomings in aspect-oriented software and their related
refactoring patterns, and (vi) an study of metrics for aspect-oriented software, including
their formal definition, analytical evaluation and data interpretation.

Keywords: Refatoracido, Desenvolvimento de Software Orientado a Aspectos, Evolugdo
de Software Refactoring, Aspect-Oriented Software Development, Software Evolution

Melhorando a Busca por Oportunidades de Refatoracao em Software Orientado a
Objetos e Orientado a Aspectos

RESUMO

Refatoracdo € o processo de melhorar o projeto de sistemas de software sem modificar
seu comportamento externamente observavel. O processo de refatoragdo pode auxiliar a
incrementalmente melhorar a qualidade de software de um sistema através da aplicacao
de transformacgdes que preservam comportamento chamadas de padrdes de refatoracao.

O principal objetivo da pesquisa que esta tese descreve é prover um processo de-
talhado para refatoracdo, incluindo mecanismos para (i) selecdo e criagdo de modelos
de qualidade, padrdes de refatoracdo e fungdes heuristicas, (i1) a busca e priorizacao de
oportunidades de refatoracdo, (iii) a avaliacao dos efeitos da refatoracdo na qualidade de
software e (iv) a andlise de vantagens e desvantagens e a aplicacdo de padrdes de refa-
toragao.

Para exemplificar como os mecanismos propostos funcionam e como o processo pode
ser usado, diferentes estudos de caso sdo usados ao longo da tese. A selecdo dos padroes
de refatoracdo, dos modelos de qualidade e das fun¢des heuristicas sdo exemplificados
para software orientado a objetos, bem como 0s mecanismos de busca e priorizagdo. A
avaliacdo dos efeitos da refatoracdo na qualidade de software, a andlise de vantagens
e desvantagens e a aplicacdo de padrdes de refatoracdo s@o discutidos no contexto de
programacao orientada a aspectos.

Além da defini¢cdo de um processo de refatoracdo, um conjunto adicional de con-
tribui¢des desta tese sdo: (i) a definicdo de uma abordagem para a selecdo e ranking
de padrdes de refatoracdo baseada no AHP (Analytic Hierarchy Process), (ii) uma abor-
dagem para reduzir o espaco de busca para oportunidades de refatoracdo ao manipular
refatoracdes sucessivas, (iii) a defini¢do de mecanismos de busca para oportunidades de
refatoracdo, (iv) uma abordagem para avaliar os efeitos de refatoracdo na qualidade de
software, (v) um catdlogo de problemas encontrados em software orientado a aspectos e
seus padrdes de refatoracdo associados, e também um conjunto de recomendacdes para
evitar estes problemas e (vi) um estudo de métricas orientadas a aspectos, incluindo a sua
defini¢do formal, avaliagc@o analitica e interpretacdo de dados.

Palavras-chave: Refatoracdo, Desenvolvimento de Software Orientado a Aspectos,
Evolugdo de Software.

17

1 INTRODUCTION

Refactoring (OPDYKE, 1992; FOWLER et al., 1999) is the process of improving
the design of software systems without changing their externally observable behaviour.
Refactoring can help to incrementally improve the software quality of a software system
through the application of behavioural preserving transformations called refactoring pat-
terns. A refactoring pattern is comprised by a name, a set of parameters, a motivation, a
set of mechanics (including pre and postconditions) and an example.

The refactoring process is structured to cope with the following activities (MENS;
TOURWE, 2004): (i) identifying where to apply refactoring patterns, (i1) assessing the
effects of refactoring on quality, (iii) maintaining consistency of the pieces of software
being restructured by refactoring, and (iv) guaranteeing that the application of refactoring
patterns preserve software behaviour. This thesis focuses on the first two activities.

The identification of where to apply refactoring patterns is the search for pieces of
software for which a refactoring pattern can be applied. This identification considers de-
ficiencies, inadequacies or incompleteness that pieces of software can have, called short-
comings. In this context, a refactoring opportunity is defined as the association between
a piece of software, a shortcoming, and a refactoring pattern. The problem is that the
number of refactoring opportunities can be high (FOWLER et al., 1999). It is interesting,
then, that the developer can narrow the search for refactoring opportunities to a sub-set of
refactoring patterns, shortcomings and pieces of software.

Additionally, the application of a single refactoring pattern may not be enough to bring
substantial benefits to the quality of a piece of software. Current research projects (BOIS;
MENS, 2003; MENS; TAENTZER; RUNGE, 2005; BOIS, 2006; TOURWE; MENS,
2003) focus on improvements considering the application of a single refactoring pattern
and not on the application of sequences of refactoring patterns. Also, the number of refac-
toring sequences can be high, as the number of sequences is given by the combination of
refactoring patterns. There is the need for an approach to reduce the number of refactoring
sequences to evaluate.

The assessment of the effects of refactoring on quality typically focuses on quantitative
evaluations, using functions called impact functions. An impact function is a mathemati-
cal function which computes the expected value of a metric in case a specific refactoring
pattern is applied, without actually applying the refactoring pattern (BOIS; MENS, 2003;
MENS; TAENTZER; RUNGE, 2005; BOIS, 2006). Unfortunately, an approach for the
creation of impact functions does not exist, and there are no defined impact functions for
other paradigms besides object-orientation (BOIS; MENS, 2003; MENS; TAENTZER;
RUNGE, 2005; BOIS, 2006).

The consistency maintenance of the artefacts being restructured by refactoring is an-
other research area regarding refactoring. For example, whenever a source code class

18

changes, there is the need to update the related design models. Or, if a class diagram
is changed, the sequence diagrams referencing the classes in the diagram must also be
changed accordingly.

Another related activity is to guarantee that the refactoring patterns preserve software
behaviour. Several formalisms have been used to help in this activity, including the use
of assertions (preconditions, postconditions and invariants) and graph transformations.
Cornelio (CORNELIO, 2004) provides an extensive discussion of software behaviour
preservation and refactoring.

These activities (consistency maintenance and guaranteeing behavioural preservation)
are outside of the scope of this thesis.

The open issues addressed by this thesis are related to the following goals: (a) identi-
fication of refactoring opportunities and (b) evaluation of the effects of refactoring on the
software quality. These goals can be better meet as a set of activities which are part of
a software development process, which means organizing the activities and distributing
responsibilities for the roles of the process (or for new roles).

The activities regarding the identification of refactoring opportunities and the assess-
ment of the effects of refactoring on software quality must be generic enough to be appli-
cable to different phases of software development, including analysis, design, implemen-
tation and testing. The refactoring process can be structured as part of a planned software
development process (such as RUP (KRUTCHEN, 2000)), with defined activities, roles
and artefacts or expressed as a set of practices and guidelines to be included in the prac-
tices and guidelines of an agile process (COCKBURN; HIGHSMITH, 2001), such as XP
(BECK, 1999) or Scrum (SCHWABER, 1995).

In summary, this thesis focuses on the improvement of software quality through refac-
toring. The main goal is to provide a set of detailed activities and techniques for: (i)
searching and prioritising refactoring opportunities, (ii) ranking refactoring patterns ac-
cording to a quality model, (iii) evaluating the effects of refactoring on software quality
and (iv) analysing the trade-offs of applying refactoring patterns. Different case studies
are being used throughout the thesis to exemplify how the proposed activities and tech-
niques could be implemented.

The following sections are organised as follows. Section 1.1 describes the main mo-
tivations for this work. Section 1.2 highlights the contributions while Section 1.3 shows
how each contribution is evaluated. Section 1.4 describes how the thesis is organised.

1.1 Motivation

Different systems can have different needs in terms of the expected software quality.
For example, in embedded systems memory is an important characteristic, while in real-
time systems timing is more important. For other kinds of systems, such as information
systems, the main quality characteristics could be reusability, usability and portability, for
example.

In software engineering, a quality attribute is a requirement which specifies criteria
that can be used to judge the operation of a system (ISO, 2001). Other terms for quality
attributes are non-functional requirements, constraints, quality goals and quality of service
requirements. Common examples of quality attributes, according to Boehm (BOEHM;
IN, 1996), are: assurance, interoperability, performance, evolvability, cost and reusability.
The ISO/IEC-9126 (ISO, 2001), the international standard for product quality and quality
models, describes several quality attributes for software systems. Quality attributes are

19

usually described in quality attributes catalogues, which are organised collections that
provide details of how each quality attribute can affect the properties of software, how
each quality attribute relates to other quality attributes, and of possible trade-offs between
conflicting quality attributes (BOEHM; IN, 1996; ISO, 2001; MYLOPOULOS; CHUNG;
NIXON, 1992).

These quality attributes can be grouped together, organised hierarchically and refined
to express the expected quality of a specific software system or of a specific domain. Such
groups of related quality attributes are called quality models. Several quality models have
been proposed for specific domains, such as: component-based software development
(CBSD) (BERTOA; VALLECILLO, 2002), quality attributes that cross-cut requirements
at an early stage of the software development process (MOREIRA; ARAUJO; BRITO,
2002), quality attributes for web software (OFFUTT, 2002) and quality attributes for the
specification of software architectures (KAZMAN; BASS, 1994).

Refactoring activities usually aim at improving these quality attributes, including im-
provements on the software artefacts, making them easier to maintain, to comprehend and
to change. In agile methodologies, these activities are an integral part of the software de-
velopment process. These methodologies use test cases to drive the creation of software
applications and to ensure that the application of refactoring patterns does not change the
behaviour of the application.

The first issue addressed in this thesis is how to order a set of refactoring patterns
according to their positive contribution to the expected quality attributes of a given piece
of software. This ordering produces a ranking of refactoring patterns in terms of a qual-
ity model. Currently, there are no automated mechanisms to rank refactoring patterns in
terms of a quality model. The use of an approach for ranking refactoring patterns in terms
of quality attributes can be used to optimise the search for refactoring opportunities, en-
abling the developer to focus on the refactoring patterns that improve the quality attributes
most.

This thesis is meant to be general enough to encompass refactoring activities in dif-
ferent phases of software development. Therefore, the term software element is used to
denote pieces of software ranging from source code to analysis and design models. For
example, in the context of object-oriented source code, software elements can be pack-
ages, classes, methods, attributes. In case of aspect-oriented software, software elements
are aspects, advices, pointcuts, and inter-type declarations. In use case diagrams, they are
the actors, use cases, and relationships.

Once the refactoring patterns are selected, the second issue is to find where the refac-
toring patterns can be applied on a piece of software (i.e. identify the refactoring oppor-
tunities). This includes the selection of the pieces of software to be analysed, the metrics
to be computed, and the generation of a list of refactoring opportunities.

The third issue deals with the quantitative evaluation of the effects of refactoring on
software quality. During refactoring activities, the developer has to correctly evaluate
the trade-offs between refactoring patterns in terms of the affected quality attributes. As
these quality attributes can be conflicting with each other (BOEHM; IN, 1996), the task
of selecting optimal or near-optimal applications of the selected refactoring patterns can
be hard. Additionally, it is not always clear to the developer how the artefacts being
restructured are affected by refactoring. When software is restructured, several metric
values change and it is interesting to know in advance, the effects of each transformation
(KATAOKA et al., 2002). An approach to help in this quantitative evaluation is valuable.

After computing quantitatively the effects of the refactoring pattern application on

20

software quality, the fourth issue focuses on the qualitative evaluation that the proposed
application of refactoring patterns are advantageous in terms of quality. The developer
can analyse the effects of each proposed application of a refactoring pattern to choose
which ones he will apply.

In the context of refactoring, a shortcoming is a deficiency, inadequacy or incom-
pleteness that a software element can have. Shortcomings typically affect negatively the
quality attributes of a software system. In the context of software quality improvement
for object-oriented software there are plenty of catalogues of shortcomings for object-o-
riented software (OPDYKE, 1992; FOWLER et al., 1999). These catalogues can be used
to help in the search for refactoring opportunities.

At the beginning of the research work leading to this thesis there were no available
catalogues of shortcomings on aspect-oriented software (KICZALES et al., 1997), neither
mechanisms to automatically detect their occurrences in aspect-oriented programming
languages.

Additionally to the use of catalogues of shortcomings, the developer can use metrics
to quantitatively evaluate the software. Metrics adapted from widely known and used met-
rics for object-oriented software (CHIDAMBER; KEMERER, 1994) have already been
used in experimental studies on aspect-oriented software development (CACHO et al.,
2006; CASTOR FILHO; GARCIA; RUBIRA, 2005; GREENWOOD; BLAIR, 2006),
and the original object-oriented metrics were extended to be independent of the paradigm,
generating comparable results (CASTOR FILHO et al., 2006). Up to date, these metrics
have been informally described (CECCATO; TONELLA, 2004), but their properties have
not been analysed and typical values of these metrics for actual and practical software are
not yet available in the literature. Such lack of information about the shape of aspect-
oriented software, in terms of each of those metrics, makes their use hard.

1.2 Contributions

The main contributions of this thesis are described as follows:

o Activities for a Refactoring Process. A discipline is defined, containing the main
activities, roles, and artefacts needed for refactoring. The activities are driven by a
quality model selected by the development team. The discipline includes support
for (1) the selection of quality models, (ii) the selection and ranking of refactoring
patterns, (iii) the selection and creation of heuristic rules, (iv) the search for refac-
toring opportunities, (v) the computation of the effects of refactoring on software
quality, (vi) trade-off analysis and prioritisation of refactoring opportunities and
(vii) the application of refactoring patterns. Such refactoring activities can be inte-
grated into a software development process, to provide support to apply refactoring
patterns to software elements in several phases of the process.

e A Method for Ranking Refactoring Patterns. This thesis proposes a method
to rank refactoring patterns according to the quality attributes of a quality model.
The relative importance of each quality attribute over the others and the rela-
tive importance of the refactoring patterns over quality attributes is quantitatively
expressed using the Analytical Hierarchy Process (AHP) multi-criteria decision
method (SAATY, 1990, 2003). Using this quantified information, a ranking of
refactoring patterns in terms of their contribution to ranked quality attributes can be

21

automatically computed. The use of such ranking can optimise the search for refac-
toring opportunities, enabling the developer to focus on refactoring patterns that
contribute most to improve the required quality attributes of a piece of software.

A Catalogue of Shortcomings in Aspect-Oriented Software. This catalogue fo-
cus on shortcomings that can occur in aspect-oriented software, in such a way to
(1) describe the problems that arises whenever those shortcomings are present in as-
pects and (ii) propose the use of refactoring patterns to help to minimize or remove
them. It also focuses on the automatic detection of shortcomings in programs writ-
ten in the AspectJ language (KICZALES et al., 2001a). The main goal is to provide
a prototype implementation to detect a sub-set of the shortcomings described in the
catalogue.

An Approach for the Search of Refactoring Opportunities. An approach is pro-
posed for the search of refactoring opportunities, allowing developers to focus on
the refactoring opportunities that maximize the quality attributes they are interested
in. Heuristic rules are used to evaluate the software elements according to a se-
lected quality model. Qualitative analysis is conducted and the trade-offs for each
opportunity are analysed. The developer can order and filter the available refactor-
ing opportunities, and can discard unfruitful opportunities or mark specific ones for
refactoring.

An Approach to Evaluate the Effects of Refactoring on Software Quality. A
set of activities are proposed to evaluate quantitatively how each application of a
refactoring pattern affects software quality. The quality of software is evaluated us-
ing heuristic rules and impact functions. Heuristic rules are mathematical functions
created according to a quality model and its associated metrics, and are used to spot
shortcomings in software artefacts. Impact functions predict the values of metrics
simulating the application of a refactoring pattern. With heuristic rules and impact
functions, there is no need to apply each refactoring pattern to evaluate its effects.

An Approach to Reduce the Number of Refactoring Sequences. This thesis pro-
poses an approach to reduce the number of refactoring sequences to be analysed for
a software application. This reduction of sequences includes the simplification of
equivalent, commutative, inverse, impossible and parallel sequences. This simpli-
fication can help the developer to focus on searching for refactoring opportunities
for the most promising refactoring sequences. The proposed approach is represen-
tation independent and can be used together with different formalisms to handle
refactoring sequences.

A Suite of Metrics for Aspect-Oriented Software. This work complements previ-
ous works on metrics for aspect-oriented software and for object-oriented software
through the formal definition of these metrics, their analytical evaluation, and de-
tailed discussion about empirical data collected from a set of applications, providing
guidelines about the typical values of the metrics. The formal definitions of the met-
rics allow expressing unambiguously how each metric is computed. Empirical data
show how typical aspect-oriented software are organised and how the metric values
are distributed in different projects. Usage guidelines show how the metrics can be
used and analytical evaluation complements the formal definitions of the metrics by
evaluating a set of properties expected from the metrics.

22

1.3

Evaluation

The evaluation of each contribution is described as follows:

Activities for Refactoring. Several activities, roles and artefacts needed to include
refactoring in software development processes are described. These activities are
exemplified for object-oriented software and aspect-oriented software throughout
the thesis, where common sequences of activities are exercised. Note that there is
still the need to apply the process in large-scale projects, in different languages,
different teams and different domains to be fully aware of its implications. The
individual activities are evaluated individually, as previously described.

A Method for Ranking Refactoring Patterns. The method is evaluated through
the creation of a ranking of refactoring patterns, exemplified using three quality at-
tributes and four refactoring patterns. Although the example is based on refactoring
patterns for object-oriented software, the approach can be generalised to be used in
other paradigms, and other artefacts besides source code. An API for computing
such rankings was developed to help the developer on automating this task.

A Catalogue of Shortcomings in Aspect-Oriented Software. The catalogue de-
scribes each type of shortcoming, including refactoring patterns that can be used to
minimize its effect, examples in Aspect] programs and rules which can be used to
detect them. Tool support is provided and is used in a case study comprised of three
open source aspect-oriented programs.

An Approach for the Search for Refactoring Opportunities. The approach is
exemplified for an object-oriented software application. Two quality attributes are
assessed using a heuristic rule, and the search is exemplified using two refactoring
patterns in a software application composed of 200 classes.

An Approach to Evaluate the Effects of Refactoring on Software Quality. The
approach is exemplified by defining impact functions for an aspect-oriented refac-
toring pattern, named Pull Up Advice, for four metrics: lines of code, number of
operations in module, crosscutting degree of an aspect and coupling on advice ex-
ecution. Tool support is provided to automate the computation of metrics and the
expected changes in the heuristic rules values.

An Approach to Reduce the Number of Refactoring Sequences. The approach
is exemplified through the use of deterministic finite automata (DFA) (SIPSER,
1996) to represent refactoring sequences for method manipulation and a set of sim-
plification rules to reduce the number of sequences. It is shown that the number
of sequences can be greatly reduced by simplification (the example showed a 62%
reduction of the number of sequences). Tool support is included to generate the
initial sequences.

A Suite of Metrics for Aspect-Oriented Software. The evaluation is conducted
using (a) formal definitions and usage scenarios for the selected metrics, (b) an in-
terpretation of collected empirical data, discussing minimum and maximum values,
comparing the values in aspects and in classes and examining variations between
the metric values of the selected projects and (c) an analytical evaluation of the
selected metrics against established criteria.

23

1.4 Thesis Outline

This thesis is organised as follows.

Chapter 2 details the main concepts needed to understand the thesis approach and
evaluation. It discusses the following themes: refactoring, aspect-oriented software de-
velopment (AOSD), and the Analytical Hierarchy Process (AHP).

Chapter 3 describes the activities required to include refactoring activities in a soft-
ware development process. It starts by highlighting the main activities to be performed
and the associated roles and artefacts. Each activity is detailed to show its value in the
overall process structure.

Chapter 4 describes how a set of refactoring patterns can be ranked to improve a set of
quality attributes of a piece of software. AHP is used to express the relative importance
of the quality attributes and the relative importance of refactoring patterns in regards to
those selected quality attributes.

Chapter 5 describes a collection of shortcomings which occur in aspect-oriented soft-
ware, while Chapter 6 shows how metrics can be grouped together as heuristic rules and
how they can be used to prioritise opportunities for refactoring in software elements, aim-
ing at improving their quality by focusing on the opportunities that are more likely to
produce positive effects in a selected quality model. Chapter 6 also includes rules and
proof-of-concept implementations for a sub-set of shortcomings for aspect-oriented soft-
ware.

Chapter 7 presents a rationale for the creation of impact functions for refactoring ob-
ject-oriented software and aspect-oriented software. This rationale can be used to create
impact functions for software metrics or heuristic rules and is demonstrated through a
detailed example, and a case study.

Chapter 8 describes an approach to reduce the number of sequences of refactoring
patterns. First, it is described how a set of initial sequences can be created. Secondly,
these sequences are simplified using a set of simplification rules.

Chapter 9 shows formal definitions and usage guidelines of of six metrics for aspect-
oriented software. It also includes empirical data collected from ten open source projects,
and a set of examples.

Chapter 10 discusses the main conclusions of this thesis, including a summary of the
contributions and proposed research areas for future work.

Appendix A describes the main papers accepted during the thesis development. Ap-
pendix B proposes a set of guidelines to reduce the occurrence of shortcomings in aspect-
oriented software artefacts and exemplifies the benefits of using the described guidelines.

Appendix C shows an analytical evaluation of six selected metrics against established
criteria. The chapter shows that the aspect-oriented metrics also satisfy the criteria orig-
inally satisfied by their counterpart object-oriented metrics, recommending that they can
be used to assess aspect-oriented software.

Appendix D shows the computations of a set of impact functions for the Pull Up
Advice refactoring pattern in an example application. Appendix E shows impact functions
for six refactoring patterns for object-oriented software and how they can be composed
to specify other impact functions. Appendix F shows impact functions for the Extract
Pointcut and the Inline Inter-Type Declaration refactoring patterns.

24

2 BACKGROUND

This chapter describes a set of background areas, which help to understand the main
issues of this thesis. It is organised as follows. Section 2.1 describes the state-of art of
refactoring. Section 2.2 describes the main concepts of aspect-oriented software devel-
opment (AOSD) and approaches for refactoring aspect-oriented software. Section 2.3
describes the Analytical Hierarchical Process (AHP), a multi-criteria decision method,
which is used in this thesis as a method for the selection and ranking of refactoring pat-
terns.

2.1 Refactoring

Refactoring (OPDYKE, 1992; FOWLER et al., 1999; MENS; TOURWE, 2004) is
the process of improving the design of software systems without changing their exter-
nally observable behaviour. Refactoring can help to incrementally improve the quality
attributes (ISO, 2001; BOEHM; IN, 1996) of a software system through the application
of behavioural preserving transformations called refactoring patterns (KATAOKA et al.,
2001).

Refactoring patterns are organised into collections of patterns called refactoring pat-
terns catalogues. Each refactoring pattern in a catalogue is described by a name, a context
in which it should be applied, a set of well-defined steps for its application, and one or
more examples showing how the transformation should occur (FOWLER et al., 1999).

Examples of typical refactoring patterns are those for manipulating classes, methods
and fields, such as: extraction of a sub-class, extraction of a super-class, movement of
methods, encapsulating fields, and inlining methods. Table 2.1 shows a set of commonly
used refactoring patterns in the context of object-oriented software.

The efforts on research in the context of refactoring are grouped into four groups: (a)
identifying where to apply refactoring patterns, (b) assessing the effects of refactoring on
quality, (c) guaranteeing that the refactoring patterns preserve software behaviour, and (d)
maintaining consistency of the refactored software artefacts (MENS; TOURWE, 2004).
The last two activities (consistency maintenance and guaranteeing behavioural preserva-
tion) are outside of the scope of this thesis.

Section 2.1.1 discusses the identification of where to apply refactoring patterns. Sec-
tion 2.1.2 describes research focusing the assessment of the effects of refactoring on qual-

ity.

25

Table 2.1: Examples of refactoring patterns for object-oriented software

Refactoring Pat-
tern

Description

Source

Chain Construc-
tors

Chains a set of constructors together to obtain a
low amount of duplicated code.

(KERIEVSKY, 2005)

Collapse Hierar-

Merges a super class and a subclass together.

(FOWLER et al., 1999)

chy
Delete Attribute Deletes an attribute that is not being referenced by | (OPDYKE, 1992)

any class.
Delete Class Deletes a class and all references to it. (OPDYKE, 1992)
Delete Method Deletes a method that is not being referenced by | (OPDYKE, 1992)

any class.
Encapsulate Creates accessors for the attribute and replaces all | (FOWLER et al., 1999)
Attribute the read and write operations to the attribute by

calls to the accessors.

Extract Class

Creates a new class and moves to it fields and
methods from an existing class.

(FOWLER et al., 1999)

Extract Interface

Extracts method signatures and creates an inter-
face for a class.

(FOWLER et al., 1999)

Extract Method

Extracts a piece of code to a new method.

(FOWLER et al., 1999)

Inline Class

Moves all the features of a chosen class into an-
other class. Deletes the chosen class.

(FOWLER et al., 1999)

Inline Method

Replaces all the method calls of a specific method
by the contents of that method.

(FOWLER et al., 1999)

Inline Sigleton

Moves the features of a Singleton to a class that
stores and provides access to the object. Deletes
the Singleton.

(KERIEVSKY, 2005)

Introduce Ex- | Extracts an expression to a local variable. (FOWLER et al., 1999)
plaining Variable
Move Attribute Moves an attribute to another class. (FOWLER et al., 1999)

Move Embellish-
ment to Decorator

Moves an embellishment code to a Decorator.

(KERIEVSKY, 2005)

Move Method Moves a method from one class to another. (FOWLER et al., 1999)

Pull Up Attribute | Moves an attribute to a super-class or super-aspect | (FOWLER et al., 1999)
of the current class or aspect.

Pull Up Method Moves a method to a super-class of the current | (FOWLER et al., 1999)
class.

Push Down | Moves a method to one or more of its subclasses. | (FOWLER et al., 1999)

Method

Rename Class

Changes the name of a class and in all the places
that it is referenced.

(FOWLER et al., 1999)

Rename Method

Changes the name of a method and all the method
calls to a new name.

(FOWLER et al., 1999)

Replace Method
with Method
Object

Extracts a method from a set of selected statements
to a new class, containing the extracted statements
as a new method and the local variables of the
method as fields of the new class.

(FOWLER et al., 1999)

2.1.1 Identification of Refactoring Opportunities

In the context of refactoring, a shortcoming is a deficiency, inadequacy or incomplete-
ness that a software element can have. Shortcomings typically affect negatively the quality

26

attributes of a software system. There are catalogues of shortcomings in the context of
both object-oriented and aspect-oriented software development.

For example, Fowler et al. (FOWLER et al., 1999) describe 22 shortcomings in the
context of object-oriented software. Kerievsky (KERIEVSKY, 2005) catalogs 12 short-
comings which motivate the application of refactoring to patterns (refactoring patterns
that, when applied, changes a given design to use a specific design pattern). Monteiro and
Fernandes (MONTEIRO; FERNANDES, 2006) describe three shortcomings for aspect-
oriented code, and Srivisut and Muenchaisri (SRIVISUT; MUENCHAISRI, 2007) de-
scribe a set of additional shortcomings that can be found in aspect-oriented software, al-
gorithms to automate their detection and suggested refactoring patterns to remove them.

There are some approaches for identifying occurrences of shortcomings in software
applications. Simon et al. propose a metric based approach (SIMON; STEINBRUCK-
NER; LEWERENTZ, 2001) to identify opportunities for the application of four refac-
toring patterns: Move Method, Move Attribute, Extract Class and Inline Class. They
plot the methods and attributes of the classes in a graphical representation and the de-
veloper decides which methods and attributes will be moved based on the cohesion of
attributes and methods. An equation is presented to evaluate the cohesion of methods
and attributes within the classes of a software application. The results are converted to a
three-dimensional Cartesian coordinate system, and then rendered visually. Similar ap-
proaches are used by Lanza and Ducasse (LANZA; DUCASSE, 2002) and by van Emden
(EMDEN, 2002).

Tourwe and Mens use logic meta-programming (TOURWE; MENS, 2003) (which is
meta-programming using the logic paradigm) to search for refactoring opportunities in
existing software. They define a framework that uses meta-information of software pro-
grams to propose the application of refactoring patterns. Logic programming statements
are used to detect occurrences of shortcomings in software applications.

The tactics of Balazinska et al. (BALAZINSKA et al., 2000) and Ducasse et al.
(DUCASSE; RIEGER; DEMEYER, 1999) are similar in that both attempt to find re-
peated sections of source code throughout a software application. Balazinska’s approach
focuses on Java code and thus involves the parsing of the code, while Ducasse’s approach
tries to remain language independent, considering the source code only as text strings. A
few other approaches to automate the detection of shortcomings in software are presented
by Mens and Tourwe (MENS; TOURWE, 2004).

2.1.2 Assessing the Effects of Refactoring on Quality

An open problem is to assess the effects of a refactoring pattern on the quality of a
software system, as some refactoring patterns remove redundancy, raise abstraction or
modularity level and others have negative impact on reusability, for example (MENS
et al., 2003). By classifying refactoring patterns in terms of the quality attributes they
affect, the effects of a refactoring on the software quality can be estimated.

A formalism proposed to describe the impact of refactoring patterns uses the AST
representation of the source code (BOIS; MENS, 2003; MENS; TAENTZER; RUNGE,
2005), extended with cross-references. This formalism uses AST representing object-
oriented programs and metrics and is used to evaluate the impact of Extract Method,
Encapsulate Attribute and Pull Up Method refactoring patterns and describe how quality
metrics can be defined on top of this program structure representation.

In this approach (BOIS; MENS, 2003; MENS; TAENTZER; RUNGE, 2005; BOIS,
2006) coupling and cohesion metrics are used to identify the conditions under which the

27

application of some refactoring patterns minimize coupling and maximize cohesion. A
set of functions to evaluate the impact of the Extract Method, Move Method and Replace
Method with Method Object refactoring patterns on software quality are formally defined.
Another approach (MOSER et al., 2006) uses a set of metrics to evaluate the quality of
source code to analyse the impact of refactoring on reusability. A mathematical function
is defined to measure reusability quantitatively.

Other approaches deal with successive refactoring (i.e. the successive application of
refactoring patterns) to improve software quality. Liu et al. (LIU et al., 2007) propose
an approach to deal with successive refactoring by providing a model for dealing with
conflicting refactoring patterns and a heuristic rule to solve that model. The problem of
structural evolution conflicts is handled in a formal way by using graph transformations
and critical pair analysis (MENS; TAENTZER; RUNGE, 2005), which are used to detect
and resolve refactoring conflicts.

2.2 Aspect-Oriented Software Development

Some software requirements are mapped onto concerns that affect several classes in a
systematic manner, modifying the semantics of the classes and/or the performance of an
application. Examples of these concerns: persistence support, debugging, and distribu-
tion. With object-oriented languages, their implementation is usually done in a way that
causes code fragments corresponding to them to be dispersed along several application
classes. Fields and methods that handle these properties appear in several classes, either
directly (inside the class) or indirectly (through associations) (KICZALES et al., 1997).

The implementation of such requirements using object-oriented techniques can cause
problems in comprehending the functionality of the classes, as well as in the reusabil-
ity and maintainability of a software system (LOPES, 1997). Aspect-oriented software
development allows the developer to use a new abstraction mechanism, called aspect, to
separate the functional components of the application from these requirements.

Aspects alter classes and other aspects through static and dynamic mechanisms. The
static mechanisms add data and behaviour to classes, while the dynamic mechanisms
modify the software system at runtime.

Consider the following example: the implementation of a logging agent that stores
information to be used in case of execution problems or unauthorized access attempts.
Figure 2.1 shows such implementation in the Apache TomCat JSP container. In this fig-
ure, the classes are represented by white and grey lines. Classes that are not affected by
logging are greyed and the highlighted bars represent every call to code relating to logging
(HILSDALE; KICZALES, 2001).

From this global view, it is possible to see how difficult is to modify logging poli-
cies in the application. Replacing the logging framework or its configuration (to remove
development-time test entries, for example) can be an exhausting task, since the logging
code is scattered throughout application classes and tangled with the code.

The aspect-oriented approach aims at separating cross-cutting concerns in first class
entities called aspects. These aspects define which points in the software application will
be affected and what happens with the application whenever these points are reached.
Figure 2.2 shows how the same concern appears when encapsulated in a logging aspect.

Other system abstractions are not necessarily aware of the existence of such aspects.
This property of aspect-oriented software systems is called obliviousness (FILMAN;
FRIEDMAN, 2000), and is interesting (but not essential) for the effective use of aspects.

28

i A

§

IV N O

Figure 2.1: Logging in org.apache.tomcat

Figure 2.2: Logging in org.apache.tomcat using aspects

The main goal of aspect-oriented software development is to help in the task of sep-
arating cross-cutting concerns. This is done by the use of abstraction and composition
mechanisms that support clear separation and composition of cross-cutting concerns.
Aspect-oriented software development extends other techniques (object-oriented, struc-
tured, and functional) that provide no abstractions specifically designed to deal with cross-
cutting concerns (KICZALES et al., 1997).

2.2.1 Aspect]

Aspect] is an aspect-oriented language based on the Java programming language. Be-
sides the usual object-oriented abstractions (classes, methods, and fields), the language
provides abstractions related to aspects implementation, such as: pointcuts, join points,
advices and inter-type declarations. These concepts are explained in the following sec-
tions.

2.2.1.1 Join Points

Join points are well-defined points in the execution flow of a program. Examples of
join points are: method and constructor calls and execution, field access and initializa-
tions. Consider, for example, an Account class, containing a method named withdraw
(representing the withdrawal of money) and a field named balance (to store the balance
of the account).

1 public class Account {

29

2 double balance;

3 public void withdraw (double value) {
4 balance —= value;

5 }

6 public static void main() {

7 Account ¢ = new Account();

8 c.balance = 100;

9 c.withdraw (50) ;

10 }

11 }

In this context, join points would be, for instance, the execution of the withdraw
method (line 4), its call on line 9, reading/writing the balance field (lines 4 and 8), and the
Account object instantiation (line 7). In Aspect], there are syntactic elements that allow
to describe join points representing the affected points in the software application.

2.2.1.2 Pointcuts

Pointcuts group join points by the definition of a predicate that, whenever satisfied,
causes the advices associated to it to be executed. Several elements can be used to define
them. These join points can also be composed using the logical operators and, or and not
(&&, || and ! respectively).

Pointcuts can be named and receive parameters. These represent the formal arguments
of the pointcut, for example, the object that receives the message, the current object and
the actual parameters. They can be inspected and modified according to the expected
behaviour of the aspect.

For example, to define an aspect that performs some actions whenever a call to the
Account.withdraw method is made, a pointcut can be defined as follows: call(void Ac-
count.withdraw(double)). To define that the aspect affects the creation of new objects a
developer can use: initialization(public Account.new(..)). The Aspect] pointcut language
is very powerful, and enables to describe join points both in the static structure as in the
dynamic structure of a software system.

2.2.1.3 Inter-type declarations

Inter-type declarations introduce state or behaviour to an existing class, aspect or
interface. Three kinds of declarations are commonly used: inter-type fields, inter-type
methods, and inter-type constructor declarations. They respectively introduce new fields,
methods, and constructors to an existing module.

2.2.1.4 Advice

An advice is an action associated to a pointcut. These actions can occur before, after or
around a join point (this is determined by different keywords used). The after advice can
still have two variations: it may be executed after the successful run of the code associated
to the pointcut, or in cases where an exception occurs while executing the advice code.

2.2.1.5 Aspects

In Aspect], there is a new abstraction named aspect, declared using the keyword
aspect. Aspects are similar to classes in several ways: they can contain fields, meth-
ods, and implement interfaces. However, unlike classes, they cannot be instantiated, and

30

their inheritance mechanism is somewhat limited (only abstract aspects or classes can be
extended). Aspects unite pointcuts, join points, inter-type declarations and advices in a
single abstraction mechanism.

2.2.2 Measuring Aspect-Oriented Software

When measuring aspects, the developer can focus on the relation of the aspect with
other modules (aspects, classes or interfaces) in terms of the use of inheritance (number of
children, depth of inheritance tree), associations (coupling metrics), and affected modules
(crosscutting degree of an aspect). Also, the developer can measure aspects members (ad-
vices, pointcuts, inter-type declarations). For example, advices can be measured in terms
of their code size (lines of code) or the number of modules that a particular advice affects.
Pointcuts can be measured to evaluate the size and complexity of pointcut expressions and
also to determine the number of join points the expression affects. Inter-type declarations
can be used as a part of the measurements to express the complexity of an aspect (such as
the number of operations in module metric).

Previous works on metrics applicable to aspect-oriented software are typically exten-
sions of object-oriented metrics (CHIDAMBER; KEMERER, 1994). In fact, some of
these metrics were revisited to take in account the specific features of aspect-oriented
software. Castor et al. (CASTOR FILHO; GARCIA; RUBIRA, 2005) propose a suite of
metrics, including metrics for separation of concerns, coupling, cohesion and size. This
suite has already been used in some experimental studies (CACHO et al., 2006; CAS-
TOR FILHO; GARCIA; RUBIRA, 2005; GREENWOOD; BLAIR, 2006).

The metrics included in this suite can be briefly summarized as follows:

e Lines of Class Code (locc): Counts the lines of code.
o Number of Attributes (noa): Counts the number of fields of each class or aspect.

e Number of Operations (noo): Counts the number of methods and advices of each
class or aspect.

e Concern Diffusion over Components (cdc): Counts the number of components that
contribute to the implementation of a concern and other components which access
them.

e Concern Diffusion over Operations (cdo): Counts the number of methods and ad-
vices that contribute to the implementation of a concern plus the number of other
methods and advice accessing them.

e Concern Diffusion over locc (cdl): Counts the number of transition points (points
in the code where there is a concern switch) for each concern through the lines of
code.

e Coupling Between Components (cbc): Counts the number of components declaring
methods or fields that may be called or accessed by other components.

e Depth of Inheritance Tree (dit): Counts how far down in the inheritance hierarchy
a class or aspect is declared.

e Lack of Cohesion in Operations (lco): Measures the lack of cohesion of a class or
aspect in terms of the amount of method and advice pairs that do not access the
same field.

31

Other authors (CECCATO; TONELLA, 2004) also discuss metrics to count the num-
ber of operations, the depth of inheritance tree (dit) and lack of cohesion in operations
(Ico). Other metrics include the following:

e Number of Children (noc): Number of immediate sub-classes or sub-aspects of a
given module, indicating the proportion of modules potentially dependent on inher-
ited properties.

e Coupling on Advice Execution (cae): Number of aspects containing advices possi-
bly triggered by the execution of operations in a given module.

e Crosscutting Degree of an Aspect (cda): Number of modules affected by the point-
cuts and by the inter-type declarations of a given aspect.

e Coupling on Intercepted Modules (cim): Number of modules or interfaces explicitly
named in the pointcuts belonging to a given aspect.

e Coupling on Method Call (cmc): Number of modules or interfaces declaring meth-
ods that are possibly called by another given module.

e Coupling on Field Access (cfa): Number of modules or interfaces declaring fields
that are accessed by another given module.

e Response for a Module (rfm): Methods and advices potentially executed in response
to a message received by a given module, measuring the potential communication
between this module and the other ones.

Chapter 9 describes a set of metrics used in this thesis to express shortcomings in
aspect-oriented software.

2.2.3 Refactoring Aspect-Oriented Software

Existing refactoring catalogues (OPDYKE, 1992; FOWLER et al., 1999) define and
describe several refactoring patterns that can be used to improve the design of object-ori-
ented software. Among these are refactoring patterns to reorganise hierarchies, to move
methods for other classes, and to encapsulate attributes.

In the context of aspect-oriented software, there is the need of refactoring patterns that
allow the manipulation of both classes and aspects. Specifically, refactoring patterns that
deal with aspect-oriented software must allow moving code: (a) from classes to aspects,
(b) between aspects and (c) from aspects to classes.

Several refactoring patterns have been proposed to enable the manipulation of soft-
ware elements in aspect-oriented software (GARCIA et al., 2004; HANENBERG;
OBERSCHULTE; UNLAND, 2003; IWAMOTO; ZHAO, 2003; MONTEIRO; FERNAN-
DES, 2004, 2005a). These refactoring patterns help to remove or minimize the occurrence
of shortcomings in aspect-oriented code.

Table 2.2 lists a set of refactoring patterns for aspect-oriented software. For each
refactoring pattern are provided its name, a description and the original reference.

Iwamoto and Zhao IWAMOTO; ZHAO, 2003) present an analysis of several refac-
toring patterns from Fowler’s refactoring catalogue (FOWLER et al., 1999), concluding
that few of them can be used in aspect-oriented code without modifications. Iwamoto and

32

Table 2.2: Examples of refactoring patterns

Refactoring Pattern | Description Source

Add Aspect Prece- | Adds a declare precedence construction to an as- | (MONTEIRO;

dence pect. FERNANDES,
2006)

Collapse Aspect Hier-
archy

Merges an aspect hierarchy

(GARCIA et al.,
2004)

Combine Pointcut Unites the predicates of several pointcuts (IWAMOTO;
ZHAO, 2003)
Convert Aspect to | Converts an aspect to a class. Advices, point- | (MONTEIRO;
Class cuts and inter-type declarations must be inlined or | FERNANDES,
moved to another aspect. 2006)
Delete Aspect This refactoring pattern deletes an aspect and all | (MONTEIRO;
references to it. FERNANDES,
2006)
Extract Aspect Creates a new aspect with selected members from | (MONTEIRO;
an existing class or aspect FERNANDES,
2006)
Extract Pointcut Extracts a pointcut definition from an advice (IWAMOTO;
ZHAO, 2003)

Extract Sub-Aspect

Creates an sub-aspect containing a subset of fea-
tures

Inline Aspect

Inserts the code from aspects to the classes it af-
fects

(GARCIA et al.,
2004)

Move Advice

Moves an advice from from a source aspect to a
destination aspect.

(GARCIA et al.,
2004)

Move Inter-Type Dec-
laration

Moves an inter-type declaration from a source as-
pect to a destination aspect.

(MONTEIRO;
FERNANDES,
2006)

Move Pointcut

Moves a pointcut from one class/aspect to another

Pull Up Advice Moves an advice to a super-class or super-aspect | (GARCIA et al.,
of the current aspect 2004)

Pull Up Inter-type | Moves an inter-type declaration to a super-class or | (GARCIA et al.,

Declaration super-aspect of the current aspect 2004)

Pull Up Pointcut Moves a pointcut to a super-class or super-aspect | (GARCIA et al.,

of the current aspect

2004)

Remove Advice Pa-
rameter

Removes a parameter from an advice

Rename Aspect

Renames an aspect and every reference to it

(HANENBERG;
OBER-
SCHULTE;
UNLAND, 2003)

Rename Pointcut

Renames a pointcut and every reference to it

(GARCIA et al.,
2004)

Zhao also define several refactoring patterns in the context of aspects,

including refac-

toring patterns for extraction of advices and pointcuts, and the creation of pointcuts and

advices.

Hanenberg et al. (HANENBERG; OBERSCHULTE; UNLAND, 2003) discuss the re-

33

lationship between refactoring patterns for aspect-oriented and object-oriented software,
describing the conflicts found and suggesting ways to solve them in AspectJ. They also
introduce new refactoring patterns to help migrating object-oriented code to aspects, as
well as restructuring aspect code.

Garcia et al. (GARCIA et al., 2004) describe a set of interrelated refactoring patterns
to handle cross-cutting concerns. Some refactoring patterns defined by the authors aim at
manipulating aspect-oriented code, such as: Rename Pointcut, Collapse Aspect Hierarchy
and Collapse Pointcut Definition.

Monteiro and Fernandes (MONTEIRO; FERNANDES, 2004, 2005a, 2006) present a
catalogue of refactoring patterns to help in aspect extraction from legacy object-oriented
code. The authors discuss shortcomings that might appear in aspect-oriented software
systems, including one which occurs only in aspects. The same authors (MONTEIRO;
FERNANDES, 2005b) also emphasize the importance of the development of both refac-
toring patterns and catalogues of shortcomings.

Zhang et al. (ZHANG et al., 2005) define a tool to verify aspects restructured by
the application of refactoring patterns against the original source code. They use aspect
mining and aspect exploration information as the reference for verification. The tool is
implemented as an Eclipse plug-in working together with the AJDT tool (AspectJ Devel-
opment Tool).

Deursen et al. (DEURSEN; MARIN; MOONEN, 2005) propose a common show
case for the application of aspect-oriented techniques. They suggest that the HotDraw
framework (JOHNSON, 2002) can be used as a show case for refactoring techniques and
for the detection and removal of shortcomings.

2.3 The Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) (SAATY, 1990) is a mathematical decision
making technique for evaluating a set of different alternative solutions of a given prob-
lem. It focuses on finding an optimal solution using qualitative and quantitative decision
analysis. In this thesis, AHP is used to express the multiple criteria used to decide if the
application of a refactoring pattern is interesting in terms of the satisfiability of the quality
attributes specified for the software system, and to rank refactoring patterns according to
a quality model.

AHP comprises of five steps: (a) definition of the problem and its objective, (b) hierar-
chical representation, (c) estimation of priorities, (d) synthesis and (e) results consistency
analysis.

Section 2.3.1 describes the first two steps (problem definition and hierarchical repre-
sentation). Section 2.3.2 shows how the estimation of priorities is conducted. Section
2.3.3 exemplifies the synthesis step and Section 2.3.4 details how the consistency index is
computed and how its value should be analysed.

2.3.1 Problem Definition and Hierarchical Representation

The definition of the problem and its objective establishes the context in which the
decision making process will occur. After that, the problem is hierarchically represented,
with the objective having several associated criteria (C', ..., C,) and each criterion sev-
eral alternatives (A4, ..., A,), as shown in Figure 2.3.

34

Objective

/

C1 C2 e Cn

Figure 2.3: AHP hierarchical problem representation

2.3.2 Priorities Estimation

In the priorities estimation step, the developer defines the priorities for the criteria
and alternatives. The relative importance of each criterion over the others and each alter-
native over the others is ascertained using pairwise comparisons. The scale in Table 2.3
(SAATY, 1990) is used to numerically express the relative importance over criteria and
alternatives.

Table 2.3: Numerical values for the relative importances.

Value | Relative Importance

1 Same importance

Slightly more important
Weakly more important
Weakly to moderately more important
Moderately more important
Moderately to strongly more important
Strongly more important
Greatly more important
Absolutely more important

© 00 1 O U i W N

Using this process, a pairwise matrix can be created, containing the relative im-
portance of each criterion over the others. Consider, for example, a set of criteria

C ={ci,...,c,} and a matrix M representing the relative importance of each criterion
over the others W = {wyq, w1, . . . , Wy, }. The pairwise matrix in this case, is constructed
as follows:
1 Wiz - Win
1 / Wa1 1 o Wap
M = . 2.1

l/wnl 1/wn2 1

35

2.3.3 Synthesis

The next step of AHP, named synthesis, aims at computing a vector containing the
relative weights of all the criteria in the matrix. This vector represents the ranking of
priorities given by this pairwise matrix. To compute this vector, the matrix is squared suc-
cessively. In each iteration, the row sums are calculated and normalized. The computation
stops when the differences of these sums in two consecutive calculations are smaller than
a prescribed value. Usually two to four iterations are sufficient.

To exemplify these last steps, consider three criteria c;, ¢y, c3 and a pairwise matrix
M containing the importance of each criterion over another:

C1 c2 Cc3

1 12 3 71 «
M = | 2 14 o 2.2)
1/3 14 1 s

In this case, ¢ is weakly more important than cs, co is slightly more important than cq,
and cy is weakly to moderately more important than cs.

The ranking of priorities given this pairwise matrix can be derived from the weights
vector of the matrix. To compute this vector, the matrix is squared, the sum of the row
values is computed and the values are normalized:

_ squarec‘l\matmm . sum 0,{ rows - normalized
3.0000 1.7500 8.0000 12.7500 0.3194
5.3333 3.0000 14.0000 = | 22.3332 = | 0.5595
1.1667 0.6667 3.0000 4.8333 0.1211

Total 39.9165 1.0000

This normalized vector V' = (0.3194 0.5595 0.1211) is called the eigenvector
(SAATY, 2003) of the matrix. The procedure is repeated again, which lead us to the fol-
lowing eigenvector: V' = (0.3196 0.5584 0.1220). Additional iterations do not change
these values (at least using a four digits precision).

Therefore, the weights for the 3-tuple C = (c1, o, c3) are respectively the values of

V' =(0.3196 0.5584 0.1220)

In this case, the function to determine how good is an alternative a in terms of the
selected criteria can be expressed as:

fa) = 0.3196 * f.i(a) + 0.5584 % f.p(a) + 0.1220 % f.3(a) (2.3)

where f.1, feo, fe3 are functions that quantitatively assess the criteria ¢, co and c.

2.3.4 Results Consistency Analysis

The last step of AHP, results consistency analysis (SAATY, 1990), evaluates the con-
sistency level of the pairwise comparison matrix. This is necessary because the pairwise
comparison may insert inconsistencies in the process, since the relative importance of
one criterion over another is the result of several judgements about the relationship of the
criteria and those judgements can conflict with one another.

Consider for example, that the person who specifies the matrix says that ¢; is more
important than ¢y, co is more important than c3, and c3 is more important than c¢;. In this
case at least one of the judgements done through pairwise comparisons is not accurate.

36

The results consistency analysis verifies whether the existing inconsistencies in the
comparisons are acceptable or not. The process is considered acceptable if the consistency
ratio (CR) is below 10%.

The consistency ratio (CR) can be computed as follows:

CI
CR=—— 24
RCI 24)
where CI is the first precision degree of the pairwise comparisons and RCI is the con-
sistency degree obtained in pairwise comparisons in a set of random pairwise matrices.
The details of the RCI calculation are discussed by Saaty (SAATY, 1990), who provides

a RCI table to be used in the consistency ratio calculation (see Table 2.4).

Table 2.4: Random consistency index - reference values
n | <3| 3 4 5 6 7 8
RCI| 0 |058] 09 |1.12|1.24 132|141
n 9 10 11 12 13 14 15
RCI | 1.45 | 1.49 | 1.51 | 1.48 | 1.56 | 1.57 | 1.59

The CI value is given by:
/\mam -
Cf = Zmez — 1 (2.5)
n—1
where)., is the maximum eigenvalue of the comparison matrix.
The matrix described in Equation 2.2 and its eigenvector (2.6) are used to exemplify

the consistency ratio calculation.
V' =(0.3196 0.5584 0.1220) (2.6)

To obtain this A4, the following steps are executed:

1. The eigenvector values are multiplied by the columns of the matrix

1 1/2 3
0.3196% | 2 | +05584% | 1 |+0.122% | 4 2.7)
1/3 1/4 1

2. The values of the rows of the resulting vectors are added

0.3196 0.2792 0.366 0.9648
0.6392 | + | 0.5584 | + | 0.488 | = | 1.6856 (2.8)
0.1065 0.1396 0.122 0.3681

3. The A\, 1s the mean of the division of the sum values vector by the values of the

eigenvector
0.9648 1.6856 0.3681

Ay gy — 23196 + 0.5§84 T o1 3.0183 (2.9)

The CI can be calculated as:

o Amas = _ 30183 -3

= = 0.0091 2.1
— T 0.009 (2.10)

37

According to Table 2.4, the RCI = 0.58 when n = 3. Therefore, the consistency ratio
CRis:
CR =0.0091/0.58 = 0.0158 2.11)

The consistency ratio in the example is inferior to the 10% threshold value representing
the acceptable values for consistency when using pairwise comparisons in AHP.

Chapter 6 describes the use of AHP to define the weights for a heuristic rule used to
help in the identification of refactoring opportunities in software applications. Chapter 4
describes the use of AHP to rank refactoring patterns to improve a set of quality attributes
of a piece of software.

38

3 A DISCIPLINE FOR REFACTORING

This chapter describes a set of activities to help in the refactoring process. It is organ-
ised as follows. Section 3.1 presents an overview of the main activities in order to show
how the activities are related and which is their recommended order. Section 3.2 describes
activities, roles and artefacts related to the selection and creation of quality models, which
drive the refactoring process. Section 3.3 focuses on how a developer can select and rank a
set of refactoring patterns according to a quality model. Section 3.4 shows the creation of
heuristic rules to search for refactoring opportunities. Section 3.5 describes some issues
regarding the search for refactoring opportunities matching a set of pre-defined refactor-
ing patterns, heuristic rules and additional search criteria. Section 3.6 discusses how the
effects of refactoring on software quality can be quantitatively computed while Section
3.7 shows how to analyse the proposed opportunities for refactoring in a qualitative way.
Section 3.8 briefly describes how the application of refactoring patterns is conducted and
Section 3.9 presents concluding remarks and directions for future work.

3.1 Introduction

A software development process is usually composed by a set of interrelated activities,
associated to a set of roles, and to the required, produced or modified artefacts. An activity
expressed in a process must take place in order to create a piece of software. Examples
of activities are: create use cases, analyse risks, model the database, and design the user
interface (KRUTCHEN, 2000; COPLIEN; HARRISON, 2005).

A role is an assigned or assumed function or position in a software development pro-
cess. It defines the responsibilities of the person involved in the process. Examples of
typical roles in software development processes are: software architect, project manager,
user interface designer, developer, analyst, tester, and technical writers (KRUTCHEN,
2000).

Artefacts are all the documents needed or generated while accomplishing the tasks
described in each activity. For example, documents usually manipulated in a software
development process are: database models, source code, requirements documents, and
software architectural design. Additional elements in a process include guidelines, tool
mentors, and roadmaps (KRUTCHEN, 2000).

Related activities are grouped together in disciplines (also called workflows) (TEAM,
2001; KRUTCHEN, 2000). A discipline is an organised set of inter-related activities
which encapsulates a core concern of the process. For example, the Rational Unified Pro-
cess (KRUTCHEN, 2000) has the following set of basic disciplines: business modelling,
requirements, analysis and design, implementation, tests, project management, deploy-
ment, environment, configuration and change management.

39

A discipline containing refactoring activities can help the developers to organize the
refactoring process in order to minimize the required efforts and maximize the effective
results. This is accomplished by improving a particular software module on a set of cho-
sen quality attributes, and by applying a set of selected refactoring patterns that contribute
to the improvement of the selected quality attributes on a set of selected elements - chosen
by their chances of being improved by the selected patterns.

This chapter has the goal of describing a discipline for refactoring object-oriented and
aspect-oriented software. It is comprised of a set of core activities, a set of roles, and
a set of artefacts needed to identify, to prioritise refactoring opportunities, and to apply
refactoring patterns in software applications.

Figure 3.1 shows these activities using an UML activity diagram.

!

(Select Quality Models)

Preparation

Select Heuristic Select Refactoring
Rules Patterns

[need to refine [need to refine
search] Search for Refactoring search]
Opportunities
[need detailed
information]
else
Compute the Effects of
Refactoring
[continue with current

< else opportunities]

Apply Refactoring
Patterns

Search

Prioritise Refactoring
Opportunities

[there are refactoring
patterns to apply]

[no need for further [no need for further
refactoring] refactoring]

Figure 3.1: Discipline Overview: Main Activities

The activities are briefly described in the following paragraphs, and detailed in further
sections:

e Select or Create Quality Models. The first step is to select a quality model for
which the software application will be evaluated. This activity focus on the defini-

40

tion of which quality attributes will be considered in the refactoring process. Also,
there is the need to define which metrics are associated with these quality attributes,
to enable a qualitative assessment of software quality in terms of the selected/cre-
ated quality model. Examples of quality attributes are: reusability, comprehen-
sibility, legibility, reliability. Examples of metrics are: lines of code, number of
operations in module, and depth of inheritance tree.

Select or Create Heuristic Rules. The next step comprises the selection or creation
of quantitative functions relating the selected quality attributes and metrics, called
heuristic rules. These heuristic rules focus on expressing the relationship between
quality models, shortcomings and software elements in a quantitative way. Even
though they do not guarantee optimal results, they can provide a good estimative of
the qualities the developers are expecting from the software application. Examples
of heuristic rules are shown in Chapters 5 and 6.

Select Refactoring Patterns. Parallel to the selection/creation of heuristic rules,
the developers must select a set of refactoring patterns from catalogues of refac-
toring patterns and order them according to their estimated impact on the selected
quality model, creating a ranking of refactoring patterns. The focus is on select-
ing the refactoring patterns that are more likely to improve the software quality
attributes. The developer can define thresholds in such ranking of refactoring pat-
terns to increase or decrease the number of evaluated refactoring patterns.

Search for Refactoring Opportunities. Given a set of refactoring patterns, a qual-
ity model, a set of heuristic rules, and a set of selected software elements (a package,
a set of classes, a single class), the developers can search the software application
for possible opportunities to apply those refactoring patterns. The idea is to im-
prove the quality of the software by focusing on the opportunities that are more
likely to produce positive effects in a set of selected quality attributes. Examples of
refactoring opportunities are shown both in Chapter 5 and 6.

Compute the Effects of Refactoring. After the refactoring opportunities were
identified, the developers can then evaluate the effects of the selected refactoring
patterns in software artefacts, according to the selected quality model. In this ac-
tivity, the focus is on a quantitative evaluation. The use of impact functions is
proposed as a technique to enable the developers to quantitatively compute the ef-
fects of refactoring. Another way to compute the effects of refactoring is to apply
the refactoring patterns and evaluate the results. Examples of impact functions are
shown in Chapter 7.

Prioritise Refactoring Opportunities. After the refactoring opportunities are
identified and the effects of each one are computed, the developer evaluates quan-
titatively the proposed changes and decides which ones are advantageous. In this
activity, the developer should be able to filter and order the refactoring opportuni-
ties and mark them as applicable or not. The developer can then pass to the next
activity: apply refactoring patterns.

Apply Refactoring Patterns. The next activity is to apply refactoring patterns to
the software elements and re-run the available test cases to ensure that the applied
refactoring patterns did not break anything. The results can be analysed and, if

41

needed, the effects of the refactoring patterns can be undone. The developer can
restart the search, refining the search criteria, filters, ordering and starting again
the analysis of the suggested refactoring opportunities. To make more profound
changes in the quality model, in the heuristic rules or in the supported refactoring
patterns, the developer can restart the process over from the beginning.

These activities can be divided into two groups: preparation (management) activities
and search activities.

Preparation activities include the management of quality models, quality attributes,
and metrics, the management of heuristic rules, and the management of refactoring pat-
terns, catalogues of refactoring patterns and rankings of refactoring patterns. These ac-
tivities precede the search activities. Once the preparation activities are performed, the
developers can start to perform search activities.

Section 3.2 describes which are the activities needed for selecting or creating qual-
ity models, Section 3.3 describes how to select refactoring patterns and how a ranking
of refactoring patterns can be created, and Section 3.4 presents the main activities for
selecting heuristic rules (or creating them if needed).

Search activities include the search for occurrences of shortcomings, by computing
the values of heuristic rules applied to the software elements selected in a software appli-
cation. These occurrences of shortcomings, associated with refactoring patterns are the
opportunities for applying refactoring patterns. If there is the need to analyse these refac-
toring opportunities quantitatively, the developers can use impact functions. If not, the
refactoring opportunities are evaluated qualitatively and are marked for the application of
refactoring patterns or are added to a list of ignored detected refactoring opportunities.
Finally, the developers can apply refactoring patterns, run test cases, and if needed, undo
the transformations made by the application of the selected refactoring patterns.

The search activities can be performed several times during a software project, during
different moments in a software development process. Three main moments are suggested
for searching for refactoring opportunities:

e Refactoring during development. The developers of classes, when implementing
the features described in a use case, a viewpoint (or another way to express require-
ments), or in a design document can search for refactoring opportunities to apply
refactoring patterns during development activities. For example, the developers can
find some typical shortcoming in the software elements they are manipulating and
apply refactoring patterns, or they can search for refactoring opportunities before
committing their changes to a control version system and before deploying the soft-
ware elements to a testing team or to production. These refactoring activities can
focus on quality attributes that contribute to the simplicity, reusability, comprehen-
sibility, and traceability of the software elements, for example.

e Refactoring before the end of an iteration. After several deliveries from devel-
opers are made and before an iteration ends (in an iterative software development
process), the delivered sub-systems can be the focus for refactoring. Note that the
set of quality attributes can be different from the ones that the original developers
focused. For example, in this moment, shortcomings focusing problem traceability,
and error handling can be the focus of refactoring.

e Refactoring before delivery. When the system is ready for deployment, there can
be an additional refactoring session, focusing on maintenance, and time and space

42

(performance and size) optimisation, for example.

Section 3.5 presents activities for the definition of the search scope (i.e., which
projects, packages, classes, and aspects will be searched for the occurrence of shortcom-
ings). Section 3.6 describes the optional step of evaluating quantitatively the effects of
the application of refactoring patterns in the quality of the software elements being evalu-
ated. Section 3.7 describes the activities to analyse the refactoring opportunities and mark
which ones will be marked for refactoring and which ones will be ignored. Section 3.8
presents the main activities for the application of refactoring patterns.

3.2 Select or Create Quality Models

Quantitatively, a measure of how good is the design of a given class can be repre-
sented by the level of satisfaction of the quality attributes the development team wishes to
attain. Quality attributes are desired characteristics of software systems (ISO, 2001) and
commonly related to non-functional requirements in requirements documents. Common
examples of quality attributes, according to Boehm (BOEHM; IN, 1996), are: assurance,
interoperability, performance, evolvability, cost and reusability.

The ISO/IEC-9126 (ISO, 2001) is the international standard to deal with product qual-
ity and quality models and describes several quality attributes for software systems. There
are also quality models for specific domains, such as quality models for component based
software development (CBSD) (BERTOA; VALLECILLO, 2002), a model to identify
and specify quality attributes that crosscut requirements at an early stage of the software
development process (MOREIRA; ARAUJO; BRITO, 2002), quality attributes for web
software (OFFUTT, 2002) and quality attributes for the specification of software archi-
tectures (KAZMAN; BASS, 1994). Quality attributes are usually described in quality at-
tributes catalogues (BOEHM; IN, 1996; ISO, 2001; MYLOPOULOS; CHUNG; NIXON,
1992).

During software development and evolution, there is the need to use quality models to
assess the quality of the software being developed or maintained. Quality models focus
on the definition of software quality attributes, which includes the definition of goals,
criteria, attributes and metrics. For example, the first recognized models for software
quality (BOEHM; BROWN; LIPOW, 1976; MCCALL; RICHARDS; WALTERS, 1977,
CAVANO; MCCALL, 1978) incorporate several criteria dealing with product operation,
product revision and product transition. These criteria were latter standardized by ISO
9126 (ISO, 2001), which contains six quality goals, each of them having several attributes
associated. Basili et al. (BASILI, 1992) propose a method named Goal/Question/Metric
(GQM), which includes the definition of a goal, a set of questions and a set of metrics
to answer those questions. GQM can be used to create quality models in the approach
proposed in this chapter.

The following sections describe the activities and roles needed, the artefacts manipu-
lated and requirements for tool support.

3.2.1 Activities and Roles

The creation or selection of quality models is performed as follows. The quality an-
alyst creates a quality model to assess the quality attributes he wants to evaluate when
refactoring. This quality model will be used for the selection of refactoring patterns, for
the definition of heuristic rules, for computing the effects of refactoring and for analysing
and prioritising refactoring opportunities.

43

For example, the metric selection can be conducted using the Goal/Question/Metric
(BASILI, 1992) method. Other methods or ready-to-use quality models (ISO, 2001) or
metric suites (CHIDAMBER; KEMERER, 1994) can be used in this task. If there are
already a set of quality models available, the quality analyst can choose which ones will
be used for the identification of refactoring opportunities.

The quality analyst is the role responsible for the selection and ranking of refactoring
patterns, including the selection of the quality model which will be used to search for
refactoring opportunities and also the creation of quality models for the project. Figure
3.2 shows the main activities and artefacts for the selection or creation of quality models.

Quality Models Quality Models
(created) (chosen)

TN
H— 3_)

Quality Create Select Quality
Analyst Quality Model Models

Figure 3.2: Select or Create Quality Models: Roles

3.2.2 Artefacts and Tool Support

Figure 3.3 shows the classes used to represent quality models. The QualityModel
class defines the abstract representation of a quality model. For example, the developer
can choose to use a quality model composed only of quality attributes associated with
metrics. Or, he can use a GQM model, comprised of questions, goals and metrics. Each
type of quality model can have different structures. Therefore, the QualityModel class is
specialised to represent different types of organisation for quality models. GQM-based
models have associated goals, questions and metrics. Models based on the work of Bohem
(BOEHM; IN, 1996) have high level characteristics (which can be seen as high level
quality attributes), quality factors (middle level quality attributes) and metrics. ISO 9126
models (ISO, 2001) are organised in hierarchies of quality factors and associated metrics.

A tool supporting these activities should provide mechanisms to:

1. create, update, and remove quality models and its composing elements (quality
attributes and metrics);

2. associate metrics with software elements (i.e. the locc metric is associated with
classes and aspects);

3. to create, update and remove functions to compute the metrics associated with the
quality models.

This activity focuses only on the creation and selection of quality models, compris-
ing quality attributes and metrics. Shortcomings and their respective heuristic rules are
defined in the Select or Create Heuristic Rules activity, as well as the computation of the
selected metrics of selected software elements.

44

QualityModel
GQMBasedModel BoehmModel 1SO9126Model
+goals +highLevelCharacteristics +subFactors
- 1% \ / +subFactors 0..*
GQMGoal] . -
HighLevelCharacteristic QualityFactor
- issue: String +factors
- object: String 1
- purpose: String
- viewpoint: String
B +metrics
+questions
1.*
GQMQuestion) Function
+metrics Metric

- description: String

Figure 3.3: Select or Create Quality Models: Artefacts Meta-Model

Existing examples of tools to manage quality models include automated support for
the GQM Measurement Process (LAVAZZA, 2000), Logiscope] , which provides mecha-
nisms to capture metrics measurement and ISO 9126-based quality modelling, and Sys-
temCode?, which provides indicators to measure the quality of application code, including
quality indicators and models for maintainability, changeability and portability of appli-
cation code. It supports both ISO-9126 quality models as well as customised quality
models.

There are also tools focused on the collection of metrics, including CCMetrics? for the
NET plataform, Classycle for Java*, Oink for C++>, Aopmetrics® for Aspect] programs.
These tools focus on size, complexity, coupling and cohesion metrics.

The selected quality models is the basis for the selection and creation of heuristic rules,
which in turn are used to search for refactoring opportunities, to compute the effects of
refactoring on software quality, and to prioritise the refactoring opportunities.

3.3 Select Refactoring Patterns

The developer has to correctly evaluate the trade-offs between refactoring patterns in
terms of the affected quality attributes. As these quality attributes can be conflicting with

"http://www.telelogic.com/products/logiscope/index.cfm
nttp://www.metrixware.co.uk/systemcode.php
3http://www.riaform.com/utility,ccmetrics,utility.aspx
“http://classycle.sourceforge.net/
Shttp://www.cubewano.org/oink
Shttp://aopmetrics.tigris.org/

45

each other (BOEHM; IN, 1996), the task of selecting optimal refactoring patterns can be
hard. Also, as the number of software elements in a software application for which a
refactoring pattern is applicable can be high (FOWLER et al., 1999), the developer has
to narrow the search for refactoring opportunities to apply refactoring patterns that bring
benefits in terms of the expected quality attributes. Current research on the identification
of refactoring opportunities (BOIS; MENS, 2003; MENS; TAENTZER; RUNGE, 2005;
BOIS, 2006) focuses on the improvements of quality attributes considering each indi-
vidual application of a refactoring pattern, but does not consider how this search can be
narrowed to only those refactoring patterns that improve the desired quality attributes of
a software system. Currently, there are no, known to the author, automated mechanisms
to rank refactoring patterns in terms of quality attributes.

The discipline described in this chapter proposes a set of activities, roles and artefacts
to rank refactoring patterns according to a quality model. An example of a ranking method
and examples of its application are described in detail in Chapter 4.

3.3.1 Activities

Figure 3.4 shows the main activities to the selection of refactoring patterns (RPs) and
the ranking creation.

(Select Initial RPs List)

/%.(Choose a Ranking Method)
[ranking

needed]
Gompute a Ranking of RPs)

HDeﬁne Threshold)
a‘g

Figure 3.4: Select Refactoring Patterns (RPs): Activities

else

The following activities are performed:

e Select Initial List of Refactoring Patterns. The quality analyst selects an initial
set of refactoring patterns that are likely to be used to improve the quality of the
software application being developed. He selects a set of refactoring patterns from
existing catalogues. There are refactoring catalogues for object-oriented software
(FOWLER et al., 1999), aspect-oriented software (MONTEIRO; FERNANDES,
2005a, 2006), design models (MARKOVIC; BAAR, 2005; ZHANG:; LIN; GRAY,

46

2005), and use case models (RUI; REN; BUTLER, 2003; YU; LI; BUTLER, 2004),
amongst others. As these catalogues are quite large, it is usually better to focus in
sub-set of the refactoring patterns in the catalogues. For example, the Fowler’s
catalogue comprises around 100 different refactoring patterns.

Choose a Ranking Method. A ranking method is comprised by a set of steps to
rank refactoring patterns according to a quality model. This thesis uses AHP to rank
a set of refactoring patterns in terms of selected quality attributes. Nevertheless, the
quality analyst can choose a different method to rank the refactoring patterns. In
this activity, the ranking method is chosen by him.

Compute the Ranking of Refactoring Patterns. The next step is to create a rank-
ing of refactoring patterns using the chosen ranking method. This ranking of refac-
toring patterns can be used to focus the refactoring effort on the most advantageous
refactoring patterns to the software being developed or maintained. In this activity,
the quality analyst can use a tool that receives a quality model, a ranking method,
a set of refactoring patterns and additional information as input and produces a
ranking of refactoring patterns as output.

Define Threshold. After the ranking is created, the developer can define a thresh-
old to reduce the initial set of refactoring patterns to only those that have a ranking
value higher than this threshold. He can decrease the threshold value to add more
refactoring patterns to the search for refactoring opportunities or increase it if the
search for low ranked refactoring patterns is not being fruitful. The use of a thresh-
old narrows the search for refactoring opportunities, focusing on the best ranked
refactoring patterns. In this activity, the quality analyst alters the ranking of refac-
toring patterns, providing a threshold value.

3.3.2 Roles

The following roles are responsible for the selection of refactoring patterns (as shown

in Figure 3.5):

e Developer. The developer selects a set of refactoring patterns that are available in

the IDE or case tool in which he is working or delegates to the quality analyst the
refactoring patterns selection.

e Quality Analyst. The quality analyst is mainly responsible for creating the ranking

of refactoring patterns in terms of the quality model chosen to improve the software
through refactoring.

3.3.3 Artefacts

Figure 3.6 shows a model with the structure and the relationship between the artefacts.
The artefacts are described as follows.

e Refactoring Patterns. Refactoring patterns are described by a name, a context, a

solution, a set of mechanisms, and an example. They are usually described in a
refactoring catalogue and can be associated with software elements, impact func-
tions and heuristic rules. One possible way to associate refactoring patterns with
software elements with a low coupling is shown in Figure 8.2. Refactoring pat-
terns are associated with impact functions through the arguments of such functions.

47

RPs Catalogs

Refactoring Quality Model RPs Ranking
Developer Select Initial Patterns / (altered)

_ :> >

Quality Choose a Ranking Compute a Ranking Define Threshold

Analyst Method /' \ /

/N
B B8 B

Ranking Methods ~ Ranking Method (chosen) RPs Ranking

Do

Qo

Figure 3.5: Select Refactoring Patterns: Roles

RPsCatalog) RefactoringPattern
+catalog +refactoringPatterns

name: String - name: String
0..* 1.*

+refactoringPatterns 1.*

RPinRanking

--------------- - position: Integer
score: Double

QualityModel . | RPsRanking
+qualityModel +ranking

threshold: Predicate
1 0..*

+ranking | 0..*

+method | 1

RankingMethod

Figure 3.6: Select Refactoring Patterns (RPs): Artefacts Meta-Model

Figure 3.15 shows that the arguments are software elements, which are in turn as-
sociated with a refactoring pattern through refactoring opportunities.

e Refactoring Catalogue. The catalogue of refactoring patterns is used by the devel-
oper or the quality analyst to select the refactoring patterns to be ranked or selected
to be used in the remaining activities.

e Ranking Method. A ranking method is used to order the refactoring patterns in a

48

way that the refactoring patterns that are more likely to improve the quality model
are the best ranked patterns.

e Ranking of Refactoring Patterns. This artefact lists the refactoring patterns to-
gether with their position in the ranking and a score that can represent how much
one refactoring pattern is more advantageous than the others, in terms of a set of
quality attributes. This score can be computed using AHP and can be used by the
developer to decide which refactoring patterns to include in the search and which
not. For example, the developer can choose to only search for refactoring patterns
that have scores higher than an arbitrary value. Or, he can search for the top n refac-
toring patterns in the ranking, where 7 is an arbitrary number. The ranking can also
maintain references to the ranking method used and the quality model used to rank
the refactoring patterns.

A tool supporting these activities should provide (i) integration with refactoring pat-
terns catalogues and (ii) integration with ranking method tools. It should be possible to:

e Create, read, update and delete refactoring patterns;

e Create, read, update and delete quality models;

3.4 Select or Create Heuristic Rules

A heuristic (RUSSELL; NORVIG, 2002) is defined as any technique that improves
the average-case performance on a problem-solving task and is usually an approximation
of knowledge. In this thesis, a heuristic is expressed as a rule to quantitatively evaluate
a set of quality attributes of a given element of a model. Heuristic rules can help to to
evaluate the level of satisfaction of quality attributes in a given software application and
to spot opportunities to improve software applications and their quality.

3.4.1 Activities and Roles

The following activities are needed to be performed by the developer or by a quality
analyst. Figure 3.7 shows such activities.

e Select Heuristic Rules. In this activity, the developer or the quality analyst can se-
lect a set of heuristic rules associated with a quality model retrieved from a knowl-
edge base.

e Create Heuristic rules. To create a heuristic rule, the developer can start with an
aggregation, such as: f = > w;* fqa;, in which fqa, ... fqa, are functions that
measure the quality attributes ga; . .. ga,. The w; ...w, elements of the function
are the weights of each quality attribute in the heuristic rule. As a development team
is usually concerned with several quality attributes simultaneously, a multi-criteria
approach can be used to take all the quality attributes into account.

A quality analyst is responsible to create the heuristic rules that will be used in the
refactoring activities. If, for example, he wants to create a heuristic rule based on quality
attributes and metrics, he needs to first select the quality attributes, then select a set of met-
rics (using a metric selection process, such as GQM) to create a function to quantitatively
evaluate the quality attributes using a set of metrics.

49

(Select Heuristic Rules)
[no additional

heuristic rules
needed]

[need additional heuristic
rules]

4)

Create Heuristic Rules

[need additional
heuristic rule]

Specify Heuristic
Rule

[heuristic
rules
created]

Validate Heuristic
Rule

22

/

[additional heuristic rules
created]

Figure 3.7: Select or Create Heuristic Rules: Activities

Quality Attributes Quality Attributes

Catalog< / (seleited) \
O
g—- o >—B8

Quality Select Quality Select Define Heuristic Heuristic
Analyst Attributes Metrics Rule Rule

SN
g2 B B

GQM Plan Metrics Metrics
Catalogue (selected)

Figure 3.8: Select or Create Heuristic Rules: Roles

3.4.2 Artefacts
This section discusses a conceptual model describing the main concepts associated
with the definition of heuristic rules. Figure 3.8 shows such model.

e SoftwareElement. In this case, a software element is any part of an artefact. For

50

SoftwareElement

containerElement

1
«realize»
1
v 0..* | +functionValues
«interface» «interface»
Argument Value
+input +output
Function Bormula

+formula

‘F

Heuristic Rule

Figure 3.9: Create Heuristic Rules: Artefacts

example, in object-oriented code, a software element can be a class, a method, and
an attribute. These software elements are passed to the heuristic rules as needed.

Function. This class represents any mathematical function. Mathematical func-
tions are composed by a set of arguments (also called parameters), a value, which
is returned by the computation of the function, and a formula, which specifies how
the parameters are used and how the value is computed.

Argument. This interface represents the parameters passed to a function. For
example, if the function computes the locc metric, the argument can be an aspect
or a class. If it is an impact function to compute the impact of the Move Method
refactoring pattern, the arguments can be the evaluated metric, the method being
moved and one additional argument representing the destination class or aspect.

Value. This interface represents the values returned by a function. If the function
computes the nom metric, for example, the value is the number of methods of the
class or aspect passed as argument to that function.

Formula. The formula of a function is the specification of how a function is
computed. It is the right side of a mathematical function. For example, the
formula of the defined to compute the nom metric is defined, in Chapter 9, as:

M|+ |A| + |MD| + |CD|.

Heuristic Rule. A heuristic rule is a function created to evaluate quantitatively one
or more software elements. For example, the heuristic rule defined in Chapter 6, is
defined as: f(x) = 0.4 x simplicity(x) + 0.6 * reusability(z), where simplicity
and reusability are other functions.

51

Tools must include support to:

e Create, read, update, and delete shortcomings;

Create, read, update, and delete metrics;

Create, read, update, and delete heuristic rules;

Associate shortcomings with heuristic rules;

Compute the values of metrics;

Compute the values of heuristic rules;

3.5 Search for Refactoring Opportunities

In software applications, several opportunities for applying refactoring patterns can
be found. The difficulty is to determine which of these opportunities can improve the
qualities the developers wish to satisfy. The following questions are presented in such
context:

e To what software elements refactoring patterns should be applied?
e Which refactoring patterns are applicable?

e What is gained by the application of a refactoring pattern to a given software ele-
ment?

A software element can be the target for several different refactoring patterns. Using
a set of heuristic rules, the developer can (i) search for the refactoring opportunities in the
software elements, and (i1) check if the refactoring patterns for each target element are ap-
plicable. A refactoring pattern is applicable to a software element if all the preconditions
of the refactoring pattern are satisfied.

This section describes the main activities, roles and artefacts needed to search for
refactoring opportunities in existing software using heuristic rules and impact functions.

3.5.1 Activities

Figure 3.10 shows the main sub-activities for the Search for Refactoring Opportunities
activity.

e Define Scope. The scope of a search is defined as the projects, packages, and
software elements that will be used in the search for refactoring opportunities.

e Define Levels of Successive Refactoring. The search for refactoring opportunities
can be extended to sequences of two or more refactoring patterns, as described in
detail in Chapter 8.

e Compute Elements in the Scope. In this step, the software elements which can be
a target for refactoring are computed, according to the scope defined in the previous
steps.

52

Define Scope and Define Levels of
Thresholds Sucessive Refactoring

(Compute Elements in the Scope)

Compute Heuristic Values)

Filter Elements by Search Criteria

(Create Initial ROs List>

Check RPs Preconditions and
Update ROs List

Figure 3.10: Search for Refactoring Opportunities (ROs): Activities

e Compute Heuristic Rules. The first step in finding refactoring opportunities is to
compute the metric values of the software elements and then compute the values of
the heuristic rules.

e Create an Initial Refactoring Opportunities List. After the software elements in
the scope and the values of the heuristic rules are computed, an initial list of refac-
toring opportunities is created. This list will be used to prioritise the application of
refactoring patterns.

e Check Refactoring Patterns Pre-conditions and Update Refactoring Opportu-
nities List. The last step is to check the pre-conditions of the refactoring patterns
and update the refactoring opportunities list. This step can be postponed if there are
too many refactoring opportunities (the cost of computing the pre-conditions can
be estimated based on previous computations).

3.5.2 Roles

The search for refactoring opportunities activities can be all performed by the devel-
opers with the help of automated tools. The developers start by setting the configurations
needed for the search, including the scope (which projects, packages, and classes), and the

53

levels of successive refactoring (as defined in Chapter 8). With the configuration in place,
the next step is to compute which elements are on the scope and filter those elements by
the conditions described in the scope configuration.

With all the software elements within the defined scope, and the previously selected
refactoring patterns, the developer can create an initial list of refactoring opportunities,
including all the cases in which the refactoring patterns can be applied to the software
elements in the scope. The last step is to check if the preconditions of each refactoring
pattern application is satisfied (this checking is usually expensive in terms of time, so this
step can be delayed until the actual application of the refactoring patterns). Figure 3.11
shows the activities and artefacts involved.

Initial Configuration
Configuration (updated)
Software

\ / \ / Elements
o [

O Define Scope/ Compute Elementsin\‘ .

D Levels of Suc. Ref. Scope/Filter Elements

Developer A/Software Elements
(selected)

Check Preconditions Create Initial

B g =

Refactoring
Patterns

ROs List
(updated) ROs List

Figure 3.11: Search for Refactoring Opportunities (ROs): Roles

3.5.3 Artefacts

This section shows a conceptual model describing the main concepts associated with
the definition of heuristic rules, impact functions and search for refactoring opportunities.

Figure 3.12 shows the main classes and its attributes and relationships, described as
follows:

e Software Element. A software element can be any element in a software artefact,
such as a class, an attribute, a relationship, and a use case.

e Metric. A metric is described by a name and is implemented as a function. Func-
tions have arguments, output values and a formula, as shown in Figure 3.9. A
framework that implements the search for refactoring opportunities must provide
integration with a metric collector software application.

e Value. The instances of this class contain a value for a given heuristic rule. For
example, when the heuristic rule is computed, its output can be a boolean value (the
software element has the anonymous pointcut shortcoming for example), a numeric
value (the reusability of the class is of 0.53, for example) or other kind of value.

54

pre-conditions

e Shortcoming. A shortcoming is a deficiency, inadequacy or incompleteness that a

software element can have. Typical shortcomings are described by a name, appli-
cability, a set of examples and a set of heuristic rules, to automatically detect their
occurrence.

Refactoring Opportunity. A refactoring opportunity is composed by a set of se-
lected software elements, a refactoring pattern, and a heuristic rule (which is asso-
ciated with a shortcoming).

Refactoring Pattern. A refactoring pattern is a behavioural preserving transforma-
tion, which is used to improve the quality of a software application being developed.
It is comprised by a name, a motivation, a set of parameters and possibly other ba-
sic attributes. The application of a given refactoring pattern must satisfy a set of
pre and post conditions. The pre-conditions specify when it is possible to apply
the refactoring pattern. The post conditions express the changes that must occur
whenever the refactoring pattern is applied.

List of Refactoring Opportunities. After the search is conducted, a list of refactor-
ing opportunities is created. This list is evaluated to decide which of the refactoring
patterns associated with the refactoring opportunities will be applied.

Function
Metric

name: String

+ compute() : void

0.*
uses

£ Function
«interface» . Shortcomin
Heuristic Rule 9

Value outputValues expresses a
name: String

name: String
applicability: String
examples: String

+ compute() : void

RefactoringPattern SoftwareElement

RefactoringOpportunity

name: String - name: String containerElement
- module: Module
+ apply() : void - path: String

+ros 0..*

post-conditions

Predicate ROsList

+ evaluate() : boolean

Figure 3.12: Search for Refactoring Opportunities: Artefacts Meta-Model

55

3.6 Compute the Effects of Refactoring

Several refactoring patterns have been proposed to improve the design of existing
software (OPDYKE, 1992; FOWLER et al., 1999; GARCIA et al., 2004; MONTEIRO;
FERNANDES, 2004, 2005a, 2006). However, the benefits of applying each refactoring
pattern are context dependent. For example, consider the Extract Method and the Inline
Method refactoring patterns. The Extract Method refactoring pattern is usually applied
when a method is too long, the sentences are not in the same level of abstraction, or it is
clearer to have a new method encapsulating a particular set of sentences. For example, if
the developer applies Extract Method too frequently, he will have a system with too many
methods and too much indirection. In this case, the Inline Method refactoring pattern can
be used to get rid of methods that are not doing too much and are not useful enough to
exist as a separated method.

Another issue that can affect when a particular refactoring pattern can bring benefits
is regarding the software quality attributes, which can be a different set for every project.
Consider, for example, conflicting quality attributes, such as performance vs. security,
simplicity vs. flexibility, optimization vs. legibility. Each refactoring pattern affects
differently each quality attribute, so the selection of which refactoring patterns to select
depends on the relative importance of the quality attributes required for the project.

Impact functions (BOIS; MENS, 2003; BOIS, 2006) are used to evaluate the impact
of a refactoring pattern on software metrics and describe the changes in the metric values
when a given refactoring pattern is applied. Any time a developer finds a refactoring
opportunity and is not sure about the implications of the transformation the associated
refactoring pattern will cause, an impact function can help him to assess the effects of its
application. Using the impact functions, the developer chooses proper refactoring patterns
according to his needs.

The decision of moving features between software elements can be supported by the
impact functions, which help the developer to evaluate the metric values of the application
of each refactoring pattern. The use of these functions can show which candidates for the
application of refactoring patterns have more impact in terms of metric values. Further-
more, when there are many refactoring opportunities, the developer has to focus on those
that provide more improvements in the software being developed.

3.6.1 Activities

Figure 3.13 shows the main activities for the Compute the Effects of Refactoring ac-
tivity.
The activities are described as follows.

e Retrieve Impact Functions for the Selected Refactoring Patterns and Metrics
Used. In this activity, the impact functions regarding the selected refactoring pat-
terns and the selected heuristic rules are retrieved from a knowledge base. If no
suitable impact functions are found, a quality analyst can create new ones.

e Create Impact Functions. This activity encompasses the creation of functions to
predict the values of heuristic rules or metrics without the need to apply the refac-
toring patterns. Whenever a developer comes upon an opportunity for refactoring
and is not sure about the implications of the transformation, an impact function
helps to assess the effect of the refactoring.

56

?

Retrieve Impact Functions for the
selected RPs and metrics used
[Need to create
additional impact

functions]
Create Impact
Functions
[else]

/\

(Compute the Predicted Heuristic VaIues)

CUpdate ROs List with Predicted Values)

Figure 3.13: Compute the Effects of Refactoring: Activities

e Compute the Predicted Values of Heuristic Rules. In this activity, the predicted
values of the heuristic rules are computed and associated with the corresponding
software elements.

e Update Refactoring Opportunities List. The refactoring opportunities list is up-
dated to contain the new predicted values. The developer can then evaluate the
changes in the predicted values if he applies each one of the selected refactoring
patterns.

3.6.2 Roles

The following roles are responsible for the Compute the Effects of Refactoring sub-
activities.

e Quality Analyst. The quality analyst is responsible for retrieving the impact func-
tions for the selected heuristic rules and refactoring patterns. He is also responsible
for creating new impact functions if there are no impact functions available for all
the heuristic rule vs. refactoring pattern pair. The retrieval can be provided by a
tool.

e Developer. The developer computes the predicted values of the heuristic rules and
updates the refactoring opportunities list with those values. Both activities can be
automated.

Figure 3.14 shows the relationship between roles, artefacts and activities for comput-
ing the effects of refactoring on software quality.

3.6.3

57

5 [o—B
Quality Retrieve/Create Impact Refactoring
Analyst / Functions Patterns

Impact Functions Heuristic Functions
\ /
O —
D Compute Predicted Update ROs List with | jst of ROs
Developer Heuristic Values Predicted Values (updated)

Software Predicted .
Elements Heuristic Values List of ROs

Figure 3.14: Compute the Effects of Refactoring: Roles

Artefacts

The artefacts needed for and produced by the Compute the Effects of Refactoring
activity are described as follows.

Selected Heuristic Rules. This artefact contains the heuristic rules selected for the
evaluation of the software artefacts. These heuristic rules are used to create or select
impact functions to compute the effects of refactoring in a software application.

Selected Refactoring Patterns. This is a list of the refactoring patterns selected by
the developer as an input for the search for refactoring opportunities.

Impact Functions. Impact functions are created for each heuristic rule/refactoring
pattern pair (or for each metric/refactoring pattern pair). These functions compute
the predicted value of the heuristic rule if the refactoring pattern is applied to a
given software element.

Software Elements. Software elements are the building blocks of software: re-
quirements, use cases, classes, methods, and variables. These elements comprise
all the elements that can be affected by the application of a refactoring pattern.

Predicted Values of Heuristic Rules. These are the values of the computation of
the heuristic rules together with the impact functions. Software elements can have
several values associated for the heuristic rules and predicted values of the heuristic
rules. While values of heuristic rules are computed with the heuristic rules, the
predicted values of a heuristic rule are computed with the help of impact functions.

List of Refactoring Opportunities. These opportunities associate software ele-
ments to refactoring patterns and are used to store the predicted values of a heuristic
rule.

Figure 3.15 shows the main classes representing the artefacts, their properties and
relationships.

58

|: SoftwareElement

containerElement

- name: String
- module: Module
- path: String

T
RefactoringPattern «rea}lize»

- name: String v
«interface» «interface»
+ apply() : void Argument value

\ +input +output

RefactoringOpportunity

Function Formula
+formula

Shortcoming

- name: String
- applicability: String

- examples: String %

Heuristic Rule Metric ImpactFunction
- uses -
expresses a - name: String - name: String
0.*
+ compute() : void + compute() : void

Figure 3.15: Compute the Effects of Refactoring: Artefacts Meta-Model

Tool support for using impact functions is desirable to provide mechanisms to com-
pute metric values without the need of applying refactoring patterns in a practical way.
The developer can use the existent impact functions associated with a set of refactoring
patterns or can create new ones.

Each refactoring pattern has a set of participants (source aspect and destination aspect,
for example) and can be associated with a set of metrics. For each pair P,, = (participant,
metric), the developer can inform a different impact function. The developer can also
associate more than one metric and impact function in a single operation.

The classes representing refactoring patterns are instantiated and the impact functions
can be computed for concrete participants, provided by the user. This computation returns
the modified metric values. Refactoring in sequence can be performed by sequentially
computing individual impact functions.

Tools must support mechanisms to:

e Create, read, update, and remove impact functions;
e Compute metrics;
e Compute impact functions;

e Integrate the computation of impact functions with refactoring tools (i.e. to show
the impact of refactoring patterns within a particular IDE).

Future work can focus on expanding the existing refactoring patterns and impact func-
tions, providing integration with metric collectors for object-oriented and aspect-oriented
software, commercial IDEs and refactoring tools.

3.7 Prioritise Refactoring Opportunities

After searching for the applicable refactoring patterns (or sequences of patterns) and
computing the effects of these applications in software quality, the developer has to choose

59

which of the suggested refactoring opportunities are really advantageous.

In this activity, the developer manipulates the refactoring opportunities by means of
ordering and filtering. When one of the refactoring opportunities seems suitable, he can
then analyse it more carefully, to understand its effects on the artefacts being manipulated.

The developer then can choose to discard or to mark the opportunities for refactoring.
The following sections briefly describe the main activities, roles and artefacts needed for
this activity.

3.7.1 Activities and Roles

Figure 3.16 shows the main flow of activities when analysing a set of refactoring
opportunities.

Evaluate the

k ROs)

[need to refine [there are

. the ROs] ROs to apply]
Filter, Order or Mark ROs to
Discard ROs Apply
[otherwise]

®

Figure 3.16: Prioritise Refactoring Opportunities (ROs): Activities

The main activities are described as follows.

e Evaluate the Refactoring Opportunities. In this activity, the developer evaluates
the best ranked refactoring opportunities and chooses those that he finds suitable to
the current development context.

o Filter, Order or Discard Refactoring Opportunities. If there is the need to refine
the search for refactoring opportunities, the developer changes the filters, orders
the refactoring opportunities or discards those refactoring opportunities that are not
appropriate. After the set of refactoring opportunities is refined, the developer can
continue to evaluate them.

e Mark Refactoring Opportunities to Apply. Those refactoring opportunities
which the developer finds suitable to apply the associated refactoring pattern are
marked for refactoring. Later, the developer can provide additional parameters to
the refactoring patterns and apply them.

The only role responsible for the activities of refactoring opportunities evaluation,
analysis of trade-offs and prioritisation is the developer. Figure 3.17 shows the relation-
ship of the developer with the main activities and artefacts.

60

ROs Li ROs List

l o / (evaliated)\
; L2)

Evaluate ROs Mark ROs Filter, Order
to Apply Or Discard ROs

ROs List ROs List
(altered) (updated)

Developer

Figure 3.17: Prioritise Refactoring Opportunities (ROs): Roles

3.7.2 Artefacts

The only artefact manipulated is the list of refactoring opportunities, which is first
evaluated and then can be further refined or have opportunities marked for refactoring.
The main classes for this activity are shown in Figure 3.18.

RefactoringOpportunity

Filter

+ apply() : void
+ros 0.*
Mark
ﬂ % ConcreteFilter CompositeFilter
ROsList +children
+ apply() : void + apply() : void 3 1.
Delete Refactor

Figure 3.18: Prioritise Refactoring Opportunities: Artefacts Meta-Model
Tool support for this activity should have the following features:
e The capability to select and mark opportunities for later refactoring;

e The capability to hide or delete refactoring opportunities from the List of Refacto-
ring Opportunities;

e The capability to order and filter refactoring opportunities by metric values, values
of heuristic rules, predicted values of heuristic rules, the difference between the

predicted values and the values of heuristic rules, by package, by class, and by
refactoring pattern.

61

3.8 Apply Refactoring Patterns

The goal of refactoring is to improve the quality of the artefact itself and the overall
software quality. This improvement can be evaluated qualitatively or quantitatively. In
this activity the focus is to apply the suggested/marked refactoring opportunities and to
test the software application to evaluate if there are no side-effects of the application of the
refactoring patterns associated with the refactoring opportunities. The developer needs,
for some refactoring patterns, to provide concrete parameters to the refactoring pattern
being applied. For example, if an Extract Interface refactoring pattern is suggested, the
developer has to provide the name of the new interface.

This section describes the main activities, roles and artefacts to apply refactoring pat-
terns to software elements after refactoring opportunities were identified, filtered, ranked,
analysed and marked for refactoring.

3.8.1 Activities

Figure 3.19 shows the main flow of activities when refactoring a set of software ele-
ments marked for refactoring.

[configuration
needed])
Choose/Configure RPs

Parameters

[else]

‘ Apply RPs)
Crest Affected EIements)

Undo application

[undo needed)] of RPs

Figure 3.19: Apply Refactoring Patterns (RPs): Activities

The following activities are needed to apply the refactoring patterns associated with
the refactoring opportunities.

e Choose/Configure Parameters. Some refactoring patterns need parameters, so the
developer can choose the best value for it. It can include naming issues (for classes,
new methods, and renamed variables) or destination classes, for example (for which
super-class the developer should pull up a method).

62

e Apply Refactoring Patterns. The developer applies the marked refactoring pat-
terns in the software elements. The refactoring tool then performs the transforma-
tions and reports to the user any errors which occur in this process. This activity is
usually automated.

o Test Affected Elements. The software elements are then tested, using test cases
(unit tests, and integration tests) to check if the all transformations occurred suc-
cessfully. If errors are reported, the developer can choose to undo the changes or
analyse both the software elements and the test cases to see which are the issues
that are causing the errors.

3.8.2 Roles

The primary role responsible for this activity is the same role responsible for the ap-
plication of refactoring patterns to the software elements. For example, if source code is
being a target for refactoring, the developer is responsible for this activity. If models are
being transformed by refactoring patterns, the analyst or the designer is the responsible
role. Figure 3.20 shows the main artefacts associated with this role and activities.

ROs List ROSList software

l /‘ (updfted)/ Elements;St Cases
o o> Lo

Choose/Configure Apply RPs Filter, Order
Parameters Or Discard ROs

Additional Parameters/ .

Configuration Software Elements Test Results
(altered)

Developer

Figure 3.20: Apply Refactoring Patterns: Roles

3.8.3 Artefacts

The following classes can be used to represent the artefacts needed for applying refac-
toring patterns to software elements.

e Refactoring Opportunity. Refactoring opportunities are represented as an associa-
tion of a refactoring pattern with one or more software elements and with a heuristic
rule. A list of such objects is used to drive the application of refactoring patterns.

e Refactoring Pattern. Each refactoring opportunity has a refactoring pattern associ-
ated with it. There is the need of supporting the refactoring pattern in the refactoring
tool.

63

RefactoringPattern TestCase

name: String

+ apply() : void

SoftwareElement
RefactoringOpportunity

name: String containerElement
module: Module
path: String
+ros 0.*
ROsList

Figure 3.21: Apply Refactoring Patterns: Meta-Model

e Refactoring Opportunities List. These are concrete lists of refactoring opportu-
nities, which were created in the previous activities.

e Software Element. Each refactoring opportunity has one or more software ele-
ments associated. These elements will be transformed by the application of the
refactoring patterns in the list.

e Test Case. Test cases are used to evaluate if the application of the selected refac-
toring patterns in the associated software elements do not change the behaviour of
the application.

Tool support is highly desirable for the refactoring activities and is usually present in
modern IDEs and Case tools. For example, the Eclipse IDE (http://www.eclipse.
org) and the IDEA IDE (http://www. jetbrains.com/idea/) provide more
than 50 different refactoring patterns for manipulation of classes, methods, fields, inter-
faces, and statements. Case Tools, such as the Rational Rose and Rational Software Ar-
chitect (www.ibm.com/software/rational/), provide such capabilities as well,
with the advantage of synchronizing design models and source code (if one of them
changes, the other one is also changed).

3.9 Conclusions

There are several activities involved in a refactoring process considering improve-
ments on the software quality. First, there is the need to select or create a suitable quality
model to drive the entire process. Then, considering the selected quality model, the de-
veloper can then select the refactoring patterns that are more likely to produce positive
effects in the artefacts being the target for refactoring patterns. Then, heuristic rules can
be created to quantitatively evaluate the software elements.

Having created the heuristic rules, the developer can then search for refactoring op-
portunities, and evaluate the effects of the refactoring patterns associated with those op-

64

portunities using impact functions. The next step is to analyse the proposed refactoring
opportunities by filtering, ordering and marking refactoring opportunities for the applica-
tion of the associated refactoring pattern. Typically, after a set of refactoring opportunities
are marked, the developer can apply the refactoring patterns to the elements associated
with the refactoring opportunities.

Future work can focus on the validation of such discipline, including the use of the
proposed activities in real world projects. This validation can help to assess the advantages
and disadvantages of the proposed approaches, and also the obtained gain with full tool
support.

65

4 RANKING REFACTORING PATTERNS WITH THE AN-
ALYTICAL HIERARCHY PROCESS

This chapter proposes an approach to rank refactoring patterns in terms of a set of
quality attributes. It is organized as follows. Section 4.1 describes the main motivation
for ranking refactoring patterns and describes the goals of this chapter. Section 4.2 shows
how to rank refactoring patterns according to a set of quality attributes using AHP, while
Section 4.3 describes a case study. Section 4.4 describes how to improve the pairwise
comparisons and ranking accuracy. Section 4.5 describes the tool support developed to
automate the main activities of the approach. Section 4.6 describes related work and
Section 4.7 concludes the chapter.

4.1 Introduction

The evaluation of all the possible refactoring opportunities is costly. There are several
applicable refactoring patterns, there are several software elements to be evaluated, there
are several metrics whose values must be computed and analysed, and there are several
sequences to choose from. To reduce the number of refactoring opportunities to be evalu-
ated, the developer can focus on reducing the number of refactoring patterns, on reducing
the scope (by reducing the software elements), on reducing the set of typical shortcom-
ings, on selecting a set of quality attributes, or on reducing the number of sequences to be
evaluated.

One of these ways of reducing the number of refactoring opportunities to be evaluated
is to reduce the number of refactoring patterns. The developer selects refactoring pat-
terns with the potential of bringing advantages in terms of chosen quality attributes to the
current project in general. This is the focus of this chapter and can be addressed by cre-
ating a ranking of refactoring patterns that improve a set of quality attributes of software
application.

Strategies for reducing the scope by selecting specific software elements, by selecting
the software elements according to a measure of quality, and by selecting shortcomings
for which the developer will search for refactoring opportunities is the focus of Chapters
5, 6 and 3.

Another strategy for reducing the number of refactoring opportunities deals with pri-
oritising them by evaluating the effects of each application of the selected refactoring
patterns (individually or in sequences), as each refactoring pattern can have different ef-
fects depending on the software elements it manipulates. This strategy is outside the scope
of this chapter and is discussed in more details in Chapters 7 and 8, respectively.

For the selection and ranking of refactoring patterns according to a set of chosen qual-

66

ity attributes, the developer can use one of several multi-criteria decision methods. Such
methods offer the possibility to find, given a set of alternatives and a set of decision crite-
ria, the best alternative. To solve MCDM problems many techniques have been proposed

[25]:

direct scoring and ranking methods, trade-off schemes, distance-based methods,

value and utility functions, and interactive methods. The Analytical Hierarchical Process
(AHP) (SAATY, 1990, 2003) was the method selected in this thesis to rank refactoring
patterns according to a quality model.

The Analytical Hierarchical Process (AHP) (SAATY, 1990, 2003) was selected for
the following reasons:

It allows pairwise comparisons (a kind of tradeoff and interactive method), which
seems appropriate to handle the kind of problems in hand. The relative importance
of quality attributes essentially depends on the requirements of each project and it
is not easily measured quantitatively.

These pairwise comparisons, besides being used for the ranking of required quality
attributes of a given project, can also be used to express the relative importance
of one refactoring pattern over other refactoring patterns. The advantage of using
AHP is that the developers can state qualitatively which refactoring pattern is better
than another in terms of a given quality attribute. This qualitative information is
mapped to quantitative values using AHP, and the pairwise comparisons can be
automatically computed with a small effort.

It provides a simple aggregation process (BRITO et al., 2007). There are no special
skills to use the method.

It helps guarantee the logical consistency of many human-based judgements, as
well as synthesizing a wide-range of data in a single solution (BRITO et al., 2007).

It has been applied successfully in diverse domains, such as environmental as-
sessment (GELDERMANN; SPENGLER; RENTZ, 2000), land management (JO-
ERIN; MUSY, 2000), maintenance strategy (BEVILACQUA; BRAGLIA, 2000)
and construction partnering process (CHENG; LI, 2002). In the context of soft-
ware development, it is being employed to optimise the value and cost in require-
ment analysis (JUNG, 1998), to the decomposition of interdependent task group for
concurrent engineering (CHEN; LIN, 2003) and to define optimisation models for
quality and cost of modular software systems (JUNG; CHOI, 1999), for example.

This chapter proposes an approach to rank refactoring patterns in terms of a set
of quality attributes. The Analytical Hierarchy Process (AHP) multi-criteria decision
method is used to express:

How much one quality attribute is more important than the other quality attributes
(this is called relative importance (SAATY, 1990));

How much one refactoring pattern is more important than other refactoring patterns
in regards to each quality attribute.

The main tasks are the:

The creation of pairwise comparisons for quality attributes;

67

e The creation of pairwise comparisons for refactoring patterns;

e The computation of the following rankings:

— Ranking of quality attributes;
— Rankings of refactoring patterns for each quality attribute;

— The overall ranking of refactoring patterns regarding all the (ranked) quality
attributes.

The creation of a ranking of refactoring patterns for a hypothetical software project
is exemplified using three quality attributes and four refactoring patterns. Although the
example is based on refactoring patterns for object-oriented software, the approach can
be used in other paradigms.

4.2

Creating a Ranking with AHP

This section describes the main steps for ranking refactoring patterns according to a
set of preferred quality attributes using AHP.

Starting with a set of refactoring patterns and a set of selected quality attributes, the
developer performs the following steps to generate a ranking of refactoring patterns ac-
cording the preferred quality attributes:

1.

Create pairwise comparisons for quality attributes: The first step is to create pair-
wise comparisons between the selected quality attributes. This is the developer’s
main task in this approach, as the relationship of quality attributes is usually spe-
cific to a project.

Create pairwise comparisons for refactoring patterns: A tool provider can make
available a knowledge base containing pairwise comparisons for typical refactoring
patterns and quality attributes. The developer can then retrieve the pairwise compar-
isons from this base or add new ones to the knowledge base (if there are no pairwise
comparisons available for a particular refactoring pattern or quality attribute).

. Compute the quality attributes ranking: In this task, a pairwise matrix is created

to express the relationship between the quality attributes. The quality attributes
ranking is the eigenvector of the quality attributes pairwise matrix. This step and
the next ones can be automated.

Compute the rankings of refactoring patterns versus quality attributes: For each
quality attribute, a pairwise matrix is created to quantitatively express the relation-
ship of the refactoring patterns vs. the quality attribute. The ranking of refactoring
patterns considering each quality attribute in isolation is the eigenvector of the re-
spective pairwise matrix.

Compute the overall ranking: A ranking of the selected refactoring patterns is com-
puted using the quality attributes eigenvector and the alternatives (refactoring pat-
terns) eigenvectors. To compute the ranking of the refactoring patterns given the set
of quality attributes, a matrix is created with the criteria (the quality attributes) and
the alternatives (the refactoring patterns). This matrix is multiplied by the eigen-
vector of the quality attributes pairwise matrix.

68

This overall ranking can be used to focus the search for refactoring opportunities
for the best ranked refactoring patterns, instead of looking for refactoring opportunities
for refactoring patterns that contribute little to the overall software quality (i.e. are low
ranked). Once a knowledge base containing the relationship between the refactoring pat-
terns and the quality attributes is created, the developer has only to provide pairwise com-
parisons for the quality attributes, as the matrix manipulation activities can be automated.

Figure 4.1 shows the main concepts related to the creation of rankings of refactoring
patterns. The AHPRanking class represents any AHP-based ranking. This class has two
main methods: one for computing the ranking and another one for adding pairwise com-
parisons (represented by the PairwiseComparison class). Each pairwise comparison has
two criteria (instances of classes realising the Criterion interface).

For ranking refactoring patterns, there is the need for creating three kinds of rankings.
Rankings of quality attributes (represented by the QAsRanking class), rankings of refac-
toring patterns versus quality attributes (represented by the RPvsQARanking class), and
an overall ranking (represented by the RPsRanking class). Each refactoring pattern in the
overall ranking has a score and a position in the ranking (both computed by AHP).

AHPRanking

+ compute() : AHPRanking
+ addPairwiseComparison(PairwiseComparison) : void

. RPsRanking QAsRanking
RPvsQARanking +rps rankings +qas ranking
- threshold: Predicate
1.* 1
+ compute() : RPsRanking

RPinRanking

- score: Double |TTTTTTTTTTTTTO +pairwiseComparisons | 0..*

- position: Integer

1.% +refactoringPatterns PairwiseComparison

RefactoringPattern

- name: String
- context: String
- mechanics: String

i i * - RN +irstCriterion iteri
+qualityAttribute | 1 O- T apphy0ivoid | el i +secondCriterion
+affectedQAs «realize» >« N «interface»
QualityAttribute Criterion
- name: String «realize»

Figure 4.1: A conceptual model for ranking refactoring patterns

4.3 Case Study: Ranking Object-Oriented Refactoring Patterns with
AHP

A ranking method is comprised by a set of steps to rank refactoring patterns according
to a quality model. Below, each step of the AHP-based ranking method is shown using
three quality attributes and four refactoring patterns. Section 4.3.1 describes the creation
of the quality attributes pairwise comparisons. Section 4.3.2 exemplifies the creation of

69

the refactoring patterns pairwise comparisons. Section 4.3.3 shows the computed quality
attributes ranking. Finally, Section 4.3.4 and Section 4.3.5 shows the refactoring patterns
ranking and the overall ranking computation.

4.3.1 Creating the Quality Attributes Pairwise Comparisons

The importance of the selected quality attributes depends on the values of the development
team, the process, the project and the organisation. Each project can have different sets
and ordering of quality attributes.

In this example, the following quality attributes are considered: reusability, simplic-
ity and comprehensibility. The following possible judgments for the selected quality at-
tributes are expressed as pairwise comparisons:

e Simplicity is moderately more important than reusability and slightly more impor-
tant than comprehensibility;

e Comprehensibility is slightly more important than reusability.

Note that these pairwise comparisons are hypothetical. Each project can have differ-
ent needs in terms of quality attributes and can have different weights for each quality
attribute. The responsibility for creating these comparisons can be delegated to a quality
analyst, made by the project leader or by other means.

4.3.2 Creating the Refactoring Patterns Pairwise Comparisons

Several refactoring patterns are available in IDEs and modelling tools, including ones to
move, rename, pull up, push down, extract or inline members of a class or a method,
for example. Usually, the developers choose the refactoring patterns because of their
availability within these IDEs and modelling tools.

For the example being developed, four different refactoring patterns were chosen,
because they manipulate classes, methods and interfaces: Pull Up Method, Rename Class,
Inline Method, and Extract Interface. They are compared and ranked in terms of the
selected quality attributes.

The first step is evaluating each refactoring pattern in terms of each quality attribute,
considering how much one refactoring pattern improves each quality attribute compared
to the others. Let us suppose that the developer created a set of pairwise comparisons of
the refactoring patterns in terms of the first quality attribute (simplicity), as follows:

e Pull Up Method is strongly more important than Rename Class, weakly more im-
portant than Inline Method and strongly more important than Extract Interface;

e Inline Method is slightly more important than Rename Class and strongly more
important than Extract Interface;

e Rename Class is weakly more important than Extract Interface.

The second quality attribute is reusability, for which the following judgments are made
to exemplify the process:

e Pull Up Method is absolutely more important than Rename Class, moderately to
strongly more important than Inline Method and slightly more important than Ex-
tract Interface;

70

e Inline Method has the same importance than Rename Class;
e Extract Interface is strongly more important than Rename Class and Inline Method.

The third quality attribute is comprehensibility. For this quality attribute the following
judgments are made using pairwise comparisons:

e Extract Interface is slightly more important than Pull Up Method and Rename Class
and it is absolutely more important than Inline Method;

e Rename Class is slightly more important than Pull Up Method and strongly more
important than Inline Method;

e Pull Up Method is moderately more important than Inline Method.

These pairwise comparisons can be inserted in a knowledge base to enable future
reuse of the relations between refactoring patterns and quality attributes.

4.3.3 Computing the Quality Attributes Ranking

Using the pairwise comparisons defined in the previous section and the numerical
values on Table 2.3, the quality attributes pairwise matrix Q is straightforwardly created
from the defined pairwise comparisons:

simp. T’ejis. comp.
1.00 5.00 2.00 simp.
Q - 020].OO 050 Teus.

0.50 2.00 1.00 comp.

This pairwise matrix is used to compute the weight of each quality attribute. In this
matrix, the computed eigenvector &, is:

0.5954 simp.
(c;q - 01283 reus.
0.2764 | comp.

The &, vector shows that the most important quality attribute in this setting is sim-
plicity, then comprehensibility and last reusability. This setting can vary from project to
project. The computed weights for each quality attribute define which are the preferred
refactoring patterns for the selected quality attributes. In this case, the consistency ratio
of the Q matrix is 0.48% (the matrix is consistent).

4.3.4 Computing the Refactoring Patterns versus Quality Attributes Ranking

The ranking of refactoring patterns for each quality attribute and the ranking of quality
attributes can be automatically created as follows.

4.3.4.1 The Simplicity Ranking

First, the pairwise comparisons for the simplicity quality attribute are translated to
their numerical equivalents and a pairwise matrix S is computed as follows:

71

pm m rc el
7\

1.00 3.00 7.00 7.00 pm
S — 0.33 1.00 2.00 7.00 im
0.14 0.50 1.00 3.00 re
0.14 0.14 0.33 1.00 ei

Here is the computed eigenvector of S, named &;:

0,593 1 pm
0,245 | im
&= 1013 | v
0,050 | e

In this case, Pull Up Method is the preferred refactoring pattern to be used, in terms
of simplicity, when compared with the other three refactoring patterns (in order): Inline
Method, Rename Class and Extract Interface. The consistency ratio is 5.83% and the
pairwise matrix is consistent. Note that the difference between them is high. The devel-
oper can focus on those patterns with high values of relative importance for the quality

attribute.

4.3.4.2 The Reusability Ranking

The reusability pairwise matrix R, after translating the pairwise comparisons to their
numerical equivalents, is:

pm m rc et

1.00 6.00 9.00 2.00 pm
R = 0.17 1.00 1.00 0.14 im
0.11 1.00 1.00 0.14 re
0.50 7.00 7.00 1.00 ei

Ve

The computed eigenvector &, is:

0.522 | pm
0.063 | im
& = 0.056 re
0.358 ei

Considering the ranking of refactoring patterns for reusability, the preferred refactor-
ing pattern is Pull Up Method, followed by Extract Interface. The Inline Method and
Rename Class refactoring patterns do not have much impact on this quality attribute. The
consistency ratio is 2.52% and the pairwise matrix is considered consistent.

4.3.4.3 The Comprehensibility Ranking
The pairwise matrix C for comprehensibility is also created:

pm im rc el
7\

1.00 2.00 0.50 0.50 pm

c - 0.20 1.00 0.14 0.11 im
N 2.00 7.00 1.00 0.50 re
2.00 9.00 2.00 1.00 ei

72

And the computed eigenvector &, is:

0.196 | pm
0.044 | im
€e = 0.304 re
0.457 ei

Considering only comprehensibility, the best ranked refactoring pattern is Extract In-
terface, followed by Rename Class and Pull Up Method. The Inline Method refactoring
pattern does not have much impact in terms of comprehensibility compared to the other
ones selected. The consistency ratio is 1.9% (the pairwise matrix is consistent). Note that
the order of the refactoring patterns is different, depending on the quality attribute.

4.3.5 Computing the Overall Ranking

For the example used in this chapter, the ranking is computed by:

simp. reus. compre.
A\ criteria

0593 0.522 0.196
o _ | 0215 0063 0044 | | 000
0.113 0.056 0.304 .

0.050 0.358 0.457

Considering the initial quality attributes, the pairwise comparisons between them and
the judgments for the alternatives, the ranking O of refactoring patterns is:

0.4743 | »m
0.1658 | m
© 0.1583 re
0.2018 ei

The overall ranking shows that, considering the selected quality attributes, the selected
refactoring patterns and the pairwise comparisons made, the best ranked refactoring pat-
tern is Pull Up Method, followed by Extract Interface, Inline Method and Rename Class.

After the ranking is created, the developer can define a threshold to reduce the initial
set of refactoring patterns to only those that have a ranking value higher than this thresh-
old. He also can decrease the threshold value to add more refactoring patterns to the
search for refactoring opportunities or increase it if the search for low ranked refactoring
patterns is not being fruitful. The use of a threshold narrows the search for refactoring
opportunities, focusing on the best ranked refactoring patterns.

The effectiveness of the refactoring patterns applied in each transformed software
element can be evaluated using quantitative mechanisms, such as software metrics, impact
functions (BOIS; MENS, 2003; BOIS, 2006) or qualitative evaluations.

4.4 Discussion

In this chapter, the evaluation of the refactoring patterns in terms of quality attributes
is being defined using pairwise comparisons, provided by an individual developer or by a
common agreement of a set of developers, for example.

73

This evaluation can be informal, when the pairwise comparisons are made using the
comparative feelings expressed by the developers. One rather more structured alternative
is to evaluate case by case each pair refactoring pattern vs. quality attribute using metrics
to evaluate the impact of the refactoring patterns to the quality attributes.

For example, the developer can use a function to quantitatively measure how much the
application of a given refactoring pattern changes a set of quality attributes. As it is not
always possible to compute the function value for all refactoring patterns in advance (in
some cases, the value depends on actual parameters), the developer can use the image of
that function to obtain an approximated value. Also, qualitative evaluations can be made,
using scenarios to assess the impact of each refactoring pattern in terms of the quality
attributes.

Sometimes, however, the same refactoring pattern can lead to different effects on the
quality attributes of software. For example, the Extract Method refactoring pattern can
increase the comprehensibility of long methods, by extracting part of the behaviour to a
new method, but it can decrease the comprehensibility of very small methods, by adding
a new indirection to the real functionality.

In fact, each refactoring pattern can be applied to different contexts. If these different
contexts are taken into account, the refactoring patterns can be associated with different
predicates (for example, predicates to represent long methods or small methods). For
instance, the developer can define the following predicate to express which methods are
long:

extract LongMethod = (extract Method(m),loc(m) > vy) 4.1)

In this case, m is a method, locc(x) is a function that computes the number of lines of
code of a method and vy is a threshold. Each predicate can use one or more metrics to
specify the cases in which it holds true.

Another issue is that when the developer creates a ranking to select a set of refactor-
ing patterns, he does not know the exact impact of the application of those refactoring
patterns. Such cases occur because the changes in the quality attributes and in their re-
spective metric values are only known when the application of the refactoring pattern is
effectively being conducted, with actual parameters in a software program. Chapter 7
describes how the effects of each refactoring pattern in quality attributes are computed for
individual refactoring opportunities.

4.5 Tool Support

A proof-of-concept tool was developed to assess the practical use of the proposed ap-
proach. There is the need to provide pairwise matrices to express the relative importance
of each quality attribute over the others and of each refactoring pattern over the others
(for each quality attribute).

The tool converts these pairwise matrices to the equivalent AHP numerical repre-
sentation, creates the pairwise matrices, computes the eigenvectors, elaborates the quality
attributes ranking and the rankings of refactoring patterns regarding each quality attribute.
These rankings are used to automatically compute the overall ranking. If the refactoring
patterns matrices are created by a tool provider, for example, the user has only to provide
the pairwise comparisons between the quality attributes.

The tool is comprised by a core module, which provides support for AHP, indepen-
dently of for which purpose the ranking is being created. The developers can extend this

74

core module to provide support for specific rankings, such as the creation of rankings of
refactoring patterns.

The core module is comprised by a Ranking class, which has the responsibility of
grouping the ranking criteria, the pairwise comparisons and the pairwise matrices for
the ranking, by a Criterion class, which can represent each criteria of the ranking, and
by a PairwiseComparison class, which enables the creation of comparisons between two
criteria using a numeric scale defined in the Importance class. Figure 4.2 shows a class
diagram with the main classes of the module, their relationship and their public methods.

Matrix

. matrix::PairwiseMatrix
Ranking

PairwiseMatrix(double[][])
getEigenvector() : Matrix

+pairwise matrix| +
+
+ setEigenvector(Matrix) : void
+
+

getCriteria() : Collection<Criterion>
addPairwiseComparison(Criterion, Criterion, Integer) : void 1.%
compute() : Matrix

getPairwiseComparisons() : void

* 4+ 4+ o+

computeEigenvector(Integer) : Matrix
getConsistencyRatio() : Double

+criteria | 1.*

Criterion +pairwise comparisons

PairwiseComparison

PairwiseComparison(Criterion, Criterion, Integer)
getFirstCriterion() : Criterion
setFirstCriterion(Criterion) : void
getSecondCriterion() : Criterion
setSecondCriterion(Criterion) : void
getRelativelmportance() : Integer
setRelativelmportance(Integer) : void

Importance

SAME_IMPORTANCE: Integer =1
SLIGHTLY_MORE_IMPORTANT: Integer =2
WEAKLY_MORE_IMPORTANT: Integer =3
WEAKLY_TO_MODERATELY_MORE_IMPORTANT: Integer =4
MODERATELY_MORE_IMPORTANT: Integer =5
MODERATELY_TO_STRONGLY_MORE_IMPORTANT: Integer = 6
STRONGLY_MORE_IMPORTANT: Integer =7

GREATLY MORE_IMPORTANT: Integer =8

ABSOLUTELY MORE_IMPORTANT: Integer =9

+ o+ o+ o+ o+ o+ o+

+oF o+ o+ o+ o+

Figure 4.2: Tool for creating AHP rankings of refactoring patterns: core module

A set of additional classes were created for the example of this chapter: one rep-
resenting a ranking of quality attributes (QualityAttributeRanking), another one for the
ranking of refactoring patterns (RPRanking), and one class for each matrix representing
the relationship of a quality attribute with the refactoring patterns. Figure 4.3 shows the
relationship of these additional classes with the classes defined in the core module.

For example, the class representing the simplicity ranking contains only the pairwise
comparisons between the simplicity quality attribute and the refactoring patterns:

public class SimplicityRanking
extends RPRanking{
protected void getPairwiseComparisons () {
addPairwiseComparison (PULL_UP_METHOD,
RENAME_CLASS,
Importance .STRONGLY_MORE _IMPORTANT) ;
addPairwiseComparison (PULL_UP_METHOD,
INLINE_METHOD,
Importance . WEAKLY_MORE_IMPORTANT) ;

Nelie EN BNe Y A SR

—
o

75

core::Ranking

getCriteria() : Collection<Criterion>
addPairwiseComparison(Criterion, Criterion, Integer) : void
compute() : Matrix

getPairwiseComparisons() : void

AN

RPRanking QualityAttributeRanking

*+ o+ + o+

HoHH K

+ getCriteria() : Collection<Criterion>

+ getCriteria() : Collection<Criterion> # getPairwiseComparisons() : void
ComprehensibilityRanking ReusabilityRanking SimplicityRanking

getPainwiseComparisons() : void # getPairwiseComparisons() : void # getPairwiseComparisons() : void

Figure 4.3: Tool for creating AHP rankings of refactoring patterns: example of use

1
12}

Note that the ranking does not need to be updated frequently. Once the matrices relat-
ing refactoring patterns to quality attributes are created (by a tool provider, for example),
the developer only has to inform the pairwise comparisons for the relative importance
of each quality attribute over the others. The following change scenarios can affect the
current ranking:

e Changes in the pairwise comparisons: The developer informs the changes in the
pairwise comparisons and the tool computes the new ranking automatically.

o The addition of a new Refactoring Pattern: The developer should inform the pair-
wise comparisons of the new refactoring pattern with the old ones regarding each
quality attribute. The tool then can automatically compute the new ranking.

e The addition of a new Quality Attribute: In this case, the developer should create
a pairwise matrix comparing the refactoring patterns according to the new quality
attribute. The tool then can automatically compute the new ranking.

4.6 Related Work

Du Bois and Mens (BOIS; MENS, 2003), (BOIS, 2006) suggest the application of
refactoring patterns by specifying conditions in which their application can minimize
coupling and maximize cohesion. Their formal analysis can be used together with the
approach of this chapter to provide additional information for the developer to express
the relative importance of refactoring patterns over the quality attributes using pairwise
comparisons.

Tourwe and Mens (TOURWE; MENS, 2003) identify occurrences of shortcomings
and propose the application of refactoring patterns using logic meta programming. Their

76

approach can be used together with the approach of this chapter to improve the results by
focusing on refactoring patterns that improve the set of quality attributes selected by the
developers.

Mens et al. (MENS et al., 2003) state that an open problem is to assess the effects
of a refactoring pattern on software quality. By classifying refactoring patterns in terms
of the quality attributes they affect, the effect of a refactoring on the software quality can
be estimated. This chapter provides a quantitative approach to rank a set of refactoring
patterns according to the quality attributes that the developers are concerned about.

4.7 Conclusions

Usually, there is room for improvements in existing software projects. However, re-
sources are finite and must be directed to those activities that bring more benefits to the
project. Considering refactoring activities, the developers should focus on the search for
refactoring opportunities for those refactoring patterns that are more likely to improve the
software being developed or maintained.

The use of AHP can help the developers to express the relationship between quality
attributes and refactoring patterns and quality attributes between them. These relations
are used to compute a ranking of refactoring patterns (according to the selected quality
attributes), which can be used to focus the effort of searching for refactoring opportu-
nities for those refactoring patterns that can have more impact in the developers quality
attributes.

Without focusing in a restricted set of refactoring patterns, the developers can be los-
ing time with refactoring opportunities that bring little to the overall quality of the soft-
ware being developed. The techniques described in this chapter are adaptable: the quality
attributes, the refactoring patterns and the weights can be changed and a new ranking
computed automatically.

77

5 SHORTCOMINGS IN ASPECT-ORIENTED SOFTWARE

This chapter presents a catalogue of shortcomings that can occur in aspect-oriented
software. It is organised as follows. Section 5.1 introduces the motivating scenario for
the definition of a catalogue of shortcomings. Section 5.2 defines and details a number
of shortcomings in aspect-oriented software, as well as which refactoring patterns can
be used to reduce their impact. Section 5.3 describes related work and Section 5.4 sum-
marises the chapter.

5.1 Introduction

Aspect-oriented software development aims at improving the separation of concerns
by providing abstraction and composition mechanisms that deal specifically with the
modularization of cross-cutting concerns (KICZALES et al., 1997). The most common
abstraction mechanisms are aspects, pointcuts, advices and inter-type declarations. Al-
though the use of aspects might help in the modularization of cross-cutting concerns, their
use can introduce shortcomings either particular to the use of aspects, such as anonymous
pointcut definitions or abstract method declarations, or similar to those found in objects,
such as: pieces of code abandoned in a module and no longer used, code duplication and
classes with too many or too few responsibilities.

A shortcoming! is a deficiency, inadequacy or incompleteness that a software element
can have. The occurrence of a shortcoming can indicate a potential source of problems
in software applications (ELSSAMADISY; SCHALLIOL, 2002). Such occurrences can
be removed or alleviated by using appropriated refactoring patterns to change the soft-
ware application. These shortcomings usually make it difficult to maintain and to reuse
code in several development process activities (BOEHM; SULLIVAN, 2000) and can be
alleviated by the identification of their symptoms and the removal of their causes.

There are catalogues and descriptions of shortcomings for object-oriented software
(FOWLER et al., 1999; MONTEIRO; FERNANDES, 2005a), but their cataloging and
detection in aspect-oriented software is still not explored enough.

Monteiro and Fernandes discuss shortcomings that arise in object-oriented software
(MONTEIRO; FERNANDES, 2005a), indicating refactoring opportunities for code ex-
traction from objects to aspects, without extensively discussing shortcomings that occur
in aspect-oriented software. However, there are no available mechanisms to automatically
detect their occurrences, neither detection tools for aspect-oriented software.

The main goal of this chapter is to describe a catalogue of shortcomings which can

'These shortcomings are also called bad smells (FOWLER et al., 1999). The former term was chosen
in this thesis for the sake of aesthetics.

78

occur for aspect-oriented software. In this catalogue, shortcomings for object-oriented
software are adapted to aspect-oriented software. This adaptation is done in such a way
(1) to describe the problems that arise whenever those shortcomings are present in aspect-
oriented software and (ii) to propose the application of refactoring patterns to help to
remove those shortcomings. Each occurrence can be an opportunity to apply refactoring
patterns.

5.2 Shortcomings in Aspect-Oriented Software

Shortcomings are a way to describe problems in existing software elements, by sug-
gesting possible symptoms that can appear in the software elements, indicating areas that
can be improved by the application of refactoring patterns. This application usually re-
moves the causes of those shortcomings, in such a way that their effects are minimized or
removed.

Table 5.1 shows some of the typical shortcomings already catalogued in the literature,
both for object-oriented software and aspect-oriented software.

This section adapts a collection of object-oriented shortcomings to the context of
aspect-oriented software. The adaptation aims at describing the problems each shortcom-
ing brings when present in aspect-oriented software, and at proposing the use of refactor-
ing patterns to help to reduce their impact. The examples of this section are retrieved from
the samples provided with the IBM implementation of Aspect], version 1.1 (HILSDALE;
KICZALES, 2001).

Each shortcoming is presented by a definition of the problem related to the shortcom-
ing, refactoring patterns that can be used to minimize or remove its effects, an example of
its presence.

5.2.1 Anonymous Pointcut Definition

Because advices are not named, it is sometimes necessary to rely on the pointcut
definition to have an idea of the affected points. Using the pointcut definition predicate
directly on the advice can reduce the advice legibility and hide the predicate intention.

To clearly define the intent of a pointcut, a name is defined and used in any advice that
affects the join points available in the pointcut. The Extract Pointcut refactoring pattern
(IWAMOTO; ZHAO, 2003) can be used to extract definitions from pointcuts declared
directly in the advice.

5.2.1.1 Example

Consider a Debug aspect, part of an example named Space War (a spaceship and aster-
oids game (HILSDALE; KICZALES, 2001)). This aspect is responsible for keeping and
displaying debug information. In this aspect, there is an anonymous pointcut definition in
the after advice (lines 3-5). The pointcut definition should be extracted from the advice
to provide a better understanding of the affected points.

1 aspect Debug ({

2 after (Ship ship, SpaceObject obj)

3 returning : call(void Ship.

4 handleCollision (SpaceObject))

5 && target(ship) && args(obj) { ... }
6 }

Table 5.1: Examples of shortcomings

79

Shortcoming Description Source
Aspect Laziness Aspects that do not encapsulates all its expected re- | (MONTEIRO;
sponsibilities, but pass them to the classes, using inter- | FERNANDES,
type declarations. 2006)
Aspect Interaction | When there is interaction between aspects, and this in- | (DOUENCE;
teraction can present conflicts between aspects which | FRADET; SUD-
are not orthogonal. HOLT, 2002)
Divergent Divergent changes, as described for object-oriented | (FOWLER et al.,
Changes software, occur in cases in which whenever the devel- | 1999)
oper has to make a change, he must change several
pieces of code. For example, every time a new col-
umn is inserted in the database, several classes must be
changed.
Duplicated Code | The occurrence of the same code or structure in a soft- | (FOWLER
ware program. It leads to additional efforts in software | et al., 1999;
maintenance and evolution activities. KERIEVSKY,
2005)
Double Personal- | It is similar to the large class shortcoming, but is found | (MONTEIRO;
ity in classes that play multiple roles. Ideally, each class | FERNANDES,
should play a single role, with a set of related responsi- | 2006)

bilities.

Feature Envy

In the context of object-oriented programming, this
shortcoming occurs when a method refers too much on
data or behaviour of another class or aspect, instead of
referring to members of its containing class.

(FOWLER et al.,
1999)

Large Class A bloated class, with too many lines of code. Usually | (FOWLER
such classes are hard to reuse. et al, 1999
KERIEVSKY,
2005)
Long Method A method with too many lines of code, reducing its | (FOWLER
legibility. et al, 1999;
KERIEVSKY,
2005)
Middle Man When there is too much delegation from a class to other | (FOWLER et al.,

classes.

1999)

Obsolete Parame-
ters

When a parameter of a method is not being used in the
body of the method.

(TOURWE;
MENS, 2003)

Speculative Gen-
erality

When the developers start to provide support for pos-
sible future requests, which will possibly never oc-
cur, such as creating abstract classes that are not do-
ing much, unnecessary delegation, methods with un-
used parameters, or odd abstract names.

(FOWLER et al.,
1999)

Unnecessary
Code

When there are private methods and fields that are not
being used in a class, unused local variables, unused
parameters, and unused imports.

(FOWLER et al.,
1999)

After the extraction, the affected points are clearly defined in a named pointcut (line 2).
The collision pointcut provides a definition to the predicate that, in the previous example,
was attached directly to the advice. It also improves communication and reusability, as

80

the pointcut can be reused (if desirable).

1 aspect Debug {

2 pointcut collision (Ship ship,

3 SpaceObject obj): call(void

4 Ship.handleCollision (SpaceObject))

5 && target(ship) && args(obj);

6 after (Ship ship, SpaceObject obj)

7 returning : collision (ship, obj){ ... }
8 }

5.2.1.2 Detection Rule

Anonymous pointcuts can be found by evaluating pointcut definitions that are associ-
ated with advices but are not named (i.e. the pointcut expression is directly defined in the
advice). The following heuristic rule evaluates occurrences of the primitive pointcuts in
Aspect] directly defined in advices. It can be defined as follows:

Definition 5.2.1 Let A = {call, execution, get, set, initialization, preinitialization,
staticinitialization, handler, adviceexecution, within, withincode, cflow, cflowbelow, if}
be the set representing all the primitive pointcuts in AspectJ that are not related to con-
text exposure. Let B be the set of the tokens in a given pointcut expression associated with
an advice. The pointcut definition is an anonymous pointcut definition if and only if the
predicate 3a € A 3b € B|b = a holds.

5.2.2 Speculative Generality

Sometimes classes and aspects are created to handle future requirements. As the use
of aspects makes simpler to postpone some design decisions, it is possible to remove
features that are not used in the system.

To remove advice parameters that are not being used, apply Remove Advice Parame-
ter 2. The Collapse Aspect Hierarchy (GARCIA et al., 2004), Delete Aspect, and Inline
Aspect refactoring patterns can be used to remove unused aspects. Aspects and pointcuts
with strange names can be renamed to the current semantics using Rename Aspect (HA-
NENBERG; OBERSCHULTE; UNLAND, 2003) or Rename Pointcut (GARCIA et al.,
2004).

5.2.2.1 Example

Consider, for example, the TemplateOperationMonitor class, which was created to
provide standard operation bindings for XML-defined aspects to override:

1 public abstract aspect TemplateOperationMonitor {

2 protected pointcut classControllerExecTarget();

3 protected pointcut classControllerExec (Object controller)
4 classControllerExecTarget () && target(controller);

5

6 protected pointcut methodSignatureControllerExecTarget () ;

’This refactoring pattern has not been previously defined and consists of removing unused advice pa-
rameters from an advice declaration.

81

7 protected pointcut methodSignatureControllerExec (Object
controller)
8 methodSignatureControllerExecTarget () && target(

controller);
9
10 }

This aspect is not used by other aspects and it is not extended by sub-aspects. It
provides several pointcuts to support a possible future need. It is possible that this need
can never be materialised. The aspect can be deleted using Delete Aspect.

5.2.2.2 Detection Rule

It is not always straightforward to find occurrences of the Speculative Generality
shortcoming. One way to search for certain occurrences is to look for unused features
both in aspects and classes.

The following heuristic rule, for example, search for occurrences of concrete aspects
that do not affect any other aspects or classes.

Definition 5.2.2 Let M be the set of modifiers of an aspect «. Let cda(c) be the number
of modules affected by the aspect . An aspect is detected as an occurrence of speculative
generality if the predicate: abstract ¢ M A cda(a) = 0 holds.

5.2.3 Feature Envy

In Aspect], pointcuts can be defined both in aspects and classes. If a class defined
pointcut is used by just one aspect, it is interesting that the pointcut is moved from the
class to the aspect that uses it. The same problem might occur in classes, whenever a class
method refers more to fields and methods of another class than referring members of its
containing class.

The Move Pointcut refactoring pattern can be used to move these pointcuts from
classes to aspects. It can also be used to move pointcuts between aspects.

5.2.3.1 Example

Consider, for example, a Ship class, which implements a spaceship in the SpaceWar
example (HILSDALE; KICZALES, 2001). This class contains a pointcut definition (lines
2-5) that is used only in the EnsureShiplsAlive aspect (lines 8-13).

1 class Ship extends SpaceObject {

2 pointcut helmCommandsCut(Ship ship):

3 target (ship) && (call(void rotate (int))
4 [l call(void thrust(boolean)) ||

5 call (void fire ()));

6 }

7

8 aspect EnsureShiplsAlive {

9 void around (Ship ship):

10 Ship . helmCommandsCut(ship) {

11 if (ship.isAlive()) { proceed(ship); }
12 }

13)

82

By moving the pointcut definition to the aspect, the coupling between class and aspect
is reduced, and the cohesion of the aspect is improved.

Alwis et al. (ALWIS et al., 2000) suggest that pointcuts can be used to group seman-
tically related class members. It is recommended that these pointcuts are kept together
with the classes containing these methods. However, this definition can hide the com-
plete identification of all join points affected by a pointcut. The developer has to check
the classes containing the pointcuts, every time he wants to understand the whole set of
affected points.

5.2.3.2 Detection Rule

For example, consider the detection of the occurrences of feature envy related with
the detection of pointcuts in classes can be conducted as follows. The following heuristic
rule can be defined:

Definition 5.2.3 A class suffers from the feature envy shortcoming if it contains pointcuts
defined in its body.

Note that this is a sub-case of feature envy. Other heuristic rules are needed to detect
all the cases.

5.2.4 Abstract Method Introduction

Aspects can be used to add state and behaviour into existing classes. This is accom-
plished through inter-type declarations. These declarations allow methods and/or fields
to be inserted in classes defined by the aspect. However, their can cause problems when
abstract methods are inserted in application classes.

The use of such inter-type declarations forces the developer to provide concrete imple-
mentations to the introduced methods in every affected class and sub-classes. This depen-
dency unnecessarily increases the coupling between the aspect and the affected classes.

The introduction of abstract methods through an inter-type declaration should be
avoided, because it demands that every time a sub-class of the affected class is created,
implementations should be provided for these methods. If it cannot be avoided, apply
the Change Method Signature refactoring pattern to change the modifier of the method to
remove the abstract keyword.

5.24.1 Example

The following example shows a Billing aspect (HILSDALE; KICZALES, 2001),
which charges for telephone calls according to the type and length of a performed call. In
line 2, an abstract method is introduced to the Connection class. This class is responsible
for determining the charge that applies to the customer according to the call type. This
method is called callRate.

Next, on lines 3 to 5, the implementation of callRate method should be provided to
the direct sub-classes of Connection, called LongDistance and Local.

public aspect Billing {
public abstract long Connection.callRate ();
public long LongDistance.callRate ()
{ return 10; }
public long Local.callRate() { return 3; }
after (Connection conn):

AN DN AW~

83

7 Timing .endTiming (conn) {

8 long time = Timing.aspectOf().

9 getTimer (conn) . getTime () ;

10 long rate = conn.callRate();

11 getPayer (conn).addCharge(rate *x time);
12 }

13 }

Consider a case in which a developer adds a new sub-class of Connection, named
International. Problems would emerge, since this new class does not implement the call-
Rate method. So, the class developer should be aware of which aspects affect the code,
and then, add methods to the aspect. This dependency increases the complexity of the
solution. Considering that the aspects and classes can be implemented by different de-
velopers, the developer of the Connection sub-classes can be unaware of the existence of
Billing aspects. The abstract inter-type method declaration can be removed.

5.2.4.2 Detection Rule

The following definition can detect inter-type declarations of abstract methods.

Definition 5.2.4 An inter-type method declaration is abstract if its definition contains the
abstract modifier.

5.2.5 Lazy Aspect

This shortcoming, initially defined by Monteiro and Fernandes (MONTEIRO; FER-
NANDES, 2005a) and further developed in this section, happens if an aspect is too small
that it is better to eliminate it (to reduce maintenance costs, for example). Sometimes, this
size reduction is related to previous refactoring or to unexpected changes in requirements
(changes planned that do not occurred, for instance). After refactoring, some classes or
aspects can become smaller.

If an aspect does justify its existence, use Collapse Aspect Hierarchy (GARCIA et al.,
2004). This refactoring pattern focuses in reducing the hierarchy tree, moving members
from one aspect to its sub-classes or from sub-classes to the super-aspect. Other simi-
lar refactoring patterns that can be applied to move members to other aspects are: Pull
Up/Push Down Pointcut, Pull Up/Push Down Advice, and refactoring patterns to move
pointcuts and advices. Empty aspects can be removed with Inline Aspect °.

Other case that can be an occurrence of the Lazy Aspect shortcoming is when aspects
do not affect many modules. This case includes aspects that have too many fields and
methods that are not dealing with crosscutting concerns, affecting few other modules.
Part of the state and behaviour of this aspect can be moved to a class using the Move
Method, and Move Attribute refactoring patterns, thus reducing the size of the aspects to
the minimum needed to implement the crosscutting behaviour (as aspects are abstractions
created to deal with crosscutting concerns). The aspect can use association mechanisms
to access these features.

5.2.5.1 Example

Consider an aspect named TraceMyClasses (lines 1-4), responsible for implementing
tracing in an application. This aspect defines which points in the application should be

3This refactoring pattern has not been previously defined, but can be considered equivalent to other
Inline refactoring patterns, and consists in inserting the aspect code directly into classes.

84

affected by the tracing mechanism. Unless the Trace aspect is used by other sub-aspects or
is part of a reusable aspect library, there is no need to extend the Trace aspect just to define
the affected points (line 2-3). This can be accomplished directly in the super-aspect.

1 public aspect TraceMyClasses extends Trace({
2 pointcut myClass () : within (TwoDShape)

3 [l within(Circle) |l within(Square);

4}

Moving the pointcut using Pull Up Pointcut to the sub-class enable the deletion of
the TraceMyClasses aspect using Delete Aspect. The resulting Trace aspect now has the
myClass pointcut as one of its members.

public aspect Trace({

1

2

3 pointcut myClass () : within (TwoDShape)
4 Il within(Circle) |l within(Square);
5

}

5.2.5.2 Detection Rule

A sub-set of occurrences of lazy aspects can be detected using the number of cross-
cutting members of an aspect, as follows:

Definition 5.2.5 The crosscutting members of an aspect are the collection of all advice,
pointcuts, declare constructions and inter-type declarations directly defined in this aspect.
An aspect is considered an occurrence of the Lazy Aspect shortcoming whenever it does
not have any crosscutting members.

Another subset can also consider the crosscutting degree of an aspect (cda) metric,
which is the number of affected modules of an aspect. The heuristic rule can be defined
as:

Definition 5.2.6 An aspect is considered a Lazy Aspect whenever the predicate the cda
value for this aspect is lower than a pre-defined threshold (a minimum recommended
value for the cda metric - defined by the development team).

5.2.6 Divergent Changes

Another shortcoming occurs when some pointcut definitions are almost identical,
varying only in their modifiers or in small parts of their predicate. Every time the du-
plicated part of a pointcut is modified, the same must be done to all the others. Extract
Pointcut IWAMOTO; ZHAO, 2003) can minimize that problem.

5.2.6.1 Example
Consider the Debug aspect:

1 aspect Debug ({

2 pointcut allConstructorsCut ():

3 call ((spacewar.x && !(Debug+ ||
4 InfoWin+)) .new (..));

5 pointcut alllnitializationsCut ():
6 initialization ((spacewar.x &&

85

!'(Debug+ Il InfoWin+)).new(..));
pointcut allMethodsCut():

execution (x (spacewar.*x &&

!'(Debug+ Il InfoWin+)).x(..));

— O O 0

1
11}

Part of the pointcuts defined in lines 2 to 5 are repeated. Every time one of the du-
plicated pointcut changes, all the other predicates should be changed accordingly. After
applying the Extract Pointcut refactoring pattern to the duplicated expression, the Debug
aspect is changed to the following:

1 public aspect Debug ({
2 pointcut affectedJPs(): within(spacewar.x && !(Debug+ ||

InfoWin+)) ;

3 pointcut allConstructorsCut(): affectedJPs () && call (x.new
(-));

4 pointcut alllnitializationsCut (): affectedJPs () &&
initialization (x.new (..));

5 pointcut allMethodsCut(): affectedJPs () && execution (*
x.%(..));

6 }

The affectedJPs encapsulates the previously duplicated pointcut expression into a
named pointcut, facilitating the maintenance of the allConstructorsCut, alllnitialization-
sCut and allMethodsCut pointcuts.

5.2.6.2 Detection Rule

The case in which pointcut definitions are almost identical can be detected using a
similarity function, which is a function that receives two pieces of information as a pa-
rameter, compare them, and expresses the similarity of those pieces using a numerical
value. As there is no such function specially defined for pointcut definitions, the de-
veloper can use existing similarity functions available in the literature for comparing ar-
bitrary strings, such as edit distance (HALL; DOWLING, 1980), N-gram (NAVARRO,
2001), Jaro (JARO, 1989), and TF-IDF (SALTON; MCGILL, 1986).

Definition 5.2.7 Consider a similarity function f(pl,p2), which compares two pointcut
definitions and returns a numerical value expressing their similarity. Consider a threshold
t, which defines the minimum value to consider that pl and p2 are similar definitions.

Two pointcut definitions suffer from the Divergent Changes shortcoming if the predicate
f(pl,p2) >t holds.

5.2.7 Double Personality

Aspects dealing with more than one concern can be divided in as many aspects as
there are concerns. This case of having multiple concerns encapsulated by the same aspect
(or the same class) is called tangling (ELRAD; FILMAN; BADER, 2001). Tangling can
decrease the legibility and reusability of an aspect as the developer, in order to modify one
concern has to understand its relationship with other concerns in the same class (ELRAD;
FILMAN; BADER, 2001). For example, it is easier to reuse a plain Account class, dealing
only with typical operations such as withdrawal, transferences and deposits, than a class
with those operations plus database access operations, logging, security operations, and
exception handling.

86

This shortcoming is usually discovered when the developer finds several unrelated
aspect members (fields, pointcuts, inter-type declarations) in the same aspect. If aspect
members related to different concerns exist inside a class, use the Extract Class refactor-
ing pattern (FOWLER et al., 1999). If these members are aspect exclusive structures, use
the Extract Aspect refactoring pattern to deal with these related members (MONTEIRO;
FERNANDES, 2005a).

When different concerns can be separated through inheritance, grouping related mem-
bers, it is possible to use the Extract Sub-Aspect refactoring pattern.

5.2.7.1 Example

Consider an example in which the Debug aspect defines advices dealing with different
concerns simultaneously. This aspect collects points regarding user interface modification
(lines 2-3), changes in the registry contents (lines 4-7), and ship collisions (lines 8-11),
among others. Although all of these features are related to system debugging, they can
be divided in several aspects, each one with a different perspective on debugging. These
aspects can inherit from the same super-aspect, which can be the Debug aspect itself.

1 aspect Debug ({

2 after () returning (SWFrame frame):
3 call (SWFrame+.new (..)) {...}

4 after (Registry registry) returning
5 target(registry) && (call(void
6 register (..)) |l

7 call (void unregister (..))) {...}
8 after (Ship ship, SpaceObject obj)

9 returning : call(void Ship.

10 handleCollision (SpaceObject))

11 && target (ship) && args(obj) {...}
12}

The following example shows a sub-aspect of Debug containing an advice responsible
for manipulating the debugging of ship collisions (lines 2-5). Defining a Collision aspect
enables the developer to separate the debugging responsibilities, focusing, in this case,
only in the collision specific requirements. This separation also makes easier to reuse the
Debug aspect, since it contains only basic debugging functionalities.

1 aspect Collision extends Debug{

2 after (Ship ship, SpaceObject obj) returning:
3 call (void Ship.handleCollision

4 (SpaceObject))

5 && target(ship) && args(obj) {...}

6 }

This sub-aspect can be created by the application of the Extract Sub-Aspect refactoring
pattern in the Debug aspect. The Extract Sub-Aspect refactoring pattern creates a new
sub-aspect containing all the selected members of the ancestor aspect or class (aspects
can extend classes). In this case, the new aspect is named Collision and there is only
one moved member: the after(Ship, SpaceObject) returning advice. The same sub-aspect
can also be created with a different sequence, which is comprised by the application of a
New Sub-Aspect refactoring pattern followed by the application of a Push Down Advice
refactoring pattern in the after(Ship, SpaceObject) returning advice.

87

5.2.7.2 Detection Rule

There is no automated way to measure how many concerns are being handled by a
class or an aspect. So, the first step in the heuristic rule is to start searching for as-
pects with several cross-cutting members (advices, inter-type declarations, and declare
constructions). Then, the aspects found are analysed to count how many concerns they
encapsulate. Those that encapsulate more than one concern can be defined as occurrences
of the Double Personality shortcoming.

Such rule combines the number of crosscutting members of an aspect with the number
of concerns that the aspect is encapsulating, is expressed as follows.

Definition 5.2.8 An aspect is considered an occurrence of the Double Personality if the
number of concerns encapsulated by this aspect is higher than one.

5.2.8 Code Duplication

One of the main motivations for aspect-oriented software development is the reduction
of code duplication. By providing abstraction mechanisms for modularization of cross-
cutting concerns, there is a tendency to reduce duplications, since concerns previously
scattered throughout the abstractions of the application can now be encapsulated in a
single aspect, or in a small collection of aspects. Even so, duplication may occur among
advices, due to bad coding or documentation.

If code duplication occurs in different advices of the same aspect, the repeated code
can be extracted using the Extract Method refactoring pattern (FOWLER et al., 1999).
This refactoring pattern allows that all advices from which the code has been extracted to
call a new method with the extracted code, instead. It is also possible, if several advices
have code that is entirely identical, to combine their pointcuts, removing the redundant
advice. For this, the Combine Pointcut refactoring pattern IWAMOTO; ZHAO, 2003)
can be used.

If code duplication appears in different aspects, the developer can choose one of the
duplicated software elements to be referenced by the others, change the code manually
to reference the chosen duplicate, and deleting the remaining duplicates with the Delete
Method, Delete Advice, Delete Inter-Type Declaration, and Delete Attribute refactoring
patterns, for example.

If the duplication appears in aspects that extend the same super-class or super-aspect
by inheritance, the duplicated structure can be moved up in the hierarchy. Possible dupli-
cated structures include fields, methods, advices, pointcuts, and inter-type declarations.
To remove these duplications, the following refactoring patterns can be applied: Pull
Up Attribute (FOWLER et al., 1999), Pull Up Method (FOWLER et al., 1999), Pull Up
Advice (GARCIA et al., 2004), Pull Up Pointcut (GARCIA et al., 2004) and Pull Up
Inter-Type Declaration (GARCIA et al., 2004).

5.2.8.1 Example

The following listing shows an aspect responsible for implementing a mechanism to
trace object constructors and method calls of a specific class. This aspect, called Trace,
has advices to show the state of the join points before and after they occur, which happens
every time the predicate defined in the pointcut is satisfied.

1 abstract aspect Trace {
2 abstract pointcut myClass(Object obj);

88

3 pointcut myConstructor (Object obj):

4 myClass (obj) && execution (new(..));

5 pointcut myMethod(Object obj): myClass(obj)
6 && execution(x x(..))

7 && !execution(String toString());

8 before (Object obj): myConstructor(obj) {

9 traceEntry ("" + thisJoinPointStaticPart.
10 getSignature (), obj);

11 }

12 after (Object obj): myConstructor(obj) {

13 traceExit("" + thisJoinPointStaticPart.
14 getSignature (), obj);

15 }

16 before (Object obj): myMethod(obj) {

17 traceEntry ("" + thisJoinPointStaticPart.
18 getSignature (), obj);

19 }
20 after (Object obj): myMethod(obj) {

21 traceExit("" + thisJoinPointStaticPart.
22 getSignature (), obj);

23 }

24}

It is important to note that the advice code corresponding to the pointcut MyConstruc-
tor (on lines 8 to 11 and 12 to 15) is identical to the one associated to myMethod (lines 16
to 19 and 20 to 23). This duplication can be removed by joining the predicates defined in
lines 2-4 and 5-7. The new predicate associated to the pointcuts would be myConstruc-
tor(obj) |l myMethod(obj), which allows the removal of the duplicated advice, as shown
below.

1 abstract aspect Trace {

2 abstract pointcut myClass(Object obj);

3 pointcut myConstructor (Object obj):

4 myClass (obj) && execution (new(..));

5 pointcut myMethod(Object obj): myClass(obj)

6 && execution(x *x(..))

7 && !execution(String toString());

8 before (Object obj): myConstructor(obj) |l myMethod(obj) {

9 traceEntry ("" + thisJoinPointStaticPart.

10 getSignature (), obj);

11 }

12 after (Object obj): myConstructor(obj) Il myMethod(obj) {
13 traceExit("" + thisJoinPointStaticPart.

14 getSignature (), obj);

15 }

16 '}

5.2.9 Shortcomings and Refactoring Patterns

Table 5.2 summarises the previous discussion, associating the shortcomings that can
be found in the presence of aspects, as well as a set of refactoring patterns that can be
used to improve the software application being developed.

89

Table 5.2: Shortcomings vs. refactoring patterns

Shortcoming Refactoring Patterns
Abstract Method Introduction Change Method Signature
Anonymous Pointcut Definition Extract Pointcut
Code Duplication Extract Method

Combine Pointcut

Pull Up Attribute

Pull Up Method

Pull Up Advice

Pull Up Pointcut

Pull Up Inter-type Declaration
Divergent Changes Extract Pointcut
Feature Envy Move Pointcut
Large Aspect Extract Class

Extract Aspect
Extract Sub-Aspect

Large Pointcut Definition Extract Pointcut

Lazy Aspect Collapse Aspect Hierarchy
Inline Aspect

Speculative Generality Remove Advice Parameter

Collapse Aspect Hierarchy
Inline Aspect

Rename Aspect

Rename Pointcut

5.3 Related Work

Simon et al. (SIMON; STEINBRUCKNER; LEWERENTZ, 2001) use metrics to
detect shortcomings. In particular, the authors try to detect opportunities to apply the
following refactoring patterns: Move Method, Move Attribute, Extract Class and Inline
Class. The cohesion of methods and attributes inside the classes of a software application
are mathematically evaluated. The results are converted to a three-dimensional Cartesian
coordinate system, and then rendered visually.

Invariants are values that remain constant every time some piece of code is executed,
and can be an indicative of possible application of refactoring patterns. The Daikon tool
(KATAOKA et al., 2001) uses program invariant detection to find suitable applications of
refactoring patterns. The detection process implicates in the instrumentation of the code
for analysis during runtime, and the execution of a comprehensive set of tests, so the tool
can analyse a wide range of interactions.

Tourwe and Mens (TOURWE; MENS, 2003) propose the use of logic meta-
programming to detect shortcomings. Other researches (BALAZINSKA et al., 2000;
DUCASSE; RIEGER; DEMEYER, 1999) are similar in that both attempt to find repeated
sections of source code throughout a software application. The former approach focuses
on Java code and thus involves the parsing of the code, while the latter tries to remain
language independent, considering the source code only as text strings. A few other ap-

proaches to automate the detection of shortcomings in software applications are presented
in a detailed survey (MENS; TOURWE, 2004).

90

5.4 Conclusions

The relationship between shortcomings and refactoring patterns is very important.
The identification of these shortcomings provides evidences of problems in the application
design or implementation, and the application of refactoring patterns can help to increase
the quality of the code under investigation.

This chapter defines shortcomings that arises in aspect-oriented systems and suggests
refactoring patterns that can be used to remove or minimize these shortcomings. It extends
other works that aim at defining shortcomings in object-oriented code (FOWLER et al.,
1999) and shortcomings in aspect-oriented code (MONTEIRO; FERNANDES, 2005a).

The main contribution of this chapter is the adaptation and discussion of several short-
comings in aspect-oriented systems, and the recommendation of tools for their removal or
minimization. Examples of these shortcomings in the Aspect] language were presented
and discussed.

Although the shortcomings discussed in this chapter are expressed as symptoms in a
specific language, they can be easily adapted to other aspect-oriented languages. As the
Aspect] model is basis for several aspect languages, it can be seen as a good starting point
to the definition of shortcomings for aspect-oriented software systems.

91

6 SEARCHING FOR REFACTORING OPPORTUNITIES

This chapter is organised as follows. Section 6.1 describes the motivation for an ap-
proach to search for refactoring opportunities in software applications. Section 6.2 dis-
cusses the basic steps for searching for refactoring opportunities. Section 6.2.3 shows the
application of the approach to an example. Section 6.3 shows a case study in which a
sub-set of the shortcomings are detected using an Eclipse plug-in. Section 6.4 describes
the implementation of such plug-in. Section 6.5 discusses a set of issues on using the
proposed approach, including the search space reduction, successive application of refac-
toring patterns and implementation issues. Section 6.6 includes some concluding remarks.

6.1 Introduction

Several mechanisms to restructure object-oriented software by applying refactoring
patterns have been proposed. These mechanisms deal with the reorganisation of class di-
agrams (SUNYE et al., 2001; MARKOVIC; BAAR, 2005; ZHANG; LIN; GRAY, 2005),
use case diagrams (RUI; REN; BUTLER, 2003; YU; LI; BUTLER, 2004; XU et al.,
2004), and other diagrams (BOGER; STURM, 2002), including refactoring patterns to
move methods from one class to another, to pull up class members to a superclass, to
transform relationships into inheritance, to merge classes or to split methods (FOWLER
et al., 1999), for example.

In large scale software, several opportunities for applying refactoring patterns can
be found. The difficulty is to determine which of these locations effectively improve
the qualities the developers wish to satisfy. Without automated support, the following
questions are hard to answer: “Where to refactor?”, “Which refactoring patterns are
applicable?" and “What are the benefits of applying the selected refactoring patterns?".

Furthermore, it is not practical to apply the patterns one by one to later evaluate the
improvements. Existing work on the quantitative assessment of the benefits of refactoring
focus on the use of impact functions (BOIS; MENS, 2003; BOIS, 2006) to evaluate, for
a given refactoring pattern, the changes in the software metric values, without having to
actually perform the modifications. However, an approach tailored to use such functions
associated with a set of quality attributes to identify and prioritise refactoring opportuni-
ties in software applications does not yet exist.

This chapter describes an approach for the identification and prioritisation of refactor-
ing opportunities in software applications, allowing developers to focus on the refactoring
opportunities that maximize the quality attributes they are interested in. This chapter pro-
vides mechanisms to rank a set of refactoring opportunities according to the influence of
the refactoring process on the metrics that are being used to assess the quality attributes
in a project.

92

The approach is evaluated using an example for an object-oriented software applica-
tion. Two quality attributes are assessed using a heuristic rule, and the search for refactor-
ing opportunities is exemplified using two refactoring patterns in a software application
composed of 200 classes.

Additionally, this chapter also describes a set of rules that can be used to identify
occurrences of the catalogued shortcomings in aspect-oriented software. These rules are
functions created to quantitatively evaluate a set of quality attributes of a given software
element. These rules can use metrics to specify the cases in which a software element has
a shortcoming. A case study is conducted to show how these rules can be used to search
for refactoring opportunities of five shortcomings in three systems written in Aspect].
(KICZALES et al., 2001a).

6.2 Searching for Refactoring Opportunities

This section defines an approach to identify refactoring opportunities in software ap-
plications, divided in two stages: heuristic rules definition and search for refactoring
opportunities. The first stage aims at providing heuristic rules to evaluate a model or the
individual elements of a model. The second stage (search) uses the heuristic rules previ-
ously defined to identify and prioritise refactoring opportunities in a software application.
The last stage is iterative and can be partially automated.

6.2.1 Definition of Heuristic Rules

Heuristic rules are methods to help to solve a problem, commonly informal (RUS-
SELL; NORVIG, 2002). They are usually an approximation of a knowledge being rep-
resented. In this thesis, heuristic rules quantitatively evaluate a set of quality attributes
of a given element of a model, or to detect the occurrence of shortcomings in software
elements.

A set of metrics can be used to quantitatively assess quality attributes. For certain qual-
ity attributes, there are already a set of recommended metrics. For example, Chidamber
and Kemerer (CHIDAMBER ; KEMERER, 1994) describe a set of metrics associated with
the complexity quality attribute in object-oriented design, made up of the following met-
rics: weighted methods per class, depth of inheritance tree, number of children, coupling
between object classes, response for a class and lack of cohesion in methods.

If no suitable metrics are available for the quality attributes selected, the Goal/Ques-
tion/Metric approach (GQM) (BASILI, 1992) can be used to list and evaluate potential
metrics to measure the quality attribute. GQM is an approach to software metrics that
defines a measurement model, comprised of three levels: conceptual level (goals), opera-
tional level (questions) and quantitative levels (metrics).

There can be several stakeholders in a software project. To define a heuristic rule, the
developer has to select the most important quality attributes according to the stakeholders
needs. These quality attributes will be quantitatively analysed in terms of the associated
metrics. Figure 6.1 shows the basic activities that must be performed by the Quality
Analyst to define one or more heuristic rules to evaluate the software application.

First, the Quality Analyst selects the quality attributes and metrics to use with the
heuristic rules. One issue that the Quality Analyst must be aware of is the complexity of
the metric collection process. He has to ensure that the selected metrics can be collected in
the case tool using existing metric collectors or that the chosen metrics can be integrated
with external metric collectors.

93

Quality Attributes Quality Attributes

Catalogue (selected) \
og—o o >—B8
Quality Select Quality Select Define Heuristic Heuristic
Analyst Attributes Metrics Rule Rule

SN
B B8 B

GQM Plan Metrics Metrics
Catalogue (selected)

Figure 6.1: Heuristic rule definition activities

A heuristic rule provider can define a set of simple ready-to-use general heuristic rules,
focusing on common quality attributes, such as complexity, reusability and modularity.
The Quality Analyst can then extend the definition of these pre-defined heuristic rules or
define new ones. If the Quality Analyst chooses to use existing functions, he has only to
adjust the weights for the functions (defining the relative importance of each component
of the heuristic rule over the others).

6.2.2 Activities

Using a set of heuristic rules the developer can:

1.

Search for the software elements in the models described by the selected language
or metamodel.

Check which refactoring patterns are applicable to the software elements found,
and also if all the preconditions of the refactoring patterns are satisfied.

The following activities are needed to search for refactoring opportunities:

1.

Compute Metric Values: The first step in finding refactoring opportunities is to
compute the metric values for the software artefacts.

Search for Applicable Refactoring Patterns: In this activity, a subset of the applica-
ble refactoring patterns is computed. This is done for the targets of each refactoring
pattern and the pre-conditions defined for each transformation.

Compute the value of the Heuristic Rules: First, the heuristic rules values are cal-
culated for the software application. These values will be compared to the heuristic
rules values calculated using impact functions, which estimate the values of the
heuristic rules after the application of refactoring patterns.

Compare Heuristic Rules Values: Using the values of heuristic rules before and af-
ter the application of refactoring patterns, the developer can compute the differences
in the metric values.

. Prioritise and Suggest Refactoring: This activity is the last step in the approach.

The developer has a list of the differences in the heuristic rule values and a graph-
ical comparison of the heuristic rule values to help choosing the most beneficial

94

refactoring patterns that can be applied to the software elements. The values of
the metrics are the input to the heuristic rule. The refactoring patterns that provide
results that are better than the current ones are presented to the developer. This
refactoring process can be repeated until satisfactory results are achieved.

6.2.3 Example

This section illustrates the search for refactoring opportunities through an example.
The source code of of the My SQL Connector J are used to search for refactoring oppor-
tunities. This software application is a native Java driver, which converts JDBC calls to
native MySQL calls (MYSQL, 2009). The model of Version 5.0 contains 200 classes and
the respective source code has 40.000 lines of code.

The search is conducted for opportunities to apply the Extract Sub-Class refactoring
pattern and discuss opportunities found for the Extract Class refactoring pattern while
doing the search for opportunities for an Extract Sub-Class application. A subset of the
possible scenarios in which the Extract Sub-Class refactoring pattern can be applied is
evaluated. In the example, the extraction of 2/3, 1/2, 1/3 and 1/10 of the methods to a
new subclass are evaluated.

For this evaluation, the metric values for all the classes and subsequently the heuristic
rule values are computed. For each class and each of the chosen scenarios, impact func-
tions were applied to compute the predicted values of the heuristic rule in the My SQL
Connector J models. Using the values one can see how the heuristic rule values change
and which of the refactoring opportunities are more interesting that the others.

6.2.3.1 A Heuristic Rule for Simplicity and Reusability

This section shows an example of a heuristic rule definition, including the following
activities: selecting quality attributes, selecting metrics, defining the heuristic rule and
selecting the weights.

Selecting Quality Attributes.

First, the developer chooses the set of required quality attributes. The set of qual-
ity attributes depends on the software process, the project and the problem domain. For
example, in embedded systems, memory is an important attribute, while in real-time sys-
tems, the timing constraint is the most important quality attribute. In other kinds of sys-
tems, such as information systems the main quality attributes can be reusability, usability
and portability. The example uses simplicity and reusability to illustrate the approach,
as both quality attributes are easy to understand and can be computed using traditional
object-oriented complexity metrics.

Selecting Metrics.

Tsang et al. (TSANG; CLARKE; BANIASSAD, 2004) consider that reusability is
the combination of weighted methods per class, depth of inheritance tree, number of
children, coupling between objects, and lack of cohesion of methods. Fenton (FENTON;
PFLEEGER, 1997) suggests the use of Chidamber and Kemerer metrics (CHIDAMBER;
KEMERER, 1994) as indicators of software simplicity. This example uses three metrics
to evaluate reusability and simplicity:

e WMC. The weighted methods per class (wmc) metric counts the number of opera-
tions in a given class (CHIDAMBER; KEMERER, 1994).

e DIT. The value for depth of inheritance tree (dit) is given by the longest path from
a module to the class hierarchy root (CHIDAMBER; KEMERER, 1994).

95

e NOC. The number of children (noc) represents the number of direct sub-classes for
a given class (CHIDAMBER; KEMERER, 1994).

Defining the Heuristic Rule.

The heuristic rule to be defined as example deals only with the metrics related to
simplicity and reusability and can be defined as an aggregation function. To illustrate the
process the weights 0.4 for simplicity and 0.6 to reusability were chosen for the heuristic
rule, as follows:

f(z) = 0.4 % simplicity(x) + 0.6 x reusability(z) (6.1)

The heuristic rule was normalised to return values in the [0,1] interval. The follow-
ing set of assumptions was considered to define the heuristic rule used to illustrate the
instantiation process:

e The smaller the values for wme, dit and noc, the simpler is the design. This is in
accordance with the view of Chidamber and Kemerer (CHIDAMBER ; KEMERER,
1994) that states that the greater the noc value, the greater the likelihood of improper
abstraction of the parent class.

e The higher the values for dit and noc greater the reuse, since inheritance is a form
or reuse (CHIDAMBER; KEMERER, 1994). The more operations a class has, the
less reusable it is (CHIDAMBER; KEMERER, 1994). Therefore, high values of
wmec contribute to decrease reuse.

The simplicity and reusability functions are defined as a sum of products between the
weights and the metrics. To normalize the values of each metric, the values are divided
by the maximum value for this metric in the evaluated software application, denoted as
m(p), where p is the metric and m is the function that computes a maximum determinated
value for this metric:

simplicity(x) = cwy * (1 —wme(z)/m(wme(x))) +
cwy * (1 — dit(x)/m(dit(x))) +
cws * (1 — noc(x) /m(noc(z)))

reusability(z) = rwy * (1 —wme(z)/m(wme(z))) +
rwg * (dit(z)/m(dit(x))) +
(

rws * (noc(x)/m(noc(x)))

Selecting the Weights.

This section uses the Analytical Hierarchy Process (AHP) (SAATY, 1990) to select
the weights for the heuristic rule components. AHP focuses on finding an optimal so-
lution using qualitative and quantitative decision analysis. The approach uses a set of
pairwise comparisons to describe the relationship between two criteria and convert these
comparisons to a weights vector.

For reusability, the following pairwise comparisons are used:

o dit is slightly more important than wmc;
e dit and noc have the same importance,

e noc is slightly more important than wmec.

96

Using the AHP approach to convert these pairwise comparisons to numerical values,
the developer obtains the following weights vector: V,, = (0.2 0.4 0.4). The reusability
function can then be expressed as:

reusability(z) = 0.2 x (1 —wme(z)/m(wme(x))) +
0.4 * (dit(x)/m(dit(x))) +
0.4 % (noc(zx)/m(noc(z)))

The pairwise comparisons for simplicity are: (i) wmc is weakly more important than
dit and than noc and (i) dit is slightly more important than noc;

Converting these pairwise comparisons to a weights vector using AHP, gives the fol-
lowing vector for the simplicity quality attribute: V! = (0.5936 0.2493 0.1571). The
simplicity function can then be defined as:

simplicity(x) = 0.60 % (1 — wme(z)/m(wme(x))) +
0.25 % (1 — dit(x) /m(dit(x))) +
0.15 % (1 — noc(x) /m(noc(x)))

6.2.3.2 Overview of the Refactoring Opportunities

The heuristic rule values before the refactoring and the heuristic rule values after the
application of the Extract Sub-Class refactoring pattern are compared. Figure 6.2 shows
the values of the heuristic rule for the following functions: the original heuristic rule, the
value of the heuristic rule if 2/3, 1/2, 1/3 and 1/10 of the methods of each class are
extracted to a new class. Note that the x-axis represents each class occurrence and the
y-axis is the value of the heuristic rule for that particular class.

Heuristic Function

2/3 of methods extracted

0.2 1/2 of methods extracted -------- 4
1/3 of methods extracted
1/10 of me‘thods extracted

0 50 100 150 200

Figure 6.2: Examples of values for the heuristic rule if a subclass is extracted. The x-axis
represents each class occurrence and the y-axis is the value of the heuristic rule.

Note that the differences of applying the Extract Sub-Class refactoring pattern are
higher for those classes with a low heuristic rule value. These classes can be seen as the
ones with the worst values for the heuristic rule. The more methods are extracted to the
new subclass, the lower are the values for the heuristic rule of the original class (as shown
in Figure 6.2).

97

In the next step, the refactoring opportunities are prioritised and the application of
refactoring patterns is suggested. A threshold can be defined to choose how many classes
will be inspected and analysed. One possible strategy is to inspect the classes in which
the difference in the heuristic rule values before and after the application of refactoring
patterns is higher.

6.2.3.3 Analysing Trade-offs and Prioritising Refactoring Opportunities

The ten top ranked classes are analysed in two ordered rankings: (a) a ranking con-
taining the classes with the lowest heuristic rule values and (b) a ranking with the classes
with the biggest differences in the heuristic rule values (before and after the application
of the refactoring pattern).

Table 6.1 shows the ten classes with the worst values for the heuristic rule and Table
6.2 shows the ten classes with the larger difference between the values of the heuristic
rule before and after a possible application of the Extract Sub-Class refactoring pattern.
The developer can follow both lists in order to apply the refactoring patterns.

Table 6.1: Classes ordered by the values of the heuristic rule

Class wme | dit | noc | H. Rule Value
Connection 313 1 0 0.19
ConnectionProperties | 305 | 0 5 0.20
ResultSet 246 0 1 0.24
DatabaseMetaData 211 0 1 0.28
UltraDevWorkAround | 154 0 0 0.34
CallableStatement 128 2 0 0.43
MysqllO 69 0 0 0.44
Statement 66 0 1 0.45
PreparedStatement 89 1 2 0.46
UpdatableResultSet 79 1 0 0.46

Figure 6.3 is a zoom in Figure 6.2, showing only the differences in the heuristic rule
values for the first ten classes.

0.6 T T T T

0.55 -

05

0.45

04

03

0.25 |-

Heuristic Function
2/3 of methods extracted
1/2 of methods extracted --------
0.2 1/3 of methods extracted

) 1/10 of methods‘ extracted

0 2 4 6 8 10

Figure 6.3: Examples of values for the heuristic rule if a sub class is extracted. The x-axis
represents each class occurrence and the y-axis is the value of the heuristic rule.

98

Table 6.2: Classes ordered in a descendent way by the difference between the value of the
heuristic rule before and after the application of refactoring patterns

A changes in the heuristic

rule values extracting x% of

the methods

Class H. Rule Value | x=2/3 | x=1/2 | x=1/3 | x=1/10
Connection 0.19 126% | 95% | 63% 21%
ConnectionProperties 0.20 120% | 90% | 60% 20%
ResultSet 0.24 79% | 63% | 42% 13%
DatabaseMetaData 0.28 61% | 46% | 32% 11%
UltraDevWorkAround 0.34 35% | 26% | 18% 6%
CallableStatement 0.43 23% 19% 12% 5%
StatementRegressionTest 0.50 14% | 11% 7% 2%
PreparedStatement 0.46 13% 9% 7% 2%
ResultSetRegressionTest 0.51 15% | 13% 9% 4%
CallableStatementWrapper 0.51 15% 11% 9% 2%

In the analysed tables, the first six classes are the same in both tables: Connec-
tion, ConnectionProperties, ResultSet, DatabaseMetaData, UltraDevWorkAround and
CallableStatement. Other classes, such as MysqllO, Statement and UpdatableResultSet
appear as having low values for the heuristic rule. Although they do not appear in the top
ten differences when applying the Extract Sub-Class refactoring pattern, these classes can
also be restructured by the application of refactoring patterns, improving their heuristic
rule values. The StatementRegressionTest, ResultSetRegressionTest and CallableState-
mentWrapper appear in the ten most benefited classes from the application of refactoring
patterns in the list. Also, the PreparedStatement class appear in the two lists.

Note that the refactoring opportunities with the higher potential to improve the se-
lected quality attributes are those that improve the heuristic rule values most. In Table
6.2, the opportunities that bring the higher improvements are those focusing the extrac-
tion of lots of methods and those applied to classes with a low value for the heuristic

rule.

6.2.3.4 Inspecting the Top Ranked Refactoring Opportunities

Next, these classes are examined, looking for methods to be extracted to a new sub-
class. Large classes usually encapsulate more than one concern. Breaking the class into
two or more classes can be advantageous in this case. Consider, for example the Con-
nection class. It has the worst value for the heuristic rule and can have its metric values
improved from the application of Extract Sub-Class.

Analysing this class, the developer can see that there is an inner class, named Ultra-
DevWorkAround that has 154 methods. Extracting this class can improve the heuristic
rule value. Note that when evaluating refactoring opportunities for the Extract Sub-Class
pattern, sometimes the developer finds opportunities to apply Extract Class instead. In
this case, it is useful to extract the inner class and promote it to a standalone class.

The second class detected as an opportunity for Extract Sub-Class is the Connec-
tionProperties class. When looking at the class diagram, the first thing to note is that
this class has inner classes. Figure 6.4 shows the class with the attributes and methods
compartments hidden to better visualize both the inner classes and two of its sub classes:
PropertiesDocGenerator and DocsConnectionPropsHelper.

99

ConnectionProperties

BooleanConnectionProperty

ConnectionProperty

IntegerConnectionProperty

lMemorySizeConnectionProperty

StringConnectionProperty

DocsConnectionPropsHelper PropertiesDocGenerator
+_main(} +_main(}

Figure 6.4: Class diagram for the ConnectionProperties class and some of its subclasses

In this case, several refactoring opportunities appear, not only to extract a class (or sub-
class). Also, the dependency between ConnectionProperties and the selected subclasses is
very weak. The subclasses have only a main method and can be further inspected. As the
source code of both classes is available, the PropertiesDocGenerator class is inspected:

public class PropertiesDocGenerator
extends ConnectionProperties {
public static void main(String[] args)
throws SQLException {
System.out. println (new
PropertiesDocGenerator () .exposeAsXml ()) ;

0NN B~ WN

—_—

This class does not need to extend the ConnectionProperties class. The inheritance
dependency can be removed and an instance of the ConnectionProperties class can be
created directly (instead of an instance of PropertiesDocGenerator).

The inspection of DocsConnectionPropsHelper class and PropertiesDocGenerator
classes shows that they are equal, except for its name. None of them are being used
by other classes and they can be both deleted.

Also, the inner classes are quite large and can be extracted to new classes. This can
reduce the size of the ConnectionProperties class and reduce its complexity. Note that
when one refactoring opportunity is found, other refactoring opportunities can be discov-
ered by the developer by inspecting the models and the source code artefacts (if available).

100

The application of a refactoring pattern can create new classes (as occurs with the Extract
Sub-Class pattern). The heuristic rule can be adapted to consider the number of classes
as a metric to the expected quality attributes.

6.2.3.5 Applying Refactoring Patterns and Evaluating the Changes

A set of Extract Class and Extract Sub-Class refactoring patterns was applied in two of
the classes in the initial list of refactoring opportunities. Table 6.3 shows the differences
in the heuristic rule value for the two classes. In this case, the heuristic values in the
Connection class improved in 94.74%, according to the new heuristic rule value. For the
ConnectionProperties class the improvement is around 20%.

Table 6.3: The heuristic rule values after the application of Extract Class/Sub-Class
Class before | after A
Connection 0.19 | 0.37 | +94.74%
ConnectionProperties | 0.20 | 0.24 +20%

Note also that two classes were deleted (DocsConnectionPropsHelper and Proper-
tiesDocGenerator) and five new classes were created. Table 6.4 shows the values for
the metrics and the heuristic rule values for the new classes. These new classes do not
have low values for the heuristic rules and are not in the top of the ranking when created.
The focus must continue on those refactoring opportunities with low heuristic rule values.
Opportunities for applying the refactoring patterns Extract Class and Extract Subclass in
these new classes can be computed and they can enter in the ranking of refactoring oppor-
tunities regarding the difference between the values before and after a given refactoring
pattern is applied.

Table 6.4: Metric and heuristic rule values for new classes

Class wmc | dit | noc | heuristic rule
(+) ConnectionProperty 20 0 3 0.51
(+) BooleanConnectionProperty 7 1 0 0.54
(+) IntegerConnectionProperty 10 1 1 0.54
(+) MemorySizeConnectionProperty 3 2 0 0.57
(+) StringConnectionProperty 7 1 0 0.54

In those classes, the heuristic rule value of the original classes has improved. Two
classes were deleted and five new classes were extracted from the ConnectionProperties
class. The new classes have good values for the heuristic rule (comparing with the ones
in the refactoring opportunities lists). The approach is iterative, whenever the developer
applies refactoring patterns to some classes, the heuristic rules can be automatically re-
calculated and a new ranking of refactoring opportunities computed.

It is interesting to emphasize that, this example focuses on the Extract Sub-Class only,
but other refactoring patterns were also applied to the classes (Extract Class and Delete
Class). When more refactoring patterns are analysed, the number of refactoring oppor-
tunities increases and the rankings can help the developer to consider the most critical
classes, instead of looking for all possible application of refactoring patterns. The use of
the proposed mechanisms to automatically find the refactoring opportunities that are more
suitable to the quality attributes he is interested is of great value. Additional heuristic rules
can be used to evaluate the overall improvement of the application of Extract Class.

101

6.3 Case Study: Using Detection Rules to Search for Refactoring Op-
portunities in Aspect-Oriented Software

The following case study shows how a set of rules can be used to find shortcomings
in well-known aspect oriented programs available as open source. The selected systems
have different flavours of Aspect] programs as they include tutorial examples, academic
software applications, open source software applications and commercial application of
the language. The data was collected using an AST-based search engine for Java and
Aspect] developed in the context of this thesis as a plug-in for the Eclipse development
environment.

The first system selected is the collection of examples shipped with the Aspect) lan-
guage reference implementation (IBM). These examples aim at showing the usage of the
different constructions available to the language user. The second system is a collection of
the GoF design patterns (GAMMA et al., 1995) implemented using Aspect]. This collec-
tion was developed by Hannemman and Kiczales (HANNEMANN; KICZALES, 2002)
and it is used in other research papers on aspect-oriented metrics (GARCIA et al., 2005;
MONTEIRO; FERNANDES, 2005a). The third system is a commercial product, devel-
oped by GlassBox Corporation and available as Open Source at Java.Net!. The GlassBox
Inspector aims at delivering performance monitoring and troubleshoot mechanisms for
J2EE applications using Aspect] and IMX2.

Figure 6.5 shows some occurrences of shortcomings in the selected projects, produced
with a detection plug-in program written to implement the rules defined in the previous
section (Section 5.2). The view is populated whenever the user requires the activation of
the detection plug-in for one or more Aspect] projects.

For each shortcoming, the following information is provided: project name, file name,
type of shortcoming and additional details. The project name is the name given for the As-
pect] project in the Eclipse IDE. File name describes the file name of the class or aspect.
The type of shortcoming shows which shortcoming was detected. In this plug-in, a sub-set
of the shortcomings described in the previous section are detected. The additional details
column shows shortcoming-specific information for the user. For example, the occur-
rences of the Anonymous Pointcut Definition shortcoming show the pointcut expression
in the details column, the name of aspects with the Lazy Aspect and Double Personality
shortcomings are shown in the details column and occurrences of the Abstract Method
Introduction shortcoming show the name of the abstract method being introduced.

In the following sections, each selected software application is detailed as following:
first, a brief description about the software application under evaluation is presented; af-
ter that, a table summarizing the detected shortcomings is presented and each type of
shortcoming is discussed regarding its occurrences in the application.

6.3.1 System 1: Aspect]J Examples

The Aspect] examples provide illustrative source code to teach the users about the
development of aspect-oriented programs using the language. These examples are divided
into categories, such as: development aspects, tracing using aspects, production aspects
and reusable aspects.

Each example works with different facets of the language. The domains used in those
examples vary from telecom simulation and space war game to tracing systems. There

'https://glassbox—inspector.dev. java.net/
http://java.sun.com/products/JavaManagement /

102

Problems | lavadors | Declaration | Progress M\‘ et
| Project | File Mame I Tvpe | Details I -~

" AlDesignPatterns SingletonProtacol, aj Anaryrous Painkeat L. | calliSingleton+. nes,. 0

|e%| AJDesignPatterns Sortingstrategy. aj Anorymous Poinkcat . calliint Sorker, sorkdnky)

==

|e%| AJIDesignPatterns QueuesStatefspect, aj Anorymous Poinkcat . initialization{rewCn

|os| AIDesignPatterns QueuesStatefspect. aj Anonymous Poinkcut ... calllboolzan QueueState+.ins. ..

|e%| AJDesignPatterns ZueuesStatedspect. aj Anorymous Poinkcat . calliboolean Queusstate+.re. ..

|e%| AJDesignPatterns StrategyProtocol, aj Lazy Aspeck StrategyProbocol

|&s| AIDesignPatterns MementoProtocol. aj Lazy Aspect MementoProtocol

|e%s| AIDesignPatterns FlyweightPratacal, aj Lazy Aspect FlyweightPratocal

=

|e%| AJDesignPatterns ZompositeProtocol, aj Lazy Aspeck CompositeProtocol

|e%| AJDesignPatterns BooleanInkerpretation, aj Large Aspect BooleanInterpretation

E AlDesignPatterns ClickChain, aj Large Aspect ClickChain

|ss| AJExamples GetInfo.java Anorymous Poinbcat L. execution® gof)) el
|e%| AJExamples Tirming. java Anorymous Poinkcat . callivoid Connection, completedn

|&%| AJExamples TimerLog.java Anonymous Poinkcuk . call® Timer, skark(n

|&s| AIExamples TimerLog.java Anonymaous Poinkcut ... call(* Timer . skop())

|e%| AJExamples Debug.java Anorymous Poinkcat ., callivoid ship.inflickDamagedd. ..

=

|e%| AJExamples BoundPoink. java Anonymous Poinkcat . executiongyoid Point,setsiing)

|&%s| AIExamples BoundPaint. java Anonymaous Poinkcut ... execution{void Point. set¥(ink)

=

|o's| AJIExamples Biling. aj Ahstrack Methad Inkra,.. callfake

? 1 TF o mrnrdce Diicrl = =i fheckr 2eb Plabhead Trkee raink .LI

Figure 6.5: A view showing the shortcomings found in the projects

is also an implementation of a reusable Observer pattern (GAMMA et al., 1995) as an
example.

In Table 6.5, the occurrences of each shortcoming are summarized. The Anonymous
Pointcut Definition shortcoming is the one that appears most (22 cases). No instance
of the Lazy Aspect shortcoming was found and an occurrence of the Double Personality
shortcoming was detected in one of the examples. Occurrences of the Feature Envy and
Abstract Method Introduction shortcomings appear in a few aspects.

Table 6.5: Shortcomings in Aspect] Examples

Type Number of Occurrences
Classes 46
Aspects 27
Interfaces 5
Shortcoming

Anonymous Pointcut Definition 22 of 52 advices
Double Personality 1 of 27 aspects
Lazy Aspect 0 of 27 aspects
Feature Envy 1 of 46 classes
Abstract Method Introduction 3 of 28 inter-type methods

As an example of an occurrence of the Anonymous Pointcut Definition shortcoming,
the pointcut demoExecs() & & !execution(* go()) & & goCut() declared in an aspect named
Getlnfo is composed by two named pointcuts (demoExecs and goCut) and an anonymous
pointcut definition (‘execution(* go())). This last piece can be extracted into a new point-
cut and its name used instead of the literal predicate. The resulting composition would be,
for example: demoExecs() && !goExecs() && goCut(). Other detected occurrences of
this shortcoming can be found in the Timing, TimerLog, Debug and BoundPoint aspects.

The high number of occurrences of this specific shortcoming is due to the nature of the

103

examples. Each example is intended to cover specific features of the language, without
taking due reuse concerns in all applications. While good design techniques are desired,
some of them can introduce unnecessary complexity to those that are trying to learn a new
language (the main audience of the examples).

The aspect detected as an occurrence of the Double Personality shortcoming is the
Debug aspect. It defines advices dealing with different concerns simultaneously. This
aspect collects points regarding user interface modification, changes in the registry con-
tents, and ship collisions, among other concerns. These features can be divided in several
aspects, each one with a different perspective on debugging. Occurrences of the Lazy
Aspect shortcoming were not found in the examples.

An occurrence of the Feature Envy shortcoming is present in the Ship class, which im-
plements a spaceship in the SpaceWar example. This class contains a pointcut definition
that is used only in the EnsureShiplsAlive aspect. The coupling between class and aspect
is reduced, and the cohesion of the aspect is improved if the pointcut definition moves to
the aspect.

An occurrence of the Abstract Method Introduction shortcoming exists in the Billing
aspect, which charges for telephone calls according to the type and length of a performed
call. So, the user of the class that receives the introduction should be aware of which
aspects affect the code, and then, add methods to the aspect. This dependency can increase
the complexity of the solution.

6.3.2 System 2: Aspect] Design Patterns

Hanneman and Kiczales (HANNEMANN; KICZALES, 2002) describe an experiment
where the gang of four (GoF) design patterns (GAMMA et al., 1995) were implemented
in both Java and Aspect]. The authors state that aspect-oriented implementations have
improved modularity in 17 of the 23 studied cases.

The degree in which the enhancement occurs depends on the relationship among the
roles played by the classes and objects within each pattern. Those patterns where an
object plays more than one role, or where several objects play the same role, had the most
significant improvement.

Garcia et al. (GARCIA et al., 2005) performed measurements on implementations of
the GoF design patterns using quality metrics referring to separation of concerns, cou-
pling, cohesion, and code size. The authors state that, in several cases, the aspect-oriented
solution improved the separation of concerns relative to the participating roles of the de-
sign patterns.

Table 6.6 shows the occurrences of each type of shortcoming. The Anonymous Point-
cut Definition shortcoming appears in five cases. Occurrences of the Lazy Aspect short-
coming were found four times and two occurrences of the Double Personality shortcom-
ing were detected in the patterns. Occurrences of Feature Envy and Abstract Method
Introduction do not appear in these examples.

A first occurrence of the Anonymous Pointcut Definition shortcoming occurs in the
SingletonProtocol aspect: call((Singleton+).new(..)) && !protectionExclusions(). In-
stead, a composed pointcut can be used (singletonCreation() && !protectionExclu-
sions()).

The second occurrence belongs to an aspect named SortingStrategy. The predicate
contains a call primitive: call(int[] Sorter.sort(int[])). This predicate affects only the calls
to the Sorter.sort method. It appears in an around advice. The advice code can be inserted
directly in the sort method. The same happens with the pointcut initialization(new()) &&

104

Table 6.6: Shortcomings in Aspect] Design Patterns

Type Number of Occurrences
Classes 88
Aspects 42
Interfaces 16
Shortcoming

Anonymous Pointcut Definition 5 of 15 advices
Double Personality 2 of 42 aspects
Lazy Aspect 4 of 42 aspects
Feature Envy 0 of 88 classes
Abstract Method Introduction 0 of 39 inter-type methods

target(queue) in the QueueStateAspect. The code triggered by the advice can be inlined
in the constructor. Other examples of this shortcoming can be found in the QueueState-
Aspect aspect.

The Lazy Aspect shortcoming appears in four aspects: StrategyProtocol, MementoPro-
tocol, FlyweightProtocol and CompositeProtocol. These aspects do not have any cross-
cutting members and can be safely converted to classes. Whenever an aspect does not
have members implementing crosscutting concerns a class can (and should, if possible)
be used instead.

The first occurrence of the Double Personality shortcoming is the BooleanInterpre-
tation aspect. It is responsible for adding methods to perform the replace and copy op-
erations in the following classes: AndExpression, BooleanConstant, OrExpression, Va-
riableExpression, and NotExpression. To provide those methods, ten inter-type method
declarations were used. The aspect can be broken in two aspects (one for the copy ad-
ditions, another for the replace operations) or into five separated aspects: one for each
affected class.

The second occurrence of the Double Personality shortcoming (named ClickChain)
uses four parent declarations (Frame, Panel and Button implements Handler and Click
implements Request) and defines inter-type declaration methods to add handle and accept
behaviour to the Button, Panel and Frame classes. It also defines a pointcut to handle
clicks in the ChainOfResponsibility pattern implementation. This aspect can be divided
per affected classes (one aspect for affected class) or per operation (handle or accept).
Occurrences of the Feature Envy and Abstract Method Introduction shortcomings were
not detected in the examples.

6.3.3 System 3: Glassbox Inspector

The Glassbox Inspector project uses Aspect] and JMX to monitor performance for
Java/J2EE applications. It provides information to identify specific problems, capture
statistics, and monitor database calls. The version used in this case study was version 1.0
beta.

Table 6.7 summarizes the occurrences of shortcomings in the Glassbox. The Anony-
mous Pointcut Definition shortcoming occurs in seven aspects in the software application.
Two occurrences of the Double Personality shortcoming and one occurrence of the Lazy
Aspect shortcoming are present in the source code. The Feature Envy and Abstract Method
Introduction shortcomings do not appear in these examples.

The first three anonymous pointcuts appear in the TraceJdbc aspect. The predicate

105

Table 6.7: Shortcomings in GlassBox

Type Number of Occurrences
Classes 12
Aspects 26
Interfaces 7
Shortcoming

Anonymous Pointcut Definition 7 of 27 advices
Double Personality 2 of 26 aspects
Lazy Aspect 1 of 26 aspects
Feature Envy 0 of 12 classes
Abstract Method Introduction 0 of 17 inter-type methods

call(* java.sql..*(..)) || call(* javax.sql..*(..)) is the same in all advice. The predicate can
be extracted in a single pointcut definition and the name of the new pointcut used in the
advices. Other occurrences of the same shortcoming can be found in the LogManagement,
AbstractOperationMonitor and AbstractRequestMonitor aspects.

Two aspects were detected as possible occurrences of the Double Personality short-
coming. The aspect named LogManagement has thirteen crosscutting members. Eight
of them are inter-type method declarations that provide basic functionality for classes
that should be logged. Instead of having methods such as: logError(...), logWarn(...),
loglnfo(...) and logDebug(...), the developers can replace them by a general solution,
passing the severity as a formal argument: log(..., Severity severity).

The ErrorHandling aspect has eleven crosscutting members but does not need to be
reduced. There is a pointcut named handlingScope that composes five other pointcuts and
is used by an around advice. This advice ensures that errors in the monitoring code will
not damage the underlying application code. As the pointcut predicate is a large one, the
developers split the predicate into five others.

One occurrence of the Lazy Aspect shortcoming was detected in the Glassbox In-
spector. The AbstractResourceMonitor aspect does not have crosscutting members, but it
cannot be converted to a class because it extends the AbstractRequestMonitor aspect (in
Aspectl, classes cannot extend aspects). The Feature Envy and Abstract Method Intro-
duction shortcomings were not detected in the Glassbox Inspector.

6.4 Tool Support

A search engine was implemented to test the feasibility of the rules described in this
chapter. It explores the AST support® available in the AJDT* project and is implemented
as an Eclipse plug-in.

This plug-in extends both the Eclipse environment and the Aspect] environment. The
Aspect] extension (Figure 6.6) was developed to provide mechanisms to find the short-
comings discussed in this chapter. The Eclipse extensions are available to provide visual
information about the detected shortcomings.

Note that the developed tool focus on the detection of the shortcomings in Aspect]
programs developed in the Eclipse environment. The tool can be integrated with the IDE

3The developments in the AST support are still in progress and they are covered by enhancement
https://bugs.eclipse.org/bugs/show_bug.cgi?id=110465.
‘http://www.eclipse.org/ajdt

106

@ org.aspectj.org.eclipse.jdt.core.dom.AjAS TVisitor

| B MetricsAjASTVisitor |

| © BadSmellsASTVisitor |

4
| | |

@ AnonymousPointcutASTVisitor | | ® AbstractMethodIntroductionASTVisitor | | @ LazyAspectASTVisitor

® FeatureEnvyASTVisitor | | @ LargeAspectASTVisitor I | D PrivilegedAspectASTVisitor |

Figure 6.6: Class hierarchy of the Aspect] extension

support for applying refactoring patterns, enabling the developer to remove the detected
shortcomings.
The classes of the Aspect] extension package are briefly described here:

AjASTVisitor This class implements a visitor for abstract syntax trees. For each differ-
ent concrete AST node type T there are some methods that can be used, such as
visit(T node) or endVisit(T node), to visit a given node and perform some arbitrary
operation. This class is provided by the Aspect] reference implementation.

MetricsAjASTVisitor This class collects meta-information about the visited AST. It
holds data about advices, pointcuts, inter-type field declarations, inter-type method
declarations, declare constructions and size related metrics.

BadSmellsASTVisitor This visitor is responsible for reading information from eclipse
files and collecting data to be displayed in the user interface. It is the direct super-
class of all the shortcomings AST visitors.

Other Classes There are other visitors defined to each type of shortcoming being
detected. Examples are: AnonymousPointcutASTVisitor, AbstractMethodIntro-
ductionASTVisitor, LazyAspectASTVisitor, FeatureEnvyASTVisitor, LargeAspec-
tASTVisitor and PrivilegedAspectASTVisitor.

In the following sections, the implementation is briefly described.

6.4.1 Searching for Anonymous Pointcut Definitions

An implementation of a function to detect occurrences of the Anonymous Pointcut
Definition shortcoming is shown below. First, a set named primitive, containing all point-
cuts not concerned with context exposure is created (line 2). After, the string s containing
the pointcut predicate is divided into tokens (line 7), which are individually compared
with the primitive set. If the set contains s, the method returns true, false otherwise.

1 protected boolean isAnAnonymousPointcut(String s) {
2 Collection primitive = new ArrayList();

3 primitive .add("call");

4 primitive .add("execution");

5

6 boolean temp = false;

107

7 String [] result = s.replace("("," ").replace(")"," ").split
("\\s");

8 for (int x=0; x<result.length; x++)

9 if (primitive.contains(result[x])){

10 temp = true; break;

11 }

12 return temp;

13 }

14}

The detection of anonymous pointcuts in Aspect] and AJDT can be done using a vis-
itor, which visits advice declarations looking for the use of anonymous pointcuts. Listing
6.1 shows the implementation of such visitor. It visits all AdviceDeclaration, AfterAdvice-
Declaration, AroundAdviceDeclaration and BeforeAdviceDeclaration nodes. Whenever
the function isAnAnonymousPointcut returns true, a BadSmellsEvent instance is created
to gather information about the shortcoming (lines 9-117).

Listing 6.1: An AST visitor that detects the anonymous pointcut shortcoming

1 public class AnonymousPointcutASTVisitor extends
BadSmellsASTVisitor {

2 private boolean visitAdvice(AdviceDeclaration node) {

3 isAnAnonymous(node. getPointcut ());

4 return false;

5 }

6 protected void isAnAnonymous(PointcutDesignator pd) {

7 if (pd instanceof DefaultPointcut)

8 if (isAnAnonymousPointcut (((DefaultPointcut)pd).
getDetail ())){

9 BadSmellsEvent event = new BadSmellsEvent() ;

10 event.setType ("Anonymous Pointcut Definition");

11

12 }

13

14 }

15 }

6.4.2 Searching for Double Personality

The threshold can be defined by the user of the function, or given as a constant. The
detection in Aspect] can be implemented as a visitor (see Listing 6.2). All TypeDeclara-
tion nodes are inspected in the end of the visiting process (line 2). Whenever the node
is an aspect, the number of declared members is obtained and compared to the 7 value,
defined in a constant named TAU available in a class named Consts (lines 4-5). If the
number of crosscutting members is equal or higher than TAU, the aspect is marked as an
occurrence of the Double Personality shortcoming, false otherwise.

Listing 6.2: AST visitor responsible for the detection of the Double Personality short-
coming

1 public class DoublePersonalityASTVisitor extends
BadSmellsASTVisitor {
2 public void endVisit(TypeDeclaration node) {

108

super.endVisit (node);
if (((AjTypeDeclaration) node).isAspect())
if (getNumberOfMembers () >= Consts.TAU) {
BadSmellsEvent event = new BadSmellsEvent () ;
event.setType ("Double Personality");

— O 0 0NN AW

—_

6.4.3 Searching for Lazy Aspects

To detect occurrence of the Lazy Aspect shortcoming, the LazyAspectAST Visitor cre-
ates shortcoming events whenever an aspect without crosscutting members is found (see
Listing 6.3).

Listing 6.3: AST visitor responsible for the detection of the Lazy Aspect shortcoming

1 public class LazyAspectASTVisitor extends BadSmellsASTVisitor
{

2 public void endVisit(TypeDeclaration node) {

3 super .endVisit (node) ;

4 if (((AjTypeDeclaration) node).isAspect())

5 if (getNumberOfMembers () == 0){

6 BadSmellsEvent event = new BadSmellsEvent() ;
7 event.setType ("Lazy Aspect");

8 .

9 }

10 }

11 }

6.4.4 Searching for Feature Envy

The implementation using Aspect] is pretty straightforward (see Listing 6.4). The
program checks all nodes representing types (aspects, classes and interfaces) and verifies
if a class does not implement a pointcut in its body. If this happens, an event is gener-
ated. Note that the visit(PointcutDeclaration node) method (line 5) is executed only if the
method visit(TypeDeclaration node) (line 2) returns true.

Listing 6.4: AST visitor responsible for the detection of the Feature Envy shortcoming
1 public class FeatureEnvyASTVisitor extends BadSmellsASTVisitor

{
2 public boolean visit(TypeDeclaration node) {
3 return (!((AjTypeDeclaration) node).isAspect() |l node.
isInterface ());
4 }
5 public boolean visit(PointcutDeclaration node) {
6 BadSmellsEvent event = new BadSmellsEvent() ;
7 event.setType (" Feature Envy");
8
9 return false;
0 }

109

1)

6.4.5 Searching for Abstract Method Inter-Type Declarations

A class that detects this kind of shortcoming can be seen in Listing 6.5. A visit method
is defined to visit all inter-type method declarations (line 2). If the node has abstract
modifier, the inter-type declaration is abstract, false otherwise (line 4).

Listing 6.5: AST visitor responsible for the detection of the Abstract Method Inter-Type
Declaration shortcoming

1 public class AbstractMethodIntroductionASTVisitor extends
BadSmellsASTVisitor {

2 public boolean visit(InterTypeMethodDeclaration node) {
3 String name = node.getName().toString () ;

4 if (Modifier.isAbstract(node.getModifiers ())){

5 BadSmellsEvent event = new BadSmellsEvent () ;

6 event.setType (" Abstract Method Introduction");
7

8 }

9

10 }

11 }

6.5 Discussion

6.5.1 Reducing the Search Space

The developer can use the computed ranking together with the number of total targets
to decide which patterns will be used to search for refactoring opportunities. Also, the
developer can define additional constraints to further reduce the search space. For exam-
ple, the developer can search for refactoring opportunities of Extract Interface with zero,
50% of the methods and 100%, to reduce the total number of targets.

In this case, the proposed ranking can be, beyond looking for refactoring opportunities
to those best ranked refactoring patterns to search also for refactoring patterns that enable
the application of the best ranked refactoring patterns and to take into account refactoring
patterns that disable the application of the best ranked refactoring patterns. This search
can be extended to several levels of application of refactoring patterns, denoted by n. The
developer could focus on:

1. Search for refactoring opportunities for all refactoring patterns in a catalogue
2. Search for refactoring opportunities for the X best ranked refactoring patterns

(a) Also, search for refactoring opportunities that enable the application of the X
best ranked refactoring patterns (considering n levels)

(b) Also, take into account refactoring opportunities that disable the application

of the X best ranked refactoring patterns (considering n levels)

Other considerations to reduce the search space can be searching for refactoring op-
portunities considering:

110

A sub-set of packages;

A sub-set of classes;

A sub-set of refactoring patterns;

A sub-set of some elements of the metamodel;

Modification date (or version);

Software elements already restructured by the application of refactoring patterns.

These criteria can also be used to group the refactoring opportunities, so the devel-
opers can focus on the system areas that have the worst values for the heuristic rules, the
highest improvement in terms of the quality attributes or other criteria defined by the SQA
team, for example.

6.5.2 Dealing with Successive Refactoring

Considering the use of this approach considering successive or composite refactoring
patterns, the following comments are made. Composite refactoring patterns can be treated
like all the other refactoring patterns. The successive application of refactoring patterns
can be explored to search refactoring opportunities for more than one level of refactoring.
For example, instead of searching only for the application of a Pull Up Method refactoring
pattern, the developer can also search for opportunities that are created with the new
method in the super class.

This case leads to another strategy for the ranking composition. The developer can
also consider in the ranking of refactoring opportunities a set of enabling refactoring pat-
terns, which are those refactoring patterns that do not improve directly the selected quality
attributes but creates a refactoring opportunity for a well ranked refactoring pattern that
did not exist before the application of the enabling refactoring pattern. Also, critical pair
analysis (MENS; TAENTZER; RUNGE, 2005) can be used to spot occurrences of con-
flicts between refactoring patterns, i.e. refactoring patterns that disable other refactoring
patterns.

6.6 Conclusions

There are several opportunities for refactoring in software applications, aiming at im-
proving the quality attributes the developers cares about. Identifying those opportunities
and evaluating the effects of software transformations manually can be ineffective and
error-prone. An approach is defined to identify and prioritise refactoring opportunities in
software applications and exemplify its use by an instantiation of this approach to identify
refactoring opportunities in UML class diagrams. The results of the example shows that
the use of a multi-criteria heuristic rule to find opportunities for refactoring can help the
developer to focus on the refactoring patterns that bring the most benefits.

This process can be instantiated to other metamodels, quality attributes, refactoring
patterns and metrics. It comprises two stages: preparation and search. Automated tools
for both stages can enable the developers to configure the relative importance of the qual-
ity attributes and to focus on the task of analysing the identified refactoring opportunities
and restructuring the software models accordingly.

111

This chapter also discussed some rules to detect shortcomings in Aspect] programs.
The defined rules can be extended to deal with more cases of each shortcoming. The pro-
vided implementation can be extended to support those other shortcomings. Additional
software systems can be the subject of further investigation. The appropriate detection
and removal of shortcomings can affect quality attributes in the software application be-
ing modified and each refactoring pattern application might be evaluated regarding those
attributes.

The evaluated systems in the case study have, in general, a low number of shortcom-
ings. The one that appears more frequently is the Anonymous Pointcut Definition short-
coming. This shortcoming is usually removed whenever the predicate is used in more
than one advice/inter-type declaration or when the aspect is an abstract one. Occurrences
of shortcomings such as Feature Envy and Abstract Method Introduction were less fre-
quently detected in the examined applications. The detection of the Double Personality
shortcoming depends on the definition of significant thresholds, which can be gathered
from the analysis of existing systems or provided by the users of the detection tool and
the carefully analysis of the number of encapsulated concerns. Most of the occurrences
of the Lazy Aspect shortcoming in the evaluated systems are associated with aspects that
do not have crosscutting members and can be replaced by classes.

The use of such approach in early stages of a software development process can be
beneficial. Both design and analysis models can be evaluated using the proposed rationale.
As the number of models and model elements can be large, it is interesting to focus on
the more problematic elements, according to the quality attributes that the development
team is concerned about. Future work focuses on integrating and automating the process
in current software modelling tools.

112

7 EVALUATING THE EFFECTS OF REFACTORING

This chapter describes how to create impact functions to quantitatively evaluate the
effects of refactoring on software quality and how to use such functions. It is organised
as follows. Section 7.1 describes the need for mechanisms to evaluate the effects of
refactoring on software quality. Section 7.2 describes an approach for the creation of
impact functions. Section 7.3 exemplifies these impact functions for an aspect-oriented
refactoring pattern. Section 7.4 shows a case study that presents how impact functions
can be used in a software application. Section 7.5 describes tools support. Sections 7.6
and 7.7 present related work and conclusions, respectively.

7.1 Introduction

In the context of aspect-oriented software (KICZALES et al., 1997), a number of
refactoring patterns can be used to manipulate both classes and aspects (MONTEIRO;
FERNANDES, 2005a, 2006). Specifically, refactoring patterns that deal with aspect-
oriented software allow moving members: (a) from classes to aspects, (b) between as-
pects and (c) from aspects to classes. These refactoring patterns provide mechanisms to
reorganise the overall structure of models and source code.

However, it is not always clear to the developer how the software elements being
restructured are affected by refactoring. When a software application is restructured,
several metric values change and it is interesting to know in advance the effects of each
transformation (KATAOKA et al., 2002). Current research on the evaluation of the effects
of refactoring in software elements focuses on the creation of impact functions (BOIS;
MENS, 2003; MENS; TAENTZER; RUNGE, 2005; BOIS, 2006) to predict changes in
metric values when a refactoring pattern is applied to those artefacts. Unfortunately, there
is no explicit approach for the creation of these impact functions, and there are no defined
impact functions for aspect-oriented software.

This chapter describes an explicit approach to create impact functions for object-
oriented and aspect-oriented refactoring patterns. The approach is exemplified by defin-
ing impact functions for an aspect-oriented refactoring pattern, named Pull Up Advice,
for four metrics: lines of code, number of operations in module, crosscutting degree of
an aspect and coupling on advice execution. A case study shows examples of impact
functions applied to an open-source application. Tool support helps in creating impact
functions both for object-oriented and aspect-oriented refactoring patterns.

113

7.2 Creating Impact Functions

Impact functions (BOIS; MENS, 2003; MENS; TAENTZER; RUNGE, 2005; BOIS,
2006) are mathematical functions that assess the impact of refactoring on software quality
by describing the changes in metrics values when a certain refactoring pattern is applied
to a software element. Whenever a developer comes upon an opportunity for refactoring
and is not sure about the implications of the transformation, an impact function helps to
assess the effect of the refactoring.

These impact functions guide the developer in choosing refactoring patterns in each
case. The decision of moving features between classes can be supported by the impact
functions, which obtain the metric values of each resulting refactoring, without actually
performing the transformation. The use of these functions can show which refactoring
opportunities are more advantageous (in terms of the metric values). Furthermore, when
there are many refactoring opportunities, the developer wants to focus on those that pro-
vide the greatest improvements in the software artefacts.

This section describes an approach to create impact functions for object-oriented and
aspect-oriented refactoring patterns, including the description of the roles, the activities
and the artefacts used in the approach.

7.2.1 Process Roles, Activities and Artefacts

The creation of impact functions is performed once for each pair P = (refactoring
pattern, quality attribute) and is more likely to be performed by a Quality Analyst. He
performs a set of activities leading to impact functions that evaluate the changes in metric
values for a set of refactoring patterns and a set of metrics, as shown in Figure 7.1. Please
note that these activities focus only on the creation of impact functions. The use of such
impact functions is described in Chapter 3.

Refactoring Metrics

Catalogue 1
g— L2 D .
Quality Select Refactoring Define Impact
Analyst Patterns Impact Functions Functions

Refactoring
Patterns

Figure 7.1: Process roles, activities and artefacts: overview

In the first step the quality analyst selects the refactoring patterns for which the impact
functions will be created. Refactoring patterns are selected from refactoring catalogues.
There are refactoring catalogues for object-oriented software (FOWLER et al., 1999),
aspect-oriented software (MONTEIRO; FERNANDES, 2005a, 2006), design models

114

(MARKOVIC; BAAR, 2005; ZHANG; LIN; GRAY, 2005), and use case models (RUI,
REN; BUTLER, 2003; YU; LI; BUTLER, 2004).

In the next step, define impact functions, the functions are defined in the form
f(A, u,m), where X represents a refactoring pattern, p represents a module and 7 rep-
resents a metric. The function is created to compute the change in the value of the metric
n after applying the A refactoring on module i, so f(A, i,) = n(A(w)) — n(w).

An implementation of the refactoring catalogue must be present in the case tool or IDE
for automated support for refactoring. If there is no such implementation, the developer
can apply refactoring patterns manually, which can be error-prone, or add refactoring
capabilities to the tool, which can require a substantial effort.

For each refactoring pattern and each metric, the developer can create impact func-
tions to express how the metric values change when the refactoring pattern is applied to a
software element. A refactoring pattern can affect more than one software element. Each
affected software element is called a participant of the refactoring pattern. If the refactor-
ing pattern has more than one participating software element, the developer must create
impact functions for each software element. For example, the Move Method refactoring
pattern is applied to a method defined in a source class, moving it for a destination class.
Both classes are participants of the refactoring pattern.

Let RPs be the set of refactoring patterns and Ms be the set of metrics for which the
impact functions will be created. The algorithm for creating impact functions can be
described as follows:

CREATE-IMPACT-FUNCTIONS(RPs, M)

1 F « NIL;

2 for eachrin RPs

3 do Ps < r.GETPARTICIPANTS()

4 for each pin Ps

5 do for each m in M s

6 do F' «+— F U {CREATE-IMPACT-FUNCTION(7, p, m)}
7

8 return F;

The developer creates a set of impact functions, one for each participant and each met-
ric. The call to getParticipants() retrieves the set of participating elements of the refactor-
ing pattern, named Ps, whereas the call to Create-Impact-Function(r,p,m) represents the
creation of an impact function for a refactoring pattern r, the participating element p and
a metric m.

7.3 Creating Impact Functions for Pull Up Advice

This section provides impact functions that compute the changes in metric values
when applying the refactoring pattern Pull Up Advice onto a set of modules (aspects
and classes). Section 7.3.1 describes why the Pull Up Advice refactoring pattern was
selected. Section 7.3.2 describes the selected metrics: lines of code, number of operations
in module, crosscutting degree of an aspect and coupling on advice execution used in the
example. Section 7.3.3 shows the application of the approach.

115

7.3.1 Selecting Refactoring Patterns

The main target of this example focuses on the software elements particular to aspect-
oriented languages: pointcuts, advices and inter-type declarations. Given the fact that the
refactoring of pointcuts has little effect on software metrics and that inter-type declara-
tions are very similar to their object-oriented counterparts, only one target is chosen for
refactoring: advices.

Advices can be moved to other aspects, pulled up to the super-aspect, pushed down
to the sub-aspect, converted to a method or inlined into the affected classes or aspects.
The Pull Up Advice was chosen as a representative refactoring pattern for advices, as it is
more common to generalize a behaviour in an advice and moving it to a super-aspect than
pushing it down or inlining it.

The Pull Up Advice refactoring pattern moves an advice from an aspect to its super-
aspect (GARCIA et al., 2004). It is useful when there are duplicated advices in sibling
aspects, and when someone wants to move the advice functionalities to the super-aspect
in order to better distribute the responsibilities among the super and sub-aspects. In this
case, one of the duplicates is chosen to be pulled up, the others can be deleted. Pull Up
Advice is also used when an aspect has functionalities that can be used (or are effectively
being used) by several related aspects, thus reducing code duplication.

7.3.2 Selected Metrics

The developer has to define impact functions for the metrics listed in the quality
model(s) defined by the SQA team. The set of metrics used in this example has already
been used in a set of experimental studies defined to assess the reusability and maintain-
ability of aspect-oriented software (CACHO et al., 2006; CASTOR FILHO; GARCIA;
RUBIRA, 2005; GREENWOOD; BLAIR, 2006).

Some of the metrics (CECCATO; TONELLA, 2004) chosen in this quality model are
originally extensions of well-known metrics for object-oriented software (CHIDAMBER;
KEMERER, 1994) and are adapted to the context of aspect-oriented software. For a com-
plete empirical study, including empirical data collection, usage scenarios and correla-
tions between those metrics, please refer to Chapter 9. The selected metrics are:

e Lines of Code (locc)
e Number of Operations in Module (nom)
e Crosscutting Degree of an Aspect (cda)

e Coupling on Advice Execution (cae)

7.3.3 Impact Functions for Pull Up Advice

This section shows a set of impact functions created for the Pull Up Advice refactoring
pattern. For all the impact functions, consider an aspect «, an advice p, and the set of sub-
aspects of o containing p, named B. The X function to pull up the p advice from the
aspects in the B set to the « aspect can be specified as:

A = pullUpAdvice(a : Aspect, B : Setof Aspects, p : Advice) (7.1)

116

7.3.3.1 Impact on locc

Let 1 be an aspect. Let locc(p) represents the number of lines of code in this module.
The value of the impact functions depends on the size of the pulled up advice:

f(\ o, loce) = loce(p) (7.2)
VB € B f(\ Bi,locc) = —loce(p) (7.3)

Note that each function only shows the difference between the value of the [occ metric
after and the value of the [occ metric before the application of the refactoring pattern.

When applying the Pull Up Advice refactoring pattern, the [occ metric value depends
on the size of the advice being pulled up. The metric value of the super-aspect is raised
by the locc value of the advice. The inverse occurs in the affected sub-aspects that do
not have the advice anymore, their [occ is reduced by the [occ value of the advice pulled
up. Also, the sum of locc in sub and super aspects only changes when the number of
children participating in the refactoring pattern is higher than one. If there is only one
child moving the advice to its super aspect, the sum of the locc values remains the same.

When both the number of children and the size of the advice being moved to the super
class increase, the benefits of the application of the Pull Up Advice refactoring pattern is
more evident.

Figure 7.2 shows the mean size of the super and sub-aspects when applying the Pull
Up Advice refactoring pattern regarding the number of children (from 1 to 5) and regard-
ing the advice size (from 0 to 100 % of the total size of the aspects).

Mean locc

Mean locc of
super and sub-aspects
100
80
60

40

20
0

0

5 Size of Advice (%)

Number of
Children T

Figure 7.2: Percentage of size decrease per number of children

An initial size of 100 is used for both super and sub-aspects to better visualize the
changes in the locc metric value. Note that the decrease in the mean size (measured in
locc) is directly proportional to the number of children and the advice size. This refactor-
ing pattern is usually applied to remove advice duplication.

7.3.3.2 Impact on nom

When applying the Pull Up Advice refactoring pattern, the nom metric value of the
super-aspect is incremented by one as there is one newly created advice, whilst the values

117

of the nom of the sub-classes are lowered by one:

fA, a,nom) = +1 (7.4)
V@i € B f(\, B;,nom) = —1 (7.5)

If the language supports the definition of anonymous inner classes then the functions
change to the following:

f(A\,a,nom) = +nom(p) (7.6)
V@i € B f(\ Bi,nom) = —nom(p) (7.7)

Figure 7.3 shows the percentage of size decrease per number of children in the nom
metric values regarding the number of children of the super-aspect and regarding the
current nom value. The decrease is directly proportional to the number of children and
the inversely proportional to the total nom in the super-aspect and its sub-aspects.

‘Wom values(%)

100
80
60
40
20

Wom atual

Figure 7.3: Percentage of size decrease per number of children

7.3.3.3 Impact on cda - Changes in metric value for «

Consider A,, as the set of all advised modules by « and R the set of advised modules
by advice p. The change in the value of cda for « after the application of the A refactoring
pattern is given by the cardinality of the set resulting from the difference from R and
A f(N a,cda) = |[R — A,,|. After being moved to the super-aspect, the advice can
advise itself (depending on the pointcut expression). Therefore, the impact function for
computing the change in the value of cda of o can be defined by an interval:

f\ a,cda) =[|R — Al IR — Al + 1] (7.8)

7.3.3.4 Impact on cda - Changes in metric values for B

Consider a set of sub-aspects B. Let ME; = (&, f;) be the multiset of all modules
advised by (; € B, where &; is the set of advised modules and f : & — N is a function
from &; to the set of natural numbers. Let R be the set of modules advised by p advice.
The changes in cda for the elements of B are given by the number of elements that do

118

not appear in &; after removing the affected modules by R from the multiset ME;. This
number of elements counts the modules that are not affected anymore by the 3; aspect, so
the cda metric value is decreased by this number:

VB € B f(A, i, cda) = —|& — (ME; — R)| (7.9)

The cda metric value represents the number of modules affected by the pointcuts and
by the inter-type declarations in a given aspect. This metric values change according
to the modules advised by the moved advice and to the modules already advised by the
super-aspect.

Figure 7.4 shows how the cda metric values changes regarding the number of modules
affected by the super aspect and regarding the modules affected by advice that are not also
affected by the super-aspect. The values for the cda metric are directly proportional to the
number of affected modules by the super-aspect and to the different modules affected by
the advice.

Changes in cda metric values for alpha

Value of cda

Figure 7.4: Percentage changes in the cda values for the super-aspects

Several different cases might occur when applying Pull Up Advice. If the modules
affected by the advice are the same affected by the super aspect, the value of the cda
metric remains the same. The value does not change also when the modules affected by
the advice are a sub-set of the modules affected by the super-aspect. When the modules
affected by the advice are different from the ones affected by the super-aspect, the value
of cda increases depending on the number of different modules affected. The higher this
number of modules, the higher is the change in the cda metric value.

Figure 7.5 shows changes in the cda values for the sub-aspects regarding the modules
affected by the sub-aspects and the percentage of modules also affected by advice. The
figure shows how the values of cda change when the super-aspect has one, two or three
sub-aspects. The value of cda is directly proportional to the modules affected by the
sub-aspects and to the percentage of modules also affected by advice.

7.3.3.5 Impact on cae - Changes in the metric value for o

Let C be the multiset of aspects that advises « (the super-aspect) and D the multiset
of aspects that advises the p advice. The value of the impact function considering cae

119

1 child ——
Value of cda for 2 children
all children 3 children --------

200

150 R

50

Points Affected 20 0 % of Points Also

by Sub-Aspect (cda(beta)) Affected by Advice

Figure 7.5: Changes in the cda values for the sub-aspects

for the super-aspect « after the application of the A refactoring pattern is given by the
interval that starts in zero and ends in the cardinality of the difference between D and C.
As the aspects that advise D can change when the advice is moved to the super-aspect, an
interval is considered for the value of the impact function:

f(\, o, cae) = +[0,|D —C|] (7.10)

7.3.3.6 Impact on cae - Changes in the metric values for [3

The impact in the values of the cae metric in the sub-aspects is the following: Let 13 be
the set of sub-aspects of a given aspect, CB the multiset of aspects that advises 3 and D the
set of aspects that advises the p advice. The value of the change in cae for each (3; after
the application of the A refactoring pattern is given by the cardinality of the difference
between CB and D. Thus, the difference between the value before the refactoring process
and after is given by the function:

VB € B f(\, B, cae) = —(|CB| — |CB — D)) (7.11)

The cae metric represents the number of aspects that affect a given module. When
applying the Pull Up Advice refactoring pattern, the values of cae on the super-aspect
change according the aspects that affect it and the aspects that affect the advice being
pulled up. Figure 7.6 shows changes in the cae values for the super-aspect, regarding the
number of aspects that affect the super aspect and the number of aspects that affect only
the advice. The maximum and minimum expected values of changes in the cae metric
value after the application of the Pull Up Advice refactoring pattern are shown.

7.3.3.7 Example

The following example is from the GlassBox Inspector. An advice is moved from
the AbstractXmlCallMonitor aspect to the super-aspect AbstractXmlProcessingMonitor
to illustrate the use of impact functions for the Pull Up Advice refactoring pattern. The
advice is defined in lines 3-9. Note that it has an anonymous inner class (lines 4 - 7) that
is also counted to obtain the values for the nom metric.

120

0NN AW

e = T e
Lo = O 0

03O\ DN kAW~

N e T S S S e S S
NN R W= OO

Max Change
Min Change

Max change in cae
metric value for alpha

20

15

10

4 Nr of modules affecting
5 only the advice

Nr of modules
affecting alpha 10

Figure 7.6: Changes in the cae values for the super-aspect

public abstract aspect AbstractXmlCallMonitor
extends AbstractXmlProcessingMonitor {
protected pointcut scope();
Object around(final Node node)
domCall (node) && !inXmlRequest ()
&& monitorEnabled () {
RequestContext requestContext =
new XmlRequestContext() {
public Object doExecute() { ... }
public PerfStats lookupStats() { ... }
}s

return requestContext.execute () ;

public abstract aspect AbstractXmlProcessingMonitor
extends AbstractResourceMonitor {
static Method getDocUriMethod = null;
static {...}
public pointcut parseCall ()
call (public * DocumentBuilder. parse (..));
public pointcut domCall (Node node)
call (x org.w3c.dom..x(..)) && target(node);
public pointcut saxCall ()
call(x org.xml.sax..x(..));
protected pointcut inXmlRequestBind
(RequestContext context)
inRequest(context) &&
if (context instanceof XmlRequestContext);
public pointcut inXmlRequest ()
inXmlRequestBind () ;
protected abstract class XmlRequestContext

121

18 extends ResourceRequestContext {...}
19 }

The values of the metrics for AbstractXmlProcessingMonitor and AbstractXmlCall-
Monitor were collected using the aopmetrics tool (STOCHMIALEK, 2009):

a = AbstractXmlProcessingMonitor
locc(a) = 42
nom(a) = 1
cda(a) = 0
cae(a) 2
6 = AbstractXmlCallMonitor
loce(B) = 23
nom(f3) = 3
cda(f) = 0
cae(3) 4

The evaluation of the changes in both aspects and classes using the defined impact
functions is the following:

a = AbstractXmlProcessingMonitor, B = AbstractXmlCallMonitor
p = Object around(final Node node), A = pullUpAdvice(a, B, p)

locd () = loce(a) + f(N, a,loce) = 42 + loce(p) = 42 + 20 = 62
locd (B) = loce(B) + f(A, B, locc) = 23 — loce(p) = 23 — 20 = 3
nom'(a) = nom(a)+ f(A\,a,nom)=1+nom(p)=1+3=4
nom'(3) = nom(B) + f(\, B,nom) =3 —nom(p) =3—-3=0

There is the need to collect the aspects that advise «, and p to calculate the values
for the impact functions of the cae metric. The multiset of aspects that advises «, (3 and p
are named C, CB, D, respectively.

C = {(JmaxzManagement,1),(SimpleConfig,1)}
CB = {(JmazManagement,1),(SimpleConfig,1),
(ErrorHandling,2), (TrackParents, 1)}
D = {(ErrorHandling,?2),(TrackParents,1)}
cae(o) + f(N a,cae) =2+ [0,|D—C|| =2+ 10,2] = [2,4]
= cae(f) + f(\,B,cae) =4+ (—|CB| - |CB—-D|) =4—-2=2

cae' ()
)

cae' (3

The super and sub-aspect do not affect any modules, so the set of modules 4,4, R and
ME are empty:
A = {LhR={} ME={},
cda' (o) = cda(a) + f(\, a,cda) =0+10,1] =1
cdd (B) = eda(B) + f(A, B, cda) =0 +0 =0

122

Note that the advice, having moved to the super-aspect now affects itself and, there-
fore, the value of the cda metric is increased by one. The new metric values of the Abstrac-
tXmlProcessingMonitor and AbstractXmlCallMonitor aspects computed with the help of
impact functions, without the application of the Pull Up Advice refactoring pattern are the
following:

a = AbstractXmlProcessingM onitor
locc(a) = 62
nom(a) = 4
cda(a) = 1
cae() 4
6 = AbstractXmlCallMonitor
loce(B) = 3
nom(f) = 0
cda(f) = 0
cae(B) = 2

Now that the advice is in the AbstractXmlProcessingMonitor aspect (line 2), the Ab-
stractXmlCallMonitor aspect (lines 4-6) can be removed, as it only contains a pointcut
that is not referenced by any module.

Note that, in some cases, the pointcut expressions are only evaluated in runtime, and
the computed results using the impact function are restricted to the types of pointcuts that
can be evaluated at weaving time. In these cases, the impact functions provide estimated
values about the effects of refactoring in software metrics.

7.4 Case Study: Computing the Values of Pull Up Advice in the
Glassbox Inspector

This second case study aims at computing the values of impact functions for all the
aspects in the Glassbox Inspector in which it is possible to apply the Pull Up Advice
refactoring pattern.

For all the impact functions to be computed, consider super-aspect «, a sub-aspect B
and an advice p. The A function to pull up an advice can be specified as:
A = pullUpAdvice(a : Super Aspect, 3 : SubAspect, p : Advice) (7.12)

Three aspects (the o aspects) have sub-aspects, as follows:

oy = AbstractResourceMonitor
as = AbstractX M LProcessingMonitor
ag = AbstractRequest Monitor

123

Six aspects are the sub-aspects (the (3 aspects):

61 = JDBCConnectionMonitor
By = JDBCStatementMonitor
B3 = RemoteCallMonitor

By = JaxmCallMonitor

Os = AbstractX M LCallMonitor
B = AbstractOperationMonitor

In the (aspects, there are 15 different advices which can be pulled up to the super-
aspects:

p1 = around(DataSource)
p2 = around(String)
ps = before(Statement, String)
ps = around(Statement)
ps = afterreturning(Connection)
ps = around(String)
p7 = around(Object) : remote. ..
ps = around(Object) : jaxRPC ...
po = around(Object, Object, Object)
po = around(Node)
p11 = afterreturning(Object)

p12 = around(Object) : class . ..

p1s = around(Object) : methodSig . ..
p1a = around(Object) : methodNameCon . ..
p15 = around(Object) : methodCon . ..

Table 7.1 shows the relationship between the super-aspect, the sub-aspects and the
advices. Each application of the Pull Up Advice refactoring pattern is represented by a
numbered A. For example, the \; application moves the p; advice (around(DataSource))
from the (; sub-aspect (JDBCConnectionMonitor) to the «; super-aspect (AbstractRe-
sourceMonitor).

The detailed computation of each metric value for both the super aspects and sub-
aspects, and the source code and metrics for each advice are shown in Appendix E. The
computation of the impact functions for the proposed application of the Pull Up Advice
refactoring pattern leads to two different result sets: the impact function values for the
super-aspects and the values for the sub-aspects.

Table 7.2 shows the values for the super-aspects. The impact functions provide to
the developer information of how much each application of a specific refactoring pattern
affects the values of a set of chosen metrics. The detailed computation of each value for
the impact functions of this case study is shown in Appendix E.

For example, if the goal of the developer is to increase the size of the super-aspect, the
best application of the Pull Up Advice refactoring pattern is Ao, which increases the [occ

124

Table 7.1: Relationship between the super-aspect, the sub-aspects and the advices.

A a | B |p
A | a1 | B p
Ao | a1 | B1| p2
A3 | a1 | B2 | p3
A | a1 | B2 | pa
As | a1 | B2 | ps
X | a1 | B2 pe
A7 | or | B3| pr
As | a1 | B3| ps
Ao | a1 | Ba| py
Ao | a2 | B5 | p1o
A1 | az | B6 | P11
A2 | as | B6 | p12
A3 | ag | Bs | p13
Ay | as | Bs | p1a
A5 | a3 | Bs | p15

Table 7.2: The values for the computation of impact functions for Pull Up Advice, con-
sidering the super-aspect.

A f(\, o, loce) | f(\, o, nom) | (A, o, cda) | (A, o, cae)
A +10 +2 +[0,1] +[0,1]
py +10 +2 +[0,1] +[0,1]
A3 +4 +1 +[0,1] 0
A4 +10 +2 +[0,1] +1
A5 +6 +1 +[0,1] 0
A6 +11 +3 +[0,1] +[0,1]
A7 +13 +3 +[0,1] +[0,1]
g +13 +3 +[0,1] +[0,1]
Ag +11 +3 +[0,1] +[0,1]
Ao +17 +3 +[0,1] +[0,1]
A1 +3 +1 +[1,2] 0
A2 +11 +3 +[0,1] 0
A3 +11 +3 +[0,1] 0
A4 +11 +3 +[0,1] 0
A5 +11 +3 +[0,1] 0

of a by 17 lines of code. If the goal is to decrease the super-aspect, then A3 or A\;; are the
best choices in terms of [occ. The same kind of analysis can be performed for the other
metrics, depending on the goals of the developer.

Table 7.3 shows the values for the sub-aspects. For example, if the developer is look-
ing to decrease the interaction of aspects, he can focus to decrease the value of the cae
metric, which represents the number of aspects affecting this specific module. In this
case, the refactoring pattern applications of choice are A7, Ag, Ag or Aqg.

If heuristic rules are being used to prioritise refactoring opportunities, the developer
can compose the impact functions to compute the changes in the values of those rules.

125

Table 7.3: The values for the computation of impact functions for Pull Up Advice, con-
sidering the super-aspect.

A f(\, 5, loce) | (A, 5, nom) | f(\, 5, cda) | f()\, 5, cae)
A -10 -2 0 0
A2 -10 -2 0 0
A3 -4 -1 0 0
A4 -10 -2 0 0
A5 -6 -1 0 0
A6 -11 -3 0 0
A7 -13 -3 0 -1
As -13 -3 0 -1
Ag -11 -3 0 -2
Ao -17 -3 0 -2
A1 -3 -1 -1 0
A2 -11 -3 0 0
A3 -11 -3 0 0
A4 -11 -3 0 0
A5 -11 -3 0 0

7.5 Tool Support: An API for the Creation of Impact Function

Tool support for using impact functions is desirable to provide mechanisms to create

and compute impact functions. To allow that, it must be possible for the developer to:

1. Manipulate metrics. The tool must provide support for the creation of functions
to compute metrics or it must provide integration with external tools for computing
the metric values of software elements.

2. Manipulate refactoring patterns. The tool must provide support for cataloguing

refactoring patterns or must provide integration with existing cataloguing tools.

3. Create impact functions. The tool must provide support for the creation of impact
functions. These functions associate metrics with refactoring patterns, and there-
fore, the creation of impact functions depends on the previously described features
(manipulation of metrics and refactoring patterns).

4. Compute impact functions. Tool support must be provided for the correct compu-
tation of the impact functions defined.

In this work, a proof-of-concept API was developed to automatically evaluate changes
in metric values. The developer can use the existent impact functions associated with a

set of refactoring patterns or can create new ones.

Each refactoring pattern has a set of participants (source aspect and destination aspect,
for example) and can be associated with a set of metrics. For each pair P,, = (participant,
metric), the developer can inform a different impact function. The developer can also
associate more than one metric and impact function in a single operation.

The classes representing refactoring patterns are instantiated and the impact functions
can be computed for actual participants, provided by the user. This computation returns
the modified metric values. Refactoring in sequence can be performed by sequentially
computing individual impact functions.

126

Figure 7.7 shows the main packages of the API developed to create and compute
impact functions. The refactoring package provides main support for the specification of
refactoring patterns. The model package provides classes to deal with metrics (in general)
and wrappers to make easy to work with specific metrics. The impactFunction package
provides classes to create impact functions using both refactoring patterns and metrics.
The tests package can provide test cases for the created impact functions.

model |

refactoring | —
- + Clazz

[*core + Metric
D + patterns D + factory

D + wrappers
impactFunction tests
[*core + ImpactFunctionsTest
[:l + functions

Figure 7.7: Impact functions API - packages

Figure 7.8 shows the main classes dealing with impact functions. The Refactoring
class represents refactoring patterns and includes support for adding refactoring partici-
pants (the software elements which are the target for refactoring), adding impact func-
tions and computing impact functions. Subclasses are provided to represent refactoring
patterns targeted to a single class or aspect (such as DeleteAttribute and ExtractPointcut)
and targeted to a pair of classes (such as Move Method).

Future work can focus on expanding the existing refactoring patterns and impact func-
tions, providing integration with metric collectors for object-oriented and aspect-oriented
software, commercial IDEs and refactoring tools.

7.6 Related Work

Mens et al. (MENS et al., 2003) state that an open problem is to assess the effects of
a refactoring pattern on the software quality, as some refactoring patterns remove redun-
dancy, raise abstraction or modularity level and others have negative impact on reusabil-
ity, for example. They also observe that determining where and why refactoring patterns
should be applied is still an open problem. By classifying refactoring patterns in terms of
the quality attributes they affect, the effect of a refactoring on the software quality can be
estimated.

This thesis provides a quantitative approach to determine advantageous opportunities
for refactoring, considering the selected quality attributes. The approach is based on the
use of metric and heuristic-based functions to spot shortcomings in software elements
that can be improved through refactoring. The identified opportunities for refactoring can
then be prioritised and the effects on software quality of each suggested refactoring can
be assessed using impact functions and heuristic rules. DuBois and Mens (BOIS; MENS,
2003; MENS; TAENTZER; RUNGE, 2005) propose a formalism to describe the impact
of a representative number of refactoring patterns on an AST representation of the source

127

Refactoring
core::ImpactFunction

- participants: HashMap<String, Clazz> = new HashMap<Str...
- imfs: HashMap<RefactoringConfiguration. ImpactFunction> = new HashMap<Ref... + compute(Refactoring) : Integer

getParticipants() : HashMap<String, Clazz>

setParticipants(HashMap<String, Clazz>) : void

get(Refactoring, String, Metric) : ImpactFunction

addImpactFunction(String, Metric, Integer) : void

addIimpactFunction(String, Metric, Class<? extends ImpactFunction>) : void
addImpactFunction(String[], Metric[], Class<? extends ImpactFunction>) : void
addlmpactFunction(String[], Metric[], Integer) : void

applylmpactFunctions() : void

apply() : Object - ¢ Integer=0
createReturnValue() : Object
createParticipants() : HashMap<String, Clazz> + compute(Refactoring) : Integer

% + Constant(Integer)

OneClassRefactoring

functions::Constant

oW £+ + o+

source: Clazz

getSource() : Clazz
setSource(Clazz) : void
source() : String
apply(Clazz) : Tuple

createParticipants() : HashMap<String, Clazz>
createReturnValue() : Tuple \
patterns::DeleteAttribute
+ apply(Clazz, String) : Tuple

TwoClassesRefactoring

* W+ o+ + +

destination: Clazz

setDestination(Clazz) : void ao::ExtractPointcut

getDestination() : Clazz

destination() : String

apply(Clazz, Clazz) : Tuple
createParticipants() : HashMap<String, Clazz>
createReturnValue() : Tuple

AN

patterns::CopyAttribute

+ apply(Clazz, String) : Tuple

* W+ 4+ +

patterns::CopyMethod

+ apply(Clazz, Clazz, String) : Tuple + apply(Clazz, Clazz, String) : Tuple

Figure 7.8: Impact functions API - classes

code, extended with cross-references. The proposed formalism uses AST representing
object-oriented programs and metrics. They evaluate the impact of Extract Method, En-
capsulate Field and Pull Up Method refactoring patterns and describe how quality metrics
can be defined on top of this program structure representation.

Du Bois and Mens (BOIS; MENS, 2003; MENS; TAENTZER; RUNGE, 2005) and
Du Bois (BOIS, 2006) demonstrate formal analysis of refactoring patterns and indica-
tive coupling and cohesion metrics to identify the conditions under which the application
of these refactoring patterns minimize coupling and maximize cohesion. They formally
define a set of prediction functions to evaluate the impact of the Extract Method, Move
Method and Replace Method with Method Object refactoring patterns.

Both works (BOIS; MENS, 2003; MENS; TAENTZER; RUNGE, 2005; BOIS, 2006)
focus on functions dealing with object-oriented transformations. This chapter deals with
refactoring patterns for aspect-oriented software, including a detailed approach for the
creation of impact functions. Their formal analysis can be used together with the ap-
proach of this thesis to provide additional information for the developer to express the
relative importance of refactoring patterns over the quality attributes using pairwise com-

128

parisons. This thesis proposes an approach to identify refactoring opportunities in soft-
ware elements using impact functions and their impact functions can serve as a starting
point to the definition of more complex functions. The impact functions can be also used
together with the approach of this chapter to compute the metric values without the need
to apply each refactoring pattern to evaluate their effects.

7.7 Conclusions

By evaluating the impact of refactoring patterns in a software element, the developer
observes the changes in metric values and can take an informed decision on whether
applying the refactoring patterns improves the quality of the software application.

This chapter proposed an approach to create impact functions for refactoring patterns
for aspect-oriented software. The use of these functions to predict the impact of refac-
toring patterns on software quality can lead to better decisions while modifying existing
aspect-oriented software applications. The approach is exemplified using source code
metrics. Nothing prevents it, however, to be used to evaluate the effects of refactoring
in analysis or design models, for example. Further investigation can be carried to evalu-
ate the effectiveness of these impact functions for assessing the effects of refactoring in
software models.

Although the relation of metrics and quality attributes is not discussed in this chapter,
the computed metric values can be used to quantitatively assess a set of quality attributes
in an application.

The developed tool support provides a starting point to the creation of a more complete
catalogue of impact functions, adapting the impact functions described in this chapter for
other refactoring patterns, as well as providing mechanisms to define impact functions for
object-oriented languages.

Future work should focus on applying the same approach to other aspect-oriented and
object-oriented refactoring patterns and focusing on different metrics.

129

8 REFACTORING SEQUENCES SIMPLIFICATION

This chapter proposes an approach to narrow the number of possible refactoring se-
quences to be evaluated for a software application. It is organised as follows. Section
8.1 describes the benefits of having an approach to reduce the number of refactoring se-
quences. Section 8.2 presents the motivation such reduction. Section 8.3 describes how to
create an initial representation of the possible sequences and how to reduce the size of this
representation. Section 8.4 shows how the approach can be used in practice using a set of
refactoring patterns to manipulate methods. Section 8.5 describes tool support and Sec-
tion 8.6 describes related work. Section 8.7 presents concluding remarks and directions
for future work.

8.1 Introduction

Refactoring patterns are usually low grained transformations and the application of an
individual refactoring pattern may not bring substantial benefits to the software quality.
Current research on the identification of refactoring opportunities (BOIS; MENS, 2003;
MENS; TAENTZER; RUNGE, 2005; BOIS, 2006) focuses on improvements consider-
ing the individual application of a refactoring pattern, but it does not consider how this
identification can be conducted in the context of sequences of refactoring patterns.

Even when only a few refactoring patterns are being considered, the number of possi-
ble sequences is very large. Consequently, it is important to answer the following ques-
tions:

(a) How can the refactoring sequences be narrowed to those that are possible and avoid-
ing sequences which lead to the same results?

(b) And then, from these remaining sequences, how can the developer know which are
the best sequences (according to the quality attributes)?

Considering the search for opportunities of refactoring sequences, the main problem
is the size of the search space (there are too many possible sequences to be evaluated).
This chapter proposes an approach to narrow the number of refactoring sequences by
discarding those that does not make sense and avoiding those that lead to the same results.

A detailed example of the approach is provided, considering sequences for method
manipulation, showing how the number of sequences can be significantly reduced. It uses
deterministic finite automata (DFA) (SIPSER, 1996) to represent refactoring sequences
for method manipulation and a set of rules to reduce the search space. It is shown that the
number of sequences can be greatly reduced. In the example, the search space showed a

130

62% reduction on the number of sequences, and in the evaluated projects the reduction is
between 57-60%.

8.2 Motivation

The number of software elements where it is possible to apply refactoring patterns can
be large. Therefore, when searching for refactoring opportunities, it can be convenient
to reduce the search space either by reducing the number of refactoring patterns in a
catalogue (by using a pre-defined criteria, such as its position in a ranking of refactoring
patterns, as described in Chapter 4) or by imposing constraints for each refactoring pattern
(i.e. “opportunities to apply Pull Up Method will only consider the immediate superclass
as the parameter representing the destination of the method"). Consider, for example,
the possible software elements for four different refactoring patterns: Pull Up Method,
Extract Interface, Rename Class and Inline Method. The number of targets for refactoring
for a given set of classes can be counted as:

e Pull Up Method: For each class that has a super-class, all the methods can be
targets. Let C.. be the set of classes with a super-class and let m(z) be a function
that, given a set of classes returns a set of methods defined on these classes, the
number of possible applications of this refactoring pattern is |m(C.)|.

e Extract Interface: For each class, several different interfaces can be created: an
empty interface, an interface with one method (any method of the class), or with
two or more methods. Considering C as the set of classes in a given system, and
n(c) as the number of methods of a class ¢, the number of possible applications of
this refactoring pattern in a class ¢ can be computed by the ei(c) function:

n(c)
eilc) = 2; N(”L 8.1)

e Rename Class: All classes can be renamed so, there is one target per class. In this
case, the number of possible applications is |C/|, where C' is the set of classes in a
given system. Note that, in this case, the variability in the parameter values (i.e. the
new name) is not taken into account.

e Inline Method: For each method, in each class, there is one possible target for
refactoring. Using the m(x) function, the number of possible applications of this
pattern is given by |m(C)|.

The number of possible applications of the selected refactoring patterns can be com-
puted by the following equation:

c|
P o= [m(Co)|+) ei(e;) +[C| + [m(C)]

=1

Considering a simple system, with ten classes (cy, . . ., ¢19), with ten methods in each
class, where the first five classes are sub-classes, the number of possible refactoring ap-

131

plication is:

C = {c1...c0}
Ce = {c1...c5}
IC|
P = m(C.) + Z ei(c;) +
54+ m(C)

P = 50+1024+5+ 100 = 1179

This example shows that, even for a small software system, the number of possible
software elements to apply refactoring patterns is large. Considering the application of
refactoring sequences, the number can greatly increase, as for each individual application,
the developer can search for additional refactoring patterns that can be applied to the
software.

A combination of these sequences is computed by P:

n
P <k> 82)

where n is the number of possible applications of the refactoring patterns and k£ is the
sequence size.

In the example, it is impractical to evaluate all possible sequences ((11,:9)). There must
be additional constraints defined to further reduce the search space. The set of refactoring
opportunities can be reduced using two different strategies:

a Reducing the number of possible combinations of the refactoring patterns.
This is the focus of this chapter. Section 8.3 describes an approach to reduce the
number of possible refactoring sequences and Section 8.4 exemplifies the approach
for a set of refactoring patterns.

b Reducing the parameters to be passed to the refactoring patterns. For example,
the developer can search for refactoring opportunities of the Extract Interface refac-
toring pattern with zero, 50% and 100% of the methods, to reduce the total number
of targets (in this case, reducing from 1024 to 254 opportunities). This strategy is
not addressed in this thesis and is the focus of future research.

8.3 Reducing the Search Space

This section describes the steps needed to reduce the number of refactoring sequences
to be evaluated by the developer. To achieve that, two activities must be performed:

e Create the initial refactoring sequences: An initial representation of all the pos-
sible sequences of refactoring is created, regardless of the semantics of each refac-
toring pattern. A representation of refactoring sequences is the use of a notation
to express the ordering of application of refactoring patterns. It is used in this ap-
proach to express which are the initial possible sequences, by adding sequences to
the representation and to reduce the number of sequences, by removing sequences
from the representation. The refactoring sequences can be expressed using different
representations, such as: trees, graphs, finite state machines, Petri nets, DFAs, and
grammars, for example. This representation is manipulated to insert, remove and
search for possible refactoring sequences.

132

o Simplify the set of sequences: The initial representation is simplified, considering
the semantics of each transformation. In this step, the created representation is tra-
versed, searching for simplifications or equivalences between different sequences.
The possible types of simplifications are discussed in Section 8.3.2.

Figure 8.1 shows the roles and artefacts for these two activities. The tool provider
creates the initial representation for the refactoring sequences and then simplifies it us-
ing a set of rules. A developer can then use this simplified representation to search for
refactoring opportunities for these sequences (or for a sub-set of these sequences).

Refactoring Language Initial Simplification Simplified

Catalog ~ Grammar Sequences Rules Sequences
Tool Create the Simplify the

Provider Initial Sequences Sequences

Figure 8.1: Roles, artefacts and activities

Section 8.3.1 describes the creation of this initial representation using a non-
deterministic finite automaton and Section 8.3.2 describes the simplification rules and
how each simplification can be done.

8.3.1 Creating the Initial Refactoring Sequences

A refactoring pattern is applicable to one or more symbols of a grammar (either ter-
minals or non-terminals) and vice-versa (in this case, each symbol can have n applicable
refactoring patterns associated to it). A grammar is usually represented by a 4-tuple (N,
>, P, S), in which: N is the finite set of non-terminal symbols, > is the finite set of
terminal symbols, S is the initial non-terminal symbol and P is a finite set of production
rules.

Refactoring sequences are composed of two or more refactoring patterns which are
applied in sequence. To create the initial sequences, there is the need to know for which
set of refactoring patterns the sequences will be created. For the sake of simplicity, it
is suggested to group the refactoring patterns by the grammar symbols they affect. For
instance, the sequences in the example are sequences for the manipulation of methods,
which affects the non-terminal method of an object-oriented language.

To create the initial refactoring sequences, there is the need to bind the set of refactor-
ing patterns to the grammar of the language for which the sequences will be created. This
thesis uses the term refactoring catalogue to denote a named set of refactoring patterns.
Figure 8.2 shows the encapsulation of the binding concern in a separated class. The ad-
vantage of separating the binding concern this way is that the catalogue does not need to
deal with language-specific grammars, neither the grammars need to be aware of the exis-
tence of refactoring patterns that can affect programs written according to its production
rules.

When computing the possible sequences, there is the need to inform the maximum
size of a sequence. This size is called the levels of a refactoring sequence. For example,

133

RefactoringPattern Binding Symbol
WENWE: S, 0..* + Binding(RefactoringPattern, Symbol) : Binding 1| name: String
+patterns 1.* o
symbolRPsBindings R
NonTerminal Terminal

Binder

+ bind(RPsCatalog, Grammar) : void
+ addBind(Binding) : void

l”* 1 0”*
1 grammar nonTerminals startSymbol .
+catalog|0..* catalog terminals
RPsCatalog Grammar ProductionRule
1 rules
name: String - name: String x

Figure 8.2: Binding refactoring patterns to grammar symbols

the application of a Pull Up Method refactoring pattern followed by an application of the
Inline Method refactoring pattern is a refactoring sequence with two levels. The first one
is comprised by the application of Pull Up Method and the second one by the application
of Inline Method.

Considering the existence of a grammar and a refactoring catalogue, the steps for the
creation of the initial refactoring sequences for n levels are:

1. Create the binding between the grammar and the refactoring catalogue.

2. Create the individual bindings between the grammar symbols and the individual
refactoring patterns in the catalogue.

3. For each grammar symbol which has applicable refactoring patterns proceed as
follows:

(a) Generate all the combinations (with repetitions) of the applicable refactoring
patterns with 1 level

(b) ...

(c) Generate all the combinations (with repetitions) of the applicable refactoring
patterns with n levels

Section 8.4 exemplifies how these steps are mapped to the source code of a proto-
type developed to generate these initial sequences. To simplify the creation process, the
impossible sequences are not evaluated at this stage, but later, in the simplification phase.

8.3.2 Simplifying the Sequences

The next steps reduce the number of sequences. Let r1 and 72 be refactoring patterns
and Z be an initial program which will be manipulated by the refactoring patterns. The
following cases can occur:

134

Simplifications: Simplifications occur when there is a shorter path that leads from
an initial program to an end program. If from Z, the application of 71 followed by
r2 results in the same piece of software than the application of 72 from the initial
program Z, the sequences are said to be equivalent. This equivalence can be denoted
as: Zrlr2=17r2.

Commutative Path: Commutative paths occur when the order of application of a
refactoring patterns pair does not matter. It means that: Z r1 r2 =7 r2 rl.

Inverse Path: Refactoring patterns usually have an inverse refactoring pattern (for
example, Pull Up Method is the inverse refactoring pattern of Push Down Method).
This case can be expressed as: Z r1 r2 =7.

Independent Path: This kind of sequence occurs when two different refactoring
patterns in a path do not have an influence on each other and can be applied in
parallel. It is a special case of a commutative path. This cases occur because the
refactoring patterns are manipulating distinct elements of the programs and in the
general case of commutative paths the refactoring patterns can be manipulating the
same elements, but with the same final result.

Impossible Paths: Impossible paths are refactoring sequences that cannot be ap-
plied. Certain refactoring patterns can disable the application of other patterns.
For example, after a method is inlined it cannot be moved or renamed because the
method itself does not exist anymore.

These rules of behavioural preservation and equivalence can be proved using differ-

ent techniques. The equivalences for simplifications, commutative and inverse paths can
be proved using graph parallelism and confluence techniques (BALDAN et al., 1999;
HECKEL; KUSTER; TAENTZER, 2002). The occurrence of independent and impos-
sible paths can be detected using critical pair analysis (MENS; TAENTZER; RUNGE,
2005).

The following algorithm can be used to simplify a set of sequences for a given ele-

ment of the grammar. First, all possible sequences are computed. Then, the impossible,
independent and inverse sequences are removed, simplifications are removed and finally,
one of the commutative sequences are also removed (it does not matter which one). The
algorithm can be expressed as:

SIMPLIFY-REP(rep)

1

~N N R W

seqs = GETSEQS(rep)

seqs = seqs — IMPOSSIBLESEQ(SEQS)
seqs = seqs — INDEPENDENTSEQ(SEQS)
seqs = seqs — INVERSESEQ(SEQS)

seqs = seqs — SIMPLIFICATIONSEQ(SEQS)
seqs = seqs — COMMUTATIVESEQ(SEQS)
return seqs

Functions ForbiddenSeq, IndependentSeq , InverseSeq, SimplificationSeq and Com-

mutativeSeq return, respectively, all the sequences that are impossible, independent, in-
verse, simplifications and one of two commutative paths. An example using these rules is
shown in Section 8.4.

135

These simplification rules can be created once and stored in a knowledge base. They
are used when the developer wants to search for sequences of refactoring patterns (instead
of the application a single refactoring pattern). A tool provider, for example, can specify
a set of simplification rules for refactoring patterns manipulating methods, and another
set for refactoring patterns manipulating classes.

The user can then use such rules indirectly, by providing for which refactoring patterns
he wants to search for refactoring opportunities, how many levels are the sequences and
for which modules, packages or classes the search will be conducted (scope reduction).

8.4 Case Study: Reducing Sequences of Refactoring Patterns for
Methods

In this section, deterministic finite automata (DFAs) are used to represent the possible
refactoring sequences for a set of refactoring patterns. DFAs are a practical model of
computation (SIPSER, 1996), and there are several ways to find a DFA recognizing the
union, intersection, and complements of languages.

An DFA is used to exemplify the approach. It is simplified using the previously de-
fined rules. The simplification of the DFA for the Pull Up Method paths is explained in
detail and for the other remaining paths is briefly described. The initial and final DFAs
are compared, showing the differences before and after the simplification is performed.

Table 8.1 shows five refactoring patterns for manipulating methods in a class, as com-
posing the refactoring patterns catalogue, for the purpose of this example.

Table 8.1: Selected refactoring patterns
Ref. Pattern Description
Pull Up Method The method is moved to one of its superclass (either
the immediate one or other super-classes higher in the
class hierarchy). This refactoring pattern receives two
parameters: a reference to the method to be moved and
the super-class of destination.
Inline Method All calls to the method are replaced by the contents of
the method. The method is deleted. This refactoring
pattern receives a reference to the method to be inlined
as a parameter.

Rename Method The method is renamed as well as all calls to it. It re-
ceives a reference to the method and the new name as
parameters.

Move Method The method is moved to another class and the refer-

ences are updated. The refactoring pattern receives a
reference to the method and the destination class as pa-
rameters.

Push Down Method The method is moved to one or more subclasses of the
class containing the method. The refactoring pattern
receives a reference to the method and a set of sub-
classes of destination

136

8.4.1 Creating the Initial DFA and Removing Impossible Sequences

The first step is to create a DFA describing the sequences of refactoring patterns for
method manipulation. The following representations are used to express each refactoring
pattern:

e pu(m,s) = pullUp (method, superClass)
e im(m) = inline (method)

e rm(m,n) = rename (method, newName)
e mm(m,nc) = move (method, newClass)

e pd(m,sc) = pushDown (method, subClasses)

As observed, the Inline Method refactoring pattern stops the possibility of manipulat-
ing the method. Therefore, the first step is to remove the impossible paths thus generated.
Figure 8.3 shows the initial DFA with the impossible paths removed.

pu(m,s’) "“("‘)
rm(m,n)

rm(m n)

pd(m,sc) o

pu(m,s’)
. mm(m,nc) pd(m,sc) mm(m,nc) .
. pu(m,s’) pu(m,s) % rm(m,n) mm(m,nc) ‘

im(m)
pd(m,sc) e e pd(m,: sc) ‘
‘ Fm(m.p . rm(m,n)
|m(m mm(m, nc) im(m)
.

Figure 8.3: Refactoring methods initial DFA, with 21 paths

pd(m,sc)

Note that even though the refactoring patterns can be applied, this does not imply
that it is sound or beneficial to apply them. In the case of impossible paths, which are
sequences that are always impossible, no matter which parameters are used, they are
removed a priori before the actual applications of each sequence are evaluated in terms
of the preconditions of the refactoring patterns. Excluding those impossible paths, from
the initial state s1, 21 remaining different paths can be followed.

8.4.2 Simplifying the Pull Up Method Sequences

In the second step, after the application of a Pull Up Method refactoring pattern, other
patterns can be applied in sequence, such as: another Pull Up Method, an Inline Method,
a Rename Method, a Move Method or a Push Down Method. The process starts with this
particular branch of the initial DFA (Figure 8.3). Figure 8.4 shows the branch of Pull Up
Method considering the application of two patterns in sequence. This Pull Up Method
branch will be simplified by applying a set of rules.

The following subsections discuss a set of simplifications made to this branch and
then the resulting final DFA is compared with the initial one.

137

Figure 8.4: Pull Up Method - Level 2

8.4.2.1 Simplification: Pull Up Method — Pull Up Method Sequences.

The DFA is traversed, starting from the first sequence (Pull Up Method followed by
another Pull Up Method). In practice, this first sequence is unnecessary, as the developer
can pull up the method two classes up in the inheritance tree. There is no need to look for
opportunities to first pull up the method to the immediate superclass and then immediately
look for an opportunity to pull up the method one class more in the hierarchy tree. If the
developer wants to move a method to its super-super-class, there is no need to first move
it to the super-class and then moving it to the super-super-class (if this later movement is
possible).

This led us to the first simplification rule in the DFA representing refactoring se-
quences. Whenever there is a sequence of two applications of the Pull Up Method refac-
toring pattern involving the same method, the path can be simplified in a way that the
method is pulled up to the higher superclass in the inheritance tree (the superclass in the
second Pull Up Method occurrence). This rule can be expressed as follows:

S.pu(m, s).pu(m,s") = S.pu(m, s (8.3)

Therefore, in the initial DFA, the Pull Up Method followed by Pull Up Method se-
quence can be removed: pu(m, s).pu(m, s’). Note that this simplification only excludes
the search for opportunities of a sequence composed by two Pull Up Method refactor-
ing patterns applied to the same method. There is still the need to look for refactoring
opportunities for applying each of the Pull Up Method individually. Also, each applica-
tion of a refactoring pattern has to be evaluated in terms of its pre-conditions. This can
be lazily evaluated, as it is expensive to compute beforehand all the possible refactoring
opportunities.

8.4.2.2 Simplification: X\ — Inline Sequences

A second path that can be simplified occurs when a Pull Up Method is followed by an
Inline Method refactoring pattern. The application of Inline Method replaces all the calls
to the method by the contents of the method. Moving the method to the superclass and
then inlining it in the same refactoring sequence does not make sense, and therefore this
possibility is rejected. This simplification can be expressed as follows:

S.pu(m, s).im(m) = S.em(m) (8.4)

In fact, after applying the Inline Method, the application of the remaining selected
refactoring patterns in Table 8.1 does not make sense. Therefore, the sequences can be

138

simplified to the direct application of Inline Method, instead of applying first the other
refactoring patterns.

In summary, whenever a sequence contains a Pull Up Method, a Rename Method, a
Move Method or a Push Down Method refactoring pattern followed by an Inline Method
operating on the same method, the sequence can be simplified in a way that only the Inline
Method refactoring pattern is applied. This rule can be expressed as follows:

S.Aim(m) = S.im(m) (8.5)

where A € {pu(m, s), rm(m,n), mm(m,nc), pd(m, sc)}
This simplification leads to the removal of all the sequences ending with an Inline
Method: rm(m,n).im(m), mm(m,nc).im(m), pu(m, s).im(m) and pd(m, sc).im(m).

8.4.2.3 Commutative Paths: Rename Method and Pull Up Method Sequences

Another common simplification is the occurrence of commutative paths. By observing
the sequence Pull Up Method followed by the application of Rename Method in a different
order, one can conclude that it does not matter if the method is renamed before or after
the Pull Up Method application. This leads us to the next simplification rule, which can
be summarized as follows:

If there is a sequence composed by a Pull Up Method followed by a Rename Method,
the inverse sequence (Rename Method followed by Pull Up Method) can be removed from
the DFA (or vice-versa). This rule can be expressed as:

S.pu(m, s).rm(m,n) = S.orm(m,n).pu(m, s) (8.6)

Figure 8.5 shows the rule expressed as a DFA.

In this rule, the choice was to arbitrarily remove the Rename Method — Pull Up Method
sequence: rm(m,n).pu(m, s). It does not matter which one of the commutative paths is
chosen for removal.

Figure 8.5: Commutative paths: Rename Method and Pull Up Method sequences

8.4.2.4 Simplification: Pull Up Method — Move Method Sequences

The next simplification refers to the case when a sequence composed of a Pull Up
Method followed by a Move Method operate in the same method. The Pull Up Method
does not change the overall result, as the method is moved again to another class. This
led us to another simplification rule, stating that whenever a Pull Up Method is applied
before a Move Method operating in the same method, the sequence can be simplified to
the initial state followed by the application of Move Method. The definition is as follows:

S.pu(m, s).mm(m,nc) = S.mm(m,nc) (8.7)

In this case, the larger sequence pu(m,s).mm(m,nc) is removed from the initial
DFA.

139

8.4.2.5 Inverse: Pull Up Method — Push Down Method Sequences

One additional simplification that can be performed is the search for inverse paths, i.e.
paths that reverse the effects of a previously applied refactoring. For example, if a method
is pulled up from a class to a superclass and after that it is pushed down to the original
class again, all the classes remain the same. Therefore, whenever a sequence of a Pull
Up Method followed by a Push Down Method is applied to the same method in the same
classes, the end result is the initial state:

S.pu(A.m, B).pd(B.m,A) = S (8.8)

This case does not occur when the classes involved in the operations are different. For
example, if a method is pulled up from class A to class B and after that it is pushed down
from class B to class C, the resulting state is different from the original state:

S.pu(A.m, B).pd(B.m,C) # S (8.9)

In this case, the initial pu(m,s) . pd(m,sc) sequence stays in the DFA, until the actual
parameters are evaluated to see if it is an inverse sequence.

8.4.3 Comparing the DFAs

In summary, the Pull Up Method branch of the DFA was simplified with the following
rules:

/

S.pu(m, s')
S.im(m)

S.mm(m, nc)

S.pu(m, s).pu(m, s

S.pu(m, s).im(m

S.rm(m,n).pu(m, s)

S

S.pu(m, s).rm(m,n

)
)
S.pu(m, s).mm(m,nc)
)
S.pu(A.m, B).pd(B.m, A)

Repeating the same approach for the Rename Method, Move Method and Push Down
Method branches, the DFA is further simplified. The following additional rules were
applied to simplify the DFA:

/

S.rm(m,n).rm(m,n’) = S.rm(m,n’)

S.mm(m,nc).rm(m,n)

S.rm(m,n).mm(m,nc
/

S.mm(m,nc).mm(m,nc S.mm(m,nc’)

)
)
)
)
)
)

S.pd(m, sc).pu(m,s’) = S
S.pd(m, sc).mm(m,nc) = S.mm(m,nc)
S.pd(m, sc).pd(m,sc’) = S.pd(m, sc)

Figure 8.3 and Figure 8.6 show, respectively, the initial DFA and the simplified DFA.
A reduction of 62% of the initial number of sequences was achieved.

140

Figure 8.6: Refactoring methods simplified DFA - 8 paths

8.4.4 Sequences in the Sample Projects

The actual number of simplified sequences can vary from project to project. For a
module (class aspect or interface) M, the number of sequences can be initially computed
using the nom, dit and noc metrics, as follows:

rm.arm = nom(M)
rm.mm = nom(M)
B { nom(M) : dit(M) > 0
0 . otherwise

B nom(M) : mnoc(M) >0
rmpd = { 0 : otherwise
Aim = nom(M)
mm.\ = nom(M)
DN = { nom(M) : dit(M) >0

0 . otherwise

0 . otherwise

pd = {nom(M) . noc(M) >0

imA = 0

To assess the applicability of the proposed approach, the sequences were computed for
the ten sample projects presented in Chapter 9 using the number of operations in module,
depth of inheritance tree and number of children metrics. Table 8.2 shows information
about the reduction of the sequences, including the name of the evaluated project, the
number of initial sequences, the number of simplified sequences and the percentage of
reduction.

Note that this number of sequences is large because all the methods in all the classes,
interfaces and aspects are being considered. In practice, however, the developer will eval-
uate the sequences for a small sub-set of the system modules. He can select an individual
class or all the classes in a given package, for example, to get a manageable set of se-
quences.

141

Table 8.2: Reduction of Sequences on Sample Projects

Project Number of Initial Se- Number of Simplified Reduction
quences Sequences
Aspect] Design Patterns 3954 1682 7%
Aspect] Examples o475 2254 59%
Aspect] Hot Draw 54765 21906 60%
aTrack 4263 1810 598%
Jakarta Cactus 9777 3982 59%
Glassbox 3225 1316 99%
GTalkWap 1836 762 58%
Infra Red 21495 9002 58%
My SQL Connector J 40005 16284 59%
Surrogate 1401 580 99%

8.5 Tool Support

Tool support is provided for binding a grammar to refactoring patterns in a catalogue,
and for creating the initial sequences for a set of refactoring patterns, and a number of
levels of sequences. Figure 8.7 shows the main classes of the developed API.

Consider, for instance, the sequences generated in the example of this chapter. Five
refactoring patterns are being used, which affect methods in an object-oriented language.
The following code is used to create a grammar with the non-terminal Method, and a
catalogue containing the refactoring patterns Pull Up Method, Inline Method, Rename
Method, Move Method, and Push Down Method.

Grammar javaGrammar = new Grammar("Java Grammar") ;
javaGrammar . addNonTerminal (new NonTerminalSymbol("Method"));

RefactoringCatalog fowlerCatalog = new RefactoringCatalog();
fowlerCatalog .add(new RefactoringPattern ("Pull Up Method"));
fowlerCatalog .add (new RefactoringPattern("Inline Method"));
fowlerCatalog .add(new RefactoringPattern ("Rename Method"));
fowlerCatalog .add (new RefactoringPattern ("Move Method"));
fowlerCatalog .add (new RefactoringPattern ("Push Down Method"));

O 00 1O\ B~ W~

The next step is to bind the catalogue with the grammar, and bind each refactoring
pattern with a grammar symbol. The CatalogGrammarBinder is the class responsible for
binding the catalogue and the grammar together. It also provides a method for binding
the refactoring patterns with the grammar symbols (bindSymbolToPatterns), in this case,
the five refactoring patterns to the method symbol.

1 CatalogGrammarBinder binder = mew CatalogGrammarBinder () ;

2 binder.bind (fowlerCatalog , javaGrammar) ;

3

4 ArrayList<RefactoringPattern > methodRps = new ArrayList<
RefactoringPattern >();

methodRps.add(fowlerCatalog. get("Pull Up Method"));

methodRps.add(fowlerCatalog.get("Inline Method"));

methodRps.add(fowlerCatalog . get ("Rename Method"));

methodRps.add(fowlerCatalog. get("Move Method"));

methodRps.add(fowlerCatalog . get("Push Down Method"));

O 00 3 O\ W

142

Symbol
name: String
+ Symbol(String)
+ getName() : String
+ setName(String) : void
+ hashCode() : int
+ equals(Object) : boolean
T |
e v |
S _!
Catalog NonTerminalSymbol TerminalSymbol
items: ArrayList<T> = new ArrayList<T>()
+ NonTerminalSymbol(String) + TerminalSymbol(String)
+ getltems() : Collection<T>
+ setltems(Collection<T>) : void
A -start +nonTerminals +terminals’
Grammar

name: String

terminals: ArrayList<TerminalSymbol> = new ArrayList<T...
nonTerminals: ArrayList<NonTerminalSymbol> = new ArrayList<N...
start: NonTerminalSymbol

rules: ArrayList<ProductionRule> = new ArrayList<P...

Grammar(String)

getTerminals() : Collection<TerminalSymbol>
setTerminals(Collection<TerminalSymbol>) : void
getNonTerminals() : Collection<NonTerminalSymbol> +rules
setNonTerminals(Collection<NonTerminalSymbol>) : void
getStart() : NonTerminalSymbol
setStart(NonTerminalSymbol) : void

getRules() : Collection<ProductionRule>
setRules(Collection<ProductionRule>) : void
getNonTerminal(String) : Symbol
getNonTerminal(NonTerminalSymbol) : Symbol
addNonTerminal(NonTerminalSymbol) : void
getTerminal(String) : Symbol
addTerminal(TerminalSymbol) : void

getSymbol(String) : Symbol

getName() : String

setName(String) : void

RefactoringCatalog ProductionRule

+ add(RefactoringPattern) : void
+ get(String) : RefactoringPattern

-catalog

L T e S T S

-gramma

CatalogGrammarBinder

grammar: Grammar
catalog: RefactoringCatalog
symbolRPsBindings: HashMap<Symbol, ArrayList<RefactoringPattern>> = new HashMap<Sym...

getSymbolRPsBindings() : HashMap<Symbol, ArrayList<RefactoringPattern>>
setSymbolRPsBindings(HashMap<Symbol, ArrayList<RefactoringPattern>>) : void
bind(Grammar, RefactoringCatalog) : void

bind(RefactoringCatalog, Grammar) : void

getGrammar() : Grammar

setGrammar(Grammar) : void

getCatalog() : RefactoringCatalog

setCatalog(RefactoringCatalog) : void

bindSymbolToPatterns(Symbol, ArrayList<RefactoringPattern>) : void
printBindings() : void

createlnitialSequences(Symbol, int) : Sequences
convertToArrayList(ArrayList<List<String>>) : ArrayList<ArrayList<RefactoringPattern>>

Vb b+ o+ o+ o+ o+ o+ o+ 4

Figure 8.7: Tool support for binding grammars and catalogues of refactoring patterns, and
creating the initial sequences

10 binder.bindSymbolToPatterns (javaGrammar. getSymbol ("Method") ,
methodRps) ;

The binder creates the initial sequences, which are stored in a class named Sequences.
The generation is performed by the createlnitialSequences method, which receives a
grammar symbol and the number of levels of successive refactoring, and generates the
initial sequences. The print method prints the generated sequences on the standard out-
put.

1 Sequences s = binder.createlnitialSequences (javaGrammar.
getSymbol ("Method"), 2);
2 s.print();

143

8.6 Related Work

Mens et al. (MENS et al., 2003) describe current trends and future research regarding
refactoring in general. They observe that determining where and why refactoring patterns
should be applied is still an open problem. This chapter presents an approach to reduce the
number of software elements to evaluate when searching for opportunities for refactoring
sequences.

Tourwe and Mens (TOURWE; MENS, 2003) use logic meta-programming to search
for refactoring opportunities (including sequences of refactoring) in existing software.
They state that identifying opportunities for refactoring sequences requires checking op-
portunities for each and every possible refactoring, which could take quite too much time
and should be the focus of future work. This chapter extends their work by providing
mechanisms to reduce the search space, reducing the effort needed to search for opportu-
nities for refactoring sequences.

Mens et al. (MENS; TAENTZER; RUNGE, 2005) also explore the problem of struc-
tural evolution conflicts in a formal way by using graph transformation and critical pair
analysis. They show how this formalism can be used to detect and resolve refactoring con-
flicts. Heckel et al. (HECKEL; KUSTER; TAENTZER, 2002) establish a definition of
critical pairs for typed attributed graph transformation and provide a critical pair lemma.
According to them, local confluence follows from confluence of all critical pairs. Their
techniques are used by the approach of this chapter to help detecting forbidden sequences
and independent sequences.

Approaches for identifying refactoring opportunities (SIMON; STEINBRUCKNER;
LEWERENTZ, 2001) and for evaluating the effects of refactoring on quality attributes
(BOIS, 2006; BOIS; MENS, 2003) can be adapted to be used together with the approach
of this chapter, in order to identify refactoring opportunities by considering refactoring
sequences.

8.7 Conclusions

This chapter describes an approach for reducing the search space for refactoring op-
portunities, by providing mechanisms to create and simplify a DFA representing the ap-
plicable refactoring sequences in existing software.

The approach was exemplified using five refactoring patterns dealing with the ma-
nipulation of methods. The initial DFA was simplified and its size was reduced in 62%
(considering the total number of paths to be evaluated) in the theoretical evaluation, and
between 57-60% in the practical examples.

Additional techniques can be used to further reduce the scope of refactoring, including
the careful selection of the refactoring patterns to be included in the search, the modules
to be evaluated and the optimal parameters for each refactoring pattern.

Future work should focus on answering the question of which are the best sequences
(according to the quality attributes) and on further techniques to reduce the search space,
more specifically in the task of choosing the right parameters for the actual application of
the refactoring patterns being used.

144

9 A CASE STUDY OF METRICS TO EVALUATE ASPECT-
ORIENTED SOFTWARE QUALITY

This chapter provides metrics formal definitions and empirical data showing the value
of six metrics for aspect-oriented software collected from ten open source projects. The
chapter is organised as follows. Section 9.1 describes the main motivation for this chap-
ter. Section 9.2 describes the selected metrics, the selected projects, and the computed
statistics. Section 9.3 describes a formal definition of the metrics, usage scenarios of the
metrics and empirical data. Section 9.4 shows data correlation between the metrics. Sec-
tion 9.5 shows how the metrics can be used to spot shortcomings. Section 9.6 describes
related work and finally, Section 9.7 concludes the chapter.

9.1 Introduction

Aspect-Oriented Software Development (AOSD) aims at providing abstraction and
composition mechanisms to better modularise crosscutting concerns (KICZALES et al.,
1997; ELRAD; FILMAN; BADER, 2001). These concerns often cannot be clearly de-
composed from the rest of the software and their modularisation using object-oriented
techniques usually results in either scattering or tangling of the resulting software.

The use of software metrics can help to evaluate various quality attributes of aspect-
oriented software, such as modularity, reusability and size. For example, size metrics can
support the identification of modularisation problems: large modules can be broken into
smaller ones with fewer responsibilities or have their features merged into other modules.

Metrics adapted from the widely known and used metrics for object-oriented software
(CHIDAMBER; KEMERER, 1994) have already been used in experimental studies on
AOSD (CACHO et al., 2006; CASTOR FILHO; GARCIA; RUBIRA, 2005; GREEN-
WOOD; BLAIR, 2006), where the original object-oriented metrics were extended to be
paradigm-independent, generating comparable results (CASTOR FILHO et al., 2006). Up
to date, these metrics have been informally described (CECCATO; TONELLA, 2004),
their properties have not been analysed and typical values of these metrics for actual and
practical software are not available in the literature.

This chapter complements these previous works by providing, for a sub-set of those
metrics, formal definitions of metrics and empirical data collected from a set of widely
available aspect-oriented (AO) projects, and a set of usage guidelines. These definitions
can be used to improve the accuracy of quantitative assessment of aspect-oriented soft-
ware by reducing the ambiguity normally present in informal descriptions. The usage
scenarios can show the relation of metrics with quality attributes.

Two sets of metrics are considered:

145

1. Metrics adapted from Chidamber and Kemerer (CHIDAMBER; KEMERER, 1994)
by Zakaria and Hosny (ZAKARIA; HOSNY, 2003), Santanna et al. (SANTANNA
et al., 2003), and Ceccato and Tonella (CECCATO; TONELLA, 2004): lines of
code (locc), number of operations in module (nom), depth of inheritance tree (dit)
and number of children (noc);

2. Metrics specifically defined for aspect-oriented software: crosscutting degree of
an aspect (cda) and coupling on advice execution (cae) (CECCATO; TONELLA,
2004).

9.2 Selected Metrics, Projects, and Statistics

This section discusses the metrics selected for this study, the projects used to collect
empirical data, and the computed statistics.

9.2.1 Selected Metrics

Many aspect-oriented metrics can be formally defined, evaluated and their values for
open source projects interpreted. However, to take a broad perspective of aspect-oriented
metrics and for the sake of brevity, this chapter focus only on six of these metrics:

e Lines of Code (locc)

e Number of Operations in Module (nom)

Depth of Inheritance Tree (dit)

Number of Children (noc)

Crosscutting Degree of an Aspect (cda)
e Coupling on Advice Execution (cae)

The first four selected metrics (locc, nom, dit and noc) are used to measure size and
use of inheritance and can be the basis for more complex metrics. The other two metrics
(cda and cae) show how many modules an aspect affects and also how many aspects affect
each module. These two coupling metrics provide basic information about the influence
of aspects in the overall design.

Other metrics, such as cde, cdo and cdl deal with the diffusion of a given concern
over components, operations and lines of code. The problem with these metrics is that the
definition of a concern is somewhat fuzzy and the automation of the metric is not feasible.
Therefore, they are not discussed in this chapter.

Another metric used in this chapter is the ratio between the mean value of the metric
1 for aspects and the mean value of the metric p for classes. Values of this metric higher
than one indicates that the mean value of the x metric is higher in the aspects than in the
classes. On the opposite way, values below one denote that the metric values are higher
in the classes. A ratio value of one indicates that the mean values for this metric are equal
in aspects and classes. This ratio is used to compare the values of the metric in aspects
and in classes (which projects have a higher value of a chosen metric for aspects than for
classes or which ones have lower values for aspects).

The ratio between the mean value of the metric u for aspects and the mean value of
the metric p for classes can be defined as: Let T(u(aspects)) be the mean value for a

146

metric p for all the aspects and Z(u(classes)) be the mean value for a metric 4 for all the
classes, the ratio between the mean value of the metric i for aspects and the mean value
of the metric u for classes (denoted by ratioMean) is: T(u(aspects))/T(u(classes)).

9.2.2 Selected Projects and Computed Statistics

This section briefly describes the projects used to provide empirical data used as exam-
ples in Section 9.3. Ten projects were selected from open source repositories, considering
the number of users, and different domains, aiming at selecting projects that are reason-
ably stable and that have a significant user base. The use of heterogeneous projects in-
tends that the collected values for the metrics represent typical values for aspect-oriented
software.

Table 9.1 shows summary information (name, description, version, size, and URL) of
the selected projects.

Table 9.1: Summary of selected projects

Name Desc. Version
(locc)

1. Aspect] De- Implementation of the GoF Pat- vl.1

sign Patterns terns. (2,344)

URL: http://www.cs.ubc.ca/~jan/AODPs/

2. Aspect] Ex- Examples of the Aspect] distri- AJS
amples bution. (2,878)
URL: http://www.eclipse.org/aspectj/

3. Aspect] Hot An aspect-oriented version of v0.3

Draw the JHotDraw graphics frame- (23,051)
work.
URL: http://sourceforge.net/projects/ajhotdraw/
4. aTrack Bug Tracking Application. CVSHead
(2,221)

URL: https://atrack.dev. java.net/
5. Jakarta Cactus Test framework for server-side v1.3

java code. (5,244)
URL: http://jakarta.apache.org/cactus/
6. Glassbox Troubleshooting agent for Java v1.0a2

applications. (1,562)
URL: http://www.glassbox.com/
7. GTalkWap GoogleTalk access from WAP- v1.0b

enabled devices. (1,013)
URL: http://sourceforge.net/projects/gtalkwap
8. Infra Red Performance Monitoring Tool v2.3

for Java/J2EE. (13,888)
URL: http://sourceforge.net/projects/infrared
9. My SQL Con- MySQL Native Java driver. v5.0
nector J (40,755)
URL: http://www.mysqgl.com/products/connector/j/
10. Surrogate Unit testing framework. v1.0RCl1

(806)

URL: http://sourceforge.net/projects/surrogate

The aopmetrics tool' was used to collect the metric values for the selected projects.
For each metric, the mean was selected as a measure of central tendency and the standard

IAvailable at http://aopmetrics.tigris.org

147

deviation as a measure of dispersion. The values were grouped by project and by module
type (aspect or class). For each metric, histograms were created for the values for as-
pects and for classes. As the sample data is different for each histogram, the Shimazaki’s
method (SHIMAZAKI, 2006) was used to select the bin size (the bin size represents the
size of each category in the histogram).

The accuracy of samples is usually measured using margin of error (SNEDECOR
et al., 1989). The amount by which the values obtained from the sample will differ from
the true population values rarely exceeds one divided by the square root of the size of the
sample (1/+/n), where n represents the number of elements in the sample. In this chapter,
the margin of error for the analysis related to values for aspects is 8% and for classes it is
3%.

9.3 Formal Definitions of Metrics and Empirical Data

This section provides, for each of the six selected metrics, their formal definition,
usage scenarios and empirical data: lines of code (locc), number of operations in module
(nom), depth of inheritance tree (dit), number of children (noc), crosscutting degree of an
aspect (cda) and coupling on advice execution (cae). Table 9.2 summarizes the number
of aspects and classes per selected project, presenting an overall feeling of the size of the
selected projects (in terms of aspects and classes).

Table 9.2: Modules in the project

Project Name #Classes #Aspects % of Aspects
Aspect] Design Patterns 104 40 27.8%
Aspect] Examples 56 27 32.5%
Aspect] Hot Draw 357 10 2.7%
aTrack 53 28 34.6%
Jakarta Cactus 93 1 1.1%
Glassbox 28 24 46.2%
GTalkWap 25 2 7.4%
Infra Red 158 11 6.5%
My SQL Connector J 149 1 0.7%
Surrogate 19 3 13.6%
Total 1092 147 11.9%

Each metric is described using the following structure:

e [nformal Definition: In the introduction of each metric, an informal introduction is
provided to describe the meaning of the metric;

e Formal Definition: Set theory is used to describe the metric in a formal way;

e Usage: The usage scenarios for the metric are discussed, together with scenarios
for the combination with other metrics;

e Empirical Data: A set of summary statistics for the values of the metric in the
selected projects is provided. Also, a brief discussion of the metric values in the
selected projects is conducted;

148

9.3.1 Lines of Code

This metric counts the number of lines of code (locc). The Java and Aspect] gram-
mars” were used to define the components needed to compute this metric. The following
considerations from Stochmialek (STOCHMIALEK, 2009) are used to compute the locc
of a module:

e comments, javadocs and empty newlines are not counted;
e class, aspect, method and advice headers are counted as a line;
e anew line is created for a closing curly braces;

e string constants are counted as a single line.

In Aspect], aspects can be composed of several elements, including those that can be
also elements of classes. Aspects can contain declare constructions, advices, inter-type
method/constructor declarations, inter-type field declarations, inner classes/aspects/inter-
faces, enumerations, constructors, fields and methods.

9.3.1.1 Formal Definition

Let O be the set of declare constructions, inter-type field declarations, enumerations
and fields of a module, Z be the set of inner classes/aspects/interfaces of a module and
M be the set of advices, methods, constructors and inter-type method/constructor decla-
rations of a module. Consider that the set .4 is composed of several elements (ay, ..., a;)
where i = |.A| and the ZC set is composed of several elements (icy, ..., ic;) where j = |ZC|
. The locc(m) : Module — IN of a module m can be computed by:

n m
loce(m) = 1+1]0|+ Z loce(a;) + Z locc(ic;) 9.1)

i=0 =0
In this case, the class or aspect declaration is counted as one line of code. Each de-
clare construction, inter-type field declaration, enumeration and field is counted as one
line of code (their sum is denoted by the cardinality of the O set). Advices, inter-type
method/constructor declarations, constructor and methods are composed of statements
(conditionals, loops®). Considering each statement in a single line, the locc of such con-
structions can then be computed by the number of carriage returns in the body of each

construction (tools for collecting metrics usually starts by formatting the source code).

9.3.1.2 Usage

Metrics that count lines of code are usually used as indicators of effort, productivity
and cost (FENTON; PFLEEGER, 1997). In the measurement of effort, the locc metric is
used to allow comparisons between different projects or systems. This metric is also used
in productivity measurements (such as locc/hour) or costs (cost/locc), for example.

The absolute value of locc of a class or aspect can be used as a rough indicative of
how much effort was put into developing and maintaining an aspect, and as an indicative
of complexity (FENTON; PFLEEGER, 1997).

The following considerations can be made to relative measures using locc:

2Java Grammar at https://javacc.dev. java.net/, Aspect] Grammar at http://abc.
comlab.ox.ac.uk/documents/scanparse.pdf

3See the full Java grammar at https://javacc.dev. java.net / for more details of all possible
statements.

149

e The locc metric can be used to express rates regarding quality attributes, such as
defects per locc (BRIAND; MORASCA; BASILI, 1996).

e The locc 1s also used to measure the size of methods (locc per method) and the
density of documentation of a module (lines of comments per locc) (FENTON;
PFLEEGER, 1997).

o If flexibility is an important requirement of the system being developed (when de-
veloping a framework, for example), the overall value of locc might be higher than
if a system with few extension points is developed. The developer can consider a
higher value for the threshold of the Large Aspect shortcoming, for example.

Considering the combination of the locc metric with the other metrics discussed in
this chapter, the following usage guidelines are described:

e The relation of locc/nom can be used as an indicative of the size of operations.
High locc values with low values of nom (number of operations in a given module,
as described in the next metric entry), can be an occurrence of the Long Method
shortcoming (FOWLER et al., 1999), because this shortcoming is described in
terms of the size of a method. Modules with high locc values and high nom val-
ues can be an occurrence of the Large Aspect or of the Large Class shortcomings
(FOWLER et al., 1999), because both shortcomings are described in terms of the
size of aspects and classes.

e Aspects with high locc values and with low cda (crosscutting degree of an aspect)
values can denote that the aspect has state or behaviour that is not dealing with
crosscutting concerns, because the aspect has a large size, but do not affect other
modules. Such cases can be occurrences of the Lazy Aspect shortcoming. Part
of the state and behaviour of this aspect can be moved to a new or to an existing
class, thus reducing the size of the aspects to the minimum needed to implement the
crosscutting behaviour (as aspects are abstractions created to deal with crosscutting
concerns). The aspect can use association mechanisms to access these features.

e Another possible combination is in terms of cae values. Aspects or classes with
low locc values and high cae values can be occurrences of the Aspect Interaction
shortcoming. The smaller the values of locc and the higher the values of cae, the
higher is the probability of aspects interactions.

9.3.1.3 Empirical Data

Table 9.3 summarizes the statistical data collected from the ten selected projects. The
first two columns show the mean and standard deviation for aspects, and the next two
columns show the same information for classes and the last one shows the ratio between
the mean value of locc for aspects and the mean value of locc for classes. Figure 9.1
shows the values of locc for aspects and for classes*. The x-axis shows the value of locc
and the y-axis shows the relative frequency of each category in the projects.

In the selected projects, the core functionality is defined in classes. The aspects mod-
ularise concerns that would be otherwise scattered over the classes. The computed mean
value of locc for classes in the selected projects is 94.3 and the standard deviation is

“In the classes histogram, 95% of the available data is shown to more easily compare the values for
aspects and classes (i.e. the z-range is smaller than the maximum value of locc for classes).

150

Table 9.3: Summary statistics for locc values

loce o loce o locc
rat.
Project Name (Aspects) (Classes)
Aspect] Design Patterns 19.7 14.1 13.9 9.5 1.42
Aspect] Examples 33.7 35.9 347 39.3 0.97
Aspect] Hot Draw 18.0 104 62.8 88.7 0.29
aTrack 33.5 46.4 22.1 18.8 1.51
Jakarta Cactus 88.0 0.0 54.3 64.1 1.62
Glassbox 40.5 35.7 18.9 16.6 2.14
GTalkWap 11.0 7.1 38.2 33.6 0.29
Infra Red 33.7 38.2 84.5 97.4 0.40
My SQL Connector J 186.0 0.0 2719 6684 0.67
Surrogate 7.0 6.9 41.0 54.3 0.17
Total 30.4 355 94.3 291.8 0.32
Value of locc for aspects Value of locc for classes
40 ; ‘ 40 ‘ ‘
ws | locc === | o | locc === |
g a0 4 § =3} g
g 25 B g 25 B
% 20 g é 20 g
EL% 15 B ;‘L’ 15 B
§ 10 B Eﬂj 10 B
5 1 5 B
0 — — 0
0 50 100 150 200 0 50 100 150 200
Value of locc Value for locc

Figure 9.1: Value of locc for aspects and classes

291.8. The mean value of locc for the aspects is 30.5 and the standard deviation is 35.5.
The mean values of locc in the selected projects are, in general, higher for classes; also,
the variability for classes is higher than for aspects.

If the ratio between the mean locc of aspects and the mean locc of classes is analysed,
one can see that there are projects with a ratio lower than one (classes are bigger, in terms
of locc) and projects with ratio higher for aspects. Projects presenting a low ratio include
Surrogate (0.17), Aspect] Hot Draw (0.29), GTalkWap (0.29), Infra Red (0.40), My SQL
Connector J (0.67) and Aspect] Examples (0.97). In these projects, the core functionality
of the application is modularised in classes and the aspects are used to encapsulate aux-
iliary concerns (such as logging, tracing and policy enforcement), application of design
patterns or other infra-structure aspects.

There are projects in which the ratio is bigger than one (i.e. the aspects are bigger than
the classes). This usually occurs when the application is heavily based on aspects, such as
the aTrack (1.51) and the Aspect] Design Patterns (1.42) projects or when the application
is designed to be plugged into another using load-time weaving. In this sense, the locc
of the affected classes is not being computed. This case occurs in the Glassbox (2.14)
project. One last project with a high ratio is the Jakarta Cactus (ratio of 1.62), which has
93 classes and only one aspect. This single aspect is responsible for logging every entry
and exit of methods and is quite long. It could be simplified by reducing the duplication

151

inside its advices.

Considering the collected data, 95% of the modules have a locc smaller than 250 and
85% are smaller than 100 lines of code. Developers tend to define small classes to im-
prove the understandability of the modules and reduce the defects per module (BRIAND;
MORASCA; BASILI, 1996). There are however, classes with high values for locc.
Querying the metric values of the selected projects, the maximum value of locc is 4374.
Considering that that the mean locc is 30 and the maximum value for the locc in the
aspects is 186, 4374 lines of code is high number for the size of a class.

9.3.2 Number of Operations in Module

The number of operations in module (nom) metric counts the number of operations in a
given module (CECCATO; TONELLA, 2004). The nom of classes is defined as the num-
ber of methods of a given class (CHIDAMBER; KEMERER, 1994). When dealing with
aspects, besides methods there is the need to also consider advices and inter-type decla-
rations. So, in this chapter, a slightly different formula for the nom is defined, specifically
for aspects. The nom metric relates directly to the complexity of modules, since advices
are method-like constructs that provide a way to express crosscutting actions at the join
points that are captured by a pointcut (BERG; CONEJERO; CHITCHYAN, 2005). In-
formally, the value of nom for a module is given by sum of the number of its methods,
advices, inter-type method declarations and inter-type constructor declarations.

9.3.2.1 Formal Definition

Let M be the set of methods, A the set of advices, MD the set of inter-type method
declarations and CD the set of inter-type constructor declarations of an m module. The
nom of the module m is given by a function nom(m) : Module — IN:

nom(m) = |M| + |A| + |[MD| + |CD| 9.2)

9.3.2.2 Usage

The following viewpoints were adapted from Chidamber and Kemerer (CHI-
DAMBER; KEMERER, 1994) and are applicable to the nom metric:

e The number and the complexity of advices in a class indicate how much time and
effort is needed to develop and maintain the aspect;

e Aspects with large numbers of advices are likely to be more application specific,
limiting the possibility of reuse.

e One of the original viewpoints is that the larger the number of methods in a class,
the greater the potential impact on children, as children will inherit all the methods
defined in a class. The impact of this viewpoint is not as high for aspects (as in
Aspect], for instance, the sub-aspects do not redefine the advices of super-aspects),
as the advices of super-aspects do not influence much the complexity of sub-aspects.

Other considerations regarding the nom metric are:

e Classes and aspects with low values of nom can be inspected to see if they are oc-
currences of the Lazy Aspect (MONTEIRO; FERNANDES, 2005a; PIVETA et al.,
2005) or the Lazy Class (FOWLER et al., 1999) shortcoming. These cases occur

152

Value of nom for aspects Value of nom for classes
80 T T T T T T T T T T T T
i nom Emmmm 80 - nom
70 B 70
> > 60 B
c 50 B c
ﬂé_ ‘é)_ 50 B
o 40 i 5
I r 40 1
£ 30 1 £ =2 .
8 8
& 20 B n“:’ 20 i
’ Tﬂi | . T_’—!—u- |
0 Il Il Il Il Il 0 e L Il Il Il

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Value for nom Value for nom

Figure 9.2: Value of nom for aspects and classes

if an aspect or class has few responsibilities, and its elimination can be benefi-
cial. Sometimes, this responsibility reduction is related to previous refactoring or
to unexpected changes in requirements (planned changes that did not occur, for
instance).

e Classes and aspects with high values of nom can be occurrences of the Large
Classes (FOWLER et al., 1999) or Large Aspects (PIVETA et al., 2005) short-
comings. When an aspect encapsulates more than one concern, it should be divided
in as many aspects as there are concerns. This shortcoming is usually discovered
when the developer finds several unrelated members (fields, pointcuts, inter-type
declarations) in the same aspect (PIVETA et al., 2006a).

e In terms of reusability, modules with high values of nom can suffer from the Re-
fused Bequest shortcoming (FOWLER et al., 1999)3, in which the sub-classes in-
herit methods that are not used.

e In terms of modularity, the higher the value of nom, the higher is the likelihood that
those methods are responsible to deal with different concerns. Further research is
needed to correlate nom with cohesion metrics.

When considering the combinations of this metric with the other metrics discussed in
this chapter, the following usages can be made:

e The cda/nom metric can be an indicative of how much influence (in terms of af-
fected modules) an aspect has. High values of cda/nom indicate that the advices
affect several modules.

e The cae/nom metric can be used to see how much the aspects influence the overall
behaviour of a given module. The value of cae/nom is directly proportional to the
influence of aspects in a module.

9.3.2.3 Empirical Data

Table 9.4 shows summary statistics related to the nom metric. Figure 9.2 shows his-
tograms for the values of nom for aspects and classes. The z-axis shows the value of nom
and the y-axis shows the relative frequency of each category in the projects.

3 A more precise name for this shortcoming would be Ignored Bequest

153

Table 9.4: Summary statistics for nom values

nom o nom o nom
rat.

Project Name (Aspects) (Classes)
Aspect] Design Patterns 2.8 2.7 2.1 1.2 1.34
Aspect] Examples 5.3 5.3 4.9 4.6 1.08
Aspect] Hot Draw 2.7 2.5 9.2 121 0.29
aTrack 4.1 6.1 3.8 4.2 1.08
Jakarta Cactus 5.0 0.0 7.2 9.2 0.69
Glassbox 53 6.0 2.8 2.7 1.91
GTalkWap 1.5 0.7 5.5 4.4 0.27
Infra Red 2.4 2.0 10.7 151 0.22
My SQL Connector J 170 0.0 194 478 096
Surrogate 0.3 0.6 5.8 7.0 0.05
Total 39 4.8 9.3 21.0 042

The values for the nom metric are highly correlated to those of locc (Section 9.4
describes this in more details). The mean value of nom for classes is 9.3 and for aspects
is 3.9, denoting that the number of operations in classes is larger than in the aspects in
the selected sample. Also, the variability of this metric in the classes is higher than in the
aspects. In the selected projects, the computed standard deviation of classes is 21 and in
aspects it is 4.8. Also, the maximum value of nom for classes is 313 and for aspects it is
23.

The majority of modules (81.3%) have a maximum of ten operations (methods, ad-
vices, inter-type method declarations or inter-type constructor declarations), while 11%
have between 11 and 20 operations and 7.6% have more than 20 operations. Considering
only classes, there are 78.3% of them with less than 10 methods, 12.4% with 11 to 20
methods and 9.3% with more than 20 methods. The nom of aspects is usually smaller:
90.5% of the aspects have up to 10 operations, 8.8% have between 11 and 20 and only
0.7% (one aspect) has more than 20 operations.

The ratio between the mean of nom in classes and the mean of nom in aspects provides
an indication of the proportion between the number of operations in classes and aspects.
The ratio per project is below one for the Surrogate (0.05), Infra Red (0.22), GTalkWap
(0.27), Aspect] Hot Draw (0.29), Jakarta Cactus (0.69) and My SQL Connector J (0.96).
The last project presents a high ratio value because there is only one aspect with 17 op-
erations. Ratio values higher than one are found in the aTrack (1.08), Aspect] Examples
(1.08), Aspect] Design Patterns (1.34) and Glassbox (1.91) projects. Note that these ratio
values are smaller than the ones presented for the locc metric.

9.3.3 Crosscutting Degree of an Aspect

The crosscutting degree of an aspect (cda) metric counts the number of modules af-
fected by advices, declare constructions, declared annotations, inter-type method decla-
rations and inter-type constructor declarations in a given aspect (CECCATO; TONELLA,
2004).

154

9.3.3.1 Formal Definition

Let AA be the set of modules affected by advices of an aspect o, AD the set of
modules affected by declare constructions of «, AN the set of modules annotated by the
aspect «, AZ the set of modules affected by the inter-type declarations of «. A function
cda(a) : Aspect — IN that computes the crosscutting degree of an aspect can be defined

as the cardinality of the union of the AA, AD, AN and AT sets:
cda(a) = [AAUAD U AN U AZ| 9.3)

9.3.3.2 Usage

The crosscutting degree of an aspect metric can be used as an indicator of separation
of concerns (GARCIA et al., 2006). The following usages can be considered:

e High values of cda are desirable (CECCATO; TONELLA, 2004), as the cda metric
indicates how many modules an aspect affects and how useful the aspect is.

e Ceccato and Tonella (CECCATO; TONELLA, 2004) point out that while high val-
ues of cda are desirable, the number of explicitly named modules in the pointcut
expression of an aspect must be kept low (CECCATO; TONELLA, 2004). This
case is expressed as a guideline named Use semantic based pointcuts, which sug-
gests the use of annotations or references to implemented interfaces to express the
pointcut expressions (Appendix A).

e If the cda value is equal to one, it means that the aspect affects only one class or
aspect. Aspects are usually used to implement a concern that would be scattered
over several classes. If there is no scattering, it is better to use classes instead.
The developer can evaluate if it is better to inline the aspect or use inheritance or
association mechanisms to separate the concerns encapsulated by the aspect.

e Section 9.3.1 discusses combinations with the locc metric and Section 9.3.2 com-
binations with the nom metric.

9.3.3.3 Empirical Data

Table 9.5 shows summary statistics of the cda metric. Figure 9.3 shows the values of
cda in the selected projects. Note that this metric only applies to aspects, not to classes.
The x-axis shows the value of cda and the y-axis shows the relative frequency of each
category in the projects.

The values of cda are low in general (72% of the aspects have a cda value of three or
less), but the values can be high and can vary according to the nature of the concerns being
encapsulated by the aspects (with a maximum of 78 in the selected projects). Logging
and tracing aspects are more likely to have high values of cda than other aspects. Higher
values of cda indicate that the aspect is a valuable entity. This happens because if the
concern is being implemented as a class, calls to its methods have to be scattered over
other classes.

9.3.4 Coupling on Advice Execution

The coupling on advice execution (cae) metric counts the number of aspects contain-
ing advices that are possibly triggered by the execution of operations in a given module -
1.e. the number of aspects affecting the module (CECCATO; TONELLA, 2004).

155

Table 9.5: Summary statistics for cda values

Project Name T o Min Max
Aspect] Design Patterns 2.8 5.9 0 38
Aspect] Examples 3.5 4.8 0 20
Aspect] Hot Draw 3.6 5.4 1 18
aTrack 133 212 O 75
Jakarta Cactus 68.0 0.0 68 68
Glassbox 517 95 0 33
GTalkWap 3.0 1.4 2 4
Infra Red 2.0 4.7 0 15
My SQL Connector J 78.0 0.0 78 78
Surrogate 1.3 2.3 0 4
Total 6.2 139 0 78

Value of cda for aspects

100 T T T
cda mmmm

60 1

Frequency

40 1

) —’_l—u P 7
0 e I e I
10 20 30

40 50 60 70 80
Value for cda

Figure 9.3: Value of cda for aspects

9.3.4.1 Formal Definition

Let £A is the set of aspects that advises a module m, £D the set of aspects that
add declare (parents or implements) constructions to m, EN the set of aspects that add
annotations to m, £Z the set of aspects that define inter-type declarations to m and £€ the
set of aspects that declare error or warnings to m. The cae(m) : Module — IN function
can be defined as the cardinality of the union of the CE elements:

cae(m) = |EAUEDUEN UET U EE] (9.4)

9.3.4.2 Usage

The values of the cae metric can be used to check if there is an occurrence of the
Aspect Interaction shortcoming. The following considerations can be made:

e Low values of cae are good, as the higher the cae value, the more coupled is the
class to the aspects that affect it (CECCATO; TONELLA, 2004). If a module has a
cae with a zero value, it means that the module is not affected by aspects.

e (lasses with a cae value of two or more can have interactions between the aspects
(DOUENCE; FRADET; SUDHOLT, 2002), which can possibly lead to precedence
conflicts or incompatibilities between the applied aspects. The developer should be
aware of such interactions in order to evaluate if they are being handled correctly.

156

Value of cae for aspects Value of cae for classes
T T T T T T T T T
100 L cae mm=m | 100 k- cae mmmm |
S sf 1 € = R
> >
o o
c c
g g
2 60 g 2 60 g
o o
w w
2 4 g 2 4 g
8 8
e e
20 B 20 B
0 Il Il Il Il 0 1 Il L Il Il
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Value for cae Value for cae

Figure 9.4: Value of cae for aspects and classes

e Combinations with the locc metric are discussed in Section 9.3.1 and combinations
with the nom metric in Section 9.3.2.

9.3.4.3 Empirical Data

Table 9.6 shows summary statistics for the values of cae in aspects and classes. Figure
9.4 shows histograms for the cae values for aspects and classes. The x-axis shows the
value of cae and the y-axis shows the relative frequency of each category in the projects.

In the selected projects, the aspects affect classes more than affect other aspects. The
only exception is the Glassbox project, which uses load time weaving to attach its aspects
to a target Java application, so the values for the cae metric in the affected classes can
only be computed at load time.

Table 9.6: Summary statistics for cae values

cae o cae o cae rat.

Project Name (Aspects) (Classes)

Aspect] Design Patterns 0.1 0.4 0.5 0.6 0.2
Aspect] Examples 0.5 0.6 1.4 1.5 0.3
Aspect] Hot Draw 0.0 0.0 0.1 0.3 0.0
aTrack 33 1.5 4.4 1.9 0.7
Jakarta Cactus 0.0 0.0 0.7 0.4 0.0
Glassbox 3.0 1.4 1.5 0.9 2.0
GTalkWap 0.0 0.0 0.2 0.6 0.0
Infra Red 0.0 0.0 0.1 0.3 0.0
My SQL Connector J 0.0 0.0 0.5 0.5 0.0
Surrogate 0.0 0.0 0.2 0.4 0.0
Total 1.2 1.7 0.6 1.2 2.2

Considering the ratio between the mean value of cae for aspects and the mean value
of cae for classes, all the projects - except the Glassbox - have a ratio lower than one.
Six projects have a zero ratio (GTalkWap, Aspect] Hot Draw, Jakarta Cactus, Surrogate,
Infra Red and My SQL Connector J), three projects have a ratio lower than one (classes
are more affected than aspects), including the Aspect] Design Patterns (0.23), Aspect]
Examples (0.34) and aTrack (0.74) whereas the Glassbox has a ratio of 1.97.

Note that the values for this metric are quite low, which indicates that interactions
among aspects is not very common. Considering all the selected projects but Glassbox

157

Value of dit for aspects Value of dit for classes
T T T T T
100 b dit === | 100 L dit === |
S 8 1 € = R
> >
o o
c c
g g
2 60 g 2 60 g
o o
w w
2 a0 E 2 4 E
8 8
e e
20 B 20 B
N ‘ ‘ . | - ‘
0 2 4 6 8 10 0 2 4 6 8 10
Value for dit Value for dit

Figure 9.5: Value of dit for aspects and classes

and aTrack, only 2.1% of the aspects have a cae value higher than one. However, for the
Glassbox and aTrack projects, interactions can introduce precedence issues as 91% of the
aspects in the Glassbox project and 81% of the aspects in the aTrack project have cae > 1.
The mean value of the cda metric for the selected projects is higher that the values of cae,
indicating that the aspects are being used to modularise concerns that the corresponding
object-oriented alternative would be otherwise scattered among several classes.

9.3.5 Depth of Inheritance Tree

The value for depth of inheritance tree (dit) is given by the longest path from a mod-
ule to the class/aspect hierarchy root (CHIDAMBER; KEMERER, 1994; CECCATO;
TONELLA, 2004). It is computed by counting the number of inheritance levels, from the
module to the root class/aspect.

9.3.5.1 Formal Definition

Considering a function s(x) : Module — Module that computes the super-class or
super-aspect of a given module, the value of dit is given by:

. B dit(s(m))+1 : m # rootClass
dit(m) = { 0 otherwise

9.3.5.2 Usage

The following viewpoints are adapted from Chidamber and Kemerer (CHIDAMBER;
KEMERER, 1994) and from Ceccato and Tonella (CECCATO; TONELLA, 2004):

e The higher the dit of an aspect, the more inherited methods it has and usually the
more complex the aspect is, as the developer may have to understand not only the
aspect but also the super-aspects or super-classes.

e Aspects with high values for dit are commonly project specific, whilst abstract as-
pects are usually more reusable across different projects.

9.3.5.3 Empirical Data

Table 9.7 shows the values for dit in the selected projects. Figure 9.5 shows histograms
for aspects and classes. The z-axis shows the value of dit and the y-axis shows the relative
frequency of each category in the projects.

158

Table 9.7: Summary statistics for dit values

dit o dit o dit rat.

Project Name (Aspects) (Classes)

Aspect] Design Patterns 0.4 0.5 0.5 1.4 0.8
Aspect] Examples 0.2 0.4 0.7 0.9 0.3
Aspect] Hot Draw 0.0 0.0 1.5 1.6 0.1
aTrack 0.4 0.7 1.1 1.7 0.4
Jakarta Cactus 0.0 0.0 0.9 1.1 0.0
Glassbox 1.1 1.1 1.4 1.1 0.8
GTalkWap 0.0 0.0 0.7 0.7 0.0
Infra Red 0.4 0.5 0.4 0.7 1.0
My SQL Connector J 0.0 0.0 1.0 1.3 0.0
Surrogate 0.7 0.6 0.8 1.0 0.9
Total 0.4 0.7 1.1 1.4 0.36

The value of the mean of dit for classes is 1.1 whilst for aspects the equivalent value
is 0.4. Also, the dispersion in the values of this metric is higher for classes (1.4) than
for aspects (0.7). The maximum value for dit of classes is eight and for aspects is three.
The inheritance trees in the observed projects are deeper in classes than in aspects. This
is expected to be true, as aspects in Aspect] can only extend classes or abstract aspects.
As there are no benefits of inheriting advices, the reuse using inheritance is mainly due
to the definition of abstract aspects with abstract pointcuts and advices. The sub-aspects
override the abstract pointcuts to provide the concrete join points that the aspect will
affect.

The ratio between the mean dir of aspects per mean dit of classes varies from zero
to 0.8. In all projects the inheritance tree is deeper for classes than for aspects. In the
selected projects, the value of dit of classes is less than two in 85.5% of the cases, within
two and four in 11.8% of the classes and higher than four in 3.7% of the classes. In the
case of dit for aspects, the maximum value of dit is three. In fact, only two aspects are
three levels down in the inheritance tree. In the other cases, 90.5% of the aspects are root
aspects or inherit from one abstract aspect or class and 8.2% have a dit equals to two.

Classes and aspects with high dit values can be inspected to search for misuse of
inheritance or instances of Refuse Bequest. In the selected projects, only 3.7% of the
classes have a dit value higher than four. Inspecting the classes with a dit higher than
four, the developer can see that 75% of the classes are in the Aspect] Hot Draw project,
where inheritance is heavily used. In this case, the project can be analysed to see if too
much emphasis is given to inheritance instead of using associations, for example.

9.3.6 Number of Children

The number of children (noc) represents the number of direct sub-classes or sub-
aspects for a given module (CHIDAMBER; KEMERER, 1994; CECCATO; TONELLA,
2004).

9.3.6.1 Formal Definition

Consider a function s(z) : Module — Module that computes the super-class or
super-aspect of a given module and a set M representing the set of all modules of a given
project. To compute the value of the number of children for a module m, let S be the set

159

of all modules that satisfy the predicate Vy € M, s(y) = m. Thus, the metric value is
given by the cardinality of the S set:

noc(m) = |S| 9.5)

9.3.6.2 Usage

The following viewpoints (CHIDAMBER; KEMERER, 1994) for the noc metric were
adapted to the context of aspect-oriented software:

e The higher the values of noc, the higher are the possibilities that the aspect has
been reused, since inheritance is a reuse mechanism. However, the higher is the
likelihood of a Refused Bequest (FOWLER et al., 1999), in which the aspect does

not use part of the attributes and methods defined in the super-class or super-aspect.

e Aspects with high values of noc can be more benefited from extensive testing, as
sub-aspects usually depend on the behaviour of the super-aspect.

9.3.6.3 Empirical Data

Table 9.8 shows summary statistics of the noc metric and Figure 9.6 shows empirical
data for noc metric both in aspects and classes. The z-axis shows the value of noc and the
y-axis shows the relative frequency of each category in the projects.

Table 9.8: Summary statistics for noc values

noc o noc o noc rat.

Project Name (Aspects) (Classes)

Aspect] Design Patterns 0.4 0.7 0.02 0.1 19.5
Aspect] Examples 0.2 0.5 0.2 0.7 1.0
Aspect] Hot Draw 0.0 0.0 0.6 2.5 0.0
aTrack 0.3 0.7 0.2 0.8 1.4
Jakarta Cactus 0.0 0.0 0.4 0.8 0.0
Glassbox 0.5 1.4 0.7 1.4 0.7
GTalkWap 0.0 0.0 0.2 0.7 0.0
Infra Red 0.4 1.2 0.2 0.7 2.1
My SQL Connector J 0.0 0.0 0.3 1.1 0.0
Surrogate 0.7 1.2 0.2 0.5 4.2
Total 0.3 0.8 0.4 1.9 0.9

The majority of modules does not have children: in the selected projects 82% of the
aspects and 87% of the classes do not have children. Aspects with more than one sub-
aspect comprise 7.5% of the aspects and classes with more than one sub-class correspond
to 6.8% of the total number of classes.

Six projects have a ratio between the mean value of noc for aspects and the mean
value of noc for classes equals to zero or below one. On the other hand, four projects
have more children in the aspects than in the classes: aTrack (1.38), Infra Red (2.13),
Surrogate (4.22) and Aspect] Design Patterns (19.5). The value is the Aspect] Design
Patterns project is high because the mean value for the noc of classes in the project is of
only 0.02.

160

Value of noc for aspects Value of noc for classes
T T T T T
100 L noc Emm= | 100 k- noc Emm= |
S 8 1 € = R
> >
o o
c c
g g
2 60 g 2 60 g
o o
w w
2 4 g 2 4 g
8 8
e e
20 B 20 B
0 1 Il Il Il Il Il 0 1 Il Il Il Il
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Value for noc Value for noc

Figure 9.6: Value of noc for aspects and classes

9.4 Data Correlation

Correlation indicates the strength and direction of a linear relationship between two
random variables (SNEDECOR et al., 1989). The correlation between the metrics was
measured using the gretl® correlation algorithm. Tables 9.9 and 9.10 show the correlation
values (r) for aspects and classes (rounded to two digits using unbiased rounding).

Table 9.9: Correlation coefficients between values for aspects
Correlation between values for aspects

dit cae cda locc noc nom
dit 1.00 0.18 -025 -0.19 -0.06 -0.21
cae 1.00 0.17 026 0.06 0.26
cda 1.00 051 0.02 040
locc 1.00 022 0.87
noc 1.00 0.26
nom 1.00

Table 9.10: Correlation coefficients between values for classes
Correlation between values for classes

dit cae locc noc nom
dit 1.00 -0.07 0.02 -0.02 0.02
cae 1.00 0.00 0.00 0.01
locc 1.00 0.05 0.81
noc 1.00 0.13
nom 1.00

The correlation squared (r?) (SNEDECOR et al., 1989) is used to help in the data
interpretation. Correlation squared describes the proportion of variance in common be-
tween the two variables. High values of correlation squared appear only between the locc
and nom metrics. This correlation squared is .76, which means that, across all the aspects
in the sample projects, 76% of their variance on these two metric values is in common.
Figure 9.7 shows the correlation between these two metrics in a scatter plot. There is also
a small squared correlation between locc and cda (0.26) and between nom and cda (0.16).

Shttp://gretl.sourceforge.net/

161

30

Y =0.333+0.118X’

25 B

15 + . ’4 + -

nom Aspects

10 T + .

oL P I I I I I I I
0 20 40 60 80 100 120 140 160 180

Value of nom

Figure 9.7: Correlation between nom and locc

These squared correlation values leads to the notion that there is a relationship between
the size of aspects (in terms of the values of locc and nom) and the crosscutting degree of
an aspect (cda) values. The remaining correlation values indicate very low correlation or
no correlation at all between dit and the other metrics, cae and the other metrics and noc
and the other metrics.

Table 9.9 also shows that the metrics for classes are not correlated, except for nom
and locc, with a correlation of 0.81 (with a correlation squared of 0.66). Usually there is a
balance between the number of lines of code per method in both aspects and classes. Note
that correlation shows that a couple of values change together but does not necessarily
imply causation, as the causes underlying the correlation may be indirect and unknown.
Further investigation is needed to correlate these metrics with additional ones and to study
the causes behind this correlation.

9.5 Using Metrics to Spot Shortcomings

This section shows a series of examples of classes and aspects, considering both high
and low values for each metric and discuss the implications of such cases.

The main contribution of this chapter is an interpretation of collected empirical data,
discussing the scope of values (minimum, maximum), comparing the values in aspects
and in classes and examining variations between the metric values of the selected projects.
A set of examples of high and low values for each of the selected metrics are shown and
discussed, illustrating the value of these metrics on practical applications (including the
correlation between the selected metrics).

9.5.1 Lines of Code

Classes with high values of locc can be analysed and, if needed, broken into two or
more classes. For example, the top ten classes in terms of [occ values, in the selected
projects, are from the My SQL Connector J project. The locc of these classes varies
from 1317 to 4374 and they can be considered instances of the Large Class shortcoming
(FOWLER et al., 1999).

The highest value of locc for aspects in the selected projects is the Tracer aspect, in
the My SQL Connector J project.

Inspecting this aspect, one can note that two private methods are not being used’ and

"The getStream and setStream methods.

162

can be deleted (an occurrence of the Unnecessary Code shortcoming). The Delete Method
refactoring pattern can be applied to such cases.

Also, there are two methods containing duplicated statements in their bodies
(the printEntering and printExiting method). The Extract Method refactoring pattern
(FOWLER et al., 1999) can be used to extract the common behaviour. The same case
occurs with the entry and exit methods and with the methods and constructors pointcuts.
Both are cases of code duplication. This aspect can be broken into two different aspects:
one containing the core behaviour of tracing and other with the binding between this
behaviour and the My SQL Connector J classes.

In the minimum case, there are occurrences of the Unnecessary Code shortcoming.
For example, in the Aspect] Design Patterns project, there is an empty class named Panel
and in the aTrack project, an empty aspect named Observing. Other empty classes in the
selected projects are the Sorter and ButtonCommand?2 classes in the Aspect] Design Pat-
terns, the HTMLTextAreaFigure inner-class named InvalidAttributeMarker in the Aspect]
Hot Draw project and the MockMethodTestCase inner-class named TestException in the
Surrogate test framework. Empty classes can be considered a kind of unnecessary code.

Classes with low values of locc can also bring shortcomings. There are 25 classes and
aspects with a locc value below five and 129 below six, for example. The developer can
inspect these small classes and aspects to evaluate if their existence is justified or if they
can be merged with existing classes.

9.5.2 Number of Operations in Module

Two classes with the highest values for the wom metric in the selected projects were
analysed: Connection and ConnectionProperties (from the My SQL Connector J project).
The Connection class has an inner class, named UltraDevWorkAround, with 154 methods.

Inspecting the ConnectionProperties class, the first thing to note is that it has a lot
of inner classes. Figure 9.8 shows the ConnectionProperties class with the attributes and
methods compartments hidden to better visualize both the inner classes and two of its sub
classes: PropertiesDocGenerator and DocsConnectionPropsHelper.

The dependency between ConnectionProperties and the selected sub-classes is very
weak. The sub-classes have only a main method. As the source code to both classes is
available, the PropertiesDocGenerator class (Listing 9.1) was inspected. This class does
not need to extend the ConnectionProperties class.

Listing 9.1: PropertiesDocGenerator class

1 public class PropertiesDocGenerator

2 extends ConnectionProperties {

3 public static void main(String[] a) throws SQLException ({

4 System.out. println (new PropertiesDocGenerator () .
exposeAsXml());

5 }

6 }

Listing 9.2 shows that the inheritance dependency can be removed and an instance of
the ConnectionProperties class (line 3) can be created instead.

Listing 9.2: PropertiesDocGenerator class Modified

1 public class PropertiesDocGenerator {
2 public static void main(String[] a) throws SQLException ({

163

cd Class Model

ConnectionProperties

ConnecticnProperties::BooleanConnectionProperty

ConnecticnProperties:: StringConnectionProperties

ConnectionProperties::ConnectionProperty

| ConnectionProperties::Memory SizeConnectionProperty ‘

ConnectionProperties::IntegerConnectionProperty

i i

DocsConnectionPropsHelper PropertiesDocGenerator

+ mainf) : void + main{) : void

Figure 9.8: Class diagram for the ConnectionProperties class and some of its sub-classes

3 System.out.println (new ConnectionProperties () .exposeAsXml
0):

4 }

5}

Also, the DocsConnectionPropsHelper is equal to the PropertiesDocGenerator class,
except for its name. These classes present two shortcomings: code duplication and lazy
classes. None of them are being used by other classes and they can be both deleted
(applying the Delete Class refactoring pattern).

If they are being used indirectly, through reflection, only one of them is needed. Also,
the inner classes are quite big and can be extracted to new classes. This can reduces the
size of the ConnectionProperties class and its complexity.

In terms of high values of wom in aspects, consider the ExecutionTracer aspect in the
Glassbox project, for example. It has 20 operations dealing with trace printing, pattern
matching and advising trace points. It can be refactored into a set of aspects dealing each
one with a different concern. Large aspects can be benefited from the use of a guideline
named one concern per aspect (Appendix B), which proposes that each aspect should
encapsulate a single concern.

Low values of wom in classes appear, for example, in the Version class (Listing 9.3)
of the Jakarta Cactus project. This class has only a constant field (line 2). This constant
can be moved to another class or stored in a resource bundle.

Listing 9.3: Version class

1 public class Version {
2 public static final String VERSION = "@version@";
3

}

Another class with a low wom value is the EscapeProcessorResult class, from the

164

My SQL Connector J project (Listing 9.4). Usually, it is interesting to encapsulate the
access to the attributes using accessors. For example, the escapedSql attribute (line 3) is
used by six different methods in three classes. The developer can use the Encapsulate
Attribute refactoring pattern (FOWLER et al., 1999) to provide a getEscapedSql and a
setEscapedSql methods to access the protected data. This allows the structure of the
escapedSql to be changed (from a String for a StringBuffer, for example), decoupling the
EscapeProcessorResult class from the classes that use it.

Listing 9.4: EscapeProcessorResult class

1 class EscapeProcessorResult {

2 boolean callingStoredFunction = false;

3 String escapedSql;

4 byte usesVariables = Statement.USES_VARIABLES_FALSE;
5}

Low values of wom in aspects occur, for example, in the abstract aspect Template-
OperationMonitor, in the Glassbox project. This aspect has four pointcuts that can be
extended by sub-aspects but does not have any associated behaviour. This aspect can be
seen both as an occurrence of the Lazy Aspect shortcoming and as an occurrence of the
Speculative Generality shortcoming (FOWLER et al., 1999; PIVETA et al., 2005). Other
aspects with too few responsibilities to justify its existence include the AtrackLogMan-
ager and the AtrackExceptionHandling aspects, in the aTrack project.

For example, the AtrackLogManager (Listing 9.5) only defines a declare parents state-
ment (line 2), that can be moved to another aspect that deals with logging.

Listing 9.5: AtrackLogManager aspect
1 public aspect AtrackLogManager {
2 declare parents: org.atrack..+* implements Loggable;
3

}

9.5.3 Depth of Inheritance Tree

In the aTrack project, there are four classes with a dit of five or six. All these classes
represent Java exceptions, with the following hierarchy:

1 —Object

2 — Throwable

3 — Exception

4 — RuntimeException

5 — AtrackException

6 — PersistenceException

7 — ControllerException

8 — ModelException

9 — EntityNotFoundException

As user defined exceptions in Java usually extend from RuntimeException or from one of
its sibling classes, it is expected that they have a dit of four or more. In this case, however,
one of the classes in the inheritance tree, the AtrackException class, is used only in the

LoginAction class (Listing 9.6 - line 8):

Listing 9.6: LoginAction class
1 public class LoginAction extends Action ({

165

2

3 private Subject authenticate (String username, String
password) {

4

5 try {

6 Ic.login () ;

7 } catch (LoginException e) {

8 throw new AtrackException(e);

9 }

10 return Ic.getSubject();

11 }

12}

This class is an unnecessary middle man (FOWLER et al., 1999). The Persistence-
Exception, ControllerException and ModelException can inherit from RuntimeException
and the AtrackException can be deleted, as it is used in only one place, which can be
changed to a direct reference to the RuntimeException class.

In the selected projects, the maximum value for the dit of aspects is three. There are
no problems associated with such values for dit in aspects. In fact, only two aspects actu-
ally have a dit equal to three: the AbstractXmlCallMonitor and the XMLParsingMonitor
aspects in the Glassbox project. Further inspection in these two aspects does not show
any misuse of inheritance.

Low values of dit in classes are quite common. It is only a problem if the class is
bloated with a lot of responsibilities and the use of inheritance can alleviate the problem
or if the class is an occurrence of the Lazy Class shortcoming and has few responsibilities
in the overall design.

As the inheritance in aspects plays a slightly different role that the inheritance of
classes, the values of dit of aspects are expected to be lower than the dit of classes. Usu-
ally, inheritance mechanisms are used to decouple the behaviour defined in a super-aspect
with the concrete join points specified in the sub-aspects. Examples of such use of inher-
itance are representative of a design guideline named Use abstract aspects (Appendix B),
which states that the developer should design towards abstract aspects, whose behaviour
is defined completely by its advices, and its relationship with classes or other aspects is
accomplished by specialization.

The use of abstract aspects can help in developing more reusable aspects, by postpon-
ing implementation decision and leaving the definition of concrete pointcut definitions to
the sub-aspects. Also, the behaviour defined in abstract aspects can be reused to differ-
ent target applications. Each application can create sub-aspects that capture the specific
points that will activate the aspect behaviour.

For example, in the Observer pattern (HANNEMANN; KICZALES, 2002) (in the As-
pect] Design Patterns project) there is a ScreenObserver aspect (Listing 9.7) that extends
the reusable abstract aspect ObserverProtocol (line 1) and defines that both roles (Subject
and Observer) will be played by the Screen class (lines 2 and 3). It also defines when the
subject state changes (line 4) and what should be done to update the observers (lines 5-7).
This example defines an abstract aspect implementing the logic for the Observer pattern
and leaves for the sub-aspects the task of binding the Subject and Observer roles and the
changes in the Subject with the classes that will play these roles.

Listing 9.7: ScreenObserver aspect
1 public aspect ScreenObserver extends ObserverProtocol{

166

declare parents: Screen implements Subject;
declare parents: Screen implements Observer;
pointcut subjectChange(Subject sub):
call (void Screen.display(String)) && target(sub);
void updateObserver(Subject sub, Observer obs) {
((Screen)obs).display ("Updated");
}

O 00 3 O\ D A~ W

——

9.5.4 Number of Children

High values of noc can be seen in classes that are highly reused through inheritance. In
the Aspect] Hot Draw project, for example, the AbstractCommand class has 33 children
and is the base class for new Command classes. Other examples of classes with a high
value of noc in the Aspect] Hot Draw framework are the UndoableAdapter (with 24
children), the AbstractTool (with 15 children) and the ResizeHandle, with eight children.

Aspects with high values of noc usually implement the basic behaviour of a concern
and use abstract pointcuts to define a contract that the sub-aspects must fulfil.

Consider the InfraREDBaseAspect aspect (Listing 9.8), from the Infra Red project,
for example. This aspect tracks the time spent by a method call and updates a set of
statistics. It defines an abstract pointcut and an abstract method as hooks that are overrid-
den by the sub-aspects, binding the application classes with the time tracking behaviour.
The condition abstract pointcut (line 2) specifies the condition based on which monitor-
ing is performed and the getApiType method (line 3) gets the type (Session Bean/Entity
Bean/JDBC) of an APIL.

Listing 9.8: InfraREDBaseAspect aspect
public abstract aspect InfraREDBaseAspect {
public abstract pointcut condition () ;
public abstract String getApiType();
Object around() : condition () {

final String apiType = getApiType();
// Time tracking statements
}
}

The InfraREDBaseAspect aspect has four sub-aspects: EntityBeanAspect, Session-
BeanAspect, StrutsAspect and WebAspect. The WebAspect aspect (Listing 9.9), for ex-
ample, overrides the condition pointcut (line 2) to define which join points are affected
by the InfraREDBaseAspect behaviour and the getApiType (line 5), to specify the type of
API used.

O 00 1 O DN A~ W~

Listing 9.9: WebAspect aspect

public aspect WebAspect extends InfraREDBaseAspect {
public pointcut condition () :
execution (public * HttpServiet+.x(..)) Il
execution (public x Filter +.%(..));
public String getApiType () {
return "Web";

}

N NN R W -

167

8 }

Low noc values in classes and aspects are commonplace. In fact, in the selected
projects, nearly 87% of all the aspects and classes do not have sub-classes or sub-aspects.

9.5.5 Crosscutting Degree of an Aspect

Examples of aspects with high values of cda include the Tracer aspect from the My
SQL Connector J project (cda = 78), the LogAspect from the Jakarta Cactus project (cda =
68), the AtrackLogManager (cda = 39) from the aTrack project and the QueueStateAspect
(cda = 38) from the Aspect] Design Patterns project.

Consider the Tracer aspect (Listing 9.10), for example. This aspect has a pointcut
named methods that defines the join points using wildcards and package information,
instead of simply listing all the affected points. It ensures that every method execution
within a set of packages is traced.

Listing 9.10: Tracer aspect

public aspect Tracer {

pointcut methods(): execution(x x(..))
within (com. mysql. jdbc.x)
within (!com.mysql. jdbc . trace .x*)
within (! com.mysql. jdbc.log.x)
within (!com.mysql.jdbc. Util);

REEE

1
2
3
4
5
6
7
8

}

The QueueStateAspect (Listing 9.11) defines behaviour according to class initialisa-
tion. The after advice with the initialization(new()) & & target(q) pointcut expression af-
fects 34 classes (line 2). If new classes are added to the system, they will be automatically
affected by the aspect.

Listing 9.11: QueueStateAspect aspect
1 public aspect QueueStateAspect {
2 after (Queue q): initialization (new()) && target(q) {
3 q.setState (empty);
4 }
5
6 }

The ErrorHandling aspect, in the Glassbox project, affects 33 classes using a com-
posite pointcut, defining the affected join points using nine separated predicates (one for
each set of points).

Aspects with low cda values should be inspected to evaluate if they can be converted to
classes or merged with other aspects. The refactoring pattern Convert Aspect to Class can
be applied to transform the aspect to a class. Inline Aspect is another refactoring pattern
that can be applied to eliminate an aspect. An alternative is to apply Move Attribute, Move
Method, Move Advice, or Move Inter-Type Declaration refactoring patterns to empty the
aspect, and later apply the Delete Aspect refactoring pattern.

Sometimes the aspects with low cda values extend other aspects in a similar way that

the Template Method design pattern (GAMMA et al., 1995) is implemented in object-o-
riented software.

168

Consider, for example, the ExampleProjectCalls aspect (Listing 9.12) in the Surrogate
project. It extends the SurrogateCalls aspect (line 5), that defines an abstract pointcut
named mockPointcut (line 6) and an advice that implements a certain behaviour each time
the mockPointcut join points are reached (line 7).

Listing 9.12: ExampleProjectCalls aspect
1 aspect ExampleProjectCalls extends SurrogateCalls ({

2 protected pointcut mockPointcut() : (call (java.io.xReader.
new (..)) |l

3 call (x java.lang.System.currentTimeMillis())) ;

4}

5 public abstract aspect SurrogateCalls {

6 protected abstract pointcut mockPointcut () ;

7 Object around() : mockPointcut () {

8

9 }

10 }

Other examples of aspects that implement this aspect-oriented version of the Template
design pattern, and have a low value for cda include the four InfraREDBaseAspect chil-
dren in the Infra Red project (EntityBeanAspect, SessionBeanAspect, StrutsAspect and
WebAspect) and the ColorObserver and RequestCounting aspects in the Aspect] Design
Patterns project.

Another use of the cda metric is to spot occurrences of the Lazy Aspect shortcoming.
In the Aspect] Design Patterns project, for example, the Lazy Aspect shortcoming appear
in four aspects: StrategyProtocol, MementoProtocol, FlyweightProtocol and Compos-
iteProtocol. These aspects do not have any crosscutting members and can be converted
to classes using the Convert Aspect to Class refactoring pattern. Whenever an aspect
does not have members implementing crosscutting concerns a class can (and should, if
possible) be used instead. One lazy aspect was detected in the Glassbox. The AbstractRe-
sourceMonitor aspect does not have crosscutting members, but it cannot be converted to
a class because it extends the AbstractRequestMonitor aspect (in Aspect], classes cannot
extend aspects).

9.5.6 Coupling on Advice Execution

High values of cae can be an indicative of the Aspect Interaction shortcoming. The
developer should focus the search for aspects interactions on the modules with the highest
values for this metric. Table 9.11 shows the number of modules with cae > 1 in the
selected projects. Table 9.12 shows the same information considering a cae > 2. Classes
with a cae value higher than one can have interaction issues. The probability of having
interaction problems is higher in modules with high values for the cae metric.

The aTrack and the Aspect] Examples projects have several classes with values of
cae higher than two. Note that this fact is not a problem itself, but the classes should
be inspected to detect occurrences of the Aspect Interaction shortcoming. If there are
interactions (i.e. two or more advices are affecting the same joinpoint), there are the need
to revisit the precedence of the aspects and adjust it if needed. This can be performed by
applying a refactoring pattern named Add Aspect Precedence.

Consider, for example, the LoginAction class (Listing 9.13) in the aTrack project. This
class has a cae value equals to ten. It means that ten different aspects affect this class. The

169

Table 9.11: Number of modules with cae > 1

| Project # of modules |
aTrack 51
ajExamples 22
glassbox 9
ajDesignPatterns 8
GTalkWAP 2
ajHotDraw 2

Table 9.12: Number of modules with cae > 2

| Project # of modules
aTrack 47
ajExamples 11
glassbox 3

class has only two methods and its behaviour is heavily influenced by the aspects. It is
difficult to see if the interaction of all the aspects affecting this class is correct, in the right
order or even how they affect the behaviour of the class.

Listing 9.13: LoginAction class

1 public class LoginAction extends Action ({

2 public ActionForward execute (ActionMapping mapping,

3 ActionForm form, HttpServletRequest request,
HttpServletResponse response)

4 throws Exception {

5 LoginForm loginForm = (LoginForm)form;

6

7 return mapping.findForward

8 (Consts .SUCCESS_REDIRECT) ;

9 }

10 private Subject authenticate (String username,

11 String password) {

12

13 }

14 }

The class is advised by three advices defined in the ExecutionTracer and the Excep-
tionHandling aspects, there are three parents declarations from the Persistence Control and
the AtrackLogManager aspects. Thirteen methods are added by inter-type method decla-
rations from the LogManager aspect. The execute method (line 2) is advised by twelve
different advices, defined in eight different aspects and one exception is softened by the
ErrorHandling aspect. The authenticate method (line 10) is advised by three advices
defined in two different aspect.

It is difficult to reason about the resulting behaviour of the aspects that affect this
class. The development environment can help to show these occurrences of the Aspect
Interaction shortcoming. However, it is currently an open issue how this is modelled and
implemented in a way to ensure that the behaviour is correct. Once the correct behaviour
is defined, the developer can adjust the correct precedences with the refactoring patterns

170

Add Aspect Precedence and Remove Aspect Precedence.

Low values of cae are common and do not represent any issues in terms of complexity,
reusability or maintainability. A cae value of zero denotes that the class or aspect is not
affected by any aspects.

9.5.7 Discussion

Metrics adapted from (CHIDAMBER; KEMERER, 1994) and metrics specifically
tailored for aspect-oriented software can be used to evaluate software in the presence of
aspects in several ways. Metrics can be used as indicators of quality, used to measure
quality attributes, such as reusability or modularity, for example. Also, they can be used
to detect problems that can appear in the software. This section provides a summary of
how the usage guidelines and the examples discussed can provide insights on how each
metric can be used to spot shortcomings in aspect-oriented software.

The locc metric can be used in combination with other metrics as an indicative of ef-
fort, complexity, productivity and cost. In the selected projects, the majority of classes and
aspects have low values of locc, showing probable design efforts attempting to improve
the comprehensibility and to reduce the number of defects per module. More specifically
the locc metric can be used to spot:

e Large Operations: The locc metric in combination of nom is used to evaluate the
size of operations. High locc values with low values of nom can show large meth-
ods, large advices or large inter-type method declarations.

e Unnecessary use of Aspects: Classes with high locc values and with low cda values
can denote that the aspect has state or behaviour that is not dealing with crosscutting
concerns.

e Aspect Interactions: Aspects or classes with low locc values and high cae values
can suffer from aspect interactions, where more than one aspect affects the same
join points at the same time.

e Large Modules: High values of locc in classes and aspects can denote large classes
or large aspects. Those modules should also be inspected for code duplication, for
unused operations and attributes and for the encapsulation of more than one concern
per module.

e Lazy Modules: Classes or aspects with very low values of locc should be inspected
to evaluate if they have enough responsibilities to exist at all.

The nom metric can indicate how much effort is needed to develop an aspect or a class.
Modules with high values for nom are likely to be more application specific, with a lower
reusability. The metric can also be used to detect a set of cases:

e Lazy Modules: Modules with low values of nom can be evaluated to see if they have
enough responsibilities to be first class entities of a system or if it is better to merge
them with other modules;

e Large Modules: Modules with high values of nom can be large modules, with sev-
eral concerns being encapsulated or having a large number of inner classes or unre-
lated operations, for example;

171

e Refused Bequest: Modules with high values of nom are more likely to suffer from
this shortcoming, in which sub-classes or sub-aspects inherit methods that are not
used.

The values for the nom metric are highly correlated to those of locc. As happens
with the values of locc, the nom of classes is higher than in the aspects. Around 80% of
modules have a maximum of ten operations, but several modules with high values of nom
can be found in practice.

The values of dit in classes are usually higher than in aspects, as in Aspect] the aspects
have a limited inheritance mechanism. The dit metric can be used to:

e Measure Complexity: Modules with high values of dit are usually more complex
and more project specific, limiting reuse.

e Detect Misuse of inheritance: Modules with high dit values should be inspected to
search for misuse of inheritance, i.e. should be analysed to evaluate if too much
emphasis is given to inheritance.

The noc metric can indicate how many modules use inheritance as a reuse mechanism.
In the selected projects, around 85% percent of the modules do not have children. The
noc of an aspect or class is usually used to spot:

e Indicatives of Reuse: Modules with several children are likely to be extensively
reused. The developer should look for sub-classes or sub-aspects that do not use
effectively the composing elements of their super-classes or super-aspects;

o Important Modules: Sometimes, modules with several children are important mod-
ules of a project. These modules can be tracked and analysed for any inheritance
misuses.

The cda metric is used to measure the influence of an aspect in other modules and can
be used to:

o Evaluate Usefulness of Aspects: Aspects with high values of cda are usually more
valuable, as the equivalent object-oriented modularisation would be scattered over
several modules.

e Find Lazy Aspects: Aspects with a low cda can be inspected to see if the behaviour
and state encapsulated by the aspect can be moved to or merged with other modules.

Aspects that deal with global policies, such as logging, tracing or authentication are
more likely to have high values of cda than other aspects. In the selected projects, the
majority of aspects does have low values for cda and some of them can be seen as lazy
aspects.

The cae metric represents the number of aspects that affects a given module and is
mainly used to detect:

e Aspects Interaction: The higher the value of cae of a module, the higher the proba-
bility of having more than one aspect affecting the same join points of this module;

o Affected Modules: The modules that have a cae different than zero are those that
are affected by some aspect. These modules have to be treated more carefully, as
modifications in the affected module can potentially affect the aspect behaviour.

172

In the selected projects, classes are more affected by aspects than the aspects them-
selves. Furthermore, the values of this metric are quite low, except for a few modules
(there are modules, for example with a cae of ten). Low values of cae are common and
do not represent any issues in terms of quality attributes.

9.6 Related Work

Analysis of empirical data is a straightforward way to investigate the benefits and
disadvantages of software properties. This is also the goals of some related work in the
literature. This section summarizes the main characteristics of these related works and
compares them with the work of this chapter.

Baxter et al. (BAXTER et al., 2006) analysed a corpus of Java programs to provide
information about the typical values of metrics in Java programs, aiming at understanding
the relationship among Java classes and objects. The work is this chapter differs from
theirs in the sense that this chapter discusses the shape of aspect-oriented programs and
focus on the formal definition of the metrics, and empirical data rather than verifying if
the distribution function of the metrics obeys power laws (as in their work).

Zhao (ZHAO, 2002) propose a set of metrics to aspect-oriented software to quantify
the information flow in aspect-oriented programs. He also discusses a set of metrics to
coupling in aspect-oriented software (ZHAO, 2004) and a set of metrics to compute the
cohesion of aspect-oriented software (ZHAO; XU, 2004). His metrics are also formally
defined and evaluated according to a set of well-defined criteria. The main difference is
that this thesis deals with a different set of metrics, regarding size, inheritance and aspect-
specific coupling metrics and it shows typical values for aspect-oriented software, data
interpretation and the correlation of the metrics.

Other authors propose metrics for aspect-oriented software (SANTANNA et al., 2003;
ZAKARIA; HOSNY, 2003; TONELLA; CECCATO, 2004). They defined the metrics in-
formally and do not conduct analytical evaluation of the proposed metrics, neither empir-
ical data to describe the common characteristics of aspect-oriented software. This thesis
provides a formal definition, empirical data and analytical evaluation of the metrics (Ap-
pendix C).

Bartsch and Harrison (BARTSCH; HARRISON, 2008) deal with the empirical val-
idation of aspect-oriented coupling measures as indicators of maintainability of aspect-
oriented software and with the validity of those metrics in terms of a set of theoretical
principles (BARTSCH; HARRISON, 2006). They state that there is a weak correlation
between a set of coupling and size metrics with the maintenance effort between differ-
ent versions of an application. Although there is the need for further research to validate
coupling metrics for aspect-oriented software as indicators of maintainability, their work
is a first step on the validity of coupling metrics for aspect-oriented software. Both of
their works are in an initial stage and are grounded on an informal basis. The work of
this thesis complements their works by providing formal definitions of metrics, analytical
evaluation, usage scenarios, empirical data and interpretation to two of the five coupling
metrics that those authors discuss (cae and cda).

9.7 Conclusions

In this chapter, a set of contributions to the use of metrics for aspect-oriented software
are provided. More specifically, it provides for a set of six metrics: a formal definition

173

and a set of usage scenarios and (ii) an interpretation of collected empirical data, and the
correlation between metrics. Appendix B shows an analytical evaluation of the metrics
against established criteria for validity.

The use of formal definitions for the metrics helps to understand the metrics more
clearly and unambiguously, making it easier to ensure that the computation of the metric
values can be done in a repeatable fashion. It can also facilitate the automation of the
metrics collection process.

The set of usage scenarios can show the developers how the metrics can be used to
detect shortcomings in existing software artefacts. For example, the metrics evaluated
in this chapter can be used to show the occurrence of several cases, as follows. The locc
metric can be used to spot large operations, unnecessary use of aspects, aspects interaction
and large modules. The nom metric can be used to detect lazy and large modules, refused
bequests, influence of aspects and how affected is a given module. The dit metric is used
primarily to measure complexity, misuse of inheritance and the occurrence of project
specific aspects. The noc metric can indicate the degree of reuse of a given module and
to spot key modules of a project. The cda metric is used to evaluate the usefulness of an
aspect and to find lazy aspects. The cae metric is mainly used to show if the module is
affected by aspects and to show the possibility of aspect interaction scenarios.

The data interpretation shows typical values of aspects and classes in aspect-oriented
software. The provided histograms can be used to compare the metric values for an aspect-
oriented project with the set of open source projects used in this chapter.

The correlation between the metrics explains how certain metrics change together and
how they can be combined and used to evaluate aspect-oriented software. It is shown
that the metrics both for aspects and classes are not correlated, except for locc and nom
(high correlation) and between locc and cda and nom and cda (small correlation), but can
nevertheless be combined to show cases in which the software can be improved.

Further research is needed to assess and evaluate other metrics for aspect-oriented
software, such as metrics for coupling and cohesion, including: coupling on intercepted
modules (cim), coupling on method call (cmc), coupling on field access (cfa), response
for a module (r fm) and lack of cohesion in operations (/co). More details about these spe-
cific metrics can be found in Ceccato and Tonella (CECCATO; TONELLA, 2004). Future
work can also focus on the analysis of Zhao’s metrics (ZHAO, 2002) to spot shortcomings
on aspect-oriented applications.

174

10 CONCLUSION

This thesis presents a set of contributions to improve the search for refactoring op-
portunities in aspect-oriented and object-oriented software applications. It includes ap-
proaches to select and rank refactoring patterns according to a quality model, to search
for refactoring opportunities in software artefacts, to reduce the number of refactoring
sequences, and to evaluate the effects of refactoring on software quality. The thesis also
includes a catalogue of shortcomings in aspect-oriented software and a case study of met-
rics for aspect-oriented software. This chapter is organised as follows. Sections from
10.3 to 10.7 summarise the contributions of this thesis, how each of them was evaluated,
which tool support was developed and how the contributions are inter-related. Section
10.8 describes the main areas for future work regarding the main ideas of this thesis.

10.1 A Discipline for Refactoring

This thesis proposes a discipline for guiding the developers when performing refac-
toring activities. It provides a set of activities, roles, artefacts, and tool support for refac-
toring. The discipline is divided into two stages: preparation and search.

The preparation activities are organised as follows. In the first step, the developers
select a quality model for the software application being developed. The next step is to
select refactoring patterns for which refactoring opportunities will be searched. If needed,
a ranking of refactoring patterns according to the quality model can be created. The next
step is the creation or selection of heuristic rules.

After the quality models, the refactoring patterns and the heuristic rules are se-
lected, the developers can search for refactoring opportunities. First, they specify the
search scope, which includes the selection of which classes, and which packages will be
searched, and the definition of whether searching for refactoring opportunities in software
elements for which refactoring patterns were already applied. Then, the developers set the
number of levels of successive refactoring for the search (see Chapter 8).

Having the search scope defined, the next steps are to search for software elements
matching the scope, to compute the values for the heuristic rules, and to create a list of
refactoring opportunities. The developers can evaluate the advantages of each refactor-
ing pattern application either quantitatively (using impact functions) or qualitatively (by
seeing the changes that the refactoring pattern application can have).

The developers can mark a set of refactoring patterns to be applied and move to the
next activity: application of refactoring patterns. In this activity, the developers provide
additional parameters needed by each refactoring pattern, apply the refactoring patterns,
test the affected modules and, if needed, undo some of the applications of refactoring
patterns. These search activities can continue until the developers decide to stop the search

175

for refactoring opportunities.

A discipline containing activities for refactoring can help the developers to organize
the refactoring process, focusing on reducing the required efforts and improving the effec-
tive results. This is accomplished by improving a particular software module on a set of
chosen quality attributes, and by applying a set of selected refactoring patterns that con-
tribute to the improvement of the selected quality attributes on a set of selected elements
- chosen by their chances of being improved by the selected patterns.

This thesis provides tool support for ranking refactoring patterns, for searching for
refactoring opportunities, and for computing the effects of refactoring on software quality.
Tool support for the creation of quality models and the application of refactoring patterns
can be provided by third party tool vendors (such as the support for the application of
refactoring patterns in current IDEs).

The ranking of refactoring patterns using AHP, according to a set of quality attributes
of a piece of software, is described in Chapter 4. Chapter 5 describes how to automat-
ically detect typical shortcomings which occur in aspect-oriented software. Chapter 6
shows how metrics can be grouped together as heuristic rules and how they can be used
to prioritise refactoring opportunities. Chapter 7 describes how impact functions can be
created and used to quantitatively evaluate the quality of the software application be-
ing developed. Chapter 8 describes an approach to reduce the number of sequences of
refactoring patterns, by proving ways to create a set of initial sequences and to create
simplification rules to reduce the number of sequences.

10.2 A Method for Ranking of Refactoring Patterns

This thesis describes how to rank a set of refactoring patterns according to their con-
tribution to the required quality attributes of a piece of software. The refactoring patterns
are ordered by their expected contribution to a set of quality attributes and the quality at-
tributes are ordered by their relative importance in the current project. To accomplish this
ordering process, a multi-criteria decision method named Analytical Hierarchy Process
(AHP) is used. This ranking of refactoring patterns can be used to focus the refactor-
ing effort on the most promising refactoring patterns to the software application being
developed or maintained.

AHP provides mechanisms to express the relationship between quality attributes and
refactoring patterns and quality attributes between them. A ranking can then be computed
and used for the selection of refactoring patterns. The proposed approaches are adaptable:
the quality attributes, the refactoring patterns, and the weights can be changed. In each
change, the new ranking can be computed automatically.

The proposed approach was instantiated for a detailed example of the construction of
aranking composed of three quality attributes and four refactoring patterns. This example
shows, step by step, how to specify pairwise comparisons for the quality attributes, how to
specify pairwise comparisons for refactoring patterns according to the quality attributes,
and how to compute an overall ranking of refactoring patterns according to the selected
quality attributes.

Tool support was developed to help in the creation of pairwise comparisons for quality
attributes and refactoring patterns using AHP, including the components needed to com-
pute the ranking of quality attributes, the ranking of refactoring patterns and the overall
ranking (of refactoring patterns according to the quality attributes).

Such approach for ranking refactoring patterns can be used to focus the search for

176

refactoring opportunities on those refactoring patterns that are more likely to improve the
selected quality attributes. The usage guidelines of the metrics described in Chapter 9 can
be used together with the impact functions described in Chapter 7 to improve the accuracy
and precision of the generated ranking (by improving the pairwise comparisons).

10.3 An Approach to Search for Refactoring Opportunities

This thesis proposes an approach to search for refactoring opportunities in software
artefacts. It focuses on identifying and prioritising refactoring opportunities, aiming at
maximizing the quality attributes the developers are interested in. The approach uses
heuristic rules to evaluate the software artefacts according to a selected quality model,
and qualitative analysis to evaluate the trade-offs for each opportunity.

The advantage of using this approach is that the developers can automatically detect
occurrences of shortcomings and software elements with low values for heuristic rules,
which are specified to quatitatively evaluate the quality attributes of a software appli-
cation. Also, the application of refactoring patterns is suggested for each refactoring
opportunity, which allows the developers to improve the software application through
refactoring.

To evaluate and show the applicability of the proposed approach in a practical setting,
two case studies are provided. The first case study was conducted in an object-oriented
software application, in which a heuristic rule (composed of two quality attributes and
a set of metrics) and two refactoring patterns were used to search for refactoring oppor-
tunities. The identified and prioritised refactoring opportunities were evaluated as well
as the resulting classes after the application of a set of refactoring patterns. The second
case study shows the search for occurrences of shortcomings in a set of aspect-oriented
software applications using a set of heuristic rules for Aspect].

Tool support includes an AST-based tool for Java and AspectJ, developed in the con-
text of this thesis, as a plug-in for the Eclipse development environment. This tool in-
cludes a set of algorithms to search for refactoring opportunities in Aspect] programs,
using AST visitors. The aopmetrics (STOCHMIALEK, 2009) tool was used to collect the
metrics and store them in a Postgresql database. SQL queries were used to compute the
heuristic values and generate the prioritised set of refactoring opportunities. The eclipse
refactoring tool was used to apply the refactoring patterns. Chapter 3 lists additional tools
for the search and prioritisation of refactoring opportunities.

The search and prioritisation process starts with a set of refactoring patterns. Such
set can be the best ranked refactoring patterns obtained by the approach described in
Chapter 4. The metrics presented in Chapter 9 can be used to quantitatively express the
quality attributes that the developers are aiming for. The impact functions created using
the approach proposed in Chapter 7 can be also used to prioritise the detected refactoring
opportunities. This approach can also be used to identify and prioritise opportunities to
apply refactoring sequences (described in Chapter 8). More on the meta-model of such
approach, the roles and artefacts needed, please refer to Chapter 3.

10.4 A Catalogue of Shortcomings in Aspect-Oriented Software

This thesis describes a catalogue of shortcomings that arise in aspect-oriented systems,
suggests refactoring patterns that can be used to remove or minimize them, and provides
tool support for automatically detecting occurrences of these shortcomings in software

177

applications. It extends other works that aim at defining catalogues of shortcomings in
object-oriented code (FOWLER et al., 1999) and shortcomings in aspect-oriented code
(MONTEIRO; FERNANDES, 2005a).

The main advantages are to help in the development of automated tools to identify
typical shortcomings in software applications and to suggest refactoring patterns to min-
imise or remove those shortcomings. The catalogue of shortcomings can also provide
insights to the definition of design guidelines (such as the ones described in Appendix B),
which aim at preventing the insertion of such shortcomings in the software application.

Examples retrieved from well-known aspect-oriented programs are provided for each
shortcoming described in the catalogue. Chapter 6 shows a case study using a set of
heuristic rules that can be used to detect the occurrences of shortcomings in aspect-
oriented software applications.

The number of shortcomings can be reduced using the approach described in Chapter
4. In this case, only the shortcomings with an associated refactoring pattern in the ranking
are included in the search. The metrics described in Chapter 9 can be used to define
heuristic rules, both in aspect-oriented and object-oriented software programs. Impact
functions (described in Chapter 7) can be associated with each opportunity for refactoring
found by a detection tool. This way, the developer can evaluate both quantitatively and
qualitatively if the suggested refactoring pattern application is advantageous or not.

10.5 Maetrics for Evaluating the Quality of Aspect-Oriented Software

This thesis provides a set of contributions to the use of metrics for aspect-oriented
software. More specifically, it provides, for a set of six metrics: (i) a rigorous definition
and a set of usage scenarios, (ii) an interpretation of collected empirical data, including
the correlation between these collected metrics, and (iii) an analytical evaluation of the
metrics against established criteria of validity (described in Appendix C).

Four of the selected metrics (locc, nom, dit and noc) can be used to measure size
and use of inheritance. The other two metrics (cda and cae) show how many modules an
aspect affects and also how many aspects affect each module. These two coupling metrics
provide basic information about the influence of aspects in the overall design.

The use of formal definitions helps to understand the metrics more clearly and un-
ambiguously, making it easier to ensure that the computation of the metric values can be
done correctly. The set of usage scenarios can show the developers how the metrics can be
used in practice to detect shortcomings in existing software artefacts. The data interpreta-
tion shows typical values of aspects and classes in aspect-oriented software. The provided
histograms can be used to compare the metric values for an aspect-oriented project with
the set of open source projects used in Chapter 9. Furthermore, the correlation between
the metrics explains how certain metrics change together and how they can be combined
and used to evaluate aspect-oriented software.

No specific tool support was developed regarding the metrics in the case study. Aop-
metrics was used to collect the metrics (STOCHMIALEK, 2009). Gnuplot was used for
the generation of graphs (http://www.gnuplot.info/), and a custom generation
program was developed in Java to generate the statistical data. Correlation was computed
using the Gretl tool (gret1.sourceforge.net/).

The metrics used in the case study can be used for the definition of pairwise compar-
isons between refactoring patterns according to quality attributes. Such pairwise compar-
isons are the core of the approach for ranking refactoring patterns described in Chapter

178

4. The metrics are also used in Chapter 6 and in Chapter 5 to define heuristic rules for
the prioritisation of refactoring opportunities. The formal definitions described in Chapter
9 are also used to define impact functions for the Pull Up Advice refactoring pattern in
Chapter 7. The ten sample applications were used in Chapter 8 in a case study to evaluate
the approach for simplifying refactoring sequences. Last, Chapter 3 describes how the
metrics are used throughout several refactoring activities.

10.6 An Approach to Evaluate the Effects of Refactoring on Software
Quality

This thesis proposes an explicit rationale to create impact functions for aspect-oriented
refactoring patterns. Such impact functions are used to quantitatively predict the effects
of refactoring on software quality. This is accomplished by the definitions of functions
which compute the expected changes in the values of metrics when applying refactoring
patterns.

The use of these functions to predict the impact on software quality can lead to bet-
ter decisions while modifying existing software applications. The results show that the
the developers can use the values computed by the impact functions to choose between
different refactoring opportunities.

The approach is evaluated by defining (i) impact functions for an aspect-oriented
refactoring pattern, named Pull Up Advice, for four metrics: lines of code, number of
operations in module, crosscutting degree of an aspect and coupling on advice execu-
tion (Chapter 7), (i1) impact functions for six object-oriented refactoring patterns: Copy
Attribute, Copy Method, Delete Method, Move Method, New Subclass, and Extract Sub-
class (Appendix E), and (iii) two additional impact functions for aspect-oriented software:
Extract Pointcut and Inline Inter-Type Declaration (Appendix F). One case study was con-
ducted to compute the values of impact functions for the Pull Up Advice in the Glassbox
Inspector application, described in Chapter 9.

Impact functions are additional tools in the developer’s tool kit to prioritise and eval-
uate refactoring opportunities, as they complement the use of the metric-based heuristic
rules described in Chapter 6, by providing quantitative information about the effects that
each refactoring application has in the software elements. As such, impact functions can
help in the definition of pairwise comparisons between refactoring patterns (one of the
key issues in ranking refactoring patterns - Chapter 4), in the prioritisation of refactor-
ing opportunities (Chapters 5 and 6) and in evaluating refactoring sequences (Chapter 8).
Chapter 3 describes the main functional requirements for tool support aiming at comput-
ing impact functions for refactoring patterns and metrics.

10.7 An Approach to Reduce the Number of Refactoring Sequences

During software development and evolution activities, the developers focus the refac-
toring efforts on choosing and applying refactoring patterns (or sequences of patterns) that
are likely to improve the software quality. Considering the search for opportunities for
applying refactoring sequences, the main problem is the number of possible sequences
to be evaluated. This thesis proposes an approach to narrow the number of refactoring
sequences by first creating the set of all possible sequences and then avoiding sequences
of refactoring patterns that lead to the same results.

To evaluate the approach for reducing the search space for refactoring opportunities,

179

this thesis shows how deterministic finite automata (DFAs) representing the applicable
refactoring sequences in existing software can be created and simplified. The approach
was exemplified using five refactoring patterns dealing with the manipulation of methods.
The initial DFA was simplified and its size was reduced in 62% (considering the total
number of paths to be evaluated). Furthermore, the approach was applied and the num-
ber of possible sequences was computed for ten software applications before and after
the simplification of sequences. In those applications, the reduction rate was confirmed,
varying from 57 to 60% of the number of initial sequences. The case study shows that,
considering sequences for method manipulation, the number of sequences can be signifi-
cantly reduced.

An API was created to allow the developers to create the bindings between refactoring
patterns and the symbols of a particular programming language grammar. This API also
provides mechanisms to create the combination of all the sequences between a set of
selected refactoring patterns for a specified level. Future work is needed to allow the
creation and application of simplification rules to the initial sequences.

This contribution is directly related to the identification and prioritisation of refactor-
ing opportunities (Chapters 5 and 6) as the techniques proposed in those chapters can also
be applied to refactoring sequences. The metrics described in Chapter 9 were used to
compute the sequences in the sample applications (both before and after the simplifica-
tion). The search for refactoring sequences can be performed in accordance to the set of
activities described in Chapter 3.

10.8 Future Work

There are several opportunities for research in the area covered by this thesis. The
following are possible continuations for parts of this work:

e Additional reduction of the search space. Additional techniques can be used to
further reduce the scope of refactoring, including additional methods for selecting
the refactoring patterns to be included in the search, the modules to be evaluated
and the optimal parameters for each refactoring pattern. Future work on this area
can focus on answering the question of which are the optimal sequences according
to their improvements on the expected quality attributes of a software application,
and on further techniques to reduce the search space.

e Evaluate the effects of specific metrics and refactoring patterns. Further in-
vestigation can be carried out to evaluate the applicability of impact functions for
assessing the effects of refactoring in design models. Future work can also focus on
applying the same approach to other refactoring patterns for aspect-oriented soft-
ware and object-oriented software, and for other metrics

e Improving tool support for the search of refactoring opportunities. The pro-
vided implementation can be extended to support integration with IDEs and mod-
elling environments. This integration includes the development of user interfaces,
search options, and ordering methods for refactoring opportunities.

e Applying the proposed activities in early stages of software development. The
use of heuristic rules to search for refactoring opportunities and the use of impact
functions to predict the changes in software metrics can lead to better decisions
when modelling software. The use of both heuristic rules and impact functions in

180

early stages of a software development process might be advantageous. Both design
and analysis models can be evaluated using the proposed rationale.

Validation in large scale projects. Another interesting future work is the applica-
tion of the proposed activities in large scale projects, in order to evaluate how the
proposed approaches and techniques work together in a practical setting. Such vali-
dation is easier to conduct in the context of cooperation projects and using extensive
tool support.

181

REFERENCES

ALWIS, B. D. et al. Coding Issues in Aspect]. In: WORKSHOP ON ADVANCED SEP-
ARATION OF CONCERNS IN OBJECT-ORIENTED SYSTEMS, OOPSLA, 2., 2000,
Washington, USA. Proceedings... New York: ACM Press, 2000.

BALAZINSKA, M. et al. Advanced Clone-Analysis to Support Object-Oriented System
Refactoring. In: WORKING CONFERENCE ON REVERSE ENGINEERING, WCRE,
7., 2000, Washington, USA. Proceedings... Los Alamitos: IEEE Press, 2000. p.98 —
107.

BALDAN, P. et al. Handbook of Graph Grammars and Computing by Graph Trans-
formations: Concurrency, Parallelism, and Distribution. New Jersey, USA: World Scien-
tific Publishing Company, 1999. v.3, p.107-188.

BARTSCH, M.; HARRISON, R. An Evaluation of Coupling Measures for Aspect]. In:
WORKSHOP ON LINKING ASPECT TECHNOLOGY AND EVOLUTION, LATE,
2006, Bonn, Germany. Proceedings... New York: ACM Press, 2006.

BARTSCH, M.; HARRISON, R. An Exploratory Study of the Effect of Aspect-Oriented
Programming on Maintainability. Software Quality Journal, Hingham, USA, v.16, n.1,
p.23—44, Mar. 2008.

BASILI, V. R. Software Modeling and Measurement — The Goal/Question/Metric
Paradigm. Maryland, USA: University of Maryland, 1992. (Technical Report, CS-TR-
2956).

BAXTER, G. et al. Understanding the Shape of Java Software. SIGPLAN Notices, New
York, NY, USA, v.41, n.10, p.397—412, Oct. 2006.

BECK, K. Extreme Programming Explained: Embrace Change. Boston, USA:
Addison-Wesley, 1999.

BERG, K.; CONEIJERO, J.; CHITCHYAN, R. AOSD Ontology 1.0. [S.I.]: AOSD-
Europe, 2005. (Technical Report, AOSD-Europe-UT-01).

BERTOA, M.; VALLECILLO, A. Quality Attributes for COTS Components. In: WORK-
SHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE
ENGINEERING, QAOOSE, 6., 2002, Malaga, Spain. Proceedings... [S.I.: s.n.], 2002.

BEVILACQUA, M.; BRAGLIA, M. The Analytic Hierarchy Process Applied to Main-
tenance Strategy Selection. Reliability Engineering & System Safety, [S.1.], v.70, n.1,
p.71 — 83, 2000.

182

BOEHM, B. W.; BROWN, J. R.; LIPOW, M. Quantitative Evaluation of Software Quality.
In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE, 2.,
1976, San Francisco, USA. Proceedings... Los Alamitos: IEEE Press, 1976. p.592-605.

BOEHM, B. W.; IN, H. Identifying Quality-Requirement Conflicts. IEEE Software, Los
Alamitos, v.13, n.2, p.25-35, 1996.

BOEHM, B. W.; SULLIVAN, K. J. Software Economics: A Roadmap. In: ACM/IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE, 24.,
2000, Limerick, Ireland. Proceedings... New York: ACM Press, 2000. p.319-343.

BOGER, M.; STURM, T. Refactoring Browser for UML. In: INTERNATIONAL CON-
FERENCE NET.OBJECTDAYS CONFERENCE, 3., 2002, Erfurt, Germany. Proceed-
ings... [S.1.: s.n.], 2002. p.366-377.

BOIS, B. D. A Study of Quality Improvements by Refactoring. 2006. PhD Thesis —
Universiteit Antwerpen, Belgium.

BOIS, B. D.; MENS, T. Describing the Impact of Refactorings on Internal Program
Quality. In: INTERNATIONAL WORKSHOP ON EVOLUTION OF LARGE-SCALE
INDUSTRIAL SOFTWARE APPLICATIONS, ELISA, 2003, Amsterdam, The Nether-
lands. Proceedings... [S.1.: s.n.], 2003.

BRIAND, L.; MORASCA, S.; BASILI, V. Property-Based Software Engineering Mea-
surement. IEEE Transactions on Software Engineering, Los Alamitos, v.22, n.1, p.68—
86, Jan. 1996.

BRITO, I. S. et al. Handling Conflicts in Aspectual Requirements Compositions. In:
RASHID, A.; AKSIT, M. (Ed.). Transactions on Aspect Oriented Software Develop-
ment (TAOSD). Berlin: Springer-Verlag, 2007. p.144-166. (Lecture Notes in Computer
Science, v.4620).

CACHO, N. et al. Composing Design Patterns — A Scalability Study of Aspect-Oriented
Programming. In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED
SOFTWARE DEVELOPMENT, AOSD, 5., 2006, Bonn, Germany. Proceedings... New
York: ACM Press, 2006. p.109-121.

CASTOR FILHO, F. et al. Exceptions and Aspects: the devil is in the details. In: ACM
SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE
ENGINEERING, FSE, 14., 2006, Portland, USA. Proceedings... New York: ACM
Press, 2006. p.152-162.

CASTOR FILHO, F.; GARCIA, A.; RUBIRA, C. A Quantitative Study on the Aspec-
tization of Exception Handling. In: WORKSHOP ON EXCEPTION HANDLING IN
OBJECT-ORIENTED SYSTEMS, 2005. Proceedings... [S.l.: s.n.], 2005.

CAVANO, J.; MCCALL, J. A Framework for the Measurement of Software Quality. In:
SOFTWARE QUALITY ASSURANCE WORKSHOP ON FUNCTIONAL AND PER-
FORMANCE ISSUES, 1978. Proceedings... New York: ACM Press, 1978. p.133-139.

CECCATO, M.; TONELLA, P. Measuring the Effects of Software Aspectization. In:
WORKSHOP ON ASPECT REVERSE ENGINEERING, WARE, 2004, Delft, The
Netherlands. Proceedings. .. Los Alamitos: IEEE Press, 2004.

183

CHAVEZ, C. V. F. G.; LUCENA, C. J. P. de. Guidelines for Aspect-Oriented Design. In:
BRAZILIAN WORKSHOP ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT,
WASP, 1., 2004, Brasilia, Brazil. Proceedings... [S.1.: s.n.], 2004.

CHEN, S.-J. G.; LIN, L. Decomposition of inderdependent task group for concurrent
engineering. Computers & Industrial Engineering, [S.1.], v.44, n.3, p.435-459, 2003.

CHENG, E. W. L.; LI, H. Construction Partnering Process and Associated Critical Suc-
cess Factors: quantitative investigation. Journal of Management in Engineering, [S.1.],
v.18, n.4, p.194-202, 2002.

CHIDAMBER, S. R.; KEMERER, C. F. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, Los Alamitos, v.20, n.6, p.476—493,
1994.

COCKBURN, A.; HIGHSMITH, J. Agile Software Development: The People Factor.
Computer, Los Alamitos, v.34, n.11, p.131-133, Nov. 2001.

COPLIEN, J.; HARRISON, N. Organizational patterns of agile software develop-
ment. [S.1.]: Pearson Prentice Hall, 2005.

CORNELIO, M. Refactorings as Formal Refinements. 2004. PhD Thesis — Universi-
dade Federal de Pernambuco, Brazil.

DEURSEN, A. van; MARIN, M.; MOONEN, L. AJHotDraw: A Showcase for Refactor-
ing to Aspects. In: LINKING ASPECT TECHNOLOGY AND EVOLUTION, LATE, 1.,
2005, Chicago, USA. Proceedings... New York: ACM Press, 2005.

DOUENCE, R.; FRADET, P.; SUDHOLT, M. A Framework for the Detection and Reso-
lution of Aspect Interactions. In: ACM SIGPLAN/SIGSOFT CONFERENCE ON GEN-
ERATIVE PROGRAMMING AND COMPONENT ENGINEERING, GPCE, 2002, Lon-
don, UK. Proceedings... Berlin: Springer-Verlag, 2002. p.173-188.

DUCASSE, S.; RIEGER, M.; DEMEYER, S. A Language Independent Approach for
Detecting Duplicated Code. In: INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE, ICSM, 1999, Oxford, England. Proceedings... Los Alamitos: IEEE
Press, 1999. p.109-119.

ELRAD, T.; FILMAN, R.; BADER, A. Aspect-Oriented Programming. Communica-
tions of the ACM, New York, v.44, n.10, p.29-32, 2001.

ELSSAMADISY, A.; SCHALLIOL, G. Recognizing and Responding to Bad Smells in
Extreme Programming. In: ACM/IEEE INTERNATIONAL CONFERENCE ON SOFT-
WARE ENGINEERING, ICSE, 26., 2002, Orlando, USA. Proceedings... New York:
ACM Press, 2002. p.617-622.

EMDEN, E. v. Java Quality Assurance by Detecting Code Smells. In: WORKING CON-
FERENCE ON REVERSE ENGINEERING, WCRE, 9., 2002, Richmond, USA. Pro-
ceedings... Los Alamitos: IEEE Press, 2002. p.97-108.

FENTON, N. E.; PFLEEGER, S. L. Software Metrics: A Rigorous and Practical Ap-
proach. [S.1.]: PWS Publishing Company, 1997.

184

FILMAN, R.; FRIEDMAN, D. P. Aspect-Oriented Programming is Quantification and
Obliviousness. In: WORKSHOP ON ADVANCED SEPARATION OF CONCERNS IN
OBJECT-ORIENTED SYSTEMS, AQOP, 2., 2000, Minneapolis, USA. Proceedings...
New York: ACM Press, 2000.

FOWLER, M. et al. Refactoring: Improving the Design of Existing Code. [S.L]:
Addison-Wesley, 1999. Object Technologies Series.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
[S.1.]: Addison-Wesley, 1995. Addison-Wesley Professional Computing Series.

GARCIA, A. F. et al. Modularizing Design Patterns with Aspects: A Quantitative Study.
In: RASHID, A.; AKSIT, M. (Ed.). Transactions on Aspect-Oriented Software Devel-
opment II. Berlin: Springer-Verlag, 2006. p.36-74, 2006. (Lecture Notes in Computer
Science, v.4242).

GARCIA, A. F. et al. Modularizing Design Patterns with Aspects: A quantitative study.
In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DE-
VELOPMENT, AOSD, 4., 2005, Chicago, USA. Proceedings... New York: ACM Press,
2005. p.3-14.

GARCIA, V. C. et al. Manipulating Crosscutting Concerns. In: LATIN AMERICAN
CONFERENCE ON PATTERNS LANGUAGES OF PROGRAMMING, SUGARLOAF-
PLOP, 4., 2004, Porto das Dunas, Brazil. Proceedings... [S.1.: s.n.], 2004.

GELDERMANN, J.; SPENGLER, T.; RENTZ, O. Fuzzy Outranking for environmental
assessment. Case Study: Iron and Steel Making Industry. Fuzzy Sets and Systems, [S.1.],
v.115, n.1, p.45 - 65, 2000.

GREENWOQOD, P.; BLAIR, L. A Framework for Policy-Driven Auto-Adaptive Systems
Using Dynamic Framed Aspects. In: RASHID, A.; AKSIT, M. (Ed.). Transactions on
Aspect-Oriented Software Development II. Berlin: Springer-Verlag, 2006. p.30 — 65,
2006. (Lecture Notes in Computer Science, v.4242).

HALL, P. A. V.; DOWLING, G. R. Approximate String Matching. ACM Computing
Surveys, New York, v.12, n.4, p.381-402, 1980.

HANENBERG, S.; OBERSCHULTE, C.; UNLAND, R. Refactoring of Aspect-Oriented
Software. In: INTERNATIONAL CONFERENCE NET.OBJECTDAYS CONFER-
ENCE, 4., 2003, Erfurt, Germany. Proceedings... [S.l.: s.n.], 2003.

HANENBERG, S.; UNLAND, R. Using and Reusing Aspects in Aspect]. In: WORK-
SHOP ON ADVANCED SEPARATION OF CONCERNS IN OBJECT-ORIENTED
SYSTEMS, AQOP, 3., 2001, Tampa Bay, USA. Proceedings..., New York: ACM Press,
2001.

HANNEMANN, J.; KICZALES, G. Design Patterns Implementation in Java and Aspect].
In: OBJECT ORIENTED PROGRAMMING SYSTEMS LANGUAGES AND APPLI-
CATIONS, OOPSLA, 17., 2002, Seattle, USA. Proceedings... New York: ACM Press,
2002. p.161-173.

185

HECHT, M. V.; PIVETA, E. K.; PIMENTA, M. S.; PRICE, R. T. Aspect-Oriented Code
Generation. In: BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING, SBES,
21., 2006, Floriandpolis, Brazil. Proceedings. .. Porto Alegre: SBC, 2006.

HECKEL, R.; KUSTER, J.; TAENTZER, G. Confluence of Typed Attributed Graph
Transformation Systems. In: INTERNATIONAL CONFERENCE ON GRAPH TRANS-
FORMATION, ICGT, 1., 2002, Barcelona, Spain. Graph Transformation: proceedings.
Berlin: Springer-Verlag, 2002. p.161-176. (Lecture Notes in Computer Science, v.2505).

HILSDALE, E.; KICZALES, G. Aspect-Oriented Programming with Aspect]. In: OB-
JECT ORIENTED PROGRAMMING, SYSTEMS, LANGUAGES AND APPLICA-
TIONS, 16., 2001, Tampa Bay, USA. Tutorial. New York: ACM, 2001.

ISO. ISO/IEC 9126-1: Software Engineering — Product Quality — Part 1 — Quality Model.
[S.L], 2001.

IWAMOTO, M.; ZHAO, J. Refactoring Aspect-Oriented Programs. In: AOSD MODEL-
ING WITH UML WORKSHOP, AOM, 5., 2003, San Francisco, USA. Proceedings...
[S.1.: s.n.], 2003.

JARO, M. Advances in Record-Linkage Methodology as Applied to Matching the 1985
Census of Tampa, Florida. Journal of the American Statistical Association, [S.1.], v.84,
n.406, p.414-420, 1989.

JOERIN, F.; MUSY, A. Land Management with GIS and Multicriteria Analysis. Inter-
national Transactions in Operational Research, [S.1.], v.7, n.1, p.67-78, 2000.

JOHNSON, R. E. Documenting Frameworks Using Patterns. In: OBJECT ORIENTED
PROGRAMMING SYSTEMS LANGUAGES AND APPLICATIONS, OOPSLA, 17.,
2002, Vancouver, Canada. Proceedings... New York: ACM Press, 2002.

JUNG, H.-W. Optimizing Value and Cost in Requirements Analysis. IEEE Software,
Los Alamitos, v.15, n.4, p.74-78, 1998.

JUNG, H.-W.; CHOI, B. Optimization Models for Quality and Cost of Modular Software
Systems. European Journal of Operational Research, [S.1.], v.112, n.3, p.613-619,
1999.

KATAOKA, Y. et al. Automated Support for Program Refactoring Using Invariants. In:
INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE, ICSM, 2001,
Florence, Italy. Proceedings... Los Alamitos: IEEE Press, 2001. p.736-743.

KATAOKA, Y. et al. A Quantitative Evaluation of Maintainability Enhancement by
Refactoring. In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAIN-
TENANCE, ICSM, 18., 2002, Montreal, Canada. Proceedings... Los Alamitos: IEEE
Press, 2002. p.576-585.

KAZMAN, R.; BASS, L. Toward Deriving Software Architectures From Quality At-
tributes. [S.1.]: Software Engineering Institute - Carnegie Mellon University, Pennsylva-
nia - USA, 1994. (CMU/SEI-94-TR-010).

KERIEVSKY, J. Refactoring to Patterns. [S.l.]: Addison-Wesley, 2005. Addison-
Wesley Signature Series.

186

KICZALES, G. et al. An Overview of Aspect]. In. EUROPEAN CONFERENCE ON
OBJECT ORIENTED PROGRAMMING, ECOOQP, 15., 2001, Budapest, Hungary. Pro-
ceedings... New York: ACM Press, 2001. p.327-353.

KICZALES, G. et al. Getting Started with Aspect]. Communications of the ACM, New
York, v.44, n.10, p.59-65, 2001.

KICZALES, G. et al. Aspect-Oriented Programming. In: EUROPEAN CONFERENCE
ON OBJECT ORIENTED PROGRAMMING, ECOOQP, 11., 1997, Jyvaskyla, Finland.
Proceedings. .. Berlin: Springer-Verlag, 1997. p.220-242.

KOPPEN, C.; STORZER, M. PCDiff: Attacking the Fragile Pointcut Problem. In: EU-
ROPEAN INTERACTIVE WORKSHOP ON ASPECTS IN SOFTWARE, EIWAS, 2004,
Berlin, Germany. Proceedings. .. [S.1.]: Vrije Universiteit Brussel, 2004.

KRUTCHEN, P. The Rational Unified Process: An Introduction. [S.l.]: Addison Wes-
ley, 2000.

LANZA, M.; DUCASSE, S. Understanding Software Evolution Using a Combination of
Software Visualization and Software Metrics. In: LANGAGES ET MODELES A OB-
JETS, LMO, 2002. Proceedings... [S.1.: s.n.], 2002.

LAVAZZA, L. Providing Automated Support for the GQM Measurement Process. IEEE
Software, Los Alamitos, v.17, n.3, p.56-62, 2000.

LIU, H.; LI, G.; MA, Z.; SHAO, W. Scheduling of conflicting refactorings to promote
quality improvement. In: IEEE/ACM INTERNATIONAL CONFERENCE ON AUTO-
MATED SOFTWARE ENGINEERING, ASE, 22., 2007, Atlanta, USA. Proceedings...
New York: ACM Press, 2007. p.489-492.

LOPES, C. V. D - A Language Framework for Distributed Programming. 1997. PhD
Thesis — College of Computer Science, Northeastern University, USA.

MAHRENHOLZ, D.; SPINCZYK, O.; SCHRODER-PREIKSCHAT, W. Program Instru-
mentation for Debugging and Monitoring with AspectC++. In: IEEE INTERNATIONAL
SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DISTRIBUTED COMPUTING,
ISORC, 5., 2002, Crystal City, USA. Proceedings... Los Alamitos: IEEE Press, 2002.
p.249-256.

MARKOVIC, S.; BAAR, T. Refactoring OCL Annotated UML Class Diagrams. In:
MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, MODELS, 8.,
2005, Montego Bay, Jamaica. Proceedings... [S.1.: s.n.], 2005. p.280-294.

MCCALL, J.; RICHARDS, P.; WALTERS, G. Factors in Software Quality. Sunnyvale,
USA: General Electric Ed., 1977. Technical Report.

MENS, T. et al. Refactoring: current research and future trends. Electronic Notes in The-
oretical Computer Science, Amsterdam, The Netherlands, v.82, n.3, p.483—499, 2003.

MENS, T.; TAENTZER, G.; RUNGE, O. Detecting Structural Refactoring Conflicts Us-
ing Critical Pair Analysis. Electronic Notes in Theoretical Computer Science, Amster-
dam, The Netherlands, v.127, n.3, p.113-128, 2005.

187

MENS, T.; TOURWE, T. A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, Los Alamitos, v.30, n.2, p.126-139, 2004.

MEZINI, M.; OSTERMANN, K. Conquering aspects with Caesar. In: INTERNA-
TIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT,
2003, Boston, USA. Proceedings... New York: ACM Press, 2003. p.90-99.

MONTEIRO, M. P.; FERNANDES, J. M. Object-to-Aspect Refactorings for Feature
Extraction. In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFT-
WARE DEVELOPMENT, AOSD, 2004, Lancaster, UK. Proceedings... New York:
ACM Press, 2004.

MONTEIRO, M. P.; FERNANDES, J. M. Towards a Catalog of Aspect-Oriented Refac-
torings. In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE
DEVELOPMENT, AOSD, 4., 2005, Chicago, USA. Proceedings... New York: ACM
Press, 2005. p.111-122.

MONTEIRO, M. P.; FERNANDES, J. M. The Search for Aspect-Oriented Refactorings
Must Go On. In: LINKING ASPECT TECHNOLOGY AND EVOLUTION, LATE, 1.,
2005, Chicago, USA. Proceedings... New York: ACM Press, 2005.

MONTEIRO, M. P.; FERNANDES, J. M. Towards a Catalogue of Refactorings and
Code Smells for Aspect]. In: RASHID, A.; AKSIT, M. (Ed.). Transactions on Aspect-
Oriented Software Development II. Berlin: Springer-Verlag, 2006. p.214-258, 2006.
(Lecture Notes in Computer Science, v.4242).

MOREIRA, A. M. D.; ARAUIJO, J.; BRITO, I. S. Crosscutting Quality Attributes for
Requirements Engineering. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING AND KNOWLEDGE ENGINEERING, SEKE, 14., 2002, Ischia, Italy.
Proceedings... [S.1.: s.n.], 2002. p.167-174.

MOSER, R. et al. Does Refactoring Improve Reusability? In: ICSR, 2006. Proceed-
ings... [S.1.: s.n.], 2006. p.287-297.

MYLOPOULOS, J.; CHUNG, L.; NIXON, B. A. Representing and Using Non-
Functional Requirements: A Process-Oriented Approach. IEEE Transactions on Soft-
ware Engineering, Los Alamitos, v.18, n.6, p.483-497, 1992.

MYSQL. MySql Connector]J Home Page. Disponivel em:
<http://www.mysql.com/products/connector/j/>. 2009. Acesso em: 22 jan. 2009.

NAVARRO, G. A Guided Tour to Approximate String Matching. ACM Computing Sur-
veys, New York, v.33, n.1, p.31-88, 2001.

OFFUTT, J. Quality Attributes of Web Software Applications. IEEE Software, Los
Alamitos, v.19, n.2, p.25-32, 2002.

OPDYKE, W. F. Refactoring Object-Oriented Frameworks. 1992. PhD Thesis — Uni-
versity of Illinois at Urbana Champaign, USA.

PIVETA, E. K.; ARAUJO, J.; MOREIRA, M. S. P. A. M. D.; ; GUERREIRO, P.; PRICE,
R. T. Searching for Opportunities of Refactoring Sequences: Reducing the Search Space.
In: IEEE COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE, COMP-
SAC, 32., 2008, Turku, Finland. Proceedings... Los Alamitos: IEEE Press, 2008.

188

PIVETA, E. K.; HECHT, M.; PIMENTA, M. S.; PRICE, R. T. Detecting Bad Smells
in Aspect]. Journal of Universal Computer Science, [S.l.], v.12, n.7, p.811-827,
July 2006.

PIVETA, E. K.; HECHT, M. V.; MOREIRA, A. M. D.; PIMENTA, M. S.; ARAUIJO, J.;
GUERREIRO, P.; PRICE, R. T. Avoiding Bad Smells in Aspect-Oriented Software. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND KNOWL-
EDGE ENGINEERING, SEKE, 19., 2007, Boston, USA. Proceedings... [S.l.: s.n.],
2007.

PIVETA, E. K.; HECHT, M. V.; PIMENTA, M. S.; PRICE, R. T. Bad Smells em Sistemas
Orientados a Aspectos. In: BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEER-
ING, SBES, 20., 2005, Uberlandia, Brazil. Proceedings... Porto Alegre: SBC, 2005.

PIVETA, E. K.; HECHT, M. V.; PIMENTA, M. S.; PRICE, R. T. Detecting Bad Smells in
Aspect]. In: BRAZILIAN SYMPOSIUM ON PROGRAMMING LANGUAGES, SBLP,
10., 2006, Itatiaia, Brazil. Proceedings. .. Porto Alegre: SBC, 2006.

PIVETA, E. K.; MOREIRA, A. M. D.; PIMENTA, M. S.; ARAUJO, J.; GUERREIRO,
P.; PRICE, R. T. Ranking Refactoring Patterns with the Analytic Hierarchy Process. In:
INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS,
ICEIS, 10., 2008, Barcelona, Spain. Proceedings... [S.l.: s.n.], 2008.

PIVETA, E. K.; PIMENTA, M. S.; ARAUIJO, J.; MOREIRA, A. M. D.; ; GUERREIRO,
P.; PRICE, R. T. Representing Refactoring Opportunities. In:. ANUAL ACM SYMPO-
SIUM ON APPLIED COMPUTING, SAC, 24., 2009, Honolulu, EUA. Proceedings...
New York: ACM Press, 2009.

RAMOS, R. A.; PIVETA, E. K.; CASTRO, J.; ARAUJO, J.; MOREIRA, A. M. D
GUERREIRO, P.; PIMENTA, M. S.; PRICE, R. T. Improving the Quality of Require-
ments with Refactoring. In: BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY,
SBQS, 6., 2007, Porto de Galinhas, Brazil. Proceedings. .. Porto Alegre: SBC, 2007.

RUI, K.; REN, S.; BUTLER, G. Refactoring Use Case Models: a case study. In: INTER-
NATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, ICEIS,
5., 2003, Angers, France. Proceedings... [S.L.: s.n.], 2003. p.239-244.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. 2nd ed. [S.1.]:
Prentice Hall, 2002.

SAATY, T. L. How to Make a Decision: the analytic hierarchy process. European Jour-
nal of Operational Research, [S.1.], v.48, n.1, p.9 — 26, 1990.

SAATY, T. L. Decision-Making With the AHP: why is the principal eigenvector neces-
sary? European Journal of Operational Research, [S.1.], v.145, n.1, p.85 - 91, 2003.

SALTON, G.; MCGILL, M. Introduction to Modern Information Retrieval. New
York, USA: McGraw-Hill, 1986.

SANTANNA, C. et al. On the Reuse and Maintenance of AO Software: An assessment
framework. In: SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE, SBES,
17., 2003, Manaus, Brazil. Proceedings... Porto Alegre: SBC, 2003.

189

SCHWABER, K. Scrum Development Process. In: ACM CONFERENCE ON OBJECT
ORIENTED PROGRAMMING SYSTEMS, LANGUAGES, AND APPLICATIONS,
OOPSLA, 10., 1995, Austin, USA. Proceedings. .. New York: ACM Press, 1995. p.117—
134.

SHIMAZAKI, H. Recipes for Selecting the Bin Size of a Histogram. 2006. PhD Thesis
— Kyoto University, Japan.

SIMON, E.; STEINBRUCKNER, F.; LEWERENTZ, C. Metrics Based Refactoring.
In: EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING, CSMR, 5., 2001, Lisbon, Portugal. Proceedings... [S.L.: s.n.], 2001. p.30-
38.

SIPSER, M. Introduction to the Theory of Computation. [S.1.]: International Thomson
Publishing, 1996.

SNEDECOR, G. et al. Statistical Methods. 8th ed. [S.1.]: Blackwell Publishing, 1989.

SOARES, S.; LAUREANO, E.; BORBA, P. Implementing distribution and persistence
aspects with Aspect]. In: OBJECT ORIENTED PROGRAMMING SYSTEMS LAN-
GUAGE AND APPLICATIONS, OOPSLA, 17., 2002, Seattle, USA. Proceedings...
New York: ACM Press, 2002. p.174-190.

SRIVISUT, K.; MUENCHAISRI, P. Defining and Detecting Bad Smells of Aspect-
Oriented Software. In: IEEE INTERNATIONAL COMPUTER SOFTWARE AND AP-
PLICATIONS CONFERENCE, COMPSAC, 2007. Proceedings. .. Los Alamitos: IEEE
Press, 2007. p.65-70.

STOCHMIALEK, M. Aopmetrics - Project Home Page. Disponivel em:
<http://aopmetrics.tigris.org/>. 2009. Acesso em: 22 jan. 2009.

SUNYE, G. et al. Refactoring UML Models. In: THE UNIFIED MODELING LAN-
GUAGE INTERNATIONAL CONFERENCE, UML, 4., 2001, Toronto, Canada. Pro-
ceedings... [S.1.: s.n.], 2001. p.134-148.

TEAM, C. Capability Maturity Model® Integration (CMMI SM), Version 1.1. [S.L.]:
Pitsburg, Software Engineering Institute, 2001.

TONELLA, P.; CECCATO, M. Aspect Mining through the Formal Concept Analysis
of Execution Traces. In: WORKING CONFERENCE ON REVERSE ENGINEERING,
WCRE, 11., 2004. Proceedings. .. [S.1.: s.n.], 2004.

TOURWE, T.; MENS, T. Identifying Refactoring Opportunities Using Logic Meta Pro-
gramming. In: EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND
REENGINEERING, CSMR, 7., 2003, Benevento, Italy. Proceedings... [S.1.: s.n.], 2003.
p.91-100.

TSANG, S. L.; CLARKE, S.; BANIASSAD, E. L. A. An Evaluation of AOP for Java-
Based Real-Time Systems Development. In: IEEE INTERNATIONAL SYMPOSIUM
ON OBJECT-ORIENTED REAL-TIME DISTRIBUTED COMPUTING, ISORC, 7.,
2004, Vienna, Austria. Proceedings... [S.I.: s.n.], 2004. p.291-300.

190

VANHAUTE, B.; WIN, B.; DECKER, B. Building Frameworks in Aspect]. In: WORK-
SHOP ON ADVANCED SEPARATION OF CONCERNS IN OBJECT-ORIENTED
SYSTEMS, AOP, 3., 2001, Budapest, Hungary. Proceedings... [S.l.: s.n.], 2001.

WEYUKER, E. Evaluating Software Complexity Measures. IEEE Transactions Soft-
ware Engineering, Los Alamitos, v.14, n.9, p.1357-1365, 1988.

XU, J. et al. Use Case Refactoring: a tool and a case study. In: ASIA-PACIFIC SOFT-
WARE ENGINEERING CONFERENCE, APSEC, 11., 2004, Busan, Korea. Proceed-
ings... [S.1.: s.n.], 2004. p.484-491.

YU, W.; LI, J.; BUTLER, G. Refactoring Use Case Models on Episodes. In: IEEE
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING,
ASE, 19., 2004, Linz, Austria. Proceedings... Los Alamitos: IEEE Press, 2004. p.328-
335.

ZAKARIA, A.; HOSNY, H. Metrics for Aspect-Oriented Software Design. In: INTER-
NATIONAL WORKSHOP ON ASPECT-ORIENTED MODELLING, 3., 2003, Boston,
USA. Proceedings... New York: ACM Press, 2003.

ZHANG, C. et al. Aspect Refactoring Verifier. In: LINKING ASPECT TECHNOLOGY
AND EVOLUTION, LATE, 1., 2005, Chicago, USA. Proceedings... [S.1.: s.n.], 2005.

ZHANG, J.; LIN, Y.; GRAY, J. Generic and Domain-Specific Model Refactoring Using a
Model Transformation Engine. In: MODEL DRIVEN ENGINEERING LANGUAGES
AND SYSTEMS, MODELS, 8., 2005, Toronto, Canada. Proceedings... [S.l.: s.n.],
2005. p.199-217.

ZHAO, J. Towards a Metrics Suite for Aspect-Oriented Software. [S.1.]: Information
Processing Society of Japan (IPSJ), 2002. (SE-136-25).

ZHAO, J. Measuring Coupling in Aspect-Oriented Systems. In: INTERNATIONAL
SOFTWARE METRICS SYMPOSIUM, METRICS, 10., 2004, Chicago, USA. Proceed-
ings... [S.1.: s.n.], 2004.

ZHAO, J.; XU, B. Measuring Aspect Cohesion. In: INTERNATIONAL CONFERENCE
ON FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING, FASE, 7.,
2004. Proceedings... [S.1.: s.n.], 2004.

191

GLOSSARY

Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) (SAATY, 1990) is a mathematical de-
cision making technique for evaluating a set of different alternative solutions of
a given problem. It focuses on finding an optimal solution using qualitative and
quantitative decision analysis. Pag. 33

Activity

An activity is a major task expressed in a process that must take place in order to
fulfil an operation contract. Pag. 38

Advice
An advice is a method-like construction, which specifies a certain behaviour trig-
gered by an associated pointcut. Pag. 29

Artefact
An artefact is a document needed or generated while accomplishing the tasks de-
scribed in each activity. Pag. 38

Aspect

An aspect is an abstraction mechanism designed specifically to deal with crosscut-
ting concerns. It is comprised by fields, methods, join-points, pointcuts, advices
and inter-type declarations. Pag. 29

Catalogue of Quality Attributes

A catalogue of quality attributes is an organised collection that provide details of
how each quality attribute can affect the quality of software, of related quality at-
tributes, and of possible trade-offs between conflicting quality attributes. Pag. 18

Discipline
A discipline is an organised set of inter-related activities which encapsulates a core
concern of the process. Pag. 38

Goal/Question/Metric (GQM)

GQM is an approach to software metrics that defines a measurement model, com-
prised of three levels: conceptual level (goals), operational level (questions) and
quantitative levels (metrics). Pag. 92

192

Heuristic Rule

In this thesis, a heuristic rule is a function created to quantitatively evaluate a set of
quality attributes of a given software element. Pag. 92

Inter-Type Declaration

Inter-type declarations are constructions of programming languages used to intro-
duce state or behaviour to an existing class, aspect or interface. Pag. 29

Join Point

A join point is a well-defined point in the execution flow of a program. Examples
of join points are: method and constructor calls and execution, field access and
initializations. Pag. 28

Model Element

A model element can be any element in a model, such as a class, an attribute, a
relationship, or a use case. Pag. 53

Pointcut

Pointcuts are constructions of programming languages that group join points by the
definition of a predicate that, whenever satisfied, causes the actions associated to it
to be executed. Pag. 29

Quality Attribute

In software engineering, a quality attribute is a requirement which specifies criteria
that can be used to judge the operation of a system (ISO, 2001). Other terms for
quality attributes are non-functional requirements, constraints, quality goals and
quality of service requirements. Pag. 18

Quality Model

Quality models group quality attributes together, organising hierarchically and re-
fining them to express the expected quality of a specific software system or of a
specific domain. Pag. 19

Ranking Method

A ranking method is comprised by a set of steps to rank refactoring patterns accord-
ing to a quality model. Pag. 68

Ranking of Refactoring Patterns

A ranking of refactoring patterns is an ordered list of refactoring patterns according
to a set of selected quality attributes. The closer a refactoring pattern is from the top
of the list, the higher is the impact of the refactoring pattern on the selected quality
attributes. (see also Refactoring Pattern and Quality Attribute). Pag. 67

Refactoring

Refactoring (OPDYKE, 1992; FOWLER et al., 1999) is the process of improving
the design of software systems without changing their externally observable be-
haviour. Pag. 17

193

Refactoring Opportunity

A refactoring opportunity is defined as the association between a software element,
a shortcoming, and a refactoring pattern (see also Software Element and Refactoring
Pattern). Pag. 17

Refactoring Pattern

A refactoring pattern is a behavioural preserving transformation comprised by a
name, a set of parameters, a motivation, a set of steps for applying it, the definition
of pre and postconditions, and an example. Pag. 17

Refactoring to Pattern

A refactoring to pattern is a refactoring pattern that, when applied, changes the
design of a software element to use a specific design pattern. (see also Refactoring
Pattern and Software Element). Pag. 24

Shortcoming

In the context of refactoring, a shortcoming is a deficiency, inadequacy or incom-
pleteness that a software element can have. Shortcomings typically affect negatively
the quality attributes of a software system. Pag. 20

Software Development Process

A software development process is usually composed by a set of interrelated activ-
ities, a set of roles and their association with the process activities, artefacts needed
and artefacts created or modified by the activities. Pag. 38

Software Element

A software element is any piece of software ranging from source code to analysis
and design models. For example, in the context of object-oriented source code,
software elements can be classes, methods, attributes. In use case diagrams, they
are the actors, use cases, relationships etc. Pag. 19

Test Case

A test case is a set of conditions or variables under which it is possible to determine
if a requirement is partially or fully satisfied. Pag. 40

194

APPENDIX A PAPERS

In the context of this thesis, nine papers were accepted: one paper in a Qualis B
International Journal (1 PI-B), three papers in Qualis A International Conferences (3 CI-
A), one paper in a Qualis B International Conference (1 CI-B), three papers in Qualis
A National Conferences (3 CN-A), and one paper in a Qualis B National Conference (1
CN-B). These papers are described in more details as follows.

In 2008, three papers were accepted. The first one, accepted in the ICEIS Conference
(PIVETA et al., 2008), shows how a set of refactoring patterns can be ranked to improve
a set of quality attributes. This paper describes a quantitative and qualitative method
for the ranking generation according to a quality model. The second one, accepted in
the IEEE COMPSAC Conference (PIVETA et al., 2008), deals with the reduction of the
search space when searching for refactoring opportunities in the context of refactoring
sequences. Non-deterministic finite automata are used to simulate the refactoring se-
quences together with a set of rules for path simplification. The last one, accepted in the
ACM SAC’09 Conference (PIVETA et al., 2009), describes how to represent refactoring
opportunities in a language independent way, how to express in which conditions it is
advantageous to apply refactoring patterns, and which refactoring patterns are associated
with each condition.

In 2007, two papers were accepted. The first one, accepted in the SEKE Conference
(PIVETA et al., 2007), describes a set of guidelines to avoid the occurrence of shortcom-
ings in aspect-oriented software. The second paper, accepted in the SBQS Conference
(RAMOS et al., 2007) deals with a set of refactoring patterns to requirements documents
and how these refactoring patterns can improve metric values which are used to evaluate
those documents.

In 2006, three papers were accepted. The first one, accepted at SBLP Conference
(PIVETA et al., 2006b) describes algorithms to detect shortcomings in aspect-oriented
code. This paper was later extended to a journal version (PIVETA et al., 2006a). The
third paper, accepted in the SBES Conference (HECHT et al., 2006), describes how to
generate aspect-oriented code using a set of design models described in Theme/UML, an
aspect-oriented modelling language.

In 2005, one paper was accepted, in the SBES Conference (PIVETA et al., 2005).
This paper describes typical shortcomings in aspect-oriented software. Each shortcoming
is described by a name, a context, an example and a set of refactoring patterns which can
be used to minimize its effects.

195

In summary, the following papers were accepted and published in peer reviewed
venues:

ACM SAC’09 - 24th Annual ACM Symposium on Applied Computing
Representing Refactoring Opportunities

E. Piveta, M. Pimenta, J. Araujo, A. Moreira, P. Guerreiro, R. Tom Price
Qualis: CI-A

IEEE COMPSAC’08 - 32nd Annual IEEE International Computer Software and
Applications Conference
Searching for Opportunities of Refactoring Sequences: Reducing the Search Space

E. Piveta, J. Araujo, M. Pimenta, A. Moreira, P. Guerreiro, R. Tom Price
Qualis: CI-A

ICEIS’08 - 10th International Conference on Enterprise Information Systems
Ranking Refactoring Patterns with the Analytic Hierarchy Process

E. Piveta, A. Moreira, M. Pimenta, J. Araujo, P. Guerreiro, R. Tom Price
Qualis: CI-A

SEKE’07 - 19th International Conference on Software Engineering and Knowledge
Engineering

Avoiding Bad Smells in AO Software

E. Piveta, M. Hecht, A. Moreira, M. Pimenta, J. Araujo, P. Guerreiro, R. Tom Price
Qualis: CI-B

SBQS’07 - 6th Brazilian Symposium on Software Quality

Improving the Quality of Requirements with Refactoring

R. Ramos, E. Piveta, J. Castro, J. Araujo, A. Moreira, P. Guerreiro, M. Pimenta, R.
Tom Price

Qualis: CN-B

JUCS’06 - Journal of Universal Computer Science
Detecting Bad Smells in Aspect]

E. Piveta, M. Hecht, M. Pimenta, R. Tom Price
Qualis: PI-B

SBLP’06 - 10th Brazilian Symposium on Programming Languages
Detecting Bad Smells in Aspect]

E. Piveta, M. Hecht, M. Pimenta, R. Tom Price

Qualis: CN-A

SBES’06 - 20th Brazilian Symposium on Software Engineering
Aspect-Oriented Code Generation

M. Hecht, E. Piveta, M. Pimenta, R. Tom Price

Qualis: CN-A

SBES’05 - 19th Brazilian Symposium on Software Engineering
Bad Smells em Sistemas Orientados a Aspectos

E. Piveta, M. Hecht, M. Pimenta, R. Tom Price

Qualis: CN-A

196

APPENDIX B GUIDELINES TO AVOID SHORTCOMINGS
IN ASPECT-ORIENTED SOFTWARE

This appendix defines guidelines to avoid certain shortcomings which can occur in
aspect-oriented software applications. Each guideline is followed by a brief motivation
and by an example chosen from a well-known set of aspect-oriented implementations
of design patterns (HANNEMANN; KICZALES, 2002) and other cases from Alwis et
al. (ALWIS et al., 2000), and Hilsdale and Kickzales (HILSDALE; KICZALES, 2001).
This appendix shows both constructions using the guidelines and constructions that do
not follow the guidelines.

It is organised as follows. Sections B.1 to B.5 describe each of the proposed guide-
lines. Section B.6 provides a discussion of the benefits of using the defined guidelines.
Section B.7 concludes the appendix.

B.1 Use Abstract Aspects

Guideline. Design towards abstract aspects, whose behaviour is defined by its ad-
vices, and its relationship with classes or other aspects is accomplished by specialization
or association.

Motivation. The use of abstract aspects can help in developing more reusable aspects,
by postponing implementation decisions and leaving the definition of concrete pointcut
definitions to the sub-aspects. Furthermore, the behaviour defined in abstract aspects
can be reused to different target applications. Each application can create sub-aspects
capturing the specific points that activate the aspect behaviour.

Example. In the Observer pattern (HANNEMANN; KICZALES, 2002), there is a
ScreenObserver aspect that extends the reusable abstract aspect ObserverProtocol (line
1) and defines that both roles (Subject and Observer) will be played by the Screen class
(lines 2 and 3). It also defines when the subject state changes (line 4) and what should
be done to update the observers (lines 5-7). This example complies with this guideline,
defining an abstract aspect implementing the logic for the Observer pattern and leaving
for the sub-aspects to bind the Subject and Observer roles and the changes in the Subject
with the classes that play these roles.

1 public aspect ScreenObserver extends ObserverProtocol{

2 declare parents: Screen implements Subject;

3 declare parents: Screen implements Observer;

4 pointcut subjectChange (Subject sub): call(void Screen.
display (String)) && target(sub);

5 void updateObserver(Subject sub, Observer obs) {

197

((Screen)obs).display ("Updated");

In the Decorator pattern (HANNEMANN; KICZALES, 2002), the BracketDecorator
(line 1) and the StarDecorator (line 5) aspects have a duplicated pointcut named printCall
(lines 2 and 7). In the next example, the implementation does not follow the use abstract
aspects guideline.

public aspect BracketDecorator {
protected pointcut printCall (String s):
call (public void ConcreteOutput. print(String)) && args(s);
}
public aspect StarDecorator {
declare precedence: StarDecorator, BracketDecorator;
protected pointcut printCall(String s):
call (public void ConcreteOutput. print(String)) && args(s);

O 00 1O DN B~ W~

——

This implementation can be improved by introducing a super-aspect containing the
common pointcut, eliminating the duplication.

B.2 Use Named Pointcuts

Guideline. Use named pointcuts to provide hot spots for extension and to use the
terms of the problem domain in hand.

Motivation. The definition of named pointcuts allows the reuse of the predicate asso-
ciated with this pointcut. Furthermore, a new term is added to the vocabulary regarding
the concern being encapsulated by the aspect. The use of names for pointcuts provides a
terminology for the development of the system. It also allows that pointcuts are subjected
to future refinement, by defining concrete pointcuts on sub-aspects.

Example. In the Factory Method design pattern (HANNEMANN; KICZALES, 2002)
there is an aspect that changes the behaviour of a Factory Method, using an around advice.
With this approach it is possible to have factories creating different products, depending
on the aspects woven into the project. In the AlternateLabelCreatorlmplementation (line
1), the developer defines a pointcut named labelCreation (line 2), used in the around
advice. If a before or an after advice is needed, the developer can reuse the definition.
This definition serves also to define composition of pointcut predicates, and can be used
by other pointcuts in the aspect. Other examples of the application of this guideline can
be seen in Kiczales et al. (KICZALES et al., 2001Db).

1 public aspect AlternateLabelCreatorImplementation {
2 pointcut labelCreation(): execution(JComponent LabelCreator
.createComponent ());
JComponent around (): labelCreation () {
JLabel label = (JLabel) proceed():
label .setText(" ... alternate JLabel");
return label;

[e <IN Bie) RNV, I SN0V)

198

In the Builder design pattern (HANNEMANN; KICZALES, 2002), this guideline is
not followed in an aspect named CreatorImplementation, as shown below. The pointcut
predicate is defined directly in the declare construction (line 2) and therefore cannot be
reused in other pointcuts.

1 public aspect CreatorImplementation {

2 declare error: (set(public String Creator+.representation)

3 Il get(public String Creator+.representation)) && ! (
within (Creator+)

4 Il within(CreatorImplementation)): "variable result is

aspect protected ...";
50}

Other examples of unnamed pointcuts can be seen in the QueueStateAspect, that im-
plements the state transitions for the State pattern, in the SortingStrategy aspect, imple-
menting part of the Strategy pattern and in the SingletonProtocol aspect, which defines
the general behaviour of the Singleton pattern (HANNEMANN; KICZALES, 2002).

B.3 Use Semantic Based Pointcuts

Guideline. Avoid relying only on names of methods and classes for pointcut compo-
sition. Instead, use annotation or inheritance mechanisms, to associate semantics to class
members. You can use inheritance or interface implementation references in the pointcuts
to provide clearly defined semantics.

Motivation. Sometimes, a naming convention is adopted during the development
of a system. However, these conventions are not always obeyed, or they are inadequate
when dealing with the representation of join points collections to be affected by an aspect.
Naming mechanisms increase the coupling between the base system and aspects, are not
checked and are not guaranteed to be followed (KOPPEN; STORZER, 2004).

Example. You can define semantic based pointcuts using inheritance, for example,
as used in the Singleton design pattern (HANNEMANN; KICZALES, 2002). The Sin-
gletonlnstance aspect defines a pointcut named protectionExclusions (line 3) specifying
a predicate that is true every time an instance of PrinterSubclass (line 4) or one of its
sub-classes is created. Another possibility is to associate predicates to interfaces, using
the advantages of this construct.

public aspect SingletonInstance extends SingletonProtocol {
declare parents: Printer implements Singleton;
protected pointcut protectionExclusions ():
call ((PrinterSubclass+).new(..));

O R

}

In the Proxy design pattern example (HANNEMANN; KICZALES, 2002), the un-
safeRequest method (line 6) is directly mentioned in the requests pointcut predicate (line
2). As this example was created before the support for annotations in AspectJ 5 it did
not rely in the constructions regarding annotations. Using these constructs, the developer
can define an annotation to define a security status of a method (@ safety, for example) in
order to be available to the requests pointcut.

1 public aspect RequestBlocking extends ProxyProtocol {
2 protected pointcut requests():

199

3 call (x Outputlmplementation.unsafeRequest (..));

4}

5 public class Outputlmplementation {

6 public void unsafeRequest(String s) {

7 System.out. println ("[Outputlmplementation.unsafeRequest ()
J: "+s);

8 }

9}

B.4 Favour Pointcut Composition

Guideline. Every time a pointcut definition contains join points without a strong
semantic relationship, favour specifying pointcuts as the combination of two or more
distinct pointcuts, one for each well-defined set of join points.

Motivation. Sometimes, when defining a pointcut, the developer puts together a set
of heterogeneous join points in the same predicate. The developer should focus on group-
ing related join points in separated pointcuts and composing these pointcuts in order to
achieve the desired combination.

Example. Alwis et al. (ALWIS et al., 2000) employ an example that illustrates this
principle, by separating the pointcut definition in different sets. Initially, there was a
pointcut named lowLevelDataOperations (line 1) containing several method calls in its
predicate. Operations related to an ASCII channel, to a binary channel, and to a list of
commands are specified in a single pointcut definition, as seen below.

1 pointcut lowLevelDataOperations () :

2 (target (AsciiDataChannel) && (call(String readLine (..))
[l call(void writeLine (..))))
3 Il (target(BinaryDataChannel) && (call(long read (..)) Il
call (void write (..))))
4 Il (target(ListCommand) && call (void writeFilelnfo (..))) ;

The separation of these definitions improves the readability of the pointcut and allows
the developer to reuse the new pointcuts. It is also easier to evolve the aspect, as each set
of related method calls are defined in a separated pointcut. Consider the example below.
The lowLevelDataOperations (line 1) is now composed by several pointcut definitions:
asciiDataOps, binaryDataOps and listCommandDataOps (lines 2-4). Below, there is the
code complying with this guideline.

1 pointcut lowLevelDataOperations () : asciiDataOps () Il
binaryDataOps () |l listCommandDataOps () ;
2 pointcut asciiDataOps(): ... ;

Pointcuts related to a single class (such as asciiDataChannelDataOps, line 1) can be
moved to this class. This would simplify the maintenance of both the class and the aspect.
The disadvantage of this approach is the difficulty in the comprehension of the aspect just
by reading its definition; it becomes necessary to find pointcuts in other classes of the
system.

In the Facade pattern (HANNEMANN; KICZALES, 2002) implementation, the Fa-
cadePolicyEnforcement aspect defines a declare warning construction that uses a compos-
ite pointcut to describe that a warning should be raised every time a encapsulated method

200

is called outside the facade (line 5). This helps to avoid developers to call the methods
encapsulated by the facade directly.

1 public aspect FacadePolicyEnforcement {

2 pointcut encapsulatedMethods (): call(x (Decoration II
RegularScreen |l StringTransformer).x(..));
3 pointcut facade (): within(OutputFacade);

N

declare warning: encapsulatedMethods () && !facade(): "
Calling encapsulated method directly"”;
51

Another example, the SingletonProtocol aspect (HANNEMANN; KICZALES, 2002),
aims to compose pointcut predicates, but do not define a separated pointcut definition to
a singleton construction (line 3). Extracting this piece of predicate helps to clarify the
aspect.

1 public abstract aspect SingletonProtocol {

2 protected pointcut protectionExclusions ();

3 Object around(): call ((Singleton+).new(..)) &&
4 !'protectionExclusions () {...}

5

}

If a new pointcut definition is created, a pointcut composition of singletonCreation and
protectionExclusions can be used. The next example illustrates the use of the composite
predicate. Note the extracted pointcut sigletonCreation in line 2.

1 public abstract aspect SingletonProtocol {

2 pointcut singletonCreation(): call((Singleton+).new(..));

3 Object around(): singletonCreation () && !
protectionExclusions () {...}

4}

B.5 One Concern per Aspect

Guideline. Design aspects so that they provide functionality to only one concern of
the application. If this aspect deals with more than one concern, try to divide it in two or
more aspects or classes, maybe forming a generalization hierarchy.

Motivation. When an aspect handles more than one concern, it should be divided
into smaller aspects, each one responsible for a single concern. This often happens with
advices with diverging purposes or with attributes and inter-type declarations without
connection with the rest of the aspect.

Example. Consider a Debug aspect (part of an example named Space War - a space-
ship and asteroids game (HILSDALE; KICZALES, 2001)), which defines advices dealing
with different concerns simultaneously. This aspect collects points regarding user inter-
face modification (line 2), regarding changes in the registry contents (line 3), and regard-
ing ship collisions (line 4), among other concerns omitted in the example. Although all
of these features are related to system debugging, they can be divided in several aspects,
each one with a different perspective on debugging.

1 aspect Debug ({
2 after () returning (SWFrame frame): call (SWFrame+.new (..))

[...1

201

3 after (Registry registry) returning : target(registry) && (
call (void register (..)) Il call(void unregister (..)))
{...}

4 after (Ship ship, SpaceObject obj) returning : call(void Ship
.handleCollision (SpaceObject)) && target(ship) && args(
obj){...}

5 4

Another possibility is to make the different extracted aspects inherit from the same
super-class (or super-aspect), which can be the Debug aspect itself. The following ex-
ample uses a sub-aspect of Debug containing an advice responsible for manipulating the
debugging of ship collisions (line 2).

1 aspect Collision extends Debug{

2 after (Ship ship, SpaceObject obj) returning: call(void
Ship.handleCollision (SpaceObject)) && target(ship) &&
args(obj){...}

3 }

Defining a Collision aspect enables the developer to separate the debugging responsi-
bilities, focusing, in this case, only in the collision specific requirements. This separation
also makes easier to reuse the Debug aspect, since it contains only the basic debugging
functions.

B.6 Discussion

The use of these guidelines can avoid the occurrence of anonymous pointcut defini-
tions and several occurrences of the double personality, lazy aspects, code duplication
and divergent changes shortcomings (PIVETA et al., 2005)(PIVETA et al., 2006a).

Anonymous pointcut definitions can be avoided using the following guidelines: use
named pointcuts and favour pointcut composition. The double personality and lazy aspect
shortcomings can be avoided using the one concern per aspect guideline. Code duplica-
tions can be diminished by using abstract aspects and named pointcuts. The favour point-
cut composition guideline can be used to overcome occurrences of divergent changes.

For the first guideline (use abstract aspects), it is not necessary that an abstract aspect
is created for every aspect in the application, just as not every pointcut have necessarily
to be defined by an abstract aspect. Abstract aspects are the core of aspect reuse. They
are heavily used in the aspect-oriented design patterns and they allow the definition of a
reusable implementation of several design patterns.

The use of this guideline is exemplified by design patterns implemented in Aspect]
(HANNEMANN; KICZALES, 2002), by access and authentication mechanisms (VAN-
HAUTE; De Win; De Decker, 2001), and by the implementation of distribution and per-
sistence components (SOARES; LAUREANO; BORBA, 2002). Vanhaute et al. (VAN-
HAUTE; De Win; De Decker, 2001) state that the use of abstract pointcuts and inheri-
tance between aspects helps in the generalization required for implementing aspect-based
frameworks. Some further examples of the usage of abstract aspects appear in the im-
plementation of the following patterns: Chain Of Responsibility, Command, Mediator,
Observer, Flyweight and Memento, among others. Usually, the user binds the roles in the
patterns using aspect inheritance.

The use of named pointcuts can be found in several aspects in the pattern library

202

(HANNEMANN; KICZALES, 2002). They are used as a key resource to the definition
of reusable aspects. Examples of aspects using named pointcuts are: ChainOfResponsibil-
ityProtocol, CommandProtocol, MediatorProtocol, Decorator aspects and ObserverPro-
tocol. Mahrenholz et al. (MAHRENHOLZ; SPINCZYK; SCHRODER-PREIKSCHAT,
2002) remind that the use of named pointcuts allows one to create formal arguments (pa-
rameters) for the occurrences referred by the predicate defined in the pointcut. Alwis et
al. (ALWIS et al., 2000) assert that using relevant names for pointcuts can promote the
reuse of the aspects. The names of the pointcuts should describe, at high level, which
kinds of operations (or other more complex join points) fit the pointcuts context, instead
of the working details of the operation.

The use of semantic based pointcuts provides mechanisms to use annotations when
there is the need to group different structures in a set of classes or a set of aspects. This
grouping is performed in a way to consider semantic aspects above syntactic ones. Even
the application of renaming refactoring patterns can cause pointcuts to affect a different
set of join points.

The favour pointcut composition guideline contributes to the clarity of the specifi-
cation, and at the same time allows pointcuts to be reused individually. Following this
guideline can help avoiding shortcomings with respect to divergent changes and code
duplication in aspects (PIVETA et al., 2005).

The one concern per aspect guideline can be used when, in modelling for example,
the concerns encapsulated by an aspect deal with an inheritance relationship. This should
be made explicit by moving duplicated members to a super-aspect. After applying a set
of refactoring patterns, aspects with few responsibilities can appear. Aspects without
sufficient responsibilities can be merged with another aspect or class. Empty aspects or
aspects that do not contain advices, pointcuts or inter-type declarations can be converted
to classes or merged with other aspects.

B.7 Conclusions

This appendix provides a set of guidelines to help on avoiding the occurrence of short-
comings in aspect-oriented software. These guidelines are exemplified and discussed
using a set of Aspect] examples from different sources. The guidelines can assist soft-
ware designers in presence of crosscutting concerns and complement other guidelines for
aspect-oriented design (CHAVEZ; LUCENA, 2004; ALWIS et al., 2000; HANENBERG;
UNLAND, 2001). Several shortcomings can be minimized following some basic design
guidelines.

Although the guidelines discussed in this appendix are expressed in examples of a
specific language, they can be adapted to other aspect-oriented languages. Some guide-
lines can be used directly, whereas some of them are not available in a chosen language,
for example. As the Aspect] model is the basis for several aspect languages, it can be
seen as a good starting point to the definition of shortcomings and design guidelines for a
larger set of aspect-oriented software.

203

APPENDIX C AN ANALYTICAL EVALUATION FOR A
SET OF ASPECT-ORIENTED METRICS

This appendix shows an analytical evaluation of the set of aspect-oriented metrics
described in Chapter 9.

Chidamber and Kemerer (CHIDAMBER; KEMERER, 1994) state that several re-
searchers recommend properties that software metrics should possess to increase their
usefulness. They choose the Weyuker’s criteria (WEYUKER, 1988) to evaluate a set of
size and coupling metrics for object-oriented software because it is a widely known for-
mal analytical approach and also because her formal analytical approach subsumes most
of the earlier, less well-defined and informal properties.

Since this research is evaluating metrics adapted from Chidamber and Keremer met-
rics (CHIDAMBER; KEMERER, 1994) (Chapter 9), the same criteria to evaluate the
original metrics is used. Note that the criteria are paradigm-independent (WEYUKER,
1988) and can be used to evaluate both object-oriented and aspect-oriented software. The
two additional metrics (crosscutting degree of an aspect (cda) and coupling on advice
execution (cae)) are also evaluated using the same criteria. As the Weyuker’s criteria are
also used to evaluate coupling and cohesion object-oriented metrics, there are no issues
associated with the use of the criteria to evaluate these additional coupling metrics.

The criteria are summarised and expressed using predicate logic as follows
(WEYUKER, 1988). For all the properties, let us consider the modules ! A, B and C
and the metric p:

e Non-coarseness (property 1): This property verifies that the metric value can be
different among modules, otherwise the metric is not meaningful. Given A and B,
the predicate V.A 3 B p(A) # p(B) must hold.

e Non-uniqueness (property 2): This property expresses that two different modules
can have the same value for the metric (i.e. the modules are equally complex).
Given A and B, the predicate 3 A 3 B p(A) = p(B) must hold.

e Design details are important (property 3): This property leads to the notion that dif-
ferent design alternatives can produce different values for the metrics. Given A and
B providing the same functionality, the predicate p(A) = p(B) is not necessarily
true.

e Monotonicity (property 4): This property states that the value of the metric for
the composition of two modules can never be less than the metric values of each

"When applicable, the generic term module is used to denote a class or aspect.

204

individual module. The predicate V.A, B u(A) < u(A+ B) A p(B) < u(A+ B)
must hold, where A + B denotes the composition between A and B.

e Non-equivalence of interaction (property 5): This property considers that the
composition of A and B can result in different values for the same metric that
the composition of A and C. In this case, u(,A) = p(B) does not imply that
u(A+C)=uB+C).

e [nteraction increases complexity (property 6): This property states that when two
modules are combined, the metric value can increase. 3.4, B such as: u(A+ B) >

pu(A) + p(B).
These properties (one to six) are used for the analytical evaluation of each metric in
the next section.

C.1 Lines of Code

Consider an aspect A and an aspect B that is an exact copy of A plus an additional
field. The value of locc(B) = locc(A) + 1 and Property 1 is satisfied, as the predicate
VA 3 B u(A) # n(B) holds. Property 2 is satisfied, as for each .4, an exact copy B can
be created, and therefore the predicate 3 A 3 B u(A) = p(B) holds. The locc of each
construction in a class is a design decision and it is not determined by the functionality of
the aspect, therefore Property 3 is satisfied.

The locc of the composition of A and B can be defined as locc(A + B) = locc(A) +
loce(B) — K, where k is the number of duplicated lines of code in any constructions of .A
or BB, such as methods, advices or fields that are common to A and B. The value of x can
vary from [0, min(locc(A), loce(B))]. Either if (k = 0) or (k = min(locc(A), loce(B))),
locc(A+ B) > loce(A) and loce(A + B) > loce(B). Therefore, Property 4 is satisfied.

Let locc(A) = loce(B). Consider an aspect C, containing « lines of code in common
with A and + 1 lines of code in common with B. Therefore locc(A + C) # locc(B +C)
as locc(A + C) = locc(A) + loce(C) — k and loce(B + C) = loce(B) + loce(C) —
k + 1. In this case, Property 5 is satisfied. Consider as the number of common lines
of code between A and B. As locc(A) + loce(B) — k < locc(A) + loce(A) for all
A and B, Property 6 is not satisfied. Failing to satisfy this property implies that the
metric values can increase if an aspect or class is divided in more aspects or classes.
Chidamber and Kemerer (CHIDAMBER; KEMERER, 1994) claim that this property may
not be an essential feature for object-oriented software design complexity metrics and not
satisfying it can be seen as beneficial in object-oriented software. Their interpretation can
be corroborated for aspect-oriented software.

C.2 Number of Operations in Module

Consider two identical aspects A and B. If an advice is added to B then nom(A) =
nom(B) — 1. Property 1 is satisfied (the predicate V.A 3 B u(A) # u(B) holds). Prop-
erty 2 is satisfied, as for all aspect .4 one can create a class with the same number of
operations (by cloning the class, for example). The number of advices, inter-type decla-
rations, declare constructions and methods is a design decision and is not dependent of
the functionality of the aspect, therefore Property 3 is satisfied.

The nom of the composition of A and B can be defined as nom(A + B) =
nom(A) + nom(B) — w, where w is the number of common operations (methods,

205

advices, inter-type declarations) between A and B. The value of w can vary from
[0, min(nom(A),nom(B))]. Either if (w = 0) or (w = min(nom(A), nom(B))),
nom(A + B) > nom(A) and nom(A + B) > nom(B). Therefore, Property 4 is sat-
isfied.

Let nom(A) = nom(B). Consider a C aspect, containing w operations in common
with A and w+ 1 operations in common with B. Therefore nom(A+C) # nom(B+C) as
nom(A+C) = nom(A) +nom(C) —w and nom(B +C) = nom(B) +nom(C) —w + 1.
In this case, Property 5 is satisfied. Consider w as the number of common operations
between A and B. For all A and B, nom(A) + nom(B) — w < nom(A) + nom(B) and
therefore Property 6 is not satisfied (the effects of not satisfying this property are the same
of those for the [occ metric). Section C.7 discusses more details about not satisfying this

property.

C.3 Depth of Inheritance Tree

Consider two aspects .4 and 3, where B is a sub-aspect of A. In this case, the value
of dit(B) = dit(.A) + 1. Property 1 is satisfied, as the predicate V.A 3 B u(A) # u(B)
holds. The dit for any sibling of B is also dit(.A) + 1, so Property 2 is satisfied. Property
3 is satisfied as the use of inheritance mechanisms is a design dependent issue and is
independent of the aspects functionality.

The combination of A and B, in terms of inheritance, depends on the following
situations: (a) A and B are super and sub-aspects (b) A and B are siblings and (c)
A and B are unrelated in the inheritance tree. For situation (a), if A and B are com-
posed, the dit(A + B) is equal to the dit of the super-aspect. In this case, the predicate
dit(A+B) > dit(superAspect)A dit(A+B) > dit(subAspect) does not hold, and there-
fore, for this specific case, Property 4 is not satisfied. For situation (b), dit(.A) = dit(B)
and therefore dit(A+ B) > dit(A) Adit(A+B) > dit(A) holds. In this case, Property 4
is satisfied. For situation (c), if the direct common ancestor of .4 and B is the super-aspect
or super-class of A, the combination of both aspects is located in B actual’s location. In
this case, Property 4 is satisfied, as dit(A + B) > dit(A) A dit(A+ B) > dit(A). If
the common ancestor of both aspects is not a direct ancestor of both A and B, there is
the need to use multiple inheritance to address the situation (which is not a common fea-
ture in aspect-oriented languages). For a discussion of the dit metric for object-oriented
software, refer to Chidamber and Kemerer (CHIDAMBER; KEMERER, 1994).

The dit for aspects fails to satisfy Property 4 only when two aspects are in a parent-
descendent relationship. The same situation happens with the metrics for object-orien-
ted software (CHIDAMBER; KEMERER, 1994). Not satisfying this property does not
invalidate the use of dit as a metric to assess the use of inheritance mechanisms (the same
occurs to the metric for object-oriented software).

Let dit(A) = dit(B). Let C be a sub-aspect of A. As dit(A + C) = dit(A) and
dit(B + C) = dit(A) + 1, the predicate dit(A + C) # dit(B + C) holds and therefore
Property 5 is satisfied. Considering that the dit(.A + B) is equal to max(dit(.A), dit(B)),
dit(A + B) < dit(A + B) for all A and B. Property 6 is not satisfied (the effects of not
satisfying this property are the same of those for the [occ metric). Section C.7 discusses
more details about this.

206

C.4 Number of Children

Let A and B be leaves and C be the root of an an inheritance tree. Property 1 is
satisfied as noc(C) # noc(A). As A and B are leaves, they both have noc = 0, so
Property 2 is satisfied. Also, Property 3 is satisfied as the noc of an aspect is a design
issue and is independent of the functionality. Let B be the only sub-aspect or sub-class of
A. If A and B are combined the value of noc(A + B) = 0 and the predicate noc(A+ B) >
noc(A) A noc(A + B) > noc(A) does not hold as noc(A + B) < noc(A). Therefore,
Property 4 is not satisfied. As happens with the dit metric, the noc for aspects fails to
satisfy Property 4 when two aspects are in a parent-descendent relationship. As discussed
before, not following this property does not invalidate the use of noc as a metric to assess
the use of inheritance mechanisms. This is discussed with more details in Section C.7.

Now, let noc(A) = noc(B) and let C be a sub-aspect of A. As noc(A + C) =
noc(A) + noc(C) — 1, noc(B + C) = noc(B) + noc(C) and noc(A) = noc(B), the
predicate noc(A + C) # noc(B + C) holds and Property 5 is satisfied. Considering that
the maximum value of noc(A + B) is equal to noc(A) + noc(B) for all A and B, the
Property 6 is not satisfied (the effects of not satisfying this property are the same of those
for the locc metric). Section C.7 discusses additional details.

C.5 Crosscutting Degree of an Aspect

Consider two aspects A and B. It is always possible to create a new module C and
insert an inter-type declaration in B module, for example. Property 1 is satisfied, as the
predicate VA 3 B u(A) # u(B) holds. Two empty aspects A and B have equal values
to the cda metric. In this case, Property 2 is satisfied. Property 3 is also satisfied, as
the number of modules affected by aspects is dependent of design decisions and not of
functionality.

If the aspects A and B are combined, the cda(A + B) = cda(A) + cda(B) — v,
where v is the number of common modules affected by A and B. In this case, v is
given by a value in the interval [0, min(cda(A),cda(B))], if v = 0, cda(A + B) =
cda(A)+cda(B). Property 4 is satisfied. If v = min(cda(.A), cda(B)) then cda(A+B) =
mazx(cda(A), cda(B)) and Property 4 remains satisfied.

Consider that cda(A) = cda(B) and let C be another aspect. Consider that the number
of affected modules in C that are common with .4 is v and in common with B is w and also
that v # w. As cda(A+C) = cda(A)+cda(C)—v and cda(B+C) = cda(B)+cda(C)—w,
the predicate cda(A + C) # cda(B + C) holds and therefore Property 5 is satisfied.
Consider that the number of common modules affected by advices, inter-type method
declarations or inter-type constructor declarations between two aspects .4 and B is given
by v. For all A and B, cda(A) + cda(B) — v < cda(A) + cda(B) and therefore Property
6 is not satisfied (the implications are the same of those for the [occ metric).

C.6 Coupling on Advice Execution

Consider two equal aspects A and B. It is always possible to create a new aspect C that
affects only B, for example. In this case, cae(A) = cae(B) — 1. Property 1 is satisfied,
as VA 3 B u(A) # n(B). Property 2 is also satisfied, as two unaffected classes have
the same value for the cae metric. The number of aspects that affects a class is design
dependent and not mandated by the functionality of the classes and aspects, therefore

207

Property 3 is also satisfied.

The value of cae(A + B) = cae(A) + cae(B) — 6, where 6 is the number of com-
mon modules that affect A and B. In this case, 6 is within the interval [0, min(cae(A),
cae(B))]. If @ = 0 then cda(A + B) = cae(A) + cae(B), and therefore Property 4 is
satisfied. If @ = min(cae(A), cae(B)) then cda(A + B) = max(cae(A), cae(B)) and
Property 4 remains satisfied.

Consider that cae(A) = cae(B) and let C be another module. Consider that the num-
ber of aspects affecting C that are common with the aspects that affect A is v and in
common with B is w and also that v # w As cae(A + C) = cae(A) + cae(C) — v and
cae(B 4+ C) = cae(B) + cae(C) — w, the predicate cae(A + C) # cae(B + C) holds
and therefore Property 5 is satisfied. Let # be the number of common modules affecting
two modules A and B. For all A and B, cae(A) + cae(B) — 0 < cae(A) + cae(B) and
therefore Property 6 is not satisfied (the effects of not satisfying this property are the same
of those for the locc metric).

C.7 Conclusions

Regarding the analytical results, the metrics described here satisfy most of the prop-
erties analysed, except for Property 6. However, this failure implies that the metric values
can increase if an aspect or class is divided in more aspects or classes. Chidamber and
Kemerer (CHIDAMBER; KEMERER, 1994) claim that this property may not be an es-
sential feature for object-oriented software design complexity metrics and not satisfying
can be seen as beneficial in object-oriented software. The same occurs for aspect-oriented
software. As happens with the metrics for object-oriented software (CHIDAMBER; KE-
MERER, 1994), the dit and noc for aspects fail to satisfy Property 4 only when two
aspects are in a parent-descendent relationship. Not following this property does not in-
validate the use of dit and noc as metrics to assess the use of inheritance mechanisms (the
same occurs to the object-oriented version of these metrics).

The analytical evaluation of the selected metrics against established criteria for va-
lidity showed that the aspect-oriented adapted metrics satisfy the criteria originally satis-
fied by the object-oriented metrics, which means that they can be used to assess aspect-
oriented software and provide comparable results.

208

APPENDIX D COMPUTING IMPACT FUNCTIONS FOR
PULL UP ADVICE IN THE GLASSBOX INSPECTOR

This appendix details the computation of 15 impact functions, simulating the applica-
tion of the Pull Up Advice refactoring pattern in the Glassbox Inspector.

D.1 Super-Aspects

Three super-aspects are used in the example and are named as follows:

oy = Abstract ResourceM onitor
as = AbstractX M LProcessingMonitor
az = Abstract Request M onitor

The metric values needed to compute the impact functions (as described in Chapter 7)
is shown as follows.

D.1.1 AbstractResourceMonitor

oy = AbstractResourceMonitor
cda(ay) = 0, cae(ay) =3
Aoy = {}h MA., ={}
oy = {JImaxManagement, SimpleConfig,
ErrorHandling}
ME,, = {(JmxzManagement,1),(SimpleConfig,1),
(ErrorHandling, 1)}

209

D.1.2 AbstractXMLProcessingMonitor

oy = AbstractX M LProcessingMonitor

cda(an) = 0,cae(az) =3
Aoy = {}, MA, ={}
oy = {JImaManagement, SimpleConfig,
ErrorHandling}

ME,, = {(JmxzManagement,1),(SimpleConfig,1),
(ErrorHandling, 3)}

D.1.3 AbstractRequestMonitor

az = AbstractRequest Monitor
cda(o) = 1,cae(as) =4
A., = {RequestContext}
MA,, = {(RequestContext,1)}
Eas = {JImazManagement, SimpleConfig,
ErrorHandling}

ME., = {(JmxManagement,1),(SimpleConfig,1),
(ErrorHandling, 22)}

D.2 Sub-Aspects

Six aspects are the sub-aspects (the (3 aspects):

61 = JDBCConnectionMonitor
By = JDBCStatementMonitor
B3 = RemoteCallMonitor

6y = JaxmCall Monitor

Os = AbstractX M LCall Monitor
Bs = AbstractOperationMonitor

The metric values needed to compute the impact functions are shown in the following
sub-sections.

210

D.2.1 JDBCConnectionMonitor

JD BCConnection M onitor

76, nom(f;) =10, cda(f,) =0, cae(f;) =5
{}

{}

{JmaxManagement, SimpleCon fig,
ErrorHandling, Track Parents,

Servlet Monitor}

{(JmxzManagement 1), (SimpleConfig1),
(ErrorHandling 15), (TrackParents2),
(ServletMonitor 1)}

D.2.2 JDBCStatementMonitor

2
loce(32)
Ag,
MAﬂ2
Epy

MEs,

JD BC Statement M onitor

92, nom(f2) =12, cda(fB2) =0, cae(Fy) =5
{}

{}

{JmaManagement, SimpleCon fig,
ErrorHandling, TrackParents,

Servlet Monitor}

{(JmxzManagement, 1), (SimpleConfig, 1),
(ErrorHandling, 11), (Track Parents, 2),
(ServletMonitor,1)}

D.2.3 RemoteCallMonitor

B3
loce(33)
As
MAg,
s

MEg,

RemoteCallMonitor

34, nom(f3) =6, cda(fB3) =0, cae(f3) =4
{}

{}

{JmaManagement, SimpleCon fig,
ErrorHandling, TrackParents}
{(JmxManagement, 1), (SimpleConfig,1),
(ErrorHandling,2), (TrackParents,2)}

D.2.4 JaxmCallMonitor

loce(By)

= JaxmCall Monitor

= 18, nom(Bs) =3, cda(fBy) =0, cae(By) =4
= {}

= {}

= {JmazManagement, SimpleConfig,
ErrorHandling, TrackParents}

= {(JmaxManagement, 1), (SimpleConfig,1),
(ErrorHandling, 1), (TrackParents, 1)}

D.2.5 AbstractXMLCallMonitor

loce(s)

= AbstractX M LCall Monitor

= 23, nom(fBs) =3, cda(f5) =0, cae(fs) =4
= {}

= {}

= {JmazManagement, SimpleConfig,
ErrorHandling, TrackParents}

= {(JmaManagement,1), (SimpleConfig,1),
(ErrorHandling,2), (TrackParents, 1)}

D.2.6 AbstractOperationMonitor

loce(fBs) =

RemoteCallMonitor

100, nom(fBs) = 20, cda(fBs) =1, cae(fs) =4
{AbstractOperationM onitor}
{(AbstractOperationMonitor,4)}

{JmaxzManagement, SimpleCon fig,

ErrorHandling, AbstractOperationMonitor}
{(JmxzManagement, 1), (SimpleConfig, 1),
(ErrorHandling, 12), (AbstractOperationMonitor,4)}

212

D.3 Advices

In the 3 aspects, there are 15 different advices which can be pulled up to the super-
aspects:

p1 = around(DataSource)
p2 = around(String)
ps = before(Statement, String)
ps = around(Statement)
ps = afterreturning(Connection)
ps = around(String)
p7 = around(Object) : remote. ..
ps = around(Object) : jaxRPC ...
po = around(Object, Object, Object)
pro = around(Node)
p11 = afterreturning(Object)

p12 = around(Object) : class . ..

p1s = around(Object) : methodSig . ..
p1a = around(Object) : methodNameCon . ..
p15 = around(Object) : methodCon . ..
D.3.1 p; - around(DataSource)
p1 = around(DataSource)
loce(pr) = 10
wom(py) = 1
cda(p1) = 0
cae(py) = 2
Ao = {3
M-Am = {}
E,, = {ErrorHandling, TrackParents}
ME, = {(ErrorHandling,3),(TrackParents,1)}
1 Connection around(fimal DataSource dataSource)
2 dataSourceConnectionCall (dataSource) && !
nestedConnectionCall () &&
3 monitorEnabled () {
4 RequestContext requestContext = new
ConnectionRequestContext () {
5 public Object doExecute () ({

6 accessingConnection (dataSource);

7 Connection connection = proceed(dataSource);
8 return addConnection(connection);

9 }

10 }s

11 return (Connection) requestContext.execute () ;

12)

D.3.2 p, - around(String)

p2 = around(DataSource)
loce(py) = 10
wom(py) = 1
cda(p:) = 0
cae(py) = 2

Apy = MA, =1}
&, = {ErrorHandling, TrackParents}
ME,, = {(ErrorHandling,3),(TrackParents,1)}

1 Connection around(final String url)

2 directConnectionCall (url) && !nestedConnectionCall ()

3 && monitorEnabled () {

4 RequestContext requestContext = new
ConnectionRequestContext () {

5 public Object doExecute () {

6 accessingConnection(url);

7 Connection connection = proceed(url);

8 return addConnection(connection);

9 }

10 }s

11 return (Connection)requestContext.execute () ;

12}

D.3.3 p3 - before(Statement,String)

ps = before(Statement, String)

locc(ps) = 4
wom(ps) = 0
cda(ps) = 0
cae(ps) = 1

Ay = MA, ={}
&, = {ErrorHandling}
ME,, = {(ErrorHandling,1)}

213

214

1 before(Statement statement, String sql):
2 statementExec (statement) && args(sql, ..) {
3 sql = stripAfterWhere (sql);
4 setUpStatement (statement , sql);
5 4
D.3.4 p, - around(Statement)
ps = around(Statement)
loce(py) = 10
wom(py) = 1
cda(py) = 0
cae(py) = 2
A,, = MA, ={}
E,, = {ErrorHandling, TrackParents}
ME,, = {(ErrorHandling,?2),(TrackParents,1)}

1 Object around(final Statement statement)
2 statementExec (statement) &% monitorEnabled () {
RequestContext requestContext = new
StatementRequestContext () {
public Object doExecute () ({
curStatement = statement;
return proceed(statement);

}

protected String getRequestType() { return "execute"; }

W

}s

return requestContext.execute () ;

— O O 0 3N LB~

—_—

D.3.5 ps - after returning(Connection)

ps = afterreturning(Connection)
loce(ps) = 6
wom(ps) = 0
cda(ps) = 0
cae(ps) = 1
Ay = MA, =)
&, = {ErrorHandling}

{(ErrorHandling, 1)}

p—

AN D W N

D.3.6 pg - around(String)

W N

o0 3 ON N K

11
12

after (Connection connection) returning (Statement

callCreateStatement (connection) {

synchronized (JdbcStatementMonitor. this) {

statementCreators . put(statement,

}

Object around(final String
callCreatePreparedStatement (sql) && monitorEnabled ()
RequestContext requestContext
StatementRequestContext () {
public Object doExecute() {
curStatement = (PreparedStatement)proceed(sql);
setUpStatement(curStatement ,

around(String)
11

2

0

2

MAys ={}

connection) ;

{Error Handling, TrackParents}
{(ErrorHandling,3), (TrackParents, 1)}

return curStatement;

}

protected String getRequestType () { return

}s

return requestContext.execute () ;

sql)

sql);

"prepare";

215

statement)

}

216

D.3.7 p; - around(Object): remote...

—

98]

(e <IN B o) QY JIE N

10
11
12
13
14
15

}

p7 = around(Object) : remote . ..
loce(pr) = 13
wom(p;) = 2
cda(pr) = 0
cae(pr) = 2
Ay = MA, ={}
E,, = {ErrorHandling, TrackParents}

ME,. = {(ErrorHandling,?2),(TrackParents,1)}

Object around(final Object recipient)
remoteProxyCall(recipient) &% monitorEnabled () {
RequestContext requestContext = new

ResourceRequestContext () {
public Object doExecute () {

return proceed(recipient);
}
public PerfStats lookupStats () {

String key = "jaxrpc:"+recipient.getClass () .getName ()
+
."+thisJoinPointStaticPart.getSignature () .getName ()

n

key = key.intern () ;
return lookupResourceStats (key);

return requestContext.execute () ;

D.3.8 ps - around(Object): jaxRPC...

ps = around(Object) : jarRPC' ...

loce(ps) = 13
wom(ps) = 2
cda(ps) = 0
cae(ps) = 2
A = MA, =}
& = {ErrorHandling, TrackParents}

ME,, = {(ErrorHandling,?2),(TrackParents,1)}

W N =

(IR Be) NV, RN N

11
12
13
14
15

217

Object around(final Object wsCallObj)
jaxRpcClientCall (wsCallObj) && monitorEnabled () {
RequestContext requestContext = new
ResourceRequestContext () {
public Object doExecute () {
return proceed (wsCallObj);
}
public PerfStats lookupStats () {
Call wsCall = ((Call)wsCallObj);
String key = wsCall.getTargetEndpointAddress ()+
":"+wsCall. getOperationName () . toString () ;
return lookupResourceStats (key);

}
)i

return requestContext.execute () ;

D.3.9 py - around(Object, Object, Object)

(O8] p—

0 3 ON D A~

11
12

po = around(Object, Object, Object)

locc(pg) = 11
wom(pg) = 2
cda(pg) = 0
cae(py) = 2
Apy = MA, ={}
&,y = {ErrorHandling, TrackParents}

ME,, = {(ErrorHandling,1),(TrackParents,1)}

Object around(final Object soapConnection, finmal Object msg,
final Object endPoint)
jaxmCall (soapConnection, msg, endPoint) && monitorEnabled
O |
RequestContext requestContext = new
ResourceRequestContext () {
public Object doExecute () {
return proceed(soapConnection, msg, endPoint);
}
public PerfStats lookupStats () {
return lookupResourceStats (endPoint.toString ());

}
}s

return requestContext.execute () ;

218

D.3.10 py(- around(Node)

po = around(Node)

locc(pro) = 17
wom(prp) = 2
cda(pro) = 0
cae(pr) = 2
Ay = {}
MAy, = {}
€, = {ErrorHandling, TrackParents}

ME,, = {(ErrorHandling,?2),(TrackParents,1)}

1 Object around(final Node node)

2 domCall (node) && !inXmlRequest() && monitorEnabled () {
3 RequestContext requestContext = new XmlRequestContext () {
4 public Object doExecute () {

5 return proceed (node);

6 }

7 public PerfStats lookupStats () {

8 Document doc;

9 if (node instanceof Document) {

10 doc = (Document)node;

11 } else {

12 doc = node.getOwnerDocument () ;

13 }

14 return lookupDocumentStats (doc);

15 }

16 }s

17 return requestContext.execute () ;

18 }

D.3.11 p;; - after returning(Object)

p11 = afterreturning(Object)

loce(pr1) = 3
wom(p) = 0
cda(pr;) = 1
cae(pr;) = 1

A, = {AbstractOperationMonitor}

MA,, = {(AbstractOperationMonitor,4)}
E,, = {ErrorHandling}

ME,, = {(ErrorHandling,1)}

B~ W

219

after (Object controller) returning (OperationRequestContext
context):
cflow (adviceexecution () && args(controller , ..) && this(
AbstractOperationMonitor)) &&
call (OperationRequestContext+.new (..)) {
context.controller = controller;

D.3.12 p;; - around(Object): class...

OO N kW

—_ = =
NN = O O

}

p12 = around(Object) : class . ..

locc(pr2) = 11
wom(pz) = 2
(p12) = 0
cae(pra) = 2

Ao, = {}
MA,, = {}
E,, = {ErrorHandling, AbstractOperationMonitor}
ME,, = {(ErrorHandling,1), (AbstractOperationMonitor,1)}

Object around(final Object controller)
classControllerExec (controller) &% monitorEnabled () {
RequestContext rc = new OperationRequestContext () {
public Object doExecute () {
return proceed(controller);
}
protected Object getKey () {
return controller.getClass ();
}
1

return rc.execute();

220

D.3.13 p;3 - around(Object): methodSig. ..

p1s = around(Object) : methodSig . ..

locc(p1z) = 11
wom(pz) = 2
cda(piz) = 0
cae(piz) = 2
Aoy = {}
MA,, = {3
Eps = {ErrorHandling, AbstractOperationMonitor}

ME,, = {(ErrorHandling, 1), (AbstractOperationMonitor,1)}

1 Object around(final Object controller)
methodSignatureControllerExec (controller) &&
monitorEnabled () {

\®)

3 RequestContext rc = new OperationRequestContext () {
4 public Object doExecute () {

5 return proceed(controller);

6 }

7 protected Object getKey () {

8 return concatenatedKey (controller. getClass (),

9 thisJoinPointStaticPart. getSignature () .getName())
10 }

11 }s

12 return rc.execute () ;

13 }

D.3.14 py, - around(Object): methodNameCon...

pia = around(Object) : methodNameCon . ..

loce(prg) = 11
wom(pry) = 2
cda(pry) = 0
cae(pry) = 2

‘AP14 = {}
M‘Apm = {}
& = {ErrorHandling, AbstractOperationM onitor}
ME,, = {(ErrorHandling, 1), (AbstractOperationMonitor, 1)}

1 Object around(final Object controller , final String
methodName)

2 methodNameControllerExec(controller , methodName) &&
monitorEnabled () {

3 RequestContext rc = new OperationRequestContext () {
4 public Object doExecute () {

5 return proceed(controller , methodName) ;

6 }

7 protected Object getKey () {

8 return methodName;

9 }

10 }s

11 return rc.execute () ;

12}

D.3.15 ;5 - around(Object): methodCon...

p15 = around(Object) : methodCon. ..

locc(p1s) = 11
wom(ps) = 2
cda(pis) = 0
cae(pis) = 2
Apis = {}
MA,,, = {}
Eps = {ErrorHandling, AbstractOperationMonitor}

ME,, = {(ErrorHandling,1), (AbstractOperationMonitor, 1)}

221

1 Object around(final Object controller , final Method method)

2 methodControllerExec(controller , method) &&
monitorEnabled () {

3 RequestContext rc = new OperationRequestContext() {

4 public Object doExecute () {

5 return proceed(controller , method);

6 }

7 protected Object getKey () {

8 return concatenatedKey (controller.getClass (), method.
getName ()) ;

9 }

10 }s

11 return rc.execute () ;

12)

D.4 Impact Functions and Their Values

Table D.1 shows the relationship between the super-aspect, the sub-aspects and the
advices. Each application of the Pull Up Advice refactoring pattern is represented by a

222

numbered A. For example, the \; application moves the p; advice (around(DataSource))
from the (; sub-aspect (JDBCConnectionMonitor) to the oy super-aspect (AbstractRe-
sourceMonitor).

Table D.1: Relationship between the super-aspect, the sub-aspects and the advices.

A a | B |p
Al | a1 | B p
Ao | a1 | B1| p2
A3 | a1 | B2 | p3
Ay | o1 | B2 | pa
As | a1 | B2 | ps
Xe | a1 | B2 | pe
A7 |oq | B3| pr
As | a1 | B3| ps
Ao | a1 | Ba| py
Ao | a2 | B5 | p1o
A1 | as | Bs | p11
A2 | az | Bs | p12
A1z | as | Bs | p13
Mg | az | Bs | p1a
A5 | as | Bs | p15

The impact function values for \ are as follows:

A= Aag, B, o)
f(A1,aq,loce) = loce(pr) = 10
f(A1,q,mom) = 14 nom(p;) =2
f(A\,oq,cae) = [0,]€, —Eall =10,1]
f(M,oq,cda) = [|Ay) — Aa,ls |Apy — Aoy | + 1] = [0, 1]
f(A1, B1,loce) = —loce(pr) = —10
f(A1, Br,nom) = —1—nom(p;) = —2

1, Brycae) = —(IMEp,| — IMEp, — ME,,|) =0
f()\hﬁla Cda) = _|-Aﬁl - (MAﬂl - 'Apl)‘ =0

A
f(Ag, ay, loce

Mo, B, pa)

loce(ps) = 10

= 14 nom(py) =2

[0,1€0, = €]l = [0, 1]

[1Ap, = Aa, [[Ap, = Aay [+1] = [0,1]
—loce(pz) = —10

= —1—mnom(py) = —2

~(IMEg| ~ IMEs, — ME,,) =0
s, — (MAs, — A,)] =0

f(A2, a1, nom

f(Ae2, aq, cae

)
)
)
f(Ag, aq, cda)
)
)
)
)

f (s, B1, loce
f(X2, B, nom
f(Xe, By, cae
f(X2, By, cda

A3

f(Ag, aq, loce)
f(As, a1, mom)
f(As, aq, cae)
f(As, a1, cda)
f(As, Ba, loce)
f (A3, B2, nom)
f (A3, Ba, cae)
f(A3, B2, cda)

A4

f(Ayg, aq, loce)
f(Ayg, a1, nom)
f(Ag, v, cae)
f(Ag, a1, cda)
f (A4, Bz, loce)
f (A4, B2, nom)
f (Mg, Ba, cae)
f (A4, B2, cda)

As

f(As, aq, loce)
f(As, a1, mom)
f(As, aq, cae)
f(As, 1, cda)
f(As, Ba, loce)
f(As, B2, nom)
f(As, Ba, cae)
f(As, B2, cda)

A6

f(Xg, a1, loce)
f(Ag, a1, nom)
f(Xe, a1, cae)
f(Xg, 1, cda)
f (X, Bz, loce)
f (X6, B2, nom)
f (X, Ba, cae)
f(Xg, B2, cda)

)\(ala 627 P3)
loce(ps) =4

1+ nom(ps) =1

[07 |gp3 - 5a1|] =0

HAPS - Aall’ "Aps - -Aa1| + 1] = [07 1]
—loce(ps) = —4

—1 —nom(ps) = -1

—(IMEg,| — IMEp, = ME,,|) =0

= _|Aﬁ2 - (MAﬁz - Ap3)| =0

A(ala 527 P4)
loce(py) = 10

1+ nom(py) = 2

[0’ |gp4 - gmH =1

[Aps = Aas | [Ap, = Aoy [+ 1] = [0, 1]
—loce(py) = —10

—1 —nom(py) = -2

(IME | — [MEs, — ME,) =0
—[Ag, — (MAg, — Ay,)|

)\(ala 527 P5)
loce(ps) = 6

1+ nom(ps) =1
=0
HAps B Aall’ ‘Aps - Aal’ + 1] = [07 1]
—loce(ps) = —6

[07 |€P5 - 50&1 H

—1 —nom(ps) = —1
_(|M‘952| - ‘Mgﬁz - Mgﬂs’) =0
_|"452 - (MA/BQ - 'Aps)|

= A(alv 627 PG)

loce(pg) = 11

1+ nom(pg) =3
[0,1€ps = €arl] = [0, 1]
(Mo = Aaul; [Aps = Aay| +1] = [0, 1]
—loce(pg) = —11

—1 —nom(pg) = —3

—(IMEgy| — IMEs, = MEy) =0
—[Ag, = (MAg, — Ay

=0

=0

=0

223

224

A
f(A7,aq,loce
f(A7, 1, nom

f(A7, aq, cae

(A7, Bs, loce
f(A7, B3, nom
(A7, B3, cae
f(A1, Bs, cda

A
f(As, ay, loce
f(As, ag,nom

f(As, a1, cae

f(As, B3, loce
f (A, B3, nom
f(Xs, Bs, cae
f(As, B3, cda

Ag

f(Ag, a1, loce)
f(Xg, 1, nom)
f(X, aq, cae)
(Ao, a1, cda)
f (Ao, Ba, locce)
f (Ao, Bs, nom)
f (N, Ba, cae)
f (Ao, Ba, cda)

Ao =

f (Ao, g, locc)
f(A10, a2, nOM)
f (A0, az, cae)
f (Ao, g, cda)
(Ao, Bs, loce)
f()\107 s, nom)
f (Mo, Bs, cae)
(Mo, Bs, cda)

)

)

) =
f(A7, 1, cda)

)

)

)

)

)

)

) =
f(As, a1, cda) =

)

)

)

)

-)‘<a17 ﬁ?n /07)

loce(pr) = 13

= 1+nom(p;) =3

[07 |g/77 - gqu = [07 1]

HAP? - Aa1|7 |AP7 - Aal' + 1] = [07 1]
= —locc(pr) = —13

—1 —nom(p7) = —3

=)\(061753’P8>

loce(ps) = 13
1+ nom(ps) =3
[07 ’898 - 8041 H = [07 1]

HAPS - Aa1|> ’Aps - Aall + 1] = [07 1]

—locc(ps) = —13

= —l—nom(ps) = =3
~(IMEp| = IMEp, — ME,|) = ~1
= —Ma = (MAs, = A, =0

- /\(041,@1,,09)
= locc(py) = 11

= 1+nom(py) =3

[07 |509 - goc1|] = [07 1]

HApg - Aa1|7 |'AP9 - Aa1| + 1] = [07 1]

—loce(pg) = —11
—1 —nom(py) = —3

Aoz, B, p1o)

loce(pro) = 17

1+ nom(pip) =3

[07 "C:plo o 5012” = [07 1]

H-Apm - Aa2|v |~Aplo - -’4042| + 1] = [07 1]
= —locc(pyy) = —17

= —1—nom(pw) = -3
= _(|M855| - |M555 - Mgﬂlol) = -2
= _|Aﬂ5 - (MA,35 - AP10)|

- _(|M853| - |M853 - Mgﬂ?D =—1
= _|A53 - (MAﬁS - ‘AP7)| =0

= _(|M554| - |Mgﬁ4 - M5P9|) = -2
- _|'Aﬁ4 - (M'A& - AP9)| =0

=0

A1l

f(A11, as, loce)
f(A11, a3, nom)
f(A11, as, cae)
f(A11, as, cda)
f (A1, B, locce)
f (A1, Bs, nom)
f (A1, Bs, cae)
f()\n, Bs. Cd@)

A1z

(A2, as, loce)
(A2, g, nom)
f(A12, as, cae)
f(A2, as, cda)
f (M2, B, loce)
f(A12, B, nom)
[(M2, Bs, cae)
(A2, Bs, cda)
A13

f(A13, as, loce
(A3, az, mom
f(A13, g, cae
f(A13, as, cda
(A3, Bs, loce
f (A3, Bs, nom
f (A3, B, cae

)
)
)
)
)
)
)
f (A3, Bs, cda)

Ay =

f(A1g, as, locc)
f(A14, a3, nOomM)
f(A14, as, cae)
f(A1g, as, cda)
(A4, Bs, loce)
f(A14, Bs; nom)
J(A14, B6, cae)
(A4, Bs, cda)

= >\(043>ﬁ6>,011)

loce(prr) = 3
1+ nom(pn) =1
[07 |gp11 - 503” =0

HAPH - Aoé3|7 |A911 - Aa3| + 1] - [17 2]

—loce(pr1) = =3
—1 —nom(p) = —1

_(|M856| - |Mgﬁ6 - Mgﬂn') =0

_|Aﬂ6 - (MAﬁG - Apu)‘ = -1

-)\(Oé37 667 /)12)

loce(pra) = 11
1+nom(pz) =3
[07 ’8912 - gas” =0

HApu - ‘Aas‘? |Ap12 - Aa3| + 1] = [07 1]

—loce(prz) = —11
—1 —nom(p12) = -3

_(|M€56| - |Mg/66 - Mgplzl) =0

_lAﬁS - (MAﬁe - Aplz)| =0

= AMas, Bs, p13)
= locc(piz) = 11

14 nom(plg) =3
[07 |5p13 - 5043” =0

HAP13 - -Aoé3|7 |AP13 - Aa3| + 1] - [07 1]

—loce(prs) = —11
—1 —nom(p13) = —3

_(|M556| - |Mgﬁ6 - Mgﬂls') =0

_|"456 - (M‘AﬂG - ’APIB)‘ =0

>\(Oé37567p14)
loce(pra) = 11

1+ nom(p1s) =3
[07 ’8014 o 5013” =0

[|Ap14 - Aa3|v |~Apl4 - -’4043| + 1] = [Ov 1]

—loce(pry) = —11
—1 —nom(p1s) = -3

—(IMEg| = [MEpy = ME,,,]) =0

_lAﬂb‘ - (MA/BG - 'AP14)| =0

225

226

Ais = Aas, 6, p15)
f(A15,a3,locc) = loce(prs) = 11
f(A15,a3,mom) = 1+ nom(pis) =3

f(\is, a3, cae) = [07 ’gms - gas” =0
f(/\lfn a3, Cda) = HAPlS - Aa3|7 |A015 - 'Aa3| + 1] = [07 1]
f(Ais, Bs, loce) = —loce(prs) = —11
f(Ais, Bs,mom) = —1—nom(pys) = —3
f(Ais, B6,cae) = —(IMEgy| — [MEgy — ME,]) =0
)

f<)\157567 cda) = _|A56 - (M‘Aﬁe - APIS)‘ =0

227

APPENDIX E COMPUTING THE EFFECTS OF REFAC-
TORING ON OBJECT-ORIENTED SOFTWARE

In this appendix, the definition of impact functions for class diagrams is exemplified.
First, the targets for refactoring are selected from the existing metamodel elements. Next,
refactoring patterns for those elements are selected and last, impact functions for a set of
metrics are created to simulate the values of those metrics when the refactoring patterns
are applied.

E.1 Selecting Targets.

As the example uses the UML metamodel, the first step is to select the target elements
from all the UML class diagrams metamodel, that can be denoted as an & set:

E = {Class,Classifier, Generalization, Operation, Property,
Structural Feature, AggregationKind, V alueSpeci fication,
Type, Association, Relationship}

To exemplify the process, only one class from the £ set was selected: the Class class.
Also, two associations are being considered: the association of a Class instance with a
Property and the association of a Class with an Operation. In this case, the targets are the
sub-set:

K = {Class, Property, Operation}

E.2 Selecting Refactoring Patterns.

The more commonly available refactoring patterns in IDEs and Case tools for the
target elements are:

e (lass: Extract Sub-Class, Inline Class, Collapse Hierarchy, Extract Interface, Ex-
tract Super-Class, Extract Class.

e Operation: Move Method, Inline Method, Pull Up Method, Push Down Method.
e Property (Attribute): Encapsulate Field.

To exemplify the approach, a composed refactoring pattern named Extract Sub-Class
is used, which uses other simpler refactoring patterns to manipulate classes, operations
and attributes.

228

E.3 Creating the Impact Functions.

The refactoring pattern discussed is Extract Sub-Class. This pattern is a composition
of New Sub-Class and a set of Push Down Attribute or Push Down Method refactoring
patterns. Push down refactoring patterns can be seen as a Move refactoring pattern or a
combination of a set of the application of a Copy followed by a Delete transformation.

The process starts by defining impact functions for Copy Attribute.

Copy Attribute. It can be represented as a function that receives two classes (source
and destination) and one attribute as parameters and evaluates to a 2-tuple containing the
modified classes (s’ and d'):

ca(s,d,a) : Class Class Attribute — Tuple(s' : Class,d : Class) (E.1)

where s is the source class, d is the destination class, a is the attribute to be copied and
s'(ca(s,d,a)) and d'(ca(s,d,a)) returns from the 2-tuple the modified source and the
modified destination respectively. Note that there is the need to define impact functions for
both participating classes, as the selected metrics are class-based ones. Impact Functions.
The impact functions for the Copy Attribute refactoring pattern can be defined as:

flca(s,d,a),s,n) = n(s'(ca(s,d,a))) —n(s)
f(ca(&d,a),d,n) = U(d/(CCZ(S’dﬂ)))—ﬂ(d)

As this particular refactoring pattern does not change the selected metrics, the predicate
n(s'(ca(s,d,a))) = n(s) A n(d(ca(s,d,a))) = n(d) is true for all the metrics. In this
case, the impact functions Vm € M are:

f(eca(s,d,a),s,m) = 0
f(ea(s,d,a),d,m) =

All impact functions of Copy Attribute evaluate to zero. The same occurs with the Delete
Attribute refactoring pattern.

Copy Method. The Copy Method transformation requires two classes: a source class
(s) and a destination class (d). It also requires as a parameter the method to be moved (m):
The refactoring pattern can represented by a function:

em(s,d,m) : Class Class Method — Tuple(s' : Class,d : Class)

Impact Functions. This refactoring pattern only changes the wmc metric for the desti-
nation class. Therefore, the impact function for the Copy Method regarding wmc in the
destination class can be defined as:

f(em(s,d,m),d,wmc) = wmec(d (ecm(s,d,m))) —wmc(d)

As the number of operations in the destination class increases in one, wmc(
d'(ecm(s,d,m))) = (wme(d) + 1), the impact function can be simplified as follows:

flem(s,d,m),d,wmec) = (wme(d)+ 1) —wme(d)
flem(s,d,m),d,wmc) = +1

229

All other impact functions evaluate to zero and to avoid repetition will not be described
here. The simplification steps for the next refactoring patterns will be more concise.

Delete Method. This refactoring pattern deletes a method m of a class ¢ and returns
a modified class ¢’

dm(c,m) : Class Method — Class

Impact Functions. It only changes the wmc metric, soh the only impact function that
does not return zero is:

fldm(c,m),c,wme) = (wme(c) — 1) —wme(c)

f(dm(c,m),c,wme) = —1

Move Method. The Move Method refactoring pattern can be seen as the applica-
tion of a Copy Method and a Delete Method transformations and can be represented as
function that receives two classes (s and d, representing the source and destination) and
a method (m) as a parameter and returns two modified classes (s’ and d’) representing the
modified source and destination:

mm(s,d,m) : Class Class Method — Tuple(s' : Class,d' : Class) (E.2)

Impact Functions. The impact function for this refactoring, for a source class s, a desti-
nation class d and a method m is:

f(mm(s,d,m),s,n) = f(em(s,d,m),s,n)+ f(dm(c,m),s,n)
f(mm(s,d,m),d,n) = f(em(s,d,m),d,n)

New Subclass. Considering a superclass ¢ and a new class nc, the New Sub-Class
refactoring pattern can be defined as:

nsc(e,ne) : Class Class
Impact Functions. The impact functions are:

f(nsc(c,ne),ne,dit) = dit(c) + 1

f(nsc(e,ne),c,noc) = +1

Extract Subclass. Using the impact functions for New Sub-Class, Copy Method,
Copy Attribute, Delete Attribute and Delete Method, the Extract Sub-Class impact func-
tion can be defined. Consider a class ¢, a new class nc, a set of methods M and a set of
attributes A to be moved to the subclass, a function to represent the refactoring pattern can
be defined as:

esc(c,ne, M, A) : Class Class Set < Method > Set < Attribute >

Impact Functions. The impact functions can be defined by the composition of the impact
functions computed from the application of:

230

e One New Sub-Class
e Several Move Method
e Several Move Attribute

This is represented by a sum of the values of the respective impact functions:

|M]|
f(esc(e,ne, M, A),e,n) = f(nsc(c,nc),cm)—i—Zf(mm(c,n,mi),c,n)

i=1

|M]|
Flescle,ne, M, A),ne,n) = f(nscle,nc)me,n) + 3 f(mmie, n,ma), ne,n)

i=1

The impact functions for the Move Attribute refactoring pattern were omitted as it does
not change the selected metrics in M.

231

APPENDIX F IMPACT FUNCTIONS FOR EXTRACT
POINTCUT AND INLINE INTER-TYPE FIELD DECLARA-
TION

This appendix defines impact functions for the Extract Pointcut and the Inline Inter-
Type Field Declaration refactoring patterns for the metrics: locc, nom, cda and cae.

F.1 Extract Pointcut

Consider a \ refactoring pattern, corresponding to the application of an Extract Point-
cut refactoring pattern to a © module. The p expression denotes the pointcut expression
being extracted and s is the name of the new pointcut:

A = extractPointcut (p : Module, p : Pointcut Expression, s : Identifier) (F.1)

The application of this refactoring pattern creates a new pointcut named s and copies
the p expression to this pointcut. The application of \ replaces the occurrences to the
expression to use the name of the newly created pointcut.

F.1.1 Impact on [occ.

The changes in the [occ metric value after the application of an Extract Pointcut refac-
toring pattern in any given module p could be calculated using the following function:

F (X, i, loce) = loce(p) (F.2)

In the function used to calculate [occ only locc(P) changes, so f(A,p,locc) =
loce(P') — loce(P). As P’ = P U p, one can conclude that f(\, i, locc) = loce(p).

Usually, a pointcut is defined in one single line of code. However, as programming
languages designers could define different constructions to represent the same abstraction
mechanism and can define a multi-line construction to express pointcuts, it was opted
to leave the impact function as f(\, p, locc) = +loce(p) instead of a simplified version
f(A p,loce) = +1 (as is in Aspect] or Caesar] (MEZINI; OSTERMANN, 2003), for
example).

F.1.2 Impact on nom.

The nom metric value is not affected by this refactoring pattern because the number of
methods, advices, inter-type method declarations and inter-type constructor declarations
do not change when the transformation occurs.

232

F.1.3 Example.

Consider a Debug aspect, part of an example named Space War (a spaceship and
asteroids game (HILSDALE; KICZALES, 2001)). This aspect is responsible for keeping
and displaying debug information. In this aspect, there is a pointcut directly defined in the
after advice (line 2). The pointcut definition can be extracted from the advice to provide
a name for the affected points and to enable the reuse of the extracted expression.

1 aspect Debug ({

2 after (Ship ship, SpaceObject obj) returning
3 call (void Ship.handleCollision (SpaceObject))
4 && target (ship) && args(obj){
5
6
7

}

Using the aopmetrics (STOCHMIALEK, 2009) tool to gather the metric values before
extracting the handleCollision pointcut, the developer gets the following values:

Debug = {locc = 83, nom = 13} (F.3)

The resulting metric values after the application of a Extract Pointcut refactoring pat-
tern can be obtained using the defined impact functions. In this case, only the [occ metric
is modified, according to the function by increasing the locc value by one unit. Using the
impact function, the new [occ value is:

= Debug
p = call(voidShip.handleCollision(SpaceObject))
&& target(ship) && args(oby)
A = extract Pointcut(u, p,” collision”)
locd (p) = loce(p) + f(A, p,loce) =83+ 1 =84

The values calculated using the impact functions prior the application of the refactor-
ing pattern are the same obtained using the aopmetrics tool after applying the refactoring
pattern:

Debug = {locc = 84, nom = 13} (F4)

After the extraction, the affected points are defined in a named pointcut (line 2). The
collision pointcut provides a semantic definition to the predicate that in the previous ex-
ample was attached directly to the advice and can be reused by other advices of this
aspect.

1 aspect Debug ({

2 pointcut collision (Ship ship, SpaceObject obj):
3 call (void Ship.handleCollision (SpaceObject))
4 && target (ship) && args(obj);
5
6

after (Ship ship, SpaceObject obj) returning : collision
(ship, obj){ ... }

233

F.2 Inline Inter-Type Field Declaration

Consider an aspect «, a class 3 and an inter-type field declaration (ITFD) ¢. This
refactoring pattern could be defined as:

A =inlinel TFD(a : Aspect, 3 : Class, ¢ : ITFD) (E.5)

F.2.1 Impact on [occ.

Inlining an inter-type field declaration only changes the [occ metric values by one unit
as the field no longer is declared in the aspect, but is inserted directly in the affected class:

f\ a,loce) = —1 (F.6)
F\ B, loce) = +1 (F7)

F.2.2 Impact on nom.

The nom metric value is not affected by this refactoring pattern because the number
of methods, advices, inter-type method declarations and inter-type constructor declara-
tions are not changed when the Inline Inter-type Field Declaration refactoring pattern is
applied.

F.2.3 Impact on cda.

Let ME = (€, m) be the multiset of all modules advised by «, where € is the set of
advised modules and m : £ — N is a function from & to the set of natural numbers. For
each e € £ the multiplicity of e is given by m(e). Let (3 be the class affected by the inter
type field declaration. The function that defines if the cda metric value is decreased could
be seen as:

f\ a,cda) = { 0 om(f) > 1 (E.8)

—1 : otherwise

f(\, Byeda) = 0 (F.9)

F.2.4 Impact on cae.

The cae metric value can change if the aspect containing the inter-type declaration no
longer affects the class. Let M.A = (A, m) be the multiset of all modules that advises [,
where A is the set of advising modules and m : A — N is a function from A to the set
of natural numbers. For each a € A the multiplicity of a is given by m(a). Let 3 be the
class affected by the inter type field declaration. The impact function for the cae metric
for o and (3 is:

f(\ a,cae) = 0 (F.10)

-1 : m(p)=1

f(A. B, cae) = {0 otherwise (F1D)

F.2.5 Example.

In the spacewar example, the SpaceObjectPainting (lines 1-4, an inner aspect of the
Displayl aspect) contains an inter-type field declaration (line 2) named color to the Ship
class (line 5). This inter-type declaration will be inserted in the class using the Inline
Inter-Type Field Declaration refactoring pattern.

234

static aspect SpaceObjectPainting {
private Color Ship.color;

}
class Ship extends SpaceObject {

NNk W -

}

The values of the selected metrics before the refactoring process are:

Displayl.SpaceObject Painting = {locc = 64,nom =5, cda = 6, cae = 0}
Ship = {locc =193, nom = 21, cda = 0, cae = 3}

Evaluating the changes in both SpaceObjectPainting aspect and Ship class using the
defined impact functions:

a = Displayl.SpaceObject Painting, 3 = Ship
A = inlinelTFD(«, 3, ship)

locd (o) = loce(a) + f(N a,loce) =193 + 1 = 194
) = loce(B) + f(A B, locc) =64 — 1 =63

To calculate the vale for cda metric, the modules that are advised by o were collected
and a multiset named M¢& was created:

ME = {(SpaceObject, 1), (Ship,2), (Bullet, 1),
(EnergyPacket, 1), (Game, 3), (Robot, 1)}
m(Ship) = 2
cda' (o) = cda(a) + f(\,a,cda) =6+0=06
cdd () = cda(B)+ f(N, B,eda) =0+0=0

The cae value for o remains the same. The cae for 3 changes if and only if « affects 3
only by introducing the field. If « affects the (class by introducing other fields, methods
or constructions using inter-type declarations or advising (3, the value for cae remains
unchanged. To calculate the value, the multiset of modules that affect 5 was collected:

MA = {(Displayl.ShipObject Painting,?2),
(Display2.ShipObject Painting, 2), (Debug, 50) }

cae'(a) = cae(a) + f(A\,a,cae) =0+0=0

m(a) = 2

ca€' (B) = cae(B)+ f(\,B,cae) =4+m(a) =3+0=3

The evaluated values are the same calculated using the aopmetric tool after the refac-
toring:
SpaceObject Painting = {locc = 63, nom =5, cda = 6, cae = 0}
Ship = {locc =194, nom = 21, cda = 0, cae = 3}

After the refactoring, the color field (line 5) is declared in the Ship class (line 4). The
modifier was changed to public, so the aspect still has access to that field. A refactoring

235

pattern that can be applied to use methods to access the value of color is the Encapsulate
Field refactoring pattern, which replaces all the readings and writings to method calls
(methods getColor and setColor)

static aspect SpaceObjectPainting {

1
2
3}

4 class Ship extends SpaceObject {
5

6

7

public Color color;

